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Sleep Deficits But No Metabolic Deficits
in Premanifest Huntington’s Disease

Alpar S. Lazar, PhD,1 Francesca Panin, PhD,1,2 Anna O. G. Goodman, PhD,1

Stanley E. Lazic, PhD,3 Zsolt I. Lazar, PhD,4 Sarah L. Mason, PhD,1

Lorraine Rogers, BSc,5 Peter R. Murgatroyd, PhD,6,7 Laura P. E. Watson, MSc,6

Priya Singh, BSc,8 Beth Borowsky, PhD,9 John M. Shneerson, DM, FRCP,5 and

Roger A. Barker, MRCP, PhD, FMedSci1

Objective: Huntington disease (HD) is a fatal autosomal dominant, neurodegenerative condition characterized by
progressively worsening motor and nonmotor problems including cognitive and neuropsychiatric disturbances, along
with sleep abnormalities and weight loss. However, it is not known whether sleep disturbances and metabolic abnor-
malities underlying the weight loss are present at a premanifest stage.
Methods: We performed a comprehensive sleep and metabolic study in 38 premanifest gene carrier individuals and
36 age- and sex-matched controls. The study consisted of 2 weeks of actigraphy at home, 2 nights of polysomnogra-
phy and multiple sleep latency tests in the laboratory, and body composition assessment using dual energy x-ray
absorptiometry scanning with energy expenditure measured over 10 days at home by doubly labeled water and for
36 hours in the laboratory by indirect calorimetry along with detailed cognitive and clinical assessments. We per-
formed a principal component analyses across all measures within each studied domain.
Results: Compared to controls, premanifest gene carriers had more disrupted sleep, which was best characterized
by a fragmented sleep profile. These abnormalities, as well as a theta power (4–7Hz) decrease in rapid eye move-
ment sleep, were associated with disease burden score. Objectively measured sleep problems coincided with the
development of cognitive, affective, and subtle motor deficits and were not associated with any metabolic
alterations.
Interpretation: The results show that among the earliest abnormalities in premanifest HD is sleep disturbances. This
raises questions as to where the pathology in HD begins and also whether it could drive some of the early features
and even possibly the pathology.
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Huntington disease (HD) is a fatal autosomal domi-

nant neurodegenerative condition that affects

approximately 14 to 16 individuals per 100,000 and typ-

ically presents in midlife.1,2 It is caused by an abnormal

expansion of a trinucleotide cytosine–adenosine–guano-

sine repeat (CAG)3 in exon 1 of the huntingtin gene

leading to the ubiquitous expression of mutant hunting-

tin (Htt).4 It is characterized by progressively worsening

motor and nonmotor deficits including cognitive abnor-

malities (which over time lead to dementia), neuro-

psychiatric symptoms,5 weight loss,6 and sleep and

circadian disturbances (for a review see Videnovic et al7).

Although pathogenic pathways are beginning to be

unraveled offering targets for treatment,8 the precise

pathophysiological mechanisms of HD are poorly under-

stood.9 Previously we have shown that sleep disturbances
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are present in early manifest disease,10 and several studies

on transgenic animal models of HD have shown that

sleep progressively worsens as the disease develops11–14

dependently on age and gene dosage.15 However, we do

not know whether sleep problems are present during the

premanifest stage in individuals carrying the HD gene

mutation. If so, it may be a useful predictor of the onset

of clinical features in gene carriers, and may contribute

to some of the early clinical features of the condition,

including the well-described cognitive deficits.16

Similarly, altered energy expenditure and balance

have been shown in HD patients,17–19 and might under-

lie the progressive weight loss reported to occur early on

in this condition.6,20 This raises questions as to whether

metabolic problems in HD also exist ahead of motor fea-

tures and disease diagnosis and may occur at the same

time as sleep and circadian problems, suggesting a com-

mon neuropathological substrate that may involve the

hypothalamus.21

In the present study, we aimed to answer these

questions by undertaking a comprehensive metabolic and

sleep investigation both in the field (doubly labeled water

[DLW], actigraphy, sleep diaries) and in the laboratory

(indirect calorimetry, polysomnography [PSG], and mul-

tiple sleep latency tests [MSLTs]) in a large cohort of pre-

manifest HD (Pre-HD) gene carriers and age- and sex-

matched controls. We hypothesized that sleep and meta-

bolic disturbances would: (1) be present in the premani-

fest stage, (2) relate to estimated disease burden, and (3)

coincide with early alterations in cognition.

Subjects and Methods

Participants
All aspects of the study were approved by the local research

ethics committees and conformed to the Declaration of Hel-

sinki and International Conference on Harmonization–Good

Clinical Practice. After written informed consent was obtained,

38 premanifest participants with a known HD gene mutation

and 36 sex-, age-, and ethnically balanced control participants

took part in the metabolic and/or sleep studies (Table 1). Sepa-

rate informed consent was required for each study. The cogni-

tive assessments and metabolic studies were performed at the

Huntington’s Disease Research Clinic at the John van Geest

Centre for Brain Repair and the Metabolic Research Area

within the National Institute for Health Research/Wellcome

Trust Cambridge Clinical Research Facility, Cambridge, United

Kingdom. The sleep studies were conducted in the sleep unit at

the Respiratory Support and Sleep Centre, Papworth Hospital,

United Kingdom. Altogether 30 patients and 20 controls par-

ticipated in all 3 studies, with a median time difference of 5

TABLE 1. Demographic Description of Patient Groups

Group Differences

Demographic
Data

Controls,
n 5 36,
Mean (SD)

prHD, n 5 38,
Mean (SD)

eHD, n 5 8,
Mean (SD)

Ctrl–prHD Ctrl–eHD prHD–eHD

Sex, No. 18 M, 18 F 13 M, 25 F 4 M, 4 F 0.19 1.0 0.4

Age, yr 44.2 (15) 43.0 (11.2) 56.3 (7.2) 0.99 0.015a 0.002a

BMI, kg/m2 24.6 (3.0) 26.0 (5.0) 21.5 (2.2) 0.35 0.01a 0.005a

CAGn N/A 41.6 (2.4) 42 (1.7) N/A N/A 0.43

Disease burden
score

N/A 247.2 (65.5) 367.3 (78.9) N/A N/A 0.0008a

UHDRS global
score

N/A 1.6 (2.1) 19.3 (7.1) N/A N/A <0.0001a

Total functional
capacity

N/A 12.6 (0.9) 9.8 (1.8) N/A N/A <0.0001a

Independence N/A 98.2 (5.0) 81.7 (7.5) N/A N/A <0.001a

Group differences are analyzed by Mann–Whitney U test. Age is reported at the time subjects completed their first study in this
project. Disease burden score was calculated using the published formula: (CAGn 2 35.5) 3 age (see Subjects and Methods).
aSignificant effect.
eHD 5 early Huntington disease; Ctrl 5 control; prHD 5 premanifest Huntington disease; CAGn 5 number of cytosine–adeno-
sine–guanosine repeats; BMI 5 body mass index; UHDRS 5 Unified Huntington’s Disease Rating Scale; SD 5 standard deviation;
M 5 male; F 5 female; N/A 5 not applicable.
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months (interquartile range 5 12 months) between the studies.

In all cases the sleep study preceded the metabolic studies.

Inclusion/exclusion criteria for the premanifest group were:

(1) a CAG repeat length� 39; (2) not clinically diagnosed as hav-

ing manifest HD as indicated by a diagnostic confidence score< 2

on the Unified Huntington’s Disease Rating Scale (UHDRS); (3)

no known metabolic, endocrine, or sleep disorder; and (4) a non-

smoking/light smoking status. Inclusion/exclusion criteria for the

control group were: (1) no family history of HD or other known

neurological, endocrine, or sleep disorder; (2) no ongoing medical

or psychiatric condition; (3) nonsmoking/light smoking status;

and (4) an age, sex, and body mass index (BMI) match to a Pre-

HD participant. Of the included participants, 12 pre-HD patients

and 6 controls were taking medications that could have had a pos-

sible effect on sleep and/or metabolism, such as antidepressants.

One premanifest participant was excluded from the metabolic

studies due to diabetes. A disease burden score (DBS) was calcu-

lated for all premanifest participants according to a standard for-

mula: (CAGn 2 35.5) 3 age, where CAGn 5 number of CAG

repeats.22 The studied groups (control and Pre-HD) did not sig-

nificantly differ in terms of age, BMI, and sex (see Table 1). For

comparison with the premanifest group, we included sleep data

from a previously studied (and published) cohort of 8 early mani-

fest patients10 while also undertaking further in-depth sleep analy-

ses of this previously collected data. These patients were

significantly older and had a lower BMI than those in the current

study. They also had as expected a higher DBS and worse scores

across the basic clinical measures as compared to premanifest

patients.

Procedures
Baseline clinical, cognitive, and psychiatric assessments consisted of:

A. The motor and functional sections of the UHDRS.23

B. A selection of standardized tests assessing (1) global

cognitive performance: Montreal Cognitive Assessment

(MoCA)24; (2) learning and verbal memory: Hopkins Verbal

Learning Test–Revised (HVLT-R)25; (3) executive function: the

Verbal Fluency Test26 and Trail Making Tests B27; (4) psycho-

motor speed: Trail Making Tests A27 and Symbol Digit Test28;

(5) motor skills: the Hand Tapping Test29; (6) olfactory percep-

tion: the Olfactory Discrimination and Identification Test30; (7)

affect: the Montgomery–Åsberg Depression Rating Scale

(MADRS),31 the Beck Depression Inventory II (BDI-II),32 and

the Apathy Evaluation Scale33; and (8) impulsiveness: Barratt

Impulsiveness Scale34 (Table 2).

The sleep study consisted of:

A. Validated sleep questionnaires to assess (1) diurnal pref-

erence: the Morningness-Eveningness Questionnaire (MEQ)35;

(2) subjective sleep quality: the Pittsburgh Sleep Quality Index

(PSQI)36 and the Functional Outcomes of Sleep Question-

naire37; (3) daytime sleepiness: the Epworth Sleepiness Scale38;

(4) habitual self-reported sleep–wake timing: PSQI; (5) preferred

sleep–wake timing: MEQ; and (6) timing of evening tiredness

sufficient to go to sleep: MEQ.

B. A 2-week-long field/home study to assess sleep–wake

timing as measured by actigraphy in the habitual environment.

Participants wore Actiwatches (Cambridge Neurotechnology,

Cambridge, UK) on the nondominant wrist for 14 consecutive

days preceding the PSG study. Actograms were analyzed accord-

ing to a previously published algorithm.10

C. An inpatient laboratory-based study consisting of 2

consecutive nights of PSG to assess objective sleep quality and

sleepiness using MSLTs following a previously described method-

ology.10 A full clinical electroencephalographic (EEG)-PSG setup

was used, and PSG data were recorded on an Embla S7000

(Embla Systems, Ontario, Canada). The EEG was recorded

using C3 and C4 derivations and reference electrodes placed at

the mastoid area (A1 and A2) with a common reference elec-

trode placed at Pz. The second (study) night was used for the

actual analysis. Sleep staging was performed in 30-second epochs

according to standard criteria (Rechtschaffen and Kales criteria)

by scorers blind to the identity of patients. We analyzed multiple

objective sleep parameters (Table 3). Breathing events were

scored using standard criteria according to the American Acad-

emy of Sleep.39 EEG data were stored at 200Hz. The low-pass

filter was set at 70Hz, and the high-pass filter was set at 0.3Hz.

D. Spectral analyses. The active EEG derivations were

rereferenced offline to the mastoid derivation (A1 and A2)

from the contralateral hemisphere. All EEG artifacts (eg, muscle

activity/sweating) for each individual EEG channel were visually

identified by an experienced scorer and annotated on a 3-

second basis using the EEG browser software Vitascore version

1.5. Thereafter, all EEG channels were exported and raw EEG

data further analyzed. We applied algorithms based on the

NumPy, SciPy, and Matplotlib libraries for scientific comput-

ing40,41 to extract EEG activity–related measures. Analysis was

limited to data recorded between lights out and lights on times.

The 2 sleep stage sets—(1) rapid eye movement (REM) and

(2) non-REM (NREM) 1, 2, 3, and 4—were analyzed inde-

pendently. EEG activity was calculated as the power spectral

density averaged over the whole night. Artifact-free segments

belonging to the sleep stages of interest were concatenated and

power values were calculated as averages over detrended Han-

ning windowed 1,024 bins, that is, 5.12-second long epochs

with 50% overlap using the Welch’s periodogram method

implemented in the Matplotlib package. In the first stage, the

obtained spectral density was coarse grained by calculating aver-

ages over subsequent 1Hz-wide bins between 0.5 and 40.5Hz.

To eliminate the discontinuous dependence of the averages on

band boundaries, the averaging was performed by numerically

integrating over the different regions of the cubic spline inter-

polated spectrum.42 The spectral values in each frequency bin

were normalized to the total power of the studied EEG spectra

0.5 and 40.5Hz. The returned relative spectral values, x, were

logit transformed according to published recommendations fol-

lowing the formula ‘y 5 log[x/(12x)]’.43

The metabolic study consisted of:

A. Dual energy x-ray absorptiometry to assess body com-

position followed by 36 hours of whole body indirect
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calorimetry to assess energy expenditure in the laboratory

according to published methodology.19 Blood samples for tes-

tosterone, cortisol, vitamin D, and leptin were taken at 9 AM

after the second night sleep, and after a minimum 10-hour fast

and the basal metabolic rate assessment, which all occurred

before the participant got out of bed. Subjectively perceived

hunger and satiety were assessed by a visual analogue scale

before and after meals.44

B. A 10-day free living measurement of total energy

expenditure (TEE) using DLW according to a standard meth-

odology.45 Average daily activity–related energy expenditure

(AEE; kJ/day/kg) was calculated as the average 24-hour TEE

measured by DLW, minus the basal metabolic rate (BMR)

measured from the indirect calorimetry, whereas the physical

activity level (PAL) was the ratio of these same variables (TEE/

BMR). Finally, the variance of physical activity (VPA) between

the laboratory and the field condition was calculated by sub-

tracting the 24-hour TEE measured by indirect calorimetry

from the 24-hour TEE as measured by DLW, according to the

study performed by Pratley et al.18

Statistical Analyses
We did not define a primary outcome in this exploratory study

of Pre-HD patients because abnormalities on any of the meas-

ured variables are noteworthy and relevant. This posed a prob-

lem of limiting the number of false positives while

simultaneously retaining sufficient power to detect differences

between patients and controls, which a priori are expected to

be small as the patients do not yet have manifest disease. A

principal component analysis (PCA) was therefore used to

reduce sets of (often highly correlated) measurements to smaller

sets of uncorrelated variables. This allowed us to create a new

set of variables (the principal components [PCs]), which

involved taking a linear combination of the original variables.

One of the main features of PCA is that the first principal

component (PC1) accounts for most of the variation in the

data, and each subsequent PC accounts for less and less of the

remaining variation. Thus by analyzing the first few PCs rather

than the original variables, we were able to limit the number of

statistical tests while still capturing the major effects that are

present. A PCA was conducted for each of the 4 studied

domains of measurements (1 PCA for the data in each of

Tables (2–5)). The first PC had the highest association with

disease and was therefore the only one examined, with the

exception of the metabolic data, where PC1 was dominated by

sex differences and therefore PC2 was analyzed. A priori, only

PCs with large eigenvalues (>1.5) were examined, which lim-

ited the analysis to the first 2 PCs.

The first hypothesis tested was whether the premanifest

patients differed from controls. This was examined by using

PC1 (or PC2 for the metabolic data) as the outcome variable

in a linear model with age, sex, and group (control vs Pre-HD)

as predictor variables. The sleep study had an additional group

of early manifest HD patients who were added to the analysis

for comparative purposes (positive control). Pairwise differencesT
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Å

sb
er

g
D

ep
re

ss
io

n
R

at
in

g
Sc

al
e;

M
oC

A
5

M
on

tr
ea

l
C

og
n

it
iv

e
A

ss
es

sm
en

t;
P

re
-H

D
5

p
re

m
an

if
es

t
H

u
n

ti
n

gt
on

d
is

ea
se

.

ANNALS of Neurology

634 Volume 78, No. 4



T
A

B
L
E

3
.

S
le

e
p

P
a
ra

m
e
te

rs
a
s

M
e
a
su

re
d

b
y

P
o

ly
so

m
n
o

g
ra

p
h
y

C
o
n

tr
o
l,

n
5

2
5

p
rH

D
,

n
5

3
1

eH
D

,
n

5
8

C
o
n

tr
as

ts
,

p

St
u

d
ie

d
M

ea
su

re
s

E
st

im
at

e
9
5
%

C
I

E
st

im
at

e
9
5
%

C
I

E
st

im
at

e
9
5
%

C
I

G
ro

u
p

M
ai

n
E

ff
ec

ts
,

p
(C

o
h

en
f2

)
C

tr
l–

p
rH

D
C

tr
l–

eH
D

p
rH

D
–e

H
D

D
B

S
E

ff
ec

t,
p

Sl
ee

p
ti

m
in

g
in

th
e

la
b

B
ed

ti
m

e,
hh

:m
m

22
:5

5
22

:3
7–

23
:1

3
22

:4
1

22
:2

4–
22

:5
7

22
:0

2
21

:2
8–

22
:3

5
0.

02
6

(0
.1

3)
a

0.
23

7
0.

00
7a

0.
04

3a
0.

01
5a

W
ak

eu
p

ti
m

e,
h

h
:m

m
07

:0
5

06
:5

7–
07

:1
2

07
:0

8
07

:0
1–

07
:1

4
07

:1
0

06
:5

5–
07

:2
1

0.
74

1
0.

53
7

0.
51

4
0.

79
2

0.
61

0

Sl
ee

p
on

se
t

ti
m

e,
h

h
:m

m
23

:1
1

22
:5

1–
23

:3
1

22
:5

3
22

:3
5–

23
:1

1
22

:2
8

21
:5

4–
23

:0
4

0.
10

8
0.

19
1

0.
04

5a
0.

22
3

0.
07

3

G
en

er
al

sl
ee

p
p

ar
am

et
er

s

T
ST

,
m

in
42

0.
0

39
3.

8–
44

6.
1

41
5.

3
39

1.
4–

43
9.

3
39

6.
0

34
7.

9–
44

4.
2

0.
68

8
0.

79
4

0.
39

0
0.

47
8

0.
60

2

T
IB

,
m

in
49

1.
3

47
2.

3–
51

0.
2

51
0.

2
49

2.
9–

52
7.

6
56

2.
4

52
7.

5–
59

7.
4

0.
00

3
(0

.2
1)

a
0.

14
4

0.
00

08
a

0.
01

0a
0.

00
4a

SE
86

.4
83

.5
–8

9.
1

83
.6

80
.8

–8
6.

3
74

.7
66

.7
–8

1.
2

0.
00

5
(0

.2
0)

a
0.

16
7

0.
00

1a
0.

01
3a

0.
02

4a

W
A

SO
,

m
in

37
.3

29
.9

–4
6.

4
55

.8
45

.7
–6

8.
1

94
.6

63
.5

–1
40

.5
0.

00
03

(0
.3

1)
a

0.
00

8a
0.

00
01

a
0.

02
2a

0.
00

8a

SP
T

,
m

in
47

1.
5

44
9.

4–
49

2.
4

49
3.

8
47

4.
8–

51
2.

0
51

9.
8

48
3.

2–
55

3.
6

0.
06

1
0.

11
8

0.
02

7a
0.

20
6

0.
06

0

SL
,

m
in

11
.5

8.
0–

16
.3

9.
6

6.
9–

13
.3

17
.2

9.
1–

32
.1

0.
26

6
0.

45
7

0.
27

3
0.

11
1

0.
16

6

L
P

S,
m

in
14

.8
9.

9–
21

.8
17

.9
12

.5
–2

5.
5

31
.1

15
.3

–6
2.

2
0.

19
7

0.
46

8
0.

07
3

0.
17

0
0.

22
9

R
E

M
la

te
n

cy
,

m
in

59
.0

47
.2

–7
3.

7
75

.1
61

.3
–9

1.
9

13
9.

2
92

.8
–2

08
.7

0.
00

2
(0

.2
3)

a
0.

11
4

0.
00

05
a

0.
00

9a
0.

35
0

SW
S

la
te

n
cy

,
m

in
21

.7
15

.3
–3

0.
6

29
.7

21
.8

–4
0.

3
23

.2
12

.3
–4

2.
8

0.
37

8
0.

17
6

0.
85

6
0.

47
8

0.
15

6

Sl
ee

p
st

ru
ct

u
re

St
ag

e
1,

%
of

T
ST

10
.3

8.
5–

12
.1

11
.2

9.
6–

12
.8

16
.4

13
.1

–1
9.

6
0.

00
7

(0
.1

8)
a

0.
44

9
0.

00
2a

0.
00

6a
0.

07
1

St
ag

e
2,

%
of

T
ST

54
.2

51
.1

–5
7.

4
53

.5
50

.6
–5

6.
4

51
.0

45
.2

–5
6.

8
0.

62
7

0.
73

5
0.

33
6

0.
44

4
0.

48
5

SW
S,

%
of

T
ST

13
.2

10
.0

–1
6.

3
14

.9
12

.0
–1

7.
8

17
.3

11
.5

–2
3.

1
0.

43
1

0.
41

2
0.

22
1

0.
47

2
0.

80
6

R
E

M
,

%
of

T
ST

22
.3

19
.9

–2
4.

7
20

.4
18

.1
–2

2.
6

15
.3

10
.9

–1
9.

8
0.

03
0

(0
.1

3)
a

0.
23

8
0.

00
85

a
0.

05
0a

0.
07

9

Lazar et al: Sleep and Metabolism in HD

October 2015 635



T
A

B
L
E

3
.

C
o

n
ti

n
u
e
d

C
o
n

tr
o
l,

n
5

2
5

p
rH

D
,

n
5

3
1

eH
D

,
n

5
8

C
o
n

tr
as

ts
,

p

St
u

d
ie

d
M

ea
su

re
s

E
st

im
at

e
9
5
%

C
I

E
st

im
at

e
9
5
%

C
I

E
st

im
at

e
9
5
%

C
I

G
ro

u
p

M
ai

n
E

ff
ec

ts
,

p
(C

o
h

en
f2

)
C

tr
l–

p
rH

D
C

tr
l–

eH
D

p
rH

D
–e

H
D

D
B

S
E

ff
ec

t,
p

Sl
ee

p
co

n
ti

n
u

it
y

A
ro

u
sa

ls
b

11
.1

9.
6–

12
.7

13
.9

12
.3

–1
5.

8
18

.4
14

.3
–2

3.
5

0.
00

2
(0

.2
4)

a
0.

01
7a

0.
00

09
a

0.
05

3
0.

02
0a

Sl
ee

p
bo

u
t

le
n

gt
h,

m
in

c
14

.0
11

.7
–1

6.
8

10
.0

8.
6–

11
.6

7.
6

5.
8–

10
.2

0.
00

1
(0

.2
6)

a
0.

00
5a

0.
00

1a
0.

10
4

0.
03

1a

R
E

M
bo

u
t

le
n

gt
h,

m
in

d
5.

6
4.

7–
6.

7
4.

0
3.

3–
4.

7
3.

7
2.

5–
5.

2
0.

01
6

(0
.1

5)
a

0.
00

9a
0.

03
7a

0.
68

4
0.

08
5

Sl
ee

p
st

ag
e

ch
an

ge
se

23
.0

20
.8

–2
5.

3
26

.4
24

.1
–2

8.
9

31
.7

26
.5

–3
7.

9
0.

00
6

(0
.1

9)
a

0.
03

9a
0.

00
3a

0.
07

3
0.

07
8

Fa
st

sl
ee

p
st

ag
e

ch
an

ge
sf

1.
7

1.
3–

2.
1

2.
9

2.
4–

3.
5

4.
0

2.
8–

5.
6

0.
00

02
(0

.3
3)

a
0.

00
10

a
0.

00
04

a
0.

11
6

0.
04

0a

A
H

Ib
3.

3
2.

1–
5.

0
4.

1
2.

7–
5.

9
3.

3
1.

3–
7.

0
0.

75
5

0.
48

2
0.

98
9

0.
65

6
0.

52
3

O
bj

ec
ti

ve
sl

ee
p

in
es

s

Sl
ee

p
la

te
n

cy
(M

SL
T

),
m

in
11

.2
10

.0
–1

2.
5

9.
2

8.
3–

10
.2

17
.3

14
.2

–2
1.

1
<

0.
00

01
(0

.5
4)

a
0.

01
1a

0.
00

04
a

<
0.

00
01

a
0.

00
5a

E
st

im
at

es
(l

ea
st

sq
u

ar
es

m
ea

n
s)

an
d

95
%

C
Is

ar
e

in
d

ic
at

ed
fo

r
ea

ch
gr

ou
p

ad
ju

st
ed

fo
r

ag
e

an
d

se
x.

F
or

ea
ch

m
ea

su
re

,
th

e
gr

ou
p

m
ai

n
ef

fe
ct

an
d

th
e

d
is

ea
se

bu
rd

en
ef

fe
ct

(D
B

S)
ar

e
in

d
ic

at
ed

.
G

ro
u

p
co

m
p

ar
is

on
s

in
vo

lv
ed

a
m

ix
ed

m
od

el
an

al
ys

is
of

va
ri

an
ce

co
n

tr
ol

le
d

fo
r

ag
e

an
d

se
x.

E
ff

ec
ts

of
ag

e
an

d
se

x
ar

e
n

ot
in

d
ic

at
ed

.
E

ff
ec

t
of

D
B

S
is

an
al

yz
ed

w
it

h
in

th
e

en
ti

re
p

rH
D

an
d

eH
D

gr
ou

p
s

u
si

n
g

a
m

u
lt

iv
ar

ia
te

lin
ea

r
re

gr
es

si
on

m
od

el
in

cl
u

d
in

g
th

e
p

re
d

ic
to

rs
D

B
S

an
d

se
x.

E
ff

ec
t

si
ze

is
in

d
ic

at
ed

on
ly

fo
r

si
gn

if
ic

an
t

ef
fe

ct
s.

F
or

d
et

ai
le

d
d

es
cr

ip
-

ti
on

of
th

e
m

ea
su

re
s

p
le

as
e

re
fe

r
to

th
e

Su
bj

ec
ts

an
d

M
et

h
od

s
se

ct
io

n
.

a Si
gn

if
ic

an
t

ef
fe

ct
s.

b
E

ve
n

ts
p

er
h

ou
r

of
T

IB
(s

h
if

t
to

st
ag

e
1,

w
ak

e,
or

m
ov

em
en

t)
.

c Sl
ee

p
bo

u
t

le
n

gt
h

5
T

ST
/n

u
m

be
r

of
aw

ak
en

in
gs

.
d
R

E
M

bo
u

t
le

n
gt

h
5

R
E

M
/n

u
m

be
r

of
en

tr
ie

s
in

to
R

E
M

.
e E

ve
n

ts
(s

h
if

ts
be

tw
ee

n
st

ag
es

)
pe

r
h

ou
r

of
T

ST
.

f Fa
st

sl
ee

p
st

ag
e

ch
an

ge
s5

p
er

io
d

s
of

1.
5

m
in

u
te

s
w

it
h

3
d

if
fe

re
n

t
30

-s
ec

on
d

-l
on

g
sl

ee
p

st
ag

es
p

er
h

ou
r

of
sl

ee
p.

A
H

I5
A

p
n

ea
–h

yp
op

n
ea

in
d

ex
(a

p
n

ea
an

d
h

yp
op

n
ea

ev
en

ts
/h

ou
r

of
T

IB
);

C
I5

co
n

fi
d

en
ce

in
te

rv
al

;
C

tr
l5

co
n

tr
ol

s;
D

B
S

5
d

is
ea

se
bu

rd
en

sc
or

e;
eH

D
5

ea
rl

y
H

u
n

ti
n

gt
on

d
is

ea
se

;
h

h
:m

m
5

h
ou

rs
:m

in
u

te
s;

L
P

S
5

la
te

n
cy

to
p

er
si

st
en

t
sl

ee
p

(1
0

m
in

u
te

s
of

co
n

ti
n

u
ou

s
sl

ee
p

);
M

SL
T

5
M

u
lt

ip
le

Sl
ee

p
L

at
en

cy
T

es
t

(a
ve

ra
ge

d
sl

ee
p

la
te

n
cy

va
lu

es
ar

e
in

d
ic

at
ed

ac
ro

ss
th

e
5

sl
ee

p
op

p
or

tu
n

it
ie

s)
;

p
rH

D
5

p
re

m
an

if
es

t
H

u
n

ti
n

gt
on

d
is

ea
se

;
R

E
M

5
ra

p
id

ey
e

m
ov

em
en

t
sl

ee
p

;
SE

5
sl

ee
p

ef
fi

ci
en

cy
(T

ST
/T

IB
%

);
SL

5
sl

ee
p

la
te

n
cy

;
SP

T
5

sl
ee

p
p

er
io

d
ti

m
e

(t
im

e
be

tw
ee

n
sl

ee
p

on
se

t
an

d
th

e
fi

n
al

aw
ak

en
in

g)
;

SW
S

5
sl

ow
w

av
e

sl
ee

p
(s

ta
ge

s
3

an
d

4)
;

T
IB

5
ti

m
e

in
be

d
;

T
ST

5
to

ta
l

sl
ee

p
ti

m
e;

W
A

SO
5

w
ak

e
af

te
r

sl
ee

p
on

se
t

(t
ot

al
w

ak
e

ti
m

e
be

tw
ee

n
th

e
sl

ee
p

on
se

t
an

d
th

e
fi

n
al

aw
ak

en
in

g)
;

R
E

M
la

te
n

cy
5

ti
m

e
be

tw
ee

n
sl

ee
p

on
se

t
an

d
th

e
fi

rs
t

R
E

M
ep

oc
h

;
SW

S
5

ti
m

e
be

tw
ee

n
sl

ee
p

on
se

t
an

d
th

e
fi

rs
t

ep
oc

h
of

SW
S.

ANNALS of Neurology

636 Volume 78, No. 4



between the control, Pre-HD, and early HD groups were exam-

ined with Tukey honestly significant difference (HSD) post hoc

test. The second hypothesis examined whether abnormalities

were associated with DBS. This was tested by using the PCs as

the outcome variable in a linear model with sex and DBS as

predictor variables (age was not included as it would partial out

TABLE 4. Diurnal Preference, Habitual Sleep–Wake Timing, Subjective Sleep Quality, and Sleepiness

Control, n 5 25 Pre-HD, n 5 31

Studied Measures Estimate 95% CI Estimate 95% CI
Group Main
Effects, p

DBS
Effect, p

Diurnal preference (MEQ),
range 5 16–86d

57.0 53.3–60.7 56.3 52.9–59.6 0.761 0.120

Preferred sleep–wake timing
(MEQ), hh:mm

Bedtimea 23:03 22:39–23:28 23:00 22:39–23:22 0.855 0.133

Get-up timea 07:49 07:27–08:11 07:56 07:36–08:16 0.618 0.969

Time in bedb 08:45 08:23–09:07 08:56 08:36–09:16 0.490 0.043c

Habitual self-reported
sleep–wake timing
(PSQI), hh:mm

Bedtimea 23:11 22:45–23:38 22:55 22:30–23:20 0.381 0.163

Get-up timea 07:15 06:48–07:41 07:31 07:06–07:55 0.390 0.190

Sleep latency, min 15.2 11.4–20.1 19.7 15.2–25.4 0.184 0.150

Time in bedb 08:04 07:40–08:28 08:35 08:13–08:58 0.059 0.912

Sleep durationb 07:03 06:34–07:29 07:39 07:15–08:01 0.051 0.915

Habitual objectively measured
sleep–wake
timing (actigraphy), hh:mm

Bedtimea 23:24 22:59–23:49 23:16 22:54–23:39 0.668 0.152

Get-up timea 07:28 07:04–07:51 07:29 07:09–07:50 0.910 0.200

Time in bedb 07:55 07:37–08:13 08:17 08:01–08:33 0.072 0.832

Self-reported sleep quality

PSQI, range 5 0–21d 4.1 3.1–5.3 4.4 3.4–5.6 0.688 0.935

FOSQ, range 5 5–20d 18.1 16.9–19.3 17.5 16.4–18.6 0.439 0.586

Sleepiness

Time of evening tiredness
(MEQ)a

22:35 22:12–22:58 22:12 21:52–22:32 0.145 0.013c

Subjective sleepiness (ESS),
range 5 0–24d

5.6 4.0–7.1 7.1 5.7–8.6 0.149 0.292

Estimates (least squares means) and 95% CIs are indicated for each group adjusted for age and sex. For each measure, the group
effect (controls vs Pre-HD) and the disease burden effect (DBS) are indicated. Group analysis involved a mixed model analysis of
variance controlled for age and sex. Effects of age and sex are not indicated. Effect of DBS is analyzed within the Pre-HD group
using a multivariate regression including DBS and sex. Effect size is indicated only for significant effects.
aClock time.
bHours:minutes.
cSignificant effects.
dTotal score.
CI 5 confidence interval; DBS 5 disease burden score; ESS 5 Epworth Sleepiness Scale; FOSQ 5 Functional Outcomes of Sleep
Questionnaire; MEQ 5 Morningness-Eveningness Questionnaire; Pre-HD 5 premanifest Huntington disease; PSQI 5 Pittsburgh
Sleep Quality Index.
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age from the disease burden effect). We then based our conclu-

sions about the presence of abnormalities on the results of the

PCA, which involved only 2 tests for each of the 4 domains (8

statistical tests in total, with the post hoc tests for the sleep

study corrected for multiple testing). We then undertook the

further step of controlling for the “manuscriptwise” false-

positive rate by adjusting the 8 key p-values for multiple testing

across the 4 domains using the Holm–Bonferroni method.

One difficulty with the use of the PCA approach is inter-

preting what the PCs represent in terms of the original varia-

bles. However, we avoided this by examining the loadings of

the variables that have contributed the most to any PC. The

loadings are therefore the correlation between the original varia-

bles and the PC and help interpret the underlying construct or

latent feature that is measured by these original variables. The

main variables contributing to each of the PCs are reported

with their loadings in the results section and are shown in the

figures, and we also present the results for the individual varia-

bles in Tables 2 to 5. The tables contain secondary exploratory

analyses that we have not corrected for multiple testing; as

such, some of the individual variables may therefore be false

positives, but inference about abnormalities in premanifest

patients and the strong control for the false-positive rate are

done at the latent variable level. The results of the individual

variables are thus more descriptive than inferential and are pre-

sented as a reference for other published and future studies.

The relative power spectrum of EEG activity was ana-

lyzed separately for the whole night REM and NREM periods.

The same 2 statistical models described above were used but

the outcome was a 1Hz spectral bin rather than a principal

component. A separate model was fitted for each bin from 1 to

40Hz, using either disease group as the main predictor variable

and adjusting for age and sex, or DBS as the main predictor

variable and adjusting for sex. To minimize the number of false

positives, we applied a Bonferroni correction (a 5 0.05/

40 5 0.00125). This is a conservative correction, given that the

EEG power was highly correlated (the median correlation

between adjacent frequency bins was 0.99, and the Lag 1 auto-

correlation within patients was also >0.99.) We also report the

original uncorrected results to avoid false negatives.

Measures of energy expenditure were adjusted for lean

mass and leptin was adjusted for fat mass. The energy intake

was normalized for each participant’s need, based on the BMR

predicted using the Schofield formula.46 The magnitude of the

significant statistical effects was marked by Cohen’s f47:

f 25u=v 3 F

where u and v are, respectively, the numerator and denominator

degrees of freedom of the F statistic used to determine the

main effect in the analysis. Analyses were performed with SAS

(version 9.2) and R (version 3.1.3).

Results

The cognitive, psychiatric, and motor profile of the stud-

ied premanifest group reproduced the previously reported

abnormalities in Pre-HD.48 PCA showed that the first

component (PC1) explained 32% of the variation across

all measures and was significantly different between the

groups (p 5 0.006, adjusted p 5 0.041), indicating that

Pre-HD participants had poorer performance independ-

ent of age and sex (Fig 1A). Premanifest patients with

higher DBS scores tended to have higher values on PC1,

but the association was not significant (p 5 0.090,

adjusted p 5 0.451; see Fig 1B).

PC1 included performance at Trail Making B (PC

loading 5 0.69), Trail Making A (PC loading 5 0.54),

total scores on the MADRS (PC loading 5 0.47), BDI-II

(PC loading 5 0.36), phonemic fluency (PC loading 5

20.76), verbal memory (PC loading 5 20.75), semantic

fluency (PC loading 5 20.66), left hand taps (PC

loading 5 20.61), MoCA (PC loading 5 20.59), right

hand taps (PC loading 5 20.59), olfactory identification

(PC loading 5 0.56), and olfactory discrimination (PC

loading 5 20.38). The higher positive and negative PC

loading values indicate higher positive or negative corre-

lations with PC1. As the groups were clearly differenti-

ated along the PC1 axis, the positive PC loading values

indicate higher scores in Pre-HD than controls, whereas

the negative values indicate higher scores in controls than

Pre-HD.

The secondary exploratory and noninferential anal-

yses showed that the global cognitive performance

(MoCA), verbal memory (HVLT-R), and left hand tap-

ping scores discriminated the studied groups independ-

ently of age and sex. MoCA score, olfactory

discrimination, and verbal memory were associated with

disease burden independent of sex (see Table 2).

Laboratory Measured Sleep Quality and
Sleepiness
For the PSG-measured sleep parameters, we also included

a small group of early manifest HD patients (early HD)

studied previously10 for comparative purposes. The PC1

component explained 29% of the variation across all

PSG-studied sleep measures (see Table 3), and all partici-

pants, and was significantly different across the 3 groups

(p< 0.0001, adjusted p 5 0.001), showing that the con-

trols had a significantly better overall sleep quality com-

pared to premanifest (Tukey HSD post hoc: p 5 0.017)

and early HD participants (Tukey HSD post hoc:

p< 0.0001) independent of age and sex (see Fig 1C).

Early manifest patients had a significantly worse sleep

quality as compared to premanifest patients as well

(Tukey HSD post hoc: p 5 0.02). Importantly, the PC1

component was significantly associated with DBS in the

entire premanifest and manifest gene carrier group

(p 5 0.0074, adjusted p 5 0.044), presenting a linear
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FIGURE 1: Principal components (PCs) by Group (A,C,E,G) and by disease burden (B,D,F,H) for each of the studied domains.
The y-axis in each graph is a PC, and the amount of variation it accounts for is indicated in parentheses. The original variables
contributing to each component are shown on the far left, ranked according to their PC loading, which aids interpretation. For
example, premanifest (Pre-HD) patients have high values on PC1 for the neuropsychological and motor performance variables
(A). These correspond to high values on the Trail Making Tests A and B, the Montgomery–Åsberg Depression Rating Scale
(MADRS), and the Beck Depression Inventory II (BDI-II), which indicate worse executive and psychomotor performance and ele-
vated depression. Similarly, the controls have low values on PC1, and this corresponds to high values on the Verbal Fluency
Test, Hopkins Verbal Learning Test–Revised (HVLT-R), and Hand Tapping Test, which indicate better executive, verbal memory,
and motor performance. The variables are ranked according to their loadings; only the top 3 are indicated; variables at the
ends of the y-axis have higher absolute loadings. For the individual PC loadings, please refer to the results section. The graphs
on the left (A, C, E, G) show group differences between the PCs. Estimates (least squares means) and standard error of the
mean are indicated, controlled for age and sex. The graphs on the right (B, D, F, H) show the association between the PCs and
disease burden score controlled for sex within the gene carrier group; controls (black open circles) are shown for reference
(shaded area) but are not included in the analysis. Grey filled circles 5 Pre-HD; black triangles 5 early Huntington disease (HD).
Original and adjusted P-values are shown in parentheses and these are adjusted for all 8 tests shown in the figure using the
Holm–Bonferroni method. As the polysomnography (PSG) data include a small group of early manifest HD (Early HD), p-values
indicate the main effect of group, and pairwise comparisons show that each group is different from every other group (Tukey
honestly significant difference post hoc test: *p < 0.05, ****p < 0.0001). Results of the individual variables can be found
in Tables 2 to 5. For detailed description of the variables, please refer to Subjects and Methods and Tables 2 to 5. aseconds,
btotal score, ctotal correct, dpercentage, eminutes, fnumber per hours of sleep, gclock time, hng/ml, ikg, jkJ/day; kratio.
AEE 5 average daily activity–related energy expenditure; Hab. 5 habitual; PAL 5 physical activity level; Pref. 5 preferred;
REM 5 rapid eye movement sleep; SE 5 sleep efficiency; TIB 5 time in bed; VPA 5 variance of physical activity; WASO 5 wake
time between sleep onset and final awakening.



drop in sleep quality with increasing disease burden inde-

pendent of sex (see Fig 1D). PC1 included (for a detailed

description of the variables see Table 3): sleep efficiency

(PC loading 5 0.76), length of continuous sleep bouts (PC

loading 5 0.70), REM sleep (percentage of total sleep time

[TST]; PC loading 5 0.65), TST (PC loading 5 0.55),

length of continuous REM bouts (PC loading 5 0.39),

number of arousals (shifts to stage 1 sleep, wake, or move-

ment per hour of sleep; PC loading 5 20.94), total num-

ber of shifts between sleep stages per hour of sleep (PC

loading 5 20.86), wake time between sleep onset and final

awakening (WASO; PC loading 5 20.86), number of fast

shifts between sleep stages (periods of 1.5 minutes with 3

different 30-second-long sleep stages per hour of sleep; PC

loading 5 20.85), stage1 sleep (percentage of TST; PC

loading 5 20.75), latency to persistent sleep (10 minutes

of continuous sleep; PC loading 5 20.59), apnea–hypo-

pnea index (apnea and hypopnea events per hour of sleep;

PC loading 5 20.53), latency to slow wave sleep (SWS;

PC loading 5 20.47), and latency to REM sleep (PC

loading 5 20.38).

As the groups were clearly segregated along the

PC1 axis, the positive PC loading values indicate higher

score in controls than in premanifest gene carriers and

manifest patients, and the negative values indicate higher

scores in gene carriers than in controls. Importantly, the

variables top ranked according to their PC loading value

were measures of sleep continuity, indicating that this is

the dimension of sleep quality that best correlates with

PC1 and so contributes most to the differentiation of the

studied groups along the PC1 axis.

The secondary exploratory analyses revealed that

the 3 groups were different across a large range of sleep

quality measures, indicating progressively worsening sleep

phenotype from premanifest to manifest stage independ-

ent of age and sex (see Table 3). This was characterized

by an earlier bedtime, longer time in bed, lower sleep

efficiency, increased stage 1 sleep, decreased REM sleep,

and a more fragmented sleep profile across several meas-

ures of sleep continuity. Pre-HD participants presented

longer WASO, increased sleep fragmentation (Fig 2)

across multiple measures, and higher daytime sleepiness

FIGURE 2: Representative sleep profiles of 2 premanifest participants and 2 age- and sex-matched controls showing a more
fragmented sleep profile in the premanifest participants. CAG 5 cytosine–adenosine–guanosine repeats; REM 5 rapid eye
movement sleep.
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compared to controls (see Table 3). Pre-HD participants

were sleepier than both controls and early HD partici-

pants, as indicated by a shorter average sleep latency

measured by MSLT. The early HD group presented the

smallest sleep propensity during the day independent of

age and sex. Daytime sleepiness decreased with disease

burden in the premanifest and manifest gene carrier

group.

Sleep–Wake Timing and Self-Reported
Measures of Sleep
As sleep–wake timing and diurnal preference have been

associated with individual differences in sleep quality,49

metabolism,50 and mental health,51 we also assessed this

aspect of sleep. PC1 component explained 34% of the

variation across all studied measures within this domain

(see Table 4). It was not different between the groups

(p 5 0.341, adjusted p 5 0.681; see Fig 1E) and was not

associated with DBS (p 5 0.0945, adjusted p 5 0.451; see

Fig 1F), although the direction of the effects was consist-

ent with the objective PSG assessments of sleep quality.

PC1 included actigraphy-measured habitual time in bed

(TIB; PC loading 5 0.60), diurnal preference measured

by the MEQ total score (PC loading 5 0.60), preferred

TIB (PC loading 5 0.56), self-reported habitual TIB (PC

loading 5 0.44), sleep duration (PC loading 5 0.43), and

bedtime (PC loading 5 20.92), actigraphy measured

(PC loading 5 20.90) and preferred bedtime (PC

loading 5 20.89), time of self-reported evening tiredness

sufficient to go to sleep (PC loading 5 20.87), actigra-

phy measured (PC loading 5 20.57) and self-reported

habitual getup time (PC loading 5 20.51), and preferred

getup time (PC loading 5 20.38).

The secondary exploratory analyses did not show

group differences across any of the measures. There was

an association between an earlier timing of evening

FIGURE 3: Characteristics of the relative electroencephalographic power spectral density (PSD) measured during rapid eye move-
ment (REM; A, C, E) and non-REM (NREM; B, D, F) sleep in controls, premanifest (Pre-HD) patients, and early manifest Hunting-
ton disease (HD; Early HD) patients. (A, B) The average transformed (y 5 log[x/(12x)] see Subjects and Methods) relative power
spectrum density measured during REM (A) and NREM (B) sleep for each group is presented as estimates (least squares means)
and standard error of the mean controlled for age and sex. Triangles indicate significant (p < 0.05) group differences (2-tailed t
test). Black triangles 5 controls versus Early HD, gray solid triangles 5 Pre-HD versus Early HD, gray open triangles 5 controls ver-
sus Pre-HD. (C, D) Mean difference from controls in the averaged relative power spectrum during REM (C) and NREM (D) sleep
is presented with 99.875% confidence interval (CI) limits controlled for age and sex. Dashed reference line 5 Control; blue
lines 5 Pre-HD; red lines 5 Early HD. Triangles indicate statistically corrected significant (p < 0.00125) differences between Early
HD and controls. (E, F) Association between the relative power spectrum measured during REM (E) and NREM (F) sleep and the
disease burden score (DBS) within the entire premanifest and manifest gene carrier group. Regression coefficients and 99.875%
CI are indicated. Triangles indicate statistically corrected significant associations (p < 0.00125) with DBS.
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sleepiness sufficient to go to sleep and increasing disease

burden independent of sex (see Table 4). We consider

that reporting these values is important, as in particular

chronotype and diurnal preference are important charac-

teristics of the studied population and allow for system-

atic comparison of different study groups.

EEG Spectral Characteristics
The whole night REM sleep–dependent relative EEG

power showed a major decrease in the frequency range of

4 to 9Hz and an increase at 1 to 2Hz in early HD as

compared to controls independent of age and sex (Fig 3).

The pre-HD group was mostly intermediate between the

2 groups or similar to controls, except for the 2Hz and

7Hz bins, where they were similar to early manifest

patients showing a higher (2Hz) and lower (7Hz) relative

power, respectively, as compared to controls. After con-

servative statistical correction, only the relative power dif-

ferences within the 5 to 7Hz frequency range remained

significant between the early HD and the control group.

The REM sleep–dependent 4 to 7Hz range showed a

robust association with disease burden independent of

sex, and this survived conservative statistical correction.

In NREM sleep, there was a similar decrease in the rela-

tive power in early HD compared to controls and Pre-

HD in the range of 3 to 8Hz, but also an increase in the

32 to 36Hz high-frequency range compared to controls

independent of age and sex. After conservative statistical

correction, only the decrease in the 6 to 7Hz range

remained significant without any significant association

with disease burden.

Metabolic Alterations
For the metabolic analyses, we controlled our analyses

for age, sex, and body mass, fat mass, or lean mass

depending on the studied measures (see Table 5). As

PC1 was dominated by sex effects, we analyzed PC2,

which explained 17% of the variation across all studied

metabolic measures and showed no group effect (adjusted

p 5 0.21; see Fig 1G) nor association with DBS

(p 5 0.804; see Fig 1H). PC2 included leptin (PC

loading 5 0.70), fat mass Z score (PC loading 5 0.61),

total body mass (PC loading 5 0.50), VPA (PC

loading 5 20.61), PAL (PC loading 5 20.55), AEE

(PC loading 5 20.52), and TEE (PC loading 5 20.37)

measured by DLW and testosterone (PC loading 5

20.37).

Secondary exploratory analyses showed no signifi-

cant group differences except a decreased AEE in pre-

manifest patients as compared to controls independent of

age, sex, and body mass (see Table 5).

Discussion

Sleep is of upmost importance in life, with multiple links

to cognition52 and metabolism.53 In manifest HD, dis-

turbances have been reported in all 3 of these areas, but

have not been systematically studied in patients prior to

motor disease onset. The findings reported here represent

the first comprehensive study of sleep and metabolism in

a group of Pre-HD individuals.

We show that objectively measured sleep quality is

greatly affected ahead of overt disease onset including

various intercorrelated sleep parameters. That sleep conti-

nuity measures such as number of arousals, total number

of shifts between sleep stages, wake time after sleep onset,

and fast changes in sleep stages had the highest contribu-

tion (PC loading) to PC1 indicates that sleep continuity

is the major sleep characteristic differentiating the studied

groups and is significantly associated with disease burden.

This interpretation is supported by the secondary explor-

atory analyses. Whereas the TST and the relative dura-

tion of sleep stages are unchanged, the continuity of

sleep is decreased in premanifest patients. Sleep continu-

ity is thought to be important for the restorative function

of sleep.54 This suggests that even in the presence of suf-

ficient sleep duration, the restorative effects may be com-

promised during the premanifest stage. These results of

fragmented sleep are in line with a recent paper showing

major sleep disturbances in manifest HD patients that

were also characterized by increased arousals and awaken-

ings55 and data from transgenic animal models of HD

showing that sleep quality as well as oscillatory brain

activity (EEG) and circadian rhythmicity becomes gradu-

ally more disrupted as the disease progresses.11,12,14 Fur-

thermore, it has recently been shown that resting EEG

alterations in pre-HD individuals may be related to the

course of the pathological process and to HD endophe-

notype.43 These results are intriguing, because EEG

activity reflects characteristics of cortical and subcortical

neural activity and has the potential to become a bio-

marker for HD onset and progression in the future.56

Whereas there are a number of quantitative EEG

(qEEG) studies of waking brain activity in HD (for a

review see Nguyen et al56), there are only a couple of

studies looking at spectral features of EEG during sleep,

and only in transgenic animal models of HD,11,12,14,57,58

with no studies in humans. Our study therefore is the

first qEEG study performed during sleep in premanifest

and manifest patients with HD and indicates alterations

in the NREM- and particularly the REM-dependent

oscillatory activity of the brain associated with disease

burden in gene carriers. Some of our findings such as the

decrease in the 3 to 8Hz range and the increase in the
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high-frequency (32–36Hz) range in the early HD group

are somewhat similar to findings in transgenic animal

studies reporting a progressive decrease in low-frequency

(delta) and increase in high-frequency (beta–gamma)

activity in sleep.11,12,58 The REM-dependent increase in

the 1 to 2Hz range is unexpected and could be related to

increased REM intensity (density of REM), a hypothesis

that remains to be tested. However, all these effects were

small, affecting only the early HD group, with a mar-

ginal association with the disease burden at best. There-

fore, a detailed discussion on this is not justified. It is

important however to emphasize that we did not analyze

EEG segments where increased muscle activity contami-

nated the EEG signal. Therefore, sleep EEG segments

around awakenings when elevated muscle activity was

usually present were excluded from the spectral analyses,

which may have masked to a degree the increase in the

high-frequency EEG activity in the gene carrier group

presenting with more frequent awakenings.

The most robust qEEG finding, however, that sur-

vived conservative statistical correction is a decrease in

the 4 to 8Hz frequency band in REM and in the 6 to

7Hz range in NREM sleep in the early HD group inde-

pendently of age and sex, pointing to a theta frequency

range–specific alteration in HD. Although premanifest

patients were not significantly different from controls,

importantly the REM-dependent theta (4–7Hz) decrease

was significantly associated with disease burden score in

the entire gene carrier group. Theta activity during

NREM and REM sleep has been shown to have a simi-

lar age-dependent decline, indicating probably common

functional correlates, and it has been suggested to play a

role in neural restoration following wakefulness.59 This

is supported by the finding that sleep deprivation

increases EEG activity in the 1 to 7Hz frequency range

during recovery sleep in both NREM and REM sleep

episodes.60 The functional correlates of this specific

EEG pattern and the possible underlying mechanisms in

HD remain to be established.

Now altered sleep continuity in ageing is thought

to be at least in part a consequence of a “weakened” cir-

cadian signal,61 and in HD it is known that melatonin

levels are already reduced at a premanifest stage.62 This

coupled with the unstable sleep phenotype that we

describe in this paper suggests a deficit in neural proc-

esses regulating vigilance stages. Sleep and wakefulness

result from interacting neurotransmitter systems in the

brainstem, hypothalamus, and basal forebrain,63 with

sleep emerging from the inhibition of wake-promoting

systems by the preoptic area of the hypothalamus.64

Therefore, it may be that one of the earliest sites of

pathology in HD is the hypothalamus.21

The results also show that sleep disturbances similar

to the cognitive deficits follow a linear association with

disease burden independent of sex. Although both the

primary cognitive and sleep deficits appear long before

the overt motor disease onset, the mechanistic link

between these factors remains to be established. The sleep

data show that once the disease becomes manifest, many

other sleep problems emerge such as a decrease in sleep

efficiency and REM sleep and an increase in superficial

stage 1 sleep, which are in line with previous studies per-

formed in manifest patients.55,65 We also show that these

effects are independent of age and sex.

Our exploratory analyses show that objectively

measured daytime sleepiness is greater in premanifest

patients than controls, and then decreases with increas-

ing disease burden and is much less in early manifest

patients as compared to both controls and premanifest

individuals, independent of age and sex. This is an

intriguing finding, as one would expect the greater

sleep deficits to lead to greater sleep propensity.

Healthy aging is associated with a reduction in daytime

sleep propensity, sleep continuity, and SWS and may

reflect a lessening in homeostatic sleep requirement,66

which is related to synaptic strength and plasticity.67

Therefore, there may be a complex mechanistic link

between the progressive decrease in daytime sleepiness

and increasing sleep deficits in HD involving a gradu-

ally worsening synaptic pathology, which may also

account for some of the early cognitive deficits. It is

also known that patients entering the early manifest

stages of the illness lose a degree of insight.68 Although

we did not explicitly look at this in this study, it may

help explain the discrepancy between the subjective

and objective sleep abnormalities reported previously in

early manifest HD10 and now in premanifest patients.

This further raises questions on the usefulness of

employing subjective measures of sleep quality in HD

clinical practice and research.

In addition, our metabolic study (which is the first

to investigate energy expenditure in Pre-HD patients

using both the field and laboratory environments) did

not find any metabolic abnormality at this stage of the

condition.20

Although our study has many unique qualities, it

also has a number of limitations. Although this is so far

the only study to systematically investigate sleep, cogni-

tion, and metabolism in a cohort of premanifest patients

using state of the art methodology, the results presented

here are cross-sectional, and so we are not able to estab-

lish any causality between abnormalities. We are therefore

continuing to follow up these patients to evaluate how

the abnormalities identified change as the patient
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transitions into manifest disease states. Furthermore, not

all participants took part in all studies, which were not

all performed at the same time in some participants.

However, the sleep components of the work preceded all

the other studies in all cases, indicating that any time dif-

ference between the studies could not cause the temporal

primacy of the sleep abnormalities. Additionally, some of

our patients and controls were taking medications that

may affect sleep and metabolism, but importantly the

groups were not significantly different in this regard and

our most important results (such as sleep fragmentation)

remained highly significant even after excluding the

medicated participants.

In summary, we have shown for the first time that

the premanifest stage of HD is characterized by sleep

abnormalities at a time when the well-described early

cognitive disturbances begin to emerge. Metabolic abnor-

malities related to body composition and energy expendi-

ture are not present at this stage of the disease,

suggesting that sleep may be one of the earliest homeo-

static processes to go wrong in HD, which in turn may

have other effects such as driving early cognitive dysfunc-

tion and even the pathology of HD itself.
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