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Table of Contents Entry 

Carbon nanotube electrodes for thin film photovoltaics are ultrasonically spray coated, attaining 

sheet resistances as low as 3.4 ☐-1 without post-deposition treatments. Organic devices 

achieved similar performance as those with silver electrodes, while optical simulations of other 

candidate materials elucidate device design parameters. 
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Abstract 

A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. 

We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque 

and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition 

treatment. The electrodes show sheet resistance as low as 3.4 Ω ☐-1, comparable to evaporated 

metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, 

showing comparable photocurrent generation between reflective metal and absorptive CNT 

electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-

hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated 

devices clearly show that the absorptive CNT electrodes display comparable performance to 

solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate 

absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating 

device design in the absence of optical interference and reflection.  
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Introduction 

The field of photovoltaics (PV) is a major consumer of silver, with its intrinsically large area 

devices, and is expected to continue its rapid growth as countries move toward greener energy 

sources.1–4 Within the field of thin film PV, interest has been rapidly growing in organic (OPV) 

and perovskite photovoltaic cells, where lab-based devices have reached above 11% and 20% 

certified efficiencies, and further prompted a drive for roll-to-roll scale deposition techniques.5,6 

Most thin film PV technologies require the photoactive layer stack to be sandwiched between two 

electrodes, with at least one being semi-transparent. The deposition and patterning of such 

electrodes are one of the most substantial challenges for industrial roll-to-roll production. Vacuum 

based deposition techniques offer precise thickness control and high conductivity, while being free 

of post-deposition treatments, at the expense of cost and complexity for roll-to-roll processing. 

Solution processed alternatives like metal nanowires and nanoparticles, high conductivity 

polymers, and carbon nanotubes (CNTs) can be coated at low cost, however, they typically require 

post-deposition annealing or chemical treatments that are usually incompatible with the underlying 

layer stack.7–9 These treatments are typically done to remove surfactants used to disperse the 

conducting nanoparticles, inhibiting charge transport between conducting components.5,10–17  

Metals, predominantly silver and copper, have been the materials of choice for not only 

electrodes in PV devices, but also the vast array of high performance electronic devices and 

circuitry we use on a daily basis. Unfortunately, the utilization of precious metals like silver has 

its limitations, due to a rising cost stemming from its limited availability.4,18,19 Printable and 

solution processed silver is typically deposited in the form of nanoparticles or nanowires, 

increasing not only material cost, but also raising the substantiated concern for undesirable 
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bioactivity.20,21 A suitable replacement should be conductive, earth-abundant, non-reactive, robust, 

and stable.  

Carbon based electrodes have been gaining in popularity as non-metal electrodes capable of 

being solution processed, with the added benefit that these materials are sufficiently abundant.22,23 

These electrodes, composed of e.g. carbon paste, graphitic nanosheets, carbon nanotubes, or 

graphene also benefit from being nonreactive and mechanically robust, extending device lifetime, 

and alleviating processing constraints.7,24–29 Carbon electrodes based on nanotubes or carbon paste 

have successfully been implemented in both OPV and perovskite devices, attaining performance 

approaching that of ITO.16,17,30–35 A strategy common to these prior reports is to implement these 

conducting layers as the semi-transparent electrode.13,25,31,33,36–39 However, the purely absorptive 

nature of carbon layers limits their transparent electrode performance figure of merit and potential 

use in thin film PV.8 In contrast, the benefits of carbon electrodes are still unexplored when 

implemented as an opaque and absorptive electrode, as we demonstrate here.  

Optical interference effects must be accounted for in thin film optoelectronic devices with 

reflective electrodes, such as silver or aluminum. For maximum functionality, the device layer 

geometry may be optimized by simulating the internal electrical field distribution, and thus 

maximizing current generation in thin film PV.40 In contrast, devices with absorptive electrodes 

lack the assistance of interference, and hence require thicker photo-active layers (PAL) to reach a 

similar absorbance. Understanding the relationship between the absorption coefficient and PAL 

thickness gives insight into the condition for fabrication of high performance devices with 

absorptive electrodes. 

To assess the performance of absorptive, metal-free, and solution processed electrodes for thin 

film optoelectronic applications, we have evaluated multiwalled CNTs (MWCNTs) as top opaque 

Page 5 of 25 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
9 

M
ar

ch
 2

01
5.

 D
ow

nl
oa

de
d 

by
 K

U
 L

eu
ve

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

19
/0

3/
20

15
 0

9:
29

:1
0.

 

View Article Online
DOI: 10.1039/C5NR01119A

http://dx.doi.org/10.1039/c5nr01119a


 
6 

electrodes in organic photovoltaic devices. The use of MWCNTs as opposed to single walled 

CNTs here is significant, as the cost of MWCNTs is orders of magnitude less than that of single 

walled CNTs.41 A suspension of dispersed MWCNTs (Electra Colour™ - CNTBlack) was 

patterned via ultrasonic spray coating through a shadow mask and used as-deposited. This paper 

presents high conductivity and low sheet resistance MWCNT electrodes for OPV devices with 

performance comparable to both solution processed and evaporated Ag electrodes. Furthermore, 

the CNT electrodes are processable on top of the photoactive blend and metal oxide materials. 

Optical simulations elucidate the need for a long optical path length, i.e. a thick PAL or strong 

absorption coefficient, and a guideline is presented for the implementation of absorptive contacts 

in thin film photovoltaics, as a function of the material properties. 
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Materials and Methods 

The CNT ink used in these experiments was a MWCNT hydrocarbon suspension (Electra 

Colour™ - CNTBlack) provided by Owen Research. Patterned glass/ITO substrates were 

purchased from TFD (3x3 cm2, RS = 20 ☐-1). All substrates were cleaned in ultrasonic baths of 

detergent, deionized water, acetone, and 2-propanol. The P3HT 4002-EE was purchased from 

Rieke Metals, while the [60]PCBM was purchased from Nano-C.  

All device fabrication steps were carried out in a N2 environment. Titania sol-gel in ethanol was 

spin coated to give 5 nm thick layers. Solutions of P3HT and PCBM in 1,2-ortho-dichlorobenzene 

(oDCB): 1,3,5-trimethylbenzene were mixed and stirred for at least 8 hours at 80 ˚C prior to 

deposition. The concurrently pumped spray coating was performed with a Sono-Tek Corp. 

AccuMist 120 kHz ultrasonic nozzle fixed to an ExactaCoat system. An animation of the CNT 

spraying process is shown in the supporting information. The top contact of MoO3 and Ag were 

thermally evaporated at a pressure of 10-7 Torr through a shadow mask to thickness of 10 and 150 

nm, respectively, defining devices with an area of 0.13 cm2.  

Atomic force microscope (AFM) images were recorded on a Picoscan PicoSPM LE scanning 

probe microscope operated in tapping mode. Kelvin probe measurements were carried out with a 

Veeco Multimode AFM operated in lift mode at a height of 25 nm and temperature of 333 K. A 

gold coated Si tip (MikroMasch NSC36/Cr-Au) was used. Film thicknesses were measured with a 

Dektak D150 (Veeco Instruments) surface profilometer. Scanning electron microscope images 

were captured with a Philips XL30. Sheet resistance was measured with a four point probe on 

layers sprayed on glass. The current density vs. voltage measurements were done with a Keithley 

2602A Source-Measure Unit and an Abet solar simulator producing 100 mWcm-2 AM1.5G 

illumination. External quantum efficiency was measured with coupled and monochromated Xe 
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and quartz halogen lamps calibrated by a Si photodiode. Reflectivity measurements were measured 

with the EQE equipment, modified with an integrating sphere, and done through the air/glass/layer 

interface. Both background and substrate contributions were subtracted from the measured values 

in the shown figures. 

Optical simulations were carried out using transfer matrix optical modeling of the electric field 

within the device stacks, with layer optical constants measured by ellipsometry (GES5, 

Sopralab).40,42 Since the roughness of the CNT layer precludes the measurement of accurate optical 

constants, the absorptive nature of the CNT layer was approximated with a 1 m thick MoO3 layer, 

accounting for the PAL to transport layer interface. Since the model assumes flat interfaces and no 

scattering, the thick MoO3 layer accounts for the rough interface and purely absorptive nature of 

the CNT layer by approximating a thick absorptive layer and eliminating optical interference 

contributions from the MoO3/CNT interface. 
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Results and Discussion 

 

Figure 1. Schematic representation of multipass spray coating of CNT electrodes through a 

shadow mask, with the blue arrow showing the overlapping raster pattern. The inverted 

architecture is comprised of patterned indium tin oxide (ITO) on a glass substrate, followed by the 

deposition of an electron transport layer (ETL), photoactive layer (PAL), hole transport layer 

(HTL), and patterned MWCNT electrodes. 

 

Multiwalled CNT layers were deposited using a multipass raster of the ultrasonic spray coating 

nozzle, schematically shown in Fig. 1. Due to the low vapor pressure at room temperature of the 

CNT ink, the substrate was held at an elevated temperature of 70 ˚C during the deposition. This 

temperature was the lowest temperature necessary to prevent the accumulation of wet droplets 

upon subsequent passes, and provided well-defined electrode areas through the mask. The facile 

and controlled accumulation of CNTs into films (scanning electron microscope (SEM) images 

shown in Fig. 2a,b) provided regulated layer thickness between 50 - 4000 nm. A visibly opaque 

layer was obtained with a CNT layer thickness above approximately 500 nm. 

Page 9 of 25 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
9 

M
ar

ch
 2

01
5.

 D
ow

nl
oa

de
d 

by
 K

U
 L

eu
ve

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

19
/0

3/
20

15
 0

9:
29

:1
0.

 

View Article Online
DOI: 10.1039/C5NR01119A

http://dx.doi.org/10.1039/c5nr01119a


 
10 

 

 

Figure 2. (a, b) Scanning electron microscope images of 4 m thick spray coated MWCNT films. 

(c) Atomic force microscope image of surface topography for a 4 m thick MWCNT layer. (d) 

Specular and (e) diffuse reflectivity of a 100 nm thick evaporated Ag and 4 m thick spray coated 

MWCNT films, measured through the glass substrate.  

Table 1. Spray coated CNT, spray coated and sintered Ag nanoparticle (NP), and evaporated Ag 

layer thickness, sheet resistance as measured with the 4-point probe technique, conductivity, and 

Kelvin probe measured work function. 

 MWCNT Ag NPs43  Ag (Evap.)  

Thickness (nm) 4000 300 100 

Sheet Resistance (☐-1) 3.4 1.3 2.4 

Conductivity (10
6

 S m-1) 
0.074 2.5 4.2 

Work function (eV) 5.4 - [4.3-4.7] 
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Spray coated CNT layers of 4 m thickness showed a measured sheet resistance value of 3.4 

☐-1, comparable to 100 nm thick Ag electrodes with 2.4 ☐-1, indicative of the potential to 

replace Ag with CNTs. The electrical characterization of the CNT film is summarized in Table 1, 

along with the work of Girotto, et. al. for spray coated and sintered at 150 °C Ag nanoparticle (NP) 

layers, and the corresponding data for an evaporated Ag layer.43,44 The conductivity of these CNT 

layers was calculated to be 7.4 x 104 S m-1. A CNT layer thickness of 4 m was implemented in 

this study, because it achieves equal electrical performance to Ag electrodes while increasing the 

thickness provides diminishing returns for sheet resistance. 

The MWCNTs used in this study cost approximately 10 times less than bulk Ag and 600 times 

less than Ag NP, only considering material cost. The density of these MWCNTs is roughly 103 kg 

m-3 and that of bulk Ag is 104 kg m-3, leading to an area density of 4 g m-2 and 1 g m-2, respectively. 

We assume the area density of Ag NP electrodes is comparable to bulk Ag for similar performance, 

since the deposition parameters and sintering conditions strongly impact the packing density. Thus, 

neglecting the extra cost of vacuum over solution processed deposition, MWCNT electrodes are 

2.5 times less than that of bulk silver and 150 times less than Ag NPs. Moreover, the price of Ag 

is expected to continue its rise, doubling over the past 10 years, while the price of CNTs has 

dropped by 10 times over the same time span; the price of CNTs is expected to continue decreasing 

due to economies of scale, reduced cost of feedstock, increased yield, and reduced energy 

consumption.41 

Another requirement for the replacement of metal electrodes is the work function alignment of 

the CNT layer to enable charge extraction from the photoactive layer. A Kelvin probe AFM was 

used to measure the layer work function. A potential difference of 0.5 eV was measured relative 
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to a 4.9 eV gold reference,45 giving a work function of 5.4 eV. This deep work function makes the 

CNT layer a suitable candidate for the hole extracting anode, and suitable to replace Ag electrodes 

with a work function between 4.3 and 4.7 eV.46  

The perfect absorber quality of CNT films is shown with the specular and diffuse reflectivity 

(Fig. 2d,e) of evaporated Ag and spray coated CNT films, measured though the glass substrate. 

While Ag demonstrates a high specular reflectivity between 80-90%, CNT films have a minimal 

specular reflectivity of 5%, this reflectivity may be related to the residual dispersant agent used to 

suspend CNT in solution. Neither of the films show substantial diffuse components, indicating that 

neither electrode scatters light and that the CNT film is highly absorptive over the solar-cell 

relevant spectral range. In the majority of OPV literature, a reflective top metal contact is used, 

leading to the establishment of optical interference effects, the first two nodes corresponding to 

photoactive layer (PAL) thicknesses of approximately 90 and 250 nm. As in this work absorptive 

CNT layers are used, the interference pattern, and thus the optimal PAL thickness, will be different. 

 

 

Figure 3. (a) Dark current density vs. voltage, and (b) external quantum efficiency (EQE) vs. 

wavelength for both thin (230 nm, open black squares) and thick (600 nm, filled black squares) 

PAL with Ag electrodes, along with thick PAL (600 nm) with CNT electrodes (red filled diamonds). 
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Table 2. Performance values for best performing P3HT:PCBM devices fabricated with the same 

equipment and with different top electrodes and PAL thicknesses. 

 PAL Thickness 

(nm) 

 

(%) 

FF 

(%) 

VOC 

(mV) 

JSC 

(mA cm-2) 

Conventional 240 4.2 72 620 9.1 

Conventional 660 3.7 66 590 9.4 

Inverted 230 3.6 62 600 9.6 

Inverted 600 2.7 48 560 10.2 

Inverted – CNT 600 2.4 51 570 8.3 

Inverted – Ag NPs43 220 2.5 48 620 8.3 

 

Devices with both conventional architecture, glass/ITO/PEDOT:PSS/P3HT:PCBM/Ca/Ag 

(anodic ITO), and inverted architecture, glass/ITO/TiO2/P3HT:PCBM/MoO3/[Ag or CNT] 

(cathodic ITO), were fabricated. A photograph of devices fabricated with MWCNT electrodes is 

shown in Fig. S1. The photoactive layer was deposited via concurrently pumped ultrasonic spray 

coating as described previously.44,47 The deep work function of the CNT layers warrants 

implementation as the top anode in an inverted structure. The dark current density vs. voltage (J-

V) and external quantum efficiency (EQE) data for a device with a 600 nm thick PAL and CNT 

top electrode is shown in Fig. 3. The equivalent inverted devices with thick (600 nm) and thin (230 

nm) PAL and Ag electrodes are also shown. The EQE for the CNT device is slightly lower at all 

wavelengths relative to the Ag electrode devices. Notably, the EQE of both thick devices 

resembles the absorption spectrum of the material, whereas optical interference effects at 
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wavelengths around 400 nm are noticeable in the thin Ag-based device. Furthermore, the long 

wavelength absorption near 700 nm benefits from the reflective electrode in the thick Ag-based 

device, whereas this contribution to EQE is only weakly discernable in the thin Ag and CNT 

devices. The measured device performance for devices with Ag, Ag NP, and CNT electrodes are 

listed in Table 2. These devices were fabricated with the same equipment; the conventional and 

Ag NP data have been published previously.43,44 The CNT based devices show comparable 

performance to both evaporated and solution processed Ag electrodes on thick photoactive layers.  
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Figure 4. Plots of (a) short circuit current density (JSC), (b) fill factor (FF), and (c) open circuit 

voltage (VOC) vs. PAL thickness for measured inverted architecture devices with Ag (black 

squares) or CNT (red diamonds) electrodes. Error bars account for device-to-device differences 

in performance and layer thickness over a substrate. Optically simulated JSC values for the 

reflective (solid black line) or absorptive (dashed red line) electrode devices are shown.  
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The photoactive layer thickness was swept between 30 and 1000 nm for inverted architectures 

with Ag electrodes with the device performance metrics shown in Fig. 4. Devices with 2 and 3 m 

thick photoactive layers were also fabricated, shown in Fig. S2; these thicker devices continued 

the decreasing trend in short circuit current density (JSC) and open circuit voltage (VOC), while fill 

factor (FF) remained constant at 40%. The drop in JSC for devices thicker than 300 nm is due to a 

space charge limited current. The imbalance in charge carrier mobilities in the bulk of the 

photoactive layer causes a build-up of carriers and band bending at the fast-carrier extracting 

contact.48 The flat band region near the opposing contact increases bulk charge carrier 

recombination, decreasing current collection.49 A decreasing carrier concentration, and thus quasi 

Fermi-level separation, with increasing PAL thickness explains the drop in VOC. The FF shows an 

absolute 30% decrease from 100 to 600 nm PAL thickness, substantially more than that reported 

for conventional architecture devices.44 A possible explanation for the difference between 

architectures is a shifted space charge region altering charge extraction.49–51  

Optical simulations, via transfer matrix optical modeling of the electric field within the device 

stacks, were carried out as a function of PAL thickness for the inverted device architecture with 

absorptive and with Ag electrodes. The loss of optical interference effects in thin devices with 

absorptive electrodes is apparent, relative to the Ag devices.  

The measured performance values for devices with absorptive CNT electrodes are shown in Fig. 

4. For thin devices, the JSC trend agrees with the optical simulation, and approaches the values of 

the reflective devices as the thickness increases beyond 500 nm. Regardless of contact material, 

the space charge limited current reduces JSC for thick devices and limits the useful thickness range 

for organic photovoltaic devices. Absorptive electrode devices with a thickness less than 300 nm 
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display low FF and VOC, which is likely due to a decreased tolerance to damage relative to the 

thicker devices. A reduced electrode deposition rate may lessen this drop. 

 

 

Figure 5. The upper contour plot shows the JSC ratio between simulated devices with perfect 

absorber (PA) and with reflective (R) Ag electrodes as a function of thickness and absorption 
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coefficient () at 563 nm (peak of P3HT:PCBM absorption). The dashed contour line for the 

measured absorption coefficient of 5x104 cm-1 of P3HT:PCBM is shown in the upper line plot. The 

simplified equation, 𝑑(𝜆) = −
1

𝛼(𝜆)
𝑙𝑛(𝐽𝑅(𝜆) 𝐽𝑃𝐴(𝜆)⁄ − 1), is plotted in the lower contour plot with 

the ratio of photocurrents as a function of PAL thickness and absorption coefficient, where only 

the absorption at a single wavelength is considered. The approximate peak absorption coefficients 

for several prominent thin film photovoltaic materials are shown, including: small organic 

molecule boron subphthalocyanine chloride (SubPc), CH3NH3PbI3 perovskite, Cu(In,Ga)(Se,S)2, 

and P3HT:PCBM. 

To investigate the influence of the photoactive material absorption coefficient in devices with 

absorptive electrodes, devices with reflective Ag and with perfect absorber electrodes were 

optically simulated, as described in the Materials and Methods section, as a function of PAL 

thickness and absorption coefficient (). For the latter, the absorption profile of a P3HT:PCBM 

system is scaled, and the peak absorption at a wavelength of 563 nm is reported, where the value 

of 5x104 cm-1 (indicated by a horizontal dashed line in Fig. 5) corresponds with the actual 

extinction coefficient as measured by ellipsometry. For every PAL thickness and absorption 

strength, the optimal thickness of an optically transparent spacer layer (with a refractive index of 

2 and similar to the hole transporting MoO3 used in the fabricated devices) between the PAL and 

anodic contact was calculated to produce the maximum possible JSC. The resulting contour plot of 

the ratio of JSC for absorptive and reflective contacts is shown in Fig. 5, along with the line plot 

for the case of the real P3HT:PCBM system. The individual JSC contour plots for each case are 

shown in Fig. S3. To obtain a 90% JSC ratio value, a layer thickness of 600 nm is required for 

P3HT:PCBM, while a thickness of only 300 nm is sufficient if the absorption strength could be 

doubled. The ratio of JSC values for fabricated devices with absorptive CNT electrodes to those 
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with reflective Ag electrodes is also shown in Fig. 5. The agreement between the simulation and 

experimental data confirms the predictive capability of the simulations described here. 

The maximum photocurrent generation in devices with perfect absorber (PA) electrodes follows 

the Beer-Lambert law, 𝐽𝑃𝐴(𝜆) = 𝐼0(𝜆)(1 − 𝑒−𝛼(𝜆)𝑑), where I0 is the incident light intensity, λ is 

wavelength, and d is PAL thickness. The maximum photocurrent generation with a perfect 

reflector (R) electrode occurs with the peak doubling of the electric field, i.e. the peak quadrupling 

of the absorption. Including the valleys in the interference pattern where the electrical field can 

drop to zero, a mean doubling of the absorption enhancement can be expected, viz 𝐽𝑅(𝜆) =

𝐼0(𝜆)(1 − 𝑒−2𝛼(𝜆)𝑑). The PAL thickness required to attain a certain ratio of maximum possible 

current densities is 𝑑(𝜆) = −
1

𝛼(𝜆)
𝑙𝑛 (

𝐽𝑅(𝜆)
𝐽𝑃𝐴(𝜆)⁄ − 1). Note that this simplified equation differs 

from the optical simulations shown in Fig. 5, because the equation is only valid at a single specified 

absorption coefficient; an integration over all wavelengths is required to calculate the real Jsc ratio. 

According to the above formula a P3HT:PCBM device attains a photocurrent ratio of 90% with a 

PAL thickness of 440 nm and (563 nm)=5x104 cm-1, while a PAL thickness of 550 nm is required 

for (420 nm)=4x104 cm-1. The equation has been implemented with other thin film photovoltaic 

materials to attain 90% current ratio between absorptive and reflective electrodes. Perovskite based 

materials (e.g. CH3NH3PbI3), with (470 nm)=2x105 cm-1 as peak absorption, require a minimal 

PAL thickness of 110 nm according to the equation. An optical simulation, taking the full 

wavelength spectrum into account and with the plots shown in Fig. S4, shows that a planar 

perovskite device with a perfect absorber electrode requires only 250 nm to attain 90% of the 

possible photocurrent; while a 1000 nm thick PAL produces 97% photocurrent relative to a 

reflective electrode. Evaporated small molecules can exhibit even higher extinction coefficients. 

As an example, boron subphthalocyanine chloride (SubPc), used in energy cascade devices, has a 
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peak absorption coefficient of 3x105 cm-1 and requires a 73 nm PAL thickness.52 Another thin-

film technology, Cu(In,Ga)(Se,S)2, shows an absorption coefficient near 105 cm-1, and requires a 

minimum of a 220 nm thick PAL.53 The simplified equation is shown in the bottom panel of Fig. 

5, with labels for the specified materials; a plot of the required PAL thickness for a specified 

absorption coefficient and photocurrent ratio is shown in Fig. S5. 

 

Conclusions 

In conclusion, this work shows the implementation of ultrasonic spray coating for the deposition 

of absorptive and opaque multiwalled carbon nanotube electrodes that are free of metals and post 

deposition treatments. The as-deposited 4 m thick multiwalled CNT layers reached sheet 

resistance as low as 3.4 ☐-1 and conductivity of 7.4 x 104 S m-1. The CNT electrode was 

constrained to function as the anode in this work, with its measured work function of 5.5 eV. 

Inverted architecture devices with absorptive CNT electrodes showed equal performance to both 

evaporated and spray coated Ag electrodes, given thick photoactive layers. Optical simulations of 

the complete device stack showed that current density with an absorptive CNT electrode can be 

comparable to a reflective Ag electrode by merely increasing the optical path length; a layer 

thickness of at least 600 nm was required for the archetypal P3HT:PCBM system. Furthermore, 

this work provides design recommendations aimed toward photoactive materials with higher 

absorption coefficients, permitting thinner films and decreasing the reliance on expensive and 

reflective electrodes. Overall the treatment-free opaque MWCNT electrode via ultrasonic spray 

coating presents itself as a cost-effective and scalable solution processed alternative to evaporated 

metal electrodes.  
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Supporting Information 

The supporting information includes an animation of the MWCNT spray coating process, and 

five figures, including: a photograph of completed devices with MWCNT electrodes, 

performance metrics for devices with photoactive layer thickness up to 3000 nm, contour plots of 

simulated devices used to build Fig. 5, simulation data for perovskite devices, and a contour plot 

of the simplified equation of photoactive layer thickness required to attain a specified 

photocurrent ratio (x-axis) and absorption coefficient (y-axis).  
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