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Preface

This dissertation is the result of work I have undertaken between October 1999 and
September 2003 as a research student in the Institute of Astronomy and Cavendish As-
trophysics Group in the University of Cambridge.

This dissertation is my own work and contains nothing which is the outcome of work done
in collaboration with others, except as specified in the text and Acknowledgements.

This dissertation is not substantially the same as any that has been submitted for a degree
or diploma or other qualification at this or any other University.

This dissertation does not exceed 60 000 words.

Robert Nigel Tubbs

Originality

Chapter 1 is a review of recent developments in high resolution ground based optical
imaging, and is mostly the work of other authors.

Chapter 2 includes some results from previous authors and some of my own work as
indicated in the text.

Chapters 3-6 and Appendix A are my own work except where indicated in the text.



Summary

The resolution of astronomical imaging from large optical telescopes is usually limited by
the blurring effects of refractive index fluctuations in the Earth’s atmosphere. By taking
a large number of short exposure images through the atmosphere, and then selecting,
re-centring and co-adding the best images this resolution limit can be overcome. This
approach has significant benefits over other techniques for high-resolution optical imaging
from the ground. In particular the reference stars used for our method (the Lucky Expo-
sures technique) can generally be fainter than those required for the natural guide star
adaptive optics approach or those required for other speckle imaging techniques. The low
complexity and low instrumentation costs associated with the Lucky Exposures method
make it appealing for medium-sized astronomical observatories.
The method can provide essentially diffraction-limited I-band imaging from well-figured
ground-based telescopes as large as 2.5m diameter. The faint limiting magnitude and large
isoplanatic patch size for the Lucky Exposures technique at the Nordic Optical Telescope
means that 25% of the night sky is within range of a suitable reference star for I-band
imaging. Typically the 1%—10% of exposures with the highest Strehl ratios are selected.
When these exposures are shifted and added together, field stars in the resulting images
have Strehl ratios as high as 0.26 and full width at half maximum flux (FWHM) as small
as 90 milliarcseconds. Within the selected exposures the isoplanatic patch is found to be
up to 60 arcseconds in diameter at 810 nm wavelength. Images within globular clusters
and of multiple stars from the Nordic Optical Telescope using reference stars as faint as
I ∼ 16 are presented.
A new generation of CCDs (Marconi L3Vision CCDs) were used in these observations,
allowing extremely low noise high frame-rate imaging with both fine pixel sampling and
a relatively wide field of view. The theoretical performance of these CCDs is compared
with the experimental results obtained.
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Chapter 1

Introduction

1.1 The need for high resolution optical imaging

Ever since Galileo first pointed a simple refracting telescope at the heavens in 1609 and
resolved the Jovian system, astronomers have wished for higher and higher resolution
imaging instruments. Early telescopes were limited by the accuracy with which large
lenses could be figured. The development of reflecting telescopes by James Gregory and
Isaac Newton lead to a rapid increase in the resolution available to astronomers. With the
work of Thomas Young in the 19th Century, astronomers realised that the resolution of
their telescopes was limited by the finite diameter of the mirror used. This limit was set
by the wave properties of light and meant that large, accurately figured mirrors would be
required in order to obtain higher resolution. Well figured telescopes with larger aperture
diameters were constructed, but the improvement in resolution was not as great as had
been expected. The resolution which could be obtained varied with the atmospheric
conditions, and it was soon realised that Earth’s atmosphere was degrading the image
quality obtained through these telescopes.

For much of the 20th Century, the blurring effect of the atmosphere (known as atmospheric
“seeing”) limited the resolution available to optical astronomers. This degradation in
image quality results from fluctuations in the refractive index of air as a function of
position above the telescope. The image of an unresolved (i.e. essentially point-like)
star is turned into a dancing pattern of “speckles”. An example short exposure image
from such a pattern is shown in Figure 1.1. In order to obtain better atmospheric seeing
conditions, telescopes were constructed at high altitudes on sites where the air above the
telescope was particularly stable. Even at the best observatory sites the atmospheric
seeing conditions typically limit the resolution which can be achieved with conventional
astronomical imaging to about 0.5 arcseconds (0.5 as) at visible wavelengths.

Studies of short exposure images obtained through atmospheric seeing by Antoine Labeyrie

1



2 1. Introduction

Figure 1.1: A K-band 140 ms exposure image obtained at the 10 m Keck I tele-
scope showing a typical speckle pattern produced by atmospheric seeing. The
image is plotted using a negative greyscale to highlight the fainter features. The
pixel scale of 0.0206 as pixel−1 was set by the Keck facility Near Infra-Red Cam-
era (NIRC) instrument. This image is taken from data kindly provided by Peter
Tuthill.

in 1970 (Labeyrie 1970) indicated that information about the high resolution structure of
an astronomical object could be obtained from these short exposures despite the perturbing
influence of the atmosphere. A number of imaging techniques were developed based on his
approach, most involving fast frame-rate cameras (essentially high performance motion
picture or video cameras) situated at the telescope focus. This thesis discusses one of
these techniques in detail, that of Lucky Exposures. The Lucky Exposures method was
first discussed in depth by David Fried in 1978 (Fried 1978), and the first experimental
results followed in the 1980s. The optimum performance for the technique was not achieved
during those observations, partly due to the camera equipment available at the time and
partly due to the approach used for the data analysis. This thesis presents more recent
results which demonstrate the enormous potential of the technique.

The effects of atmospheric seeing are qualitatively similar throughout the visible and near
infra-red wavebands. At large telescopes the long exposure image resolution is generally
slightly higher at longer wavelengths, and the timescale for the changes in the dancing
speckle patterns is substantially lower. This would argue for the use of long wavelengths
in experimental studies of these speckle patterns (although short wavelengths are of equal
astronomical interest). The high cost of sensitive imaging detectors which operate at wave-
lengths longer than ∼ 1 µm makes them less appealing for studies of imaging performance,
so the results presented in later chapters of this thesis will be restricted to wavelengths
shorter than ∼ 1 µm. The cameras used for my work are sufficiently fast to accurately
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sample the atmosphere at the wavelengths used. The approaches developed in this thesis
could equally be applied to longer wavelengths given suitable detectors and telescopes,
broadening the astronomical potential of the method substantially.

1.2 Short exposure optical imaging through the atmosphere

It is first useful to give a brief overview of the basic theory of optical propagation through
the atmosphere. In the standard classical theory, light is treated as an oscillation in a field
ψ. For monochromatic plane waves arriving from a distant point source with wave-vector
k:

ψ0 (r, t) = Aei(φo+2πνt+k·r) (1.1)

where ψ0 is the complex field at position r and time t, with real and imaginary parts
corresponding to the electric and magnetic field components, φo represents a phase offset,
ν is the frequency of the light determined by ν = c |k| / (2π), and A is the amplitude of
the light.

The photon flux in this case is proportional to the square of the amplitude A, and the
optical phase corresponds to the complex argument of ψ0. As wavefronts pass through
the Earth’s atmosphere they may be perturbed by refractive index variations in the at-
mosphere. Figure 1.2 shows schematically a turbulent layer in the Earth’s atmosphere
perturbing planar wavefronts before they enter a telescope. The perturbed wavefront ψp

may be related at any given instant to the original planar wavefront ψ0 (r) in the following
way:

ψp (r) =
(
χa (r) eiφa(r)

)
ψ0 (r) (1.2)

where χa (r) represents the fractional change in wavefront amplitude and φa (r) is the
change in wavefront phase introduced by the atmosphere. It is important to emphasise
that χa (r) and φa (r) describe the effect of the Earth’s atmosphere, and the timescales for
any changes in these functions will be set by the speed of refractive index fluctuations in
the atmosphere.

1.2.1 The Kolmogorov model of turbulence

A description of the nature of the wavefront perturbations introduced by the atmosphere
is provided by the Kolmogorov model developed by Tatarski (1961), based partly on the
studies of turbulence by the Russian mathematician Andrëı Kolmogorov (Kolmogorov
1941a,b). This model is supported by a variety of experimental measurements (e.g.
Buscher et al. (1995); Nightingale & Buscher (1991); O’Byrne (1988); Colavita et al.
(1987)) and is widely used in simulations of astronomical imaging. The model assumes
that the wavefront perturbations are brought about by variations in the refractive index
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Figure 1.2: Schematic diagram illustrating how optical wavefronts from a distant
star may be perturbed by a turbulent layer in the atmosphere. The vertical scale
of the wavefronts plotted is highly exaggerated.

of the atmosphere. These refractive index variations lead directly to phase fluctuations
described by φa (r), but any amplitude fluctuations are only brought about as a second-
order effect while the perturbed wavefronts propagate from the perturbing atmospheric
layer to the telescope. For all reasonable models of the Earth’s atmosphere at optical and
infra-red wavelengths the instantaneous imaging performance is dominated by the phase
fluctuations φa (r). The amplitude fluctuations described by χa (r) have negligible effect
on the structure of the images seen in the focus of a large telescope.

The phase fluctuations in Tatarski’s model are usually assumed to have a Gaussian random
distribution with the following second order structure function:

Dφa (ρ) =
〈
|φa (r)− φa (r + ρ)|2

〉
r

(1.3)

where Dφa (ρ) is the atmospherically induced variance between the phase at two parts of
the wavefront separated by a distance ρ in the aperture plane, and 〈. . .〉 represents the
ensemble average.

The structure function of Tatarski (1961) can be described in terms of a single parameter
r0:

Dφa (ρ) = 6.88
(
|ρ|
r0

)5/3

(1.4)

r0 indicates the “strength” of the phase fluctuations as it corresponds to the diameter of
a circular telescope aperture at which atmospheric phase perturbations begin to seriously
limit the image resolution. Typical r0 values for I band (900 nm wavelength) observations
at good sites are 20—40 cm. Fried (1965) and Noll (1976) noted that r0 also corresponds
to the aperture diameter for which the variance σ2 of the wavefront phase averaged over
the aperture comes approximately to unity:

σ2 = 1.0299
(
d

r0

)5/3

(1.5)
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Equation 1.5 represents a commonly used definition for r0.

A number of authors (e.g. Kim & Jaggard (1988); Siggia (1978); Frisch et al. (1978);
Mandelbrot (1974); Kuo & Corrsin (1972)) have suggested alternatives to this Gaussian
random model designed to better describe the intermittency of turbulence discovered by
Batchelor & Townsend (1949). Although variations in seeing conditions have been found
on timescales of minutes and hours (Racine 1996; Vernin & Muñoz-Tuñón 1998; Wilson
2003), no significant experimental evidence has been put forward which strongly favours
any one of the intermittency models for the turbulence involved in astronomical seeing.
The Gaussian random model is still the most widely used, and will be the principal model
discussed in this thesis.

The outer and inner scales of turbulence

In reality, phase fluctuations in the atmosphere are only expected to follow the structure
function shown in Equation 1.4 over a finite range of length scales. The turbulent energy
is injected at large scales by wind shear. The bulk of the wind shear is expected in discrete
layers of the atmosphere, and the largest turbulent structures are expected to fit within
one of these atmospheric layers. The length scale at which the structure function for
Kolmogorov turbulence breaks down at large scales is called the outer scale of turbulence.
Several attempts have been made at measuring the size of this outer scale using a variety
of different methods (see e.g. Linfield et al. (2001); Martin et al. (2000); Wilson et al.
(1999); Davis et al. (1995); Buscher et al. (1995); Ziad et al. (1994); Nightingale &

Buscher (1991); Coulman et al. (1988)), but there has been substantial variation in the
measured values. The Von Karman model (Ishimaru 1978) is expected to describe the
form of the power spectrum for phase fluctuations on length scales larger than the outer
scale. If the outer scale is larger than the telescope diameter, then most of the properties
of short exposure astronomical images will not depend significantly on the precise size of
the outer scale (although the amplitude of image motion is still weakly dependent on the
outer scale size). The remaining uncertainty in the size of the outer scale has little impact
on the work presented in this thesis.

At small scales (< 1 cm) the turbulent energy in the atmosphere is dissipated through the
viscosity of the air (Roddier 1981). The length scale at which this becomes significant is
called the inner scale of turbulence. The steepness of the Kolmogorov turbulence spectrum
means that any reduction in the power at such small length scales has relatively little effect
on the imaging performance of optical and infra-red telescopes, and I will not discuss the
inner scale any further in this thesis.
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1.2.2 Example short exposure images

I will first investigate imaging performance in more detail using simulations of Kolmogorov
atmospheres. For these simulations I have chosen to ignore amplitude fluctuations con-
tained in the atmospheric term χa (r) entirely – this corresponds to the case where atmo-
spheric refractive index perturbations are only found very close to the aperture plane of
the telescope. This is achieved in the simulations simply by setting:

∀ r : χa (r) = 1 (1.6)

The effect of the finite aperture size of the telescope can be simulated by setting the
wavefront amplitude to zero everywhere in the aperture plane except where the light path
to the primary mirror is unobstructed. This can be achieved most easily by defining
a function χt (r) which describes the effect of the telescope aperture plane coverage on
the wavefronts in the same way that the effect of the atmosphere is described by χa (r).
The value of χt (r) will be zero beyond the edge of the primary mirror and anywhere
the primary is obstructed, but unity elsewhere. For the simple case of a circular primary
mirror of radius rp without secondary obstruction:

χt (r) =

{
1 if |r| ≤ rp

0 if |r| > rp
(1.7)

Phase perturbations introduced into the wavefronts by aberrations in the telescope can be
described by a function φt (r) in similar way, resulting in wave-function ψ′

p given by:

ψ′
p (r) =

(
χa (r)χt (r) ei[φa(r)+φt(r)]

)
ψ0 (r) (1.8)

I will begin with the simple case of a telescope which is free of optical aberrations observ-
ing in a narrow wavelength band. The perturbed wave-function reaching the telescope
aperture for this case is given by setting φt (r) ≡ 0 in Equation 1.8. Combined with
Equation 1.6 this gives:

ψp (r) =
(
χt (r) eiφa(r)

)
ψ0 (r) (1.9)

For the simulations a long-period pseudo-random number generator was used to produce
two-dimensional arrays containing discrete values of φa (r), having the second order struc-
ture function defined by Equation 1.4, using a standard algorithm provided by Keen (1999).
The time evolution of φa (r) was ignored, as I was interested in the instantaneous imaging
performance (the case for short exposures). Arrays of ψp (r) were then generated corre-
sponding to the wave-function provided by a distant point source after passing through the
atmospheric phase perturbations and the telescope aperture using Equation 1.9. These
arrays were Fourier transformed using a standard Fast Fourier Transform (FFT) routine to
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Figure 1.3: Typical short exposures through: a) a 20r0 aperture; b) a 7r0 aper-
ture; and c) a 2r0 aperture. All three are plotted with the same image scale but
have different greyscales.

provide images of the point source as seen through the atmosphere and telescope. The im-
age of a point source through an optical system is called the point-spread-function (PSF)
of the optical system. For our simple optical arrangement with phase perturbations very
close to the aperture plane, the response of the system to extended sources of incoherent
light is simply the convolution of the PSF with a perfect image of the extended source.

Figure 1.3 shows simulated PSFs for three atmospheric realisations having the same r0
and image scales but with different telescope diameters. There are two distinct regimes
for the cases of large (diameter d � r0) and small (d ∼ r0) telescopes. Figure 1.3a is
a typical PSF from a telescope of diameter d = 20r0. The image is broken into a large
number of speckles, which are randomly distributed over a circular region of the image
with angular diameter ∼ λ

r0
, where λ represents the wavelength. With the slightly smaller

aperture shown in Figure 1.3b the individual speckles are larger – this is because the
typical angular diameter for such speckles is ∼ 1.22λ

d , equal to the diameter of the PSF
in the absence of atmospheric phase perturbations for a telescope of the same diameter
d (i.e. a diffraction-limited PSF). For the small aperture size shown in Figure 1.3c the
shape of the instantaneous PSF deviates little from the diffraction-limited PSF given by a
telescope of this diameter. The first Airy ring is partially visible around the central peak.

Real astronomical images of small fields obtained through the atmosphere will correspond
to an image of the sky brightness distribution convolved with the PSF for the telescope
and atmosphere. The perturbations introduced by the atmosphere change on timescales
of a few milliseconds (known as the atmospheric coherence time). If the exposure time for
imaging is shorter than the atmospheric coherence time, and the telescope is free of optical
aberrations, then Figures 1.3a—c will be representative of the typical PSFs observed. The
random distribution of speckles found in the short exposure PSFs of Figures 1.3a and
1.3b will have the effect of introducing random noise at high spatial frequencies into
the images, making individual short exposures such as these of little direct use for high
resolution astronomy. Figure 1.3c is dominated by a relatively uniform bright core, and
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as such will provide images with relatively high signal-to-noise. Unfortunately the broad
nature of the PSF core severely limits the image resolution which can be obtained with
such a small aperture.

1.2.3 Exposure selection

The phase perturbations introduced by the atmosphere change on timescales of a few
milliseconds, causing the speckle patterns in Figures 1.3a and 1.3b to vary randomly
in both shape and overall position (the changes in the position of the PSF correspond to
the image-motion commonly known to observational astronomers). For the small aperture
shown in Figure 1.3c the overall position of the PSF still fluctuates with time, but the shape
of the short exposure PSF changes very little. The most prominent effects of atmospheric
phase perturbations on the shape in this case are small fluctuations in the Airy rings and
in the intensity of the central peak.

It is useful at this stage to define a quantitive measure of image quality. One approach is
to compare the PSF measured through the atmosphere with the diffraction-limited PSF
expected in the absence of atmospheric aberrations. The ratio of the peak intensity in the
PSF measured for an aberrated optical system to that expected for a diffraction-limited
system is widely known as the Strehl ratio, after the work of Strehl (1895, 1902). In this
case we treat the atmospheric perturbations as the optical aberration, with the telescope
itself assumed to be aberration-free. In order to ensure that the images shown in Figure 1.3
were “typical”, several thousand random realisations of each PSF were generated, and the
three with the median Strehl ratios were chosen for the figure. The Strehl ratios of the
exposures picked were 0.024, 0.14 and 0.68 for Figures 1.3a, 1.3b and 1.3c respectively.

As the atmospheric fluctuations are random, one would occasionally expect these fluctu-
ations to be arranged in such a way as to produce a diffraction-limited PSF, and hence
good quality image. Fried (1978) coined the phrase “Lucky Exposures” to describe high
quality short exposures which occur in such a fortuitous way. A perfectly diffraction-
limited PSF will be extremely unlikely, but it is of interest to assess how good an image
one would expect to occur relatively often during an observing run. If the speckle patterns
change on timescales of a few milliseconds, and we are willing to wait a few seconds for
our good image, then we can wait for a one-in-a-thousand Lucky Exposures. From several
thousand random realisations I selected the PSFs with the highest 0.1% of Strehl ratios.
Figures 1.4a—c show examples of these PSFs with the same atmospheric conditions and
telescope diameters as were used for Figure 1.3a—c respectively.

Figure 1.4a has one speckle with unusually high intensity, resulting in an image Strehl ratio
of 0.062 – significantly greater than the median Strehl of 0.024 for short exposure PSFs
with this aperture size. If the brightest speckle is similar in shape to a diffraction-limited
PSF, then the fraction of the light in the brightest speckle is approximately equal to the
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Figure 1.4: Short exposures through a 20r0, 7r0 and 2r0 aperture typical of
those with the highest 0.1% of Strehl ratios. The Strehl ratios for a), b) and c)
are 0.0619, 0.426 and 0.905 respectively.

Strehl ratio. In this case roughly 6% of the light resides in the brightest speckle. The vast
majority of the light is distributed in a large number of fainter speckles. When imaging
a complex source, each of the fainter speckles contributes noise to the image, resulting in
poor image quality.

Figure 1.4b is dominated by a single speckle which contains a significant fraction of the
total intensity in the image. If we take this speckle to be similar in size and shape to a
diffraction-limited PSF, then the measured Strehl ratio of 43% implies that the speckle
contains about 43% of the total light intensity. The remaining light is found in a large
number of much fainter speckles. The surface brightness from these background speckles
is relatively small and should not result in a very noisy image.

Figure 1.4c is very similar to the typical exposure shown in Figure 1.3c. With this aperture
size the PSF of a lucky exposure shows little improvement over that for a typical exposure.
The broad core of the PSF is dominated by diffraction through the small aperture, giving
very poor angular resolution.

Fried (1978) suggested that for an aperture of diameter 7r0 or 8r0, roughly 0.1% of the
short exposures should be of very good quality (with the RMS variation in wavefront phase
over the aperture less than one radian). This is borne out by the compact core and high
Strehl ratio for the PSF shown in Figure 1.4b, which should mean that this case provides
better high-resolution imaging performance than Figures 1.4a and 1.4c.

In order to compare the imaging performance of the PSFs qualitatively, each of the PSFs in
Figures 1.4a—c was convolved with a simulated astronomical image; the results are shown
in Figures 1.5a—c respectively. For comparison, an image on the same scale was generated
using an ideal PSF (a delta-function), and this is displayed in Figures 1.5d and 1.5e. Both
the galaxy-like structure and the point sources are clearly evident in Figure 1.5b, whereas
these structures are much more difficult to make out in Figures 1.5a and 1.5c.

Even under high light level conditions the signal to noise for imaging using short exposures
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Figure 1.5: a)—c) show the short exposure PSFs from Figure 1.4 convolved with
a simulated sky brightness distribution. The sky brightness distribution used is
shown with two different greyscales in d) and e). Four point sources of differing
brightness are circled in red in d). In panels a)—c) the blurring effect of the
PSFs re-distributes the flux from the point sources over a wider area of the image
leading to a substantial reduction in the peak pixel values in the images.

can be improved by combining large numbers of short exposures taken at different times.
For PSFs having a bright core such as Figure 1.4b, the location of this core within the
image is randomly determined by the atmosphere. To maximise the image quality, the
images must be shifted so that the contribution from the bright core of each PSF is brought
to a common location. If the short exposures are then co-added, the contribution from the
bright core of each PSF will add coherently, while the contributions from the randomly
varying speckles will combine incoherently. In practice the PSF must be determined from
the short exposure images themselves – this is most easily achieved if there is an unresolved
star within the field of view. The image of such a star obtained through the atmosphere
accurately maps the PSF due to the telescope and atmosphere. The re-centring and co-
adding of short exposures in this way has been widely discussed by other authors (e.g.
Christou (1991)).

Determination of the instantaneous PSF from short exposure images of a reference star,
and the use of such PSF measurements to select the exposures with the highest Strehl
ratio and to then re-centre and co-add these exposures forms the basis for most of the
work described in this thesis. I will refer to this method as the Lucky Exposures technique.
A number of other authors have published results using very similar methods, particularly
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for solar and planetary observations. Observations of fainter astronomical targets have
typically used exposure times which are too long to freeze the atmosphere, but these have
often produced valuable astronomical science results nevertheless (Nieto et al. 1987, 1988,
1990; Lelievre et al. 1988; Crampton et al. 1989; Nieto & Thouvenot 1991). Dramatic
improvements in CCD technology have allowed recent observations to be performed at
much higher frame rates (Dantowitz et al. 2000; Baldwin et al. 2001; Davis & North 2001),
providing new insights into the characteristics of the atmosphere, and demonstrating the
potential of high frame-rate imaging using low noise detectors.

To help provide some background material in the field of high resolution imaging, I will
now introduce some alternative methods for high resolution imaging. This will hopefully
clarify the advantages and disadvantages of Lucky Exposures.

1.3 Performance of ground-based high resolution imaging

techniques

Ground-based high resolution imaging techniques can be broadly classified into two types:

1. Passive observations – techniques which make astronomical measurements on time-
scales comparable to the atmospheric coherence time. Measurements are usually
repeated many times in order to increase the signal to noise ratio. Typical examples
include speckle interferometry, the shift-and-add method, Lucky Exposures and ob-
servations of visibilities and closure phases at long baseline interferometers such as
COAST and SUSI.

2. Active correction – designed to remove atmospheric perturbations in optical wave-
fronts in real time before they enter an imaging instrument. Adaptive optics (in-
cluding tip-tilt correction) and fringe tracking at long baseline interferometers such
as NPOI represent active correction.

The Lucky Exposures method is passive, relying on a high frame-rate camera in the
image plane of a telescope to record the speckle patterns. In the past the poor signal-to-
noise performance of high frame-rate cameras has often limited observations like this to
relatively bright targets. It should be noted that the recent development of high frame-
rate CCD cameras with extremely low readout noise will allow many of the active and
passive imaging methods to be used on much fainter astronomical sources.

All of the techniques require measurements of the perturbations introduced by the at-
mosphere using light from a reference source. This reference source may either be a
component of the astronomical target (e.g. the bright core of an active galaxy) or another
source nearby in the sky such as a star. For most of the methods described here the refer-
ence source must be small enough that it is not significantly resolved by the observations.
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For adaptive optics slightly larger reference sources may be used. The abundance of stars
in the night sky mean that they are the most common form of reference source used for
high-resolution imaging through the atmosphere.

Each of the imaging techniques can only be applied in a small field around each reference
source – this field is usually called the isoplanatic patch. Only those astronomical objects
which are close enough to a suitably bright reference source can be imaged. Under the
same observing conditions passive imaging approaches can typically use fainter reference
stars than active techniques, which require a servo-loop operating at a fast rate.

The range of astronomical sources to which each technique can be applied is thus dependent
on how faint a reference source can be used. The fraction of the sky which is within range
of a suitable reference star is termed the sky coverage of the imaging technique. For most
of the techniques described here the sky coverage is relatively small, seriously limiting
their applicability in scientific observations. This thesis will concentrate on imaging at
wavelengths shorter than 1µm. For these wavelengths the small sky coverage available is
the principle limitation on the scientific output of all these techniques, making this the
most important issue to address here. Some aspects of the discussion presented below
would be less relevant for observations at longer wavelengths.

In comparing the methods I will discuss four aspects of the techniques:

1. The limiting magnitude of reference star which can be used;

2. The isoplanatic patch;

3. The sensitivity to faint objects; and

4. The cost and complexity of implementation.

1.3.1 Limiting magnitude of reference source

At optical and near infra-red wavelengths the brightness of stars is defined using the stellar
magnitude scale of Pogson (1856). The apparent magnitude m at a given wavelength λ is
defined in terms of the amplitude A of the electromagnetic waves:

m = −5 log10 (A) + k (λ) (1.10)

where a number of definitions for the wavelength dependent constants k (λ) exist such as
the Johnson magnitude system (Aller et al. 1982).

For observations in a given waveband the apparent magnitude of the faintest reference
source which can be used for a high-resolution imaging technique is called the reference
source limiting magnitude ml. The applicability of the imaging technique depends on the
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density ρ (m < ml) of stars brighter than this limiting magnitude on the night sky. For the
range of limiting magnitudes appropriate to most of the imaging techniques described here
this density is relatively well fit over the majority of the night sky by ρ (m < ml) ∝ 100.35ml

(see e.g. Cox (2000); Bahcall & Soneira (1984)). Improving the limiting magnitude for any
one of the imaging techniques by only one magnitude typically doubles the sky coverage
of the technique, dramatically improving the range of astronomical studies which can be
undertaken by that technique.

Limiting magnitude of reference source for Lucky Exposures

In order for the Lucky Exposures method to be successful, each short exposure must be
re-centred based on an unresolved feature in a reference source which provides a measure
of the PSF. If the imaging detector is limited by photon noise, the unresolved reference
source must provide a few photons within the brightest speckle during one atmospheric
coherence time in order for this method to be successful. This sets a limit on the faintest
reference sources which can be used, which in turn limits the range of astronomical targets
which can be observed. For I-band observations under good astronomical seeing conditions
the limiting magnitude for high resolution observations with a ∼ 2.5 m diameter telescope
is in the range I = 17 to I = 18.

Limiting magnitude of reference source for shift-and-add

The shift-and-add method described by e.g. Christou (1991) bears the greatest similarity
to the Lucky Exposures method, the principle difference being that all the short exposures
are used rather than just those exposures with the highest Strehl ratio. In order for the re-
centring to be successful using exposures which have a lower Strehl ratio, a correspondingly
brighter reference source is required in order provide the same number of photons within
the brightest speckle. The limiting magnitude of reference source for this technique is thus
one or two magnitudes poorer than that for Lucky Exposures.

Limiting magnitude of reference source for speckle interferometry

A number of high resolution imaging techniques exist which involve Fourier analysis of
individual short exposure images taken at a large telescope (see e.g. Roddier (1988)).
Only those methods which preserve some Fourier phase information from the source can
be used to produce true astronomical images, and the techniques which preserve Fourier
phase information require higher light levels than the Lucky Exposures and shift-and-add
methods (see e.g. Chelli (1987); Roddier (1988)). These methods are thus limited to a
smaller range of astronomical targets. The bispectral analysis (speckle masking) method
has often been applied to data taken through masked apertures, where most of the aperture
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Figure 1.6: a) shows a simple experiment using an aperture mask in a re-imaged
aperture plane. b) and c) show diagrams of aperture masks which were placed in
front of the secondary mirror of the Keck telescope by Peter Tuthill and collabo-
rators. The solid black shapes represent the subapertures (holes in the mask). A
projection of the layout of the Keck primary mirror segments is overlaid.

is blocked off and light can only pass through a series of small holes (subapertures). For
simplicity these aperture masks are usually either placed in front of the secondary (e.g.
Tuthill et al. (2000)) or placed in a re-imaged aperture plane as shown in Figure 1.6a
(e.g. Baldwin et al. (1986); Haniff et al. (1987); Young et al. (2000)). The masks
are usually categorised either as non-redundant or partially redundant. Non-redundant
masks consist of arrays of small holes where no two pairs of holes have the same separation
vector. Each pair of holes provides a set of fringes at a unique spatial frequency in the
image plane. Partially redundant masks are usually designed to provide a compromise
between minimising the redundancy of spacings and maximising both the throughput and
the range of spatial frequencies investigated (Haniff & Buscher 1992; Haniff et al. 1989).
Figures 1.6b and 1.6c show examples of aperture masks used in front of the secondary
at the Keck telescope by Peter Tuthill and collaborators; Figure 1.6b is a non-redundant
mask while Figure 1.6c is partially redundant. Although the signal-to-noise at high light
level can be improved with aperture masks, the limiting magnitude cannot be significantly
improved for photon-noise limited detectors (see Buscher & Haniff (1993)).
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Figure 1.7: Schematic showing pupil-plane beam combination in a two-telescope
optical interferometer.

Limiting magnitude of reference source for separate element interferometry

Astronomical imaging from Michelson interferometers with separated elements has been
demonstrated by a number of authors (e.g. Baldwin et al. (1996); Monnier (2003); Burns
et al. (1997); Young et al. (2003)). The principles of the technique are the same as bispec-
tral analysis of images taken through non-redundant aperture masks at a single telescope
as described above. Each telescope in a separate element interferometer array is equivalent
to one subaperture of the aperture mask. In separate element interferometers the light is
often combined using half-silvered mirrors in a pupil-plane as shown in Figure 1.7, rather
than in an image plane. With no active wavefront correction on the individual telescopes
and photon-counting detectors the limiting magnitude for this method is similar to that
of bispectrum imaging at single telescopes. All existing and planned separate-element in-
terferometers have some form of adaptive optics correction (often only the image position
or tip-tilt component). The limiting magnitude of reference source required for adaptive
optics correction sets an upper limit on the limiting magnitude for these arrays, and this
is discussed in the next section.

Limiting magnitude of reference source for adaptive optics

Active correction of wavefront perturbations introduced by the atmosphere is known as
adaptive optics. The simplest form of adaptive optics system is a mechanical tip-tilt
corrector which removes the average gradient in wavefront phase across a telescope aper-
ture. With this level of correction, diffraction-limited long exposure imaging can only be
performed for aperture diameters up to 3.4r0 diameter (Noll 1976). To obtain diffraction-
limited images from larger telescopes, the shape of the perturbations in the wavefront
across the telescope aperture must be measured and actively corrected. Deformable mir-
rors in a re-imaged pupil-plane are most often used to introduce additional optical path
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Figure 1.8: Adaptive optics correction of atmospherically perturbed wavefronts
using a deformable mirror.

which corrects the perturbations introduced by the atmosphere as shown schematically
in Figure 1.8. One of the simplest systems for measuring the shape of the wavefront is a
Shack-Hartmann array (see Figure 1.9). This consists of a series of subapertures typically
of ∼ r0 diameter, positioned across a telescope pupil-plane. The wavefront sensor accepts
light from the reference star, while light from the science object (or light at a science imag-
ing wavelength) is directed to a separate imaging camera. Each subaperture contains a
focusing element which generates an image of the reference source, and the position offset
of these images is used to calculate the mean gradient of the wavefront phase over each
subaperture. The gradient measurements can then be pieced together to provide a model
for the shape of the wavefront perturbations. This model is then fed into the wavefront
corrector. In order to accurately correct the rapidly fluctuating atmosphere using a stable
servo-feedback loop, the process must typically be repeated ten times per atmospheric
coherence time (see e.g. Hardy (1998); Karr (1991)). The atmospheric coherence time
itself is usually found to be shorter for measurements through small subapertures than for
imaging through the full telescope aperture, as will be discussed further in Chapter 2 (see
also Roddier et al. (1982a)).

Comparison of limiting magnitudes

The limiting magnitude of reference source which can be used for adaptive optics is set
by the need to measure the reference source image position in each of the ∼ r0 diameter
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Figure 1.9: Schematic of a Shack-Hartmann wavefront sensor positioned in a tele-
scope pupil-plane. An array of lenslets act as subapertures, and the position of
the image centroid measured using each subaperture is used to calculate the wave-
front tilt over this subaperture. These wavefront tilts are then used to construct
a model of the wavefront shape over the full telescope aperture.

subapertures in about one tenth of the atmospheric coherence time for the subapertures.
This is a similar problem to the correction of image position for Lucky Exposures, and I
will now compare the two limiting magnitudes directly.

In the simplest approximation, the limiting magnitude for measurement of image position
is set by the requirement for a minimum number of photons in the image core. The number
of photons in the image core is proportional to the photon flux density I from the star at
the observing wavelength, the collecting area of the aperture A, the exposure time T and
the Strehl ratio of the image S. If the number of photons required in the image core is
the same in both cases, and the losses in the optics and the detector are the same, then
from Equation 1.10 the limiting magnitude for adaptive optics will be poorer by:

∆m = 2.5 log
(
AAOTAOSAO

ALETLESLE

)
(1.11)

where the subscripts AO and LE refer to the adaptive optics and Lucky Exposures cases
respectively. For the case described in Figure 1.4b the telescope diameter for the Lucky
Exposures case is seven times the adaptive optics subaperture diameter. Passive Lucky
Exposures observations can have ten times longer exposure times than adaptive optics
wavefront sensors, but the Strehl ratio in the subapertures of an adaptive optics wavefront
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sensor is typically twice that in a Lucky Exposure. This means that Lucky Exposures
should be able to use stars which are about seven magnitudes fainter than would be
required for near diffraction-limited imaging with adaptive optics. The faintest reference
stars which provide good adaptive optics correction at I-band are I ∼ 10 (Graves et al.
1998), in broad agreement with the arguments here.

Recent studies (e.g. Ragazzoni & Farinato (1999)) have shown that novel wavefront sensors
such as Pyramid sensors can improve the reference star limiting magnitude for adaptive
optics by several magnitudes at extremely large telescopes, but the gains for moderate
sized telescopes such as those described in this thesis are relatively small. The limiting
reference star magnitude is still not competitive with Lucky Exposures.

One approach which may overcome the problems with the reference source limiting mag-
nitude for adaptive optics is the use of artificial reference stars, typically provided by light
scattered from a high power laser pointing along the line of sight of the telescope. A
number of observatories are currently developing such laser systems.

1.3.2 Isoplanatic patch

The area of sky around a reference star over which high-resolution imaging is possible is
called the isoplanatic patch (this will be discussed in more detail in Chapter 2). If the
sky coverage of an imaging technique is substantially less than 100%, it will generally
vary in proportion with the area of the isoplanatic patch. The diameter of the isoplanatic
patch for an imaging technique thus has a very substantial impact on the applicability of
that technique to astronomical imaging. A number of authors including Roddier et al.
(1982b) have shown that the isoplanatic patch of fast frame-rate imaging techniques such
as shift-and-add is expected to be substantially larger than that for adaptive optics. If
the Lucky Exposures method selects exposures at times when the atmospheric conditions
are particularly good, then this method would give an even larger isoplanatic patch than
the shift-and-add method. In Chapter 5.5.2 I present results which demonstrate that the
isoplanatic angle for Lucky Exposures observations can sometimes be as large as 30 as for
I-band observations, a substantial improvement over typical values of 2—15 as predicted
for speckle imaging and non-conjugate adaptive optics at wavelengths shorter than 1 µm
(Vernin & Muñoz-Tuñón 1994; Roddier et al. 1982a, 1990; Marks et al. 1999).

1.3.3 Sensitivity to faint objects

The recent development of CCDs with negligible readout noise (see e.g. Mackay et al.
(2001); Robbins & Hadwen (2003)) has almost eliminated the noise penalty for high

frame-rate imaging at CCD wavelengths. For the first time this has made shift-and-add
imaging competitive with adaptive optics for the imaging of very faint objects at I band.
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For unresolved sources, the high resolution in Lucky Exposures images can help to reduce
the effect of the sky background contribution on images. However, if a large fraction
of the observation data is discarded, this necessarily has an impact on the sensitivity of
the technique to faint objects in a fixed period of observing time. Astronomers using
the Lucky Exposures method have to make a trade-off between high resolution (obtained
using a very small fraction of the exposures) and high sensitivity (the fraction of exposures
which should be selected to obtain the maximum sensitivity to a faint source depends on
the source geometry and observing conditions, but is typically a large fraction of the total
number of exposures).

1.3.4 Cost and complexity of implementation

Fast frame-rate imaging techniques such as Lucky Exposures are extremely easy and cheap
to implement at existing ground-based telescopes. In contrast the installation of an adap-
tive optics system at a ground based telescope is generally a complex and expensive pro-
cess. There are even greater technical difficulties associated with laser guide star adaptive
optics systems, and it will probably be a number of years before they are widely available
to the astronomical community.

1.3.5 Comparison of imaging techniques

The Lucky Exposures method is expected to have the highest sky coverage of all the
natural guide star techniques discussed here, utilising fainter reference stars and providing
an isoplanatic patch at least as large as the shift-and-add method. The method is also
much cheaper and simpler to implement at observatories than adaptive optics systems.

The sensitivity of the Lucky Exposures method to faint objects is likely to be reduced due
to the rejection of a significant fraction of the observational data. However, it is worth
noting that for R-band (600—800nm wavelength) and I-band (800—1000nm wavelength)
observations, scattered light from the bright reference stars required for high order adaptive
optics correction may also limit the sensitivity to faint objects. At these wavelengths the
higher limiting magnitude for Lucky Exposures and a potential increase in the isoplanatic
patch size are likely to give sky coverage at least one hundredfold greater than that of
adaptive optics at the same wavelength. At longer wavelengths the sky coverage will
saturate at close to 100%, and the relative benefit over adaptive optics will be smaller.

1.4 Summary of thesis

Chapter 2 will start with a discussion of the timescales for speckle imaging techniques
such as the Lucky Exposures method. A number of numerical models for the atmosphere
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will be introduced, and the results of these models will be compared to previous exper-
imental measurements. The isoplanatic angle expected for speckle imaging techniques
will be calculated for the simulations and compared with data available from astronomi-
cal observatories. Simulations will then be used to determine the effect that varying the
aperture size has on the quality of short exposure images which can be obtained through
atmospheric seeing.

Chapter 3 will present high frame-rate observations of bright stars taken using a conven-
tional CCD camera at the Nordic Optical Telescope (NOT). The impact that the properties
of the camera and telescope have on the expected performance of the Lucky Exposures
method will be discussed. The data analysis method will be introduced and applied to the
observational data. The atmospheric timescales measured at the NOT will be discussed,
and the performance of the Lucky Exposures technique will be studied and compared to
that of the shift-and-add approach.

Chapter 4 will introduce low noise L3Vision CCD detectors which have recently been
developed by E2V Technologies1. Using simple models for the operation of these devices,
the theoretical performance of the detectors will be calculated. These calculations will
then be compared with measurements made using real L3Vision CCDs.

Chapter 5 will present high frame-rate observations using the low noise CCDs discussed
in Chapter 4. The performance of the Lucky Exposures method using these detectors
will be studied in detail, and will be used to demonstrate the applicability of the Lucky
Exposures technique to various astronomical programs.

1E2V Technologies, 106 Waterhouse Lane, Chelmsford, Essex. http://e2vtechnologies.com/

http://e2vtechnologies.com/


Chapter 2

Lucky Exposures

2.1 Introduction

The simulations discussed in Chapter 1.2.2 provided a very simple model for the the effect
of the atmosphere at a single instant in time. In order to determine the best observational
approach for the Lucky Exposures technique, it is important to develop more realistic
simulations which also address the time evolution and spatial distribution of atmospheric
perturbations above the telescope. The principle model atmospheres investigated here
consist of a number of thin moving layers above the telescope, each introducing perturba-
tions following the Kolmogorov model described in Chapter 1.2.1. Each layer is blown at a
characteristic wind velocity. These layers introduce position-dependent path length vari-
ations into the incoming wavefronts, and are intended to simulate turbulent atmospheric
layers with variable refractive index.

In order to apply the Lucky Exposures method to an astronomical target which is too faint
or too resolved for accurate measurement of the Strehl ratio of the PSF, an unresolved
source must be found which is sufficiently bright to allow Strehl ratio measurements, and
which lies within the isoplanatic patch surrounding the target of interest (the isoplanatic
patch is the area of sky enclosed by a circle of radius equal to the isoplanatic angle, and
will be discussed in more detail in the chapter). The size of the isoplanatic patch which
prevails at the times of the selected exposures thus affects the range of astronomical targets
for which a suitable reference star can be found for the Lucky Exposures approach. In this
chapter the size of the isoplanatic patch around a reference star is calculated for the layered
models under different atmospheric conditions. The timescales for changes in the speckle
pattern and the isoplanatic angle are found to be determined by similar geometrical effects
for these models, which helps to simplify the analysis.

In the last part of the chapter, Monte Carlo simulations of the atmosphere are used to
investigate the range of short exposure Strehl ratios which are obtained with a variety

21
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of different telescope diameters and atmospheric conditions. This will be important in
determining the applicability of the Lucky Exposures technique at various observatory
sites.

I start this chapter with an introduction to measurements of the timescale for changes to
speckle patterns in the image plane of a telescope. This will be useful in comparing results
from my own simulations with previous observational results.

2.2 Timescale measurements by previous authors

At a number of astronomical observatories in the late 1970s and early 1980s experiments
were undertaken which were designed to investigate the timescales for changes in the
image plane speckle patterns seen when observing unresolved point sources through large
telescopes. Scaddan & Walker (1978); Parry et al. (1979); Dainty et al. (1981) found
that there were two dominant timescales – a slow timescale corresponding to motion of
the centroid of the speckle pattern, and a fast timescale corresponding to changes within
the speckle pattern. The faster timescale is most relevant to high resolution imaging,
and they developed a method for accurately measuring this timescale from the temporal
autocorrelation of time-resolved photometric observations at a point in the image plane
of the telescope. It will be of interest to compare my results to previous work in the field,
so I will give a brief description of their method here.

2.2.1 Normalising the short-timescale component of the autocorrelation

Early investigations of atmospheric timescales typically involved a single high-speed pho-
tometer positioned at a single point in the image plane of a telescope. The temporal
autocorrelation of a time series of measurements from such a device (i.e. the convolution
of the time series with itself) provides a useful time-domain representation of the variance
of the photometric flux with time. The long-timescale component of the measured tem-
poral autocorrelation is assumed by Scaddan & Walker (1978) to be separable from the
short-timescale component. The long-timescale (low frequency) component varies essen-
tially linearly over the region of the autocorrelation which is of interest to speckle imaging.
The solid line in Figure 2.1 shows a schematic representation of a typical temporal auto-
correlation curve. The long-timescale component is indicated by the dashed line. In order
to remove the effect of the long-timescale component, a linear fit to this component is
calculated over the region of the temporal autocorrelation which is of interest for speckle
imaging. The measured autocorrelation is then divided by this linear function to remove
the long timescale component. The result can then be rescaled so that it ranges from zero
to unity, to give the normalised high frequency component of the temporal autocorrela-
tion as shown in Figure 2.2. The atmospheric timescale is the time delay over which this
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Figure 2.1: Temporal autocorrela-
tion for photometric measurements
at a fixed point (solid curve). The
dashed line shows a linear fit to the
long-timescale fluctuations brought
about by motion of the image cen-
troid.

Figure 2.2: Normalised tempo-
ral autocorrelation for photometric
measurements at a fixed point (solid
curve). The dashed line marks a
value of 1

e . The timescale τe is 7 ms
in this example.

function decays to 1/e, defined by Roddier et al. (1982a); Vernin et al. (1991) as τe (but
known as τB

1/e in Scaddan & Walker (1978)). In Figure 2.2, τe is marked by the crossing
point between the solid curve and dashed horizontal line.

2.2.2 The temporal power spectrum of intensity fluctuations

Aime et al. (1986) showed that experimentally measured temporal power spectra of photo-
metric measurements in the image plane of a telescope can be well fitted at high frequencies
by negative exponential functions of the form:

P (f) = Ae(−a|f |) (2.1)

In many of their observations there is excess power at low frequencies, attributed to
long-timescale motion of the image centroid (this excess power in the power spectrum is
sometimes fitted empirically by adding another exponential term to Equation 2.1).

Equation 2.1 can be used to predict the form of the high frequency component of the
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temporal autocorrelation of stellar speckle patterns. After normalisation as described in
Chapter 2.2.1, the temporal autocorrelation C (t) corresponding to Equation 2.1 has the
form:

C (t) =
a2

a2 + t2
(2.2)

The coherence timescale τe for the case described by Equation 2.1 will be:

τe = a
√
e− 1 (2.3)

Many measurements of the atmospheric coherence time τe for speckle imaging have been
made at a variety of observatory sites. At 500 nm wavelength the measured timescales
are usually found to be a few milliseconds or tens of milliseconds (Roddier et al. 1990;
Vernin & Muñoz-Tuñón 1994; Karo & Schneiderman 1978; Scaddan & Walker 1978; Parry
et al. 1979; Lohmann & Weigelt 1979; Dainty et al. 1981; Marks et al. 1999) although
Aime et al. (1981) report timescales as long as a few hundred milliseconds under good
conditions.

It will now be of interest to compare these experimental results and empirical analysis
with atmospheric simulations.

2.3 Timescale measurements for atmospheric simulations

In this section I will develop a number of models for the effect of the Earth’s atmosphere on
astronomical observations. Refractive index fluctuations in the Earth’s atmosphere will be
included in a number of thin horizontal layers in the model atmospheres. These layers will
remain unchanged, but will move at a constant horizontal velocity intended to represent
the local wind velocity, as shown schematically in Figure 2.3. Most previous authors
(e.g. Conan et al. (1995)) have also assumed that the structure of these layers remains
unchanged as they are blown past the telescope by the wind. This assumption is based
upon the work of Taylor (1938) which argues that if the turbulent velocity within eddies in
a turbulent layer is much lower than the bulk wind velocity then one can assume that the
changes at a fixed point in space are dominated by the bulk motion of the layer past that
point. The wind-blown, unchanging turbulent layers used for simulations are often called
Taylor phase screens. It should perhaps be noted that Taylor’s original argument applied
to atmospheric measurements at a single fixed point, and may not be strictly true for the
case of a telescope with large diameter. The Earth’s curvature can be ignored for such
simulations, and the perturbing layers are taken to be parallel planes above the ground
surface.

The layered model of atmospheric turbulence used for my simulations is supported by a
number of experimental studies at Roque de los Muchachos observatory, La Palma (Vernin
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Perturbed
wavefronts

Incoming planar wavefronts

Turbulent layer 1

Turbulent layer 2

Wind velocity v1

Wind velocity v2

Figure 2.3: When turbulent mixing of air with different refractive indices oc-
curs in the atmosphere, phase perturbations are introduced into starlight passing
through it. Experimental measurements at a number of astronomical observa-
tories have indicated that these refractive index fluctuations are usually concen-
trated in a few thin layers in the atmosphere. Two layers are shown in the above
figure, each expected to travel at the local wind velocity.

& Muñoz-Tuñón (1994); Avila et al. (1997); Wilson & Saunter (2003)); the model would
also provide realistic results for many other good observatory sites.

Following the work of Tatarski (1961), the refractive index fluctuations within a given
layer in the simulations can be described by their second order structure function:

DN (ρ) =
〈
|N (r)−N (r + ρ)|2

〉
r

(2.4)

where N (r) is the refractive index at position r and DN (ρ) is the statistical variance
in refractive index between two parts of the wavefront separated by a distance ρ in an
atmospheric layer. For the case of an isotropic turbulent layer following the Kolmogorov
model, this structure function DN depends only on the strength of the turbulence:

DN (ρ) = C2
N |ρ|

2/3 (2.5)

where C2
N is simply a constant of proportionality which describes the strength of the

turbulence. For the case of an atmosphere stratified into a series of horizontal layers,
C2

N (h) can be taken as a function of the height h above ground level. Under these
conditions Equation 2.5 will only be valid within a layer of constant C2

N .
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The phase perturbations introduced into wavefronts by this layered atmosphere can be
described by the second order structure function for the phase perturbations (Equation
1.3). This function is dependent on the integral of C2

N (h) along the light path z and the
wavenumber k as follows:

Dφa (ρ) = 2.91k2 |ρ|5/3
∫ ∞

0
dz C2

N (h) (2.6)

(Dφa (ρ) here is equivalent to DS (ρ) in Tatarski (1961)).

Equation 2.6 can be more conveniently described in terms of wavelength λ and the angular
distance of the source from the zenith γ:

Dφa (ρ) =
(

115λ−2 (cos γ)−1
∫ ∞

0
dh C2

N (h)
)
|ρ|5/3 (2.7)

Using Equations 1.4 and 2.7 we can also write r0 in terms of C2
N (h):

r0 =
(

16.7λ−2 (cos γ)−1
∫ ∞

0
dh C2

N (h)
)−3/5

(2.8)

The amplitude of the refractive index fluctuations described by C2
N (h) varies only weakly

with wavelength λ at red and infra-red wavelengths, so the variation of r0 with wavelength
can be approximated by:

r0 ∝ λ6/5 (2.9)

For observations in different wavebands, this relationship determines the physical diameter
of telescope which would be suitable for the Lucky Exposures method. The work presented
in this thesis was carried out between 0.7 and 1.0 µm. Under good seeing conditions, the
7r0 apertures discussed in Chapter 1.2.3 would correspond to between 2 and 3 m diameter
telescopes at these wavelengths. For observations in the near infra-red K-band 7r0 would
correspond to 8 m, while at B-band 7r0 telescopes would have 1 or 1.5 m diameter.

Saint-Jacques & Baldwin (2000) undertook detailed atmospheric seeing measurements
with the Joint Observatory Seeing Experiment (JOSE – Saint-Jacques et al. (1997);
Wilson et al. (1999)) at the William Herschel Telescope, located at the same observatory as
the NOT. The experimental setup consisted of an array of Shack-Hartmann sensors capable
of measuring the wavefront tilt as a function of position and time in the aperture plane (see
Figure 1.9). They found experimentally that the dominant atmospheric phase fluctuations
at the William Herschel Telescope (WHT) are frequently associated with a single wind
velocity, but also found evidence for gradual change in the phase perturbations applied
to wavefronts as the perturbations progressed downwind. This can be explained either by
turbulent boiling taking place within an atmospheric layer as it is blown past the telescope,
or by the turbulence associated experimentally with one layer actually being distributed
in several separate screens, with a narrow range of different wind velocities for the each



2.3. Timescale measurements for atmospheric simulations 27

of the screens (distributed about the measured mean wind velocity). This evolution of
the turbulent structure for an atmospheric layer is consistent with the decorrelation with
time of turbulent layers found by Caccia et al. (1987), although unlike Roque de los
Muchachos observatory they found the typical atmosphere above Haute-Provence to have
several such turbulent layers travelling at distinctly different wind velocities. Similar
experiments were undertaken using binary stars at the WHT by Wilson (2003). The
SLODAR technique (Wilson 2002) was applied to these binary observations to obtain the
heights of the turbulent layers as well as their wind velocities. Preliminary results provided
by Wilson (2003) indicated that several turbulent layers with very different wind velocities
were present on some of the nights. On at least one night, most of the turbulence was
found at very low altitude above the WHT, and it is not necessarily certain that the same
conditions would be present at the NOT further up the mountain.

For my numerical simulations I have ignored the possibility of turbulent boiling taking
place within individual atmospheric layers because of the lack of a suitable mathematical
model for the boiling process. Models which are free of boiling but which have multiple
Taylor screens with a scatter of wind velocities describing each individual atmospheric
layer can adequately fit existing experimental results, and these are the most widely used
models for atmospheric simulations. This form of multiple Taylor screen model is usually
known as a wind-scatter model.

Each of the atmospheric layers has a characteristic velocity for bulk motion (v1 and v2 for
the two layers in Figure 2.3) corresponding to the mean local wind velocity at the altitude
of the layer.

2.3.1 Atmospheric models

The temporal statistics of the wind-scatter models introduced in Chapter 2.3 are discussed
in some detail by Roddier et al. (1982a); Aime et al. (1986). They highlight the fact that
the timescale for speckle imaging at a large well-figured telescope is expected to be rather
different to the timescale for Shack-Hartmann sensing or for adaptive optics correction.
This is an important point, and I will introduce a simplified model to help explain it in
Chapter 2.3.2 and Appendix A. An essentially identical argument can be used to explain
the differing isoplanatic angles provided by speckle imaging techniques and non-conjugate
adaptive optics.

For large telescopes and significant dispersion in the bulk velocities for the turbulent
screens, the coherence time τe of speckle patterns is shown by Roddier et al. (1982a);
Aime et al. (1986) to depend on ∆v, the standard deviation of the distribution of wind
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velocities v (h) weighted by the turbulence C2
N (h) profile:

∆v =

[∫∞
0 |v (h)|2C2

N (h) dh∫∞
0 C2

N (h) dh
−
∣∣∣∣
∫∞
0 v (h)C2

N (h) dh∫∞
0 C2

N (h) dh

∣∣∣∣2
]1/2

(2.10)

The precise relationship between ∆v and τe depends on the model for the temporal cor-
relation. Roddier et al. (1982a) use a Gaussian model, predicting that τe will be given
by:

τe = 0.36
r0
∆v

(2.11)

While Aime et al. (1986); Vernin et al. (1991) use a Lagrangian model to give:

τe = 0.47
r0
∆v

(2.12)

For smaller telescopes (but still with aperture diameter d � r0) or for a case with little
dispersion in the wind velocities, the wind crossing time of the aperture may be shorter
than the timescales of Equations 2.11 and 2.12. In this case the timescale τe will be set by
the wind crossing time, as discussed for large apertures in the next section. The timescale
for the motion of the image centroid in a Shack-Hartmann sensor will usually be set by
the wind-crossing time of the Shack-Hartmann subaperture. If the outputs of different
Shack-Hartmann sensors in an array are cross-correlated the decorrelation timescale for
the atmospheric phase perturbations relevant for speckle imaging can be calculated (see
e.g. Saint-Jacques & Baldwin (2000)).

2.3.2 Single Taylor screen model

One of the simplest temporally varying models for the atmosphere is that of a single
Taylor screen moving at a constant wind velocity. The simplicity of this model has made
it appealing to a number of previous authors. Roddier et al. (1982a); Lopez & Sarazin
(1993) note that for speckle imaging at large apertures this model can provide quite
different temporal characteristics to models with multiple Taylor screens having a scatter
of different wind velocities. For this reason I will introduce a simplified model for a
single wind-blown Taylor screen atmosphere which will help in highlighting the unusual
properties of these atmospheres.

As discussed above and in Roddier et al. (1982a); Aime et al. (1986), if the scatter ∆v
is small the timescale for changes in the image plane will be related to the wind crossing
time of the telescope aperture. This will certainly apply for the case of a single Taylor
screen atmosphere as in this case ∆v is zero. A demonstration of this relationship is given
for a simplified approximation to a single Taylor screen atmosphere in Appendix A. The
timescale τe for changes to the speckle pattern in a telescope aperture of diameter d for
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Model Layer velocities ∆v
1 Single layer of turbulence moving at a speed of

0.15r0 per timestep
0

2 Two layers with equal turbulent strength, mov-
ing at 0.12r0 per timestep and 0.18r0 per
timestep respectively

0.03r0 per timestep

Table 2.1: A brief summary of the two model atmospheres investigated. The third
column shows the scatter in the wind velocities calculated using Equation 2.10.

this simplified model is found to be:

τe =
0.31d
|v|

(2.13)

for a constant wind velocity v (Equation A.16).

It is interesting to note that τe is independent of the atmospheric coherence length r0 with
the simple model used for a single layer of atmospheric turbulence.

2.3.3 Numerical simulations

A number of numerical simulations were undertaken to investigate the temporal properties
of Taylor screen models more rigorously. Initially, two models were investigated, the first
with a single Taylor screen moving at a constant wind speed as discussed in Chapter 2.3.2,
the second having two equal Taylor screens with slightly different wind speeds but the
same wind direction. The properties of the two models are summarised in Table 2.1.
The Taylor phase screens used had Kolmogorov turbulence extending to an outer scale of
683r0, with no power on spatial frequencies larger than this. The size of the outer scale
was determined by the available computer memory. Both simulations produced wavefront
perturbations with the same coherence length r0. Images from filled circular apertures
with diameters between 3r0 and 10r0 were generated at a large number of discrete time
points.

Photometric measurements were made at a fixed point in the image plane corresponding
to each of the simulated apertures at each time point, and the temporal autocorrelation of
this data was calculated. Figure 2.4 shows two example autocorrelations for an aperture
diameter of 7r0. There is relatively good agreement between the model of Aime et al.
(1986) (Equation 2.2) and the normalised autocorrelation data from numerical simula-

tions up to time differences corresponding to the coherence timescale τe. For larger time
differences Equation 2.2 tends quickly to zero, while the simulation data usually drifted
either side of zero somewhat. This may be due to the limited timescale of the simulations
(a few hundred times τe, which is not long enough to average very many realisations of
the longer timescale changes in the speckle pattern). Similar results were found for all of
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Figure 2.4: Two examples of the temporal autocorrelation curves generated from
numerical simulations (and used to produce Figure 2.5). The curves have been
normalised using the method described in Chapter 2.2.1. A shows the result for
a single layer atmosphere and B for a two-layer atmosphere (models 1 and 2 from
Table 2.1 respectively). C shows the predicted decorrelation using the highly
simplified model for a single layer atmosphere described in Appendix A. D and
E show least-squared fits of the form of Equation 2.2 to the early parts of curves
A and B respectively.

the aperture diameters simulated, and the temporal power spectra were found to agree
with the model of Aime et al. (1986).

The coherence timescale τe was then calculated from each simulation using the method
described in Chapter 2.2.1. A plot of the variation of the coherence timescale with telescope
aperture diameter is shown in Figure 2.5.

The red line in Figure 2.5 is a linear regression fit to the measured timescale τe for simu-
lations with a single Taylor screen. The equation for this best fit line is:

τe =
0.33 (d+ 2.0r0)

|v|
(2.14)

The timescale appears to depend approximately linearly on the aperture diameter d, as
predicted in Appendix A. The value of τe was found to be larger than predicted by my
simplified model by a constant amount ∼ 2r0/ |v|. This is consistent with a small region of
the atmospheric layers extending ∼ r0 into areas A and C in Figure A.3 being correlated
with the phase perturbations in area B. The same hypothesis would explain why the
measured temporal autocorrelations shown in Figure 2.4 as curves A and B lie to the



Figure 2.5: Timescale τe for a range of aperture diameters, for the two atmo-
spheric models. Curve A shows the result for a single Taylor screen of frozen
Kolmogorov turbulence. B is a similar plot for the two layer atmosphere listed
as model 2 in Table 2.1. The error bars simply indicate the standard error of
the mean calculated from the scatter in results from a number of repeated Monte
Carlo simulations. Errors in the measurements at different aperture diameters are
partially correlated as the same realisations of the model atmospheres were used
for all the aperture diameters shown. The red line is described by Equation 2.14
and the black horizontal line is at the value given in Equation 2.15.

31
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right of the prediction corresponding to my simplified model (curve C) over the left-hand
part of the graph.

For small aperture diameters, the simulations with a two-layer atmosphere have very
similar timescales to those with a single atmospheric layer. However there is a knee at
D ' 6r0, and at diameters larger than this the timescale τe appears to be constant at:

τe ∼ 2.8
r0
|v|

(2.15)

where |v| is the average wind velocity for the two layers. It is of interest to compare this
timescale with that predicted by Equations 2.11 and 2.12. For this atmospheric model,
the wind scatter ∆v is equal to:

∆v = 0.2 |v| (2.16)

The timescale τe can be written in terms of ∆v:

τe ∼ 0.56
r0
∆v

(2.17)

This is larger than the timescales predicted by both Equation 2.11 (from Roddier et al.
(1982a)) and Equation 2.12 (from Aime et al. (1986)). The result of Aime et al. (1986)
is within 3σ of these simulations however (remembering that the errors in the simulations
are correlated for different aperture diameters).

Figure 2.5 implies that the timescale for changes in the speckle pattern found at the focus
of a well figured astronomical telescope may increase somewhat with aperture diameter if
the atmospheric turbulence is moving with a common wind velocity. This would not be the
case if there is a substantial scatter in the wind velocities, as the timescale saturates at a
level close to that predicted by Equation 2.12. Vernin & Muñoz-Tuñón (1994) found that
the scatter in the velocities of the turbulent layers above the NOT is small enough that
the timescale for speckle patterns using the full aperture of the NOT should be twice the
timescale which would be found with small apertures, or that for standard adaptive optics
correction. This is consistent with measurements by Saint-Jacques & Baldwin (2000)
which indicated that a single wind velocity (or narrow range of wind velocities) dominates
above La Palma. This contrasts with results at a number of other observatories (e.g.
Roddier et al. (1993); Caccia et al. (1987); Parry et al. (1979); Vernin & Roddier (1973))
where either strong turbulence is found in several layers with differing wind velocities, or
there is little evidence for any bulk motion of the atmospheric perturbations across the
telescope aperture. Wilson (2003) also found evidence for significant dispersion in the
wind velocities above the WHT on some nights.
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2.4 Isoplanatic angle for atmospheric simulations

The light from two astronomical objects which are separated on the sky by a small angle
will travel on slightly different paths through the Earth’s atmosphere, as shown schemat-
ically in Figure 2.6. If layers of turbulence exist within the atmosphere, the light from
the two objects will travel through slightly different parts of each turbulent layer. For two
objects separated by a small angle ∆θ, the offset x in the position of the light paths as
they intersect a layer at a height h is given by:

x = h∆θ (2.18)

as demonstrated in Figure 2.6. If the offset x between the paths is sufficiently large,
the atmospheric perturbations applied to light from the two astronomical targets will
differ. This variation in the atmospheric perturbations with angle is closely analogous to
the change in the atmospheric perturbations as time elapses and the atmospheric layers
move past the telescope in the wind scatter model described in Chapter 2.3.3. Whereas
the motion of the atmospheric layers as a function of time was determined by the wind
velocities for the wind-scatter case, the relative motion of the atmospheric layers as a
function of angular separation from the reference star is determined by the heights of the
layers above the telescope.

The angular separation at which the atmospheric perturbations applied to the light from
the two stars becomes uncorrelated is called the isoplanatic angle. For a wind scatter model
consisting of thin Taylor screens, the calculation of the isoplanatic angle is undertaken in
an identical manner to the calculation of the timescale for decorrelation of the speckle
pattern described above. The numerical simulations investigating the effect of relative
motions of atmospheric layers on the image plane speckle pattern in Chapter 2.3.3 would
be equally applicable to the study of isoplanatic angle, and the results can be used here
directly. The similarity between the temporal properties and isoplanatic angle for wind-
scatter models has been noted by a number of previous authors including Roddier et al.
(1982a).

The calculation of the isoplanatic angle for atmospheres consisting of a number of layers
of Kolmogorov turbulence is described in Roddier et al. (1982b), following a similar
argument to that for atmospheric coherence time calculations described in Roddier et al.
(1982a). The isoplanatic angle is inversely proportional to the weighted scatter ∆h of the
turbulent layer heights:

∆h =

[∫
h2C2

N (h) dh∫
C2

N (h) dh
−
(∫

hC2
N (h) dh∫

C2
N (h) dh

)2
]1/2

(2.19)

If the atmospheric turbulence is concentrated in a narrow altitude range, then the isopla-
natic angle for short exposure imaging will increase with telescope diameter in a fashion
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Turbulent layer 1

Turbulent layer 2
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Figure 2.6: Schematic showing off-axis observations through an atmosphere with
two turbulent layers. The off-axis beam passes through the turbulent layers at
a position which is offset by an amount proportional to the height of the layer
above the telescope (and indicated by x1 and x2 in the figure).

exactly analogous to the dependence of the speckle timescale τe on telescope diameter for
the wind scatter model described in Chapter 2.3.3.

The decorrelation of the speckle pattern for a target with increasing angular distance θ
from a reference star is expected to follow a similar relationship to that for the temporal
decorrelation of a speckle pattern (Equation 2.2). The cross-correlation of the speckle
patterns C (θ) should thus obey the relationship:

C (θ) =
a2

a2 + θ2
(2.20)

where a depends on the relative separations of the atmospheric layers.

I have not repeated the numerical simulations here for the case of isoplanatism as the new
simulations would be computationally identical to those performed for the measurements
of the timescale τe – the only difference would be in the units used. The vertical axis in
Figure 2.5 is labelled τe, but it could equally have been labelled isoplanatic angle θe. The
plot would then correspond to the variation in isoplanatic angle as a function of telescope
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diameter for two models of the atmosphere. The model corresponding to curve A would
be an atmosphere with a single layer at an altitude of h, with the isoplanatic angle θe

on the vertical axis plotted in units of r0
h radians. The model corresponding to curve B

would have two layers each with half the value of C2
N and at altitudes of 0.8h and 1.2h.

A number of different measures of the isoplanatic angle have been suggested in the liter-
ature. In order to provide consistency with the discussion of atmospheric timescales in
Chapters 2.2 and 2.3, I will take the isoplanatic angle θe for speckle imaging to be that
at which the correlation of the speckle pattern for two objects drops to 1

e of the value
obtained near the reference star. For an atmosphere consisting of Taylor screens, the
value of θe will be dependent on the relative motions of the Taylor screens with angle in
same way as τe depends on the relative motions with time. For the model described by
Equation 2.20, θe will be:

θe =
(√
e− 1

)
a (2.21)

Vernin & Muñoz-Tuñón (1994) suggest the isoplanatic angle for short exposure imaging
with the full aperture of the NOT will be significantly larger than the isoplanatic angle
expected for non-conjugate adaptive optics (or for interferometric techniques involving
small apertures). This is due to the turbulent layers being distributed over a narrow
range of heights above the telescope. With non-conjugate adaptive optics the isoplanatic
angle is determined by the typical height of the turbulence (whereas with large telescope
apertures the isoplanatic angle for speckle imaging techniques such as Lucky Exposures
is related to the scatter of different altitudes ∆h over which the turbulence is distributed
rather than the absolute height). In calculating the isoplanatic angle for non-conjugate
adaptive optics, the deformable mirror (typically positioned in a re-imaged pupil plane)
can be treated like an additional layer of atmospheric turbulence which cancels out the
phase perturbations along one line of sight, but contributes additional perturbation for
objects significantly off-axis.

Measurements of the isoplanatic angle for speckle imaging at a number of observatories
have typical given values in the range 1.5 as to 5 as for observations at 500 nm wavelength
(see e.g. Roddier et al. (1982a); Vernin & Muñoz-Tuñón (1994)). The isoplanatic angle
for speckle observations is expected to be about 70% larger than that for adaptive optics,
based on measurements by Vernin & Muñoz-Tuñón (1994). The isoplanatic angle for
observations at I-band should be a further factor of two larger due to the relationship
between the coherence length r0 and the wavelength (Equation 2.9).

2.5 Exposure selection from simulated data

In order to determine the performance of the Lucky Exposures technique under a variety
of different conditions, the simulations described in Chapter 2.3.3 were used to generate
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a large number of short exposure images for each of the aperture diameters. The Strehl
ratio of the short exposure images describes the fraction of the light which resides in a
diffraction-limited core of the PSF. It is a very good indicator of how useful the exposures
are for high-resolution imaging, as the light in the core of the PSF maps out the sky
brightness distribution at high resolution, while the remaining light is distributed in the
wings of the PSF and contributes largely to the noise in the image. In a speckled image
the PSF core corresponds to the location of the brightest speckle. The offset in position of
the PSF core and the distribution of light in the wings vary with the coherence timescale
of the atmosphere. If a large number of short exposures are re-centred with respect to
the core of the PSF and co-added, the contribution from the wings of the PSF will be
averaged into a smooth halo, while the diffraction-limited information from the compact
core of each PSF will remain (see e.g. Christou (1991)).

Figure 2.7 shows histograms of the measured Strehl ratios for the short exposures simulated
with a variety of different aperture diameters (where the aperture diameter is described in
terms of the atmospheric coherence length r0). It is clear that the probability of obtaining
a high Strehl ratio short exposure diminishes rapidly with increasing aperture size. If the
investigator chooses to select the best 1% of exposures of an unresolved source using an
aperture of diameter d = 7r0, and to re-centred and co-add these exposures, the final
image will have a Strehl ratio of 30%—35%. There will be approximately twice as much
light in a diffuse halo as is found in the core of the PSF. If the aperture diameter is
increased slightly to d = 10r0, the PSF core in the selected exposures will be reduced
slightly in diameter, but the diffuse halo will contain five times as much flux as the image
core. For most imaging applications, the marginal gain in resolution is more than offset by
the increased flux in the wings of the PSF, confirming that a d ∼ 7r0 aperture represents
the largest which will provide high quality imaging using 1% of the short exposures. If
larger fractions of exposures are selected, it may be beneficial to use a slightly smaller
aperture diameter.

It is of interest to compare these results to the model of Fried (1978). He described the
wavefronts entering a circular aperture in terms of the phase variance σ2

φ from a best-
fitted planar wavefront. Using Monte Carlo simulations, Fried calculated the probability
that this variance σ2

φ would be less than 1 radian2. From these results he produced the
following model for the probability P of good exposures:

P ' 5.6 exp

(
−0.1557

(
d

r0

)2
)

(2.22)

given an aperture size d greater than 3.5r0. Englander et al. (1983) compared the fraction
of good images predicted by this model with the fraction of Lucky Exposures observed
in ground-based imaging experiments and found agreement within the accuracy of the
experimental measurements.
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Figure 2.7: Strehl ratios obtained from simulated short exposures with a range
of different aperture diameters. The two atmospheric models gave similar distri-
butions of Strehl ratios.

The instantaneous Strehl ratio on axis Sa obtained in the image plane of a simple imaging
system can be determined by integrating the probability distribution for the wavefront
phase variance across the aperture plane to give:

Sa ∼ exp
(
−σ2

φ

)
(2.23)

For small values of σ2
φ this on-axis Strehl ratio will be approximately equal to the image

Strehl ratio S which we are interested in.

The criteria of selecting exposures when the phase variance σ2
φ ≤ 1, Equation 2.23 would

imply an image Strehl ratio S ∼> 0.37 (taking the approximation that the on-axis Strehl
ratio represents the true Strehl ratio for the image). Figure 2.8 shows the fraction of
exposures having a Strehl ratio greater than 0.37 in my simulations plotted against Fried’s
model. There is excellent agreement for aperture diameters greater than 4r0.

One measure of image quality which incorporates both the Strehl ratio S and the diffraction-
limited resolution of the telescope diameter d is the Strehl resolution R, defined as:

R =
πS

4

(
d

λ

)2

(2.24)
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Figure 2.8: Curve A shows the fraction of the exposures with a Strehl ratio
greater than 0.37 in each simulation, plotted against the aperture diameter mea-
sured in terms of the atmospheric coherence length r0. Equation 2.22 is plotted as
curve B. This is the model of Fried (1978) for the fraction of exposures where the
wavefronts deviate by less than 1 radian RMS from a flat plane, and are expected
to have Strehl ratios greater than than 0.37.

If the best 1% of exposures are selected, Hecquet & Coupinot (1985) showed that the
Strehl resolution achieved is greatest for apertures with diameters between 4r0 and 7r0.
The Strehl resolution decreases relatively quickly for apertures larger than 7r0. The Strehl
resolution does not represent a true measure of the image resolution in this application as
the FWHM of the PSF core continues to get smaller with increasing aperture diameter
beyond d = 7r0. The Strehl ratio and image FWHM separately provide a more useful
description of the short exposure images, and I will generally use these parameters in
describing the quality of the PSF.

2.6 Conclusions

In this chapter I have discussed the timescales for high resolution imaging found both in
experimental work by other authors and in my own simulations. The temporal properties
at a point in the telescope image plane for simulated observations are compared with
experimental measurements and found to agree qualitatively. For atmospheres with a small
scatter in the wind velocities the coherence timescale for speckle observations is found to be
proportional to the telescope diameter, as predicted by Roddier et al. (1982a); Aime et al.
(1986). This coherence timescale is expected to be significantly longer than the coherence
time applicable to current designs for adaptive optics systems. Measurements made at the
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NOT by Vernin & Muñoz-Tuñón (1994) suggest that a factor of two increase in coherence
timescale would be expected for speckle imaging at this telescope. The dependence of the
atmospheric coherence time on the C2

N profile and telescope aperture diameter is found to
agree with the predictions of Aime et al. (1986) for the two atmospheric models tested,
apart from a small difference in the constant multiplying factor for one of the atmospheric
models.

A direct analogy can be drawn between the calculation of the coherence time for speckle
imaging and the isoplanatic angle. The agreement between the timescales measured for
simulations and previous theoretical predictions thus also indicates agreement between the
isoplanatic angle measured in simulations and theoretical predictions. Measurements by
Vernin & Muñoz-Tuñón (1994) suggest that the isoplanatic angle for speckle observations
should be approximately 70% larger than that which would be obtained for adaptive optics
at the NOT site. The isoplanatic angle at I-band is predicted to be between 3 and 5 as
from the results of Vernin & Muñoz-Tuñón (1994).

The fraction of short exposures with a Strehl ratio greater than 0.37 in numerical simula-
tions is found to be consistent with the Monte Carlo simulations of wavefront perturbations
by Fried (1978). The maximum aperture diameter for which exposures with a high Strehl
ratio (> 0.3) are frequently obtained is shown to be approximately 7r0. The probability
of obtaining good exposures decreases very rapidly for larger aperture diameters.
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Chapter 3

Observations of bright sources at

the NOT

3.1 Introduction

On 2000 May 12 and 13, high frame-rate observations of bright stars were undertaken at
the NOT in order to to obtain experimental verification of the Lucky Exposures method
and test its applicability to astronomical observations. These observations were designed
to investigate the timescales appropriate for Lucky Exposures and the image quality which
could be obtained using the technique. Results from the observations are presented in this
chapter. Some of the results presented here were previously published by the author and
collaborators in Baldwin et al. (2001).

The short exposure Strehl ratios obtained at the NOT will be compared with theoretical
predictions, and the image quality obtained using different exposure selection criteria for
the Lucky Exposures method will be investigated.

The chapter will begin with a discussion of the background to the experimental measure-
ments, and the practical implementation of the Lucky Exposures method to the experi-
mental data taken at the NOT.

3.2 Experimental method

3.2.1 Background

During the 1990s the COAST group in Cambridge developed a high frame-rate CCD
camera for use in the JOSE seeing monitor based at the William Herschel Telescope on
La Palma. The high sensitivity of this camera, and the possibility of adjusting the frame
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Figure 3.1: During the summer months the NOT telescope is usually above the
thermal inversion layer(s). An inversion layer is typically found at the height of
the cloud deck, seen here below the telescope.

rate and the area of the CCD to be read out made it an ideal choice for experimental
observations using the Lucky Exposures method. The unthinned CCD within the camera
had a peak sensitivity between ∼ 500 nm and ∼ 900 nm (around the R and I astronomical
wavebands).

The optimum aperture size to use for the Lucky Exposures method depends on a com-
promise between the probability of obtaining a short exposure with a high Strehl ratio
and the limiting magnitude of reference star that can be used. The numerical simulations
presented in Chapter 2.3.3 suggested that this compromise would be met for telescopes
with diameter d seven or eight times greater than the atmospheric coherence length r0.
The value of r0 depends both on the atmospheric conditions and the wavelength at which
the observations are undertaken, as described by Equations 2.8 and 2.9. r0 is estimated to
be 35 cm at I-band under the median summer seeing conditions at the NOT site (Muñoz-
Tuñón et al. 1997; Vernin & Muñoz-Tuñón 1994), making the 2.56 m aperture of this
telescope ideally suited to Lucky Exposures experiments in this waveband at this time of
year. The exceptionally good astronomical conditions at this site in the summer can be
partially attributed to the thermal inversion layer(s) usually being at a lower altitude than
the observatory (Figure 3.1).

In May 2000 high frame-rate imaging observations were undertaken by John Baldwin,
Craig Mackay and Graham Cox at the NOT using the JOSE camera. In order to accurately
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characterise the temporal characteristics of the atmosphere, the observations were made
with high frame rates with no autoguider in operation. All of the stars observed were
relatively bright (with I < 6) allowing the shape of the stellar PSF to be recorded with
high signal-to-noise in each short exposure.

3.2.2 The effect of mirror aberrations

Adjustments to the primary mirror supports of the NOT by Michael Anderson and An-
ton Sørensen (Andersen & Sørensen 1996; Sørensen 2002) are understood to have given
the NOT an extremely good mirror figure for zenith angles less than ∼ 50◦. After the
adjustments had been made the small residual errors were found to vary with telescope
pointing, but a detailed description of these variations is not available to me at the time
of writing.

In order to investigate the possible impact of any remaining aberrations, I undertook
simulations with various different levels of mirror aberration. In the absence of direct
measurements of the mirror shape after the adjustment to the actuators had been made I
have suggested two models for the mirror aberrations as follows:

Model 1 represents a “worst-case scenario”, with no improvement to the mirror aberrations
after adjustment of the mirror supports. The mirror aberrations are taken directly from
measurements of wavefront curvature made before the mirror actuators were adjusted
(these measurements were provided by Sørensen (2002)). There is no defocus component
in the model. The wavefront errors are shown as a function of position in the aperture
plane in Figure 3.2.

Model 2 is identical to model 1 except that mirror aberrations on scales larger than the
mean separation between adjacent mirror supports have been strongly suppressed. It is
intended to represent a “best-case scenario”, with near-optimal corrections to the mirror
supports. The wavefront errors for model 2 are shown in Figure 3.3. It is understood that
the residual wavefront errors at the NOT were small after the mirror actuators had been
adjusted, hence the real shape of the primary mirror was probably similar to that shown
in model 2.

Models 1 and 2 are intended to represent the two extremes of negligible improvement and
near-optimal improvement. A third model investigated for purposes of comparison was
that of a diffraction-limited mirror. The three models are summarised in Table 3.1

For each of the models the telescope PSF in the absence of the atmosphere was generated
using an FFT (as described in Chapter 1.2.2). The PSF Strehl ratios obtained were 0.23,
0.87 and 1.00 for models 1, 2 and 3 respectively.

For the numerical simulations based upon these models, the secondary supports were
ignored, and the telescope aperture was modelled as an annulus with inner radius rs equal
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Figure 3.2: Greyscale map of
the phase aberrations in the NOT
aperture provided by Sørensen
(2002).

Figure 3.3: Phase map of the
NOT aberrations with structure
on large spatial scales subtracted.
Note that the greyscale is different
to Figure 3.2.

Model Description of phase aberrations
1 as measured before adjustment of mirror supports
2 estimated aberrations after adjustment
3 a diffraction-limited mirror

Table 3.1: A brief summary of the three models used for the NOT mirror aberra-
tions.

to that of the secondary obscuration, and outer radius rp determined by the radius of the
primary mirror (as shown in Figure 3.4). The shape of the aperture used in the simulations
can be described mathematically in terms of the throughput χt (r) as a function of radius
r (in the same way as for Equation 1.7):

χt (r) =


0 if |r| < rs

1 if rs ≤ |r| ≤ rp

0 if |r| > rp

(3.1)

For the NOT, rp = 2.56 m and rs = 0.70 m.

For each model, many realisations of atmospheric phase fluctuations that had a Kol-
mogorov distribution with r0 seven times smaller than telescope diameter were calculated.
These Kolmogorov distributions had a large outer scale (approximately thirty times the
telescope diameter). The phase perturbations from the telescope mirror for each model
were added to the simulated atmospheric phase distribution, and short exposure images
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Figure 3.4: The geometry of the NOT aperture

were generated using the aperture shape described by Equation 3.1. The mirror aber-
rations in models 1 and 2 produce a reduction in the typical Strehl ratios for the short
exposure images when compared with the diffraction-limited case. Histograms showing
the frequency distribution of Strehl ratios measured for the short exposures from each of
the models are shown in Figure 3.5.

It is interesting to note that with model 1 (the worst-case scenario) some of the short
exposures through the atmosphere have higher Strehl ratios than would be obtained in
the absence of the atmosphere. In these exposures the atmospheric phase perturbations
are compensating for the errors in the figure of the telescope mirror. This effect is even
more noticeable under slightly better astronomical seeing conditions. One example of an
exposure with very high Strehl ratio which appeared by chance in such a simulation is
shown in Figures 3.6a—f. r0 for this simulation was five times smaller than the telescope
diameter. Figure 3.6a shows the selected exposure with a Strehl ratio of 0.32. The PSF of
the telescope (in the absence of atmospheric perturbations) is shown in Figure 3.6b, with a
Strehl ratio of 0.23. Figure 3.6c shows the PSF that would be obtained through the same
atmosphere using a diffraction-limited telescope (i.e. the PSF for the atmospheric pertur-
bations alone). The shape of this PSF is almost a mirror-image of Figure 3.6b, suggesting
that the wavefront errors from the atmosphere are approximately equal and opposite to
the aberrations introduced by the telescope. This is also apparent in Figures 3.6d, 3.6e
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Figure 3.5: Histograms of the Strehl ratios obtained in simulated short exposure
images using each of the three models for the NOT mirror aberrations. Incoming
wavefronts were simulated with a Kolmogorov spectrum of phase fluctuations,
with coherence length r0 seven times smaller than the telescope aperture diameter.
The aperture geometry shown in Figure 3.4 was used for the simulations. Curve
A corresponds to model 1, using the mirror aberrations measured by Andersen
& Sørensen (1996); Sørensen (2002). Curve B corresponds to model 2, where the
large scale fluctuations have been subtracted. Curve C corresponds to the case
of a diffraction-limited telescope with the same aperture geometry.

and 3.6f which show greyscale maps of the wavefront error for the PSFs in Figures 3.6a,
3.6b and 3.6c respectively.

The atmosphere is much less likely to correct those phase perturbations which have small
spatial scales across the telescope mirror, because the Kolmogorov wavefront perturbations
have very little power on small spatial scales. The perturbations in model 2 are restricted
to small spatial scales so little correction is expected, but the phase perturbations in
the model are sufficiently small in amplitude that they only have a small impact on the
distribution of the measured Strehl ratios, as shown in Figure 3.5.

It is clear from the tails of the distributions in Figure 3.5 that we can expect the best
short exposure images taken at the NOT to have reasonably high Strehl ratios under good
atmospheric seeing conditions. Even with model 1, representing something of a worst-case
scenario, Strehl ratios higher than 0.22 are expected 1% of the time.

3.2.3 Observations

In order to assess the short exposure PSF experimentally, observations of individual unre-
solved stars were undertaken at the NOT. These observations were made at the Cassegrain
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Figure 3.6: Atmospheric correction of the shape of the NOT mirror: a) shows
a selected exposure; b) shows the PSF of the telescope; and c) shows the PSF
for a diffraction limited telescope through the same atmosphere as in a). The
compensation of the telescope aberrations by the atmosphere can also be seen in
the wavefront error maps plotted as greyscale in d), e) and f), and corresponding
to the PSFs shown in a), b) and c) respectively.

focus of the telescope during technical time at the very end of the night of 2000 May 12 and
on the night of 2000 May 13 by Craig Mackay, John Baldwin and Graham Cox. The JOSE
camera used for the observations comprised a 512 × 512 front-illuminated frame-transfer
CCD with 15 µm square pixels run by an AstroCam 4100 controller. The controller al-
lowed windowing of the area of readout and variable pixel readout rates up to 5.5 MHz.
The detector read noise was typically 50—60 electrons for these observations. The f/11
beam at the focus was converted to f/30 using a single achromat to give an image scale
of 41 mas pixel−1 (25 pixels as−1).

The observations were taken through the I-band filter from the HiRac instrument at the
NOT. The bandpass of this filter is similar to a top-hat in shape, with a centre wavelength
of 810 nm and a bandwidth of 125 nm. All of the short exposures were taken at frame
rates higher than 150 Hz and without autoguiding to ensure that the temporal behaviour
of the periods of good seeing was adequately characterised.

The diffraction-limited PSF of the 2.56 m telescope with 0.70 m secondary obstruction
has a FWHM of 64 mas at the observing wavelength of 810 nm. The pixel scale of 41
mas pixel−1 was a compromise between the area of sky which could be observed at high
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Target Frame rate
/ Hz

Number of ex-
posures

Seeing FWHM
/ as

Strehl ratio for best
1% of exposures

ε Aquilae 185 6000 0.38 0.26
V656 Herculis 185 6000 0.49 0.21

Table 3.2: High frame-rate observations performed at the end of the first night of
NOT technical time in May 2000.

frame rate and the degradation of the image FWHM due to the finite pixel size.

Four stars were observed at the end of the first night of technical time at the NOT in
May 2000. Two of these stars (α Aquilae and γ Aquilae) were sufficiently bright that the
CCD camera reached saturation in the best exposures, and these runs have been excluded
from further analyses. A small number of frames (less than 1%) in all the runs were mis-
recorded by the camera, and these frames have also been excluded from further analysis.
Table 3.2 describes the two usable observing runs from the first night.

The seeing was good and the short exposure images clearly showed a single bright speckle
at some instants. In order to assess the atmospheric conditions, the individual short
exposures were summed without re-centring to produce an average image, equivalent to a
conventional long exposure with duration equal to the total time for the run. The FWHM
of the star in this image represents a measure of the atmospheric seeing conditions, and
is listed in column 4 of Table 3.2. The FWHM measurements are consistent with an r0

of 0.34—0.44 m at the 810 nm observing wavelength for Kolmogorov turbulence with an
infinite outer scale. The telescope diameter would then equal 6 or 7 times r0. Previous
atmospheric measurements at La Palma have typically favoured an outer scale of a few
metres (see e.g. Wilson et al. (1999); Nightingale & Buscher (1991)), and under these
conditions a slightly smaller value of r0 would be consistent with the long exposure FWHM.

A list of the observations on the second night is given in Table 3.3. Each run typically
comprised between 5000 and 24000 frames over a period of 30—160 s. Target stars, both
single stars and binaries, were chosen principally lying in the declination range 10◦—20◦

and close to the meridian, so that most of the data was taken at zenith angles< 20◦. Zenith
angles up to 50◦ were explored later in the night, and the effects of atmospheric dispersion
became significant, since no corrective optics were employed. As on the first night, a
small number of short exposures in each run were mis-recorded, and these exposures were
excluded from further analysis.

Figure 3.7 shows the wind speed during the observations at the NOT in May 2000. These
measurements were taken at the top of the NOT weather mast situated at the right hand
side of Figure 3.1, a few tens of metres from the telescope.



Target Frame rate
/ Hz

Number of ex-
posures

Seeing FWHM
/ as

Strehl ratio for best
1% of exposures

α Leonis 185 6000 0.71 0.079
γ Leonis 159 5000 0.65 0.092
γ Leonis 182 5000 0.54 0.099
ζ Boötis 152 24000 0.58a 0.20
ζ Boötis 152 24000 0.64a 0.17
CN Boötis 152 2000 0.58 0.084
α Herculis 191 6000 0.42 0.21
α Herculis 191 6000 0.38 0.21
β Delphini 373 10000 0.52 0.20b

β Delphini 257 10000 0.40 0.18b

β Delphini 190 10000 0.60 0.16b

α Delphini 180 10000 0.47 0.18b

α Delphini 180 10000 0.57 0.20b

a Approximate value after accounting for tracking error

b The Strehl ratio was reduced by atmospheric dispersion at high zenith angle

Table 3.3: Observations on the second night of NOT technical time in May 2000.

Figure 3.7: The wind speed measured at the NOT weather station during the
observations in May 2000. The times that four runs were taken are indicated
by the star names on the graph. The wind speed was typically in the range
1—6 m s−1 for these observations.

49
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3.3 Data reduction method

In order to obtain a quantitive measure of the image quality, the Strehl ratio of the PSF
in each short exposure was estimated from the flux in the brightest pixel in that exposure.
Our estimate of the Strehl ratio of a short exposure was linearly related to the peak flux
density Fp in the image measured per steradian on the sky (calculated from the flux in
the brightest pixel). This was divided by the total flux from the star in that exposure
(integrated over the whole image:

∫∞
−∞ F (θ, φ) dθdφ). This gave an estimate S of the

Strehl ratio:
S = C

Fp∫∞
−∞ F (θ, φ) dθdφ

(3.2)

The constant of proportionality C represents a measure of the area of the PSF in steradians
on the sky. In order to calculate the value of C required to normalise the Strehl ratios for
the case of diffraction-limited PSFs, it was necessary to generate a number of simulated
PSFs.

Simulated diffraction-limited PSFs were generated for the observing wavelength of 810 nm
with flat incoming wavefronts at various tilt angles, using the aperture geometry described
by Equation 3.1. An example is shown in Figure 3.8a. These were then binned into
41 mas pixels to match the camera resolution. The pixellated shape of the PSF was found
to depend slightly on the tilt of the incoming wavefronts (i.e. the position of the PSF
in relation to the pixel grid) as shown for three example PSFs in Figures 3.8b—d. This
led to a variation of ∼ 15% in the flux in the brightest pixel. Our estimate for the peak
flux density was taken as the flux in the brightest pixel divided by the area of the pixel
(1681 mas2 for 41×41 mas pixels). By setting the Strehl ratio of these diffraction-limited
images to unity, values of C were calculated from Equation 3.2. The mean value of C
for a grid of 32× 32 different wavefront tilts was calculated as 2.015× 10−13 steradians2

(8573 mas2).

In order to investigate the accuracy of Strehl ratio measurements on realistic PSFs, nu-
merical simulations of observations were undertaken using Kolmogorov atmospheres where
the incident flux in the image plane was integrated over individual 41×41 mas pixels in a
square array, again resembling the optical layout for the camera and CCD detector at the
NOT. Strehl ratios for the individual short exposures were calculated from the flux in the
brightest pixel as described above. The flux in the brightest pixel was found to vary at
the ∼ 15% level depending on sub-pixel variations in the position of the brightest speckle
relative to the grid of pixels, in a similar manner to the case of the diffraction-limited PSF
shown in Figures 3.8b—d. This implied a position dependent error in the measured Strehl
ratio at the 15% level (similar to the case for a diffraction-limited PSF).

So as to reduce the dependence of the measured Strehl ratio on the position of the stellar
image on the CCD pixel array, the simulated short exposure images of the star were sinc-



3.3. Data reduction method 51

Figure 3.8: a) Simulation of a diffraction-limited PSF for an aperture similar
to that of the NOT (the precise aperture geometry used for the simulation is
described by Figure 3.4). b)—d) demonstrate the pixel sampling of the PSF by
our camera. The three images correspond to three different positions of the PSF
with respect to the detector pixel grid. The pixels corresponded to 41 mas squares
on the sky. The peak pixel in b)—d) typically contains 20% of the light in the
image.

resampled to give four times finer pixel sampling in each coordinate. This was performed
in the Fourier domain – the dimensions of the discrete Fourier domain were increased
by padding it with zeros, and the power at Nyquist Fourier components was distributed
equally at both positive and negative frequencies. The sinc-resampling process preserves
the Fourier components with spatial frequencies below the Nyquist cutoff, and does not
introduce any power at spatial frequencies above this cutoff. The Nyquist cutoff for the
pixel sampling of the CCD in the horizontal and vertical directions of 12 cycles as−1

is only slightly lower than highest spatial frequency components in the PSF of around
d
λ = 15 cycles as−1 (in other words only a small range of spatial frequencies are not
adequately sampled by the CCD). Spatial frequency components of the PSF above the
Nyquist cutoff for the CCD pixel sampling are expected to contain little power, making
the sinc-resampled short exposures a reasonably good approximation to the original PSF
before the pixellation process (although spatial frequencies just below the Nyquist cutoff
of the CCD array will be suppressed due to the finite pixel size). The four-fold sinc-
resampling process successfully reduced the variation in Strehl ratio with image position
to 1% or less. Further resampling with even finer pixel spacing had little effect on the
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Figure 3.9: A PSF reconstructed from pixellated exposures using sinc-resampling
and image re-centring. The NOT PSF was sampled with 41 mas square pixels at a
grid of 32×32 different sub-pixel positions similar to (and including) those shown
in Figure 3.8. The resulting images were sinc-resampled to have four times as
many pixels in each dimension, and shifted and added together using the location
brightest pixel in the resampled image for re-centring.

measured Strehl ratios.

The ability of the sinc-resampling process to recreate the original PSF is demonstrated
in Figure 3.9. In this Figure, diffraction-limited PSFs with a range of different position
offsets were pixellated in the same way as was shown in Figures 3.8b—d. The pixellated
images were then sinc-resampled with four times as many pixels in both dimensions, and
the resulting images were shifted to a common centre and co-added to form Figure 3.9.
The Airy pattern is clearly reproduced, and the FWHM of the image core is only slightly
larger than that for the true diffraction-limited PSF shown in Figure 3.8a. The sinusoidal
ripples extending in both the horizontal and vertical directions from the core of Figure 3.9
are a result of aliasing (Gibb’s phenomenon), as the Nyquist cutoff for the CCD pixel
sampling in the horizontal and vertical directions is slightly less than the highest spatial
frequency d

λ (the Nyquist cutoff frequency is sufficiently high along the image diagonal
that aliasing does not occur).
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3.3.1 Application to observational data

Two stars were observed without saturation at the end of the first night of technical time
at the NOT in May 2000, as listed in Table 3.2. The individual short exposures were
sinc-resampled to have four times finer pixel sampling, and Strehl ratios for each of the
exposures were calculated from the flux in the peak pixel of the resampled images using
Equation 3.2. The value of the normalisation constant C used was 8573 mas2 calculated
from the peak pixel value in simulations of diffraction-limited PSFs pixellated in the same
way as the CCD observations. A summary of the results of this analysis including a
histogram of the Strehl ratios for the run on ε Aquilae was included in Baldwin et al.
(2001).

The Strehl ratios calculated in this way provide a direct comparison between the peak
flux in the sinc-resampled short exposures with the peak flux which would be expected in
a diffraction-limited exposure taken with the same camera. The sinc-resampling process
produces a small change in the peak pixel flux in the short exposure images (typically
10%) which leads to the slightly unsatisfactory situation that simulated short exposures
under diffraction-limited atmospheric conditions processed in the same way give Strehl
ratios greater than unity (the sinc-resampled images have a higher peak flux than the
non-resampled images). This was resolved by recalculating the constant C based upon
the peak flux in diffraction-limited PSFs which had been sinc-resampled in the same way
as the observational data. The value of C is reduced from 8573 mas2 to 7060 mas2 in this
case, causing a proportionate decrease in the estimated Strehl ratios. The Strehl ratios
presented in this thesis were all calculated using the reduced value of C, giving values
which are slightly smaller than those quoted in Baldwin et al. (2001).

The Strehl ratios calculated for the individual short exposures of ε Aquilae were binned
into a histogram, and this is plotted alongside similar histograms calculated for a number
of numerical simulations in Figure 3.10. It was possible to select atmospheric seeing con-
ditions for each model which led to good agreement between the model Strehl histograms
and those for the run on ε Aquilae. The four curves in the figure show:

A. a numerical simulation with mirror perturbations described by model 1 (those
measured by Sørensen (2002)) and an atmosphere having r0 five times smaller
than the telescope diameter;

B. a simulation using the mirror perturbations described by model 2 (with large
scale structure removed) with an atmosphere having r0 seven times smaller
than the telescope diameter;

C. a simulation using model 3, a diffraction-limited telescope with an atmosphere
having r0 eight times smaller than the telescope diameter; and

D. the observations of ε Aquilae.



Figure 3.10: Simulated Strehl ratio histograms and measured data from the star
ε Aquilae. Curves A, B and C correspond to models 1, 2 and 3 respectively
(see Table 3.1). Atmospherically degraded short exposures were generated by
combining Kolmogorov-like phase perturbations with those in the model used
for the telescope aperture. The coherence length r0 used for the Kolmogorov
turbulence was 5 times, 7 times and 8 times smaller than the telescope diameter
for Curves A, B and C respectively. Curve D corresponds to a histogram of the
measured Strehl ratios from short exposure images of ε Aquilae. Curves A, B and
C have been re-scaled vertically to account for the difference between the number
of simulated short exposures and the number of exposures taken on ε Aquilae (so
the area under the four curves is the same).

54



3.3. Data reduction method 55

Figure 3.11: Cumulative Strehl ratio plots for the data presented in Figure 3.10.
Curves A, B and C correspond to models 1, 2 and 3 respectively (as for Fig-
ure 3.10). The exposures having the highest Strehl ratios were selected from each
dataset, and the mean of the Strehl ratios for the selected exposures is plotted
against the total fraction of exposures selected (ranging from the best 1% to 100%
of the exposures). Curve D shows the same plot for the measured Strehl ratios
from short exposure images of ε Aquilae.

The mirror perturbations on the NOT primary mirror are likely to have similar magnitude
to those described by model 2, implying that the most likely value for the atmospheric
coherence length r0 is d

7 or about 0.37 m.

Figure 3.11 shows cumulative plots of the Strehl ratio datasets used in Figure 3.10. The
exposures in each dataset were first sorted by descending Strehl ratio. Plotted in the figure
for each dataset is the mean of the highest 1% of Strehl ratios, the mean of the highest
2% of Strehl ratios, and so on up to the mean of all the Strehl ratios in the dataset. These
mean Strehl ratios give an indication of the image quality which would be obtained if a
given fraction of exposures was selected for use in the Lucky Exposures method.

Strehl ratios were calculated in the same way for data taken on the star V656 Herculis,
and Curve A in Figure 3.12 shows a histogram of the Strehl ratios obtained. Also shown in
the figure are Strehl ratio histograms for simulations with a diffraction-limited telescope
and atmospheric seeing conditions corresponding to d

r0
= 10 (labelled B) and d

r0
= 11

(labelled C). Again there is close correspondence between the simulated curves and the
observational results. The lower Strehl ratios as compared to the run on ε Aquilae may
result from slightly poorer seeing conditions, as highlighted by the long exposure FWHM
in Table 3.2.
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Figure 3.12: Strehl ratio histograms for the observation of V656 Herculis along-
side two simulations. Curve A shows the Strehl ratios measured for V656 Herculis,
curve B shows the Strehl ratio histogram for a simulation with a diffraction-limited
mirror of 10r0 diameter, and curve C shows results of a simulation with an 11r0
diffraction-limited mirror. Curves B and C have been re-scaled vertically to ac-
count for the difference between the number of simulated short exposures and the
number of exposures taken on V656 Herculis (so the area under the three curves
is the same).

3.3.2 Exposure selection

In order to apply the Lucky Exposures image selection procedure to observational data
taken on astronomical sources, one star in the field can be selected to act as a reference for
measurement of the Strehl ratio and position of the brightest speckle. The data reduction
software written by the author selected a small rectangular region in each short exposure
which surrounded the reference star, but did not include a significant flux contribution
from any other sources in the field. This region of each short exposure was then sinc-
resampled to have four times as many pixels in each dimension. The Strehl ratio and
position of the brightest speckle were then calculated from the resampled image region.
The exposures having the highest Strehl ratios were then selected for further processing.
A summary of this approach to the data reduction is given in Figure 3.13.

The sinc-resampling process described in panel c) of Figure 3.13 is one of the most compu-
tationally intensive parts of the data reduction as it involves two Fast Fourier Transforms
(FFTs). By limiting the area of the image which is resampled to a small region around



Figure 3.13: Flow chart describing the data reduction method for Lucky Expo-
sures imaging of astronomical targets.
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the reference star, the speed of the data reduction process is dramatically improved, al-
lowing near real-time data-reduction while observing using a year 2000 vintage PC. The
time-saving became even more significant in later runs using larger image dimensions.

After the position of the brightest speckle and Strehl ratio for each short exposure had
been calculated in panel d) of Figure 3.13, the short exposures with the highest Strehl
ratios were selected for further processing. The full frame image for each of these short
exposures was sinc-resampled, and then re-centred and co-added based on the location of
the brightest pixel in the reference star image as calculated in panel d). The process of sinc
resampling the full short exposure image was computationally intensive, but this was only
applied to the selected exposures (typically 1—10% of the total number of exposures).

3.4 Observational results with single stars

3.4.1 Exposure selection results

In order to assess the imaging performance of the Strehl selection method, the data on
V656 Herculis and ε Aquilae listed in Table 3.2 were analysed using the approach described
in Figure 3.13. The best 1% of exposures were selected and co-added – the resulting images
for V656 Herculis and ε Aquilae are shown in Figures 3.14a and 3.14b. Shown beneath
are the average (seeing-limited) images from the same data in Figures 3.14c and 3.14d,
representing conventional long exposures. It is possible that telescope tracking errors might
have contributed to the asymmetry in the long exposure image of V656 Herculis, but it is
difficult to distinguish these errors from the random motion due to the atmosphere.

The image selection method provides images with FWHM of 80×94 mas for V656 Herculis
and 79 × 94 mas for ε Aquilae, a very substantial improvement over the FWHM of the
conventional astronomical images (490×600 mas and 380 mas respectively). In the Lucky
Exposures images the first Airy ring is visible (although it is not uniform around the stars).
In both images the total flux beyond the first Airy ring is relatively small. If these PSF
were available for imaging complex fields, extremely high image resolution and quality
would be obtained.

3.4.2 Temporal properties of the atmosphere

In order to investigate the temporal properties of the atmosphere during these observations
and help determine the optimum exposure time for the Lucky Exposures method it is of
interest to look at the typical variation in the flux at a point in the image plane speckle
pattern from one short exposure to the next. The statistics of the temporal fluctuations
at one fixed point in the image plane should be representative of the fluctuations at any
other point in the image plane.



Figure 3.14: Two stars were observed on the first night at the NOT without
saturation – V656 Herculis and ε Aquilae. Panels a) and b) show the best 1%
of exposures shifted and added for V656 Herculis and ε Aquilae respectively,
processed using the method described in the text. Beneath these panels are the
respective averaged images in panels c) and d). These were generated by summing
all of the short exposures without re-centring, and represent the conventional
astronomical seeing disks at the times of the observations. The Strehl ratios and
FWHM for the four images are: a) 0.21 and 80 × 94 mas, b) 0.26 and 79 × 94
mas c) 0.018 and 490× 600 mas, d) 0.033 and 380 mas.
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Figure 3.15: Temporal power spectra generated from flux measurements at a fixed
point in the image plane. The curves have been smoothed by binning together
adjacent spatial frequencies. A shows the result for data taken on the star ε
Aquilae at the NOT. B shows results from an example atmospheric simulation, in
this case with two wind blown Taylor screens, one having 75% of the turbulence
strength and taking 420 ms to cross the telescope diameter, and one having 25%
of the turbulence strength and taking 63 ms to cross the aperture. Model 2 was
used for the mirror aberrations. The simulation used for curve C was the same
as that for B but with a diffraction-limited mirror (model 3). For curve D all the
turbulence was in a single layer taking 420 ms to cross the telescope mirror with
model 2 for the aberrations in the mirror. Curve E is for the same case as D but
with a diffraction-limited mirror. The lines are offset vertically for clarity.

In order to minimise the effects of long-timescale drift in the location of the stellar PSF on
the measurements, the pixel located at the centroid of the long exposure average image of
the run on ε Aquilae was selected (i.e. the centroid of Figure 3.14d). The average image for
this run had an unusually compact PSF, showing no evidence for substantial drift in the
location of the speckle pattern during the 30 s run. The stellar flux from the selected pixel
was recorded in each short exposure, producing a one-dimensional dataset characterising
the temporal fluctuations in the PSF. The temporal power spectrum of this dataset is
shown as curve A in Figure 3.15. The power spectrum shows a peak at a frequency
of 16 Hz. This is in close agreement with the first harmonic of mechanical oscillation
for the telescope structure, and movies made from the raw speckle images clearly show
motion consistent with such oscillations. The frequency was confirmed to be 16 Hz by
measuring the position of the brightest speckle in each short exposure and then looking
at the temporal power spectrum of this time series.

The effect of telescope oscillation on the temporal fluctuations at a fixed point in the
image plane can be seen by splitting into partial derivatives the derivative of the flux I

with respect to time at a fixed point in the telescope image plane. It is simplest to work
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in a coordinate frame which is fixed with respect to the speckle pattern, and study the
effect of moving the optical detector at a velocity v relative to the speckle pattern. In
these coordinates, the time derivative of the flux is:

dI
dt

=
∂I

∂t

∣∣∣∣
r

+ v · ∂I
∂r

∣∣∣∣
t

(3.3)

where r is the position of the optical detector in the speckle pattern, and v is the velocity of
the detector with respect to the speckle pattern. The motion of the detector with respect
to the speckle pattern resulting from telescope oscillation thus produces a coupling between
the spatial variations of the flux in the speckle pattern and temporal fluctuations measured
at a fixed point in the image plane.

It is the total differential from Equation 3.3 which limits the exposure time we can use
during observations at the NOT. For our data it is the telescope oscillation which provides
the dominant contribution on short timescales. If the amplitude of the telescope oscillation
could somehow be reduced however, the ultimate limit to the exposure time would be set
by the partial derivative ∂I

∂t

∣∣
r
. This term represents the component of the time variation

in the flux which is introduced directly by changes in the speckle pattern. It is of interest
to try to measure the timescale associated with this, as it would be applicable to other
telescopes operating under similar atmospheric conditions.

Curve A in Figure 3.16 shows the temporal autocorrelation of the same dataset from ε

Aquilae as Figure 3.15 (it represents the Fourier transform of curve A in Figure 3.15).
The curve has been normalised so that it ranges from unity at zero time difference to a
mean value of zero for time differences between ∼ 200 ms and ∼ 2000 ms. The 16 Hz
oscillatory component is clearly visible. This oscillation is largely responsible for the initial
decorrelation in the measured flux as a function of time. The telescope oscillation will only
reduce the temporal correlation, so the true autocorrelation function corresponding to the
atmosphere would lie above curve A for all time differences. The effect of photon-shot
noise was negligible in these observations due to the high flux in each individual exposure.
The frame rate (185 Hz) was sufficiently high that the sharp peak in curve A around
zero time difference is relatively well sampled in this dataset (the peak does not simply
correspond to a single high value at zero time difference, but contains several data points).

Curve B in this Figure is a function extrapolated from the measured curve by dividing it by
a decaying sinusoid having the same period as the telescope oscillation. The amplitude and
decay time of the sinusoid were chosen so as to minimise the residual component at 16 Hz.
This curve is intended to represent a possible shape for the temporal autocorrelation in
the absence of telescope oscillation.

Curve C shows a fit to curve B of the form of Equation 2.2 (based on the model of temporal
fluctuations by Aime et al. (1986)). The broad peak produced by this model does not
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Figure 3.16: Curve A) shows the temporal autocorrelation of the flux at a fixed
point in the image plane for the ε Aquilae data. Curve B is based on the same
data, but the oscillation in the curve has been artificially suppressed as described
in the text. C is a fit to curve B based on Equation 2.2 (the model of Aime et al.
(1986)).

seem consistent with the sharp peak seen in the experimental data.

The sharp peak seen in curves A and B of Figure 3.16 could be reproduced qualitatively
in numerical simulations if multiple Taylor screens were used with a scatter of different
wind velocities. One example of a simulation which gave a better fit to the shape of the
experimentally measured temporal autocorrelation is shown as curve C in Figure 3.17.
The atmospheric model for this simulation consisted of two Taylor screens moving at
constant velocities. Both layers moved in the same direction but with different speeds.
One layer, containing 75% of the the turbulence took 420 ms to cross the diameter of the
telescope aperture. The other contained 25% of the turbulence, but took only 63 ms to
cross the telescope aperture. Curves A and B from Figure 3.16 are also reproduced as
curves A and B in Figure 3.17 for comparison. Temporal power spectra generated using
this model of the atmosphere are plotted as curves B and C in Figure 3.15. It is clear
that they provide a much better fit to the experimentally measured data in curve A than
the single layer atmospheric models shown in curves D and E.

It is clear from the temporal autocorrelation plots of Figures 3.16 and 3.17 that there
are (at least) two timescales associated with the decorrelation of the speckle pattern:
the half-period of the telescope oscillation and the timescale for the decorrelation of the
atmosphere. The decorrelation timescale τe (as defined in Chapter 2.2.1) which results
from the combination of these two effects is 22 ms. Using a simple fit to the oscillatory
component (used to produce curve B in both Figures) the decorrelation timescale for the
atmosphere alone was calculated to be 65 ms.
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Figure 3.17: Curve A) shows the temporal autocorrelation of ε Aquilae data
and B shows the same data with the oscillation artificially suppressed, as in
Figure 3.16. Curve C shows an example of one simulation which fitted the data
of curve B. The model atmosphere had two layers: one with 75% of the turbulence
strength taking 420 ms to move across the diameter of the aperture, and one with
25% of the turbulence taking 63 ms to move across the aperture. This curve is
the Fourier transform of the power spectrum shown in curve B of Figure 3.15

.

If the atmosphere had a single, boiling-free layer then Equation 2.14 could be used to obtain
the wind velocity. Taking r0 = 0.37 m (consistent with the seeing disk, and with the Strehl
ratios in Figure 3.10), a wind velocity of 17 m s−1 is obtained. This is significantly larger
than the wind velocity near ground level of 5 m s−1 (from Figure 3.7), but would not be
implausible if the turbulence were situated at high altitude.

If the atmosphere had multiple layers travelling at different velocities, and the timescale
for decorrelation of the wavefronts was shorter than the wind crossing timescale of the
telescope aperture, then the dispersion in the wind velocities ∆v could be calculated using
Equation 2.12. The value obtained for τe = 65 ms is ∆v = 5.7 m s−1 (again taking
r0 = 0.37 m). This level of dispersion in wind velocities between atmospheric layers seems
consistent with the wind velocity of 5 m s−1 measured near to the ground.

Both of these atmospheric configurations are plausible. The second is perhaps more likely
given that the strongest turbulence is most commonly found at relatively low altitudes,
where small wind speeds were observed.

3.4.3 Timescales for exposure selection

A variation to the exposure selection method was developed in order to measure the
timescale associated with the decorrelation of the brightest speckle in each exposure. The
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image selection and position corrections calculated for each exposure were actually applied
to an earlier or later exposure. The exposure which was selected always came a fixed
number of exposures before or after the exposure used for calculations of the Strehl ratio
and position of the brightest speckle. For these analyses there thus exists a time difference
between the measurement of the properties of the speckle pattern, and the response of the
algorithm which selects and then co-adds the exposures. The analysis was repeated many
times, varying the time difference used. No correction was made for the oscillation of the
telescope, leaving an oscillation in the Strehl ratio as a function of the time difference
used.

The Strehl ratio for the shift-and-add image using all the exposures is plotted as a function
of this time difference in curve B of Figure 3.18, alongside curve A, the temporal autocor-
relation of the speckle pattern previously shown in Figures 3.16 and 3.17. Qualitatively
the curves appear similar suggesting that the decorrelation process is not substantially
different for the brightest speckle than for the fixed point chosen in the image plane. Both
curves are almost equally affected by the telescope oscillation as would be expected. If we
ignore the effects of the telescope oscillation, the brightest speckle does appear to decor-
relate slightly more quickly at first than the autocorrelation curve for the measurements
taken at a fixed location in the image. Also shown in the Figure are the Strehl ratios
obtained in the final image when the best 1% of exposures are used, based upon the Strehl
ratio and position of the brightest speckle measured in a different short exposure in the
same run (i.e. taken at a slightly different time). If we ignore the effects of the telescope
oscillation, this appears to decay slightly more slowly than the other timescales, perhaps
indicating that the atmospheric coherence time is slightly extended during the times of
the best exposures. This is a small effect, and it is clear that the timescales for the decay
of the brightest speckle are very close to the coherence timescale of the speckle pattern.

Figure 3.18 shows that the timescale for the decay of the brightest speckle is 10—20 ms
brought about predominantly by the 16 Hz telescope oscillation. If exposure times greater
than this are used, one would expect the typical Strehl ratios of the exposures to be
reduced. This was tested experimentally by splitting the dataset on ε Aquilae into groups
of five consecutive exposures. The five exposures in each group were added together
without re-centring to form a single exposure with five times the duration. The best 1% of
these 27 ms exposures is shown as a contour plot in Figure 3.19b alongside the shift-and-
add image from the best 1% of the original 5.4 ms exposures in Figure 3.19a. The increase
in exposure time from 5.4 ms to 27 ms brings about a reduction in the Strehl ratio of
the best 1% from 0.26 for Figure 3.19a to 0.22 for Figure 3.19b. The image FWHM is
increased from 79× 94 mas to 81× 96 mas. It is clear that the amplitude of the telescope
oscillation is small enough that relative good image quality can still be obtained with
exposure times as long as 27 ms using the Lucky Exposures method.

Figure 3.19c shows the single best 108 ms exposure formed by summing together without
re-centring 20 consecutive short exposures from the run on ε Aquilae. The Strehl ratio
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Figure 3.18: Curve A shows the temporal autocorrelation of flux measurements
at a single point in the image plane for the ε Aquilae data. Curves B and C
show normalised plots of the Strehl ratio obtained when individual exposures are
re-centred based on the measured position of the brightest speckle in a different
exposure (with the time difference between the position measurement and the
re-centring process indicated on the horizontal axis). All of the exposures in the
run on ε Aquilae were used for curve B. For curve C, exposure selection and
re-centring was based on the Strehl ratio and position of the brightest speckle in
a different exposure, with only 1% of the exposures selected.

for this image is 0.24. The small amplitude of the telescope oscillation seen in movies
generated from the raw short exposures around the moment that the 20 constituent short
exposures were taken may partly explain the high Strehl ratio obtained. It is clear that the
atmospheric timescale must have been quite long at the time this exposure was taken. Al-
though the Strehl ratios are comparable, the shift-and-add images shown in Figures 3.19a
and 3.19b show much less structure in the wings of the PSF than the single exposure of
Figure 3.19c. This is probably due to the shift-and-add images being the average of many
atmospheric realisations, which helps to smooth out the fluctuations in the wings of the
PSF. To demonstrate that this is not simply an integration-time effect, Figure 3.19d shows
a shift-and-add image with the same total integration time and similar Strehl ratio (0.25)
to Figure 3.19c, but using individual short exposures taken at widely separated times.
The wings of the PSF are substantially smoother than for the 108 ms single exposure of
Figure 3.19c. This suggests that a significant fraction of the noise in these images results
from the limited number of atmospheric realisations used in generating them.

3.5 Results with binary stars

On the night of 2000 May 13, a number of binary stars were observed, as listed in Table 3.3.
These were used to give an indication of the imaging performance of the Lucky Exposures



Figure 3.19: a)—d) Image quality of ε Aquilae using differing criteria for expo-
sure selection from a 32 s run. Contour levels are at 1, 2, 4, 8, 16, 30, 50, 70, 90%
peak intensity.

a) The 60 individual 5.4 ms exposures of ε Aquilae with the highest Strehl ratios,
shifted and added together. The Strehl ratio of this image is 0.26.

b) 12 exposures of 27 ms duration selected, re-centred and combined. The Strehl
ratio of this image is 0.22.

c) The single best 108 ms exposure. The Strehl ratio of the image is 0.24.

d) 20 individual 5.4 ms exposures from ε Aquilae taken from widely separated
time periods were re-centred and combined to give a Strehl ratio of 0.25.
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method for astronomical targets where an off-axis reference star is required for exposure
selection and re-centring. One of the stars in the binary is used as the reference star
for measurements of the Strehl ratio and relative position of the brightest speckle. After
exposure selection, re-centring and co-adding, the image of the binary companion then
provides a measure of the imaging PSF.

The correlation between the Strehl ratios measured on one binary component with those
measured on the other binary component in individual exposures can provide lower limits
on both the atmospheric isoplanatism and the signal-to-noise ratio for the Strehl ratio
measurements, as the dominant sources of noise (photon shot noise, stochastic detector
readout noise) will not be correlated for the two stellar images. Analyses of this sort will
also be presented in this section. If the detector “pattern noise” was strongly correlated
for large distances across the short exposures this might have given a correlated error to
the measured Strehl ratios for the two stars. Measurements of the summed Fourier power
spectrum for the short exposure images indicate that the pattern noise should not have
made a significant contribution to the Strehl ratios for these observations of ζ Boötis,
however.

3.5.1 Data taken on ζ Boötis

Two runs were taken on the 0.8 as binary ζ Boötis, each comprising 24000 short exposures.
During both of these runs the binary drifted slightly across the detector due to telescope
tracking problems. The parts of each of the two runs were identified where both binary
components were well within the readout region of the CCD (more than 16 pixels from
the edge), and only these short exposures were used in the following analysis.

Two example short exposures of ζ Boötis are shown in Figures 3.20a and 3.20b. Fig-
ure 3.20a is typical of the data set (with a Strehl ratio close to the median) while Fig-
ure 3.20b has an unusually high Strehl ratio of 0.26. In both of these exposures there
is strong similarity between the shapes of the speckle patterns around each binary com-
ponent, suggesting that the PSF due to the atmosphere is the same for both stars. The
small differences which are visible between the images of the two binary companions can
partly be explained by the different alignment of the stellar images with respect to the
pixel grid of the CCD. Figure 3.20c shows the effect of sinc-resampling the image shown in
Figure 3.20b to have four times as many pixels in each dimension, revealing a hint of the
first Airy ring. The similarities between the stellar images of the two binary companions
is even more pronounced in this resampled image.

The Lucky Exposures image selection procedure was applied to the data using the approach
described in Chapter 3.3.2. The left-hand brighter component of ζ Boötis was initially
used as the reference star.
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Figure 3.20: Example short exposure images of ζ Boötis: a) a typical exposure,
having Strehl ratio of 0.074 (close to median); b) a good exposure with Strehl
ratio of 0.26; and c) the same exposure as shown in b) but sinc-resampled to have
four times as many pixels in each dimension.

3.5.2 Varying the fraction of exposures selected

In order to assess the performance of the Lucky Exposures method with different exposure
selection parameters, I analysed the ζ Boötis data several times. In each case the images
of the two binary components appear very similar, suggesting that the field is isoplanatic
with little variation in the imaging PSF as a function of position.

Some of the results from the ζ Boötis data are summarised in Figure 3.21. Figure 3.21a
shows an image generated from the short exposures have the highest 1% of Strehl ratios
as measured on the left-hand component of ζ Boötis. The stellar images appear almost
diffraction limited, with the first Airy ring clearly visible. The diffuse halo surrounding the
stars is very faint and barely visible in the image. Figure 3.21b shows the result when the
process is repeated using the right-hand star as the reference for measuring Strehl ratio and
the position of the brightest speckle. Figures 3.21a and 3.21b are almost indistinguishable
to the eye, emphasising the high degree of isoplanatism and the good signal-to-noise in
the images. The Strehl ratio for the reference star in each case is 0.19.

Figures 3.21c and 3.21d show images generated in a similar way but using the short
exposures which have the highest 10% of Strehl ratios. A diffuse halo is clearly visible
around both stars slightly reducing the Strehl ratio for the reference star images to 0.14.

Figures 3.21e and 3.21f show images generated in a similar way but using all of the short
exposures regardless of Strehl ratio. The diffuse halos are much more prominent around
the stars reducing the Strehl ratio for the reference star images to 0.078. These represent
the conventional shift-and-add images from the same data.

For all six images shown in Figure 3.21, the Strehl ratio for the binary companion was
found to be only 98.5% ± 0.5% as high as that of the reference star. This indicates a
small level of decorrelation between the shapes of the stellar images for the two binary



Figure 3.21: Comparison of images generated using different exposure selection
approaches in ζ Boötis. In the three left-hand panels (a), c), e)), the left-hand
binary component has been used as the reference star, while the right-hand com-
ponent was used for the images in the right-hand panels. The properties of the
six images are as follows: a) & b) best 1% of exposures selected, Strehl ratio of
reference star is 0.190 in both images; c) & d) best 10% of exposures selected,
Strehl ratio of reference star is 0.136 in both images; e) all exposures shifted and
added, Strehl ratio of reference star is 0.0782; and f) all exposures shifted and
added, Strehl ratio of reference star is 0.0783. In each case the Strehl ratio for the
binary companion star is found to be a factor of 0.985 ± 0.005 times lower than
for the reference star.
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components as recorded on the detector. It is likely that the decorrelation comes partially
from noise sources such as detector readout noise, photon shot noise, and in particular the
pixellation of the stellar image on the detector. Both the exposure selection step and the
image re-centring have a tendency to coherently add the noise components in the image
of the reference star to give an artificially high Strehl ratio for this binary component.
This effect is described in detail by Nieto & Thouvenot (1991) for the photon-shot noise
component. The noise contribution is not expected to show strong correlation between
the separate binary components, so the Strehl ratio for the binary companion should not
be systematically affected in this way.

It is clear from Figures 3.21a to 3.21f that the imaging PSF degrades gradually as the
fraction of exposures selected is increased. The gradual nature of this change may be
extremely useful in astronomical programs as the performance of the Lucky Exposures
method can be adjusted according to the scientific needs. If an astronomical target is too
faint to give good signal to noise using only the best 1% of exposures, the astronomer can
choose to use a larger fraction of exposures at the expense of a small degradation in the
image quality. If the observational data are stored in a suitable manner, the fraction of
exposures selected can be adjusted after the observations have been completed (during
the data reduction) in order to give the highest quality science results.

3.5.3 Strehl ratios obtained for ζ Boötis

Figure 3.22 shows a scatter diagram comparing the Strehl ratios for each binary companion
in the individual short exposures. There is a strong linear correlation between the Strehl
ratios measured for the two stars, with a linear regression correlation coefficient of r2 =
0.975 for a straight line through the origin. The gradient of 1.001 for the best fit line gives
a good consistency check on the magnitude difference between the two binary companions
(calculated as δm(810nm) = 0.045 ± 0.03 from the images in Figure 3.21, and used for
calculating the Strehl ratios). The scatter in the points about the best fit line indicates
the error in the Strehl ratio measurements from individual short exposures. The RMS
difference between the Strehl ratios measured for the two stars was 0.0043. If the random
error component of the Strehl ratio measurements is equal for each of the stars, this would
imply an RMS random error of 0.003 on each Strehl ratio measurement.

Figure 3.22 compares the Strehl ratios of the brightest speckle in the PSF obtained from
each of the stars in individual exposures. This comparison is not sensitive to variations in
the relative positions of the brightest speckles for the two stars. In observations of distant
ground-based artificial light sources through a turbulent medium, Englander et al. (1983)
found relative motions in the position of the brightest speckle in Lucky Exposures for
light sources which were separated in the object plane but within the isoplanatic patch. A
qualitative discussion of this effect for astronomical observations is also found in Dantowitz
et al. (2000); Dantowitz (1998). If such a variation occurs in the relative positions of the
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Figure 3.22: Comparison of measured Strehl ratios for the two components in ζ
Boötis. The regression coefficient for a straight line through origin is r2 = 0.975.
Only exposures of ζ Boötis where both stars are more than 16 pixels from edge
of usable detector area were utilised, using data from both runs on this target.

brightest speckles for the two components of ζ Boötis, this will lead to blurring of the
image of the companion star when the short exposures are re-centred and co-added based
on measurements of the reference star.

In order to investigate the magnitude of this effect, the short exposures were sorted by
Strehl ratio into groups which each contained 1% of the total number of exposures. The
exposures in each group were then re-centred and co-added based on the measured po-
sitions of the brightest speckle for the reference star. This gave a single averaged PSF
for the exposures in that group. The Strehl ratios for binary component b are plotted
against the Strehl ratios for the reference star (component a) in Figure 3.23 for each of
the summed images generated in this way. There is extremely good correlation between
the Strehl ratios for the two stars, as emphasised by Figure 3.24. In this Figure, the Strehl
ratio for component b has been divided by the Strehl ratio for component a for each of
the summed images. The Strehl ratios for component b are typically only 0.5% lower than
those for the reference star although there is a more significant difference for the poorest
exposures. It is clear from these Figures that there must be very good correlation between
the positions of the brightest speckle for the two stars, and that measurements of the
position of the brightest speckle using a reference star can reliably be used for re-centring
images of another object in the field.



Figure 3.23: Exposures of ζ Boötis were binned into 100 equal groups according
to the Strehl ratio measured for binary component a (the reference star). The
exposures in each group were then re-centred and co-added according to the posi-
tion of the brightest speckle in the image of the reference star. The Strehl ratios
measured in the shift-and-add images for the two binary components are plotted
in the figure. The regression coefficient for a straight line through the origin is
r2 = 0.99985. Only exposures from both runs on ζ Boötis where both stars are
more than 8 pixels from edge of usable detector area were used for this analysis.

Figure 3.24: The same data as for Figure 3.23, but the Strehl ratios measured
for component b have been divided by the Strehl ratio for component a in each
of the summed images.
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Figure 3.25: The best 1% of exposures of ζ Boötis processed using the Lucky
Exposures method and plotted with two different greyscales. Both greyscales
are linear below saturation. The upper left star (component a) was used as the
reference star.

The precise shape of the PSF obtained for the reference star and also that for other
objects in the vicinity of a reference star is of interest in determining the applicability of
the Lucky Exposures method for astronomical programs. The extent of the wings of the
PSF determines the area of sky around bright stars which will be “polluted” by photon
shot noise from starlight. If the image of the reference star is sufficiently similar to the
PSF obtained for other objects in the field it can be used for deconvolving the astronomical
image. For this reason I undertook an investigation of the faint wings of the PSF, and
the differences between the PSF obtained for the reference star and that for the binary
companion.

Figure 3.25 shows the best 1% of exposures of ζ Boötis using the brighter (left-hand) com-
ponent as a reference for Strehl ratio measurements. Figure 3.25a shows a linear greyscale
ranging from zero to the maximum flux in the image. Figure 3.25b shows the same image
with a stretched linear greyscale ranging from zero to one-tenth of the maximum flux. In
order to investigate the level of similarity between the PSFs for the two binary companions,
I subtracted the image of the right-hand star from the image of the left-hand star. A copy
of the image shown in Figure 3.25 was multiplied by the intensity difference between the
two stars, shifted by the separation of the stars and subtracted from the original image.
This eliminated most of the flux from the left-hand star, as shown in Figure 3.26. The
small residual component visible in the greyscale-stretched version of this image shown in
Figure 3.26b is largely due to a small error in the measured separation of the stars due to
the finite pixel size used. There is no clear evidence for anisoplanatism between the two
binary components.
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Figure 3.26: The reference star was suppressed from the image shown in Fig-
ure 3.25 by subtracting the image of binary component b from the reference star
image (component a). This was done by taking a copy of the image shown in
Figure 3.25, scaling it by the magnitude difference for the binary, shifting it by
the binary separation, and subtracting it from the original image. Both greyscales
are linear below saturation.

The remaining binary component in Figure 3.26 represents a good measure of the PSF
for imaging in the vicinity of a reference star using the Lucky Exposures method. The
compact image core and steeply decaying wings around the star in this figure indicate that
high resolution, high dynamic range imaging will be possible using the Lucky Exposures
technique.

The subtracted image in Figure 3.26 allowed investigation of the faint wings of the PSF for
component b without strong effects from the contribution of the reference star (component
a). Figure 3.27 shows profiles through the image in Figure 3.26. Curve X in Figure 3.27a
shows a single cross-section along a line perpendicular to the separation vector between
the two stars, passing through binary component b. Curve Y shows the flux averaged
around the circumference of a circle centred on the star, plotted as a function of the circle
radius (i.e. a radial profile). At large distances from the core, the flux in the PSF drops
off exponentially in both of these curves (with an e-folding distance of 0.17 as). This is
highlighted in the logarithmic plots of the same curves shown in Figure 3.27b. The kink
at ∼ 0.78 as in the radial profile plot corresponds to the location of the reference star,
indicating that it was not fully subtracted from the images. For comparison the profile of
a diffraction-limited PSF sampled with the same pixel scale is shown in both figures as
curve Z.

If a large number of selected exposures are co-added, the speckle patterns in the wings of
the PSF will average out to give a smooth halo. If the flux in this halo follows the expo-
nentially decaying radial distribution shown by curves X and Y of Figure 3.27, then the
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Figure 3.27: Cross sections through the b component of ζ Boötis plotted on a
linear scale in the left-hand panel and on a logarithmic scale in the right-hand
panel. Curve X shows the variation of flux along a line perpendicular to the
separation between the binary components in Figure 3.25. Curve Y shows a
radially averaged profile of the b component after subtraction of the a component
(based on Figure 3.26). Curve Z shows the simulated profile in the absence of
atmospheric turbulence (but with the same pixel sampling and a 32× 32 grid of
sub-pixel position offsets for star, resampled, re-centred and co-added in the usual
way).

halo flux could be removed using deconvolution with a simple axisymmetric, exponentially
decaying model for the PSF. This would only leave a small residual component from the
photon shot noise and small deviations of the PSF halo from the model. It is clear from
the rapid decay of the curves in Figure 3.27 that very high dynamic range imaging should
be possible, even within relatively crowded fields.

3.5.4 Resolution and spatial frequency response

Both the Lucky Exposures method and the conventional approach of shifting and co-adding
all the exposures preserve the Fourier phase information in the images very effectively. For
both methods the Fourier amplitudes are reduced (by the modulation transfer function).
In order to compare the high resolution imaging performance of the Lucky Exposures and
shift-and-add methods, I computed a number of Fourier autocorrelations using some of
the data taken on ζ Boötis, and have displayed them in Figure 3.28. These Fourier au-
tocorrelations preserve the Fourier amplitude information, although all phase information
is lost. The Fourier autocorrelation provides a more intuitive representation of the high
resolution performance than the modulation transfer function, as the structures in the
image autocorrelation can be related directly to structure in the images.

Figure 3.28a shows the summation of the autocorrelations for all the short exposures used
in the analysis. This image essentially represents the method of Labeyrie (1970) as applied



Figure 3.28: Spatial autocorrelations calculated from exposures of ζ Boötis from
the first of the two runs on 2000 May 13. Exposures where the binary components
are less than 16 pixels from edge of the usable region of the CCD have been
excluded. a) shows the summed autocorrelation of all the raw exposures; b) shows
the summed autocorrelation of the exposures with the highest 1% of Strehl ratios;
c) shows the autocorrelation of the shift-and-add image generated from the raw
data; and d) shows the autocorrelation of the shift-and-add image of the exposures
with the highest 1% of Strehl ratios. The FWHM of these autocorrelations are:
a) 0.44 as; b) 0.22 as; c) 0.61 as; and d) 0.24 as.

76
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to our data on ζ Boötis. Figure 3.28b shows the summation of the autocorrelations for
only those exposures having the highest 1% of Strehl ratios. This autocorrelation has a
much more compact core and a fainter halo, indicating that the best 1% of exposures
preserve significantly more high spatial frequency information.

It is now of interest to compare the autocorrelations of Figure 3.28a and 3.28b (generated
directly from the raw data) with the autocorrelations obtained after the short exposures
have been processed using either the conventional shift-and-add approach or using the
Lucky Exposures method. Figure 3.28c shows the autocorrelation generated from the con-
ventional shift-and-add image based on the same exposures as were used in Figure 3.28a.
The shift-and-add process has produced a substantial reduction in the sharpness of the
final autocorrelation, which indicates that the shift-and-add image itself is somewhat de-
graded in resolution. On the other hand, the autocorrelation of the shift-and-add image
generated using the selected exposures (Figure 3.28d) is almost as sharp as that gener-
ated directly from the original exposures (Figure 3.28b). It is clear that with the Lucky
Exposures method, one benefits not only from the higher resolution of the selected ex-
posures themselves, but also from a substantial improvement in the performance of the
shift-and-add process when it is applied to these high Strehl ratio exposures.

3.5.5 Weighting exposures

Instead of selecting or rejecting individual exposures, measurements of the image quality
could be used to weight the exposures in the final re-centred and summed image. In this
section I will compare the performance of one formula for exposure weighting with the
exposure selection method. In order to determine the best approach for the exposure
weighting, it is necessary to define a more quantitive measure of the signal to noise for
high resolution imaging. In order to allow rapid measurements on large datasets I chose
a rather simple three step approach:

1. The Fourier power at high spatial frequencies in the core of the PSF was summed,
to represent a measure of the signal at high spatial frequencies;

2. The Fourier power at high spatial frequencies in a region of the wings of the PSF
was summed, to represent a measure of the noise at high spatial frequencies; and

3. My estimate of the signal-to-noise R was taken simply as a ratio of the two numbers
calculated in steps 1 and 2.

In order to ensure that the measurements of the signal were not significantly contaminated
by noise, these signal-to-noise measurement were applied to images obtained after shifting
and co-adding a number of exposures.



78 3. Observations of bright sources at the NOT

Figure 3.29: a) shows the Lucky Exposures image generated using the best 41%
of exposures with circles overlaid to indicate regions used for signal and noise
measurements at high spatial frequencies. b) shows an image where each exposure
is weighted by Strehl ratio to the power of 2.416. The left-hand star was used as
the reference, and the Strehl ratio for the companion star in both these images
is 0.11. For simplicity only data from the first run on ζ Boötis was used for this
analysis.

The short exposure images of ζ Boötis in the first run were first sorted in order of the Strehl
ratio measured on the brighter component. The exposures were then binned into groups
of exposures with similar Strehl ratios, each group containing 1% of the total exposures.
The exposures in each group were then shifted and co-added, reducing the dataset to 100
images, each representing one of the groups.

The signal-to-noise measurement described above was applied to these 100 images using
the b component of ζ Boötis (the a component had been used as the reference star).
The region around the b component used for the “signal” measurements was limited to
the circle around the star shown in Figure 3.29a. A circular flat-topped window which
dropped smoothly to zero at the edges (similar to a Hanning window) was used to extract
a finite region of the image data without introducing high frequency noise components at
the boundaries of the circle. A similar section of the image away from the stars was used
for noise measurements (shown by the upper circle in the image). The range of spatial
frequencies used to represent high resolution in the image was initially chosen (rather
arbitrarily) as those ranging between 6.25 cycles/as and 12.5 cycles/as, and the image
power spectrum was summed in two dimensions over these spatial frequencies. The effect
of varying this range of spatial frequencies will be discussed later.

The signal-to-noise ratio R for high spatial frequencies calculated in this way is plotted
against the Strehl ratio S for the reference star in the images in Figure 3.30a. Also shown
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Figure 3.30: Panel a) shows an estimator for the signal-to-noise of the high spatial
frequency components in the image of binary component b when component a is
used as the reference star, as described in the text. Panel b) shows the same data
on a logarithmic scale. The first run of ζ Boötis was used for this analysis.

is the best fitting function of the form:

R = ASb (3.4)

where the values of A and b were determined by least-squares fit. For the best fit line
shown in Figure 3.30a, b = 2.4. Figure 3.30b shows the same data plotted on logarithmic
scales.

Now that we have a relationship between the Strehl ratio of the short exposures and R,
our measure of the signal-to-noise ratio, we can make a concerted effort to produce the
image with the maximum signal-to-noise ratio using the data on ζ Boötis. If the individual
exposures are treated as independent, uncorrelated measurements, then the signal-to-noise
ratio should be maximised if all the exposures are selected, but the individual exposures
are weighted according to their Strehl ratios.

The data from the first run on ζ Boötis were processed in this way, with the individual
exposures weighted by a value W proportional to our signal-to-noise estimate:

W = ASb (3.5)

The exposures were then re-centred and co-added to give the image in Figure 3.29b. This
image has a Strehl ratio of 0.11 and a signal-to-noise ratio of R = 936. Alongside this in
Figure 3.29a is the image generated from simple exposure selection (without weighting of
the exposures) which has the same Strehl ratio. The fraction of exposures required to give
this Strehl ratio was 41% (determined by trial and error in a semi-automated procedure).
The signal-to-noise ratio R for the image in Figure 3.29a is 935, essentially identical to
that provided by the weighted exposures approach in Figure 3.29b. The conventional
shift-and-add approach performs less favourably, with a signal-to-noise ratio of 479.

If the signal-to-noise criteria R used to determine the signal-to-noise ratio for high resolu-
tion imaging is modified, and the same analysis is followed through, then the Strehl ratio
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of the final image from the weighted exposures approach will be different. A number of
different measures of signal-to-noise were tested, either utilising different ranges of spatial
frequencies, or weighted proportionately with the image Strehl ratio. For all the weighting
models tested, I also generated images with similar Strehl ratios using the simple exposure
selection method without weighting. The images generated using exposure selection al-
ways gave similar signal-to-noise ratios to the images generated using exposure weighting.
With faint reference stars the accuracy of the Strehl ratio measurements is dependent on
the Strehl ratio itself, and the choice of optimum weighting function becomes very com-
plex. The complexity of the various weighting models, their dependence on the numerous
aspects of the observations which affect the accuracy of Strehl ratio measurements, and
the increased computational requirements make this approach less favourable than sim-
ple exposure selection. The analyses in the remainder of this thesis will be restricted to
exposure selection without weighting of the exposures.

3.5.6 Anisoplanatism

Short exposure images of the two components in the 4.4 as binary γ Leonis provide
measurements of the atmospheric perturbations along two paths through atmosphere.
The difference in the speckle pattern observed for the two binary components gives a
measure of the isoplanatism in the atmosphere. For the purposes of this analysis I will
consider the isoplanatic angle θe to be the separation from a reference star which causes
a reduction by a factor of 1

e in the Strehl ratio of an unresolved target.

The isoplanatic angle for the Lucky Exposures technique θe should be very similar to the
angle at which the speckle patterns for the two stars have decorrelated by a factor of 1

e .
The argument for this is based on the direct parallels between the decorrelation of the
speckle pattern as a function of angle and the decorrelation of the speckle pattern as a
function of time discussed in Chapter 2.4. Measurements in Chapter 3.4.3 indicated that
the decrease in the Strehl ratio with time followed the decorrelation occurring at another
(arbitrary) point in the speckle pattern with time, and the same relationship would be
expected as a function of angle between the reference star and an off-axis target. The
isoplanatic angle θe is thus expected to be analogous to the timescale τe for changes in the
speckle pattern.

Measurements of θe would ideally be obtained from simultaneous observations of a target
very close to the reference star, and another target at a separation which produced a
Strehl ratio lower by a factor of 1

e . As appropriate data is not available here, a model of
the effect of atmosphere is required in order to extrapolate the results, leading to some
uncertainty in the accuracy of the result.

In order to obtain the best possible temporal sampling, the second run on γ Leonis with
the higher frame rate of 182 Hz was used in this analysis (as described in Table 3.3).
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Figure 3.31: Lucky Exposures observation of γ Leo using the left-hand star as
the reference and selecting the best 1% of exposures. The Strehl ratio for the
reference star is 0.099, which compares favourably with the Strehl ratio for the
average image (generated without selection or re-centring) of 0.015. The Strehl
ratio for the right hand star is only 65% as high as that for the left hand star,
and the separation of the stars is 4.4 as.

The left-hand (fainter) star was used as a reference for selecting the best 1% of exposures,
and the resulting image is shown in Figure 3.31. The reference star Strehl ratio is 0.099,
unusually low for observations in this period of NOT technical time. This suggests that
the seeing may have been poorer for this run.

We cannot tell exactly what Strehl ratio could be obtained in the vicinity of the reference
star. However, the high signal-to-noise for these observations, and the high level of corre-
lation between the stars in the close binary ζ Boötis suggest that the Strehl ratio for the
reference star gives us a reasonable approximation for the Strehl ratio which would be ob-
tained on a nearby target. The right-hand star in Figure 3.31 has a Strehl ratio only 65%
as high as that for the reference star. The lower Strehl ratio implies that the images of the
two stars are partially decorrelated in the short exposures. This decorrelation probably
results from anisoplanatism related to the separation of the binary. In order to calculate
the separation from the reference star which would give a Strehl ratio of 1

e it would be
necessary to know the detailed structure of the atmosphere at the time of the observations.
Fitting models of the form of Equation 2.20 or similar to those of Roddier et al. (1982b)
give values between 7 as and 8 as. Much better constraints could be put on this if wider
binaries were observed – the observations in 2000 were somewhat limited by the maximum
pixel rates at which the camera could operate, and hence the field of view which could be
used for high frame-rate imaging. It is possible that better seeing conditions present for
the runs on other targets might have also given a different (presumably larger) isoplanatic
angle.

Figure 3.32 shows a shift-and-add image utilising all of the short exposures. The faint
halo around the stars is more obvious in this image, but it is also much smoother in
appearance. The smoothness is probably a result of the larger number of different short
exposures involved, each representing a different atmospheric realisation. The Strehl ratio
of the left hand star in this case is 0.048. The Strehl ratio for the right-hand star is 0.033,
only a factor of two higher than the Strehl ratio of the long exposure seeing disk. The
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Figure 3.32: γ Leo using left hand star as reference, all the exposures. The Strehl
ratio for the left hand star is 0.048. The Strehl ratio for the right hand star is
68% as high as that for the left hand star.

Strehl ratio of this star is 68% as high as that for the left hand star, again suggesting
significant anisoplanatism.

The reduction in the Strehl ratio brought about by anisoplanatism was measured using
different criteria for exposure selection. The exposures of γ Leonis were binned into one
hundred equal groups each containing exposures with similar reference star Strehl ratios,
as had been performed for data on ζ Boötis in Figure 3.23. The exposures in each group
were shifted and co-added, resulting in a set of 100 images. The Strehl ratios for the
reference star and the binary companion were calculated for each of these images. The high
signal-to-noise ratio for these observations mean that the ratio of the binary companion
Strehl to the reference star Strehl is a good measure of the reduction factor for the off-
axis Strehl ratio brought about by atmospheric anisoplanatism. Figure 3.33 shows such
measurements, plotted against the reference star Strehl ratio. It is clear that the fractional
reduction in Strehl ratio brought about by atmospheric anisoplanatism for this data is not
strongly dependent on the reference star Strehl ratio if the Strehl ratio is greater than
0.03.

It should be noted that the fractional reduction in Strehl ratio brought about by atmo-
spheric anisoplanatism does not provide a direct measure of the size of the isoplanatic
patch. The long exposure image constructed from the same data has a Strehl ratio of
0.015, and it will be unlikely that the Strehl ratios for short exposures would fall substan-
tially below this value however small the isoplanatic patch. For low reference star Strehl
ratios there will be a lower limit on the companion star Strehl ratio set by the finite size of
the seeing disk into which most of the light from the companion star will fall (regardless
of the anisoplanatism). This will tend to bias the companion star Strehl ratios obtained
for low reference star Strehl ratios, and may explain why the Strehl ratios of the two stars
are more similar under these conditions.

Given the lack of a model for the stratification of the atmosphere at the time of the
observation, it is not possible to determine how the Strehl ratio should vary as a function
of binary separation, and so we cannot say with any certainty that the isoplanatic patch
is larger or smaller in the Lucky Exposures than it is in typical exposures.
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Figure 3.33: The fractional decrease in Strehl ratio for off-axis stars as measured
for γ Leonis. This plot is of the same type as Figure 3.24 but for the data on γ
Leonis. The left hand binary component was used as a reference star for mea-
surements of the Strehl ratio and position of the brightest speckle. The exposures
were then put into groups according to reference star Strehl ratio, with each group
containing 1% of the exposures. The fractional difference between the Strehl ra-
tios of the two binary components is plotted against the reference star Strehl ratio
in the figure.

3.5.7 Temporal and spatial cross correlation

In order to investigate the temporal properties of the correlation between the left-hand
star Strehl ratio and the Strehl ratio of the right-hand star, a temporal cross correlation
of the measured Strehl ratios was performed. The peak of this function occurs when the
Strehl ratio of the left-hand star is correlated with the Strehl ratio obtained one or two
frames later for the right-hand star (5—11 ms later), as shown in Figure 3.34a.

Figure 3.34b shows the effect of finding the highest 1% of reference star Strehl ratios, but
actually selecting exposures an integer number of frames before or after the frame with the
high reference star Strehl ratio. The image re-centring was also based on measurements
of the reference star in the exposure with the high reference star Strehl ratio, and not the
exposure actually used. The Strehl ratio obtained on the binary companion in the final
image is plotted against the delay between the Strehl ratio and reference star position
measurements and the application of these measurements to the data. The peak Strehl
ratio for the companion star is obtained if the delay is 5 ms. The curve has the same
general shape as that for self referencing with ε Aquilae, shown in Figure 3.18, except for
the time delay.

The observed delay in the response of the binary companion image to fluctuations in
the reference star image suggests the presence of an intermediate or high altitude layer
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Figure 3.34: a) The cross correlation of Strehl ratio for the left-hand binary com-
ponent in the γ Leo data with the Strehl ratio for right-hand star in a different
exposure. The difference in the exposures used is indicated by the time difference
between the acquisition times of the exposures, shown along the horizontal axis.
The peak correlation is after a delay of one frame (' 5.5 ms), suggesting that
the wind was blowing refractive index fluctuations from the left-hand side to the
right-hand side of the light path through the atmosphere. b) The Strehl ratio
obtained for the right hand star using the Lucky Exposures method selecting 1%
of the exposures using the left-hand star as the reference. The Strehl ratio and
position of the brightest pixel were used to select and re-centre different short
exposures to see how the final image was affected – the difference in exposure
number used is indicated as a time difference on the horizontal axis.

of seeing moving with a velocity which has a component along the axis of the binary
separation in the plane of the sky. Phase perturbations experienced by the reference star
are thus blown into the beam of light from the binary companion between 5 and 11 ms
later, producing the observed cross-correlation.

3.5.8 Atmospheric dispersion and β Delphini

Fig. 3.35 shows the result of a selection of the 1% of images with the best Strehl ratios
from a dataset of 7000 short-exposure CCD images of the binary β Delphini. In this case
the zenith angle of the observation was 50◦ and the images are blurred by 100 mas due to
atmospheric dispersion over the 125 nm bandpass of the filter, reducing the Strehl ratio of
the final image to 0.20. This dispersion results from the variation in the refractive index
of air with wavelength, which causes a change in the atmospheric refraction angle as a
function of wavelength. It can be corrected using glass prisms with an appropriate wedge
angle.

The magnitude difference between the components is ∆m = 1.070 ± 0.005. This value is
in good agreement with those of Barnaby et al. (2000) of 1.071 ± 0.004 at 798 nm and
1.052± 0.010 at 884 nm made using a 1.5 m telescope.
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Figure 3.35: The Lucky Exposures method as applied to the spectroscopic binary
β Delphini. The best 1% of exposures of β Delphini were selected, shifted and
added to produce this image. The blurring evident in the image is thought to
result from atmospheric refraction.

3.5.9 Dynamic range

Observations of the binary α Herculis were also obtained on the night of 2003 May 13.
The brighter primary component saturated the detector, but it was possible to perform
exposure selection on the faint companion (typically three magnitudes fainter, depending
on the variable brightness of the primary component), as shown in Figure 3.36. The
absence of significant scattered light from the bright companion emphasises the potential
to perform high-dynamic range imaging given suitable camera performance. There is no
evidence that the primary component is a 190 mas binary as suggested by McAlister et al.
(1989), but this cannot be ruled out due to the detector saturation.

3.5.10 Seeing conditions

In order to investigate the relationship between the FWHM of the seeing disk for ob-
servations with the performance of the Lucky Exposures method, all the observations in
Tables 3.2 and 3.3 were analysed using the Lucky Exposures approach. The best 1% of
exposures were selected in each case, and the Strehl ratio for the image obtained in this
way is plotted against the FWHM of the seeing disk in Figure 3.37. There is a clear re-
lationship between these two parameters, indicating (as expected) that the highest image
quality is obtained under conditions where the conventional seeing disk is small. The scat-
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Figure 3.36: Lucky Exposures image of α Her using the faint component as the
reference star. The best 1% of exposures were selected, giving a Strehl of ratio of
0.24 for the reference star. The bright component was saturated in the individual
short exposures.

ter in the results may be due to the strong dependence of seeing FWHM on the low-order
tip-tilt components in the wavefront perturbations, which have insignificant effect on the
Lucky Exposures image quality. The regression coefficient for the fitted line is r2 = 0.44.

3.6 Conclusions

The analyses presented here indicate that high resolution images can be obtained using the
Lucky Exposures method even if the telescope used for the observations is not diffraction-
limited. Mirror figuring errors which only vary slowly with position in the aperture plane
can be corrected by the atmosphere during a Lucky Exposure as long as the figuring errors
are sufficient small in amplitude. However, the probability of obtaining exposures with
high Strehl ratios is reduced by such aberrations.

Using numerical simulations I found that accurate Strehl ratios could be calculated from
pixellated short exposure images by sinc-resampling the images and then using the flux
in the brightest pixel of the resampled image as an indication of the peak flux in the
original speckle pattern. The images generated from the resampled, simulated exposures
clearly showed a first Airy ring indicating that the pixel sampling was adequate for high
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Figure 3.37: Strehl ratio for the Lucky Exposures image generated using best 1%
of exposures plotted against the seeing FWHM for each of the runs.

resolution imaging. The calculated Strehl ratios were normalised using simulated data.

High frame-rate imaging data taken at the NOT in May 2000 were analysed in this chapter.
The Strehl ratios measured for the short exposure images were found to be consistent with
the atmospheric models presented in Chapters 1 and 2.

The temporal properties of the high frame-rate imaging data were investigated. The
initial decorrelation in the recorded datasets was found to be determined by the telescope
oscillation. Aside from the effects of telescope oscillation, the speckle patterns appeared to
remain correlated for ∼ 65 ms for the data analysed on ε Aquilae (this was also consistent
with the observations of γ Leonis). This implies that exposure times of at least 30 ms

should be adequate for high resolution imaging under atmospheric conditions similar to
those experienced during our observing run. The brightest speckle was found to decay
on similar timescales. The timescale relevant for the best 1% of exposures appeared very
slightly larger (but of a very similar magnitude).

Short exposures of ε Aquilae were binned together without re-centring in order to simulate
longer camera exposure times. With effective exposure times of 27 ms, the Strehl ratio for
the Lucky Exposures image generated from the best 1% of exposures is only 15% lower
than that obtained using 5.4 ms exposures. This reduction in Strehl ratio is probably
predominantly due to the telescope oscillation. One 108 ms exposure generated from data
taken when the telescope oscillation appeared to be at a minimum had a very high Strehl
ratio of 0.24. This implies that the atmospheric coherence timescale may have been longer
than 65 ms at this instant. Studies of data from ε Aquilae suggest that much of the
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structure in the wings of the PSF for our imaging method results from the limited number
of atmospheric realisations sampled. For deeper observations utilising longer periods of
observing time (and using more selected exposures and hence more realisations of the
atmosphere) the PSF should be much smoother. This is supported by results from ζ

Boötis using a larger number of short exposures.

Observations of the binary star ζ Boötis showed a high degree of isoplanatism over the
small separation of the binary (0.8 as). When one star was used as the reference for image
selection, the imaging PSF for that star was not substantially different than that obtained
for the companion. Profiles through one component of ζ Boötis indicated that the flux in
the PSF dropped exponentially towards zero with increasing radial distance from the PSF
core, with an e-folding distance of approximately 0.17 as. This implies that high dynamic
range observations should be possible using the Lucky Exposures method, as highlighted
by the observations of α Herculis.

When larger fractions of exposures were selected, the image Strehl ratio decreased in a
gradual way. When all the exposures are used, a conventional shift-and-add image is
obtained.

The Strehl ratios measured for the two different components in ζ Boötis were found to
agree in individual exposures to within 0.3% RMS. No evidence was found for differential
motion of the two stars in the short exposure imaging data.

Spatial autocorrelations of the individual short exposures and of the images generated
using the Lucky Exposures method indicate that re-centring and co-adding the best 1%
of exposures does not produce a significant loss of high spatial frequency information. In
contrast, re-centring and co-adding all the exposures does appear to produce a significant
reduction in the highest spatial frequencies. Combined with the poorer intrinsic quality
of typical exposures, this leads to substantially poorer image resolution.

Observations of the 4.4 as binary γ Leonis showed evidence of atmospheric anisoplanatism,
implying an isoplanatic angle of less than 10 as. Simultaneous observations of objects
separated by a larger angle on the sky are required in order to measure the isoplanatic
angle accurately. The Strehl ratio obtained for one component of γ Leonis was found to
be most strongly correlated with the Strehl ratio for the other component 5—11 ms later,
suggesting that the temporal decorrelation was at least partly related to an intermediate
or high altitude layer which had a velocity component in the direction separating the stars
in the plane of the sky.



Chapter 4

Electron multiplying CCD

performance

4.1 Introduction

The observations described in Chapter 3 were of relatively bright stars using a conventional
high frame rate CCD camera. The readout noise present at these high frame rates would
have led to poor signal-to-noise ratios for observations of faint sources.

CCDs recently developed by both E2V Technologies (Jerram et al. 2001; Harris et al.
2000) and Texas Instruments (Hynecek & Nishiwaki 2002) with essentially zero readout
noise at low light levels seem particularly well suited to high frame rate imaging techniques
like the Lucky Exposures method. Craig Mackay acquired a number of these devices at
the Institute of Astronomy, and developed a camera designed to operate them at fast
readout rates. This seemed an excellent instrument for testing the performance of the
Lucky Exposures technique for imaging faint astronomical targets.

Before undertaking any astronomical observations with this camera, an assessment was
made of the expected signal-to-noise performance at low light levels. Two simple numerical
models of the output register from one of the E2V L3Vision CCDs were developed by the
author in order to make estimates of the signal-to-noise. Detailed descriptions of the
statistical properties of these models are presented in this chapter.

The astronomical observations undertaken using the camera will be introduced in Chap-
ter 5. However, a small section of example data from one of the observing runs is introduced
in the current chapter, in order that I can compare the statistical properties of the data
with the properties of my theoretical models.

In this chapter I will develop models for the expected distributions of output electrons
from these CCDs. These models will be of use to future researchers wishing to simulate
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the performance of the devices. These models are also used to estimate the performance
of photon-counting approaches with one run of data taken at the NOT.

In this chapter I also briefly discuss measurements of the charge transfer efficiency of
the camera at low signal levels which were undertaken in the laboratory after the first
observations at the NOT. These results will be of use in discussions of observational data
in later chapters.

4.2 Simple models of the L3Vision CCDs

4.2.1 L3Vision CCD architecture

L3Vision CCDs have a relatively standard frame-transfer CCD structure but have an out-
put register which has been extended with an additional section called the “multiplication
register”, as shown in Figure 4.1. In the multiplication register one of the three phases
is clocked with a much higher voltage than is needed purely for charge transfer (typically
30—40 V ). The large electric fields which are established within the semiconductor mate-
rial accelerate charge-carrier electrons to sufficiently high velocities that additional carriers
can be generated by impact ionisation, as described in Burt & Bell (1998); Jerram et al.
(2001). This generates a small level of charge multiplication (signal gain) in each stage of
the high-voltage multiplication register. The large number of gain stages in the register
can lead to a substantial overall gain in signal level. The output of the multiplication
register is read out using a conventional CCD amplifier. Measurements in the laboratory
did not show any signs of non-linearity in the multiplication register when the CCDs were
operated at signal levels well below saturation (Mackay et al. 2001).

4.2.2 Model descriptions

Two simple mathematical models were developed for the multiplication register gain stages
of the L3Vision CCDs. In both cases the number of additional charge carriers generated
from each input electron through impact ionisation was treated as an independent random
variable with a probability distribution which remained fixed for the duration of each
simulation. The gain stages were assumed to have perfect charge transfer efficiency, so the
input electrons were always passed to the output of the gain stage regardless of whether
or not impact ionisation took place. The two linear models of a single gain stage which
were considered can be summarised as follows:
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Figure 4.1: Electrons are transferred serially through the gain stages making up
the multiplication register of an L3Vision CCD. The high voltages used in these
serial transfers induce the creation of additional charge carriers through impact
ionisation.

Model 1 For the first model, for each input electron the number of additional elec-
trons generated by impact ionisation within the gain stage was selected
from a Poisson distribution. This corresponds to the case where impact
ionisation is an instantaneous process, and an input electron can generate
multiple charge carriers within a single gain stage. Impact ionisation events
triggered by secondary electrons generated within that gain stage were not
considered.

Model 2 For the second model, a maximum of one additional electron could be gen-
erated through impact ionisation within one gain stage. This corresponds
to the case where the generation of additional electrons by impact ionisa-
tion cannot occur twice within the time taken to transfer the charge from
one gain stage to the next.

It is unlikely that either model perfectly describes the real operation of a gain stage, but
the models considered here cover a reasonably broad spectrum of possible properties.

4.2.3 Statistics of a single gain stage

The statistics of each of these models can be calculated straightforwardly for the case of
a single input electron.
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Model 1

For model 1, the probability distribution for the number x of electrons generated by impact
ionisation from a gain stage when one electron is input is defined by a Poisson distribution:

P (x) =
αxe−α

x!
(4.1)

where P (x) is the probability distribution for the number x of additional charge carriers
generated and α is the expectation value for the number of additional charge carriers
generated. The variance of the Poisson distribution is equal to the expectation value α.

It is perhaps more useful to describe Equation 4.1 in terms of the total number of output
electrons n = x+ 1 (i.e. including the single input electron):

P1e (n) =
(µ− 1)(n−1) e(1−µ)

(n− 1)!
(4.2)

where P1e (n) is the probability distribution for the total number of output electrons and
µ is the expectation value for the total number of output electrons (equal to the gain of
the stage; µ = α+1). As the charge transfer efficiency is perfect, µ is always greater than
or equal to one. The variance in the total number of output electrons is equal to the gain
minus one:

σ2
out = µ− 1 (4.3)

As the model is linear and the electrons are treated independently, the variance in the
number of output electrons for a fixed number of input electrons min is just:

σ2
out = min (µ− 1) (4.4)

If there is a variance σ2
in in the number 〈min〉 of input electrons, the total variance in the

number of output electrons σ2
out is just:

σ2
out = 〈min〉 (µ− 1) + µ2σ2

in (4.5)

Model 2

For model 2 the probability distribution for the output electrons from one gain stage given
one input electron is described by:

P1e (n) =


2− µ for n = 1
µ− 1 for n = 2
0 for other values of n

(4.6)
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The expectation value of the gain µ is limited to the range 1 ≤ µ ≤ 2 by the assumptions
in model 2.

The variance in the number of output electrons given precisely min input electrons with
model 2 is given by:

σ2
out = min

(∑
n P1e (n)n2 − (

∑
n P1e (n)n)2

)
= min

(
(µ− 1)− (µ− 1)2

) (4.7)

If there is a variance σ2
in in the number of input electrons min, the total variance in the

number of output electrons σ2
out is just:

σ2
out = 〈min〉

(
(µ− 1)− (µ− 1)2

)
+ µ2σ2

in (4.8)

where 〈min〉 is the expectation value of min.

For gain µ close to unity this approaches the value from Equation 4.5 appropriate for
model 1.

Gain variance

If there is a variance σ2
µ in the gain µ itself, this will also contribute to the variance in

the number of output electrons. If this variance is much smaller than the (µ− 1)2 (and
also smaller than (2− µ)2 for model 2) as seems likely for a real electronic device, the
contribution this makes to the output variance from an individual gain stage is negligible
for both of the models when combined with the statistical noise described above.

4.2.4 Statistical properties of registers with multiple stages

Equations 4.5 and 4.8 can be extended to registers with multiple gain stages as a geometric
series. For a register of s gain stages described by model 1, summing the series for
Equation 4.5 gives:

σ2
out = µ2sσ2

in + µs−1 〈min〉 (µs − 1) (4.9)

For a register of s gain stages described by model 2, Equation 4.8 gives:

σ2
out = µ2sσ2

in + µs−1 〈min〉 (µs − 1) (2− µ) (4.10)

If the inputs are Poisson-noise limited, σ2
in = 〈min〉 so for model 1 we have:

σ2
out = µ2s 〈min〉+ µs−1 〈min〉 (µs − 1)

= µs−1 〈min〉
(
µs+1 + µs − 1

) (4.11)
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For a register of s gain stages described by model 2, we have:

σ2
out = µ2s 〈min〉+ µs−1 〈min〉 (µs − 1) (2− µ)

= µs−1 〈min〉 (2µs + µ− 2)
(4.12)

If we remember that the gain µ = α + 1 then Equation 4.12 is clearly consistent with
Robbins & Hadwen (2003).

If the stage gain µ (t) varies as a function of time (e.g. due to voltage fluctuations),
then the overall gain applied to the signal from one pixel in the imaging array will be
the product of the µ (t) values at each stage while the signal is passed along the serial
multiplication register. The large number of gain stages will suppress the effects of high
frequency fluctuations in the gain voltage, and only long term drifts in the gain would be
expected to affect the output signal.

4.2.5 Signal-to-noise performance

In the absence of the multiplication register, the signal to noise for imaging with the
CCD is determined by the photon-shot noise and the readout noise of the analogue CCD
amplifier. For an expectation value of 〈min〉 detected photons, the RMS photon shot noise
is equal to

√
〈min〉. At fast readout rates, the readout noise r typically has an RMS of a

few tens of electrons and is not correlated with the photon shot noise. The RMS noise σ
in determining the detected flux in a CCD pixel thus comes to:

σ =
√
〈min〉+ r2 (4.13)

The signal-to-noise ratio R for conventional imaging is equal to:

R =
〈min〉√
〈min〉+ r2

(4.14)

At low light levels the detector readout noise dominates Equation 4.13.

If the multiplication register is enabled, then the expectation value for the number of
output electrons will be increased by a factor equal to the total multiplication register
gain. The variance in the number of output electrons will also be increased, as described by
Equations 4.11 and 4.12 for models 1 and 2 respectively. If the output of the multiplication
register is treated in an analogue fashion (in the same way as for a conventional CCD),
then this variance acts as a source of additional noise.

The signal-to-noise ratio for a register containing s stages each giving a gain of µ is:

R =
µs 〈min〉√

〈min〉µs−1 (µs+1 + µs − 1) + r2
(4.15)
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if the gain stages are described by model 1 and

R =
µs 〈min〉√

〈min〉µs−1 (2µs + µ− 2) + r2
(4.16)

if the stages are described by model 2. For both models, if the number of stages s is large
and the gain per stage µ is close to unity then the signal-to-noise is well approximated by:

R =
g 〈min〉√

2g2 〈min〉+ r2
(4.17)

=
〈min〉√

2 〈min〉+ r2

g2

(4.18)

where g = µs is the total gain of the multiplication register.

For large multiplication register gains (g � r/
√
〈min〉) the readout noise of the CCD

becomes negligible giving:

R =
〈min〉√
2 〈min〉

(4.19)

=

√
〈min〉

2
(4.20)

It is interesting to compare the signal-to-noise in Equation 4.20 with the signal-to-noise
Rideal for an ideal readout-noise free detector (limited only by photon shot noise):

Rideal =
√
〈min〉 (4.21)

The ratio of the signal-to-noise of a device with a multiplication register to that of an ideal
readout-noise free detector is called the noise factor F . For the L3Vision CCDs operated
at high gain this noise factor will be F '

√
2.

In an ideal readout-noise free detector a reduction by a factor of
√

2 in signal-to-noise
would be brought about if the quantum efficiency of the detector was halved. The noise
performance of the L3Vision devices is thus similar to the performance of a readout-noise
free device with half the quantum efficiency (see also Mackay et al. (2001)).

If the photon flux per pixel read out is very low, electron multiplying CCDs operated at
high gain can be used as photon-counting devices (rather like an array of avalanche photo-
diodes). In this mode of operation, it should be possible to detect individual photons with
high quantum efficiency. The performance of the devices for photon counting under these
conditions will depend on the probability distribution for the output electrons.
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4.2.6 Calculating the probability distribution for the output electrons

So far I have only investigated the variance in the number of output electrons. The precise
form of the probability distribution for the number of output electrons is also of interest
in describing the performance of these multiplication registers.

For the case of high multiplication-register gain, the large number of electrons involved
in the latter stages of the register make Monte Carlo simulations rather cumbersome.
Fortunately the probability distribution for the number of output electrons from my two
models of the multiplication register can be calculated directly in a rapid and relatively
straightforward manner.

We will start by discussing a single gain stage described by one of the models from Chap-
ter 4.2.3. As the models are linear, taking the probability distribution describing the
output when only one electron is input to the gain stage, and convolving this distribu-
tion with itself results in the probability distribution for the output electrons when two
electrons are input. For model 1 we must convolve Equation 4.2 with itself:

P2e (n) = P1e (n)⊗ P1e (n) (4.22)

where P2e (n) is the probability distribution for the total number of output electrons
given two input electrons, P1e (n) is the distribution for one input electron taken from
Equation 4.2 and ⊗ represents convolution of the probability distributions.

As P1e (n) and P2e (n) are only defined for discrete n, this convolution can be described
in terms of the discrete Fourier transform of P1e (n):

P2e (n) = DFT
[
DFT [P1e (n)]2

]
(4.23)

where DFT [. . .] indicates a discrete Fourier transform, and DFT [. . .]2 indicates that the
individual Fourier components are squared. Numerically the discrete Fourier transforms
can be performed using a Fast Fourier Transform algorithm. To limit the calculation time
the probability distribution must be truncated at large n. As long as the truncation occurs
at a sufficiently large value of n (with n� 2µ+

√
2µ) there is little loss of accuracy.

Form input electrons entering the gain stage the probability distribution for n, the number
of output electrons, is given by:

P (m,n) = DFT [DFT [P1e (n)]m] (4.24)

For a gain stage described in terms of the probability distribution P1e (n) for one input
electron, this equation fully describes the operation of the gain stage for any number of
input electrons.

The model can be extended by adding another gain stage, situated immediately before
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the one we have just described. If one electron enters the new, additional gain stage,
the probability distribution for the output electrons from the new stage can be calculated
as before. Each possible outcome of this stage is dealt with separately and fed into the
model for the next gain stage (based on Equation 4.24). The outcomes are weighted
by the appropriate probabilities and summed to give the probability distribution for the
total number of output electrons from the combined two-gain-stage system for one input
electron.

The probability distribution for one electron entering the two-gain-stage system can be
convolved with itself to give the probability distributions for m input electrons, in the
same way as for Equations 4.22 to 4.24.

The process can be repeated to convert a two-gain-stage system into a three-gain-stage
system, and so on for an arbitrary number of gain stages. To minimise the computation
time, it is best to work entirely in the discrete Fourier domain, and only return to the
probability domain at the end of the calculations.

A multiplication register where each gain stage was defined by model 2 was also simu-
lated using the same approach. The same convolution procedure can be applied to any
linear model of one individual gain stage in order to provide a model for a multi-stage
multiplication register.

4.2.7 Results from numerical simulations

A short C program was written by the author to calculate the output electron probability
distributions for multiplication registers with stages described by either model 1 or by
model 2. The software could simulate a wide range of register gains with a variable
number of gain stages. Simulations of multiplication registers which had similar numbers
of stages to the registers in existing L3Vision CCDs typically took a few seconds on a year
2000 vintage PC. Two example curves produced by this software were included in Mackay
et al. (2001).

A small number of Monte Carlo simulations were undertaken to verify the accuracy of
the software – to obtain statistically useful results these typically required between one
thousand and one million times as much computation time as the convolution software
(depending on the simulation parameters). The results were consistent with the probability
calculations within the statistical accuracy of the Monte Carlo results.

Results using model 1 for the gain stages

Simulations of the CCD65 L3Vision device with 591 gain stages were first undertaken using
model 1 for the individual gain stages (where the additional impact ionisation electrons



98 4. Electron multiplying CCD performance

Figure 4.2: The probability distribution for the number of output electrons from
a multiplication register of 591 stages with a single electron input and total reg-
ister gains of 100, 1000 and 10000 (curves A, B and C respectively). All three
probability curves fall to zero for the case of less than one output electron. For
these simulations model 1 was used for the individual gain stages, where additional
electrons are selected from a Poisson distribution. The same data are plotted on
a logarithmic scale in Figure 4.3.

were chosen from a Poisson distribution). In the simulations the same value of the gain
µ was used for each of the 591 stages. The total gain of the multiplication register was
thus given by µ591. The three simulations used three different values of µ chosen to give
total multiplication register gains g = µ591 of g = 100, g = 1000 and g = 10000. The
probability distributions for the output electrons in these three simulations are shown in
Figure 4.2.

The probability distributions for the output electrons are well approximated by decaying
exponential curves for large values of n. This is highlighted in Figure 4.3a where the
curves are plotted on a logarithmic scale. The probability curves appear as straight lines
over a wide range of n in the plot. For very large values of n the probability reaches the
computational accuracy of the software corresponding to a value of ∼ 10−16, and beyond
this point the probability calculations are dominated by noise. Figure 4.3b shows an
expanded view of the probability distributions for small n. Exponential curves were least-
squares fitted to the probability curves for the large n region, and these are extrapolated
as dashed curves in this plot. For small values of n (n� µ) the probability curve begins to
fall very slightly below the best fit exponential before dropping rapidly to zero for n = 0.

Figure 4.4 shows similar plots for a 591 stage register with overall gain g = 1000 with
different numbers of input electrons. The general shape of the curves was not strongly
dependent on the number of gain stages s as long as s was large.
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Figure 4.3: The probability distributions from Figure 4.2 plotted on a logarith-
mic scale. A multiplication register of 591 stages was simulated with a single
electron input and total register gains of 100, 1000 and 10000 (curves A, B and C
respectively). Model 1 was used for the individual gain stages, where additional
electrons are selected from a Poisson distribution. Panel b) shows an enlargement
of one portion of the plot in panel a). The curves in panel a) were well fitted
with exponential functions for the case of large numbers of output electrons, and
these fits have been extrapolated as dashed lines in panel b).

Based upon the exponential fits in Figure 4.3, we can say that the probability distributions
for the number of output electrons produced when one input electron enters an electron
multiplying CCD with a large number of gain stages can be approximated by the function:

P (n)

 =

(
exp

(
1

g − 1
2

)
− 1

)
exp

(
−n
g − 1

2

)
if n ≥ 1

= 0 otherwise

(4.25)

where n is an integer describing the number of output electrons and g is the overall gain
of the multiplication register.

If we approximate Equation 4.25 as a continuous function and convolve it with itself we
get an approximation for the probability distribution given two input electrons:

P (n)


=

(
exp

(
1

g − 1
2

)
− 1

)2

(n− 1) exp

(
−n
g − 1

2

)
if n ≥ 2

= 0 otherwise

(4.26)
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Figure 4.4: The probability distribution for the number of output electrons from
a multiplication register of 591 stages with different numbers of input electrons.
The discrete points on the graph show selected values from the numerical fit
described by Equation 4.27, as discussed in the text.

With further convolutions, and taking approximations for the case of large gain g and
a large number m of input electrons, I obtained the following model for the probability
distribution for the output electrons:

P (n,m)

 =
(n−m+ 1)m−1

(m− 1)!
(
g − 1 + 1

m

)m exp

(
−n−m+ 1
g − 1 + 1

m

)
if n ≥ m

= 0 otherwise

(4.27)

where n is the number of output electrons. Individual data points calculated using this
equation are included in Figure 4.4 alongside the appropriate probability curves calculated
numerically for model 1. The approximation described by Equation 4.27 does not differ
substantially from the numerically calculated curves even for one or two input electrons
(although slightly better approximations for one and two input electrons are given by
Equations 4.25 and 4.26 respectively).

Results using model 2

Figure 4.5 shows the probability distribution for the output electrons when the gain stages
are described by model 2 (where electrons entering the gain stage can generate at most one
electron by impact ionisation in that gain stage). The general shape of the curves is very
similar to those produced by model 1 (see Figure 4.3 for comparison). With model 2 the
curves fall away to zero slightly more quickly for small values of n. The approximations
described by Equations 4.25 to 4.27 are also good descriptions for the output probability
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Figure 4.5: The probability distribution for the number of output electrons from
a multiplication register of 591 stages using model 2 for the gain stages with a
single electron input to the register. With this model each electron input to one
gain stage is only allowed to take part in one impact ionisation process within that
stage. Curves A, B and C correspond to simulations with total gains of 100, 1000
and 10000. Panel b) shows an enlargement of one portion of the plot in panel
a). The curves in panel a) were well fitted with exponential functions for the
case of large numbers of output electrons, and these fits have been extrapolated
as dashed lines in panel b).

distributions with this model for the gain stages.

It is perhaps not surprising that the probability distributions for the output electrons
with the two different gain stage models considered here are so similar, given that it is
the discretisation of the signal into individual electrons which dominates the signal-to-
noise performance of the register, and not the internal properties of the individual gain
stages. Even if the gain stages of a real multiplication register differ slightly from either
of the models described above, it seems likely that Equation 4.25 will provide a good
approximation to the distribution of output electrons given one input electron.

Photon counting performance

In order to operate the electron multiplying CCDs as photon counting devices the gain
must be sufficiently high that the output signal produced by one photon can usually be
distinguished from the readout noise of the CCD. If the readout noise has an RMS σread,
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and we choose to treat all signals greater than 5σread as a detected photo-electron, the
fraction f of electrons which are correctly discriminated from the noise will be given by a
summation over Equation 4.25:

f =

(
exp

(
1

g − 1
2

)
− 1

) ∞∑
i=5σ

exp

(
−i
g − 1

2

)
(4.28)

= exp

(
1− 5σ
g − 1

2

)
(4.29)

where 5σ ≥ 1e− and g � 1.

Under suitable operating conditions individual photo-electrons can be detected efficiently
above the noise – for example with a readout noise of σ = 50e− and a gain of g = 5000 the
fraction of photo-electrons detected would be f = 0.95. The effective quantum efficiency
of the device would be equal to the quantum efficiency for photo-electron generation in
the sensor array multiplied by this factor. If the readout noise was Gaussian distributed,
the number of photon events attributable to the readout noise would be 3×10−7 per pixel
read out – lower than the sky background count rate in most astronomical applications.

As with other photon counting systems, the performance of these devices is limited at
high light levels by coincidence losses. The electron multiplying CCDs do not suffer from
many of the problems which plague conventional photon-counting systems, such as a loss
of sensitivity after detection of a photon in the vicinity of the photon event (except within
the pixel and frame concerned). Basden et al. (2003) have shown that at light levels where
photon counting becomes limited by coincidence losses, the signal-to-noise for optical flux
measurements can be improved by applying a thresholding scheme to the output of the
CCD.

4.3 CCD measurements

A camera was specifically designed by Craig Mackay to house electron-multiplying CCDs.
Both CCD65s and CCD87s from the E2V L3Vision family were used in the camera, both
in laboratory tests and at the NOT. The CCDs used were front-illuminated, frame-transfer
devices. The physical characteristics of these detectors is summarised in Table 4.1. The
detector being used was cooled in a liquid nitrogen dewar to −130 C in order to minimise
the dark current. Figure 4.6 shows a CCD65 in the camera dewar. The CCD was read out
by an Astrocam 4100 controller modified to provide a variable high voltage clock signal
for the multiplication register of the CCD.
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Number of light
Detector Pixel dimensions sensitive pixels Image area
CCD65 20× 30 µm 524× 288 10.5× 8.6 mm
CCD87 16× 16 µm 512× 512 8.2× 8.2 mm

Table 4.1: The properties of two E2V CCDs which were investigated, the CCD65
and the CCD87. Both of the detectors used were front illuminated, frame transfer
devices.

Figure 4.6: The CCD65 detector in the camera dewar. The mask covering the
store area of the CCD can be seen on the lower half of the detector. The imaging
area is in the upper part of the CCD.

4.3.1 Example data from observations at the NOT

In order to provide an example of the camera performance achieved during observing runs
at the NOT, I have included a small amount of data from the observing run in June 2003
in this Chapter.

Figure 4.7 shows a small region of one short exposure taken while the camera was attached
to the NOT on 2003 June 29. Long exposure imaging of the field displayed here showed
that it did not contain any bright sources, so the detected flux is known to be much less
than one photo-electron per pixel in this short exposure.

A small number of pixels in the short exposure show signal levels which are significantly
higher than the typical noise in the image. It is likely that a photo-electron (or dark
current electron) was generated in most of these pixels. The pixels with high signal levels
found in several thousand short exposures such as this were found to be correlated with
the locations of faint sources in the field, suggesting that they do indeed correspond to
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Figure 4.7: a) Part of a short exposure image taken at very low light level dis-
played as a negative image. b) The same negative image plotted with a greyscale
having twice the contrast. Pixels with low signal levels have saturated to white
with this greyscale.

photon events.

Figure 4.8 shows a histogram of the Digital Numbers (DNs) output from the camera in
5000 exposures similar to the one shown in Figure 4.7 (and including the exposure shown).
The peak of the histogram can be relatively well fit by a Gaussian distribution, as shown
in Figure 4.8a. The centre of this Gaussian distribution corresponds to the mean signal
when no photons are detected in a pixel. The width of the Gaussian corresponds to the
RMS readout noise. A least-squares fit to the data gave a value of 2799.9 DN for the
centre of the Gaussian. The fitted Gaussian dropped to 1/e of the peak value 5.81 DN
from the centre, implying an RMS readout noise of 5.81 DN . If each DN corresponds to
a electrons leaving the multiplication register, the RMS readout noise R will be:

R = 5.81a electrons (4.30)

Figure 4.8b shows the same measurement data plotted on a logarithmic scale. The fre-
quency distribution is well fit by an exponentially decaying function for high DNs (more
than 5R from the centre of the Gaussian) as would be expected given the presence of photo-
electrons in some of the pixels. The best fit exponential had a decay constant of −0.156
per DN . The gain of the multiplication register can be calculated from Equation 4.25 as:

g =
a

0.156
+

1
2

(4.31)

Applying Equation 4.29 to the parameters given by Equations 4.30 and 4.31 allows us to
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Figure 4.8: a) Histogram of the DNs measured by the CCD camera in 5000
exposures similar to that shown in Figure 4.7. A Gaussian has been least-squares
fitted to the data. b) The same histogram plotted on a logarithmic scale. An
exponentially decaying function has been fit to the data for high DNs.

calculate the efficiency f for counting photo-electrons:

f = exp
(

0.156 (1− 5× 5.81a)
a

)
(4.32)

= exp
(

0.156
a

− 4.52
)

(4.33)

For a� 0.156 this gives an efficiency for photo-electron detection of:

f ' exp (−4.52) (4.34)

= 0.011 (4.35)

which is far too low to be of practical use. a was expected to be approximately 100 based
on the electronic setup of the camera).

The reason for the poor photon counting performance is highlighted if the RMS readout
noise is expressed in terms of the mean input signal provided by one photo-electron (i.e.
if the RMS readout noise is expressed in units of photo-electrons). This is achieved if
Equation 4.30 is divided by Equation 4.31:

R =
5.81a

a/0.156 + 1/2
photo-electrons (4.36)

As a� 0.156 we can approximate this as:

R = 5.81× 0.156 photo-electrons (4.37)

= 0.906 photo-electrons (4.38)

Although the RMS readout noise is less than the mean signal from a photo-electron, it is
too large to accurately distinguish most photon events from the readout noise.
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Figure 4.9: a) The same short exposure image as Figure 4.7 but with row to row
variations suppressed as described in the text. b) The same negative image as
shown in a) but plotted with a greyscale having twice the contrast. Pixels with
low signal levels have saturated to white with this greyscale.

It should be noted that a readout noise of 0.9 photo-electrons at 3.5 MHz pixel rates
represents a very substantial improvement over the read noise of 50—60 electrons for the
camera used in the observations described in Chapter 3. State-of-the-art conventional
CCDs can typically only achieve 10—100 electrons read noise at these pixel rates (Jerram
et al. 2001).

A large part of the RMS noise in the example short exposure shown in Figure 4.7 is in the
form of variations from one horizontal row of the image to the next. If these fluctuations
are subtracted then the RMS noise is reduced. In order to do this it was necessary to get
a measure of the typical DNs in each individual row of the image which was not strongly
biased by the few pixels containing photo-electrons. A histogram was made of the DNs
in each row of the image. The lowest 75% of DNs from the row were then averaged to
provide a value slightly lower than the mean for DNs in the row, but not significantly
biased by the small number of pixels containing photo-electrons. This mean value was then
subtracted from all the pixels in the row. The image which resulted after this procedure
was applied to each row in Figure 4.7 is shown in Figures 4.9a and 4.9b.

This process was applied to the full dataset of 5000 frames. The RMS readout noise
calculated from the histogram of the DNs was reduced to R = 4.95a electrons, where a
is the number of electrons per DN as before. If the threshold for detection of a photo-
electron is set at 5 times this RMS noise level, the efficiency of counting photo-electrons
comes to just over 2%. Although this represents a substantial improvement over the case
where row to row fluctuations are not subtracted, it will still give poorer signal-to-noise for
imaging than would be obtained by treating the measured DNs like an analogue signal.

These results appear to be typical of the data I have analysed from the L3Vision camera
at the NOT. It is clear that the photon counting approach would not have been successful
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with this observational data, so I will treat theDNs output from the camera in an analogue
fashion like the output from a conventional CCD camera in the remainder of this thesis.
On later nights of the observing run in 2003 a higher camera gain setting was used, but
there has been insufficient time to analyse that data for inclusion in this thesis.

4.3.2 Charge transfer efficiency problems with the camera

Many of the observations undertaken using L3Vision detectors at the NOT were affected
by charge transfer efficiency problems in the detector (Tubbs et al. 2002). This problem
occurs if photo-electrons in the image and store areas of the CCD do not always move to
an adjacent pixel when they are supposed to (i.e. if there is a small probability that any
given electron will be left behind in a transfer). Electrons which are left behind in one or
more of the transfers on the CCD are registered as if they had come from a different pixel
in the imaging array, causing images taken with the CCD to be shifted in position and
image scale, and to appear blurred.

The problems with charge transfer efficiency were found to vary strongly with the voltage
settings in the camera and other environmental effects. I will briefly discuss the effect of
poor charge transfer efficiency on laboratory measurements before analysing any of the
data taken at the telescope. The charge transfer efficiency was found to be substantially
better in recent experiments using the CCD87 than had been found with the CCD65, but
there has not been time to include a quantitive assessment of these results here.

Measurements of charge transfer efficiency at low signal levels

Measurements made with the camera at the NOT indicated that the charge transfer effi-
ciency problems were limited to extremely low signal levels (less than one detected photon
per pixel per frame). This strong non-linearity in the camera performance with the light
level would make deconvolution of the affected images very difficult. A set of laboratory
measurements was undertaken by Craig Mackay to investigate the charge transfer efficiency
of the camera in detail at these low light levels in order to assist in the interpretation of
our astronomical images.

Short exposure images were taken of a camera “test card” transparency using standard
slide-copying optics, with a CCD65 detector in the camera. The voltage settings on the
camera were such that the charge transfer efficiency deviated significantly from unity at
low signal levels. At high signal levels the images of the test card showed a high degree of
fine structure, ideal for charge transfer efficiency measurements.

Datasets of 1000 images each were taken operating the CCD65 at high multiplication
register gain with exposure times of 60ms and 1 s. In the test card images these light levels
corresponded to 0.05—0.5 photons per pixel per frame and 0.9—9.0 photons per pixel per
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frame respectively. Ten exposures of 60 s were also taken with no multiplication register
gain to provide an accurate representation of the test card at high signal level. There was
no evidence for charge transfer efficiency problems in these long exposure images.

The raw images did not show any visual evidence for poor charge transfer efficiency, but the
signal level was too low in the individual 60 ms exposures to make an accurate assessment.
Software was written by the author to combine the short exposures and deconvolve the
resulting images in order to make a quantitive assessment of the charge transfer efficiency.

The 60 ms exposures were co-added to increase the signal-to-noise, as were the 1 s and 60 s
exposures. The summed images from the 60 ms and 1 s exposures were then deconvolved
using the summed image from the long exposures in order to give a “PSF” which described
the charge transfer efficiency problems at low light levels. The fraction of the signal
residing a given number of pixels from the origin of this PSF corresponds to the fraction
of electrons which have been displaced by this distance due to charge transfer efficiency
problems. In order to control the noise in the deconvolution process, a 2-D version of the
Nahman-Guillaume one parameter filter was used (Nahman & Guillaume 1981). The filter
parameter was adjusted until there was good dynamic range between the central peak of
the PSF and the noise floor in the wings. In order to confirm that the filter was not
adversely affecting the shape of the PSF, different long exposure images were deconvolved
in the same way, providing a strongly peaked response at the origin which dropped to the
noise floor within two pixels of the origin.

Figure 4.10 shows the result of deconvolving a section of the summed image from the 1 s
exposures. The PSF shows a strong peak at the origin corresponding to those electrons
which were transferred with good charge transfer efficiency. Weak tails extend both to
the right and upwards, indicating that some of the photo-electrons are experiencing much
poorer charge transfer efficiency for either horizontal or vertical transfers. With the shorter
exposures (having fewer photons per pixel), the strong peak at the origin disappears, and
the tails to the right and in the upwards direction are broadened and strongly enhanced
to form a single peak offset from the origin, as shown by Figure 4.11.

A PSF was calculated in this way for different regions of the test card image using the
60 ms exposures. The horizontal offset and vertical offset of the peak in the PSF was
found to depend linearly on the horizontal position and vertical position respectively in
the image. This is consistent with charge transfer efficiency problems in the image and
store areas of the CCD, as electrons which are generated further from the readout register
must undergo a larger number of transfers.

Figure 4.12 shows a plot of the horizontal offset in the PSF peak against the horizontal
(“x”) position of the region used for the calculations. The data points are fit by a line
which crosses the x-axis at an x value of −201. This implies that a significant fraction of
the charge transfer efficiency loss is occurring after the signal has left the image and store
areas of the CCD, and is presumably occurring in the multiplication register. The bulk
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Figure 4.10: A PSF describing the charge transfer efficiency for 1 s exposures at
low light level – see main text for details. A section near centre of test card image
was used for this measurement.

Figure 4.11: A PSF describing the charge transfer efficiency for 60 ms exposures
at low light level. The same section of the test card was used as for Figure 4.10.

of the charge transfer efficiency losses do seem to occur in horizontal (serial) transfers in
the store area of the CCD, however. The gradient of the line in Figure 4.12 indicates that
electrons are being “left behind” in 1.4% of the serial transfers in the store area of the
CCD for these measurements.

A cross section through the PSF calculated for a region centred on x = 128 pixels is shown
in Figure 4.13. The curve is similar in shape to the binomial distribution which would
be expected if it was the result of 329 transfers attempts, each having a 1.4% chance of
failing to transfer the electron.

The charge transfer efficiency was found to be strongly dependent on the (variable) op-
erating voltages and environmental conditions of the camera. It was possible to get very
good charge transfer efficiency in the laboratory with the CCD87 by selecting appropriate
operating conditions. The operating voltages used during observations at the NOT are not
precisely known, and for this reason it will not be possible to predict the charge transfer
efficiency which was present for observations at the NOT.

The experimental measurements and calculations of charge transfer efficiency at low signal



Figure 4.12: Charge transfer efficiency for 60 ms exposures at low light level. The
offset in the position of the image plotted on the vertical axis indicates the number
of failed charge transfers. The position of the test card region used is proportional
to the total number of serial transfers in the store area of the CCD required to
transfer the photo-electrons to the multiplication register. The horizontal offset
of the line would correspond to 201 additional pixel transfers.

Figure 4.13: Charge transfer efficiency for 60 ms exposures at low light level. A
square region of the test card image was selected for this analysis. The region was
centred 128 pixels from the edge of the CCD in the horizontal (serial transfer)
direction. The data shown in Figure 4.12 indicate that the offset in position for
this region of the test card image was consistent with a 1.4% CTE loss in 329
transfers. The binomial distribution obtained for 329 transfers with probability
of 1.4% for missing a transfer is shown.
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level are currently relatively time consuming, and require an image with suitably fine
structure to be projected on to the CCD in a stable experimental setup. It would be
extremely beneficial if an automated approach to this analysis could be developed which
could be performed when the camera was at an astronomical telescope, so that the charge
transfer efficiency could be maximised before astronomical observations began.

4.4 Conclusions

The electron multiplying CCDs developed by E2V Technologies represent a major advance
in high frame-rate, low light-level imaging (also presumably those developed by Texas
Instruments, although at present there is less practical experience with these devices in
the Institute of Astronomy). Numerical simulations indicate that these devices could
be operated as a two-dimensional array of photon counting detectors with high quantum
efficiencies. At high light levels where coincidence losses become significant, the output can
be treated in an analogue fashion just like a conventional CCD. This flexibility gives the
devices enormous dynamic range, ideal for the Lucky Exposures method. Bright reference
stars could be recorded without the limitation of coincidence losses, while in another part
of the field individual photons from a faint object could be counted individually with high
Quantum efficiency.

Observational data taken using electron-multiplying CCDs in a custom-built camera was
found to be generally consistent with a simple theoretical model for the electron-multiplying
CCD architecture. There was evidence for poor charge transfer efficiency at low signal
level under some operating conditions and this may impact some of the astronomical ob-
servations. The statistical properties of some sample data taken from an observing run
suggest that the best approach to analysing the data presented in the following chapter is
to treat the output of the CCD like an analogue signal.
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Chapter 5

Observations with a low noise

CCD at the NOT

5.1 Introduction

The observations described in Chapter 3 were of relatively bright stars using a conventional
high frame-rate CCD camera. The readout noise present at these high frame rates would
have led to poor signal-to-noise ratios for observations of faint sources using this camera.

In Chapter 4, I introduced the characteristics of the new L3Vision CCDs developed by E2V
Technologies. The high signal-to-noise performance of these devices at high frame rates
and low signal levels should make them ideally suited to the Lucky Exposures method.
In this chapter I introduce some preliminary results from observations using L3Vision
CCDs at the NOT. Many of these results were also published in Tubbs et al. (2002).
These observations indicate that the method has enormous potential for a wide variety
of future astronomical programs using low noise cameras. I develop an approach for
obtaining high quality Lucky Exposures images from data with low signal-to-noise. The
techniques introduced here will be of use in future astronomical programs utilising the
Lucky Exposures method.

Observations were carried out using an L3Vision CCD in July 2001, July 2002 and June-
July 2003 at the NOT. The limiting magnitude of reference star and isoplanatic angle
are investigated in this chapter, and from these the sky coverage of the technique is
calculated. A number of high resolution images of globular cluster cores and close binaries
are presented, providing a taster of potential future astronomical results. This chapter
includes a brief discussion of the astrometric and photometric precision which can be
obtained from Lucky Exposures images.
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5.2 Aims

The principle aim of these additional observing runs was to establish the applicability
of the Lucky Exposures method to general astronomical programs when using low-noise
imaging detectors.

As discussed in Chapter 1.3, the range of faint astronomical targets to which the tech-
nique can be applied depends on the likelihood of finding a suitably bright reference star
sufficiently close to the astronomical target, and on the limiting magnitude for the target
which can be reached in a reasonable amount of observing time.

The likelihood of finding a suitable reference star depends on three principle factors:

1. the isoplanatic angle (the maximum separation angle on the sky between the refer-
ence star and a source of interest for which high image quality can be obtained);

2. the limiting magnitude of reference star which can give useful measurements of the
Strehl ratio and position of the brightest speckle; and

3. the density of stars on the sky which are sufficiently bright to act as reference stars.

The observational data presented in this chapter address points 1 and 2 directly; galactic
star counts from the literature are used to address point 3.

A further issue which can be explored is the astrometric potential of the method. The
image quality which can be obtained in the vicinity of a reference star using the Lucky
Exposures method was discussed in detail in Chapter 3.5.1. The compact stellar cores in
images produced by the Lucky Exposures method should allow accurate stellar positions
to be determined. The performance will be very competitive, particularly in crowded fields
where other speckle imaging techniques give relatively poor performance. The high Strehl
ratios for the selected exposures give high dynamic range as starlight from bright objects
contributes less flux to surrounding parts of the field of view, allowing accurate astrometry
on nearby faint objects. In this chapter I will undertake a simple experiment intended to
assess the suitability of Lucky Exposures imaging for astrometry.

In order to obtain images with the highest possible Strehl ratios and signal-to-noise ratios, I
will investigate Fourier filters which are designed to suppress the noise in the short exposure
images. The performance of these filters will then be assessed using observational data.

5.3 Observations

John Baldwin, Graham Cox, Craig Mackay and the author undertook three observing runs
together using L3Vision CCDs at the NOT (in the summers of 2001, 2002 and 2003). A
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No. of f/ratio Pixel scale No. useful
Start date CCD pixels used mas nights
2001/07/05 CCD65 624× 288 60 27× 40 1.5
2002/07/25 CCD65 624× 288 64 25× 37 1.0
2003/06/27 CCD87 512× 512 32 40× 40 7.0

Table 5.1: Log of observing runs at the NOT involving L3Vision CCDs. For many
of the individual observations only a small region of the CCD was read out.

CCD65 detector (with 624× 528 pixels, each 20× 30 µm) was used for the first two runs,
and a CCD87 (with 512× 512 pixels, each 16× 16 µm) was used for the 2003 run. Both
devices were front-illuminated frame-transfer CCDs. A brief log of these three observing
runs is shown in Table 5.1. For each run a single lens achromat was used to convert the f/11
beam at the Cassegrain focus to a suitable image scale for the CCD detector. A diverging
lens achromat was used before the focus for the first two runs, while a converging lens
was used after the focus for the third run, providing a re-imaged aperture plane within
the instrument. Circular aperture stops could be placed in this re-imaged aperture plane
if required.

For each of the runs the camera was shipped from Cambridge along with a supporting
frame for fitting at the Cassegrain focus of the NOT. The optics and mechanics of the
instrument were designed by John Baldwin, Craig Mackay and Donald Wilson. The frame
used for the run in 2003 can be seen during assembly in Figure 5.1. The metal plate being
attached on the left-hand side of the instrument is the mechanical interface to the telescope,
while the camera dewar can be seen on the right-hand side of the frame.

In order to measure the isoplanatic angle it was necessary to undertake simultaneous
imaging observations of widely separated stars. The limited dimensions of the L3Vision
CCDs did not give a sufficiently wide field of view for this, given the requirements on
pixel sampling with the Lucky Exposures technique, so a special optical arrangement was
designed by John Baldwin to superimpose two fields of view on the detector. This allowed
stars separated by up to 30 as to be observed simultaneously. A sketch of the optical
layout used for observations in July 2001 and July 2002 is shown in Figure 5.2. The
light path to the detector was folded into a “Z” shape. The second fold mirror actually
consisted of two flat mirrors butted together at a slight angle, allowing two patches of sky
(typically ∼ 20 as apart) to be superimposed on the detector. In the figure, rays from
two points on the sky which are superimposed on the detector are shown in red and blue.
The second light path to the detector was blocked for observations of crowded fields to
prevent confusion and to reduce the sky background contribution.

For the observing run in June/July 2003, a converging lens achromat was used after the
Cassegrain focus as shown in Figure 5.3, providing a re-imaged aperture plane. The light
path after this lens was folded in a similar way to the observations in 2001 and 2002, and
also allowed two fields on the sky to be superimposed.



Figure 5.1: Assembling the “Luckycam” instrument at the NOT in 2003. During
observations, starlight enters through the central hole in the circular plate being
attached to the left-hand side.

Figure 5.2: Schematic diagram indicating the general layout of the optics for
the observing runs in July 2001 and July 2002. A diverging lens achromat was
positioned before the Cassegrain image plane of the NOT increasing the f/ ratio
of the beam. The light path was then folded into a “Z” shape. The first fold
mirror was flat, while the second fold mirror consisted of two flat mirrors butted
together at a slight angle so as to superimpose the images of two nearby patches
of sky on the detector. In the figure, rays from two different points on the sky
are indicated in red and blue. Bandpass filters were positioned just in front of the
CCD. The diagram is not to scale.
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Figure 5.3: Schematic diagram indicating the general layout of the optics for the
observing run in June/July 2003. After passing through the Cassegrain image
plane of the NOT, the light was re-focussed by a converging lens achromat. A
variable aperture stop followed in the re-imaged telescope aperture plane labelled
in the figure. As in Figure 5.2 the light path was then folded into a “Z” shape.
The first fold mirror was flat, while the second fold mirror consisted of two flat
mirrors butted together at a slight angle so as to superimpose the images of two
nearby patches of sky on the detector. In the figure, rays from two different points
on the sky are indicated in red and blue. Bandpass filters were positioned just in
front of the CCD. The diagram is not to scale.

The instrument design in 2003 allowed the telescope aperture to be stopped down in the
re-imaged aperture plane using a remotely controlled mechanical system. Filter changes
were performed manually during the night using a rotating filter wheel. Figure 5.4 shows
the fully assembled “Luckycam” instrument mounted at the Cassegrain focus of the NOT.

The camera used was one designed by Craig Mackay to run L3Vision detectors. The CCD
was held in a liquid nitrogen dewar which was cooled to between 120 K and 140 K to
minimise the dark current. An Astrocam 4100 controller was used to read out the CCD,
with additional electronics providing the high voltage clock signal for the multiplication
register. The CCDs were read out at frame rates between 10 Hz and 150 Hz, using
sub-array readout where necessary to reduce the readout time.

5.3.1 Filters and bandpasses

In this chapter I will analyse observational data taken through two different filters, the
I-band filter from the HiRac instrument at the NOT, and a 780 nm long pass filter (called
HiRac I and 780 nm edge respectively). The bandpass of the HiRac I filter is approxi-
mately top-hat shaped with a centre wavelength of 810 nm and a width of 125 nm. The
long wavelength limit was set by the sensitivity curve of the front-illuminated CCD for
observations using the 780 edge filter. Figure 5.5 shows simple models for the responses of
the filters (based on the data available from the manufacturers). Also shown are estimates
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Figure 5.4: The camera and optics assembly attached to the Cassegrain focus of
the NOT – Photograph by Craig Mackay

of the combined photon-detection efficiency of the telescope, filter and instrument based
on estimates of the quantum efficiency of the front-illuminated CCD, the reflection coeffi-
cients for the dewar window and lens, and the reflectivity of the telescope and instrument
mirrors.

5.3.2 Observations in July 2001

Observations were undertaken at the NOT on the nights of 2001 July 25—26 using a
CCD65 detector. On the first night of observing the camera showed very poor charge
transfer efficiency. On the second night the CCD was heated electrically inside the liquid
nitrogen dewar and the charge transfer efficiency appeared to improve. The results pre-
sented in this thesis are restricted to data taken on the second night of observing. Table 5.2
lists the targets observed on the second night. Some runs where the target saturated the
detector or drifted out of the field have been excluded. All the runs on this night were
taken through the HiRac I-band filter with the bandpass shown in Figure 5.5. Some of the
short exposure images were affected by one or more white spots which may have resulted
from trace amounts of radioactive material in the instrument hardware.

For all the observations except those of 61 Cygnii, the multiplication register was clocked
with a high voltage providing a substantial gain in the signal level.

In order to investigate the size of the isoplanatic patch which prevails at the times of the



Figure 5.5: Bandpasses for two filters used at the NOT. All the observational
results presented in this chapter were taken through one of these two filters. Curve
A shows the approximate response for the HiRac I filter, and curve C shows the
estimated bandpass for the 780 nm edge filter. These curves are based on data
provided by the manufacturers. Also shown are the combined responses of these
filters with the estimated quantum efficiency of the front-illuminated CCD, the
estimated mirror reflectivities and estimates for reflection coefficients of the dewar
window and lens. These are labelled B and D for the HiRac I and 780 nm edge
filters respectively.

Target Object type Number of
exposures

Image size (pix-
els)

CCDM J17339+1747 Binary star 14000 256 × 256 and
160× 160

HD161796 Planetary nebula progenitor 18000 160× 160
NGC 6543 Planetary nebula progenitor 2000 512× 64
aM13 field 1 Globular cluster 3000 624× 288
aM13 field 2 Globular cluster 6000 624× 288
M56 Globular cluster 3000 624× 288
M15 field 1 Globular cluster 2000 624× 288
M15 field 2 Globular cluster 4000 624× 288
HD 203991 Binary star 12000 128× 128
61 Cygni Binary star 15000 624 × 128 and

624× 64
8 Lacertae Binary star 12000 128× 128

a CCD electrical heating disconnected.

Table 5.2: Observations on 2001 July 6. Some runs where the detector was satu-
rated or the target drifted out of the field have been excluded. For some of the
targets several runs were taken with different image sizes. All the observations
were taken using the HiRac I filter centred at 810 nm. The bandpass of this filter
is plotted in Figure 5.5.
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Target Object type Number of ex-
posures

Image size (pix-
els)

Gliese 569 Multiple brown dwarf 21000 288× 288
NGC7008 Planetary nebula progenitor 8000 288× 288
WR 140 Wolf Rayet binary system 8000 288× 288

Table 5.3: Observations on 2002 July 25 through the HiRac I filter at the NOT.

best exposures, observations of binary stars with a range of separations were undertaken.
As the dimensions of the CCD65 detector corresponded to 14 × 11 as on the sky, two of
these binaries did not fit within the CCD field of view. In order to observe these targets,
an optical arrangement was employed whereby two fields on the sky were superimposed
on the detector (as discussed in Figure 5.1). The centres of the two fields which could be
superimposed were separated by approximately 21 as, allowing the 22 as binary 8 Lacertae
to be observed in a 128 × 128 pixel sub-array of the CCD. A long 624 pixel strip across
the CCD was used for observations of the 30 as binary 61 Cygnii. All the observations
were taken within two hours of each other and at relatively small zenith angles, so as to
minimise the changes in seeing from one observation to the next.

A number of relatively crowded fields in globular clusters were observed in order to deter-
mine the limiting magnitude of reference star for exposure selection and image re-centring.
Different stars in the field of view were picked as the reference, in order to find the faintest
star for which high resolution images could be obtained. The fields chosen had previously
been surveyed by the Hubble Space Telescope, and stellar magnitudes were available for
some of the stars. These fields were also useful for testing the astrometric performance,
as the relative positions of a large number of stars could be compared between different
runs.

5.3.3 Observations in July 2002

On the nights of 2002 July 25—27 little data was obtained largely due to the poor atmo-
spheric conditions on La Palma. High winds and dust forced us to close the dome shortly
after twilight on the first night. Severe dust extinction and a gradual decline in the seeing
hindered observations on the second and third nights. Table 5.3 lists the targets observed
through very severe dust extinction on the first night before we were forced to close the
dome.

There was less dust extinction on the second night, but the seeing gradually deteriorated
from 0.5 as to 1.2 as. The charge transfer efficiency of the camera appeared to be poorer
for some of the runs on this night. The targets observed are listed in Table 5.4. The optical
filters used on the second night provided a range of different bandpasses between 600 nm
and 1 µm. Table 5.5 lists the general properties of the filters used. The bandpasses of two
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Target Object type Filter Number of
exposures

Image size
(pixels)

CVS 97A Gravitational lens HiRac I 20000 624× 288
M13 Globular cluster core HiRac I 10000 624× 288
M15 Globular cluster core HiRac I 12000 624× 288
M15 Globular cluster core* HiRac I 4000 624× 288
M15 Globular cluster core* Coherent R 4000 624× 288
M15 Globular cluster core Coherent R 4000 624× 288
M15 Globular cluster mosaic HiRac I 12000 624× 288
NGC7469 Active Galactic Nucleus HiRac I 4000 624× 288
NGC7469 Active Galactic Nucleus 780 nm edge 10000 624× 288
M32 Galactic Nucleus 780 nm edge 4000 624× 288
ADS 15828 Binary HiRac I 7000 624× 122
ADS 191 Binary HiRac I 4000 624× 122
8 Lacertae Binary HiRac I 4000 624× 288

Table 5.4: Principle observations on 2002 July 26. Runs where the detector was
saturated or the target drifted out of the field have been excluded. The seeing
conditions gradually deteriorated, reaching 1—1.2 as for the last few runs.

Filter name Centroid of observing
band

Filter description

Coherent R 650 nm Top hat filter with 72 nm FWHM
HiRac I 810 nm Top hat filter with 125 nm FWHM
780 edge ∼ 860 nm Long-pass filter (long wavelength cutoff

set by limit of the CCD detector)

Table 5.5: Filters used for the observations in 2001 and 2002.

of the filters used are also shown in Figure 5.5.

On the third night (2002 July 27) the seeing typically ranged from 1.5 as to 2.3 as, and
little useful data was obtained.

5.3.4 Observations in June-July 2003

Better conditions prevailed on the nights of 2003 June 27 to July 4, with the seeing better
than 1 as most of the time and occasionally as good as 0.4 as. Observational results from
data taken of M13 on 2003 June 29 will be presented in this chapter. The 780 nm edge
filter was used for this run of 8000 frames, each of 552× 104 pixels. A substantial amount
of other data from a wide range of targets exists from the observations in June-July 2003,
and for reference these are listed in Appendix B.
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The square pixels of the CCD87 array used in 2003 allowed larger areas of the sky to be
observed without compromising the frame rate or pixel sampling used for the observations.
The observations presented here from 2003 were taken through a 780 nm long-pass filter,
with the long wavelength cut-off for the bandpass determined by the sensitivity curve for
the CCD87 detector (see Figure 5.5).

5.4 Data reduction

Data from the L3Vision CCDs were analysed using a similar approach to that described
in Chapter 3. However, a stronger emphasis was put on minimising sources of noise in
order to extend the Lucky Exposures method to the faintest possible targets.

The observations in 2001 and 2002 were taken using a CCD65 detector with 20× 30 µm
pixels. In order to obtain output images with square pixels and the correct aspect ratio,
the sinc-resampling process applied to the short exposures was modified (panels c) and
f) of Figure 3.13). In the modified scheme the images were resampled to have 4 times as
many pixels in the horizontal direction and 6 times as many pixels in the vertical direction.
The observations in 2003 were performed using a CCD87 detector with square pixels, so
the images were resampled to have 4 times as many pixels in both directions.

For many of the observations (particularly those near the centres of globular star clusters)
it was necessary to select one star from a crowded field to act as a reference. In order
to select light from the reference in each case, a rectangular region around the star was
selected in the long-exposure average image (the image formed by summing all of the
individual exposures without re-centring). This region was always chosen to include most
of the flux from the reference star, but to exclude light from other nearby stars. The same
region of each of the individual short exposures was then used in the calculation of the
Strehl ratios and positions of the brightest speckles (as indicated in panels b)—d) of the
flow chart in Figure 3.13).

Nieto & Thouvenot (1991) discuss the artificial sharpening (or “over-resolution”) of the
reference star image brought about by exposure selection and image re-centring at low
signal-to-noise ratios. This results from coherent addition of noise in the re-centred expo-
sures. An extreme example of this would be provided by a truly photon-counting detector
used to image a field where there is never more than one photon per short exposure in the
whole field of view. The exposures with a single photon in would be re-centred based upon
the location of the photon, providing a δ-function at the re-centring position regardless of
the real sky brightness distribution.

For the data presented here, where many photons are received from the reference star
in each exposure and the signal-to-noise ratio is determined by readout noise, the image
quality obtained for other stars in the field in the final Lucky Exposures image can provide
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Application Description Filter used

1 The measurement of the Strehl ratio and
position of the brightest speckle in each of
the short exposures

Diffraction-limited
modulation trans-
fer function

2 For the production of a high signal-to-
noise image from the re-centred selected
exposures

Modified Hanning
window

Table 5.6: The two applications of Fourier filtering in the revised data-reduction
scheme.

a reliable measure of the imaging PSF, as long as the readout noise is not distributed in
a pattern which is coherent across the imaging area of the detector.

5.4.1 Fourier filtering

For all three observing runs at the NOT the pixel sampling used was sufficient to record
Fourier spatial frequencies higher than the telescope diffraction limit of d

λ in certain ori-
entations with respect to the pixel array. As the photon shot noise and multiplication
register noise are stochastic they contribute equally at all spatial frequencies. The spatial
frequencies beyond the diffraction limit of the telescope will contain no signal from the
astronomical source but as much photon shot noise and multiplication register noise as
are found in lower spatial frequencies. By suppressing spatial frequencies beyond d

λ in
the data it is thus possible to obtain an improvement in the overall signal-to-noise ratio
of the images. This will lead directly to an improvement in the limiting magnitude of
reference star which can be used, and in the limiting magnitude of faint source which can
be detected in the field.

The readout noise from the analogue camera electronics is distributed at a range of spatial
frequencies within the images. A significant fraction of this noise appears at spatial fre-
quencies beyond the telescope diffraction limit, and this component of the readout noise
is also reduced if high spatial frequencies are suppressed.

There are two clear applications for Fourier filtering in my approach to the data reduction,
as listed in Table 5.6.

In the first application we want to find bright speckles in the noisy short exposure images.
A very effective approach is to search for the peak cross-correlation between the short
exposure image and a diffraction-limited telescope PSF. This cross-correlation process is
equivalent to multiplying the images by the modulation transfer function of the diffraction-
limited telescope in the Fourier domain (effectively convolving the image with a diffraction-
limited telescope PSF). In order to minimise the additional computation required, this was
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Figure 5.6: The modulation transfer function for a diffraction-limited telescope
(this modulation transfer function corresponds to the amplitude of the Fourier
transform of the diffraction-limited PSF shown in Figures 3.8b—d). On the left
is a greyscale plot of the modulation transfer function for the simple model of
the NOT aperture shown in Figure 3.4, with white corresponding to unity and
black corresponding to zero in the function. The red circle has a radius of d

λ
corresponding to the diffraction-limit of the telescope aperture at a wavelength of
λ = 0.86 µm. The green box corresponds to the Nyquist limit of the CCD pixel
array for 40× 40 mas pixels – no Fourier components were recorded beyond this
limit. The origin of the spatial frequency domain is at the centre. A horizontal
cross-section along the blue line is shown on the right.

implemented during the sinc-resampling process, which is also performed in the Fourier
domain. The model for the modulation transfer function which I used was calculated from
the autocorrelation of the simple model of the NOT aperture described by Figure 3.4, and
I have included a graphical description of the transfer function in Figure 5.6. I used the
same geometrical approach for calculating this function as was used for the autocorrelation
of two circles in Appendix A (see Equation A.15).

After the filtering and resampling have been completed, the peak in the resampled image
corresponds to the most likely location of the brightest speckle. The height of the peak
provides a measure of the flux in the brightest speckle, and hence the Strehl ratio. The
measured Strehl ratio and position would then be used to select and re-centre the sinc-
resampled (but unfiltered) exposures. In the high signal-to-noise regime the peak flux in
the filtered short exposures was related to the peak flux in the original exposure by a
non-linear, monotonically increasing function. The non-linearity of this function does not
introduce complications, however, as the measurements made on the filtered images are
simply used to sort the exposures according to their quality, and then to re-centre the
selected exposures. Strehl ratios quoted in the text are based on measurements of the
brightest pixel in the final Lucky Exposures image.

In the second application of filtering described in Table 5.6, only spatial Fourier compo-
nents beyond d

λ can be suppressed without blurring the astronomical image. However, the
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dynamic range of sinc-resampled images is limited by Gibb’s phenomena, which can be
suppressed only if the spatial Fourier components of the image are smoothly reduced to
zero below the Nyquist cutoff spatial frequency of the CCD pixel array. A two dimensional
Fourier filter was developed based on the Hanning window which attempted to suppress
both the noise and Gibb’s phenomena whilst minimising the blurring of the image. The
filter function was flat-topped but dropped smoothly to zero before reaching the Nyquist
frequency in all orientations, and also dropped smoothly to zero at spatial frequencies be-
yond d

λ in orientations where d
λ was lower than the Nyquist frequency (λ was taken as the

centroid of the observing band). A greyscale representation of the filter and cross-section
are shown in Figure 5.7. The value of this filter function FN can be defined in polar
coordinates as follows:

FN (r, θ) =


1 if r ≤ rc (θ)

cos2
(

π(r−rc(θ))
2w

)
if rc (θ) < r < rc (θ) + w

0 if r ≥ rc (θ) + w

(5.1)

where rc (θ) was the spatial frequency beyond which Fourier components should be sup-
pressed, w was the width of region over which the filter function dropped smoothly to zero
and θ and r describe a polar coordinate system with the origin at zero spatial frequency.
The cut-off spatial frequency rc (θ) is defined in terms of θ because the filter must drop to
zero sooner in some orientations due to the Nyquist sampling of the detector (following the
rules described earlier and as shown in Figure 5.7). A width w corresponding to one-fifth
of the Nyquist sampling frequency was used for the analyses presented here. For observing
runs using CCDs with pixels which were not square, the Nyquist sampling frequency of
the CCD was different in the horizontal and vertical directions, and the filter function
used was modified appropriately obeying the same rules.

The two applications of spatial filtering mentioned above were incorporated into my ap-
proach to the data reduction relatively straightforwardly. In both applications the filtering
was implemented in the Fourier domain at the same time as the sinc-resampling of the
relevant images. A modified version of the data reduction flow chart of Figure 3.13 incor-
porating the filtering is shown in Figure 5.8.

5.4.2 Performance of the Fourier filtering

In order to assess the performance of the noise filtering for faint reference stars, it will be
necessary to introduce some observational data from the NOT obtained using an L3Vision
detector. I will use a single run of 3000 frames of a field near the centre of the globular
cluster M13 taken on the night of 2003 July 2. The long exposure average image of the
field (obtained by summing all the frames without re-centring) can be seen in Figure 5.9.
These observations were taken with a bandpass centred at 860 nm with a frame rate of
50 Hz.
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Figure 5.7: Filter function used to suppress noise. The function is based on a
Hanning window but has a flat top. A linear greyscale plot is shown on the left
with white corresponding to unity and black corresponding to zero. The function
dropped smoothly to zero before reaching the Nyquist frequency for the CCD
pixel array in all orientations. The Nyquist frequency is indicated by the green
box. The function also dropped smoothly to zero at spatial frequencies beyond
the diffraction limit of d

λ in orientations where this was lower than the Nyquist
frequency. Spatial frequencies of d

λ are indicated in the plot by the red circle. A
horizontal cross-section along the blue line is shown on the right.

The faint star circled in the average image was used as a reference for selecting and re-
centring the short exposures. Stars H and W with magnitudes of I = 11.6 and I = 12.5
from Cohen et al. (1997) have been labelled in the image. In order to assess the im-
provement in the performance of the Strehl selection and re-centring obtained by Fourier
filtering the short exposures using the diffraction-limited transfer function shown in Fig-
ure 5.6, analysis of this dataset was repeated a number of times both with and without
the filtering process. Figure 5.10a shows the image obtained when the Strehl ratio and
position of the brightest speckle is calculated from the brightest pixel in the image of this
star in the sinc-resampled short exposures (with no filtering applied). The exposures with
the highest 1% of Strehl ratios were selected and re-centred to produce the image shown
in the figure. The sharpness of the point source found at the location of the reference star
is artificial – it results from the coherent addition of noise in the original short exposures
brought about by the selection and re-centring process as discussed in Chapter 5.4. The
images of the other stars in the field are clearly more compact than in the average image
of Figure 5.9, indicating that the re-centring process is performing well.

Figure 5.10b shows the image obtained when the short exposure images are filtered using
the function described in Figure 5.6 before the Strehl ratio and location of the brightest
speckle are calculated. The original raw exposures were selected and re-centred based on
this data in the same way as for Figure 5.10a. The general characteristics of the image are
similar to Figure 5.10a, and the reference star is again artificially sharp. The other stars
in the field are slightly more compact in Figure 5.10b with a smaller halo surrounding



Figure 5.8: Flow chart describing the data reduction method.
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Figure 5.9: Long exposure image of M13 generated by summing the exposures in
one run. Stars H and W from Cohen et al. (1997) are labelled. The reference
star used in tests of Fourier filtering is circled. North is to right.

them. It is clear that the filtering process has improved the image quality.

Figures 5.10c and 5.10d show the results without filtering and with filtering respectively,
using all of the short exposures in the run. The smoothness of the halos around the stars
makes the improvement in image quality provided by the filtering less apparent for the
comparison of these two images than for the case of the selected exposures. The FWHM
of stars towards the left-hand side of the field is reduced from 400 × 280 mas without
filtering to 300× 260 mas with the filtering, however.

In order to test the performance of the second application of Fourier filtering (the ap-
plication of the noise filter shown in Figure 5.7 to the selected exposures) I repeated the
analysis of Figure 5.10b without filtering the selected exposures when they were re-centred
and co-added. The effect of the noise filtering on the final image quality is shown Fig-
ure 5.11. This shows an enlargement of part of Figure 5.10b around the left-hand bright
star in panel a) using the noise filter, and the result of the same analysis performed with-
out using the noise filter on the selected exposures in b). There is no evidence for blurring
of the filtered image, and the highest spatial frequency components in the noise have been
suppressed in comparison with Figure 5.11b.

The results of the two approaches to Fourier filtering appeared successful, so these filtering
procedures were used in the data reduction presented in the remainder of this chapter
(except where specifically stated otherwise in the text).

5.5 Results

5.5.1 Results of exposure selection

Observations undertaken using a CCD65 detector on the night of 2001 July 6 are listed
in Table 5.2. All the data were taken through the HiRac I-band filter based at the NOT.
The observational data was reduced using the approach described by the flow diagram of



Figure 5.10: Four images of M13 generated using the same 3000 frames. The
reference star used for image selection and re-centring is circled in Figure 5.9. For
panel a) the short exposures were not filtered to suppress the noise before the
Strehl ratio and position of the brightest speckle were calculated in the reference
star image. The best 1% of exposures were selected to produce the image. Panel
b) shows the result when the filter described in Figure 5.6 is used to suppress the
noise before calculating the Strehl ratio and position of the brightest speckle for
the reference star. The best 1% of exposures were selected. Panel c) shows the
result of re-centring and co-adding all the exposures without the filtering. Panel
d) shows the result when the filtering is used. The typical FWHM for stars on
the left-hand side of these images are: a) 300 × 200 mas; b) 280 × 180 mas; c)
400× 280 mas; and d) 300× 260 mas.
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Figure 5.11: Panel a) shows the region of Figure 5.10b around the left-hand
bright star. In producing this image the final selected exposures were Fourier
filtered in order to suppress noise. Panel b) shows the image obtained without
the noise filtering.

Figure 5.8.

An example image generated by applying the Lucky Exposures method to 110 s of data
taken on M15 (field 1 ) on 2001 July 26 is shown in Figure 5.12. The I = 13 star which
was used as the reference for selection of the best 1% of exposures and for exposure re-
centring has been circled in the figure. The full frame of the CCD was read out in these
observations. With the 3.4 MHz pixel rate of the CCD controller the frame rate for these
observations was limited to 18 Hz, allowing image motion to slightly blur the exposures.
Despite this, other stars in the field have FWHM as small as 160 mas, a substantial
improvement over 500 mas for the seeing limited image shown in Figure 5.13. There was
no evidence for gradual drift in the stellar positions during this run, indicative of telescope
tracking errors which would blur the seeing-limited image.

As only 1% of the observing time was used for the image shown in Figure 5.12, the signal-
to-noise ratio for detection of a star is expected to be lower than for the average image in
Figure 5.13. If we assume that the images are sky-background limited, we can estimate
the fractional decrease in signal-to-noise ratio relatively straightforwardly. We need to
take into account the change in the size and shape of the PSF, but the image FWHM
provides a good estimate for this effect. A good estimate for the fractional change f in
signal-to-noise ratio for detection of a star of flux S will be:

f =
Stle√
Btled

2
le

×
√
Btcd2

c

Stc
(5.2)

where tle is the total observing time in the Lucky Exposures, dle is the diameter of the PSF
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Figure 5.12: Selected exposures from 110 s of data on M15. The I = 13.1
reference star used for calculating the Strehl ratio and for re-centring the short
exposures has been circled.

for Lucky Exposures observations in as, tc is the total observing time for the conventional
(long exposure) image, dc is the diameter of the PSF for the conventional observation in
as, and B is the sky background flux per as2. For the data presented in Figures 5.12 and
5.13, the fractional decrease in signal-to-noise ratio for using the Lucky Exposures method
is:

f = 0.31 (5.3)

In practice an astronomer must weigh this decrease in signal-to-noise against the benefits
of higher image resolution.

5.5.2 Isoplanatic angle

In order to investigate the size of the isoplanatic patch, observations of binary stars with
a range of separations were also undertaken on 2001 July 26. All of the stars used were
bright enough that the “over resolution” effect described in Chapter 5.4 due to the selection
of noise features is expected to be small. The seeing conditions were good for all the
observations (seeing FWHM ∼ 0.5 as), and frame rates greater than 70 Hz were used for
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Figure 5.13: Seeing limited image generated by adding all the exposures from
one run on M15 without re-centring them.

the data presented here.

For each observation, one of the binary components was used as a reference star, and the
image FWHM and Strehl ratio of the other component was measured in the final Lucky
Exposures image. Figure 5.14 shows the fractional reduction in Strehl ratio (i.e. the
companion star Strehl ratio divided by the reference star Strehl ratio) for the binary stars
HD 203991, 8 Lacertae and 61 Cygnii with separations of 0.6, 22 and 30 as respectively.

As in Chapter 3.5.6 I will define the isoplanatic angle θe as that at which the Strehl ratio
falls to 1

e of the value obtained close to the reference star. A model for the anisoplanatism
is required in order to calculate the size of the isoplanatic patch from measurements such
as these. For both the best fit Gaussian model (shown in Figure 5.14) and for a fit of the
form of Equation 2.20 a value of 30 as is obtained.

The 30 as separation for 61 Cygnii was close to the measured θe, and it is of interest
to look at the image quality obtained on this star. The Lucky Exposures image on one
component generated using the other binary component to select and re-centre the best
1% of exposures is displayed alongside the seeing-limited average image in Figure 5.15.
The FWHM of 130 mas obtained for the Lucky Exposures image represents a substantial
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Figure 5.14: The Strehl ratio of each science object divided by the Strehl ratio for
the corresponding reference star is plotted against the angular separation between
science object and reference star.

improvement over the FWHM of 450 mas for the seeing-limited image. The halo around
the core of the Lucky Exposures image is very compact, and it is clear that this PSF
would provide good quality high resolution imaging. Any differential motion between the
images of the two stars must have been extremely small. The FWHM of the companion
star in the Lucky Exposures image increases to 230 mas when the best 10% of exposures
are selected using the reference star. For a shift-and-add image using all of the exposures
the FWHM of the companion star is 300 mas.

An isoplanatic angle of 30 as is impressively large for observations at I-band. Previous
authors have predicted much smaller values of isoplanatic angle, both for speckle imaging
and non-conjugate adaptive optics (typically 2—15 as – see e.g. Vernin & Muñoz-Tuñón
(1994); Roddier et al. (1982a, 1990); Marks et al. (1999)). Observations at other wave-
lengths can be scaled to give a corresponding value for I-band using the dependence of r0
on wavelength given in Equation 2.9.

On several nights in June and July 2003 high frame-rate observations of the globular
clusters M13 and M15 were obtained covering fields which were 20 as across. It is hoped
that these datasets will provide a set of isoplanatic angle measurements which can be used
to determine whether the result obtained in 2001 is unusual or typical of the summer
seeing conditions at the NOT. Initial results from these observations look very promising,
but detailed analyses will not be presented here.

5.5.3 Limiting magnitude of reference star

In order to assess the performance with fainter reference stars, a field in the globular
cluster M13 was observed with stars having a wide range of different magnitudes on 2001
July 26. The observations are listed as M13 field 2 in Table 5.2. A Lucky Exposures
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Figure 5.15: Panel a) shows the image quality obtained 30 as from a reference
star using the best 1% of exposures. One component of the binary 61 Cygnii
was used as the reference star for exposure selection and re-centring. The other
component of the 30 as binary is shown here. The image FWHM of 130 mas
represents a very substantial improvement over the FWHM of 450 mas for the
seeing-limited image shown in b). This image was generated from the same data,
but without selecting or re-centring the exposures based on the reference star.

image of the field using 1% of the 6000 exposures with this telescope pointing is shown
in Figure 5.16a. The I = 12.7 star labelled Z in the image was used as the reference for
image selection and re-centring in this case. The frame rate used for these observations
was 18 Hz, giving a total integration time on the sky of 330 s. Star A from Cohen et al.
(1997) is labelled in the figure. This star was saturated in the best short exposures, and
has hence been omitted from further analyses. The stellar image FWHM of ∼ 100 mas
are very competitive with other imaging techniques. The image shows faint asymmetrical
horizontal tails around the fainter stars, which may be evidence of poor charge transfer
efficiency (vertical tails are also visible in the cross-sections of Figure 5.16b). The electrical
heating was not connected at the time these runs were taken, so it is plausible that the
charge transfer efficiency might have been poorer here than during other runs on the same
night. Despite this effect, the stellar cores throughout the image are extremely compact.

The analysis of this data was repeated using a range of different stars in the field as the
reference for exposure selection and re-centring. The Lucky Exposures method was found
to work very successfully with relatively faint reference stars. First the I = 13.8 star
labelled X in Figure 5.16 was used as a reference for selecting the best 1% of exposures
and re-centring them. A section of the resulting image (the region around the star labelled
Z in Figure 5.16) is shown in Figure 5.17a. Note that neither of the two stars visible in
this figure was used as the reference in this case (star X was used) and yet the stellar
cores are extremely sharp. The Strehl ratio for the stars in this image was measured as
0.13. Figure 5.17b shows a similar image generated using an I = 15.9 reference star. The



Figure 5.16: The best 1% of exposures of M13 were selected and re-centred to
produce the near diffraction-limited image shown in a). Star A from Cohen et al.
(1997) has been labelled. The I = 12.7 star Z was the reference star used for

image selection. Panel b) shows cross-sections through stars X and Y along the
lines indicated in panel a).
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Strehl ratio of 0.065 still represents a substantial improvement over the Strehl ratio of
0.019 for the averaged (long exposure) image shown in Figure 5.17c. The image FWHM
of 180 mas for Figure 5.17b would be extremely valuable for many astrophysical programs,
and represents an enormous improvement over the 570 × 390 mas for the long exposure
image. The asymmetry in the long exposure image might be the result of telescope tracking
errors, as M13 was close to the zenith. The position of the brightest speckle in the image
of a reference star shows jumps in the horizontal direction, as can be seen in Figure 5.18.

Figure 5.19 shows plots of the variation in the Strehl ratio and FWHM of nearby stars when
a range of different stars are used as the reference for image selection and for the shifting
and adding process. 1% of the exposures were selected in the analyses used to generate
these plots, and the Strehl ratios and FWHM were calculated using nearby stars in order
to minimise the effects of anisoplanatism. Figure 5.19a shows the decline in Strehl ratio
with increasingly faint reference star magnitude. The Strehl ratio of the Lucky Exposures
image remains substantially higher than the seeing-limited value of 0.019 even for reference
stars as faint as I = 16. Figure 5.19b shows the image FWHM obtained using the same
reference stars. An image FWHM of 100 mas can be achieved using reference stars as faint
as I = 14, and there is a substantial improvement over the FWHM for the seeing-limited
image of 570× 390 mas even for I = 15.9 reference stars.

The faint limiting magnitude for the Lucky Exposures method stems partly from the high
signal-to-noise ratio for measurements of the brightest speckle in those exposures having
the highest Strehl ratios. This is highlighted in Figure 5.20, which shows surface plots of
two frames taken from a run on the I = 10 star CCDM J17339+1747B on 2001 July 26
(listed in Table 5.2). Figure 5.20a shows an exposure with a high Strehl ratio (0.21). The
location and Strehl ratio of the brightest speckle in this image can be measured with a
high signal-to-noise ratio. Good results would be obtained if exposures such as this were
re-centred based on the location of the brightest speckle. In contrast, Figure 5.20b shows
a typical exposure with poorer Strehl ratio. The brightest speckle has a peak flux which
is barely above the noise level, and the errors in determining the location of the brightest
speckle will be substantially higher in this case. If a large fraction of the exposures are
selected and re-centred, these errors would lead to poorer image quality for other objects
in the field around the reference star. Conversely, if only those exposures with high Strehl
ratios are used, we would expect the re-centring errors to be smaller. Combined with the
higher intrinsic Strehl ratios in the selected exposures, these should lead to much higher
image resolution for objects in the field.

The Lucky Exposures image quality obtained from the run on CCDM J17339+1747AB is
summarised in Figure 5.21. The lower right I = 10 star was the one shown in Figure 5.20,
and this star was used as the reference for exposure selection and re-centring. Figure 5.21a
shows the image obtained by selecting and re-centring the best 1% of exposures based on
the brightest pixel in the filtered exposures in the usual way. Figure 5.21b shows the result
obtained if the brightest pixel in the raw short exposures is used without Fourier filtering



Figure 5.17: a)—c) Image resolution for a field in M13 with different reference
stars.

a) The result of image selection, shifting and adding using an I = 13.8 reference
star 2.5 as away from the centre of the field shown. The stellar cores in this
image have FWHM of 100 mas and Strehl ratios of 0.13.

b) Image selection, shifting and adding using an I = 15.9 reference star 2.9 as
away. The stellar FWHM in the image are 180 mas and the Strehl ratios are
0.065.

c) Conventional image of the same field produced by summing together 1000 of
the raw frames without shifting to compensate for image motion. The FWHM
of the stars are 570× 390 mas with a Strehl ratio of 0.019.
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Figure 5.18: The position of the brightest speckle measured in the image of star
Z in our exposures (see Figure 5.16) as a function of time. The upper plot shows
the vertical offset from the mean position for the brightest speckle, and the lower
plot shows the horizontal offset.

Figure 5.19: a), b) Image resolution for a range of different reference stars in
M13.

a) Average values for the Strehl ratios of bright stars within a few arcseconds of
the reference star, for a range of reference star magnitudes.

b) Image FWHM in milliarcseconds for bright stars within a few arcseconds of
the reference star, for a range of reference star magnitudes.
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Figure 5.20: a), b) Surface plots of intensity in two example exposures taken from
a run on the faint star CCDM J17339+1747B. The exposures had a duration of
9.7 ms.

a) The single best 9.7 ms exposure from the first run the I ' 10 star CCDM
J17339+1747B, with a Strehl ratio of 0.21. In selected exposures such as this
the signal to noise is very high.

b) The exposure of CCDM J17339+1747B with the modal Strehl ratio of 0.05.
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using the function shown in Figure 5.6 for calculations of the Strehl ratio and position
of the brightest speckle. The halo around the bright star is clearly less compact in this
image. Figures 5.21c and 5.21d show images generated in the same way but using all of
the exposures. The re-centring process was based on the position of the brightest pixel
in the raw exposures for the fainter star at the lower right for Figures 5.21d. Despite
the relatively low signal-to-noise ratio apparent in Figure 5.20, the re-centring process has
reduced the image FWHM to 120 mas from 0.5 as achieved without re-centring. Good
image quality is obtained at this signal-to-noise even without filtering out the noise.

Using the flux calibration for an A0 V star in Cox (2000) and the predicted throughput of
the telescope, instrument, filter and CCD quantum efficiency shown Figure 5.5 I calculated
the number of detected photons expected from a I = 15.9 reference star in a single 55 ms
exposure. The total transmission under curve B corresponds to an equivalent bandpass
of 23 nm with 100% transmission. Using a value of 6.1 × 10−15 W m−2 nm−1 for the
flux from an I = 15.9 at 810 nm wavelength this would imply a rate of 1.2× 105 detected
photons per second. In a 55 ms exposure we would thus expect about 5900 photons. If
the Strehl ratio in a good exposure is 0.2, 20% of this flux will fall in one bright speckle
(corresponding to about 1200 photons). Taking the simplified model for the signal-to-noise
ratio with L3Vision CCDs described by Equation 4.20, we expect a signal-to-noise ratio
of about 24 on such a speckle.

5.5.4 Assessment of image quality

In order to measure the stability of the image scale and PSF across the field and make
a rudimentary assessment of the performance of Lucky Exposures images in astrometric
measurements, the observations used for Figure 5.16a were re-analysed.

The 60 best exposures from the same dataset on M13 used in Chapter 5.5.3 were sep-
arated into two groups of 30. The exposures in these two groups were observed during
two separate time windows, so the atmospheric effects should be uncorrelated for the two
datasets. The exposures in each group were shifted and added together to give two in-
dependent images of the field in M13. I used the same approach to accurately measure
the positions of the stars in these two images as was used for measuring the location of
the brightest speckles in individual short exposures – the two images were filtered using
the modulation transfer function of a diffraction-limited telescope (shown in Figure 5.6)
and resampled, and the peak pixel in the resulting stellar images was taken as the posi-
tion of each star. The relative star positions calculated for the two independent datasets
were compared and found to agree within 6 mas for eight of the brightest stars, without
accounting for changes in plate scale or orientation. The stellar magnitudes agreed within
0.02. Clearly for astronomically useful measurements the optical distortions in the instru-
ment would need to be accurately determined, and any shift in the stellar positions due
to limited charge transfer efficiency would also have to be characterised. Given good in-



Figure 5.21: Results of exposure selection on CCDM J17339+1747AB. For a),
the best 1% of exposures were selected using the standard approach. b) shows
the result without the use of Fourier filtering to suppress noise in the exposure
selection step. c) and d) are the same as a) and b) but using all of the exposures.
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Figure 5.22: Lucky Exposures image from the core of M15. The region in the
red box is enlarged in Figure 5.23a.

strument characterisation, the accuracy of the astrometry and photometry would improve
substantially with increased observing time, potentially allowing accurate measurements
of globular cluster velocity dispersions and photometric variability studies.

Some of the Lucky Exposures images generated from data taken using L3Vision CCDs
were found to show evidence for smearing at low signal levels in the direction of CCD
serial transfers. The dependency of the smearing effect on both the position in the image
and on the signal level gave weight to the hypothesis that problems with charge transfer
efficiency might be to blame. In order to investigate the smearing effect in more detail I
chose an image of M15 which was quite badly affected, taken from our observing run in
July 2002 through the 810 nm HiRac I filter at the NOT. Figure 5.22 shows a region around
the core of M15. The cluster centre is marked by a green cross toward the right-hand side
(as determined by Guhathakurta et al. (1996)). The image has been contrast stretched
to highlight some of the fainter stars. Most of the stars show some evidence of horizontal
smearing, particular the fainter stars toward the right-hand edge. Cross-sections through
two stars toward the lower right-hand corner of the image are shown in Figure 5.23. The
horizontal cross-section along line C shows a long tail to the right of the stellar centroid,
reminiscent of the charge distributions measured in the laboratory under conditions of
poor transfer efficiency (one of these distributions was shown in Figure 4.13).
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Figure 5.23: Selected exposures from the core of M15. Cross sections through
the image are shown in panels b) and c) along the dotted lines in a).

5.5.5 Dynamic range

Figure 5.24 shows an example image generated by selecting the best 5% of exposures out
of 8000 taken at 50 Hz on M13 on the night of 2003 June 29. The observations were
taken through the 780 nm edge filter, with the long-wavelength cutoff determined by the
sensitivity limit of the CCD (as illustrated in Figure 5.5). The I = 11.6 star at the bottom
of the image was used as a reference. The high dynamic range in this image is apparent
when the image contrast is stretched one hundred fold, as demonstrated in Figure 5.25.
Stars as faint as I = 18 can be clearly detected above the noise. Stars H and W from
Cohen et al. (1997) have been labelled in the image. The stars toward the top of the image
have asymmetrical tails around them. The image FWHM range from 180 × 110 mas for
stars at the bottom of the image to 400×220 mas for stars at the top. In order to confirm
that this blurring did not result from anisoplanatism, the data analysis was repeated using
star W as the reference instead of star H.

Figure 5.26a shows the image of star W when star H was the reference (this is a section
of the image shown in Figures 5.24 and 5.25). The asymmetry in the stellar image is very
clear in this enlargement. The image of star H when star W was the reference is shown
in Figure 5.26b. There is much less evidence for asymmetry in this second image (with
the same angular separation of the target from the reference star) suggesting that the
smearing is not a result of anisoplanatism. It appears to simply depend on the distance
from the readout register of the CCD, and is consistent with poor charge transfer efficiency



Figure 5.24: The best 5% of ex-
posures of M13 from 30 June 2003
were selected, shifted and added to
produce this image with a linear
greyscale. North is toward the top
of the image.

Figure 5.25: Same image as for
Figure 5.24 but with the greyscale
contrast stretched linearly 100
times.
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Figure 5.26: The asymmetrical smearing of stellar images toward the top of
Figures 5.24 and 5.25 is highlighted by the enlargement of star W shown in panel
a). When star W was used as the reference, the image of star H did not show this
asymmetry, as shown in panel b). This implies that the blurring is an instrumental
effect and not the result of anisoplanatism.

on the CCD (as discussed in Chapter 4.3.2). The orientation of the Figure is such that
the direction of serial transfers on the CCD is downwards in the images.

The dynamic range of Lucky Exposures is highlighted in a more quantative manner by
Figure 5.27. This data on Gliese 569 was taken at a frame rate of 30 Hz on 2002 July 25
(as listed in Table 5.3). At the 810 nm observing wavelength the magnitude difference is
8, and yet the faint companion is easily detected with little light contamination from the
primary 5 as away. The data were taken through high Saharan dust extinction, and there
is insufficient signal-to-noise to separate the binary components.

5.6 Sky coverage

The applicability of the Lucky Exposures method to faint astronomical targets depends on
the limiting magnitude of reference star which can be used, and the size of the isoplanatic
patch over which the technique will work. The results presented in Figure 5.19 indicate
that reference stars as faint of I = 15.9 can be used successfully for Lucky Exposures
imaging. The results obtained on other nights (see e.g. Figure 5.12 and Chapter 5.5.5)
were broadly consistent with these results from July 2001. Measurements of binaries
presented in Figure 5.14 indicate that the technique works well up to 30 as from the
reference star. These observations were taken on one night, and it has not been possible
to confirm whether or not this isoplanatic angle is typical of the summer seeing conditions
at the NOT.

From the limiting magnitude and isoplanatic angle measurements it is possible to calculate
the fraction of the night sky which is close enough to a suitably bright reference star.



0.2“

Figure 5.27: The best 4% of exposures of the multiple star system Gliese 569.
The primary star has a magnitude of I = 10. The I = 18 object on the right is
thought to be a brown dwarf triple system (Kenworthy et al. 2001). The images
were selected from 10 minutes of observing time at the NOT, on a night with high
Saharan dust extinction at the observatory.
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Cox (2000); Bahcall & Soneira (1984) indicate that the mean density of stars brighter
than I = 15.9 is about 1300 stars per square degree. Based on their models for the
distribution of stars in galactic coordinates, the fraction of the night sky within range
of a suitable reference star ranges from 10% near the South Galactic pole to 25% at
b = 30. In the galactic plane the probability can be much higher, particularly toward the
galactic centre. This represents a very substantial improvement over the case of I-band
natural guide star adaptive optics, where the sky coverage is typically less than 0.1% for
high resolution imaging. High resolution astronomical observations using I-band adaptive
optics are limited predominantly to searches for faint companions around bright nearby
stars. The small isoplanatic patch and bright reference stars mean that deep imaging
observations often suffer from problems with scattered light from the reference star. In
contrast, the Lucky Exposures method should be applicable to a much wider range of
galactic and extra-galactic observing programs.

5.7 Conclusions

In this chapter Fourier filters were developed in order to suppress the noise in the short
exposure images. These improved the image FWHM which could be obtained using faint
reference stars, and helped to slightly suppress the noise in the final Lucky Exposures
images.

The images obtained by applying the Lucky Exposures method to data taken with the low
noise CCDs were generally of high quality. It is clear that the Lucky Exposures method
can provide a substantial improvement in resolution over conventional imaging.

Measurements of the isoplanatic angle on the night of 2001 July 26 showed it to be ∼ 30 as.
This is substantially higher than the typical value achieved for I-band adaptive optics.
Analysis of further observations will be required in order to determine whether this result
is representative of the summer seeing conditions at the NOT.

The Lucky Exposures method was found to work successfully using reference stars as faint
as I = 15.9. This magnitude limit is expected to be further increased with the use of
back-illuminated CCDs and an anti-reflection coated dewar window.

Based on the limiting magnitude for the Lucky Exposures method, the isoplanatic angle
measured on the night of 2001 July 26, and star counts from the literature we would
expect the sky coverage for the Lucky Exposures technique to be about 25% at I-band.
This is substantially better than that achieved with natural guide star adaptive optics at
this wavelength.

Analysis of data taken on M13 suggest that accurate astrometry will be possible in crowded
fields if the plate scale and image distortions can be suitably determined and if the charge
transfer efficiency of the detector is good. Some of the data presented shows evidence of
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problems with charge transfer efficiency, and it will be important to address this for future
observing runs.



Chapter 6

Conclusions

In this chapter I hope to bring together the results presented within previous chapters,
and to draw general conclusions about the advantages and disadvantages of the Lucky
Exposures method. It is clear that the Lucky Exposures approach has great potential
for a number of astronomical programs. A substantial amount of observational data from
2003 is yet to be processed, and hopefully this will provide a number of important science
results.

The selection of short exposures based on measurements of the Strehl ratio using reference
stars in the image has been demonstrated as a technique that can provide high resolution I-
band images at a 2.56m telescope. The high Strehl ratios, small FWHM and good dynamic
range offered by the technique would be very valuable in a number of astronomical imaging
programs. The true imaging capability and faint limiting magnitude of reference stars for
Lucky Exposures can provide significant advantages over other high frame rate imaging
techniques. I will list here a few of the key conclusions which have been listed at the end
of individual chapters.

Sky coverage

Observations at the NOT in July 2001 indicated that the isoplanatic angle for observations
using the Lucky Exposures method was 30 as. This represents a substantial improvement
over the typical values expected for I-band adaptive optics. Images with FWHM as small
as 130 as were obtained at this separation from a reference star. Observations in May
2000 were suggestive of a smaller isoplanatic angle at that time. Future analysis of data
taken at the NOT in 2003 may give a better indication of the typical range of isoplanatic
angles at the NOT site.

Observations of M13 in July 2001 indicate that good image quality can be obtained using
reference stars as faint as I = 15.9. Observations analysed using faint reference stars from
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June 2003 had image quality which was consistent with that obtained in July 2001 using
reference stars of similar magnitude.

The limiting magnitude and isoplanatic angle, combined with models for galactic star
counts at I-band indicate that approximately 25% of the night sky should be within range
of a suitable reference star for the Lucky Exposures method.

Image quality

Using bright reference stars, the Lucky Exposures method can provide I-band images of
exceptional quality from a telescope of 2.56 m diameter under good seeing conditions. The
measured Strehl ratios are consistent with those predicted by numerical simulations. The
images of close binaries showed very good agreement between the stars, while there was
evidence for some anisoplanatism in wider binaries. Spatial autocorrelations of ζ Boötis
indicate that the re-centring of short exposure images works most effectively when the
short exposure Strehl ratios are high. The image resolution obtained using the Lucky
Exposures method decreases gradually when the fraction of exposures is increased.

Observations of M13 indicate that high precision relative astrometry should be possible
in crowded fields given good charge transfer efficiency and a suitable understanding of the
plate scale and relevant aberrations.

Results from simulation

Previous theoretical studies have indicated that the timescales and isoplanatic angles rel-
evant to speckle imaging may be larger than those for non-conjugate adaptive optics at
many astronomical observatories. Numerical simulations presented here were broadly con-
sistent with these predictions.

High Strehl ratio images would be expected from the Lucky Exposures technique even if
there are aberrations in the telescope mirror, as the method will tend to select exposures
at times when the atmosphere is counter-acting the mirror aberrations. Structure on the
mirror surfaces which is on very different scales to the dominant atmospheric perturbations
is much less likely to be corrected in this way.

Sinc-resampling of the short exposures can significantly improve the estimation of the
Strehl ratio and position of the brightest speckle. In low signal-to-noise data, Fourier
filtering can be used to improve the performance of the exposure selection and re-centring,
and reduce the noise in the final reconstructed image.
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Timescale measurements

The atmospheric coherence time for speckle imaging at I-band was found to be approx-
imately 65 ms at the NOT in May 2000. The excellent image quality obtained using
frame rates as low as 18 Hz in 2001 is consistent with this. The oscillation of the NOT
telescope was found to cause slight blurring of exposures having duration longer than ten
milliseconds.

L3Vision CCD performance

Theoretical modelling of L3Vision CCDs from E2V Technologies indicate that these de-
vices have the potential to act as an image plane photon-counting array. The distribution
of output electrons can be modelled numerically for any given flux of detected photons.

Experimental measurements of L3Vision CCDs in our camera both at the NOT and in the
laboratory indicate that short exposures are often affected by charge transfer efficiency
problems at low signal levels.

Future prospects

There are a number of modifications to the Lucky Exposures method as presented here
which would make it applicable to a wider range of astronomical observations. In crowded
fields, the image quality could be monitored using a number of reference stars across the
field, allowing exposures to be selected on the basis of isoplanatic angle as well as overall
image quality. By combining data from several different reference stars, the signal-to-noise
ratio for Strehl ratio measurements could also be improved.

The Lucky Exposures method is not restricted to single-wavelength detectors – light from
a science target could be directed into a spectrograph with an Integral Field Unit (IFU)
while the light from a reference star was monitored on a conventional imaging detector
in order to select moments of high image quality. Array detectors with spectroscopic
sensitivity such as Superconducting Tunnel Junction (STJ) devices could also be used to
provide spectral information. If the reference star is faint, a broader bandpass could be
used for the reference star than for the observations of the science target.

The dependence of r0 on observing wavelength described in Equation 2.9 implies that the
Lucky Exposures method should work well on much larger telescopes if longer observing
wavelengths are used. An 8 m telescope observing at K-band would have the same number
of r0 across its diameter as a 2.5m telescope observing at 800 nm wavelength, and a similar
probability of Lucky Exposures would be expected. Current low noise infra-red cameras
can typically only be read at low frame rates, so further camera and detector develop-
ment might be required to make such an instrument viable. Observations could also be
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performed at shorter wavelengths using smaller telescopes, although this would probably
require faster camera readout rates and possibly an atmospheric dispersion corrector.

In order to improve the resolution attainable with the Lucky Exposures technique, non-
circular apertures could also be exploited. If a large (diameter greater than 7r0) telescope
were broken up into a series of slit apertures, the probability of obtaining good atmospheric
conditions over one of these slits would be higher than for the telescope aperture as a whole.
By repeating observations with a range of different slit position angles, high resolution data
could be obtained in all orientations from an astronomical target.

Alternatively, a low-order adaptive optics system designed for long wavelength imaging
might provide a substantial improvement to the probability of obtaining Lucky Exposures
at short wavelengths on a large telescope, as it would eliminate the large scale structure
in the atmospheric phase perturbations. This could allow high resolution imaging from
large telescopes without the need for high-order adaptive optics correction (which usually
requires a bright reference star).

Summary

It is clear that the Lucky Exposures method has great potential for many astronomical
programs. The higher sky coverage of the Lucky Exposures method at I-band as compared
to that for natural guide star adaptive optics means that this method can be applied to
a much wider range of astronomical targets. If a large isoplanatic patch is frequently
available during Lucky Exposures observations, it will be possible to image large fields at
high resolution.

A substantial quantity of observational data taken in 2003 is waiting to be analysed.
The wide range of astronomically interesting targets promise many exciting astronomical
results. The dataset will also be very valuable in characterising the atmospheric conditions
at the NOT over a more statistically significant period.

The development of instrumentation for Lucky Exposures is ongoing in the Institute of As-
tronomy, and the staff at the NOT and associated institutes have expressed a keen interest
in becoming involved with this work. With a bit of Luck, this program will eventually
lead to a permanent exposure selection instrument available to the whole astronomical
community.



Appendix A

Simplified approximation to a

single Taylor screen atmosphere

To begin with I will look at some basic imaging properties of the simple single-lens telescope
shown in Figure A.1. Point p in the figure is within the image plane of the telescope. The
contribution to the optical flux at this point can be determined by first selecting a plane
X which is perpendicular to the line of sight from p (joining the point p and the centre
of the lens in Figure A.1). The integral of the complex wavefunction across the plane X
determines the contribution to the wavefunction amplitude at point p. The photon flux is
proportional to the square of this amplitude.

Figure A.2 shows the same situation as Figure A.1, but the incoming wavefronts have
been perturbed by the atmosphere. The phase fluctuations will affect the integral of the
wavefunction over plane X altering the measured intensity at point p.

For the case of a single wind-blown Taylor screen, the phase perturbations introduced
by the atmosphere will be translated laterally across the telescope aperture by the wind
with no change in the structure of these perturbations. The modulus of the integral of
the wavefunction over the plane X is not directly affected by the lateral motion of the
phase fluctuations, but the motion of the screen introduces new phase perturbations at the
upwind side of the aperture and removes phase perturbations at the downwind side. This
can be seen clearly if the outline of the telescope aperture is projected along the line of sight
from p onto the Taylor screen, as shown by the solid circle in Figure A.3. After time has
elapsed and the wind-blown Taylor screen has moved a distance ρ, the outline of telescope
aperture will be projected onto the dotted circle. Area B is common to both timepoints
and will contribute equally to the amplitude of the wavefunction at point p in the image
plane, but the contribution from area A will be lost, and a new contribution from area C
will be included at the later timepoint. In reality, the atmospheric phase in areas C and
A will remain correlated to that in area B over a region extending approximately r0 from
the boundary of area B, but for the particular case of large diameter apertures this only
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Figure A.1: Plane waves are focussed by a single-lens telescope onto a point p
in the image plane. Plane X is perpendicular to the direction of propagation of
the light focussed onto point p. The optical flux at point p can be determined
by integrating the optical wavefunction across plane X, and squaring the ampli-
tude of the result. The phase of the wavefunction φ at plane X is represented
schematically in the figure by the distance to the nearest wavefront peak.

Figure A.2: The planar wavefronts of Figure A.1 are replaced by atmospherically
perturbed wavefronts. The magnitude of the integral across plane X will be
reduced due to the phase perturbations in the wavefunction, reducing the optical
flux measured at point p.
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Figure A.3: For observations at the zenith, the solid circle represents the original
projection of the telescope aperture onto the Taylor screen, while the dotted circle
represents the same projection after the Taylor screen has been blown a distance
ρ by the wind. d is the diameter of the telescope primary. For observations away
from the zenith, projection effects will slightly elongate the circles.

has a small effect on our calculations and will be neglected in this simple approximation.

We can write the contributions ψA, ψB and ψC to the wavefunction at point p from areas
A, B and C respectively as:

ψA = χAe
iφA (A.1)

ψB = χBe
iφB (A.2)

ψC = χCe
iφC (A.3)

where χA, χB and χC describe the amplitudes and φA, φB and φC the phases of these
contributions. If the linear dimensions of areas A, B and C in Figure A.3 are much
larger than r0, then the phases φA, φB and φC will not be correlated with each other, as
the structure function of Equation 1.3 indicates that the typical phase variation between
points separated by distances much greater r0 will be many cycles in magnitude.

If the linear dimensions of areas A, B and C are much larger than r0 then the ensemble
average amplitudes 〈χA〉, 〈χB〉 and 〈χC〉 will be proportional to the square root of the
areas of A, B and C respectively. This can most clearly be seen if we imagine utilising a
telescope whose aperture has the same size and shape as one of these three regions. The
atmospheric seeing will generate an image with a FWHM of approximately λ/r0 regardless
of the aperture size and shape (as long as the aperture is much larger than r0), with an
average intensity proportional to the area of the aperture.

As the phases φA, φB and φC are not correlated with each other, if the light from more than
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one of the these regions is combined then the ensemble averages of the relevant amplitudes
must be added in quadrature to give the total amplitude. It is useful to consider three
ensemble average intensities 〈IA〉, 〈IB〉 and 〈IC〉 which describe the contributions from the
areas A, B and C as follows:

〈IA〉 =
〈
|ψA|2

〉
(A.4)

〈IB〉 =
〈
|ψB|2

〉
(A.5)

〈IC〉 =
〈
|ψC |2

〉
(A.6)

As we have assumed that the wavefunctions ψA, ψB and ψC are not correlated (not
coherent), the ensemble average intensities 〈IA〉, 〈IB〉 and 〈IC〉 can be summed linearly.
As the areas of A and C are equal, the corresponding ensemble average intensities will be
equal:

〈IA〉 = 〈IC〉 (A.7)

We are interested in the intensity IAB produced at the first timepoint when light from
areas A and B is combined:

IAB = |ψA + ψB|2 (A.8)

and the intensity IBC from areas B and C, corresponding to a time when the Taylor screen
has moved by a distance ρ in Figure A.3:

IBC = |ψB + ψC |2 (A.9)

The ensemble average of both of these intensities is simply the sum of the relevant ensemble
average intensities for the constituent components:

〈IAB〉 = 〈IA〉+ 〈IB〉 (A.10)

〈IBC〉 = 〈IB〉+ 〈IC〉 (A.11)

As the total area of each of the circles in Figure A.3 is independent of ρ, the combined
intensities 〈IAB〉 and 〈IBC〉 will be independent of the offset ρ.

The value of 〈IB〉 is directly dependent on ρ. For non-zero values of 〈IB〉, the fluctuations
in the instantaneous intensities IAB and IBC will be correlated, as both intensities include
a contribution from ψB. Conversely, if the value of 〈IB〉 were zero then the contribution
ψB would be zero, and fluctuations in IAB and IBC would be completely uncorrelated. We
are interested in determining the size of the contribution 〈IB〉 for which the correlation
between fluctuations in IAB and IBC has dropped by a factor of 1/e. As the wavefront
components ψA, ψB and ψC are uncorrelated Rayleigh distributions, this will be true when
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the ensemble average intensity 〈IB〉 from area B contributes 1/
√
e of the total intensity:

〈IB〉 =
IAB√
e

(A.12)

The intensity 〈IB〉 will obey Equation A.12 when areas A and B are related as follows:

B =
A+B√

e
(A.13)

If the telescope aperture is described by a function χt (r) such as the example case in
Equation 1.7, then area of overlap B between two offset apertures comes directly from the
autocorrelation of this function Rχ (ρ):

Rχ (ρ) ≡
∫ ∞

−∞
χt (r + ρ)χ∗t (r) dr (A.14)

It is useful to note that this remains true regardless of the shape of the telescope aperture
described by χt (r).

For the simple case presented in Figure A.3 of a filled circular aperture of diameter d, the
area of overlap B can be calculated geometrically. The line joining q and r in Figure A.3 is
a chord to both the dotted and filled circles. B is constructed from two symmetric regions
either side of this chord, each having an area:

B

2
=
d2

4
arccos

(ρ
d

)
− ρ

4

√
d2 − ρ2 (A.15)

The separation at which the area of B is reduced by a factor of 1/
√
e was evaluated

numerically as ρe = 0.31d for a telescope of diameter d, giving a coherence timescale:

τe =
0.31d
|v|

(A.16)

for a constant wind velocity v.
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Appendix B

Observation log for June-July

2003 observations at the NOT

A substantial amount of observational data from a wide range of targets was obtained
at the NOT on the nights of 2003 June 27 to 2003 July 4. The optical filters used
for these observing runs provided a range of different bandpasses between 600 nm and
1 µm. Table B.1 lists the general properties of these filters. The runs are summarised in
Tables B.2 to B.9 for the benefit future researchers. For many of the runs the aperture
diameter was stopped down in a re-imaged pupil plane. The aperture diameter was usually
chosen to match 7r0 at the observing wavelength, although experiments with different
apertures sizes were performed for a few of the runs.

Filter name Centroid of observing
band

Filter description

Coherent R 650 nm Top hat filter with 72 nm FWHM
Hα 656 nm Filter with 11 nm FWHM
HiRac I 810 nm Top hat filter with 125 nm FWHM
715 edge ∼ 820 nm Long-pass filter (long wavelength cutoff

set by limit of the CCD detector)
780 edge and
HiRac I

∼ 830 nm Filter pair gives bandpass with 90 nm
FWHM

780 edge ∼ 860 nm Long-pass filter (long wavelength cutoff
set by limit of the CCD detector)

850 edge and
HiRac I

860 nm Filter pair gives bandpass with 20 nm
FWHM

850 edge ∼ 890 nm Long-pass filter (long wavelength cutoff
set by limit of the CCD detector)

Table B.1: Filters used in observations at the NOT
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Target Object type Filter Aperture
diameter

Image size
(pixels)

100 Herculis Binary HiRac I 1.89 m 552× 104
BD +193457C Binary HiRac I 1.89 m 552× 176
M13 core Globular cluster HiRac I 1.89 m 552× 176
M13 core Globular cluster HiRac I 1.32 m 552× 176
CVS 97A Gravitational lens HiRac I 1.89 m 552× 176
PNG 0456 Planetary nebula pro-

genitor
HiRac I 1.89 m 552× 176

M15 core Globular cluster HiRac I 1.89 m 552× 264
M15 core Globular cluster HiRac I 1.89 m 552× 528
M15 core Globular cluster HiRac I 1.32 m 552× 528
Neptune and Triton Solar system HiRac I 1.32 m 552× 528
Neptune and Triton Solar system HiRac I 2.56 m 552× 528
BD +064730 Star HiRac I 2.56 m 552× 528
BD +064730 Star 850 edge 2.56 m 552× 528
BD +064730 Star 780 edge 2.56 m 552× 528
BD +064730 Star 715 edge 2.56 m 552× 528
BD +064730 Star Hα 2.56 m 552× 528
BD +064730 Star Coherent R 2.56 m 552× 528

Table B.2: Log of observations on night of 2003 June 27 at the NOT.

Target Object type Filter Aperture
diameter

Image size
(pixels)

Gliese 569 Multiple brown dwarf HiRac I 2.56 m 552× 104
3C 294 Active galactic nu-

cleus
HiRac I 2.56 m 552× 104

M13 core Globular cluster 780 edge 2.56 m 552× 528
M13 core Globular cluster 780 edge 2.56 m 552× 104
M13 core Globular cluster 780 edge 2.56 m 552× 176
M13 core Globular cluster 850 edge 2.56 m 552× 176
100 Herculis Binary 850 edge and

HiRac I
2.56 m 552× 80

UU Sagittae Eclipsing binary 780 edge 2.56 m 552× 176
SN2002hh Supernova 780 edge 2.56 m 552× 528
WR 140 Wolf Rayet binary sys-

tem
850 edge and
HiRac I

2.56 m 552× 104

NGC7469 Active galactic nu-
cleus

780 edge 2.56 m 552× 176

Table B.3: Log of observations on night of 2003 June 28 at the NOT.
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Target Object type Filter Aperture
diameter

Image size
(pixels)

NGC 5548 Active galactic nu-
cleus

780 edge 2.56 m 552× 176

M13 core Globular cluster 780 edge 2.56 m 552× 104a

M13 mosaic Globular cluster 780 edge 2.56 m 552× 528
100 Herculis binary 850 edge and

HiRac I
2.56 m 184× 104

V536 Aquilae Variable star 780 edge 2.56 m 552× 104
WR 140 Wolf Rayet binary sys-

tem
850 edge and
HiRac I

2.56 m 112× 104

M15 core Globular cluster 780 edge 2.56 m 552× 528
M15 core Globular cluster 780 edge 2.56 m 552× 176

aObservational results from this run are presented in Chapter 5.5.5

Table B.4: Log of observations on night of 2003 June 29 at the NOT.

Target Object type Filter Aperture
diameter

Image size
(pixels)

100 Herculis Globular cluster HiRac I 2.56 m 184× 104b

100 Herculis Globular cluster HiRac I 2.08 m 184× 104b

100 Herculis Globular cluster HiRac I 1.70 m 184× 104b

M13 core Globular cluster 780 edge 2.56 m 552× 176b

V 653 Ophiuchii T-Tauri star 780 edge 2.56 m 552× 528b

V 653 Ophiuchii T-Tauri star 850 edge 2.56 m 552× 528b

V 536 Aquillae Variable star 780 edge 2.56 m 552× 176b

SN2002hh Supernova 780 edge 2.56 m 552× 296
NGC 7008 Planetary nebula pro-

genitor
780 edge 2.56 m 184× 176

NGC 7008 Planetary nebula pro-
genitor

Coherent R 2.08 m 184× 176

M15 core Globular cluster 780 edge 2.56 m 552× 528
M15 core Globular cluster 780 edge 1.89 m 552× 528
M15 core Globular cluster 780 edge 1.32 m 552× 528
M15 core Globular cluster 780 edge 2.56 m 552× 176
M15 core Globular cluster 780 edge 1.89 m 552× 176
M15 core Globular cluster 780 edge 1.32 m 552× 176

bObserving through patchy cloud

Table B.5: Log of observations on night of 2003 June 30 at the NOT.
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Target Object type Filter Aperture
diameter

Image size
(pixels)

NGC 4151 Active galactic nu-
cleus

780 edge 2.56 m 552× 176

NGC 4151 Active galactic nu-
cleus

Coherent R 2.56 m 552× 176

CVS 97A Gravitational lens 780 edge 2.56 m 552× 176
Target for P. He-
witt

Galaxy core 780 edge 2.56 m 552× 176b

M13 core Globular cluster 780 edge 2.56 m 552× 176
100 Herculis binary 850 edge and

HiRac I
2.56 m 184× 104

Neptune and star Solar system 780 edge 2.56 m 184× 528
Neptune and star Solar system 780 edge 2.08 m 184× 528
Neptune and star Solar system 780 edge 1.89 m 184× 528
WR 140 Wolf Rayet binary sys-

tem
780 edge and
HiRac I

1.89 m 552× 176

M15 core Globular cluster 780 edge 2.56 m 552× 528
M15 mosaic Globular cluster 780 edge 2.08 m 552× 528
M15 core Globular cluster 780 edge 2.08 m 552× 176

bObserving through patchy cloud

Table B.6: Log of observations on night of 2003 July 1 at the NOT.

Target Object type Filter Aperture
diameter

Image size
(pixels)

NGC 4151 Active galactic nu-
cleus

780 edge 2.56 m 552× 176

Gliese 569 Multiple brown dwarf HiRac I 2.56 m 280× 104
Q1518+58 Active galactic nu-

cleus
780 edge 2.56 m 552× 176

M13 core Globular cluster 780 edge 2.56 m 552× 176
M13 core Globular cluster 780 edge 1.32 m 552× 176
M13 core Globular cluster Coherent R 1.32 m 552× 176
100 Herculis binary 850 edge and

HiRac I
2.56 m 184× 104

WR 124 Wolf Rayet star 780 edge 2.56 m 552× 176
WR 124 Wolf Rayet star Hα 2.56 m 552× 176
UU Sagittae Observations during

eclipse of binary
component

780 edge 2.56 m 552× 176

M15 core Globular cluster 780 edge 2.56 m 552× 176

Table B.7: Log of observations on night of 2003 July 2 at the NOT.
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Target Object type Filter Aperture
diameter

Image size
(pixels)

Gliese 569 Multiple brown dwarf 780 edge various 280× 104
Gliese 623 Multiple brown dwarf 780 edge 2.56 m 552× 176
Gliese 623 Multiple brown dwarf 780 edge 2.56 m 280× 104
Mars and star Solar system 850 edge 2.56 m 552× 528
Mars and star Solar system Coherent R 2.56 m 552× 528

Table B.8: Log of observations on night of 2003 July 3 at the NOT. The seeing
was generally poor (1-3 arcseconds), and little useful data was obtained.

Target Object type Filter Aperture
diameter

Image size
(pixels)

M13 field Globular cluster 780 edge various 552× 528
M13 field Globular cluster 780 edge various 552× 176
M13 core Globular cluster 780 edge 2.56 m 552× 176
Gliese 623 Multiple brown dwarf 780 edge 1.89 m 112× 104
100 Herculis binary 850 edge and

HiRac I
various 184× 104

WR 124 Wolf Rayet star 780 edge and
HiRac I

2.56 m 552× 176

WR 124 Wolf Rayet star Coherent R 2.56 m 552× 176
Mars Solar system 850 edge 2.56 m 552× 528
M15 mosaic Globular cluster 780 edge 1.70 m 552× 528

Table B.9: Log of observations on night of 2003 July 4 at the NOT.
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