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Summary of the thesis

“The Fukaya category, exotic forms and exotic autoequivalences”

by Richard Mark Harris:

A symplectic manifold is a smooth manifold M together with a choice of a

closed non-degenerate two-form. Recent years have seen the importance of associ-

ating an A∞-category to M , called its Fukaya category, in helping to understand

symplectic properties of M and its Lagrangian submanifolds. One of the princi-

ples of this construction is that automorphisms of the symplectic manifold should

induce autoequivalences of the derived Fukaya category, although precisely what

autoequivalences are thus obtained has been established in very few cases.

Given a Lagrangian V ∼= CPn in a symplectic manifold (M,ω), there is an

associated symplectomorphism φV of M . In Part I, we define the notion of a

CPn-object in an A∞-category A, and use this to construct algebraically an A∞-

functor ΦV , which we prove induces an autoequivalence of the derived category

DA. We conjecture that ΦV corresponds to the action of φV and prove this in

the lowest dimension n = 1. We also give examples of symplectic manifolds for

which this twist can be defined algebraically, but corresponds to no geometric

automorphism of the manifold itself: we call such autoequivalences exotic.

Computations in Fukaya categories have also been useful in distinguishing cer-

tain symplectic forms on exact symplectic manifolds from the “standard” forms.

In Part II, we investigate the uniqueness of so-called exotic structures on certain

exact symplectic manifolds by looking at how their symplectic properties change

under small nonexact deformations of the symplectic form. This allows us to dis-

tinguish between two exotic symplectic forms on T ∗S3∪2-handle, even though the

standard symplectic invariants such as their Fukaya category and their symplec-

tic cohomology vanish. We also exhibit, for any n, an exact symplectic manifold

with n distinct, exotic symplectic structures, which again cannot be distinguished

by symplectic cohomology or by the Fukaya category.
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Chapter 1

Introduction

This thesis comprises two parts: in the first I construct a class of autoequiva-

lences of triangulated A∞-categories, and in the second I develop a new way of

distinguishing between symplectic forms on exact symplectic manifolds, which

the standard invariants do not suffice to distinguish.

The underlying theme here is to understand a symplectic manifold in terms

of its Fukaya category, so in this introduction, I shall explain what this object

is. I shall also give some background to explain the context of my results and

include some discussion on the questions that these results themselves pose.

1.1 Fukaya categories

We recall that a symplectic manifold (M,ω) is given by a smooth manifold M2n

together with a closed non-degenerate 2-form ω. In particular, this picks out the

set of Lagrangian submanifolds, embedded submanifolds Ln such that ω|L = 0.

Following Gromov [21] and Floer [16] the main approach to studying the topology

of symplectic manifolds and their Lagrangian submanifolds is via studying the

spaces of J-holomorphic curves contained in M , for some compatible almost com-

plex structure J . A particularly sophisticated way of encoding this information

is the Fukaya category.

Under favourable circumstances, we can assign to a symplectic manifold (M,ω)

an A∞-category called its Fukaya category F(M,ω). The precise definition usually
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1. INTRODUCTION

depends on context, in part because for many years many aspects of the theory

were poorly understood; however, following the monumental work of Fukaya, Oh,

Ohta and Ono [18], there is more of a general framework in place. Here we shall

present a heuristic definition of F(M,ω) in order that the results of this thesis

can be better put in some sort of context. We shall not give too many technical

details: the major references are [18] and [39], although the relevant background

material from the theory of A∞-categories can be found in Chapter 2 and an in-

depth discussion of some of the holomorphic curve theory can be found in Chapter

8.

Firstly, we choose some almost-complex structure J on M and suppose that

2c1(M) = 0. This means that we can pick some quadratic complex volume form

η2, which gives a trivialization of the bicanonical bundle K⊗2
M . Let Gr(TM)

denote the bundle of Grassmanians of Lagrangian subspaces of TM and consider

the associated square-phase map

αM : Gr(TM)→ S1, αM(Λ) =
η2(v1 ∧ · · · ∧ vn)

|η2(v1 ∧ · · · ∧ vn)|
.

The Fukaya category F(M,ω) has objects given by Lagrangian branes L[ =

(L, α̃L, $L). Here

• L is a closed Lagrangian submanifold of M , which admits a grading (see

below).

• α̃L is a grading: for any Lagrangian submanifold L, there is an obvious

map sL : L→ Gr(TM) defined by sL(x) = TxL. A grading of L is a lift of

αM ◦ sL : L→ S1 to a map α̃L : L→ R. When this lifts exists, it allows us

to put a Z-grading on the hom-spaces of F(M,ω) [37].

• $L is some Spin structure on L. This will be used to define orientations on

the moduli spaces of holomorphic curves that are involved in defining the

A∞-maps, so that we can define F(M,ω) over fields of arbitrary character-

istic. If we were happy to forgo this, we could work just in characteristic 2.

There are, however, weaker conditions than the existence of Spin structures

in which we can still define such orientations, see Remark 5.10 or [18].

2



1.1. Fukaya categories

Given any two such branes (L[0, L
[
1), we define some perturbation datum (H,J)

associated to this pair. Here H = (Ht) is a Hamiltonian such that the time-1

Hamiltonian flow φ1
H(L0) intersects L1 transversely, and J = (Jt)t∈[0,1] is some

family of almost complex structures on M that are chosen generically to satisfy

certain transversality conditions, so that the moduli spaces of holomorphic curves

that we consider below are smooth manifolds (see Chapter 8 for more precise

details).

We can now define homF(M,ω)(L
[
0, L

[
1) as the vector space ⊕x∈φ1(L0)tL1

ΛR〈x〉,
the so-called Floer cochain complex CF (L0, L1). Here ΛR is the real Novikov field

ΛR =

{∑
r

arq
r : r, ar ∈ R, r →∞,#{ar 6= 0 : r < E} <∞ for all E

}

of power series in the formal parameter q. We may use the gradings α̃Li
to put a

Z-grading on homF(M,ω)(L
[
0, L

[
1) [37].

For points y0, . . . , yd with yi ∈ hom(Li−1, Li) and y0 ∈ hom(L0, Ld), we can,

for some appropriately defined J, consider the moduli space Md
J(y0, . . . , yd) of

J-holomorphic maps u : D \ {p0, . . . , pd} →M from the disc with d+ 1 boundary

punctures and equipped with strip-like ends into M , such that the ends converge

to the yi and the boundary components are sent to the Lagrangians Li. This

allows us to define d-multilinear maps on our hom-spaces

µd(yd, . . . , y1) =
∑
u∈Md

qE(u)y0,

where the sum is taken over the curves u in the zero-dimensional part of our mod-

uli space Md and E(u) =
∫
‖∂su‖2 is the energy of the curve u. It is important to

note that this sum may be infinite. However, Gromov compactness ensures that

there will only be finitely many curve classes below any given energy level E, so

that these maps are well-defined over ΛR. Now, in favourable circumstances (for

example, when π2(M) = π2(M,Li) = 0), analysing the boundaries of compactifi-

cations of the one-dimensional parts of these moduli spaces, gives us an infinite

3



1. INTRODUCTION

family of relations called the A∞-relations:∑
m,n

(−1)6nµd−m+1(ad, . . . , an+m+1, µ
m(an+m, . . . , an+1), an, . . . , a1) = 0, (1.1)

where 6n = |a1|+· · ·+|an|−n and |ai| denotes the grading of ai. In particular, µ1

is a differential so we can consider the so-called Donaldson category H(F(M,ω)),

the cohomological category of F(M,ω) such the morphism spaces are now the

familiar Floer cohomology groups. However this process forgets any information

contained in the higher-order terms, so instead we consider the derived Fukaya

category DF(M,ω), a triangulated category obtained from F(M,ω) by a purely

algebraic process that is recalled in Chapter 2. We may also consider DπF(M,ω)

the Karoubi (or idempotent) completion of DF(M,ω), which incorporates addi-

tional objects for idempotent endomorphisms. The derived Fukaya category is

one of the main objects of study in Kontsevich’s celebrated Homological Mirror

Symmetry conjecture [26] and is the main object we shall use to study symplectic

manifolds in this thesis.

Of course, much of the above turns out to be too näıve in general, so we make

some more technical remarks.

Recall that, in order for the A∞-relations to hold, we look at compactifications

of our moduli spaces of curves. Standard results say that compactifying adds so-

called broken solutions along with curves with bubble components, either sphere

bubbles on the interior or disc bubbles on the boundary. The A∞-relations (1.1)

follow from the case when there is breaking but no bubbling, so we want to say

that we can remove this potential bubbling obstruction. The issue of sphere bub-

bles is often not serious: dimensional formulae show that spheres will sometimes

appear in sufficiently high codimension that they can be avoided by a judicious

choice of J, for instance in the Calabi-Yau case (see Chapter 8).

Disc bubbles, however, are a more serious issue. The moduli space M(L; β)

of unparametrized holomorphic discs in the homotopy class β ∈ π2(M,L) has

expected dimension

n+m(β)− 3,

where m(β) denotes the Maslov index of β. If we now consider the moduli

4



1.1. Fukaya categories

space of discs with one boundary puncture M1(L; β), there is an evaluation map

ev : M̄1(L; β)→ L and we can define

µ0(L) =
∑

β∈π2(M,L)

qω(β)ev∗([M̄1(L; β)]).

Now, when we examine whether µ1 is a differential, we find that

µ1(µ1(x)) = µ2(µ0(L1), x)− µ2(x, µ0(L0)).

If µ0(L0) = µ0(L1) and this element is central (for example, some multiple of

the fundamental class), then there are no problems, but this will not be true in

general. Furthermore, for higher orders we now get a series of relations like (1.1),

except they now include extra µ0 terms - this is often called a curved A∞-category.

One potential solution is to deform the µd on F(M,ω): choose bi ∈ CF 1(Li, Li)

and let

µdb(ad, . . . , a1) =
∑

µd+l(bd, . . . , bd, ad, bd−1, . . . , bd−1, ad−1, . . . , a1, b0, . . . , b0).

If µ0 +µ1(bi)+µ2(bi, bi)+ . . . = 0, then the µdb define a new uncurved A∞-category

structure on F(M,ω) and we may proceed as before. Such bi are called bounding

cochains. If they exist we can still form the Fukaya category and the Lagrangians

are said to be weakly unobsructed. This however does not cover all cases, so there

are still occasions when we cannot hope to define a nonempty category F(M,ω).

Nevertheless, if we have an exact symplectic manifold (M,ω = dθ) and restrict

attention to exact Lagrangians (meaning that θ|L = df), then these obstruction

issues disappear trivially by Stokes’ theorem. Here we should also impose some

sort of convexity condition at infinity (see the definition of Liouville manifold in

Chapter 6) in order to stop holomorphic curves escaping to infinity. In such a

situation, the use of maximum principles yields global energy bounds on holo-

morphic curves, so that one can set q = 1 in our Novikov field and work over R,

or even just Z if we wish. One of the main technical difficulties in Part II lies

in trying to make a proof that works in the exact case carry over to a nonexact

setting. Then we do need to worry about bubbling issues, although we manage

5



1. INTRODUCTION

to find more elementary ways around these problems without needing to discuss

bounding cochains as above (see Chapter 8.7).

We also remark that this approach to defining F(M,ω) involves a lot of choices:

to define the moduli spaces Md we have to choose Hamiltonians and families of

almost complex structures. It is a delicate issue to show that we can choose

such data consistently in defining the moduli spaces Md for each d so that we can

establish the A∞-relations, and to show that the result is (up to quasi-equivalence)

independent of choices (see, for example, [39, Chapter 12] for a discussion of this).

We shall not need to worry about such considerations in what follows.

1.2 Symplectomorphism groups

In order for F(M,ω) to be a useful symplectic invariant, it must behave well

under symplectomorphisms φ ∈ Aut(M,ω). Note first that this will not be true

for general symplectomorphisms, due to the extra data involved in setting up

F(M,ω): for example, we must restrict to symplectomorphisms that preserve

the quadratic volume form η2, and so our trivialization of K⊗2
M , up to homotopy.

We call the subgroup of such symplectomorphisms that preserve all our required

structure Autc(M,ω).

Given φ ∈ Autc(M,ω), and a Lagrangian brane L[ ∈ M , we see that φ(L)

automatically inherits a natural brane structure. Similarly, by considering φ∗J ,

φ will have a well-defined action on the A∞-structure, so that we do get a map

Φ: F(M,ω) → F(M,ω) induced from φ. We also observe that Hamiltonian

symplectomorphisms lie in Autc and, by the Hamiltonian invariance of the whole

Floer theory package, we see that, once we pass to the derived categoryDF(M,ω),

these should act trivally. More generally, there should be a canonical map

Autc(M,ω)/Ham(M,ω)→ Auteq(DF(M,ω))/〈[1]〉 (1.2)

where on the right we quotient out by the shift autoequivalence.

However, as far as the action of this map on specific symplectomorphisms

goes, one of the few nontrivial results we have to date comes from Dehn twists:

given a Lagrangian sphere V ⊂ M , together with a choice of diffeomorphism

6



1.2. Symplectomorphism groups

f : V → Sn, there is a symplectomorphism τV called the Dehn twist about V

[38] (the definition of τV requires certain choices, but the result is well-defined

in Autc(M,ω)/Ham(M,ω)). Algebraically, we can also define the notion of a

spherical object V in an A∞-category A and define a related functor TV : DA→
DA. Seidel [39, 38] has proven that, given another Lagrangian L, τVL and TVL

give rise to isomorphic objects in DF(M,ω) (from this point onward we drop the

[ signs and brane terminology as it forms no serious part of our discussion in

what follows). It is expected that ongoing work on Lagrangian correspondences

should imply that the functors τV and TV are in fact canonically isomorphic in

H0(fun(F(M,ω),F(M,ω))).

The existence of Dehn twists relies on the fact that the geodesic flow on the

round sphere is periodic, and there is a related construction that defines “twist”

symplectomorphisms for any Lagrangian submanifold admitting a metric with

periodic geodesic flow [37]. In Part I, we focus attention on the projective twist

φV associated to a Lagrangian V ∼= CPn.

In Chapter 3, we shall define the notion of a CPn-object in an A∞-category

and in the case when A is a triangulated A∞-category (see Chapter 2) we use

V to define a functor ΦV : A → A. In Chapter 4 we prove Theorem 4.1 stat-

ing that, given a CPn-object in a cohomologically finite A∞-category, ΦV is an

autoequivalence of DA.

This result is the first step towards proving the following conjecture:

Conjecture 1.1. Given a Lagrangian V ∼= CPn and another Lagrangian L in

F(M,ω), φVL and ΦVL give rise to isomorphic objects in DF(M,ω).

We stress that a proof of this conjecture would likely require a substantial

further analysis: for the parallel argument required to bridge the gap in the

spherical case, see [39]. We can however verify this conjecture in the case of a

CP1-twist by exploiting the relation

τ 2
V = φV (1.3)

in Autc(M,ω)/Ham(M,ω). Combining this with Seidel’s result on spherical

twists means that in this dimension we need only show that ΦV and T 2
V give

isomorphic functors on DF(M,ω). This is proven in Chapter 5.

7



1. INTRODUCTION

Related results to these have been obtained by Huybrechts and Thomas [23],

who introduce the notion of Pn-objects and Pn-twist functors for the derived cat-

egory D(X) of some smooth projective variety X. Our construction is modelled

on theirs and our results should be thought of as being “mirror” versions.

Finally, in Chapter 5, we also show that there exist symplectic manifolds

containing a Lagrangian V with H∗(V ) ∼= H∗(CPn), where we can still define

ΦV , but such that this functor has no preimage under (1.2), so that ΦV has no

geometric representative. We call such autoequivalences exotic autoequivalences

of our symplectic manifold.

1.3 Lefschetz fibrations

Part II of this thesis concerns the uniqueness of exact symplectic structures on

Liouville domains (see Chapter 6 for the definition), an area which has seen con-

siderable recent development. In many situations, such as those coming from

cotangent bundles or affine varieties, a Liouville domain M carries what is con-

sidered to be a “standard” symplectic form. As we shall recap in the next section,

there are now known to be many examples of Liouville domains with exact sym-

plectic forms which are not Liouville equivalent to the standard ones. Any such

form will be called “exotic”. However it is first worthwhile making some remarks

on the role Fukaya categories play in illuminating this problem and the broader

question of how to compute the Fukaya category of a given symplectic manifold

and what geometric data we can extract from it.

In general, computing F(M,ω) is a difficult task. Extracting information

from F(M,ω) that cannot seemingly be obtained by more elementary means

seems usually to rely on either of two sources: Seidel’s result relating Dehn and

spherical twists, or via importing some algebraic geometry in cases where some

version of mirror symmetry has been proven.

Part of the problem is that knowing about some small collection of Lagrang-

ians does not usually provide us with much information about some other ar-

bitrary Lagrangian. What one wants are results about when a collection of

Lagrangians generate (or split-generate) the Fukaya category. Such results do

exist in the context of exact Lefschetz fibrations (similar results have also been

8



1.3. Lefschetz fibrations

established for cotangent bundles [1] but will not be used here). A general theory

is currently under development by Abouzaid, Fukaya, Oh, Ohta and Ono.

In Chapter 6, a more involved definition of Lefschetz fibration will be given

but, briefly, a Lefschetz fibration π : M → C is a symplectic fibration with iso-

lated singularities of A1 type. In such a situation, one can calculate in F(M,ω) by

means of dimensional reduction: questions about F(M,ω) are reduced to ques-

tions about the Fukaya category of a smooth fibre F(F, ω|F ), and the monodromy

data of our fibration. This is the general form of the argument in Chapter 9. Also,

inside a Lefschetz fibration, there is a collection of noncompact Lagrangians called

the Lefschetz thimbles ∆i and these thimbles generate the derived Fukaya cate-

gory (here we allow a slightly more general class of objects than before).

These results mean that we can relate the theory of Fukaya categories to

various other holomorphic curve theories. One particular such theory is the sym-

plectic cohomology of a Liouville manifold, which may briefly be defined as

SH∗(M) = lim−→
k

HF ∗(Hk).

Here M has a cylindrical end looking like Y × [0,∞) and Hk is a Hamiltonian

of the form Hk(y, r) = kr + constant near infinity, and the maps involved are

monotone continuation maps (for more details see for example [42]).

For any Liouville domain, and a suitable definition of F(M,ω), there is an

open-closed string map [2]

OC : HH∗(F(M,ω))→ SH∗(M),

where the Hochschild homology of an A∞-category may be defined as HH∗(A) =

H(homfun(A,A)(id, id)). In general, it remains conjectural that OC is an isomor-

phism, but it has been proven for exact Lefschetz fibrations [12, Appendix]. This

is one point of contact between Fukaya categories and the work of Bourgeois-

Ekholm-Eliashberg on symplectic and contact homology [12].

9



1. INTRODUCTION

1.4 Exotic symplectic structures

With this in place, we shall now briefly recap the major results in this area.

Historically, Gromov [21] was the first to exhibit a nonstandard exact sym-

plectic structure on Euclidean space, although, whereas the standard symplectic

structure is Liouville, Gromov’s is not known to be (see Chapter 6 for the rel-

evant definitions). The first exotic structures on R4n (for 4n ≥ 8) known to be

Liouville were discovered by Seidel-Smith [41], later extended by McLean [31]

to cover all even dimensions greater than 8. McLean actually found infinitely

many such pairwise-distinct nonstandard symplectic structures on T ∗M for any

manifold M with dimR ≥ 4, which were all distinguished by considering their

symplectic cohomology SH∗(M).

More recently, Fukaya categorical techniques have been used by Maydanskiy-

Seidel [28] (refining earlier work of Maydanskiy [27]) to find exotic symplectic

structures on T ∗Sn (for n ≥ 3). These are shown to be nonstandard by proving

that they contain no homologically essential exact Lagrangian Sn, in contrast to

the zero-section for the standard symplectic form, and in contrast to McLean’s

examples. Similar results have also been obtained using the work of Bourgeois-

Ekholm-Eliashberg [12] again using symplectic/contact cohomology-type invari-

ants. Such results have been further extended by Abouzaid-Seidel [4] to show the

existence of infinitely many distinct exotic structures on any affine variety of real

dimension ≥ 6, again distinguished using symplectic cohomology.

In Part II, we shall consider six-dimensional symplectic manifolds of the types

considered by Maydanskiy [27] and Maydanskiy-Seidel [28]. In [28], infinitely

many ways are presented of constructing a nonstandard T ∗S3, but the question

of whether all these constructions actually yield symplectically distinct manifolds

is left open. We shall not answer that question, but instead we shall consider

what happens when we add a 2-handle to such an exotic T ∗S3. The result will

be diffeomorphic to a manifold constructed in [27], which again contains no exact

Lagrangian S3.

Specifically, we shall consider the manifolds X1, X2 given by the diagrams in

Figure 1.1. The meaning of such diagrams will be explained in Chapter 6. Briefly,

our main method of constructing symplectic manifolds E6 will be as Lefschetz

10



1.4. Exotic symplectic structures

fibrations over C. To run this construction, the input data consists of a symplectic

manifold M4 and an ordered collection of Lagrangian spheres in M4 (see Lemma

6.2). In Figure 1.1, we can associate to each path some Lagrangian sphere in a

4-dimensional Milnor fibre {x2 + y2 + p(z) = 0} ⊂ C3 for a suitable polynomial

p(z). This Milnor fibre and the collection of spheres is our required data.

× ×× × × × × ×

X1 X2

Figure 1.1:

These spaces are diffeomorphic (in fact they are both diffeomorphic to T ∗S3∪
2-handle). There is a standard way of attaching a 2-handle to T ∗S3 [43] such

that we still get an exact symplectic manifold containing an exact Lagrangian

sphere inherited from the zero-section. However, neither X1 nor X2 contains

such a sphere, so are considered exotic. In addition, X1, X2 both have vanishing

symplectic cohomology. This is not proved in [27, 28] and so we include this cal-

culation in Chapter 11; it has the consequence (already proven for X1 in [27]) that

X1 and X2 actually contain no exact Lagrangian submanifolds (such symplectic

manifolds are sometimes called “empty”). Despite the usual collection of invari-

ants being insufficient to distinguish these two manifolds, we shall nevertheless

prove

Theorem 1.2. X1 and X2 are not symplectomorphic.

We shall then extend our methods to prove

Theorem 1.3. Pick any n ≥ 1. Then there exists a manifold M (diffeomorphic

to T ∗S3 with n 2-handles attached), and exact symplectic forms ω1, . . . , ωn+1 on

it such that, with respect to each ωi, (M,ωi) is Liouville and contains no exact

Lagrangian submanifolds, but such that there exists no diffeomorphism φ of M

such that φ∗ωi = ωj for i 6= j.

The main technique used is to consider what happens after a nonexact de-

formation of the symplectic structure. For any 2-form β ∈ H2(Xi;R), we can

11



1. INTRODUCTION

consider an arbitrarily small nonexact deformation of ω to ω + εβ. If this new

form is still symplectic, we can look at the symplectic properties of these new sym-

plectic manifolds. (In the case of X1 and X2 above H2(Xi;R) = R, so Moser’s

argument tells us that the way we can perform such a deformation is essentially

unique, in a sense which will be made precise in Chapter 10.) We discover that,

after an arbitrarily small deformation, X1 (which with our original exact form

contains no Lagrangian S3) does in fact contain such a sphere, in a nonzero ho-

mology class, an interesting phenomenon in its own right which is explained in

Chapter 7.

In contrast, after such a deformation, X2 still contains no homologically

essential Lagrangian sphere. The proof of this fact requires rerunning the ar-

gument of [28], except that somewhat more care needs to be exercised in the use

of Floer cohomology groups, owing to the nonexactness of our deformed situation.

This is the content of Chapter 9.

In general, given a symplectic manifold M (satisfying certain topological as-

sumptions), we can consider the set Γ1 ⊂ P(H2(M ;R)), of directions in which

we get no homologically essential Lagrangian sphere inside M after an arbitrarily

small deformation of the symplectic form in that direction. We show that this

is a symplectic invariant, which completes the proof of Theorem 1.2. Finally, in

Chapter 12 these ideas are extended to prove Theorem 1.3.

1.5 Discussion of results

1.5.1 Part I

The first obvious goal is to prove Conjecture 1.1 that φVL and ΦVL give isomor-

phic objects in DF(M,ω). I have not yet identified the precise details necessary

to verify this, but a proof should follow similar lines to the parallel argument in

the spherical case: we want to find a map

homF(M,ω)(Z,ΦVL)→ homF(M,ω)(Z, φVL)

12



1.5. Discussion of results

for any Z, and prove that it a quasi-isomorphism, or equivalently that it’s map-

ping cone is acyclic. There should be some algebraic criteria, similar to [38,

Lemma 5.3], saying when a collection of elements from and maps between the

hom-spaces between the Lagrangians V, L and φVL will define such a map. Ge-

ometrically, this data would hopefully come from counting holomorphic sections

of some Morse-Bott fibrations as in [39, Chapter 17]. In the spherical case, the

acyclicity of the mapping cone is equivalent to Seidel’s long exact sequence.

Similar twist maps to φV for V ∼= CPn exist for Lagrangian RPns and HPns

since they are compact symmetric spaces of rank one and so admit metrics whose

geodesic flow is periodic [10]. The results of Part I can easily be reinterpreted in

these contexts: we leave it to the interested reader the make the necessary minor

adjustments (although we do remark that in the case of RPn one has to work

in characteristic 2 to avoid sign issues). The key feature is that RPn and HPn

both have cohomology rings which are truncated polynomial algebras (again only

in characteristic 2 for RPn); indeed, this is necessary for the geodesic flow to be

periodic by a theorem of Bott [11].

There is an interesting algebraic counterpart to this observation: the construc-

tion of [23] has been extended by Grant to give a great many autoequivalences of

derived categories [20]. He works in the setting of the bounded derived category

Db(A) of modules over a finite dimensional symmetric k-algebra A and proves

that, given P a projective A-module whose endomorphism algebra EndA(P )op is

periodic, then there is a related autoequivalence ΨP of Db(A). Here we say that

a k-algebra E is periodic if there exists an integer n ≥ 1 and an exact sequence

Pn−1
dn−1// Pn−2

// · · · // P1
d1 // P0

of projectiveEen-modules (Een = E⊗kEop) such that coker d1
∼= E and ker dn−1

∼=
E. This includes the case when the endomorphism algebra is a truncated poly-

nomial ring. It would be interesting to try to understand if there is any geometric

motivation for the other autoequivalences that Grant constructs.

13
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1.5.2 Part II

It seems that Theorem 1.2 suggests the following picture: there is a 1-parameter

family X t
1 of symplectic manifolds with the property that F(X t

1, ωt) is trivial

for t = 0 but nontrivial for t > 0 (to the extent that F(X t
1, ωt) can be defined

for t > 0, an issue we only partly address). This differs from the picture one

usually finds in deformation theory, where we expect to observe some sort of

upper-semicontinuity, as in the Semicontinuity Theorem of Grothendieck [9]. It

should be said that, as far as I am aware, the general theory of deformations

of A∞-categories has not received that much attention; in particular, I am not

aware if there is a widely-accepted notion of a flat deformation in this context.

Perhaps the key here is that we are working with a Fukaya category made

up only of embedded Lagrangian submanifolds, and we should widen our scope

and include certain non-embedded Lagrangians. Although the exact X1 contains

no exact embedded Lagrangians, it does contain some singular Lagrangian cycle,

topologically an S3 with an S1 collapsed to a point, so having an isolated T 2-

cone singularity. Joyce considers a similar situation in [24, Section 3]. Here

he looks at how special Lagrangians in Calabi-Yaus can degenerate and identifies

three families of embedded special Lagrangian 3-submanifold that asymptotically

approach this cone. However these families bound holomorphic discs so we would

expect their Floer theory to be obstructed in the sense of [18]. Perhaps we should

consider some bulk deformation [18] of the Fukaya category F(X1, ω), where we

count only those holomorphic curves passing through some 4-cycle Poincaré dual

to the cohomology class in which we perturb our symplectic form. This will not

change anything in our non-exact scenario, but possibly would mean that some

sense can be made of the Floer theory of this singular Lagrangian cone.

1.5.3 Fragility of symplectomorphisms

It seems appropriate to mention here one of the motivations behind Theorem 1.2,

even if the proof proceeds along different lines. We recall Maydanskiy’s example

from Figure 1.1. In Figure 1.2 the solid lines correspond to Lagrangian spheres A

and B inside a four-dimensional A2 Milnor fibre M2. There are also Lagrangian

spheres L and R over the dotted lines, and [39, Lemma 16.13] says that the

14
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L R

A

B

× × ×

Figure 1.2:

spheres A and B are related to each other by τ 2
R(A) = B. In particular this

means they are differentiably isotopic, reflecting the fact that this Dehn twist lies

in the kernel

π0Aut(M,ω)→ π0Diff(M),

but a Floer-theoretic argument in [27] shows that τ 2
R and the identity are not

isotopic through symplectomorphisms. There is, however, another interesting

phenomenon that one sometimes observes in symplectomorphism groups as we

deform the symplectic form.

Definition 1.4. ([40]) Let f be a symplectomorphism with respect to a given

symplectic form ω. We say that f is potentially fragile if there is a smooth family

ωs of symplectic forms, s ∈ [0, s0) for some s0 > 0, and a smooth family fs of

diffeomorphisms such that f ∗sωs = ωs with the following properties

• (f0, ω0) = (f, ω);

• for all s > 0, fs is isotopic to the identity inside Aut(M,ωs).

If, in addition, f is not isotopic to the identity in Aut(M,ω), we say that f is

fragile.

Proposition 1.5. ([40, Corollary 1.3]) For a Lagrangian V ∼= S2, the Dehn twist

τV is potentially fragile.

This now suggests the following picture: X1 is built from the data (M2, A,B).

We should try to deform M2 and consider the deformed data (M t
2, A

t, Bt), which

we use to build X t
1. Now note that, for t > 0, At ∼= Bt in F(M t

2, ωt), which will

have the consequence that X t
1 will contain a Lagrangian sphere. I was unable

15



1. INTRODUCTION

to proceed by this approach, but to explain why it is useful to derive an explicit

formula for the perturbed Dehn twist (Seidel’s proof of Proposition 1.5 is more

indirect).

The standard Dehn twist is defined using the following model for T ∗S2:

T ∗S2 =
{

(u, v) ∈ R3 × R3 | ‖v‖ = 1, 〈u, v〉 = 0
}

(1.4)

equipped with the exact symplectic form ω = du ∧ dv.

We take a Hamiltonian h = ‖u‖ which is defined away from u = 0. The

Hamiltonian vector field defined by ω(Xh, ·) = dh(·) is

Xh =
ui
‖u‖

∂vi − vi ‖u‖ ∂ui,

and we need to solve d
dt
σt(u, v) = Xh ◦ σt(u, v) to find the flow σt(u, v) of this

vector field. A direct calculation verifies that

σt(u, v) =

(
u cos t− v ‖u‖ sin t

v cos t+ u
‖u‖ sin t

)

is the correct flow. We define the Dehn twist by taking the time-π flow, joining

up with the antipodal map on the zero-section and applying a cut-off function to

undo the flow away from the zero-section [40].

We now perturb our original symplectic form ω by ωs = ω + sπ∗η where η

is the standard area form on S2 and π : T ∗S2 → S2 is the standard projection.

Viewing S2 ⊂ R3 we have

η = v1dv2 ∧ v3 + v2dv3 ∧ v1 + v3dv1 ∧ v2.

Seidel [40] now proves that there is a Hamiltonian S1-action coming from the

Hamiltonian

h = ‖−sv − u× v‖ =

√
s2 + ‖u‖2,

which leads to

dh =
ui
h
dui −

vi ‖u‖2

h
dvi.
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1.5. Discussion of results

To find the flow σt(u, v) =

(
αt(u, v)

βt(u, v)

)
of the associated Hamiltonian vector

field we must solve the differential equation(
α̇t(u, v)

β̇t(u, v)

)
=

(
‖u‖2
h
βt(u, v) + s

h
βt(u, v)× αt(u, v)

−1
h
αt(u, v)

)
. (1.5)

where × denotes the cross-product in R3. Differentiating the first equation and

inserting the second quickly leads to

α̈(t) = −α(t),

which means we have to consider

α(t)(u, v) = A(u, v) cos t+B(u, v) sin t,

β(t)(u, v) =
B(u, v)

h
cos t− A(u, v)

h
sin t+ C(u, v). (1.6)

The initial conditions at time t = 0 give

A = u,

B

h
+ C = v.

By plugging the equation for β (1.6) into (1.5), we get the extra conditions below:

clearly {u, v, u× v} form an orthogonal basis for R3 and it’s easy to show that B

and C have no u-component. This means that

B = κv + λu× v,

C = µv + νu× v,

17
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and we obtain the equations

κ+ µh = h,

λ+ νh = 0,

κµ+ λν = 0,

κ2 + λ2 = ‖u‖2 .

This leads to the flow

αt(u, v) = u cos t+ v
‖u‖2

h
sin t+ u× vs ‖u‖

h
sin t,

βt(u, v) = −u1

h
sin t+ v

(
‖u‖2

h2
cos t+

s2

h2

)
+ u× v

(
s ‖u‖
h2

cos t− s ‖u‖
h2

)
.

Now that we have this, there are two things to look at:

• when u = 0, we get α(t) = 0, β(t) = v.

• when t = π, we get α(t) = −u, β(t) = v
(
s2−‖u‖2

s2+‖u‖2

)
.

Also, fix some compact set K ⊂ T ∗S2 \ S2 and observe that as s → 0, the

perturbed Dehn twist tends to the unperturbed one on K but on the zero-section

itself we get the identity and not the antipodal map from the exact case. It is

this lack of global convergence everywhere that makes it difficult to implement

an approach to Theorem 1.2 along the lines above.

18



Part I

Projective twists in

A∞-catgeories

19





Chapter 2

A∞-categories

Here we recall the basic background material on A∞-categories that we shall need.

Sign conventions differ throughout the literature, but all our signs and notation

come from [39], to which we direct the reader who finds the treatment in this

chapter too brief.

2.1 Categories

Fix some coefficient field K. An A∞-category A consists of a set of objects ObA

as well as a finite-dimensional Z-graded K-vector space homA(X, Y ) for any pair

of objects X, Y , and composition maps (µdA)d≥1,

µdA : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homA(X0, Xd)[2− d],

which satisfy the A∞-relations∑
m,n

(−1)6nµd−m+1
A (ad, . . . , an+m+1, µ

m
A (an+m, . . . , an+1), an, . . . , a1) = 0. (2.1)

Here 6n = |a1|+ · · ·+ |an| − n and by [k] we mean a shift in grading down by k.

The opposite category of A, denoted Aopp, has the same objects as A and

homAopp(X, Y ) = homA(Y,X), but composition is reversed:

µdAopp(ad, . . . , a1) = (−1)6dµdA(a1, . . . , ad).
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2. A∞-CATEGORIES

The A∞-relations in particular mean that µ1
A(µ1

A(·)) = 0 so we can consider the

cohomological category H(A), which has the same objects as A and has morphism

spaces homH(A)(X, Y ) = H(homA(X, Y ), µ1
A) with (associative) composition

[a2] · [a1] = (−1)|a1|[µ2
A(a2, a1)].

We call A cohomologically unital (c-unital for short) if H(A) has identity mor-

phisms (so is a category in the standard sense). Although this is perhaps not the

most natural notion in the context of A∞-categories, all categories considered in

this thesis will be assumed to be c-unital, since Fukaya categories always carry

cohomological units for geometric reasons.

There is another notion of unitality that is helpful to consider although Fukaya

categories in general do not satisfy it: we say A is strictly unital if, for each X,

there is an element eX ∈ hom0(X,X) such that

• µ1(eX) = 0;

• (−1)|a|µ2(eX , a) = a = µ2(a, eX) for a ∈ hom(X0, X1);

• µd(ad−1, . . . , eX , . . . , a1) = 0 for all d ≥ 3.

This is useful because every c-unital A∞-category is quasi-equivalent to a strictly

unital one [39, Lemma 2.1].

2.2 Functors

An A∞-functor F : A→ B consists of a map F : ObA→ ObB and maps

Fd : homA(Xd−1, Xd)⊗ · · · ⊗ homA(X0, X1)→ homB(FX0,FXd)[1− d]

for all d ≥ 1, which are required to satisfy

∑
r

∑
s1+···+sr=d

µrB(Fsr(ad, . . . , ad−sr+1), . . . ,Fs1(as1 , . . . , a1))

=
∑
m,n

(−1)6nFd−m+1(ad, . . . , µ
m
A (an+m, . . . , an+1), an, . . . , a1). (2.2)
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2.3. A∞-modules

F induces a functor HF : H(A) → H(B) by [a] 7→ [F1(a)]. We call a functor F

between c-unital categories c-unital if HF is unital. All functors in this thesis will

be assumed to be c-unital. We say F is cohomologically full and faithful if HF is

full and faithful, and we say F is a quasi-equivalence if HF is an equivalence.

The set of A∞-functors F : A → B can itself be considered as the objects of

an A∞-category fun(A,B) (or more specifically nu− fun(A,B) for “non-unital

functors” if we make no assumptions about units). We shall only need this in the

following specific context.

2.3 A∞-modules

We first note that any dg category can be considered as an A∞-category with

µd = 0 for d ≥ 3. In particular, for a given A∞-category A, we can consider

A∞-functors from Aopp to the category of chain complexes Ch over K. We call

such functors A∞-modules over A. Such functors can be thought of as the objects

of a new A∞-category Q = mod(A) = fun(Aopp, Ch).

An A∞-module M : A→ Ch assigns a graded vector space M(X) to all X ∈
ObA and, in this specific setting, we follow [39] in changing notation of (2.2)

slightly so that we have maps

µdM : M(Xd−1)⊗ homA(Xd−2, Xd−1)⊗ · · · ⊗ homA(X0, X1)→M(X0)[2− d]

satisfying

∑
m,n

(−1)6nµn+1
M (µd−nM (b, ad−1, . . . , an+1), . . . , a1)

+
∑
m,n

(−1)6nµd−m+1
M (b, ad−1, . . . , µ

m
A (an+m, . . . , an+1), an, . . . , a1) = 0. (2.3)

The morphism space homr
Q(M0,M1) in degree r is made up of so-called pre-module

homomorphisms t = (td)d≥1 where

td : M0(Xd−1)⊗ homA(Xd−2, Xd−1)⊗ · · · ⊗ homA(X0, X1)→M1(X0)[r − d+ 1].
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The composition maps in Q are

(
µ1
Qt
)d

(b, ad−1, . . . , a1) = (2.4)∑
(−1)‡µn+1

M1
(td−n(b, ad−1, . . . , an+1), an, . . . , a1)

+
∑

(−1)‡tn+1(µd−nM0
(b, ad−1, . . . , an+1), an, . . . , a1)

+
∑

(−1)‡td−m+1(b, ad−1, . . . , µ
m
A (an+m, . . . , an+1), . . . , a1);(

µ2
Q(t2, t1)

)d
(b, ad−1, . . . , a1) = (2.5)∑

(−1)‡tn+1
2 (td−n1 (b, ad−1, . . . , an+1), an, . . . , a1);

and µdQ = 0 for d ≥ 3. Here ‡ = |an+1|+ · · ·+ |ad−1|+ |b| − d+ n+ 1. We stress

that the fact that higher composition maps vanish is not true for more general

A∞-functor categories, but rather reflects the dg nature of Ch.

If µ1
Qt = 0, we say that t is a A∞-module homomorphism. In this sit-

uation, we have a map H(t) : H(M0(X)) → H(M1(X)) for all X, given by

[b] 7→ [(−1)|b|t1(b)], where here H(M(X)) is the cohomology of M(X) computed

with respect to the differential ∂(b) = (−1)|b|µ1
M(b).

Lemma 2.1. ([39, Lemma 1.16]) Suppose the A∞-module homomorphism t ∈
homQ(M0,M1) is such that the induced maps H(t) : H(M0(X)) → H(M1(X))

are isomorphisms for all X. Then, left composition with t induces a quasi-

isomorphism homQ(M1,N) → homQ(M0,N) and a similar result holds for right

composition.

Corollary 2.2. Under the above hypotheses, [t] is an isomorphism in H(Q).

Given Y ∈ A, there is an associated A∞-module Y ∈ Q where

Y(X) = homA(X, Y ), µdY = µdA.

This forms part of an A∞-functor ` : A→ Q called the Yoneda embedding. Given

t ∈ homA(Y, Z), `1(t) ∈ homQ(Y,Z) is the morphism

(
`1(t)

)d
(b, ad−1, . . . , a1) = µd+1

A (t, b, ad−1, . . . , a1),
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and the higher order parts of the functor ` are defined similarly. ` is cohomo-

logically full and faithful [39, Corollary 2.13].

2.4 Twisted complexes

Given A we can form a new category ΣA called the additive enlargement of A

whose objects are formal sums

X =
⊕
i∈I

Vi ⊗Xi,

where I is some finite set, the Vi are finite-dimensional graded vector spaces and

Xi are objects of A.

homΣA

(⊕
i∈I

Vi ⊗Xi,
⊕
j∈J

Wj ⊗ Yj

)
=
⊕
i,j

homK(Vi,Wj)⊗ homA(Xi, Yj),

and we write morphisms a ∈ homΣA(X, Y ) as αji⊗ xji where αji and xji are ma-

trices of morphisms in homK(Vi,Wj), homA(Xi, Yj) respectively. The composition

maps are given by

µdΣA(ad, . . . , a1) =
∑

(−1)/αd · · ·α1 ⊗ µdA(xd, . . . , x1)

where / =
∑

p<q |α
ip,ip−1
p | · (|xiq ,iq−1

q | − 1). A clearly sits inside ΣA as a full A∞-

subcategory once an object X is mapped to K⊗X, with K given grading zero.

A twisted complex in A is an object X of ΣA, together with a differential

δX ∈ hom1
ΣA(X,X) which satisfies the following conditions:

• δX is strictly lower-triangular with respect to some filtration on X. By

“filtration” here we mean a finite decreasing collection of subcomplexes

F iX such that the induced differential on F kX/F k+1X is zero [39, Section

3l];

•
∑

d µ
d
ΣA(δX , . . . , δX) = 0.
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Given this we can define new composition maps

µdTwA(ad, . . . , a1)

=
∑
i0,...,id

µd+i0+···+id
ΣA

δXd
, . . . δXd︸ ︷︷ ︸
id

, ad, δXd−1
, . . . , δXd−1︸ ︷︷ ︸
id−1

, ad−1, . . . , a1, δX0 , . . . , δX0︸ ︷︷ ︸
i0

 .

The sum is taken over all ij ≥ 0, but the conditions on δX imply that this is a finite

sum and that moreover the A∞-relations (2.1) still hold. ΣA sits inside TwA as

a full A∞-subcategory given by those twisted complexes with zero differential.

We may relate TwA and Q using the diagram below. I is the obvious inclusion

functor and I∗ is the induced pullback. The reader may find the appropriate

formulae in [39].

A
` //

I
��

Q

TwA
` //mod(TwA).

I∗

OO (2.6)

We shall denote the resulting map from TwA by Q by ˜̀.

2.5 Tensor products and shifts

Working in the larger categories TwA and Q allows us perform many familiar

algebraic constructions not necessarily possible in A. As an example, take a

chain complex (Z, ∂) and an A∞-module M ∈ Q and define a new A∞-module

Z ⊗M ∈ Q by

(Z ⊗M)(X) = Z ⊗M(X), (2.7)

µ1
Z⊗M(z ⊗ b) = (−1)|b|−1∂(z)⊗ b+ z ⊗ µ1

M(b),

µdZ⊗M(z ⊗ b, ad−1, . . . , a1) = z ⊗ µdM(b, ad−1, . . . , a1) for d ≥ 2.

As a special case of this, consider Z = K, a one-dimensional chain complex

concentrated in degree −1 and with trivial differential. We shall denote Z ⊗M

by SM and call it the shift of M. Similarly we have SσM for any σ ∈ Z and we
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have a canonical isomorphism

homH(Q)(Y, S
σZ) = homH(Q)(Y,Z)[σ].

When A is strictly unital, we can do a similar thing with twisted complexes.

Given (X, δX) ∈ TwA and a chain complex (Z, ∂), we can form the twisted

complex (
Z ⊗X, id⊗δX + ∂̃ ⊗ eX

)
,

where ∂̃(z) = (−1)|z|−1∂(z). We can also do shifts here: SσY = K[σ]⊗ Y

Remark 2.3. ([39, Remark 3.2]) Given a chain complex (Z, ∂), we can form a

new chain complex given by H(Z) with trivial differential. By choosing a linear

map that picks a chain representative for each cohomology class, we can define a

map H(Z)⊗M→ Z ⊗M and Corollary 2.2 says that this will in fact induce an

isomorphism in H(Q).

2.6 Evaluation maps

Given V ∈ A and Y ∈ Q we have an evaluation morphism

ev : Y(V )⊗ V→ Y,

evd(y ⊗ v, ad−1, . . . , a1) = µd+1
Y (y, v, ad−1, . . . , a1). (2.8)

In the strictly unital case, we can also define this for twisted complexes. In

order to define ev : homTwA(V, Y )⊗ V → Y , we require that ev be an element of

homTwA(V, Y )∨ ⊗ homTwA(V, Y ). To do this, choose a homogeneous basis {bi}
of homTwA(Y, V ) and let {βi} be the dual basis. Now let ev =

∑
βi ⊗ bi. It is

easy to verify that the two maps correspond under ˜̀, so we shall feel justified in

abusing notation and referring to both as ev since it will always be clear in which

setting we are working.

We can also define a dual evaluation map ev∨ : Y → homTwA(Y, V )∨⊗V given

by ev∨ =
∑
γj ⊗ cj where again {cj} is a basis for homTwA(Y, V ) and {γi} is the

dual basis.
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2.7 Cones and triangles

Given t : M0 →M1 a degree zero module homomorphism, we can form the map-

ping cone C = Cone(t) given by

C(X) = M0(X)[1]⊕M1(X),

µdC

((
b0

b1

)
, ad−1, . . . , a1

)
=

(
µdM0

(b0, ad−1, . . . , a1)

µdM1
(b1, ad−1, . . . , a1) + td(b0, ad−1, . . . , a1)

)
.

(2.9)

The cone C comes with module homomorphisms ι and π which fit into the

following diagram in H(Q)

M0
[t] //M1

[ι]
��
C.

[π]

[1]
aa

Any triangle in H(A) quasi-isomorphic to one of the above form under the Yoneda

embedding is called exact.

Likewise the cone of t : X → Y in TwA for a degree zero cocycle t is given by

Cone(t) =

(
SX ⊕ Y,

(
S(δX) 0

−S(t) δY

))
.

We call an A∞-category A triangulated if every morphism [t] fits into some exact

triangle and A is closed under all shifts, positive and negative.

Proposition 2.4. ([39, Proposition 3.14]) If A is a triangulated A∞-category,

then H0(A) is triangulated in the classical sense. Moreover, for F an A∞-functor

between triangulated A∞-categories, HF is an exact functor of triangulated cate-

gories.

For a given A, we can consider the triangulated A∞-subcategory Q̃ ⊂ Q gener-

ated by the image of the Yoneda embedding. We call H0(Q̃) the derived category

of A, which we denote DA. Equivalently, we may define DA as H0(TwA).
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Chapter 3

CPn-twists

In the interests of legibility, we introduce the shorthand ad−1 for ad−1, . . . , a1.

Huybrechts and Thomas [23], motivated by mirror symmetry, introduced the

notion of a Pn-object P in the derived category D(X) of a smooth projective

variety X. They showed that there are associated twists ΦP of D(X) which are

in fact autoequivalences. We reinterpret their construction in our setting.

Definition 3.1. A CPn-object is a pair (V, h) where V ∈ ObA and h ∈ hom2(V, V )

such that

• µ1
Ah = 0;

• homH(A)(V, V ) ∼= K[h]/hn+1 as a graded ring;

• There exists a map
∫

: hom2n
H(A)(V, V )→ K such that, for any X, the result-

ing bilinear map hom2n−k
H(A)(X, V ) × homk

H(A)(V,X) → hom2n
H(A)(V, V ) → K

is nondegenerate.

We shall often just refer to a CPn-object by V since, following Remark 2.3, the

choice of h will be irrelevant up to quasi-equivalence.

To define our twist, we imitate the construction in [23]. Take some CPn-object
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3. CPn-TWISTS

V and consider the following diagram

Y(V )[−2]⊗ V
H // Y(V )⊗ V

ι //

ev

%%

HY

g

��
Y

��
ΦV Y

(3.1)

where here HY is Cone(H) and ΦV Y is Cone(g).

Here ev is the evaluation map (2.8) and we define the other maps by

H1(y ⊗ v) = (−1)|y|+|v|µ2
Y(y, h)⊗ v + (−1)|y|−1y ⊗ µ2

V(h, v),

Hd(y ⊗ v, ad−1) = (−1)|y|−1y ⊗ µd+1
V (h, v, ad−1) for d ≥ 2.

and

gd

((
y1 ⊗ v1

y2 ⊗ v2

)
, ad−1

)
= µd+1

Y (y2, v2, ad−1) + (−1)|y1|−1µd+2
Y (y1, h, v1, ad−1) .

Lemma 3.2. H and g are µ1
Q-closed.

Proof. This is a direct calculation. Using (2.4) and (2.7), we see that

(
µ1
QH
)d

(y ⊗ v, ad−1) =

y ⊗


∑

n(−1)‡n+|y|−1µn+1
V (µd−n+1(h, v, ad−1, . . . , an+1), . . . , a1)

+
∑

n(−1)‡n+|y|−1µn+2
V (h, µd−n(v, ad−1, . . . , an+1), . . . , a1)

+
∑

m,n(−1)‡n+|y|−1µd−m+2
V (h, v, ad−1, . . . , µ

m
A (an+m, . . . , an+1), . . . , a1)


+
(

(−1)‡0+|y|−1+|µd+1(h,v,ad−1)|−1 + (−1)‡d−1+|v|−1+|y|−2
)
µ1
Y(y)⊗ µd+1

V (h, v, ad−1)

+
(

(−1)‡d−1+|y|+|v| + (−1)‡0+|y|+|µd(v,ad−1)|
)
µ2
Y(y, h)⊗ µdV(v, ad−1).

The terms involving µ1
Y(y) and µ2

Y(y, h) cancel, and inside the big bracket, we

find precisely the terms from the A∞-relation (2.1) except for the term involving

µdV(µ1
A(h), v, ad−1). But, by assumption, µ1

A(h) = 0 so this term vanishes.
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The proof for g is similar:

(
µ1
Qg
)d(( y1 ⊗ v1

y2 ⊗ v2

)
, ad−1

)
=∑

n

(−1)‡n+|y1|−1µn+1
Y (µd−n+2

Y (y1, h, v1, ad−1, . . . , an+1), . . . , a1)

+
∑
n

(−1)‡n+|y1|−1µn+3
Y (y1, h, µ

d−n
V (v1, ad−1, . . . , an+1), . . . , a1)

+ (−1)‡d−1+|µ1(y1)|−1+|v1|−1µd+2
Y (µ1

Y(y1), h, v1, ad−1, . . . , a1)

+
∑
m,n

(−1)‡n+|y1|−1µd−m+3
Y (y1, h, v1, ad−1, . . . , µ

m
A (an+m, . . . , an+1), . . . , a1)

+
∑
n

(−1)‡nµn+1
Y (µd−n+1

Y (y2, v2, ad−1, . . . , an+1), . . . , a1)

+
∑
n

(−1)‡nµn+2
Y (y2, µ

d−n
V (v2, ad−1, . . . , an+1), . . . , a1)

+ (−1)‡d−1+|v2|−1µd+1
Y (µ1

Y(y2), v2, ad−1, . . . , a1)

+
∑
m,n

(−1)‡nµd−m+2
Y (y2, v2, ad−1, . . . , µ

m
A (an+m, . . . , an+1), . . . , a1)

+
∑

(−1)‡n+|y1|−1µn+2
Y (y1, µ

d−n+1
V (h, v1, ad−1, . . . , an+1), . . . , a1)

+ (−1)‡d−1+|y1|+|v1|µd+1
Y (µ2

Y(y1, h), v1, ad−1, . . . , a1).

Here the final two lines come from the presence of H in the µd maps in

Cone(H) as in (2.9). Again we find all the terms from (2.3) except for those

involving µ1
A(h), so the above sum vanishes.

Concretely, ΦV Y = (Y(V )⊗ V)⊕ (Y(V )[1]⊗ V)⊕ Y and

µ1
ΦV Y


y1 ⊗ v1

y2 ⊗ v2

y3

 =


(−1)|v1|−1µ1

Y(y1)⊗ v1 + y1 ⊗ µ1
V(v1)

(−1)|v2|−1µ1
Y(y2)⊗ v2 + (−1)|y1|+|v1|µ2

Y(y1, h)⊗ v1

+y2 ⊗ µ1
V(v2) + (−1)|y1|−1y1 ⊗ µ2

V(h, v1)

µ1
Y(y3) + µ2

Y(y2, v2) + (−1)|y1|−1µ3
Y(y1, h, v1)


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3. CPn-TWISTS

and, for d ≥ 2,

µdΦV Y


 y1 ⊗ v1

y2 ⊗ v2

y3

 , ad−1



=

 y1 ⊗ µdV(v1, ad−1)

y2 ⊗ µdV(v2, ad−1) + (−1)|y1|−1y1 ⊗ µd+1
V (h, v1, ad−1)

µdY(y3, ad−1) + µd+1
Y (y2, v2, ad−1) + (−1)|y1|−1µd+2

Y (y1, h, v1, ad−1)

 .

3.1 CPn-twist functor

We want to upgrade ΦV to a functor ΦV : Q → Q and so, having described the

effect of ΦV on objects, we must describe how it acts on morphisms.

Firstly we set Φd
V = 0 for d ≥ 2, so that ΦV is in fact a dg functor and, given

t ∈ homQ(Y,Z), t̂ = ΦV (t) has first order part

t̂1

 y1 ⊗ v1

y2 ⊗ v2

y3

 =

 (−1)|v1|+|t|t1(y1)⊗ v1

(−1)|v2|−1t1(y2)⊗ v2 + (−1)|y1|+|v1|t2(y1, h)⊗ v1

t1(y3) + t2(y2, v2) + (−1)|y1|−1t3(y1, h, v1)


and, for d ≥ 2,

t̂d


 y1 ⊗ v1

y2 ⊗ v2

y3

 , ad−1



=

 0

0

td(y3, ad−1) + td+1(y2, v2, ad−1) + (−1)|y1|−1td+2(y1, h, v1, ad−1)

 .

Lemma 3.3. ΦV is an A∞-functor.

Proof. The condition we need to verify is (2.2), which here reduces to the two

32



3.1. CPn-twist functor

conditions

µ1
Q(Φ1

V (t1)) = Φ1
V (µ1

Q(t1)),

µ2
Q(Φ1

V (t2),Φ1
V (t1)) = Φ1

V (µ2
Q(t2, t1)),

since µdQ = 0 for d ≥ 3. Both are straightforward calculations.

Proposition 3.4. ΦVV ∼= S−2nV. Also, if homH(A)(V, Y ) = 0, then ΦV Y ∼= Y .

We first recall a basic algebraic lemma that we shall need.

Lemma 3.5. If f : V → W is a map of chain complexes such that f is surjective

and ker f is acyclic, then f is a quasi-isomorphism.

Proof of Proposition 3.4. Following Remark 2.3, we may replace the homA(V, Y )

terms in ΦV Y with homH(A)(V, Y ). This vector space has a basis given by

eV , h, . . . , h
n so that we replace ΦVV with the quasi-isomorphic

n⊕
i=0

hi[−2i]V⊕
n⊕
i=0

hi[−2i+ 1]V⊕ V.

There is a module homomorphism π1 that to first-order is a projection annihilat-

ing the summands eV [1]V⊕V and has higher-order terms zero. We want to apply

Corollary 2.2 to π1, so let ∂(b) = (−1)|b|µ1
ΦV Y(b). Now, if an element (0, eV ⊗v2, v3)

of the kernel of π1 is ∂-closed, then ∂(0,−eV⊗v3, 0) = (0, eV⊗v2, v3), so by Lemma

3.5, π1 is a quasi-isomorphism.

This means ΦVV is quasi-isomorphic to the image of π1,

n⊕
i=0

hi[−2i]V⊕
n⊕
i=1

hi[−2i+ 1]V.

We can project once more so as to kill the summands eVV ⊕ h[−1]V. A similar

argument shows that this is a quasi-isomorphism. By repeating this process,

removing pairs of summands by a series of projection quasi-isomorphisms, we

can remove everything except hn[−2n]V.

The second fact is trivial from the definition of ΦV .
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3. CPn-TWISTS

Remark 3.6. These results coincide with what one finds geometrically: namely

that φV acts on itself by a shift in grading by 2n [37], and if W and V are disjoint

Lagrangians, then we can arrange that φV is supported in a region disjoint from

W so that φV has no effect on W .
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Chapter 4

ΦV is a quasi-equivalence

In the case where A itself is a triangulated A∞-category, the discussion in [39,

Section 3d] shows that we can define an A∞-functor, which we shall also denote

ΦV , on A itself in such a way that

A
` //

ΦV
��

Q

ΦV
��

A
` // Q

(4.1)

commutes (up to isomorphism in H0(fun(A,Q))). In this chapter we shall prove

Theorem 4.1. If V is a CPn-object in a cohomologically finite A∞-triangulated

category A, then ΦV : A→ A is a quasi-equivalence.

To prove this, it will be useful to have an explicit formula for ΦV on the level

of twisted complexes. In order to do this, we have to assume that A is strictly

unital. The more general c-unital case later will be discussed later. The diagram

(4.1) can now be augmented to the following:

A //

ΦV
��

TwA

ΦV
��

˜̀ // Q

ΦV
��

A // TwA
˜̀ // Q.

(4.2)

We shall define an A∞-functor ΦV on TwA such that the righthand square pre-

cisely commutes. Then, in the case where A is triangulated, the inclusion into
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4. ΦV IS A QUASI-EQUIVALENCE

TwA is a quasi-equivalence so can be inverted [39, Theorem 2.9], which allows us

to pullback ΦV to A.

In order to imitate the construction of Chapter 3 we need to define a map

H : homTwA(V, Y )⊗V → homTwA(V, Y )⊗V . This means H must be an element

of EndK(homTwA(V, Y )) ⊗ homTwA(V, V ). Let h̄ ∈ EndK(homTwA(V, Y )) be the

linear map a 7→ µ2(a, h), and define

H = h̄⊗ eV − id⊗h.

With this we can consider the diagram

homTwA(V, Y )[−2]⊗ V H // homTwA(V, Y )⊗ V ι //

ev

((

HY

g

��
Y

��
ΦV Y.

(4.3)

As in (3.1), HY = Cone(H) and ΦV Y = Cone(g), where now g is now given

by ev on the second summand of HY and zero on the first summand. It is

straightforward to verify that the above diagram becomes (3.1) under ˜̀. We have

now defined a twisted complex

ΦV Y =


homTwA(V, Y )⊗ V

⊕ homTwA(V, Y )[1]⊗ V

⊕ Y

,

δhomTwA(V,Y )⊗V 0 0

−S2(H) −δhomTwA(V,Y )⊗V 0

0 −S(ev) δY


 .

(4.4)

Also, given t ∈ homTwA(Y, Z), we get ΦV t ∈ homTwA(ΦV Y,ΦVZ) given with

respect to the above splittings by(−1)|t|t̄⊗ eV 0 0
4
t⊗ eV t̄⊗ eV 0

0 0 t

 ,

where t̄ : homTwA(V, Y ) → homTwA(V, Z) is given by a 7→ (−1)|a|µ2(t, a) and
4
t
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denotes the map a 7→ µ3(t, a, h). This now defines an A∞-functor ΦV on TwA

which has only first-order terms (it is a dg functor). We leave it to the reader to

check that the righthand square in (4.2) commutes.

4.1 Adjoints

One of the benefits of making the assumption of strict unitality and working with

twisted complexes is that is easy now to identify an adjoint twist functor to ΦV .

We recall that, given a pair of functors F : D → C and G : C → D, we say that

F is left adjoint to G (and G is right adjoint to F ) if there are isomorphisms

homC(FY,X) ∼= homD(Y,GX) which are natural in X and Y .

Consider the following diagram

S−1Y

ev∨tt
g∨

��
homTwA(Y, V )[1]∨ ⊗ V H∨ // homTwA(Y, V )[−1]∨ ⊗ V ι // Cone(H∨)

��
Cone(g∨)

(4.5)

Define h∨ : homTwA(Y, V )[−2]∨ → homTwA(Y, V )∨ by h∨(η)(a) = η(µ2(h, y)).

Now let H∨ = h∨ ⊗ eV − id⊗h and g∨ = (0, ev∨). We define H∨Y = Cone(H∨)

and Φ∨V Y = Cone(g∨). Φ∨V Y is given by the twisted complex
Y

⊕ homTwA(Y, V )[2]∨ ⊗ V

⊕ homTwA(Y, V )[−1]∨ ⊗ V

,

 δY 0 0

0 δhomTwA(V,Y )∨⊗V 0

ev∨ H∨ δhomTwA(V,Y )∨⊗V


 .

Given t ∈ homTwA(Y, Z), we similarly get Φ∨V t ∈ homTwA(Φ∨V Y,Φ
∨
VZ), so that

Φ∨V is a (dg) functor on TwA.

Proposition 4.2. HΦ∨V is both left and right adjoint to HΦV .

Proof. We first prove that HΦ∨V is left adjoint to HΦV . We want to show there
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4. ΦV IS A QUASI-EQUIVALENCE

are isomorphisms

homDA(Φ∨V Y, Z) ∼= homDA(Y,ΦVZ)

that are natural in DA. By applying the exact functors homDA(−, Z) to (4.5)

and homDA(Y,−) to (4.3), we get long exact sequences, natural in DA,

homDA(H∨Y , Z) //

��

homDA(homDA(Y, V )[−1]∨ ⊗ V, Z)

tt

��

homDA(homDA(Y, V )[1]∨ ⊗ V, Z)
[1]

hh

��

homDA(Y, SHZ) // homDA(Y, homDA(V, Z)[−1]⊗ V )

tt
homDA(Y, homDA(V, Z)[1]⊗ V )

[1]

hh

Here the vertical isomorphisms come from the natural identities

homDA(homDA(Y, V )∨ ⊗ V, Z) = homDA(Y, V )∨∨ ⊗ homDA(V, Z)

= homDA(Y, V )⊗ homDA(V, Z)

= homDA(Y, homDA(V, Z)⊗ V )

so that homDA(H∨Y , Z) ∼= homDA(Y,HZ) naturally (note that this requires that

A be cohomologically finite). This proves in particular that the functor assigning

Y to H∨Y is left adjoint to the functor sending Y to HY (these functors are defined

by the obvious restriction of the above construction).
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Similarly we have

homDA(Φ∨V Y, Z) //

��

homDA(H∨Y , Z)

xx

��

homDA(S−1Y, Z)

[1]

ff

��

homDA(Y,ΦVZ) // homDA(Y, SHZ)

xx
homDA(Y, SZ)

[1]

ff

and therefore

homDA(Φ∨V Y, Z) ∼= homDA(Y,ΦVZ)

naturally. Proving right adjointness is similar.

With the existence of adjoints proven, the rest of the proof of Theorem 4.1 is

an exercise in the abstract machinery of triangulated categories.

4.2 Spanning classes

A nontrivial collection Ω of objects in a triangulated category D is called a span-

ning class if, for all B ∈ D, we have

• If homD(A,B[i]) = 0 for all A ∈ Ω and all i ∈ Z, then B ' 0.

• If homD(B[i], A) = 0 for all A ∈ Ω and all i ∈ Z, then B ' 0.

Given an object A ∈ D, we denote by A⊥ = {B : hom∗D(A,B) = 0} and can

define ⊥A similarly.

Lemma 4.3. For a CPn-object V ∈ A, {V } ∪ V ⊥ is a spanning class in DA.

Proof. Suppose we have B such that homDA(A,B[i]) = 0 for all A ∈ Ω and all

i ∈ Z. Then putting A = V shows that B ∈ V ⊥. Therefore, in particular,

homDA(B,B[i]) = 0 for all i so that B ' 0. For the other condition, note that,

by the definition of CPn-object, homDA(V,A) = 0, if and only if homDA(A, V ) =

0.
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4.3 Equivalence

We now appeal to the following theorem of Bridgeland [13, Theorem 2.3]

Theorem 4.4. Let F : C→ D be an exact functor between K-linear triangulated

categories such that F has a left and a right adjoint. Then F is fully faithful

if and only if there exists some spanning class Ω ⊂ C such that, for all objects

K,L ∈ Ω and all i ∈ Z the natural homomorphism

F : homC(K,L[i])→ homD(F (K), F (L[i]))

is an isomorphism

For the spanning class from Lemma 4.3, this condition follows immediately

from Proposition 3.4, so ΦV is cohomologically full and faithful.

To show that it is an quasi-equivalence, let B ⊂ TwA be the full A∞-

subcategory of objects isomorphic to ΦV Y for some Y . Since ΦV maps exact

triangles in H(TwA) to exact triangles in H(TwA), B is actually a triangulated

A∞-category. On the other hand, from Proposition 3.4, V ∈ B and so (4.3)

shows that B generates TwA. This means that the inclusion B→ TwA must be

a quasi-equivalence, which implies that ΦV is also a quasi-equivalence.

So far we have only dealt with the case when A is strictly unital. In the

c-unital case, the standard trick [39, Section 2] is to pass to a quasi-equivalent

A∞-category Ã which is strictly unital and such that

DA
HΦV //

∼=
��

DA

∼=
��

DÃ
HΦ̃V // DÃ

commutes (up to isomorphism). Then we can apply our result from the strictly

unital case to complete the proof of Theorem 4.1.
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Chapter 5

Some geometric consequences

5.1 The connection with spherical objects

As we mentioned in the Introduction, it would require a more substantial analysis

to verify that ΦV does in fact represent the categorical version of φV . However,

in the lowest dimension when V ∼= CP1, this can be done by using Seidel’s

result resulting geometric Dehn twists and algebraic spherical twists [39], and the

relationship (1.3).

We shall first recall the basic facts about spherical objects and spherical twists

[39, Section 5].

Definition 5.1. An object V ∈ A is called spherical of dimension n if

• homH(A)(V, V ) ∼= K[t]/t2.

• There exists a map
∫

: homn
H(A)(V, V )→ K such that, for all X, the result-

ing bilinear map homn−k
H(A)(X, V ) × homk

H(A)(V,X) → homn
H(A)(V, V ) → K

is nondegenerate.

Definition 5.2. Given an object V , the twist map TV is defined by TV Y =

Cone(ev).

This forms part of a functor TV : Q → Q where, given t ∈ homQ(Y,Z), t̃ =
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5. SOME GEOMETRIC CONSEQUENCES

TV (t) has first order part

t̃1

(
y1 ⊗ v
y2

)
=

(
(−1)|v|−1t1(y1)⊗ v
t1(y2) + t2(y1, v)

)

and

t̃d

((
y1 ⊗ v
y2

)
, ad−1

)
=

(
0

td(y2, ad−1) + td+1(y1, v, ad−1)

)
.

If A is triangulated, we may define the functor TV on A and Seidel proves the

following lemma:

Lemma 5.3. ([39, Lemma 5.11]) Given a spherical object V in a c-finite trian-

gulated A∞-category A, the spherical twist TV is a quasi-equivalence of A.

Theorem 5.4. When V is a CP1-object (so is also a spherical object of dimension

2), T 2
V and ΦV give rise to isomorphic functors on DA.

Proof. TV (TV Y) = (Y(V )⊗ V(V )[2]⊗ V)⊕(Y(V )[1]⊗ V)⊕(Y(V )[1]⊗ V)⊕Y with

µ1
T 2
V Y


y1 ⊗ q ⊗ v1

y2 ⊗ v2

y3 ⊗ v3

y4



=


(−1)|v1|+|q|µ1(y1)⊗ q ⊗ v1 + (−1)|v1|−1y1 ⊗ µ1(q)⊗ v1 + y1 ⊗ q ⊗ µ1(v1)

(−1)|v2|−1µ1(y2)⊗ v2 + y2 ⊗ µ1(v2) + (−1)|v1|−1µ2(y1, q)⊗ v1

(−1)|v3|−1µ1(y3)⊗ v3 + y3 ⊗ µ1(v3) + y1 ⊗ µ2(q, v1)

µ1(y4) + µ2(y2, v2) + µ2(y3, v3) + µ3(y1, q, v1)


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5.1. The connection with spherical objects

and

µdT 2
V Y




y1 ⊗ q ⊗ v1

y2 ⊗ v2

y3 ⊗ v3

y4

 , ad−1



=


y1 ⊗ q ⊗ µd(v1, ad−1)

y2 ⊗ µd(v2, ad−1)

y3 ⊗ µd(v3, ad−1) + y1 ⊗ µd+1(q, v1, ad−1)

µd(y4, ad−1) + µd+1(y2, v2, ad−1) + µd+1(y3, v3, ad−1) + µd+2(y1, q, v1, ad−1)


for d ≥ 2.

Without loss of generality we may assume that V(V ) is two-dimensional with

basis {eV , h} so that we may write Y(V ) ⊗ V(V )[2] as a direct sum e[2]Y(V ) ⊕
hY(V ) and denote by πh the projection onto the second summand (without any

correcting sign factor).

For all Y, we now define maps αY : T 2
V Y→ ΦV Y by

α1
Y


y1 ⊗ q ⊗ v1

y2 ⊗ v2

y3 ⊗ v3

y4

 =

 (−1)|v1|πh(y1 ⊗ q)⊗ v1

(−1)|y2|+|v2|y2 ⊗ v2 + (−1)|y3|+|v3|y3 ⊗ v3

(−1)|y4|−1y4

 ,

and, given t ∈ homQ(Y,Z), we now have the diagram

T 2
V Y

˜̃t //

αY

��

T 2
V Z

αZ

��
ΦV Y

t̂ // ΦV Z,

and the following are easily checked:

• µ1
Q (αY) = 0 for all Y;

• By a similar argument to the proof of Proposition 3.4, αY is a quasi-

isomorphism for all Y;

43



5. SOME GEOMETRIC CONSEQUENCES

• (−1)|
˜̃t|µ2

Q

(
αZ,

˜̃t
)

= (−1)|αY|µ2
Q

(
t̂, αY

)
.

This suffices to prove that there is a natural isomorphism between the two functors

in DA.

Corollary 5.5. In light of (1.3), Conjecture 1.1 holds in the case of a CP1-object.

5.2 Exotic autoequivalences

Suppose we have a symplectic manifold (M,ω) and a Lagrangian V ⊂ M which

satisfies the classical ring isomorphism HF ∗(V, V ) ∼= H∗(V ). Then if V has the

same cohomology ring as CPn we can form the projective twist ΦV of DF(M) even

if V is not itself diffeomorphic to CPn. However, in this case we would not expect

to find a geometric representative of ΦV as we do not expect to find a metric on

V with periodic geodesic flow. We shall prove that there are indeed situations

as above where no such geometric twist exists (we call such an autoequivalence

exotic). The argument in this section is very similar to that in [6, Proposition

2.17] and we refer the reader there for a more precise discussion of the technical

issues underpinning the definition of the Fukaya category in this situation.

Take some manifold V such that H∗(V ) ∼= k[h]/hn+1 as a ring but such

that π1(V ) is nontrivial (for example we could take the connect sum of CPn

and some homology sphere Σ2n). Consider the disc cotangent bundle D∗V and

add a Weinstein handle [43] to cap off the Legendrian S2n−1 bounding some

cotangent fibre. The result is an exact symplectic manifold M = D∗V#D∗S2n,

which contains Lagrangians Y ∼= S2n and V , and results of [6] say that (for

some suitable definition of the Fukaya category) F(M) is generated (not merely

split-generated) by these two Lagrangians. Moreover, here we have the identity

HF ∗(V, V ) ∼= H∗(V ).

Proposition 5.6. In this situation there is no geometric representative φV of

ΦV .

We first fix the coefficient field K we shall use to define our Fukaya category:

let ι : Ṽ → V denote the universal cover and fix some K such that char(K)

divides the index of ι (so that char(K) is arbitrary when the index is infinite).
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5.2. Exotic autoequivalences

Now suppose that such a geometric morphism φV exists. Then there will be a

Lagrangian submanifold L = φV (Y ) which is represented by the twisted complex

V h // V [1] x // Y, (5.1)

where the arrows denote the terms in the differential as in (4.4) (if necessary we

pass to a quasi-equivalent, strictly unital F̃(M) so that we may work with twisted

complexes as in Chapter 4). Here we observe that HF ∗(V, Y ) = K generated by

their one point of intersection x. The objects of F(M) are all closed Lagrangians,

but F(M) embeds as a full category of some wrapped Fukaya category W(M),

which includes nonclosed Lagrangians such as cotangent fibres. Let π : M̃ → M

be the cover induced by ι : Ṽ → V . Results of [3, Section 6] now say that there

exists a pullback Fukaya category W(M̃ ; π) with the following properties:

Theorem 5.7. There is a wrapped Fukaya category W(M̃ ; π) which comes with

a pullback functor

π∗ : W(M)→W(M̃ ; π)

which acts on objects L of W(M) by taking the total inverse image π−1(L) ⊂ M̃

and such that the map on morphisms

HF ∗(L,L)→ HF ∗(π−1(L), π−1(L))

agrees with the classical pullback on cohomology whenever L ⊂M is closed. More-

over, deck transformations of π act by autoequivalences of W(M̃ ; π).

So when we pullback the twisted complex (5.1) under π, we get a new twisted

complex in W(M̃ ; π):

Ṽ 0 // Ṽ [1] // π−1(Y ),

where the first differential is zero by our choice of K. This means that, up to

shifts, we get the splitting

π−1(L) ∼= Ṽ ⊕
(
Ṽ [1]→ π−1(Y )

)
. (5.2)

Also, π−1(L) =
∐

α L̃α where all the components are related in W(M̃ ; π) by deck
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transformations of π. By looking at the rank of HW 0(Ṽ , Ṽ ) = HF 0(Ṽ , Ṽ ) = K
we see that Ṽ is an indecomposable object of the category, as is each L̃α.

We now work in DπW(M̃ ; π), the idempotent completion of DW(M̃ ; π) [39,

Chapter 4], where we can appeal to the following lemma.

Lemma 5.8. If X = ⊕Xi is a direct sum of indecomposable objects in DπW(M̃ ; π)

and Y is a indecomposable summand of X, then Y must be isomorphic to one of

the Xi.

Proof. By considering inclusion and projection morphisms, we see that the com-

position X → Y → X is idempotent. This splits as a direct sum of idempotents

Xi → Y → Xi. When one of these is nonzero it means that, either the compo-

sition is the identity or that, having taken idempotent completion, Xi admits a

nontrivial summand. In the first instance, Y → Xi → Y is then idempotent, so

again the composition is either the identity or Y admits a nontrivial decompo-

sition. As Xi and Y are assumed indecomposable, we conclude that Xi and Y

must be isomorphic.

Therefore, in order to show that the twisted complex in the right-hand side of

(5.2) cannot arise as the pullback of a geometric Lagrangian and that therefore

φV cannot exist, it suffices to prove

Lemma 5.9. Ṽ [1]→ π−1(Y ) is not quasi-isomorphic in W(M̃ ; π) to a direct sum

of objects obtained from Ṽ by deck transformations.

Proof. Pick a cotangent fibre to one of the components of π−1(Y ) and consider

its Floer cohomology with these two twisted complexes. In the case of Ṽ the rank

will be zero; in the case of Ṽ [1]→ π−1(Y ) the rank will be 1.

Remark 5.10. This argument requires that we may freely choose our coeffiecient

field for F(M). To do this one usually restricts attention to spin Lagrangians so

that we can orient the moduli spaces of holomorphic curves used to define our A∞-

maps. However, following [18], it is enough that our Lagrangians be relatively

spin, meaning that there is some class st ∈ H∗(M,Z/2) such that st|L = w2(L),

which clearly holds here. Therefore the above argument will still work in the case

where n is even.
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Distinguishing between exotic

symplectic structures
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Chapter 6

Lefschetz fibrations

In this chapter, we recall the standard notions of Picard-Lefschetz theory. The

treatment here largely follows that of [39, Part III], but we shall adapt the pre-

sentation there to include certain nonexact symplectic manifolds, as we want to

consider arguments involving nonexact deformations of our symplectic form.

Let (M,ω) be a noncompact symplectic manifold. We say (M,ω) is convex at

infinity if there exists a contact manifold (Y, α) which splits M into two parts:

a relatively compact set M in; and M out, which is diffeomorphic to the positive

symplectization of (Y, α) where, in a neighbourhood of Y , we have a 1-form θ

satisfying dθ = ω and θ|Y = α. Such a contact manifold is canonically identified

up to contactomorphism. If θ can be defined on the whole of M , we call (M, θ)

a Liouville manifold.

Given a compact symplectic manifold with boundary M such that, in a neigh-

bourhood of the boundary, we have a primitive θ of the symplectic form which

makes the boundary contact, we say M has convex boundary. If θ is defined

everywhere, (M, θ) is usually called a Liouville domain. Given a symplectic man-

ifold with convex boundary, we can complete M canonically to get a symplectic

manifold convex at infinity,

M̂ = M ∪∂M [0,∞)× ∂M,

with forms θ̂ = erθ and ω̂ = dθ̂ on the collar, where r denotes the coordinate on

[0,∞).
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6. LEFSCHETZ FIBRATIONS

6.1 Definition

Let (E,ω) be a compact symplectic manifold with corners such that, near the

boundary, ω = dθ for some form θ which makes the codimension 1 strata contact,

and let π : E → S be a proper map to a compact Riemann surface with boundary

such that the following conditions hold:

• There exists a finite set Ecrit ⊂ E such that Dπx is a submersion for all

x /∈ Ecrit, and such that D2πx is nondegenerate for all x ∈ Ecrit, which

means that locally we can find charts such that π(z) =
∑
z2
i . We denote

by Scrit the image of Ecrit and require that Scrit ⊂ S \∂S. We also assume,

for sake of notational convenience, that there is at most 1 element of Ecrit

in each fibre.

• For all z /∈ Scrit the fibre Ez = π−1(z) becomes a symplectic manifold with

convex boundary with respect to ω|Ez . This means that we get a splitting

of tangent spaces

TEx = TEh
x ⊕ TEv

x,

where the vertical part TEv
x is the kernel ker(Dπx) and the horizontal part

TEh
x is the orthogonal complement of TEv

x with respect to ω.

• At every point x ∈ E such that z = π(x) ∈ ∂S, we have TS = T (∂S) +

Dπ(TEx). This implies that π−1(∂S) is a boundary stratum of E of co-

dimension 1, which we shall call the vertical boundary, denoted ∂vE. The

union of boundary faces of E not contained in ∂vE we shall call the hori-

zontal boundary of E, denoted ∂hE.

• If F is a boundary face of E not contained in ∂vE, then π|F : F → S is a

smooth fibration, which implies that any fibre is smooth near its boundary.

We also want the horizontal boundary ∂hE to be horizontal with respect

to the above splitting, so that parallel transport (see below) will be well-

defined along the boundary.

Definition 6.1. If all the above holds we call (E, π, ω) a compact convex Lefschetz

fibration. For ease of notation, in what follows we shall often call (E, π, ω) simply

a Lefschetz fibration, suppressing the extra adjectives.
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The splitting of tangent spaces into horizontal and vertical subspaces means

that we have a connection over S \ Scrit, and hence symplectic parallel transport

maps. In other words, for a path γ : [0, 1]→ S which misses Scrit, our connection

defines a symplectomorphism φγ : Eγ(0) → Eγ(1).

There is a method [31] of completing E to a symplectic manifold Ê which

is convex at infinity, such that we get a map π̂ : Ê → Ŝ to the completion of

the base. When S is a disc D, this is done as follows: firstly, the horizontal

boundary ∂hE is just ∂M × D, where M is a smooth fibre, and we can attach

∂M × [0,∞)×D to ∂hE in the same as we complete a symplectic manifold with

convex boundary. This gives us a new manifold we shall call E1 and we can

extend π to π1 on E1 in the obvious way. Now consider π−1
1 (∂D) = N . Attach to

this N× [0,∞) and call the resulting manifold Ê, over which we can extend π1 to

π̂. More details can be found in [31, Section 2]. This map π̂ restricts to π on the

subsets corresponding to E and S and outside we have a local model looking like

the completion of the mapping cone for some symplectic map µ which we shall

call the outer monodromy of the Lefschetz fibration E. Given this, we shall also

talk in this thesis about Lefschetz fibrations over C, which are understood to be

the completions of Lefschetz fibrations over some disc DR ⊂ C, in the sense of

Definition 6.1.

6.2 Vanishing cycles

We can use the parallel transport maps to introduce the notion of a vanishing

cycle. Choose an embedded path γ : [0, 1] → S such that γ−1(Scrit) = {1}. We

can consider the set of points which tend to the critical point y = γ(1) under our

parallel transport maps

Vγ =
{
x ∈ Eγ(0) : lim

t→1
φγ |[0,t](x) = y

}
.

This set Vγ is called the vanishing cycle associated to the vanishing path γ. The

vanishing cycle is actually a Lagrangian sphere in the fibre [38] and if we take

the Lefschetz thimble, the union of the images of the vanishing cycle as we move

along γ together with the critical point, we get a Lagrangian ball ∆γ in the
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total space E. In fact, ∆γ is the unique embedded Lagrangian ball that lies over

γ. These vanishing cycles come together with the extra datum of a “framing”

[38, Lemma 1.14], meaning a parametrization f : Sn → V . Here, two framings

f1, f2 are equivalent if f−1
2 f1 can be deformed inside Diff(Sn) to an element of

O(n + 1), but this framing information is irrelevant in the dimensions in which

we work, so shall neglect to mention framings in what follows.

6.3 Constructing Lefschetz fibrations

Given a Lefschetz fibration (E, π), we can pick a smooth reference fibre Ez and

a collection of vanishing paths γi, one for each critical point, which all finish at

z, but which are otherwise disjoint. This then gives us a symplectic manifold

M = Ez and a collection of vanishing cycles Vi ⊂ M associated to the γi. For

our purposes, in constructing symplectic manifolds, it is important to note that

we can go the other way as in the following lemma, taken from [39, Lemma 16.9]

but with unnecessary assumptions of exactness removed.

Lemma 6.2. Suppose we have a collection (V1, . . . , Vm) of (framed) Lagrang-

ian spheres in a symplectic manifold M with convex boundary. On the disc D,

choose a base point z, and a distinguished basis of vanishing paths γ1, . . . , γm all of

which have one endpoint at z. Then there is a compact convex Lefschetz fibration

π : E → D, whose critical values are precisely the endpoints γ1(1), . . . , γm(1); this

comes with an identification Ez = M , under which the (framed) vanishing cycles

Vγk correspond to Vk.

This will be the technique used to construct the symplectic manifolds consid-

ered in this thesis. However, in order to do this, we need to identify a collection of

Lagrangian spheres in a given symplectic manifold M . In the case where M itself

admits a Lefschetz fibration, we shall do this by considering matching cycles.

6.4 Matching cycles

Consider a Lefschetz fibration π : M → S and an embedded path γ : [0, 1] → S

such that γ−1(Scrit) = {0, 1}. In the fibre π−1(γ(1
2
)), we get two vanishing cycles,
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one coming from either endpoint. If they agree, then parallel transport allows us

to glue the two thimbles together to obtain a smooth Lagrangian sphere V ⊂M .

We shall call γ a matching path, and V the associated matching cycle.

In this thesis we shall usually work in situations where the vanishing cycles

do agree exactly so that we do get matching cycles, but occasionally we will

have the situation where the two vanishing cycles are not equal, but are merely

Hamiltonian isotopic. In this situation we may appeal to the following result of

[8, Lemma 8.4]:

Lemma 6.3. Let (M,ω) be a symplectic manifold with a Lefschetz fibration

π : M → C and let γ : [0, 1] → C be a path such that γ−1(Scrit) = {0, 1}. Sup-

pose that the two vanishing cycles V0, V1 ⊂ Mγ( 1
2

) coming from either end of this

path are Hamiltonian isotopic for some compactly supported Hamiltonian Hs de-

fined on the fibre Mγ( 1
2

). Then M contains a Lagrangian sphere homotopic to

∆0 ∪∆1 ∪ im(Hs(V0)).

Matching cycles will be used for our main method of construction. We take

a symplectic manifold (M,ω) equipped with a Lefschetz fibration and consider

an ordered collection of matching paths. In favourable circumstances these will

give rise to a family of framed Lagrangian spheres (V1, . . . , Vn) ⊂M and we now

apply Lemma 6.2 to construct a new Lefschetz fibration (E, π).

6.5 Maydanskiy’s examples

Figure 6.1 shows the examples considered in [27]. Although higher-dimensional

examples are also considered in [27], the meaning of all such diagrams in this

thesis is that we take the symplectic manifold M4 built according to Lemma 6.2

by taking fibre T ∗S1 and vanishing cycles given by the zero-section, one for each

cross. The lines in Figure 6.1 are then matching paths which yield the spheres

required to apply Lemma 6.2 again to obtain E6. The fact that the paths in

Figure 6.1 actually do give matching cycles will for us be a consequence of the

method of construction considered in the next chapter.

Maydanskiy [27] proves that the two symplectic manifolds in Figure 6.1 are

diffeomorphic (they are both T ∗S3 ∪ 2-handle) but are not symplectomorphic.
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× ××× ×

×

X1 -contains no Lagrangian S3X ′1 -contains a Lagrangian S3

Figure 6.1:

X ′1 is just T ∗S3 with a Weinstein 2-handle attached as in [43] and contains an

exact Lagrangian sphere inherited from the zero-section of T ∗S3. In contrast, X1

contains no exact Lagrangian submanifolds, and so is considered exotic.

One way of thinking about this intuitively is that the manifolds are diffeo-

morphic because one can construct a smooth isotopy taking the top matching

cycle in X1 and moving it over the critical point in the middle to get X ′1. The

reason this fails to work symplectically is that we are free to move our cycles only

by Hamiltonian isotopies, and we will not then be able to avoid the central crit-

ical point (since we cannot displace the zero-section of T ∗S1), although the actual

proof in [27] has to make use of more sophisticated Floer-theoretic arguments.
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Chapter 7

Deformations of symplectic

structures

Definition 7.1. Let (E,ω) be a symplectic manifold. By a deformation of the

symplectic structure (E,ω) we shall mean a smooth 2-form Ω on Ẽ = E × [0, 1]

such that

• Ω|t is symplectic on each E × {t}

• Ω|0 = ω

• ιvΩ = 0 for any v ∈ ker(Dρ) where ρ is the projection Ẽ → E.

This is equivalent to a smooth 1-parameter family of symplectic forms {ωt : t ∈ [0, 1]}
on E such that ω0 = ω. We shall denote by (Ẽt, ωt) the symplectic manifold

(E × {t},Ω|t).

We shall consider X1, the exotic example of Maydanskiy from the previous

chapter. In this chapter, we shall prove

Theorem 7.2. There is a deformation X̃1 of X1 such that, for all t > 0, X̃ t
1

contains a Lagrangian sphere.

7.1 Constructing a deformation of X1

The fibres of Maydanskiy’s examples are A2 Milnor fibres. For our purposes,

which crucially rely on matching paths defining genuine matching cycles without
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having to rely on Lemma 6.3, we shall work with the specific model as below.

Let M be the affine variety defined by

M =
{
z2

1 + z2
2 = (z3 − 1)(z3 − 2)(z3 − 3)

}
⊂ C3

equipped with symplectic form ω, which is the restriction of the standard symplec-

tic form on C3. We may restrict to some compact set M in ⊂M (M in ⊂ BR ⊂ C
for some sufficiently large R), such that M in is a Liouville domain which be-

comes a Lefschetz fibration in the sense of Definition 6.1 once we project onto

the z3-coordinate [39, Section 19b]. It has three critical values, at 1, 2 and 3.

There is a homologically essential Lagrangian sphere A living over the straight-

line path joining the two critical points at 1 and 2, which is given by the part of

the real locus MR living over this path. This sphere is precisely the matching cy-

cle associated to that line. We can do the same with the part of M ∩R〈x3, y1, y2〉
living over the interval [2, 3] to find another Lagrangian sphere B and we shall

take A and B to define our standard basis of H2(M ;R) = R2.

The manifold M carries an S1-action given by z1

z2

z3

 7→
 cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 z1

z2

z3


and the symplectic form ω is invariant under this action.

Every smooth fibre is of the form z2
1 + z2

2 = λ for some nonzero λ = seiα and

we observe that such a fibre is preserved by the S1-action, which in particular

means that the parallel transport map associated to a path γ is S1-equivariant.

This fibre is symplectomorphic to T ∗S1, where the model we use for T ∗S1 is

T ∗S1 =
{

(q, p) ∈ R2 × R2 : ‖q‖ = 1 , 〈q, p〉 = 0
}
.

The symplectomorphism is defined as follows: let ẑ = ze−iα/2 and map

z 7→
(
<(ẑ)

‖<(ẑ)‖
,−=(ẑ)‖<(ẑ)‖

)
.
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7.1. Constructing a deformation of X1

Note that, for each fibre, the S1-orbits are mapped to level sets ‖p‖ = constant

so, given that the parallel transport maps are S1-equivariant, the vanishing cycle

associated to any vanishing path will itself correspond to such a level set.

We shall deform the symplectic structure by introducing 2-forms which are

intended to resemble area forms supported near the equators of A and B. We

therefore consider the 2-form on C3 \ iR3,

η = gε

(
x

‖x‖

)(
x1

‖x‖3
dx2 ∧ dx3 +

x2

‖x‖3
dx3 ∧ dx1 +

x3

‖x‖3
dx1 ∧ dx2

)
where gε(x) = gε(x3) denotes a cutoff function for the x3-coordinate which has

supp(gε) ⊂ {|x3| < ε}.

As η is defined using only coordinates on the real slice R3\{0} and annihilates

the radial direction, this is a closed form on C3 \ iR3. We shall choose ε such that

ε < 1
8R

, and apply a translation x 7→ x + (0, 0, 3/2). It is easy to show that η is

now well-defined on M , so that in the Lefschetz fibration M in → DR, η is a closed,

S1-equivariant 2-form supported in the region lying over {|x3 − 3/2| < 1/4} and

the sphere A has some nonzero area with respect to η.

Moreover, we can rescale η so that ω + η is still symplectic on M in, since the

property of being symplectic is an open condition and M in is compact. Also,

since M is an A2 Milnor fibre, its boundary ∂M is topologically the quotient of

S3 by a Z/3 action and therefore H2(∂M ;R) = 0. This means that, perhaps

after rescaling η again, M in will still have contact boundary.

We repeat the above procedure to obtain another closed 2-form η′ on M in,

defined now using the coordinates y1, y2, x3 which is again S1-equivariant and is

supported over {|x3 − 5/2| < 1/4} and has the property that

η(A) = −η′(B).

We denote by ωt the 2-forms ω + t(η + η′) for t ∈ [0, 1], all of which make M in

symplectic with convex boundary.

Remark 7.3. Such a construction can be generalized: choose a finite collection
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of distinct points p1, . . . , pn+1 ∈ R and consider the affine variety

Mp =

{
z2

1 + z2
2 =

∏
i

(z3 − pi)

}
⊂ C3,

which will be diffeomorphic to the An Milnor fibre, with a basis of H2(Mp) given

by the spheres Ai living over the straightline path joining pi and pi+1. We may

construct a deformation of the symplectic structure on Mp by adding on 2-forms

which are supported on strips lying between the critical points as above.

7.2 Obstructions to forming matching cycles are

purely homological

We now consider the path γ0 in Figure 7.1, going from 1 to 3 in C. We would

like this to define a genuine matching cycle, with respect to the parallel transport

maps coming from ωt = ω + t(η + η′) for t ∈ [0, 1]. However, we may no longer

get a genuine Lefschetz fibration in the sense of Chapter 6, since the horizontal

boundary may no longer be horizontal with respect to our splitting. This means

that parallel transport cannot be done near ∂hM , but we shall not need this: our

vanishing cycles stay within a region away from the boundary, since deforming the

symplectic form will only change the parallel transport maps by a small amount.

Therefore, for any given t, the path γ0 gives us two circles in the central

fibre which we know correspond to level sets ‖p‖ = constant. (In Figure 7.1,

the fibres shown at the top are those living over the path γ0.) These two circles

enclose some chain St in the fibre over γ0(1
2
), and the sum of this chain and the

two thimbles is homologous to [A] + [B], so therefore has symplectic area 0 with

respect to ωt. Since the vanishing thimbles are Lagrangian, this means that the

chain St ⊂ T ∗S1 must also have zero symplectic area, and therefore St must in

fact be empty. In other words, we get a genuine matching cycle for all t, which

we denote V t
0 . We can do likewise for the path γ1 to obtain the matching cycle

V t
1 .

By the same argument, for any t > 0 we can take a straightline path given by

the interval [1, 3], which goes over the central critical point at 2, and say that this
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×
1

×
3

γ0

γ1

×
2

BA

V t
0

V t
1

St

Figure 7.1:

too will define a matching cycle: in the central nonsmooth fibre we shall either

get, by S1-symmetry, the critical point or some circle. However, if we obtained

the critical point, then we would have found a Lagrangian in a homology class of

positive symplectic area. Which smooth component this circle lives in depends

on whether we choose to give the class A positive or negative area.

Therefore, for t > 0, we can take a smooth family of paths interpolating

between the two matching paths and get a smooth family (V t
s )s∈[0,1] of Lagrangian

S2s joining the two matching cycles. This has the following standard consequence.

Lemma 7.4. For t > 0, V t
0 and V t

1 are Hamiltonian isotopic.

Proof. We can identify some neighbourhood of V t
0 with T ∗S2 and, for 0 ≤ s ≤ s0

for some small s0, V t
s will correspond to the graph of some 1-form αs. Since V t

s

is Lagrangian, dαs = 0, and therefore αs = dfs since H2(V t
s ;R) = 0. We can

moreover choose these fs smoothly. A direct calculation shows that H(x, s) =
d
ds

(fs(ρ(x))) is a Hamiltonian yielding an isotopy between V t
0 and V t

s0
, where here

ρ : T ∗S2 → S2 is the standard projection map. We can patch together such

isotopies to get from V t
0 to V t

1 , and then apply some cutoff function to make our

Hamiltonian to be compactly supported.
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7.3 X1 contains a Lagrangian sphere after defor-

mation

We are now in a position to prove Theorem 7.2. To do this, we shall establish a

deformation version of Lemma 6.2. This is stated below in the case where there is

just one vanishing cycle, since the general case follows from gluing together such

examples.

Suppose we have M̃ , a deformation of the symplectic structure (M,ω), such

that M̃ t has convex boundary for all t, and suppose that we also have Ṽ ⊂ M̃ ,

which is the image of an embedding of Sn × [0, 1] such that, for all t, we get a

Lagrangian sphere Ṽ t ⊂ (M̃ t, ωt).

Then, by Lemma 6.2, we can construct a Lefschetz fibration Et → D from M̃ t

and Ṽ t for each t. We want the family Et to comprise a deformation of (E0, ωE).

Proposition 7.5. In the above situation, we can construct a bundle of symplectic

manifolds Ẽ → [0, 1], such that each fibre Ẽt has convex boundary and comes with

an identification Ẽt
z
∼= M̃ t, under which the vanishing cycle Vγ corresponds to Ṽ t.

After applying a trivialization of this bundle which is the identity over 0, this is

a deformation of (E0, ωE).

Proof. We closely follow [38, Proposition 1.11]. First we need a neighbourhood

theorem, whose proof follows the same argument as that of the standard Lagrang-

ian neighbourhod theorem [29].

Lemma 7.6. Let (M̃,Ω) be a deformation of (M,ω). Suppose we have Ṽ ⊂ M̃

an embedding of V × [0, 1] such that, for all t, we get a Lagrangian Ṽ t ⊂ (M̃ t, ωt).

Then there exists a neighbourhood N ⊂ T ∗V × [0, 1] of the zero-section V × [0, 1]

and a neighbourhood U ⊂ M̃ of Ṽ and a diffeomorphism φ : N → U such that

φ∗Ω = β where β is the 2-form on T ∗V ×[0, 1] given by the pullback of the standard

symplectic form on T ∗V .

In our case, we may assume our neighbourhood N in Lemma 7.6 is of the

form N = T ∗≤λS
n× [0, 1] for some λ > 0, where T ∗≤λS

n denotes the disc cotangent

bundle with respect to the standard metric on T ∗Sn. Given this, we follow [38,
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7.3. X1 contains a Lagrangian sphere after deformation

Proposition 1.11] which starts by considering the local Lefschetz model q : Cn+1 →
C, q(z) =

∑
z2
i . We also consider the function h(z) = ‖z‖4 − |q(z)|2.

When we restrict to W ⊂ Cn+1 cut out by the inequalities h(x) ≤ 4λ2 and

|q(z)| ≤ 1, we get a compact Lefschetz fibration πW : W → D. As explained in

[38], W comes together with an identification ψ : π−1
W (1) → T ∗≤λS

n, a neighbour-

hood Y ⊂ W of ∂hW , a neighbourhood Z of ∂(T ∗≤λS
n) in T ∗≤λS

n and a diffeomor-

phism Ψ: Y → D× Z which fibres over D and agrees with ψ on Y ∩ π−1
W (1). Let

W̃ = W × [0, 1] and, by taking the product with [0, 1], consider the corresponding

Ỹ, Z̃, ψ̃, Ψ̃.

Now define M̃− to be M̃ \ (φ(N \ Z̃)) and consider

Ẽ = D× M̃− ∪∼ W̃,

where the identification made identifies Ỹ with D × φ(Z̃) through (id × φ) ◦ Ψ̃.

This now has all the required properties.

Proof of Theorem 7.2. Using Proposition 7.5, we can construct a deformation X̃1

of Maydanskiy’s exotic example X1 and we want to say that we have a Lagrangian

sphere Lt ⊂ X̃ t
1 for all t > 0. X̃ t

1 admits a Lefschetz fibration with two critical

points. We take a path joining the two critical points in the Lefschetz fibration

on X1. If we choose the vanishing paths γ in Proposition 7.5 such that they join

together smoothly, then the concatenation of these paths is smooth and yields

two vanishing cycles in the central fibre, which are precisely just V t
0 and V t

1 from

Lemma 7.4, which we know are Hamiltonian isotopic for all t > 0. We then just

apply Lemma 6.3 to find a Lagrangian sphere.

Remark 7.7. As t→ 0, the Lagrangian spheres Lt degenerate to some singular

Lagrangian cycle, which is worse than immersed. In fact, topologically it looks like

S3 with some S1 in it collapsed to a point. Presumably, pseudoholomorphic curve

theory with respect to this cycle is very badly behaved, so that a Floer theory along

the lines of [7] cannot be made to work here, although see [24] for some analysis

of holomorphic discs on certain similar special Lagrangian cones.
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Chapter 8

Floer cohomology

To consider X2 and adapt the arguments presented in [28], we shall need to

consider the Lagrangian Floer cohomology HF (L0, L1) of two transversely inter-

secting Lagrangian submanifolds in some symplectic manifold (M,ω). To define

this, one has to pick a generic family of almost complex structures J = (Jt), which

are usually required to be compatible with ω, in the sense that gt(u, v) = ω(u, Jtv)

defines a Riemannian metric. However, we shall want to consider Jt which are

ω-tame except on a small neighbourhood of L0 ∩ L1, where here Jt is still ω-

compatible. (ω-tame means that ω(u, Jtu) > 0 for all nonzero u.) We shall show

that, given any such family of almost complex structures J = (Jt), there exists

J̃ = (J̃t) arbitrarily close to it, with the same properties, such that HF (L0, L1)

can be defined with respect to (J̃t). The key point is that we are using Cauchy-

Riemann type operators with totally real boundary conditions, so all the relevant

elliptic regularity theory can still be applied.

Remark 8.1. The content of this chapter, that we can relax the condition on the

almost complex structures to define Floer cohomology is probably already known

to experts, but we are unaware of any written account of this in the literature.

8.1 Setup

Let (M,ω) be a symplectic manifold of dimension 2n and let L0, L1 be two

Lagrangian submanifolds which intersect transversely. For each intersection x,
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8. FLOER COHOMOLOGY

fix some small open set Ux around x such that L0 ∩ L1 ∩ Ux = {x}. Assume

moreover that the Ux are disjoint. Pick some family J = (Jt) of smooth almost

complex structures which tame ω (this in particular implies that the Lk are totally

real), and which are ω-compatible on each Ux.

We note here for future reference the following lemma due to Frauenfelder

[17].

Lemma 8.2. Let (M2n, J) be an almost complex manifold and Ln ⊂M a totally

real submanifold. Then there exists a Riemannian metric g on M such that

• g(J(p)v, J(p)w) = g(v, w) for p ∈M and v, w ∈ TpM ,

• J(p)TpL is the orthogonal complement of TpL for every p ∈ L,

• L is totally geodesic with respect to g.

Let Σ denote the holomorphic strip R× [0, 1] ⊂ C. Given a map u : Σ→M ,

we can consider the ∂̄J operator defined by

∂̄Ju(s, t) = ∂su(s, t) + Jt(s, t)∂tu(s, t).

We care about holomorphic maps, which are just those such that ∂̄Ju = 0 and

we define the energy of any map u to be E(u) =
∫
‖∂su‖2.

Let MJ denote the set of holomorphic u as above which also satisfy the bound-

ary conditions u(s, 0) ∈ L0, u(s, 1) ∈ L1 as well as E(u) <∞. It is proved in [36]

that any such map must have the property that

lim
s→±∞

u(s, t) = x±,

where x± are intersection points in L0 ∩ L1. Moreover, the convergence near

the ends is exponential in a suitable sense about which we shall say more later.

We define MJ(x, y) to be the space of finite-energy trajectories as above which

converge to x and y at the ends.

We want to examine the properties of MJ(x, y) and, in particular, determine

when it is a smooth manifold, so we follow the standard procedure of Floer [16], in

exhibiting MJ(x, y) as the zero set of some Fredholm section of a Banach bundle.
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Much of what follows is already contained in Floer’s original work [16], but we

shall recall the main details for the reader’s convenience.

8.2 Banach manifolds

Let kp > 2. We can consider the Sobolev space Lpk;loc(Σ,M) and define

P
p
k =

{
u ∈ Lpk;loc(Σ,M) : u(s, 0) ∈ L0, u(s, 1) ∈ L1

}
.

Let Σρ = {z ∈ Σ : |<z| < ρ}. The topology on P
p
k is defined using the basis of

open sets given by

Ou,ρ,ε = {v ∈ P
p
k : v = expu ξ on Σρ and ‖ξ‖k,p < ε for p < ρ} .

Here u ∈ P
p
k and ρ, ε > 0.

For our present purposes, and in order to ensure that we do in fact get a

Banach manifold, we shall need to restrict to a subset of Ppk with nice behaviour

near intersection points x ∈ L0 t L1. Consider

P
p
k(·, x) =

{
u ∈ P

p
k : ∃ρ > 0,∃ξ ∈ Lpk;loc(Σ, TxM), u(s, t) = expx ξ(s, t)∀s > ρ

}
.

In other words, we restrict attention to maps which, at one end, look like the

exponentiation of some vector field. We impose a similar condition at the other

end to define P
p
k(x, ·), and then consider P

p
k(x, y).

For u ∈ P
p
k, u

∗TM is an Lpk;loc-bundle, so we can talk about sections which are

locally of Lpk;loc-type. We shall introduce the shorthand Lpk(u) = Lpk;loc(u
∗TM)

and we may also consider

W p
k (u) =

{
ξ ∈ Lpk(u) : ξ(s, 0) ∈ Tu(s,0)L0, ξ(s, 1) ∈ Tu(s,1)L1

}
,

so here we have tangent pointing along the Lagrangian boundary.

We can also consider spaces of sections W q
l (u) and Lql (u) of different regularity

provided that l ≤ k and

l − 2

q
≤ k − 2

p
. (8.1)
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Theorem 8.3. ([16, Theorem 3]) Let p ≥ 1 and kp > 2. Then P
p
k(x, y) is a

smooth Banach manifold and its tangent space at u is given by TuP
p
k(x, y) =

W p
k (u).

To show this is a Banach manifold, Floer uses a system of charts based on

the exponential map. Accordingly, pick a family of metrics (gt) such that Lk is

totally geodesic with respect to gk, as in Lemma 8.2.

Define

exp: Σ× TM →M,

exp(s, t, x, v) = expgt(x, v).

Let ι denote the minimal injectivity radius of the metrics gt and define

Uu = {ξ ∈ W p
k (u) : ‖ξ‖∞ < ι} .

On a noncompact manifold M , we will not necessarily have ι > 0. However,

in our cases, this will hold since all our symplectic manifolds are geometrically

bounded at infinity.

The charts are now given by

expu : Uu → Vu = expu(Uu),

expu(ξ)(s, t) = exp(s, t, u(s, t), ξ(s, t)).

It is because of this system of charts that we restricted the convergence con-

ditions at the ends in defining P
p
k(x, y). The proof of above theorem is technical

but makes no use of the symplectic structure.

Moreover we may also consider Banach bundles W
q
l → P

p
k(x, y) and L

q
l →

P
p
k(x, y), with fibres modelled on W q

l (u) and Lql (u) respectively, provided that

the regularity condition (8.1) holds.

The same proof as in [16] shows that ∂̄J is a smooth section of Lp
k−1. In fact,

since ∂̄J is a real Cauchy-Riemann operator with totally real boundary conditions

[30, Appendix C] ∂̄J is a Fredholm operator. We denote its linearization at u by

Eu = D∂̄J(u) : W p
k → Lpk−1.
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We now consider the zero-set of the section ∂̄J. It is shown in [36] that if

u ∈ M(x, y), then u has the right convergence conditions at the ends to be an

element of Ppk(x, y) and moreover these sets are locally homeomorphic. Moreover,

any solution to ∂̄Ju = 0 will in fact be smooth, using elliptic bootstrapping

techniques. This is proved in [16] for ω-compatible J, and this proof carries over

in region Ux, and elsewhere it follows from [30, Proposition 3.1.9]. Therefore the

zero set of ∂̄J is precisely ∪x,yMJ(x, y).

8.3 Fredholm theory

This zero set will not always be a manifold, but we shall show that we can always

perturb J = (Jt) to some arbitrarily close J̃ = (J̃t) such that the corresponding

moduli space MJ̃ is in fact a manifold. To do this, we need to have some space

which represents the possible perturbations of J.

The space of ω-tame J is a Fréchet manifold whose tangent space at J is

given by smooth sections of End(TM, J, ω), which is defined to be the bundle

over M whose fibre at x is the space of linear maps Y : TxM → TxM such that

Y J + JY = 0. In order that we may have a Banach manifold, not a Fréchet one,

we use the following argument of Floer [16].

Pick any sequence of positive real numbers (εk) and define

‖Y ‖ε =
∑

εk max
x
|DkY (x)|.

Denote by C∞ε (M,End(TM, J, ω)) those Y with finite ‖·‖ε norm. This is a Banach

manifold. Floer [16] proves that there is a sequence (εk) that tends to zero suffi-

ciently quickly that C∞ε (M,End(TM, J, ω)) is dense in L2(M,End(TM, J, ω)).

Now fix some 1-parameter family J0 = (J0
t ) of almost complex structures. For

a 1-parameter family Y = (Yt) of elements of C∞ε (M,End(TM, J, ω)), we consider

the map f : Yt 7→ J0
t exp(−J0

t Yt)). On some neighbourhood of the zero-section f

restricts to a diffeomorphism. Define

Y = {Y = (Yt) : ‖Yt‖∞ < r and Yt(p) = 0 for p ∈ U} ,
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where U = ∪xUx is our neighbourhood of the intersection points x and r is chosen

small enough such that the restriction of f is a diffeomorphism. Denote by Jr(J
0)

the image of Y under f . This space represents our space of perturbations of J0.

In what follows, we shall usually consider J0 to be fixed and write J instead of

Jr(J
0).

We have a section of Banach manifolds

∂̃ : P× Y→ L,

∂̃(u,Y) = ∂̄f(Y)u.

As before, this section is smooth. We want to prove that its linearization is

surjective on its zero set. Since Eu = D∂̄J(u) is closed, it suffices to prove that

the image is dense whenever ∂̄Ju = 0. This is proved in the Appendix of [33],

which is itself a correction of the argument appearing in [16]. This result makes

no assumption of any ω-compatibility condition.

Now the implicit function theorem [30, Theorem A.3.3] says that the universal

Floer moduli space

M(x, y, J) = {(u,J) : u ∈MJ(x, y)}

is a smooth Banach manifold. Once we have this, we may consider the projection

onto the J factor, which is a Fredholm map and apply the Sard-Smale theorem.

Theorem 8.4 (Sard-Smale). The set of regular values of a Fredholm map g : A→
B between paracompact Banach manifolds is a Baire set in B.

This shows that there is a second category set Jreg ⊂ J of so-called regular

almost complex structures, such that MJ is a smooth manifold for J ∈ Jreg. In

particular, this means that there exist regular J arbitrarily close to J0. The

dimension of this manifold is given by the Fredholm index, which in this case is

|x| − |y|, the difference of the Maslov indices of the intersections [15]. Note also

that MJ(x, y) carries a free R-action by translation in the s variable and we shall

denote the quotient space by M̂J(x, y).
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8.4 Compactifications

From this point onward we shall assume that c1(M) = 0. This is independent of

the almost complex structure chosen. From the previous section, we now know

that, given two intersection points x and y, MJ(x, y) is a smooth manifold of the

correct dimension, provided we pick J ∈ Jreg. Given some real number E, we

can restrict attention to the set ME
J (x, y) of Floer trajectories with the energy

bound E(u) < E. Gromov compactness says that this manifold admits a natural

compactification by adding broken trajectories, possibly with bubbles. In order to

be able to define Floer cohomology, we shall need to look at the compactifications

of these moduli spaces in cases when they have dimension ≤ 2.

We want to prove that we can pick our almost complex structures (Jt) in such

a way that we get no bubbling along solutions to the Floer equation. There are

two possible types of bubbles: discs appearing on the Lagrangian boundary, and

spheres appearing on the interior of some Floer solution. We shall prove that in

the case where c1(M) = 0, we can exclude the possibility of sphere bubbles. Disc

bubbles are more difficult and no general approach exists to deal with these (in

fact such an approach cannot exist in all situations as evidenced by the existence

of obstructed Lagrangians [18]). However, we shall show later that we can avoid

such bubbles in some specific cases. To prove that we get no sphere bubbles, we

adapt the argument found in [22].

Fix some nonzero homology class A ∈ H2(M ;Z). For a given J , we can

consider the moduli space of simple J-holomorphic maps v : S2 →M representing

the homology class A, which we shall denote Ms(A, J). We can also take a 1-

parameter family J = (Jt) and consider the space

Ms(A,J) = {(t, v) : v ∈Ms(A, Jt)} .

We can also consider the universal moduli space

Ms(A, J) = {(t, v,J) : (t, v) ∈Ms(A,J)} .

This is a smooth Banach bundle and the projection to J is Fredholm of index

2n + 2c1(A) + 1, so that for J ∈ J′reg some second category set of almost com-
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plex strcutures, Ms(A,J) is a smooth manifold of that dimension. The analysis

underlying all this is similar to that in the previous section and can be found,

for example, in [30]. We also note that Ms(A,J) admits a free action by the

real 6-dimensional reparametrization group of the sphere G = PSL(2,C) and we

consider the space Ms(A,J)×G S2, which, for generic J, is a smooth manifold of

dimension 2n+ 2c1(M)− 3.

By taking the fibre product over J, we can consider

N =
(
Ms(A, J)×G S2

)
×J (M(x, y, J)× [0, 1])

and the map

N→M × [0, 1]×M × [0, 1]

given by

([v, z], t, u, t′) 7→ (v(z), t, u(0, t′), t′).

We want to know the intersection of the image of this map with the diagonal

∆M×[0,1]. Since MJ(x, y) carries an R-action, if there is any such intersection,

there must be a bubble intersecting a Floer solution u at some u(0, t), since we

only care about Jt0-bubbles meeting some Floer solution at time t0.

For any t, we have an evaluation map evt : MJ(x, y) → M given by evt(u) =

u(0, t) and a version of Proposition 3.4.2 in [30] says that this map is a submersion

for all t. This means that the intersection with the diagonal is transverse, and

therefore the space

Z = {([v, z], t, u, t′) : (v(z), t) = (u(0, t′), t′)}

is a submanifold of (Ms(A, J)×GS2)×J (M(x, y, J)× [0, 1]) of codimension 2n+1.

This means that the projection Z→ J has Fredholm index

(2n+ 2c1(A)− 3) + (|x| − |y|+ 1)− (2n+ 1)

= 2c1(A) + |x| − |y| − 3.

Since we have c1 = 0, this means that for generic J = (Jt), the 1- and 2-

dimensional moduli spaces of Floer solutions (which are needed to define the
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Floer differential d and show that d2 = 0) will not intersect any sphere bubbles.

Bearing in mind that the compactification of these spaces involves adding broken

solutions, possibly with bubbles, the same argument as in [22] shows that we still

get no intersection even after compactifying our spaces.

The case of disc bubbles is more difficult and there is no general approach

that will work, but if we have chosen appropriate J0, J1 such that we get no

disc bubbles for our Lagrangians, then picking a generic path of almost complex

structures (Jt) interpolating between these two gives a family of (Jt) such that

we can in fact define HF (L0, L1). This will be discussed more in Chapter 8.7.

8.5 Floer cohomology

We first fix the coefficient field we shall use. Although (subject to certain topo-

logical assumptions) the relevant moduli spaces can be oriented so that Floer

cohomology can be defined over fields of arbitrary characteristic, we don’t need

this for our purposes. We therefore introduce the Novikov ring

ΛZ/2 =

{∑
r

arq
r : ar ∈ Z/2, r ∈ R, r →∞,#{ar 6= 0 : r < E} <∞ for all E

}

of power series in the formal parameter q as in the Introduction. This is in fact

a field.

In order to define Floer cohomology, we define the Floer cochain complex to

be

CF (L0, L1) =
⊕

x∈L0∩L1

ΛZ/2〈x〉.

In the case where |y| = |x| − 1, the Floer differential is defined by

dy =
∑

u∈M̂J(x,y)

qE(u)x.

For this map to be well-defined over the Novikov ring, for any E, there must be

only finitely many terms involving powers of q less than E. This follows from

Gromov compactness. When |y| = |x| − 1, the compactification of M̂E
J (x, y) can

71



8. FLOER COHOMOLOGY

only involve adding bubbles, since breaking cannot occur as the solutions are

already of minimal index. But we have shown that we can pick J such that no

bubbling occurs. Therefore the zero-dimensional manifold M̂E
J (x, y) is compact,

hence consists of finitely many points.

In order to show that this is in fact a differential (i.e. that d2 = 0), the

standard approach is to identify the boundary of the compactification of any 1-

dimensional M̂J(x, z) with M̂J(x, y)× M̂J(y, z), and use the fact that boundary

points of a 1-manifold come in pairs. This identification again relies on the fact

that no bubbing occurs, which is ensured by the previous section. Once again we

stress that we have not yet dealt with disc bubbling, so that the content of this

section is incomplete and Floer cohomology will not be properly defined until we

do so in Chapter 8.7.

In our setting, where c1(M) = 0, we may also pick a grading so thatHF ∗(L0, L1)

becomes a Z-graded group [37].

We also want to define a multiplication map on Floer cohomology. We start

by doing this on the chain level.

Consider three Lagrangian submanifolds Li, i = 0, 1, 2 and transverse inter-

section points x ∈ L0 ∩ L2, y ∈ L0 ∩ L1, z ∈ L1 ∩ L2. Similar to before we may

consider the moduli space M2
J(x, y, z) of holomorphic curves u from a disc with 3

marked boundary points mapping to M such that the marked boundary points

tend to x, y, z and the remainder of the boundary maps to the various Lagrang-

ians (see [39, Section 2] for more specific details). Here J is a 2-parameter family

of almost complex structures (Jw)w∈D and a similar analysis to the previous sec-

tion shows that, for a generic choice of J, M2
J(x, y, z) is a smooth manifold of

dimension |x| − |y| − |z|.

We can therefore define

m : CF (L1, L2)⊗ CF (L0, L1)→ CF (L0, L2),

m(z, y) =
∑

u∈M2
J(x,y,z)

qE(u)x.

in the case where |x| = |y|+ |z|. We want this to be a chain map so that we get

a multiplication on the cohomological level.
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Here the standard approach is again to consider the boundary of the compact-

ification of the 1-dimensional part of M2
J(x, y, z) (see for example [35]). However,

in our case we must once more rule out the possibility of bubbling off of spheres

(disc bubbles will be dealt with in Chapter 8.7).

We continue in a similar vein to before and consider the universal moduli

space

M2(x, y, z, J) =
{

(u,J) : u ∈M2
J(x, y, z)

}
for an appropriate Banach space J of 2-parameter families of almost complex

structures defined similarly to the previous section. We then consider

N′ =
(
Ms(A, J)×G S2

)
×J

(
M2(x, y, z, J)× D

)
.

By mapping to M ×D×M ×D via ([v, z], w, u, w′) 7→ (v(z), w, u(w′), w′), we see

that N′ contains a submanifold

Z′ = {([v, z], w, u, w′) : (v(z), w) = (u(w′), w′)}

of codimension 2n + 2, which represents the intersections between Jw-bubbles

and multiplication curves u at point u(w). The projection Z′ → J is Fredholm of

index

(2n+ 2c1(A)− 2) + (|x| − |y| − |z|+ 2)− (2n+ 2) (8.2)

= 2c1(A) + |x| − |y| − |z| − 2.

Therefore, for generic J = (Jw), the 0- and 1-dimensional moduli spaces of such

holomorphic discs do not intersect any sphere bubbles (recall that we are assuming

c1(M) = 0), so these will not obstruct our multiplication surviving to cohomology.

We shall also want, when defining wrapped Floer cohomology, to have a map

ΨH : CF (L0, L1)→ CF (L0, ψH(L1)),

where ψH is the Hamiltonian isotopy coming from some Hamiltonian H : M ×
[0, 1]→ R (when M is noncompact but convex at infinity, we additionally require

H to be monotone: ∂sHs ≤ 0 [35]). First note that intersection points y ∈ L0 ∩
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ψ(L1) are in one-to-one correspondence with Hamiltonian chords y : [0, 1] → M

such that y(0) ∈ L0, y(1) ∈ L1, and ẏ(s) = XH(y(s)).

For x ∈ L0 ∩ L1 and y ∈ L0 ∩ ψ(L1), we consider the moduli space of contin-

uation Floer trajectories MH
J (x, y), solutions u to the equation

∂sv + Js,t(∂tv −XH) = 0

on the strip R × [0, 1] such that u(·, 0) ∈ L0, u(·, 1) ∈ L1, and which converge

to the point x at +∞ and to the chord y(t) at −∞. The standard approach

[5] shows that, for generic J = (Js,t), this moduli space is a smooth manifold of

dimension |y| − |x| and we can define

ΨHx =
∑

u∈MH
J (x,y)

qE(u)y

in the case when |y| = |x|. Again the standard argument involving the 1-

dimensional part of MH
J (x, y) shows that this is a chain map modulo bubbling.

But no bubbling of spheres occurs because of the same dimension count as in (8.2)

replacing vdimM2
J(x, y, z) with vdimMH

J (x, y): the space Z′′ representing inter-

sections between Js,t-bubbles and continuation trajectories at u(s, t) has virtual

dimension

(2n+ 2c1(A)− 2) + (|y| − |x|+ 2)− (2n+ 2)

= 2c1(A) + |y| − |x| − 2.

Note that we are here using 2-parameter families of almost complex structures

on R×[0, 1] as opposed to the 1-parameter families used in defining d. See Chapter

8.7 for the argument for disc bubbles.

A similar argument shows that ΨH intertwines the multiplicative structures

on HF (L0, L1) and HF (L0, ψH(L1)).

Remark 8.5. In the case of exact Lagrangians in an exact symplectic manifold,

much of the above analysis is unnecessary: exactness means that no bubbles occur

in the compactifications of our moduli spaces, and we also get a priori energy

bounds independent of u, so we can actually work over Z/2 should we wish.
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8.6 Floer cohomology in Lefschetz fibrations

In the context of a Lefschetz fibration π : E → C, we can make a choice of almost

complex structures which lends itself well to Floer cohomology calculations.

In some neighbourhood of Ecrit we pick J to agree with the standard integrable

complex structure in the local model z 7→
∑
z2
i as in Definition 6.1, which makes

ω locally a Kähler form. Away from Ecrit, we have the splitting

TxE = T hxE ⊕ T vxE

where T vxE = ker(Dπx) and T hxE
∼= Tπ(x)C. With respect to this splitting, we

choose J that, away from Ecrit, look like(
j 0

0 Jv

)
,

such that Jv, the vertical part of J , is compatible with ω restricted to the fibre

and j is compatible with the standard form on the base. Such a J makes the

projection π J-holomorphic, so that Floer solutions in E project to j-holomorphic

strips π ◦u : Σ→ C, and we can now use the maximum principle for holomorphic

functions to restrict the region in which Floer solutions may appear.

The problem is that such a J will not necessarily be regular, so not be suitable

for defining HF (L0, L1). In [28], they proceed as follows. They take some small

generic perturbation of (Jt) to regular (J̃t) such that (J̃t) is still ω-compatible,

losing in the process the property that π is holomorphic. However, Gromov

compactness says that Floer solutions for (Jt) will be close to Floer solutions for

(J̃t). In order to apply Gromov’s compactness theorem for this argument to work,

we need some energy bounds, which a priori exist in the setting of [28] as all their

manifolds are exact.

We do not have any such energy bounds. Therefore, we perturb J by adding

some horizontal component to get

J̃ =

(
j 0

H Jv

)
,
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where H is some small perturbation that is zero on some neighbourhood of the in-

tersctions of our Lagrangians and such that J̃2 = −1. Now π is still holomorphic,

so we can use maximum principles in the base, but J̃ is no longer compatible with

ω. However, for small H, it will still tame ω and we can use the discussion above

to say that we can still do Floer cohomology in this setting. The proof that the

space of such H is large enough for us to achieve transversality as in Chapter 8.3

can be found in [38, Lemma 2.4].

8.7 Disc bubbles

We have not yet said anything about how to avoid disc bubbles, J-holomorphic

maps w : (D, ∂D)→ (M,L). However, for the purposes of this thesis, we need only

consider specific sorts of Lagrangian submanifolds, namely spheres or Lefschetz

thimbles in some Lefschetz fibration, with a six-dimensional total space and whose

first Chern class vanishes.

In the first instance, it is shown in [44], using techniques inspired by symplectic

field theory, that for a Lagrangian sphere in a symplectic manifold of dimension

at least 4 with vanishing first Chern class, there exists a J such that no disc

bubbles exist. This is proven in [44] only for compatible J , not the larger class

of almost complex structures we have considered in this chapter. However, in

the next chapter there is only one point at which we need to consider the Floer

cohomology of a 3-sphere in the total space of a Lefschetz fibration (Chapter 9.1)

and here we don’t need to perform the horizontal perturbation trick, so at this

point in the argument we can just pick a compatible J for the sphere as usual.

As for thimbles, we start by picking J adapted to our Lefschetz fibration as

above. If a disc bubble exists, then by considering the projection to the base, we

see that any such bubble must entirely be contained in some fibre of π : E → C.

The part of the thimble living in this fibre is now just a sphere, so we can arrange

for the vertical part Jv of J to be such that we get no bubbles as in the previous

paragraph. However, this fails to take into account of the fact that we have a 1-

parameter family of such fibres (the vanishing path). In fact, in [44] the relevant

Fredholm problem involves a Fredholm operator whose index is bounded from

above by −2, so we may in fact generically pick a 1-parameter family of such J
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so that we get no bubbles.

Now to complete the definition of the Floer cohomology of two such Lagrang-

ians, we pick appropriate J0 and J1 as above and then pick some path J = (Jt)

interpolating between them. A generic perturbation of J, which may be cho-

sen such that the endpoints are fixed will then be suitable. We may do likewise

to exclude the possibility of disc bubbles appearing in the compactifications of

M2
J(x, y, z) and MH

J (x, y) (although we now consider 2-parameter families of al-

most complex structures, we are free to choose that J be constant along the

boundary components of the disc/strip since we can achieve transversality by

perturbing J just on the interior), thus completing the constructions of Chapter

8.5.
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Chapter 9

The examples of

Maydanskiy-Seidel

Using the same method as explained in Chapter 6, we can construct the six-

dimensional symplectic manifold X2 in Figure 9.1. Its generic fibre is diffeo-

morphic to the Am+1 Milnor fibre Mm+1 and the Lefschetz fibration π : X2 → C
has m+ 1 critical points corresponding to m+ 1 vanishing cycles in Mm+1. The

first m, V1, . . . , Vm come from the straightline matching paths, but Vm+1 is the

sphere associated to the curved path γm+1. For each critical value xi, correspond-

ing to Vi, fix some vanishing path βi : [0,∞) → C such that βi(t) = t for t � 0.

Let ∆i ⊂ X2 denote the corresponding Lefschetz thimble.

× × × ×· · · ×

R

γm+1

X2 =

Figure 9.1:

A trivial extension of the argument in [28], which will be recapped in this

chapter, shows that X2 is diffeomorphic to T ∗S3 ∪ 2-handle and also contains no

Lagrangian sphere L such that [L] 6= 0 in H2(X2;Z/2). (We have shown below

only one such possible choice of γm+1; there are infinitely many others for which

this is also true [28].) We construct a deformation X̃2 of this manifold by adding
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on a closed 2-form supported in the shaded region R, as in Chapter 7, to obtain

a family of symplectic manifolds (X̃ t
2, ωt). c1(X2) = 0 so therefore c1(X̃ t

2) = 0

for all t. We also note that, after deformation, the Vi will still be Lagrangian

in Mm+1 since they live away from the region R. Also the thimbles ∆i will stay

Lagrangian in X̃ t
2.

In this chapter, we shall prove the following:

Theorem 9.1. For all t ∈ [0, 1], X̃ t
2 contains no Lagrangian sphere L such that

[L] 6= 0 ∈ H2(X̃ t
2;Z/2).

The proof of this will essentially just be a repeat of the argument in [28], so

we shall not explain all the details fully, instead directing the interested reader to

the relevant sections of [28]. However, this proof relies heavily on the technology

of Floer cohomology and Fukaya categories. In the original paper, everything

is carried out working within the category of exact symplectic manifolds so the

analytical issues involved in setting up Floer cohomology are easily overcome.

This was why we had to go through the analysis of the previous chapter as we

now often have to work in the more problematic nonexact setting. With the

results of the previous chapter however, the argument of [28] more or less just

carries over, and we only make a few remarks where particular care needs to be

exercised.

In what follows, we shall denote by HF ∗t (L0, L1) the Floer cohomology com-

puted with respect to ωt in any situations where there is likely to be confusion

about the symplectic form being used.

9.1 Wrapped Floer cohomology

We start by defining a variant of Floer cohomology, wrapped Floer cohomology.

Following [28], we shall not need to define this in the level of generality found in

[5, 35], but instead restrict to a simpler (and, in our setting, equivalent) definition

which is well-suited to Lefschetz fibrations.

Given a Lefschetz fibration π : E → C, we consider a Hamiltonian H : E → R
of the form H(y) = ψ(1

2
|π(y)|2) where ψ : R→ R is such that ψ(r) = 0 for r < 1/2
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and ψ′(r) = 1 for r � 0. Let Φα denote the time-α flow of this Hamiltonian and,

given some Lagrangian L, we define Lα = Φα(L).

We can now define the wrapped Floer cohomology of a Lagrangian L and a

thimble ∆ (where, in order to exclude bubbling of discs as mentioned previously,

L is either a sphere or another thimble) to be the direct limit of Floer cohomology

groups

HW ∗
t (L,∆) = lim−→

k

HF ∗t (L,∆2πk+ε)

for some very small ε > 0. The maps involved in this direct limit are the contin-

uation maps from Chapter 8.5.

We will actually need to perform an extra small Hamiltonian isotopy in

addition to Φα in order to ensure transversality of intersections but will sup-

press further mention of this. For our purposes, it is not necessary to identify our

Floer groups canonically so the details of how we do this are irrelevant for what

follows.

To prove Theorem 9.1, suppose for sake of contradiction that there does exist

a Lagrangian sphere L ⊂ X̃ t
2 such that [L] 6= 0 in H∗(X̃

t
2;Z/2). X̃ t

2 is topologically

T ∗S3 with a 2-handle attached, and it is shown in [28, Section 9] that L·∆m+1 6= 0

for such a sphere . This intersection number is the Euler characteristic of the Floer

cohomology group HF ∗t (L,∆m+1). Given the compactness of L, this group is

equal to the wrapped Floer cohomology group HW ∗
t (L,∆m+1) (we may choose to

start “wrapping” outside some compact set containing L) and HW ∗
t (L,∆m+1) is

itself a module over the unital ring HW ∗
t (∆m+1,∆m+1), where the multiplication

maps here are the images under the direct limit of the multiplication defined in

Chapter 8.5. Thus we conclude

Lemma 9.2. If such a Lagrangian sphere exists, then HW ∗
t (∆m+1,∆m+1) 6= 0.

The rest of this chapter is devoted to proving that HW ∗
t (∆m+1,∆m+1) = 0 to

provide the required contradiction.
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9.2 From total space to fibre

If we consider the directed system of groups used to define HW ∗
t (∆m+1,∆m+1),

we see that each step introduces new intersection points as the path over which

our wrapped Lefschetz thimble lives wraps round the base once more. Choose our

family of almost complex structures (Jt) as in Chapter 8.6. In [28], they establish

the existence of a spectral sequence computing the wrapped Floer cohomology of

any two thimbles, which carries over in our setting in light of the discussion of

Chapter 8. When we consider HW ∗
t (∆m+1,∆m+1), this spectral sequence yields

the following long exact sequence

HF ∗t (∆m+1,∆
ε
m+1) // HF ∗t (∆m+1,∆

2π+ε
m+1 )

��
HF ∗t (µ(Vm+1), Vm+1),

σ

jj

where the bottom group is calculated in the fibre Ez and µ denotes the outer

monodromy of the Lefschetz fibration. Lemma 6.2 allows us to identify some

particular fibre Ez′ with the manifold M included in the data of this lemma. We

may arrange that z = z′.

In particular, since the unit in HW ∗
t (∆m+1,∆m+1) arises as the image of

1 ∈ HF ∗t (∆m+1,∆
ε
m+1) = ΛZ/2, the map σ must be zero. By analysing the curves

involved in defining the map σ [28, Section 5] and comparing to the maps involved

in Seidel’s the long exact sequence [38], we can, by Poincaré duality, identify the

map σ with an element of HF 0
t (Vm+1, µ(Vm+1)), which we shall also denote by σ.

Lemma 9.3. ([28, Proposition 5.1]) If HW ∗
t (∆m+1,∆m+1) 6= 0, then σ vanishes.

9.3 Fukaya categories

We now shift attention to the Fukaya category of the fibre F(Ez), and introduce

two related categories.

The first is a directed A∞-category A, which has as objects the finite set
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{V1, . . . , Vm} and morphisms

homA(Vi, Vj) =


(Z/2)ei for i = j

(Z/2)fi for i = j − 1

0 otherwise,

where the degrees are chosen to be |ei| = 0 and |fi| = 1. This category is

chosen to reflect the fact that we have an Am configuration of Lagrangian spheres

Vi ⊂Mm coming from the straightline paths in Figure 9.1, where the only points

of intersection are between adjacent spheres and the gradings can be chosen in

a nice way. This determines the higher-order A∞-structure, namely that the

only nontrivial higher products are given by µ2(ei, ei) = ei and µ2(fi, ei) = fi =

µ2(ei+1, fi).

The second variant of the Fukaya category we shall consider is theA∞-category

B, which is the subcategory of the Fukaya category F(Ez) generated by the

following collection of Lagrangian submanifolds

V1, . . . , Vm, Vm+1, τVm(Vm+1), τVm−1τVm(Vm+1), . . . , τV1 . . . τVm(Vm+1).

In [28], there is no need to restrict attention specifically to B and we can happily

work with the whole Fukaya category F(Ez), even though as above we do not

strictly need to. However, all the objects in B are disjoint from the region R

where ωt is nonexact and we can use maximum principles to ensure that all

pseudoholomorphic curves between these objects also do not enter the region R.

This means there is no extra analysis to do in defining the A∞-category B as we

are essentially just in an exact setting.

In what follows, we shall also want to use Seidel’s long exact sequence in

Floer cohomology [38]. Part of the proof of this long exact sequence in [38]

relies on a spectral sequence argument coming from a filtration on Floer cochain

groups given by the symplectic action functional. Seidel needs to upgrade this

R-filtration to some Z-subfiltration in order to show that a certain mapping cone

is acyclic, which can be done since the action spectrum will be discrete for finitely

many exact Lagrangians in an exact symplectic manifold. In B, this argument
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remains valid since maximum principles mean that we are considering the same

holomorphic curves with the same actions as in the exact case, although this

approach would not work in general.

We can consider the “derived” versions of A and B defined via twisted com-

plexes as DA = H0(TwA) and DB = H0(TwB) [39]. There is a canonical (up

to quasi-isomophism) functor ι : A→ B which on the derived level extends to an

exact functor Dι : DA→ DB.

On the level of derived Fukaya categories DB, thanks to the result of Seidel

[39] relating algebraic and geometric twisting operations, σ corresponds to an

element S ∈ homDB(Vm+1, TV1 · · ·TVmVm+1). If σ vanishes S must too, so, looking

at exact triangles in DB, this means that

Vm+1[1]⊕ TV1 · · ·TVmVm+1
∼= Cone(S),

so we wish to understand C = Cone(S).

Given all this, the next lemma is pure algebra.

Lemma 9.4. ([28, Proposition 6.2]) If S = 0, then Vm+1 is isomorphic to a direct

summand of an object lying in the image of the functor Dι : DA→ DB.

9.4 Contradiction

The fibre Ez itself admits a Lefschetz fibration as pictured at the start of this

chapter, such that the matching cycles of interest arise from matching paths

γ1, . . . , γm+1. By assumption, γm+1 is not isotopic to γi for 1 ≤ i ≤ m within the

class of paths which avoid the critical values except possibly at their endpoints.

Lemma 9.5. ([28, Lemma 7.2]) For 1 ≤ i ≤ m, and for all t ∈ [0, 1], the image

of the product map

HF ∗t (Vm+1, Vi)⊗HF ∗t (Vi, Vm+1)→ HF ∗t (Vm+1, Vm+1) ∼= H∗(Vm+1; ΛZ/2)

does not contain the identity in its image.

As in [28], this is proved by considering the auxiliary Lagrangian Lξ ∼= S1×R
associated to the path ξ in Figure 9.2. The key point is that, since γi is not
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isotopic to γm+1, we can draw ξ so that it intersects γm+1 but is disjoint from

γi (here we have drawn only two of the matching paths, γm+1 and γi, to avoid

clutter).

It is proven in [25] that dimHF ∗t (Lξ, Vm+1) > 0, whereas clearly we have

dimHF ∗t (Lξ, Vi) = 0. As before, we may choose ξ to lie away from the region R

where our deforming 2-form is supported since, by assumption, this also true for

the paths γj, so once more we may use maximum principles to restrict all Floer

solutions to a region of Mm+1 where ωt is exact.

× × × ×· · · ×

R

γi

γm+1

ξ

Figure 9.2:

Suppose we have elements a1 ∈ HF ∗t (Vm+1, Vi) and a2 ∈ HF ∗t (Vi, Vm+1) such

that a2 · a1 ∈ H0(Vm+1), the invertible part of this ring.

This then means that the composition

HF ∗t (Lξ, Vm+1)
a1·→ HF ∗t (Lξ, Vi)

a2·→ HF ∗t (Lξ, Vm+1)

is an isomorphism, which is a contradiction.

Once we have this, we can complete the proof of Theorem 9.1, the remainder

of which carries over directly from [28] as it is essentially just algebra.

Suppose that HW ∗
t (∆m+1,∆m+1) 6= 0. Then Vm+1 is contained in the image

of Dι : DA→ DB. Say that Vm+1 occurs as a direct summand of C in the image.

Then, in particular

homDB(C, Vm+1)⊗ homDB(Vm+1, C)→ homDB(Vm+1, Vm+1) ∼= H∗(Sn; ΛZ/2)

contains the identity in its image as we can consider the maps corresponding to

projection and inclusion with respect to this summand. However, thanks to the

particularly simple form of A, there exists a classification of twisted complexes
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in A, following from Gabriel’s theorem [19]. It says that any twisted complex is

isomorphic to a direct sum of (possibly shifted copies of) the basic complexes Ckl

Ckl =



Wi = Z/2 for k ≤ i < l concentrated in degree 0

Wi = 0 otherwise

δi+1,i = fi for k ≤ i < l

δij = 0 otherwise.

However, by repeated application of our Lemma 9.5 above, we derive a contra-

diction, since the terms in the Ckl correspond geometrically to Vi involved there.

This completes the proof that HW ∗
t (∆m+1,∆m+1) = 0, and therefore, by Lemma

9.2, there cannot exist a homologically essential Lagrangian sphere in X̃ t
2.
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Chapter 10

Distinguishing X1 and X2

10.1 Moser for symplectic manifolds convex at

infinity

Take a symplectic manifold (M,ω) which is convex at infinity. Recall that this

means that there is a relatively compact set M in such that on a neighbourhood

of the boundary ∂M in we have a 1-form θ such that dθ = ω and θ|∂M in is a

contact 1-form, and that M \M in looks like the positive symplectization of ∂M in

according to θ|∂M in .

Suppose that we have a family of cohomologous 2-forms (ωt)t∈[0,1] which make

M in a symplectic manifold with convex boundary. We can complete (M in, ωt)

to a family (M, ω̂t) of noncompact symplectic manifolds with cohomologous sym-

plectic forms all convex at infinity. We want to prove a version of Moser’s theorem

[32] in this setting.

Lemma 10.1. The family (M,ωt) above are all symplectomorphic, by symplec-

tomorphisms modelled on contactomorphisms at infinity.

Proof. We follow the standard argument, but need to pay attention to possible

problems arising from the noncompactness of M . Since the ωt are all cohomolo-

gous, we pick σt such that
d

dt
ωt = dσt.
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10. DISTINGUISHING X1 AND X2

Then, Moser’s theorem follows from considering the flow ψt defined by integrating

the vector fields Yt determined by

σt + ι(Yt)ωt = 0,

although we need to be careful that we can actually integrate Yt all the way to

time 1. This can be done because our forms are all cylindrical at infinity, so

the vector fields obtained above will all scale according to er as we move in the

r-direction along the collar. This bound is enough to ensure we can integrate to

a flow.

10.2 Proof of Theorem 1.2

To prove Theorem 1.2 we just apply Lemma 10.1 in our case. Let ω1, ω2 be the

exact forms induced on X1, X2 respectively and suppose, for a contradiction, that

there exists a diffeomorphism φ : X2 → X1 such that φ∗(ω1) = ω2.

Then we also consider the deforming 2-forms η2 and φ∗(η1) defined on X2 and

by rescaling we may assume without loss of generality that these two 2-forms are

cohomologous (since H2(Xi;R) = R). We now consider the family of 2-forms on

X2

Ωt = (1− t)(ω2 + η2) + tφ∗(ω1 + η1) = ω2 + tφ∗(η1) + (1− t)η2.

There exists some compact subset X in
2 which is an interior for X2 with respect to

Ω0 = ω2 + η2, and by the compactness of both X in
2 and its boundary, we can say

that, after perhaps once more rescaling η1 and η2 if necessary, Ωt makes X in
2 a

symplectic manifold with convex boundary for all t. However, Ωt is not necessarily

cylindrical for all t so we now change our family Ωt, by replacing Ωt|Xout
2

with the

completion of Ωt|Xin
2

to get a new family of cohomologous symplectic forms Ω̃t

on X in
2 ∪∂Xin

2
[0,∞)× ∂X2, which are all cylindrical on the collar. Therefore, by

Lemma 10.1, (X in
2 , Ω̃t) are all symplectomorphic.

However, we can chooseX in
2 sufficiently large that it contains the image φ−1(L)

of the Lagrangian sphere exhibited in Section 7. This is a contradiction of The-

orem 9.1.
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Chapter 11

Symplectic cohomology vanishes

In this chapter, we digress from the main theme and discuss symplectic cohomol-

ogy. All symplectic manifolds considered in this chapter will be exact and we

shall work with Z/2-coefficients. As mentioned in the Introduction, symplectic

cohomology is one of the standard invariants used to examine and distinguish

Liouville domains. We prove that the symplectic cohomology SH∗(Xi;Z/2) of

X1 and X2 both vanish, thereby showing that this invariant does not suffice to

distinguish between the examples of this thesis, and so a different approach such

as that of this thesis truly is needed.

We shall not define symplectic cohomology here; an appropriate definition

may be found in [42], for example. We shall instead refer to two results from [4].

In the formulation of these two lemmas, we consider the Liouville domain E to

be built from fibre M and the collection of vanishing cycles (V1, . . . , Vr) according

to Lemma 6.2. We denote by ∆i the Lefschetz thimble associated to Vi in the

corresponding Lefschetz fibration π : E → C.

Lemma 11.1. ([4, Property 2.3]) For a Liouville domain E, constructed from

(M ;V1, . . . , Vm), SH∗(E) = 0 if and only if HW ∗(∆i,∆i) = 0 for all i.

Lemma 11.2. ([4, Property 2.5]) Consider a Liouville domain E, constructed

from (M ;V1, . . . , Vm) and let E ′ be the Liouville domain built from (M ;V2, . . . , Vm).

Let ∆i,∆
′
i be the Lefschetz thimbles in E,E ′ respectively. If HW ∗(∆1,∆1) = 0

and HW ∗(∆′i,∆
′
i) = 0 for all i, then HW ∗(∆i,∆i) = 0 for all i.
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11. SYMPLECTIC COHOMOLOGY VANISHES

We also note that if SH∗(E;Z/2) = 0, then E cannot contain any exact

Lagrangian submanifolds [42].

Lemma 11.1 suffices to prove that Maydanskiy’s exotic examples [27] have van-

ishing symplectic cohomology, as do the exact symplectic manifoldsXj
n considered

in Chapter 12. We now prove that the exotic examples of Maydanskiy-Seidel, as

well as their versions obtained from adding a 2-handle in the way described in

Chapter 9 have vanishing symplectic cohomology. Take some exotic example X0

from [28], as in Figure 9.1, but without the extra rightmost critical point.

The proof in [28], as outlined in Chapter 9, shows that HW ∗(∆m+1,∆m+1) =

0. We apply Lemma 11.2 in this setting, and remark that this lemma still holds

if we remove the final vanishing cycle instead of the first. If we restrict to the

Am configuration of vanishing cycles (V1, . . . , Vm) in Figure 9.1, then X ′0 is just

isomorphic to the standard ball. This means that if we compute HW ∗(∆′i,∆
′
i),

we get zero as all the Floer groups involved in the definition of HW ∗(∆′i,∆
′
i) will

vanish. This suffices to prove that HW ∗(∆i,∆i) = 0 for all i, and so SH∗(X0) =

0.

We construct the manifold X2 of Chapter 9 by adding a 2-handle to Mm.

However, because this handle is added away from all the vanishing cycles, we can

just view this as a subcritical handle added to X0, as opposed to a critical one

added to Mm since X0 is a product fibration in the region where the handle is

attached. Cieliebak’s result [14] says that SH∗(X2) = SH∗(X0) is still zero. In

particular we have

Theorem 11.3. X2 and X0 are both empty as exact symplectic manifolds, in the

sense of containing no exact Lagrangian submanifolds.

Remark 11.4. It is sometimes possible to define symplectic cohomology with re-

spect to some nonexact symplectic form. Ritter [34] shows that, if one performs a

nonexact deformation of the exact symplectic form, then this is the same as com-

puting the symplectic cohomology of the original structure, but with coefficients

in some twisted Novikov bundle: SH∗(M,dθ + η) = SH∗(M,dθ; Λτη). This has

implications for the existence of exact Lagrangians and it would be interesting to

compare the results of this thesis with this viewpoint.

90



Chapter 12

Many inequivalent exotic

symplectic forms

12.1 An invariant

We shall now extend the ideas of Chapter 10 in order to prove Theorem 1.3.

Suppose we have a symplectic manifold (E,ω) which is convex at infinity and

such that the map H2(E;R)→ H2(∂E;R) is zero. Then, given any cohomology

class η ∈ H2(E;R), we can construct a deformation of E in the sense of Chapter

9 in the direction of η, in other words [ωt] = [ω + tεη] ∈ H2(E;R) for some small

ε > 0.

Suppose in addition that (E,ω) contains no homologically essential Lagrang-

ian sphere. We denote by Γ1(E,ω) the set of directions l ∈ P(H2(E;R)) such

that, after constructing a “small” deformation of (E,ω) in direction l, we still have

no homologically essential Lagrangian sphere. The Moser-type argument from

Chapter 10 says that this set is well-defined (up to projective linear equivalence).

We can likewise consider the invariants Γk(E,ω), which are the set of k-

planes Pk in the Grassmanian Gr(H2(E;R)), such that we get no homologically

essential Lagrangian sphere for every direction l contained in Pk. These are again

invariants up to the correct notion of linear equivalence, and so in particular, if

we get a finite set of such planes, the cardinality of Γk(E,ω) is invariant.
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12.2 The construction

We now extend the construction of Maydanskiy [27] to exhibit, for any n ≥ 1,

a Liouville manifold which admits n + 1 symplectic forms ωk all of which have

no homologically essential exact Lagrangian sphere (in fact which have vanish-

ing symplectic cohomology SH∗(E,ωk;Z/2) and therefore no exact Lagrangian

submanifolds), but such that there exists no diffeomorphism φ of E such that

φ∗ωi = ωj for i 6= j.

Take the points 0, 1, . . . , n + 1 ∈ C and consider two paths in C as in Figure

12.1. The first γ0 joins the extreme crosses and goes over all the others. We

have some choice in the second path and denote by γj the path which goes below

the points 1, . . . , j and then over j + 1, . . . , n. (We include here the possibility

that the second path actually goes over all central crosses and in this case just

consider it to be another copy of γ0.)

× ×
0 n+ 1

× · · · · · · · · ·× × ×
γj

γ0

Figure 12.1:

With the same conventions as before, having made our choice of γj, we can

associate to Figure 12.1 the 6-dimensional manifold (Xj
n, ωj), which is diffeomor-

phically T ∗S3 with n 2-handles attached. It is the total space of a Lefschetz

fibration whose generic fibre is the An+1 Milnor fibre, which we shall denote

Mn+1. Associated to each dotted line we get a Lagrangian 2-ball Bi ⊂ Mn+1 for

1 ≤ i ≤ n, and we denote by V0 and Vj the two matching paths associated to the

paths γ0 and γj. If γj = γ0, the 6-manifold we obtain clearly contains a Lagrang-

ian S3, coming from the zero-section of T ∗S3. We shall denote by ∆0,∆j the

Lefschetz thimbles associated to the two critical points of the Lefschetz fibration

π : Xj
n → C.

H2(Mn+1;R) ∼= Rn+1 and we shall choose as our standard basis the spheres

Ai given by straightline paths joining adjacent critical points i−1 and i in Figure

12.1. When included into our total space, these all determine nonzero homology

classes in E, but now with the relation
∑
Ai = 0. We shall therefore choose to
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identify H2(E;R) with the n-dimensional vector space V = {v ∈ Rn+1 :
∑
vi =

0}.
Pick some vector v = (v1, . . . , vn, vn+1) ∈ V . By the same process as in Chap-

ter 7, we can construct a deformation of the symplectic structure on Mn+1, by

adding on 2-forms in the regions between the critical point weighted according to

the components. The condition on v means the that the homological obstruction

to the matching paths above defining matching cycles vanishes, so we can once

more build the corresponding deformation of (Xj
n, ωj). We are interested in what

choices of j and v mean that (Xj
n, ωj) contains a Lagrangian sphere after the

deformation coresponding to v.

We first observe that, as in Chapter 7, we shall get a Lagrangian sphere in Xj
n

when we can “lift” Vj over the critical points and onto V0. For this to be true,

we need
k∑
r

vr 6= 0 for all k ≤ j.

In this case we shall get a Lagrangian sphere in Xn
j once we perturb in the

direction of v. We shall now show that in all other cases we do not get such a

sphere.

Fix some direction v ∈ V . In what follows, we shall as before denote by HF ∗t

the Floer cohomology group computed with respect to the time-t deformation

of ω in the direction of v. For the same reasons as already discussed, all these

groups are well-defined (perhaps after rescaling v).

Suppose that there is a homologically essential Lagrangian sphere L ⊂ (Xj
n, ωt).

Then, as in Chapter 9, we must have L·∆j 6= 0, which implies thatHW ∗
t (∆j,∆j) 6=

0. This wrapped Floer group fits in an exact triangle as before.

HF ∗t (∆j,∆
ε
j) // HF ∗t (∆j,∆

2π+ε
j )

��
HF ∗t (µ(Vj), Vj).

hh
(12.1)

where the bottom group is calculated in the fibre Ez. Here µ is, up to isotopy,

τV0 ◦ τVj , so we shall need to consider the group HF ∗t (τV0Vj, Vj).

The argument in this chapter largely follows that found in [27], from where
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12. MANY INEQUIVALENT EXOTIC SYMPLECTIC FORMS

we reproduce the following basic observation.

Lemma 12.1. If we have an exact triangle of graded vector spaces

K
F // L

��
M,

[1]

``

then rank(M) = rank(K) + rank(L)− 2 rank(im(F )).

We shall consider this lemma applied to the following triangle coming from

the long exact sequence in [38].

HF ∗t (V0, Vj)⊗HF ∗t (Vj, V0) // HF ∗t (Vj, Vj)

��
HF ∗t (τV0Vj, Vj).

jj

Remark 12.2. To apply Seidel’s long exact sequence in this nonexact setting, we

can no longer filter the Floer cochain groups by the symplectic action, as discussed

in Chapter 9.3. However, we can introduce a filtration by powers of our formal

Novikov parameter q. This will give us an appropriate Z-filtration as the energy

spectrum of the (unperturbed) holomorphic curves u will form a discrete set.

Consider now the Lagrangian balls Bi associated to the dotted paths in Figure

12.1 and suppose there is an i such that HF ∗t (Vj, Bi) is nonzero. Then the product

HF ∗t (V0, Vj)⊗HF ∗t (Vj, V0)→ HF ∗t (Vj, Vj) ∼= H∗(S2)

does not contain the identity in its image, because if it did, then the composite

HF ∗t (Vj, Bi)⊗HF ∗t (V0, Vj)⊗HF ∗t (Vj, V0)→ HF ∗t (Vj, Bi)

would hit the identity despite factoring through HF ∗t (V0, Bi) which is zero as

these Lagrangians are disjoint. Here we use the fact that the product structure

on Floer cohomology is associative. However, the fundamental class of H2(S2) is

in the image, by Poincaré duality for Floer cohomology.
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12.2. The construction

So, when we consider the ranks of the groups in the above triangle, we see

that

Lemma 12.3. If HF ∗t (Vj, Bi) 6= 0 for any i, then rankHF ∗t (τV0Vj, Vj) = 4.

We now consider the triangle (12.1) relating the first few terms in the system

of groups computing HW ∗
t (∆j,∆j). Again, by computing ranks we see that, if

rankHF ∗t (τV0Vj, Vj) = 4, then the rank of the image of the horizontal map must

be zero, and therefore take 1 to 0, which in turn forces HW ∗
t (∆j,∆j) = 0. We

conclude

Lemma 12.4. If HF ∗t (Vj, Bi) 6= 0 for any i, then there exists no homologically

essential Lagrangian sphere.

For i > j, Vj and Bi are disjoint so HF ∗t (Vj, Bi) = 0 is automatic. For i ≤ j,

the criterion that HF ∗t (Vj, Bi) be nonzero corresponds to

k∑
r

vr 6= 0 for all k ≤ i

since, in the fibre where the paths defining Vj and Bi intersect we either get

disjoint circles or instead two copies of some circle C whose self-Floer cohomology

HF ∗t (C,C) ∼= H∗(C) is nonzero.

Remark 12.5. In particular, the above argument shows that, in the undeformed

case, HW ∗(∆j,∆j) = 0. A similar argument also shows that HW ∗(∆0,∆0) = 0,

which, by Lemma 11.1, proves that, for our undeformed exact symplectic mani-

folds SH∗(X i
n) = 0 for all i.

Therefore, if we consider the (n− 1)-Grassmanian invariant Γn−1(Xj
n), we see

that the planes for which we get no Lagrangians appearing are, in our choice of

basis, precisely those (n− 1)-planes defined by any one of the equations

k∑
r

vr = 0 for some k ≤ j,

so that Γn−1(Xj
n) is a set consisting of j points.
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We now have, for 1 ≤ i ≤ n, exact symplectic manifolds such X i
n is not sym-

plectomorphic to Xj
n for i 6= j, even though neither contains any exact Lagrangian

submanifolds. Our final manifold (Xn+1
n , ωn+1) simply comes from adding n han-

dles to some exotic Maydanskiy-Seidel example, just as in Figure 9.1. The same

argument as in Chapter 9 will show that Γn−1(Xn+1
n , ωn+1) = Grn−1(Rn), so Xn+1

n

cannot be symplectomorphic to any of the X i
n for i ≤ n. This completes the proof

of Theorem 1.3.
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