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Abstract 

Food Security continues to be elusive in Sub-Saharan Africa (SSA), several decades after 

the first World Food Summit in 1974. The causes of food insecurity in Sub-Saharan Africa 

include among others; poverty, economic constraints, agricultural and agronomical 

challenges, rapid population growth, and the effects of adverse climate change.  These 

causes however, are linked to complex interactions, constraints and dependencies amongst 

the key physical resources in food systems, namely – Water, Land, Energy and Soil Nutrients 

(WLEN). There is limited insight on the combined impacts of the resource nexus, and how 

this may constrain the performance of food systems in Sub-Saharan Africa. This 

understanding is essential if the food challenges in the region are to be tackled sustainably.  

 

This study provides a detailed analysis of the Uganda’s 2012 WLEN nexus resources vis-à-

vis the country’s current and potential food demand using calorific-demand analysis and 

source-to-service resource transformation modelling. The analysis determines estimates of 

the current resource stresses within Uganda’s insufficient food system and the 

interconnected resource implications for the achievement of food security by 2050. The 

results are visualised using Sankey diagrams. The inferences highlight evident limits across 

all four resources. Overall, the analysis helps to inform food security policy and the resource 

context for the present and future management of Uganda’s food system.  
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1. Introduction 

 

1.1 Food Security in Sub-Saharan Africa 

Each year, many people in Sub-Saharan Africa (SSA) endure severe famine. According to 

the United Nations Food and Agricultural Organisation [FAO] (FAO, 2012, p. 10) and the 

European Union’s (EU’s) European Court of Auditors [ECA] (ECA, 2012, pp. 9–10) Annual 

Reports on food security, the number of food insecure people in SSA increased from about 

219 million in 2003 to 239 million in 2010-12. Proportionally, the percentage of food 

insecure people in SSA remained stagnant at 27% of the population between 2003 and 2012 

– representing little progress towards the 20% population undernourished Millennium 

Development Goal (MDG) target for the same period (FAO, 2012, p. 10).  

 

Regionally, by 2010 none of the five East African (EA) countries was on track to meet its 

Global Hunger Index (GHI) targets based on analysis of SSA annual food statistics (ECA, 

2012, p. 21). All of them had varying degrees of food scarcity ranging from ‘Extremely 

Alarming’ in Burundi to ‘Serious’ in Kenya and Uganda (ECA, 2012, p. 21). In Uganda, over 

700,000 people require direct famine relief annually according to statistics from the World 

Food Program (WFP, 2012) and the Uganda Bureau of Statistics (UBOS, 2012). 

 

1.2 Food Security and the Interactions between Water, Land, Energy and Soil Nutrients 

The European Union’s report titled ‘Confronting Scarcity: Managing Water, Energy and Land 

for Inclusive and Sustainable Growth’ (EU, 2012) examined the increasing global constraints 

on the Water, Land and Energy resources, and the connections to food security. They argue 

that one of the major challenges of existing policy efforts in SSA has been a limited 

understanding of the holistic resource considerations and interconnections within the food 

systems (EU, 2012, p.3). Policy efforts thus far have tended to focus on causal factors such 

as productivity/agronomic constraints, funding bottlenecks and climate change mitigation.  

However interventions in one resource-use sector – for instance using limited energy 

supplies for large-scale fertilizer production, may have unintended adverse consequences 

elsewhere – such as irrigation water shortages. While discussing this challenge, the EU 

(2012, pp.3-4) proposes integrated resource analysis to help identify the critical points of 
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interconnected resource stress within SSA’s food systems and the impact of different policy 

options.  

 

In this light, the research reported here adopts a Food System approach to analysing Food 

Security in SSA as proposed in Ericksen (2008, p.238)’s and Ingram (2011, pp.420-422)’s 

Global Environmental Change and Food Systems (GECAFS) framework. The approach 

proposes system-level analysis across the broad-spectrum of food system components, 

namely: Production, Processing, Distribution and Consumption. Ingram (2011) and Ericksen 

(2008) identify nine food ‘outcomes’. These nine outcomes are grouped under 3 main 

components of Food Security namely: Food Availability (Production, Distribution, 

Exchange); Food Accessibility (Affordability, Allocation and Preference) and Food Utilisation 

(Nutritional value, Social value, Safety). Definitions of these components as adopted in this 

paper are as follows: 

 

Availability, is comprised of the net stock of food produced, procured or otherwise 

received within the country, and the variety of foodstuffs available (Ingram, 2011, p.420). 

Availability also includes the measures of physical proximity to food stocks including travel 

distance, efficacy of transportation. Accessibility consists of the drivers of Allocation and 

Preference (such as market efficiency and socio-cultural factors), as well as Affordability – 

which includes of the complementary aspects of Food Price and Purchasing Power 

(financial ability) (Ericksen, 2008, p.240). Finally Utilisation includes both the Health & 

Safety considerations during production and preparation, and the nutrient content of the 

food. The social value and access to food are dependent on its physical availability. The 

three components of Food Security are listed in Table 1.  

 

Table 1: Aspects of Food Security (adapted from Ericksen, 2008; Ingram, 2011) 

 

Availability Accessibility Utilization 

 Food Stock (Production, 
Distribution, Exchange) 

 Variety 

 Travel Distance 

 Transportation  

 Allocation 

 Preference 

 Affordability (Price, 
Purchasing 
Power/Financial Ability) 

 Nutritional Value, 

 Health and Safety  

 Social Value 
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The scope of this study is limited to understanding the interconnected physical limits of the 

Water, Land, Energy and Soil macroNutrient (WLEN) resources and their potential impact 

on functionality and outcomes of Uganda’s Food System. The economic trade-offs and 

other social-political costs involved in translating the physical resource availability into 

productive application in the Food System are complementary aspects not looked at within 

the scope of this study. Figure 1 shows the links between the availability of the WLEN nexus 

resources and their interconnections with the Food System components and the different 

outcomes of Food Security. The study scope is indicated in the dashed boundary. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Food System and WLEN Nexus Interconnections; Scope of the study.  
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1.3 Understanding SSA’s Resource Limits 

Sub-Saharan Africa faces major challenges with the four resources of the Water, Land, 

Energy and Soil Nutrient nexus (WLEN nexus). SSA’s interconnected WLEN resource 

stresses and trade-offs are discussed here below. 

 

1.3.1 Water Stress 

According to FAO statistics (FAOSTAT, 2013), over 90% of the agriculture in Sub-Saharan 

Africa is rain-fed. This leads to perennial food shortages on account of failing rains, as 

reported in the USAID monthly surveillance report on emergency food-aid requirements 

and supply statistics – USAID (2012), and the Australian Office of Development 

Effectiveness strategic report on food security in SSA, AusAID (2008). The challenge of 

unreliable rain-fed agriculture points to a need for major shifts towards managed 

agricultural water use.  

 

Rockström (2003, pp.1999-2006) analysed ‘green water productivity’ in developing 

countries using a combination of evapotranspiration modelling, hydro-climatic modelling, 

and crop yield modelling assuming different cropping systems. The analysis suggests that 

consumptive dietary use of water in Sub-Saharan Africa will have to almost double by 2030 

accounting for changes in land productivity, from 690 m3/year to 1300 m3/year, with a 

modest diet mix of 20% animal protein. This poses a significant water-stress challenge, 

considering the already formidable water concerns in the region and the likely adverse 

impacts of climate change.  

 

In addition, there is also a competing demand for water for hydropower production, as 

evidenced by the increasing tussle between the Nile’s riparian countries. McCartney & 

Girma (2012) analysed the likelihood of water stress as a result of agricultural and 

hydropower interventions on the Ethiopian Blue Nile, for the projection period 2100. Their 

analysis was based on a combination of Climate Change modelling (using IPCC climate 

scenarios), hydrological modelling and water resource modelling, calibrated using 30-year 

time-series weather data. Their findings indicate that the proposed irrigation and 
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hydropower projects are likely to encounter serious water constraints. There is therefore a 

need for analysis of the trade-offs between agricultural water use and other water resource 

development objectives at the local, national and regional levels. 

 

Importing food from the global market (virtual water) may be one way of resolving SSA’s 

future water-stress challenges. Analysis by Dalin et al. (2012) of the global imports of 58 

food items from 1986 to 2007 using FAO statistics, network theory and hydrological 

modelling, reveals that SSA (which includes Uganda) has relied disproportionately on the 

global virtual water market over the past few decades. However this trend may not be 

sustainable in the long-term considering SSA’s relatively disadvantaged economic position 

and food sovereignty concerns. This was noted by Hanjra & Qureshi (2010, p.373) in their 

discussion paper highlighting the results of several regional agricultural-water studies done 

using the IFPRI’s WATERSIM and IMPACT-WATER models. Their study identifies water-

efficient agriculture as the alternative solution, using interventions such as rainwater 

harvesting, conservation irrigation, and increased use of water-efficient crop varieties and 

Genetically M0dified (GM) crops.  

 

Tadele and Assefa (2012, pp.242-3) specifically note the potential benefits of changing 

current crop mixes towards more water-tolerant crop varieties such as Cassava, Yam, Pearl 

Millet, Improved Rice and Cowpeas. Their study discusses various crop-improvement and 

genetic engineering techniques under investigation by different international and national 

organisations such as the Consultative Group on International Agricultural Research (CGIAR), 

the African Union’s Comprehensive Africa Agriculture Development Programme (CAADP) 

(CAADP, 2013), and the Alliance for a Green Revolution in Africa (AGRA). They highlight low 

nutritional value and low productivity of these crops as some of major bottlenecks. Analysis 

of the potential crop-mix productivity options is beyond the scope of this study. 

Nevertheless, the coupled resource stresses identified in this study should form the basis 

for further examination of the likely potentials of the suggested crop-mix options. 
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1.3.2 Land & Soil Quality 

Jayne et al. (2010, p.1386) carried out extensive household farm surveys in five countries in 

East and Central Africa in different periods from 1995 to 2004. Their findings revealed that 

agricultural land in SSA is heavily fragmented with average farm holdings at less than 3.5 

hectares.  The same is true in Uganda, where smallholdings account for over 95% of the 

cultivated land area according to nationals statistics by the Uganda Bureau of Statistics 

(UBOS, 2012). Rapid population growth in SSA continues to reduce the amount of land 

available per capita for food production. Kijima et al. (2011, p.82) note that increasing land 

fragmentation invariably compounds the challenge of implementing concerted food 

security efforts as it diminishes the economies of scale required for large-scale agricultural 

production, and shifts farmer priorities towards low-output subsistence agriculture. Kijima 

et al. (2011)’s findings are based on analysis of the adoption and performance of improved 

rice varieties and enhanced agricultural techniques, using data from 347 households in 

Central and Western Uganda.  

 

With regard to soil quality, land degradation continues to plague Sub-Saharan Africa as a 

result of over grazing, soil erosion and nutrient depleting cropping methods. Access and 

use of fertiliser is very low, and where available, incorrectly applied resulting in further land 

degradation. WOCAT (2009, p.3) suggest that the solution may lie in the adoption of 

Sustainable Land Management (SLM). SLM involves the use of improved farming practices 

such as Conservation Agriculture (CA), Conservation Tillage (CT), Agro-forestry (AF) and 

Rainwater Harvesting (RH). Based on demonstration studies on smallholder farms in 

Central Kenya, Upper East Ghana, Tanzania, Togo, Ethiopia and Niger, WOCAT (2009) 

found that the application of SLM practices significantly improved soil quality and resulted 

in increases in land productivity of more than 200% in the same year. They highlight several 

challenges of up-scaling these technologies which include: climate uncertainties (for RH), 

associated operational requirements such as fuel and maintenance (for CT and CA 

equipment) and land constraints (for AF).   
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1.3.3 Energy Stress 

Agricultural energy use in SSA is very low compared to energy consumption for similar uses 

in developed economies. In Uganda, an estimate of only 10 TJ (Terajoules, TJ equals 1012J) 

of electricity was used for agriculture (mostly for large-scale irrigation) in 2012 based on UN 

energy balance statistics (UNSD, 2012). This is almost negligible when compared to the 

agricultural energy consumption in developed countries, which are in the order of 

thousands of TJ per year. Improving agricultural output in SSA may require major 

increments in energy-use irrespective of the adoption of Conservation Agricultural 

practices. WOCAT (2009) (discussed in the previous section) found that irrigation, fertilizer 

use and other productivity-enhancing agricultural techniques all require significant 

quantities of commercial energy. Food processing, transportation, and preparation for 

consumption, also carry unavoidable energy-footprints.  

 

Kebede et al. (2010) investigated energy demand in SSA using an econometric model based 

on 1980-2004 statistics of 20 SSA countries from the International Energy Agency (IEA), US 

Department of Agriculture (USDA), World Bank, and FAO. Their study indicated that 

almost 90% of the households in SSA (Kebede et al., 2010, p.534) rely on unsustainable 

biomass fuel to meet their present demand, the majority of whom are poor smallholder 

farmers. Purchasing major quantities of commercial energy is therefore most likely beyond 

the financial abilities of these smallholder farmers.  

 

Government fuel subsidies could help to bridge this gap, especially where significant fossil 

fuel holdings exist. Uganda for instance, may rely on its recent oil discoveries to boost 

agricultural energy supplies. However, fuel subsidies often result in adverse economic 

effects, especially rapid inflation, as shown by Mmadu & Akan (2013) in their analysis of the 

socio-economic impact of fuel subsidies in Nigeria, using econometric modelling and 

household survey data. Therefore further research is required to establish the limits these 

energy related trade-offs could place on increasing the performance of SSA’s food systems. 
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1.4 Uganda’s Food Security Situation 

In this study, a holistic analysis of the WLEN resources of Uganda’s food system has been 

carried out as a test case for the analysis of SSA food security. Uganda has close cultural, 

historical, socio-economic, geographical similarity to the other SSA countries (excluding 

those in Southern Africa and the Sahel). Uganda also has a broad range of food security 

challenges (conflict-related, economic, and resource constraints) and has diverse agro-

ecology that is representative of the agro-ecologies in the region. As of 2012, Uganda had a 

GHI classification of 16 – 20 indicating ‘serious’ food security challenges (IFPRI, 2012). 

 

Uganda is located between latitudes 4°N to 2°S and longitudes 29° to 35°E. It is one of the 

5 member-countries of the East African Community, the others being Kenya, Tanzania, 

Rwanda and Burundi. It is divided into 112 administrative districts and eight (8) hydrological 

sub-basins that are part of the Nile basin (MoWE, 2012; UBOS, 2012), along with 9 major 

cropping systems/agro-ecologies (FAO, 2006).  

 

Uganda has one of the fastest growing populations in the world, currently standing at 

about 35 million people and growing at more than 3% per year (UBOS, 2012). Its land area is 

about the size of the United Kingdom, at 241,500 square kilometres, giving it a population 

density of about 140 people per square kilometre (UBOS, 2012).  

 

Regular food crises occur in the north and eastern parts of the country, and a large 

percentage of the country’s population is under-nourished (FAO, 2012; UBOS, 2012). In 

2011, over 11 million people (about 40%) out of a total population of 35 million were food 

insecure (UBOS, 2012). Over 700,000 people require direct famine relief annually (UBOS, 

2012; WFP, 2012). A significant proportion of these are urban-poor, which is compounded 

by rapid urbanisation at a national rate of over 4% (UN-HABITAT, 2013, p.166). Over 25% of 

children less than 5 years are seriously malnourished (ECA, 2012, p.10).  

 

Food insecurity in the country can be attributed to several different factors, including 

poverty, and low agricultural output (UNECA, 2009; FAO, 2012). The low agricultural 

output is linked to the effects of erratic rainfall and drought, increasing land-degradation 

http://en.wikipedia.org/wiki/4th_parallel_north
http://en.wikipedia.org/wiki/2nd_parallel_south
http://en.wikipedia.org/wiki/29th_meridian_east
http://en.wikipedia.org/wiki/35th_meridian_east
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and fragmentation, and underdeveloped agricultural practices (MAAIF, 2012). Over 80% of 

the population are smallholder farmers carrying out rain-fed subsistence agriculture with 

limited access to, and application of, high-productivity resilient agricultural inputs and 

technologies (MAAIF, 2012). Key statistics of the study area are summarised in Table 2. 

 

  Study Area – Uganda profile and summary statistics: 

 East Africa (Latitudes 4°N to 2°S, Longitudes 29° to 35°E) 
  
 GHI  16 – 20 [serious] (IFPRI, 2012) 
 Total Land Mass (sq.km)   241,550 (UBOS, 2012) 
 Agricultural land (sq.km) 139,620 (FAOSTAT, 2013) 
 Arable (sq.km) 66,000 (FAOSTAT, 2013) 
 Cultivable (sq.km) 41,406 (UBOS, 2012) 
 Current Population (2012)   34,510,000 (UBOS, 2012) 
 Population Annual Growth Rate  2.9% (UBOS, 2012) 

 Total Annual Renewable Water 39 km
3

 (AQUASTAT, 2013) 
 Current Food Consumption 2012 1900-2200 kcal p.c.d (FAOSTAT) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Uganda 

Summary Statistics. 

(Sources: UBOS, 

2012; IFPRI, 2012; 

FAOSTAT, 2013; 

AQUASTAT, 2013) 
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2. Analytical Approach 
 

This study provides a detailed analysis of the interconnected WLEN nexus resources vis-à-

vis Uganda’s current and potential food demand. The analysis is in two parts. The first part 

involves a combination of calorific-demand analysis and resource demand modelling. The 

methods are described in Sections 2.1 and 2.2 below respectively. This part gives the WLEN 

resources required to meet current and future food security whilst comparing it with 

existing resource potential and the physical limits constraining each resource sector. The 

second part builds on the first by examining the current competing demands on the WLEN 

resources and highlighting conflicting stresses that may arise in light of the demands 

identified in the first part. This is done by modelling Uganda’s 2012 water, land and energy 

resource-flows from source to final service. Sankey diagrams are used to track and visualize 

the results of this analysis. The procedure for this is described in Section 2.3. As mentioned 

in Section 1.2, this study is only limited to the physical availability of the WLEN resources 

and their interconnected stresses with food system. It is recognised that the distribution of 

the resources may not accessible to corresponding demand centres. 

 

2.1 Food Demand Scenarios 

In this part of the WLEN nexus resource analysis, estimates of the quantities of the 

resources currently used within Uganda’s insufficient food system are determined, as well 

as the resource implications for the achievement of food security. This baseline analysis 

helps to frame the resource policy context for any systems analysis of Uganda’s food 

security. 

 

The baseline analysis is done by calculating the resources required in five (5) food demand 

scenarios (numbered 1 to 5) based on the 2012 and projected 2050 population statistics 

obtained from the World Bank (WB), United Nations Population Division (UNPD), and 

Ugandan Bureau of Statistics (UBOS). Uganda’s 2012 and 2050 populations are established 

as 34.5 million (WB, 2013) and 102 million respectively [calculated using the UNPD (2013) 

long-term average growth rate of 2.9%]. The population figures are multiplied by the 

current and projected per capita Daily Calorific Intakes (DCIs) (in kilocalories/capita/day – 
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kcal.p.c.d) obtained from the FAO’s country food statistics database (FAOSTAT, 2013) and 

the FAO’s report – The State of Food Insecurity in the World 2012. A similar approach is 

adopted in De Fraiture & Wichelns (2010) to compute food demand at global and regional 

scales. The scenarios considered are summarised in Table 3 below.  

Scenario 1 is the current situation and 2 – 5 are projected scenarios. Scenarios 1 & 3 are 

based on developing country consumptions – current and 2050 projected according to the 

FAO (FAO, 2012). Scenario 5 is a developed-economy consumption scenario taken as the 

current USA dietary energy consumption (FAOSTAT, 2013). 

 

Table 3: Uganda 2012-2050 Calorie Intake Scenarios 

 

Scenario 
(No./ 
Acronym) 

Description Year Population 
(Actual/ 

Projected) 

DCI 
kcal.p.c.d 

Annual 
Calorific 

Necessity 
(bn kcal) 

C 
o 
l 
o 
ur 

1. 2012-DC 
Uganda’s 2012 
developing country 
food consumption 

2012 
34,510,000 
(WB, 2013) 

1,900 
(FAO, 2012) 

23,932 

 
 

2. 2012-
FRDCI 

Uganda 2012 food 
consumption at FAO’s 
recommended DCI 

2012 
34,510,000 
(WB, 2013) 

3,000 
(FAO, 2012) 

37,788 

 
 

3. 2050-DC 
Projected food 
consumption at FAO’s 
predicted 2050 DCI 

2050 
*102,265,000 
(UNPD, 2013) 

2,800 
(FAO, 2012) 

111,980 

 
 

4. 2050-
FRDCI 

Projected food 
consumption at FAO’s 
recommended DCI 

2050 
*102,265,000 
(UNPD, 2013) 

3,000 
(FAO, 2012) 

104,515 

 
 

5. 2050-DECL 
Projected consumption 
at developed economy 
(USA) DCI 

2050 
*102,265,000 
(UNPD, 2013) 

3,700 
(FAOSTAT, 

2013) 
138,109 

 
 

 

*Estimated 

 

2.2 Resource Limits Analysis 

The WLEN resources required to meet the food demand in each of the five scenarios in 

Section 2.1 above are estimated as indicated in sub-sections 2.2.1 to 2.2.4 below. Data 

sources for the calculations include the Uganda Bureau of Statistics (UBOS) database, 

FAO’s FAOSTAT, COUNTRYSTAT and AQUASTAT 2013 databases, the UN Statistics 

Division and International Energy Agency (IEA) Energy Statistics databases. This data was 
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cross-referenced with other peer-reviewed sources as indicated in the corresponding sub-

sections. The results are compared to Uganda’s sustainable resource base of Water, Land, 

Energy and Soil Macronutrients in order to establish the likely sources of resource stress 

and the potential resource-stress interconnections.  

 

In addition, where possible the resource demands have been compared with equivalent 

crop productivities and resource-use of Mexico. The Mexico-equivalent crop productivity 

and equivalent resource-use are used as benchmarks that could be achieved by Uganda in 

2050 using enhanced ‘Green Revolution’ agricultural technologies. The ‘Green Revolution’ 

involves deploying a combination of genetically enhanced crop varieties, fertilizer and 

irrigation, along with corresponding stakeholder training and capacity building. Mexico-

equivalent comparisons are adopted because of Mexico’s success in eradicating hunger and 

achieving economic transformation as a pioneer of the ‘Green Revolution’ approach in the 

1970’s (de Graaff et al., 2011). In addition, Mexico’s situation in the 1970’s shares similarities 

with Uganda’s current condition as a developing country with a comparable rural 

population, rapid population growth and substantial food challenges.  

 

2.2.1 Water 

Based on Rockstrom (2003), the amount of water consumed per year to produce a typical 

diet in Sub-Saharan Africa is 690 m3 (Scenario 1). The same is confirmed by bottom-up 

reverse calculations using the crop-water productivity and actual 2012 agricultural 

production figures for Uganda from UBOS (2012), WB (2013) and FAOSTAT (2013). The 

water-demand to meet the FAO recommended DCI of 3,000 kcal.p.c.d in Scenarios 2 and 4 

is estimated using Rockstrom (2003)’s projected 2030 annual consumptive use of 1,300 m3 

assuming a 20% animal protein diet. The food-water required in Scenarios 3 and 5 is 

calculated using Hanjra & Qureshi (2010, p.369)’s approach, adopting a ratio of 1 litre per 

kcal for 365 days.  

 

These water demands are compared with Uganda’s total annual Internal Renewable Water 

Resource (IRWR) estimated at 39 km3, calculated from precipitation recharge flows using 
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evapotranspiration modelling (AQUASTAT, 2013; WB, 2013). This estimate may decrease in 

subsequent decades due to climate change given that although precipitation is predicted to 

rise over the target period 2050, so will evapotranspiration (Kigobe & Griensven, 2010). The 

results of the water demand calculations and the comparisons are given in Section 3.1. 

 

2.2.2 Land 

Uganda has a land area of 241,550 km2 (UBOS, 2012). 66,000 km2 of this is Arable land 

(FAOSTAT, 2013) with only 41,406 km2 being cultivable (MAAIF, 2011, p.vii). The composite 

12-year average annual grain productivity is estimated at 1.68 tonnes per hectare, 

calculated using grain production statistics from the UBOS (2012) and the FAOSTAT (2013) 

database. Data comparisons were also made with figures from Kraybill et al. (2012, p.3) and 

Kaizzi et al. (2012, p.109).  

 

Allowing for a cereal-based diet and an Average Crop Calorific Content (ACC) per tonne of 

3.9 x 106 kcal (Hollander, 2004, p.41), estimates of the amount of land required for each of 

the five scenarios are calculated using Equation 1. These values are compared with a 

Mexico-equivalent average grain productivity of 3.2 tonnes per hectare (De Fraiture & 

Wichelns, 2010, p.507; FAOSTAT, 2013) as a benchmark that could be achieved using 

enhanced ‘green-revolution’ agricultural technologies. Results are summarised in Figure 4 

in Section 3.2. 

   

𝐿𝑟𝑖 =
(𝐷𝐶𝐼𝑖  × 𝑃𝑖  × 365)

𝐴𝐶𝐶 × 𝐶𝑃𝑖
 

(Equation 1) 

 

i – Scenario number 
Lri – Land required for Scenario i 
DCIi – Daily Calorific Intake per person 
Pi – Population 
ACC – (constant) Average Crop Calorific Content  
CPi – Average Annual Crop Productivity for a given scenario, Uganda & Mexico 

 

 

2.2.3 Energy 

The energy-use in Scenario 1 (current situation) is almost negligible. Out of a total 

estimated energy use of 423,000 TJ in 2012 in Uganda, only 10 TJ was used for agriculture 
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(UNSD, 2012). At present most of the agriculture in Uganda is rain-fed agriculture with low 

levels of mechanisation. Raising the country’s agricultural output to Scenarios 2 to 5 will 

require the use of irrigation, fertilizers, and potentially greater mechanisation.  

 

The amount of energy required to produce a given amount of dietary energy (calorific 

content) can be estimated using the ‘Energy Use Efficiency’ or ‘Energy Ratio’ which is the 

ratio of energy output to energy input (Houshyar et al., 2012, p.674; Soltani et al., 2013, 

p.56). Typical food production energy-ratios for developing countries using improved 

agricultural methods range from a minimum of 4 (Mushtaq et al., 2009, p.3636), to a 

maximum of 12.74 (Houshyar et al., 2012, p.678). Using these values, the minimum and 

maximum energy requirements for Uganda in Scenarios 2 to 5 with enhanced productivity 

are estimated using Equations 2 and 3. Figure 5 in Section 3.3 gives a summary of the 

results.  

 

𝐸𝑟 −𝑚𝑖𝑛𝑖 =
(𝐷𝐶𝐼𝑖  × 𝑃𝑖  × 365 × 4.184 × 10

−9)

𝐸𝐸𝑅𝑚𝑎𝑥
 

(Equation 2) 

𝐸𝑟 −𝑚𝑎𝑥𝑖 =
(𝐷𝐶𝐼𝑖  × 𝑃𝑖  × 365 × 4.184 × 10

−9)

𝐸𝐸𝑅𝑚𝑖𝑛
 

(Equation 3) 

 

i – Scenario number 
Eri – Energy (TJ) required for Scenario i 
DCIi – Daily Calorific Intake  
Pi – Population 
EERmax – Maximum recorded Energy Efficiency Ratio (EER) 
EERmin – Minimum recorded EER 
 
 

2.2.4 Soil Macro-Nutrients 

According to the FAOSTAT (2013) records, Uganda’s current total chemical fertilizer 

consumption (2012-DC, Scenario 1) is 11,634 tonnes. The chemical fertilizer demands for 

Scenarios 2 to 5 are estimated using IFPRI recommended fertilizer input ratios. The Uganda 

Strategy Support Program (USSP) of the IFPRI suggests that a fertilizer input ratio of 60 kg 

N (Nitrogen), 19.4 kg P (Phosphorous), and 24.9 kg K (Potassium) per hectare would be 

sufficient to enhance Uganda’s crop productivity to the benchmark level adopted in this 

study (Namazzi, 2008, p.1). Adopting this ratio along with the amounts of the land required 

for Scenarios 2 to 5 with enhanced crop productivity, the total quantities of N-P-K 
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macronutrients required for Scenarios 2 to 5 are calculated accordingly using equation 4 

below. The results of the analysis are summarised in Figures 6 and 7 in Section 3.4. 

 

𝑆𝑁𝑖 = 𝑈𝐹𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 × 𝐿𝑟𝑖 (Equation 4) 
 

i – Scenario number 
SNi – Soil macronutrient quantity required under given scenario i 

UFnutrient – Average unit quantity of nutrient required per sq.km for Uganda  

Lri – Land (sq.km) required for Scenario i at enhanced crop productivity level  

 

 

2.3 Modelling Resource Flows from Source-to-Final-Service 

This second part of the analysis identifies and tracks the interconnected resource 

constraints as they occur along the various stages of the food system, through a series of 

three interdependent Sankey diagrams, with the focus specifically on the implications for 

food production, processing, distribution and consumption. Source-to-service analysis was 

not done for Uganda’s 2012 chemical fertilizer consumption because of the relatively 

negligible quantities currently used and insufficient data (See Section 3.4; Figures 6 & 7).  

 

The transformations of the WLEN resources in Uganda for the base year 2012 are traced 

from their primary sources through to the final services they provide. At each 

transformation stage (Sankey slice, Si), a vector of data nodes is assembled (Vi,n) 

representing the resource fluxes at that stage. i is the number of the resource 

transformation stage from i = 1 to N; and n = k, j, m etc. are the number of fluxes at stages i 

= 1 to N (see Figure 2 below). Allocation matrices (A) are also generated to map the 

resource fluxes between the transformation stage vectors. The resulting data points are 

verified for transverse and lateral consistency, across and along the Sankey diagram. The 

process is illustrated in Figure 2 below. 

 

The vector and allocation matrix node data is sourced either from bottom-up analysis using 

primary data, GIS (Geographic Information System) modelling or secondary peer-reviewed 

publications (descriptions in Section 4.1-4.3). Data sources employed include the Uganda 

Bureau of Statistics database, FAO’s FAOSTAT, COUNTRYSTAT & AQUASTAT 2013 

databases, the UN and IEA Energy Statistics databases. In addition, ArcGIS geospatial 
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image processing and geo-data modelling were employed for the IRWR evapotranspiration 

modelling, PNV and Land-use analysis, using UBOS/FAO Land-use geo-data (FAO, 2013) 

the Uganda Soil Map (Panagos et al., 2011) and the University of Copenhagen Potential 

Natural Vegetation (PNV) model for Eastern Africa (Lillesø et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Resource Transformation Modelling and Source-to-Service Mapping 

 

The results of the source-to-service resource transformation modelling are visualised using 

Sankey diagrams for each of the resources as shown in Figures 8, 9, and 10 (Section 4). The 

structure of the Sankey diagrams is such that the total inflow fluxes match the outflows 

leaving the diagram (including change in ground water storage in the Water Sankey). 

Sankey diagrams possess unique features that make them well suited to the visualisation of 

the resource fluxes in the Food System. To start with, the relative sizes of the resource 

fluxes in the diagram represent their relative quantities, which provide an explicit visual aid. 

In addition, flux conservation is maintained across the slices (stages) of the system ensuring 

that data points are ‘Mutually Exclusive and Collectively Exhaustive’ (MECE) (Spencer, 

2013). Similar resource mapping using Sankey diagrams can be found in the works of Curmi 

et al. (2013) (California Managed Water Resources), Bajželj et al. (2013) (Global Green 

House Gas Emissions) and Cullen & Allwood (2010a) (Global Energy Flows).  
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3. Resource Limits Analysis Results 

 

The results of the resource demand modelling for each of the WLEN resources for the 5 

food demand scenarios are given here below. 

 

3.1 Water Resource Projections 

The respective water resource-use and demands for scenarios 1 to 5 (2012-DC, 2012-FRDCI, 

2050-DC, 2050-FRDCI and 2050-DECL) are estimated as 24, 45, 105, 133 and 138 km3 

respectively, as illustrated in Figure 3 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Uganda water required for food production: Scenarios 1 to 5 

 

Most of the 24 km3 in the current scenario (2012-DC) (Figure 3) is rain water/green water, 

used in Uganda’s primarily rain-fed agriculture. Changing to irrigation agriculture in order 

to boost productivity and meet the FAO recommended 3,000 kcal.p.c.d dietary 

requirement (2012-FRDCI) would require an estimated 45 km3 of water which exceeds the 

country’s renewable water resource flow by over 15%. Moreover, producing sufficient food 
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in 2050 (Scenarios 3 to 5) would require more than 300% of the country’s renewable water 

resource. A significant challenge emerges when this demand is considered in light of other 

competing demands for water such as domestic access, industrial use, and hydropower 

production.  

 

3.2 Land Analysis 

As the graph in Figure 4 shows, of the 41,406 km2 of Uganda’s land mass that is cultivable, 

an equivalent area of about 36,379 km2 is already used to produce the current food supply 

(Scenario 1, 2012-DC) leaving only about 12% more for expansion assuming ready access.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Uganda land required for food production: Scenarios 1 to 5 

 

However the land required to meet the current food demand at the 3,000 kcal.p.c.d dietary 

intake level (Scenario 2, 2012-FRDCI) with Uganda’s current level of productivity is 

estimated at 57,440 km2. This is almost 40% more than the country’s total cultivable land 

area.  
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Raising the average agricultural productivity to a Mexico-equivalent of 3.2 tonnes per 

hectare for Scenario 2 would help to reduce the land area required to 30,678 km2 (a 47% 

reduction) which would be within the cultivable land limit. Nevertheless, with the 

population projected to grow almost threefold by 2050 (Scenario 2050-FRDCI) the amount 

of land required to meet the recommended 3,000 kcal dietary intake rises to 170,217 km2 at 

current levels of productivity (Figure 4), and 90,911 km2 at an enhanced (Mexico-

equivalent) productivity level. Both are well beyond Uganda’s cultivable or even arable 

land area. The implications of adopting different crop mixes and more advanced and 

energy-intensive agricultural practices remain undetermined. 

 

3.3 Energy Demand 

Uganda has an estimated verified renewable energy potential of 5,300 MW or 167,141 TJ 

per annum comprised of Hydro: 2,200MW, Solar: 200 MW, Biomass: 1650 MW, Geothermal: 

450 MW, and Peat: 800 MW (Buchholz & Da Silva, 2010, p.57; SE4ALL, 2012, p.23). The 

minimum energy required for agricultural production in scenarios 2050-DC, 2050-FRDCI 

and 2050-DECL is estimated at 34,000 TJ, 37,000 TJ, and 45,000 TJ per year respectively, 

while the maximum required for the three scenarios is 109,000 TJ, 117,000 TJ, and 144,000 

TJ respectively (see Figure 5). This amounts to a minimum of 20% – 30% and a maximum of 

65% – 86% of Uganda’s total annual renewable energy potential. Given a target of a 

totally-renewable energy mix for Uganda by 2050, these figures are considerably high when 

compared to the global food-energy percentage of about 18% (Cullen & Allwood, 2010a, 

p.80). 

 

Uganda recently discovered significant deposits of oil (over 3.5 billion barrels) in the Lake 

Albertine region, some of which will be used for energy production (MEMD, 2012). The 

current plan is to dedicate a portion of this oil to generate 100 MW of electricity, which 

would supplement the country’s energy mix by 3600 TJ/year (MEMD, 2012). This resource 

however is unsustainable, would increase the country’s (albeit miniscule) carbon footprint. 
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Figure 5: Uganda Energy Demand for food production, Scenarios 1 to 5 

 

3.4 Soil Macro-Nutrient Analysis 

The results of the analysis of Uganda’s chemical fertilizer demand for Scenarios 1 to 5 are 

summarised in Figures 6 and 7. Figure 6 gives the total tonnage of soil macro-nutrients 

required and Figure 7 is a break-down of the required quantities of each of the N-P-K 

nutrients. 

 

 

 

 

 

 

 

Figure 6: Uganda – 

Total fertiliser required 

for food production in 

Scenarios 1 to 5 
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Figure 7: Breakdown of nutrient quantities required in Scenarios 1-5.  

 

As with Uganda’s currently low agricultural energy-use, most of Uganda’s agriculture at 

present employs very low inputs of chemical fertilizer (Scenario 1). The country currently 

averages less than 2 kg fertilizer per ha per year compared to recommendations of over 120 

kg/ha (Bayite-Kasule, 2009; Namazzi, 2008). Uganda previously had a production capacity 

of 25,000 tonnes of chemical fertiliser per annum, which was destroyed during the civil war 

in the 1970s-80s (UIA, 2013; van Straaten, 2002, p.303). Consequently all the chemical 

fertilizer inputs are now imported, with recent figures showing an annual total of about 

12,000 tonnes (FAOSTAT, 2013). This quantity of fertilizer consumption is almost negligible 

when compared with the over 1.5 million tonnes used in Mexico in the year 2010 

(FAOSTAT, 2013), as illustrated in Figure 6 & 7. Fortunately, Uganda has about 240 million 

tonnes of confirmed Phosphate deposits (13.4 million tonnes of P) contained within an ore 

complex in Sukulu in the East of the country (van Straaten, 2002, p.303). These deposits, 

which are comprised of amongst others: apatite, magnetite, goethite, and pyrochlore 

residual soils, would be enough to satisfy the P fertilizer demand at peak scenario 2050-

DECL for over five decades. However, the implications for N and K macronutrients are yet 

unclear, as their potential quantities remain undetermined.  
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 4. Resource Flow Analysis – Sankey Diagrams  
 

The second part of the analysis involved source-to-service resource transformation 

modelling of Uganda’s Water, Land, and Energy Resource Flows for the year 2012. The 

results of this analysis were visualised using Sankey diagrams as shown in Figures 8, 9 and 

10 below. As mentioned earlier, source-to-service analysis was not carried out for Uganda’s 

2012 chemical fertilizer consumption because of the almost negligible amounts (Figures 6 & 

7).  
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Figure 8: Uganda Managed Water Sankey 2012 (km3): Source-to-Service Snapshot of Uganda’s 2012 Renewable Water Resource. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Uganda Land Sankey 2012 (km2 and TgC): Source-to-Service Snapshot of Uganda’s 2012 Land Resource Area and Productivity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Uganda Energy Sankey 2012 (‘000 TJ): Source-to-Service Snapshot of Uganda’s 2012 Energy Use  
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4.1 Managed Water Sankey 2012 

The summarised approximate stage vectors of the 2012 Uganda Managed Water Sankey 

(Figure 8) are: Stage1 (1.5, 30, 27, 9, 9) [76.5]; Stage2 (1.5, 26, 39, 1, 9) [76.5]; Stage 3 (0.5, 

65, 2, 9) [76.5]; and Stage 4 (0.5, 37, 21, 9, 9) [76.5]. The components of the Water Sankey 

are as follows: As of 2012, Uganda’s estimated long-term total annual Internal Renewable 

Water Resource (IRWR) is 39 km3 (AQUASTAT, 2013; WB, 2013), computed from the 

average precipitation of 1,180mm/year (WB, 2013). External inflows are 27 km3 giving total 

Renewable Water Resources of 66 km3 (AQUASTAT, 2013).  The net IRWR flux to ground 

water is estimated at 9 km3 (Kyosingira et al., 2011, p.14) and the rest apportioned to 

surface water (Figure 8). Hydropower accounts for 39 km3 of surface water flows 

(AQUASTAT, 2013) with 36 km3 used to power the Nalubaale and Bujagali Hydropower 

Stations as of 2012, which is an aggregate of the average annual flow of 1125 m3/s (Zaake, 

2006, p.13-14). The rest of the surface water for energy (3.1 km3) is used to power small 

hydropower projects spread out around the country, such as Buseruka, Bugoye, and 

Nyagak (MoWE, 2012).  

 

Potable water fluxes were calculated using data from the National Water and Sewerage 

Corporation (NWSC) customer database. Treated potable water is the smallest flux at 0.082 

km3 (Figure 8) used for domestic, industrial, commercial and industrial consumption 

(MoWE, 2012 p.89; NWSC, 2012, p.11). 32.6% of the treated water is lost as non-revenue 

water comprising of 0.011 km3 of leaks & bursts, emergency use for firefighting (0.0053 

km3) and illegal consumption (MoWE, 2012, p.89; NWSC, 2012, p.11). Seventy per cent and 

ninety per cent of the water used for sustenance and industry respectively is obtained 

directly from the IRWR without conventional treatment (AQUASTAT, 2013; NWSC, 2012). 

Flows to the environment are estimated at 26 km3. Of particular relevance to Food Security 

are the flows to Agriculture, which are less than 1% of the total IRWR at 0.62 km3. About 1.5 

km3 is avoided water that would otherwise be exploited to produce the food that is 

imported (FAOSTAT, 2013; UBOS, 2012). 
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4.2 Land Sankey 2012 

The Land Sankey (see Figure 9) highlights the extensive deforestation that has occurred in 

Uganda over the years. Over 90% of Uganda’s forest PNV is currently used for small-scale 

farming (about 37 thousand km2), which is a product of decades of rapid deforestation 

(almost 2% p.a.) (UBOS, 2012, p.2). The rest of the small-scale farmland is sourced from 

Grassland PNV (50 thousand km2). Over 20,000 km2 of farmland is degraded non-

productive land generating relatively low amounts of biomass as shown in Figure 9. The 

cultivable land produces the equivalent of about 187 million tonnes of carbon biomass 

equivalent (TgC) inclusive of soil biomass; of which 9 TgC is lost and 173 TgC remains in the 

environment. The difference is combined with imports of 0.55 TgC (avoided biomass that 

would otherwise need to be generated in Uganda) giving a total available food supply 

estimate of 4.2 TgC. About 10% (EU, 2012) is lost post-harvest food losses (0.4 TgC). Of the 

total available food supply, 0.31 TgC is exported, 0.21 TgC (5% approximated) lost during 

consumption and the rest 3.7 TgC comprises the country’s food consumption biomass. Also 

noteworthy is the 11 TgC of fuel biomass, mostly wood and charcoal, that is taken from 

eco-sensitive forests and woodlands. Particularly disconcerting is the estimated 4.7 TgC of 

the tropical forest biomass, which contributes to Uganda’s serious 2% deforestation rate 

(UBOS, 2012, p.2). 

 

4.3 Energy Sankey 2012 

Figure 10 illustrates Uganda’s 2012 Energy Flows. The total energy use is about 420,000 TJ 

(UNSD, 2012) with over 90% derived from unsustainable biomass fuel (370,000 TJ) (UNSD, 

2012). In comparison, this total is equivalent to about 3% of California’s energy use, and 5% 

of Mexico’s (UNSD, 2012). The bulk of the biomass use is for cooking food (360,000) while 

10,000 TJ is used in industry and a tiny amount 160 TJ is used for thermal power generation 

(Buchholz & Da Silva, 2010, p.57). 24,000 TJ is converted biomass in the form of Charcoal. 

The overall biomass burner efficiency is very low (less than 10% - Okello et al., 2013, p.55), 

which translates into unnecessarily high biomass use.  

 

The bulk of Uganda’s electricity mix of 7,000 TJ is generated using renewable hydropower 

(4200 TJ) sourced from the hydropower stations described in section 4.1 (see Figure 8). 2,500 
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TJ is generated using oil powered thermal power plants Aggreko I, III and Namanve (UBOS, 

2012). All the country’s oil-consumption is imported, which places a major strain on the 

country’s foreign exchange reserves and thus economic performance (WB, 2013; Kebede et 

al., 2010, p.533).  

 

Overall, domestic use (cooking) accounts for an estimated 90% of the country’s gross 

energy flux (Figure 10). Gas energy is an almost insignificant 250 TJ used mostly for cooking 

by the urban dwellers in the capital city – Kampala. Transport accounts for 5% with 23,000 

TJ used for passenger transport and 20,000 TJ for freight transport. Notably, this includes 

the distribution of food throughout the country from the major production centres in the 

south west and central regions. Agricultural energy use is an almost negligible 10 TJ that is 

mostly energy used to facilitate the tillage and irrigation in the country’s few plantations 

(UBOS, 2012; UNSD, 2012). The agriculture energy figure specifically represents 

commercial energy use (electricity and oil-fuels). It does not account for other energy forms 

not included in this study such as the human manual labour used in primary agriculture, ox-

plough energy, or the sun’s energy used in crop photosynthesis.  

 

5. Discussion  

The first part of the analysis (Section 3) has shown the extent of the WLEN resource 

developments needed to satisfy possible future food demands up to 2050. The second 

(Section 4) shows how these resources were constrained between different uses as well as 

the connections to the other WLEN nexus resources as of the base year 2012.  The 

implications of these constraints on resource developments towards 2050, and the nexus 

interactions and their policy implications are discussed below. 

 

5.1 Water Resources and Policy Implications 

As discussed previously, over 95% of Uganda’s agriculture is rain-fed, that is 23 km3 of a 

total 24 km3 (Scenario 2012-DC, Section 3.1). To improve the productivity of agriculture in 

the country, Uganda’s agriculture would need to shift from predominantly rain-fed to 

managed water irrigation. This irrigation water would ordinarily be sourced from the 

country’s IRWR. By 2050 over 100 km3 of irrigation water is likely to be required (Scenario 
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2050-FRDCI, Chapter 5). However as observed earlier, about 60% (39 km3 of 66 km3) of 

Uganda’s total water resources is currently used for hydropower production. While 

technically this water should be available for agricultural use downstream, current 

government Energy Policy is to increase dam construction all along the Nile upstream 

towards the country’s outfall point (MEMD, 2012; Zaake, 2006), as illustrated in Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Planned 

Hydropower Projects in 

Uganda.  

 

These dams are primarily for hydropower and thus are not optimised for multipurpose 

irrigation use (MEMD, 2012; Zaake, 2006). According to Uganda’s official irrigation policy 

master plan – A National Irrigation Master Plan for Uganda (2010 - 2035) (MoWE, 2011, p.69) 

no comprehensive studies have yet been undertaken on the use of these hydropower dams 

as multipurpose irrigation schemes.  As a result, their construction may lock the bulk of the 

Nile’s flow in hydropower production, constraining the possibility for large-scale irrigation 

use. Moreover, most of the productive agricultural land is currently in the south of the 

country given the country’s semi-arid northern/north-eastern corridor (MoWE, 2011). 

Appropriating the Nile’s water for irrigation upon completion of the Karuma Dam may 

require energy-consuming pumping to transfer the water back south (Figure 11). This may 

have a significant adverse impact on the country’s energy mix and carbon-footprint.  

1125 m3/s 
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A likely casualty of this resource challenge could be the current flow of 26 km3 to Eco-

system services (see Figure 8) which would result in serious environmental repercussions. 

An alternative approach would be to harness more rainwater into IRWR for irrigation. 

However, this would require more land for valley dams and energy to pump the water to 

the farms. Future water resource policy should therefore in addition examine the prospects 

of converting the existing and planned hydropower projects into multipurpose schemes 

optimised for irrigation. 

 

5.2 Land Discussion 

The 2050-FRDCI scenario would require anywhere between 90,911 km2 and 170,217 km2 of 

land (Figure 4), well beyond the 41,406 km2 of Uganda’s available cultivable land area. 

Therefore, meeting Uganda’s potential food demand by the year 2050 at current growth 

rates would require radical shifts in land use, calling not only for the restoration of the 

degraded arable lands but also the drastic appropriation of sensitive ecological and high 

economic value lands, amidst competition from rapid urbanisation. This could be through 

converting the 23,067 km2 of land under permanent/cash crops such as coffee, cotton and 

oil-palm plantations (UBOS, 2012), which are a key source of both individual and national 

income, or appropriating the 51,153 km2 of permanent meadows and grasslands that 

currently serve as protected reserves, wildlife sanctuaries and grazing areas (UBOS, 2012). 

 

As shown in the Land Sankey (Figure 9), Uganda required an estimated 4.5 TgC of food 

biomass as of 2012 (Scenario 2012-FRDCI) to feed its current population, which is about 

20% more food than the inadequate 3.7 TgC currently consumed. The projections for the 

2050 scenarios are anywhere from 12 – 16 TgC, almost 3 to 4 times the current quantities. 

The Land Sankey analysis shows that the eco-sensitive Grasslands currently produce over 

1.3 thousand TgC (see Figure 9), which would easily meet the potential food demand of 16 

TgC by 2050. This makes them the primary candidate for further encroachment in the 

2050-FRDCI scenario. Protecting these areas may therefore become increasingly difficult as 

the demand for productive agricultural land grows towards 2050. Opening these areas up 

for agricultural use could result in major environmental degradation to the eco-system 

services they provide. This would lead to the loss of key services such as natural biodiversity 

and eco-system resilience, watershed services, and carbon sequestration services. 
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5.3 Energy Discussion 

Uganda could require an estimated 1.2 billion tonnes of fertilizer annually (Section 3.4) and 

over 100 km3 of irrigation water in the year 2050 (Section 3.1) to achieve the ‘green-

revolution’ level of crop productivity. The combined energy footprints of the required 

irrigation and fertiliser use, as well as the increased freight transport for food distribution 

are likely to conflict with the country’s other development energy priorities. The 2050-

FRDCI and 2050-DECL food demand scenarios would require 117,000TJ and 144,000 TJ of 

power per year respectively for food production, which is over 70% of Uganda’s annual 

renewable energy potential of 167,141 TJ (Section 3.3).  

 

In addition, the increased road transport necessary to improve the distribution component 

of Uganda’s food system may generate anywhere in the order of 60% - 150% more traffic 

(Kamuhanda & Schmidt, 2009). From the Energy Sankey (Figure 10), this may increase the 

2012 freight transport demand of 20,000 TJ to up to 50,000 TJ by 2050. The combined 

production and distribution demand would exceed Uganda’s annual renewable energy 

resources potential. This would make it impractical to hope for a totally renewable energy 

mix target, given that food-energy as of 2010 accounted for only about 18% of the global 

energy mix (Cullen & Allwood, 2010a, p.80). These scenarios reveal that policies aimed at 

increasing Uganda’s agricultural productivity and distribution-efficiency are likely to face 

serious energy constraints, coupled with increased competition for both land and managed 

water resources to produce the required fuel energy resources. 

 

The Energy Sankey (Figure 10) illustrates in vivid detail that the largest impact on energy 

policy could be made by improving the efficiency of biomass use in the country. The 

environmental footprint of Uganda’s biomass energy consumption is staggering. The result 

has been the rapid deforestation witnessed in the country (SE4ALL, 2012, p.25). This is the 

basis of the concerted efforts by the Uganda government with support of German Agency 

for International Cooperation (GIZ), to disseminate improved biomass stoves throughout 

the country (Okello et al., 2013, p.59).  A similar observation is made in Cullen and Allwood 

(2010b) who looked at global energy efficiencies and found that improving biomass burning 

in developing countries would have the single biggest impact that could be made, to reduce 
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wasted energy and CO2 emissions (Cullen and Allwood, 2010b, p.2066). Uganda’s food-

energy policy must therefore be coupled with comprehensive biomass conservation 

interventions to meet the 2050 food security energy demand. 

 

6. Conclusion 

This study has provided a detailed baseline analysis of the WLEN nexus resources in 

Uganda, highlighting their interconnections and dependencies in relation to the current 

and potential food demand. The inferences reveal evident limits across all four resources 

that appear to worsen towards 2050 (Scenarios 3 to 5, Section 3), with P fertilizer having the 

least constraint given the country’s large ore deposits (Section 3.4). In particular, 2050 food 

security would require almost 3 times Uganda’s long-term annual Internal Renewable 

Water Resource (IRWR), 4 times the available cultivable land area, and over 70% of the 

country’s annual renewable energy potential. Moreover, interconnections between the 

WLEN resources compound the food security challenge for Uganda. In particular, increased 

managed water use and fertilizer production may be constrained by hydropower 

production for other development priorities. As a consequence, achieving food security in 

2050, even with enhanced agricultural productivity and ‘green-revolution’ techniques, may 

still come at a cost of the coupled depletion of water resources for eco-system services, 

destruction of eco-sensitive protected lands, and the disproportionate consumption of the 

country’s renewable energy potential.  Given the co-dependent nature of the stresses 

identified in the analysis, it is imperative that Uganda’s food and WLEN resource policies be 

integrated to give holistic remedies to achieving 2050 food security. There is a need for co-

optimisation of resource use and the associated dependencies between the different 

resources demands. An example would be pursuing innovative methods of waste-water re-

use and nutrient recovery to avoid the energy demands associated with commercial 

fertilizer. The analysis also points to the need for demand-side interventions such as 

population growth management and the reduction of post-harvest food losses towards 

2050. 

 

Word Count (9,858) – Word Limit 10,000 

 



   

 
 

 

 

33 

References 

AQUASTAT, 2013. Food and Agriculture Organization of the United Nations AQUASTAT 

online database. http://www.fao.org/nr/aquastat [Accessed 29-03-2013] 

AusAID., 2008. Food security in Africa. Towards a Support Strategy for Australia. AusAID 

Office of Development Effectiveness. Canberra 

Bajželj, B., Allwood, J. M., & Cullen, J. M., 2013. Designing Climate Change Mitigation Plans 

That Add Up. Environmental Science & Technology. doi:10.1021/es400399h  

Bayite-Kasule, S., 2009. Inorganic fertilizer in Uganda — Knowledge gaps , profitability , 

subsidy , and implications of a national policy. Uganda Strategy Support Program 

(USSP. Brief No.8. International Food Policy Research Institute (IFPRI) 

Buchholz, T., & Da Silva, I., 2010. Potential of distributed wood-based biopower systems 

serving basic electricity needs in rural Uganda. Energy for Sustainable Development, 

14(1), 56–61. doi:10.1016/j.esd.2010.01.002 

CAADP, 2013. Website. http://www.nepad.org/foodsecurity/agriculture/about [Accessed 

15-04-2013] 

Cullen, J. M. and Allwood, J.M., 2010a. The Efficient use of energy: Tracing the global flow 

of energy from fuel to service. Energy Policy 38:75–81 

Cullen, J. M. and Allwood, J.M., 2010b. Theoretical efficiency limits for energy conversion 

devices. Energy 35(5), 2059–2069 

Curmi, E., Richards, K., Fenner, R., Allwood, J. ., Kopec, G. M., & Bajželj, B., 2013. 

Visualising a stochastic model of California water resources using Sankey diagrams. 

Water Resources Management 27:3035–3050 

Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A., & Rodriguez-Iturbe, I., 2012. Evolution of the 

global virtual water trade network. Proceedings of the National Academy of Sciences 

of the United States of America, 109(16), 5989–94. doi:10.1073/pnas.1203176109 

De Fraiture, C., & Wichelns, D., 2010. Satisfying future water demands for agriculture. 

Agricultural Water Management, 97(4), 502–511. doi:10.1016/j.agwat.2009.08.008 

De Graaff, J., Kessler, A., & Nibbering, J. W., 2011. Agriculture and food security in selected 

countries in Sub-Saharan Africa: diversity in trends and opportunities. Food Security, 

3(2), 195–213. doi:10.1007/s12571-011-0125-4 



   

 
 

 

 

34 

ECA (European Court of Auditors), 2012. Effectiveness of European Union, Development 

Aid for Food Security in Sub-Saharan Africa. 

Ericksen, P. J., 2008. Conceptualizing food systems for global environmental change 

research. Global Environmental Change, 18(1), 234–245. 

doi:10.1016/j.gloenvcha.2007.09.002 

EU (European Union), 2012. 2011/2012 European Report on Development, Confronting 

Scarcity: Managing Water, Energy and Land for Inclusive and Sustainable Growth. 

FAO, 2006. Uganda. Country Pasture/Forage Resource Profiles. [Online]. Available at 

http://www.fao.org/ag/AGP/AGPC/doc/Counprof/uganda/uganda.htm#3.%20CLIMAT

E%20AND%20AGROECOLOGICAL [Accessed 29-05-2013] 

FAO, 2012. The State of Food Insecurity in the World 2012. Economic growth is necessary 

but not sufficient to accelerate reduction of hunger and malnutrition. 

FAO, 2013. Land cover of Uganda - Globcover Regional Online at 

http://www.fao.org/geonetwork/srv/en/metadata.show?id=37215&currTab=simple 

[Accessed 22-05-2013] 

FAOSTAT, 2013. Food and Agriculture Organization of the United Nations FAOSTAT online 

database. http://www.fao.org/nr/aquastat [Accessed 19-03-2013] 

Hanjra, M. A., & Qureshi, M. E., 2010. Global water crisis and future food security in an era 

of climate change. Food Policy, 35(5), 365–377. 

Hollander, J. M., 2004. The Real Environmental Crisis: Why Poverty, Not Affluence, Is the 

Environment’s Number One Enemy. University of California Press. 

Houshyar, E., Azadi, H., Almassi, M., Sheikh Davoodi, M. J., & Witlox, F., 2012. Sustainable 

and efficient energy consumption of corn production in Southwest Iran: Combination 

of multi-fuzzy and DEA modeling. Energy, 44(1), 672–681. 

doi:10.1016/j.energy.2012.05.025 

IFPRI (International Food Policy Research Institute), 2012. 2012 Global Food Policy Report. 

Washington, D.C. 

Ingram, J., 2011. A food systems approach to researching food security and its interactions 

with global environmental change. Food Security, 3(4), 417–431. doi:10.1007/s12571-

011-0149-9 



   

 
 

 

 

35 

Jayne, T. S., Mather, D., & Mghenyi, E., 2010. Principal Challenges Confronting Smallholder 

Agriculture in Sub-Saharan Africa. World Development, 38(10), 1384–1398. 

doi:10.1016/j.worlddev.2010.06.002 

Kaizzi, K. C., Byalebeka, J., Semalulu, O., Alou, I. N., Zimwanguyizza, W., Nansamba, A., 

Odama, E., et al., 2012. Optimizing smallholder returns to fertilizer use: Bean, soybean 

and groundnut. Field Crops Research, 127, 109–119. doi:10.1016/j.fcr.2011.11.010 

Kamuhanda, R., & Schmidt, O., 2009. Matatu: A Case Study of the Core Segment of the 

Public Transport Market of Kampala, Uganda, Transport Reviews: A Transnational 

Transdisciplinary Journal, 29:1, 129-142 

Kebede, E., Kagochi, J., & Jolly, C. M., 2010. Energy consumption and economic 

development in Sub-Sahara Africa. Energy Economics, 32(3), 532–537. 

doi:10.1016/j.eneco.2010.02.003 

Kigobe, M., & Griensven, A. Van., 2010. Assessing hydrological response to change in 

climate : Statistical downscaling and hydrological modelling within the upper Nile. In 

D. A. Swayne, W. Yang, A. A. Voinov, A. Rizzoli, & T. Filatova (Eds.), IEMSs 2010 

International Congress on Environmental Modelling and Software. Modelling for 

Environment’s Sake (pp. 2096–2105. Ottawa, Canada. 

Kijima, Y., Otsuka, K., & Sserunkuuma, D., 2011. An Inquiry into Constraints on a Green 

Revolution in Sub-Saharan Africa: The Case of NERICA Rice in Uganda. World 

Development, 39(1), 77–86. doi:10.1016/j.worlddev.2010.06.010 

Kraybill, D., Bashaasha, B., & Betz, M., 2012. Production and Marketed Surplus of Crops in 

Uganda , 1999-2006. Uganda Strategy Support Program (USSP. Brief No.9. 

International Food Policy Research Institute (IFPRI) 

Kyosingira, F. W., Mwesigwa, D. N., Twikirize, D., & Twinimuhangi, M., 2011. THE 

DECLINING TRENDS OF WATER RESOURCES IN UGANDA; A Case study of River 

Rwizi, Lake Wamala, Lake Victoria Catchments and representative Groundwater 

Monitoring stations. Entebbe: Government of Uganda. Water Resources Monitoring & 

Assessment Division. Directorate of Water Resources Management. 

Lillesø, J.-P. B., van Breugel, P., Kindt, R., Bingham, M., Sebsebe Demissew, Dudley, C., 

Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H.N., Mulumba, J., 

Namaganda, M., Ndangalasi, H.J., Ruffo, C.K., Jamnadass, R. and Graudal, L., 2011. 



   

 
 

 

 

36 

Potential natural vegetation of eastern Africa. Volume 1: The Atlas. Forest & 

Landscape Working Paper 61-2011 

MAAIF., 2012. Agriculture Sector Performance Summarised Report. Kampala. 

MAAIF., 2011. Government of Uganda, Ministry of Agriculture, Animal Industry and 

Fisheries. Statistical Abstract 2011. Kampala. 

McCartney, M. P., & Girma, M. M., 2012. Evaluating the downstream implications of 

planned water resource development in the Ethiopian portion of the Blue Nile River. 

Water International, 37(4), 362–379. 

MEMD (Government of Uganda, Ministry of Energy & Mineral Development), 2012. Annual 

Report 2011. [Online] Available at: 

http://www.energyandminerals.go.ug/uploads/reports/MINISTRY%20OF%20ENERGY

%20AND%20MINERAL%20DEVELOPMENT.pdf [Accessed 25-05-2013] 

Mmadu, B.A. and Akan, D.C., 2013. Inefficient subsidy in Nigerian oil sector; Implications 

for revenue generation and household welfare in Nigeria. International Journal of 

Revenue Management, 7(1), pp. 75-90. 

MoWE, 2011. A National Irrigation Master Plan for Uganda, 2010 - 2035. [Online] Available 

at: http://www.mwe.go.ug/index.php [Accessed 08-10-2013] 

MoWE (Government of Uganda, Ministry of Water & Environment), 2012. Uganda Water 

And Environment Sector Performance Report 2012. [Online] Available at: 

http://www.mwe.go.ug/index.php?option=com_docman&task=cat_view&gid=15&Ite

mid=223 [Accessed 18-06-2013] 

Mushtaq, S., Maraseni, T. N., Maroulis, J., & Hafeez, M., 2009. Energy and water tradeoffs 

in enhancing food security: A selective international assessment. Energy Policy, 37(9), 

3635–3644. doi:10.1016/j.enpol.2009.04.030 

Namazzi, J., 2008. Use of inorganic fertilizers in Uganda. Uganda Strategy Support 

Program (USSP. Brief No.4. International Food Policy Research Institute (IFPRI) 

NWSC., 2012. CORPORATE PLAN 2012-2015. Kampala, Uganda: National Water and 

Sewerage Corporation. 

Okello C., Pindozzi S., Faugno S., Boccia L., 2013. Development of bioenergy technologies 

in Uganda: A review of progress, Renewable and Sustainable Energy Reviews, Volume 

18, February 2013, Pages 55-63,  



   

 
 

 

 

37 

Panagos P., Jones A., Bosco C., Senthil Kumar P.S., 2011. European digital archive on soil 

maps (EuDASM): Preserving important soil data for public free access, International 

Journal of Digital Earth, 4 (5), pp. 434-443. Online at 

http://eusoils.jrc.ec.europa.eu/esdb_archive/eudasm/africa/images/maps/download/af

r_ug2002_1si.jpg [Accessed 14-05-2013] 

Rockström, J., 2003. Water for food and nature in drought-prone tropics: vapour shift in 

rain-fed agriculture. Philosophical transactions of the Royal Society of London. Series B, 

Biological sciences, 358(1440), 1997–2009. doi:10.1098/rstb.2003.1400 

SE4ALL., 2012. Sustainable Energy for ALL Energy Rapid Assessment and Gap Analysis. 

Government of Uganda Ministry of Energy and Mineral Development. Kampala. 

Soltani, A., Rajabi, M. H., Zeinali, E., & Soltani, E., 2013. Energy inputs and greenhouse 

gases emissions in wheat production in Gorgan, Iran. Energy, 50, 54–61. 

doi:10.1016/j.energy.2012.12.022 

Spencer, T., 2013. MECE Framework. [Online] Available at 

http://www.tomspencer.com.au/2013/01/30/mece-framework/ [Accessed 18-06-2013] 

Tadele, Z., Assefa, K., 2012. Increasing Food Production in Africa by Boosting the 

Productivity of Understudied Crops. Agronomy, 2(4), 240–283. 

doi:10.3390/agronomy2040240 

UBOS (Uganda Bureau of Statistics), 2012. 2012 Statistical Abstract. Retrieved from 

http://www.ubos.org/onlinefiles/uploads/ubos/pdfdocuments/2012StatisticalAbstract.

pdf [Accessed 12-06-2013] 

UIA, 2013. Mining Sector Profile. Uganda Investment Authority. Retrieved from 

http://www.ugandainvest.go.ug/index.php/mining [Accessed 25-05-2013] 

UNECA (United Nations Economic Commision for Africa), 2009. The Status of Food 

Security in Africa. Addis Ababa, Ethiopia. 

UN-HABITAT, 2013. STATE OF THE WORLD ’ S CITIES Report 2012/2013: Prosperity of 

Cities. 

UNPD (United Nations Population Division), 2013. http:// 

esa.un.org/wpp/unpp/p2k0data.asp. Online [Accessed 28-06-13] 

UNSD (United Nations Statistics Division), 2012. Energy Statistics Database. Online 

available at: http://unstats.un.org/unsd/energy/edbase.htm [Accessed 19-06-2013] 



   

 
 

 

 

38 

USAID., 2012. EAST AFICA Food Security Outlook, March to June 2012. FEWSNET. 

Washington. DC 

Van Straaten, P., 2002. Rocks for Crops: Agrominerals of sub-Saharan Africa. Nairobi, 

Kenya,: ICRAF. Retrieved from 

http://www.uoguelph.ca/~geology/rocks_for_crops/54uganda.PDF [Accessed 22-07-

2013] 

WB (World Bank), 2013. ‘World DataBank’ Online Database. http:// 

databank.worldbank.org/data/views/reports/tableview.aspx [Accessed Feb-July 2013] 

WFP (World Food Program), 2012. Overview of Operations in 2012. Online at http:// 

documents.wfp.org/stellent/groups/public/documents/op_reports/wfp242511.pdf 

[Accessed 05-06-2013] 

WOCAT., 2009. SLM in Practice: Guidelines & Case Studies. WOCAT (World Overview of 

Conservation Approaches and Technologies) & FAO. 

Zaake, B., 2006. Use of Decision Support Systems for Improved Planning and Operation of 

Large Dams along the Victoria Nile. PhD Proposal. University of Kwa-Zulu Natal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 
 

 

 

39 

List of Figure Captions 

Figure 1: Food System and WLEN Nexus Interconnections; Scope of the study. ................................. 5 

Figure 2: Resource Transformation Modelling and Source-to-Service Mapping ............................... 18 

Figure 3: Uganda water required for food production: Scenarios 1 to 5 ............................................. 19 

Figure 4: Uganda land required for food production: Scenarios 1 to 5................................................ 20 

Figure 5: Uganda Energy Demand for food production, Scenarios 1 to 5 ........................................... 22 

Figure 6: Uganda – Total fertiliser required for food production in Scenarios 1 to 5 .......................... 22 

Figure 7: Breakdown of nutrient quantities required in Scenarios 1-5. ............................................... 23 

Figure 8: Uganda Managed Water Sankey 2012 (km3): Source-to-Service Snapshot of Uganda’s 2012 

Renewable Water Resource. ................................................................................................................ 25 

Figure 9: Uganda Land Sankey 2012 (km2 and TgC): Source-to-Service Snapshot of Uganda’s 2012 

Land Resource Area and Productivity .................................................................................................. 25 

Figure 10: Uganda Energy Sankey 2012 (‘000 TJ): Source-to-Service Snapshot of Uganda’s 2012 

Energy Use ............................................................................................................................................ 25 

Figure 11: Planned Hydropower Projects in Uganda. .......................................................................... 29 

 


