Central

Cinfony - combining Open Source cheminformatics toolkits behind
a common interface
Noel M O'Boyle*! and Geoffrey R Hutchison?

Chemistry Central Journal

Software

Address: 'Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK and 2Department of Chemistry, University of
Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA

Email: Noel M O'Boyle* - oboyle@ccdc.cam.ac.uk; Geoffrey R Hutchison - geofth@pitt.edu
* Corresponding author

Published: 3 December 2008
Chemistry Central Journal 2008, 2:24 doi:10.1186/1752-153X-2-24

Received: 9 October 2008
Accepted: 3 December 2008

This article is available from: http://journal.chemistrycentral.com/content/2/1/24

© 2008 O'Boyle et al

Abstract

Background: Open Source cheminformatics toolkits such as OpenBabel, the CDK and the RDKit
share the same core functionality but support different sets of file formats and forcefields, and
calculate different fingerprints and descriptors. Despite their complementary features, using these
toolkits in the same program is difficult as they are implemented in different languages (C++ versus
Java), have different underlying chemical models and have different application programming
interfaces (APIs).

Results: We describe Cinfony, a Python module that presents a common interface to all three of
these toolkits, allowing the user to easily combine methods and results from any of the toolkits. In
general, the run time of the Cinfony modules is almost as fast as accessing the underlying toolkits
directly from C++ or Java, but Cinfony makes it much easier to carry out common tasks in
cheminformatics such as reading file formats and calculating descriptors.

Conclusion: By providing a simplified interface and improving interoperability, Cinfony makes it

easy to combine complementary features of OpenBabel, the CDK and the RDKit.

Background

Cheminformatics toolkits are essential to the day-to-day
work of the practising cheminformatician. They enable
the user to deal with such tasks as handling different
chemistry file formats, substructure searching, calculation
of molecular fingerprints, and structure diagram genera-
tion. The main Open Source cheminformatics libraries
under active development are OpenBabel [1], the Chem-
istry Development Kit (CDK) [2], and the RDKit [3].
OpenBabel is a C++ toolkit with bindings in Perl, Python,
Ruby and Java, the CDK is a Java toolkit, while the RDKit
is another C++ toolkit with Python bindings. While the
CDK has its origins in academia, both OpenBabel and the
RDKit originated in companies (OpenEye and Rational
Discovery, respectively) and have subsequently been
developed by the community under Open Source licenses.

In general, all of these toolkits share the same core func-
tionality although the implementation details and under-
lying chemical model may differ. However, as a result of
their independent development and history, each has
functionality specific to itself and each toolkit supports
different sets of file formats and forcefields, and can calcu-
late different molecular fingerprints and molecular
descriptors (Table 1). Despite the diversity of these
toolkits and the potential benefits in being able to access
all of them at the same time, there has been little work on
interoperability between them. This has resulted in a bal-
kanization of this field such that users of one toolkit rarely
use another toolkit.

One way to achieve interoperability of chemical toolkits is
through the use of standard file formats for exchange of

Page 1 of 10

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19055766
http://journal.chemistrycentral.com/content/2/1/24
http://www.biomedcentral.com/info/about/charter/

Chemistry Central Journal 2008, 2:24

http://journal.chemistrycentral.com/content/2/1/24

Table I: Some features of toolkits which are not shared by all three toolkits.

CDK

A large number of descriptors (some overlap with RDKit)
Pharmacophore searching (like RDKit*)

Calculation of maximum common substructure

2D structure layout (like RDKit) and depiction

MACCS keys (also RDKit) and E-State fingerprints
Integration with the R statistical programming environment

Support for mass-spectrometry analysis (representations for cleavage reactions, structure generation from formulae)

Fragmentation schemes (ring fragments, Murcko)

3D structure generation using a template and heuristics (like OpenBabel)
3D similarity using ultrafast shape descriptors

Gasteiger 7 charge calculation

OpenBabel
Not just focused on cheminformatics

Supports a very large number of chemical file formats including quantum mechanics file formats, molecular mechanics trajectories, 2D sketchers

3D structure generation using a template method (like CDK)
Included in all major Linux distributions

Bindings available from several scripting languages apart from Python, as well as the Java and .NET platforms

Conformation generation and searching
InChl (also CDK) and InChIKey generation
Support for crystallographic space groups

Several forcefield implementations: UFF (also RDKit), MMFF94, MMFF94s, Ghemical

Ability to add custom data types to atoms, bonds, residues, molecules

RDKit

A large number of descriptors (some overlap with CDK)
Fragmentation using RECAP rules

2D coordinate generation (like CDK) and depiction

3D coordinate generation using geometry embedding
Calculation of Cahn-Ingold-Prelog stereochemistry codes (R/S)
Pharmacophore searching (like CDK)

Calculation of shape similarity (based on volume overlap)
Chemical reaction handling and transforms

Atom pairs and topological torsions fingerprints

Feature maps and feature-map vectors

Machine-learning algorithms

* Where the term "like" is used, it indicates that the implementation details differ.

data. For example, the CML project has defined a stand-
ardised XML format for chemical data [4], with successive
releases refining and extending the original standard. The
OpenSMILES effort [5] has attempted to resolve ambigui-
ties in the published SMILES definition [6] to create a
standard. While these efforts deserve support, they face
inevitable problems achieving consensus and they require
changes to existing software to support the standard. The
large number of chemical file formats supported by
OpenBabel (currently over 80) illustrates both the poten-
tial of achieving a standard as well as the difficulties.

An alternative is interoperability at the API (application
programming interface) level. This has the advantage that
it does require any changes to existing software. However,
there are at least three barriers to overcome: the need for a
programming language that can access all the toolkits
simultaneously, the difficulty of exchanging chemical

models between different toolkits, and differences in the
API for core cheminformatics tasks shared by the toolkits.

Here we describe Cinfony, a Python module that over-
comes these barriers to provide interoperability at the API
level. Cinfony allows access to OpenBabel, the CDK, and
the RDKit through a common interface, and uses a simple
yet robust method to pass chemical models between
toolkits. Pybel, one of the components of Cinfony, has
been described previously [7]. It provides access to
OpenBabel from standard Python. In this work, we show
that the API developed for Pybel may be considered a
generic API for accessing any cheminformatics toolkit. We
describe the design and implementation of the Cinfony
API for OpenBabel, the RDKit and the CDK. Next, we
show how Cinfony simplifies the process of accessing the
toolkits and how it can be used in practice to combine the
power of the three Open Source toolkits. Finally, we dis-

Page 2 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

cuss performance and some results from comparisons of
the toolKkits.

Implementation

Common Application Programming Interface

Cinfony presents the same interface to three cheminfor-
matics toolkits, OpenBabel, the CDK and the RDK:it.
These are available through three separate modules: oba-
bel, cdk and rdkit. The API is designed to make it easy to
carry out many of the common tasks in cheminformatics,
and covers the core functionality shared by all of the
toolkits. Table 2 gives an overview of the API. The com-
plete API is available here (see Additional file 1).

The main class containing chemical information is the
Molecule class. Rather than create a new chemical model,
the Molecule class is a light wrapper around the molecule
object in the underlying library, for example, around
OBMol in the case of OpenBabel. Attribute values such as
the molecular weight are calculated dynamically by query-
ing the underlying molecule. This ensures that if the
underlying OBMol, for example, is altered, the attribute
values returned will still be correct. The actual underlying
object (an OpenBabel OBMol, a CDK Molecule, or an
RDKit Mol) can be accessed directly at any point.

The Molecule class also contains several methods that act
on molecules such as methods for calculating fingerprints,
adding hydrogens, and calculating descriptor values. This
makes it easy to access these methods, and also brings
them to the attention of the user. In the underlying toolkit
these methods may not be present as part of the molecule
class, and in fact, they can be difficult to find in the
toolkit's API. For example, the Cinfony method Mole-
cule.addh() adds explicit hydrogens to the molecule.

Table 2: An overview of the Cinfony API.

http://journal.chemistrycentral.com/content/2/1/24

Although the OBMol of OpenBabel has a corresponding
method, OBMol.AddHydrogens(), the RDKit uses a glo-
bal method, AddHs(Mol), while the CDK requires the
user to instantiate a HydrogenAdder object, which can
then be used to add hydrogens.

The Molecule methods described in the original Pybel API
[7] have been extended to handle hydrogen addition and
removal, structure diagram generation, assignment of 3D
geometry to 0D structures and geometry optimisation
using forcefields. Both the CDK and the RDKit are capable
of 2D coordinate generation and 2D depiction. However,
since OpenBabel currently has neither of these capabili-
ties, a fourth toolkit, OASA, is used by Pybel for this pur-
pose. OASA is a lightweight cheminformatics toolkit
implemented in Python [8].

A new development in the latest version of OpenBabel is
3D coordinate generation and geometry optimisation
using one of a number of forcefields. Since these methods
are also available in the RDKit, and are under develop-
ment in the CDK, two additional methods have been
added to the Cinfony Molecule: make3D(), for 3D coor-
dinate generation, and localopt(), for geometry optimisa-
tion. Particularly in the case of OpenBabel, these new
methods simplify the process of generating 3D coordi-
nates. Compare a single call to make3D() in Cinfony with
the following OpenBabel code:

structuregenerator =
Type('Gen3D')

openbabel.OBOp.Find

structuregenerator.Do(mol)

mol.AddHydrogens()

Class name Purpose

Molecule

Atom Wraps an atom instance of the underlying toolkit
MoleculeData

Outputfile Handles multimolecule output file formats

Smarts

Fingerprint Simplifies Tanimoto calculation of binary fingerprints

Wraps a molecule instance of the underlying toolkit and provides access to methods that act on molecules
Provides dictionary-like access to the information contained in the tag fields in SDF and MOL2 files

Wraps the SMARTS functionality of the toolkit in an analogous way to the Python 're' module for regular expression matching

Function name
readfile
readstring

Return an iterator over Molecules in a file
Return a Molecule

Variable name

descs A list of descriptor IDs
forcefields A list of forcefield IDs

fps A list of fingerprint IDs
informatsaa A list of input format IDs
outformats A list of output format IDs

Page 3 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

ff =
Type ("MMFF94")

openbabel.OBForceField.Find

ff.Setup(mol)
ff.SteepestDescent (50)
ff.GetCoordinates(mol)

The Cinfony API is identical for all of the toolkits. How-
ever, the values returned by particular API calls are not
necessarily standardised across toolkits. This Cinfony
design decision is in agreement with the Principle of Least
Surprise [9]; when the user accesses the underlying toolkit
directly, they will get the same result as found when using
Cinfony. This design decision places the responsibility on
the user to become familiar with differences in how the
toolkits behave. For example, all of the toolkits allow the
calculation of path-based fingerprints. These encode all
paths in the molecular graph up to a path length of P into
a binary vector of length V, but the default values for V
and P are different for each toolkit: 1024 and 7 for
OpenBabel, 1024 and 8 for the CDK, and 2048 and 7 for
RDKit. Although it is possible to alter these parameters for
the CDK and the RDKit and so standardise V and P to
1024 and 7 for all of the toolkits, it is reasonable to
assume that the developers of each package have chosen
sensible defaults. In addition, the implementation details
of each of the fingerprinters would still be different; for
example, the RDKit sets four bits when hashing each
molecular path, the others set one; OpenBabel does not
set any bits for the one-atom fragments, N, C and O.

Interoperability

The ability to transfer chemical models between toolKkits is
essential to the goal of interoperability. However, the
internal representation of a molecule is specific to a par-
ticular toolkit. For example, as well as the connection
table and coordinates (if present), it may include derived
data relating to aromaticity, the number of implicit hydro-
gens on an atom, or stereochemical configuration. Fortu-
nately, the problem of transfer and storage of chemical
information has already been solved by the development
of molecular file formats, of which over 80 are now sup-
ported by OpenBabel. Specifically, the MDL MOL file for-
mat [10] and the SMILES format [5,6] are shared by all
three toolkits, and are used by Cinfony to exchange infor-
mation on molecules with 2D or 3D coordinates (MOL
file format), and no coordinates (SMILES format), respec-
tively.

By using existing file formats rather than trying to inter-
convert the internal models themselves, Cinfony takes
advantage of the existing input/output code of each
toolkit which is well-tested and mature. In addition, the

http://journal.chemistrycentral.com/content/2/1/24

translation process is transparent to the user. However,
the user should be aware of known limitations of particu-
lar readers or writers. For example, the SMILES parser in
CDK 1.0.3 ignores atom-based stereochemistry and thus
that information is lost if a 0D rdkit or obabel Molecule
with atom-based stereochemistry is converted to a cdk
Molecule.

Cinfony Molecules are interconverted using the Mole-
cule() constructor. For example, if obabelmol is an obabel
Molecule, then the corresponding rdkit Molecule can be
constructed using rdkit.Molecule(pybelmol). This mecha-
nism can also be used to interface Cinfony to other chem-
informatics toolkits. The only requirements are that the
object passed to the Molecule() constructor needs to have
a _cinfony attribute set to True, and an _exchange
attribute containing a tuple (0, SMILES string) or (1, MOL
file) depending on whether the molecule is 0D or not.

Implementation

The Python scripting language has two main implementa-
tions. The most widely used implementation is the origi-
nal reference implementation of Python in C, referred to
as CPython when necessary to distinguish it from other
implementations. The next most widely used implemen-
tation is Jython, an implementation of Python in Java.
Although most users of Python do so through CPython,
Jython scripts have the advantage of being able to access
Java libraries natively. They can also be compiled into Java
classes to be used from Java programs. Jython scripts are
also useful in contexts where Java is required but it is more
convenient to work in Python; for example, to implement
a Java web servlet or a node in a Java workflow environ-
ment such as KNIME [11].

As discussed earlier, one of the barriers to interoperability
is the requirement for a programming language that can
simultaneously access more than one of the toolkits. From
CPython it is possible to use Cinfony modules to connect
to OpenBabel (pybel), the CDK (cdkjpype) and the RDKit
(rdkit). From Jython, there are modules for OpenBabel
(jybel) and the CDK (cdkjython). Convenience modules
obabel and cdk are provided that automatically import the
appropriate OpenBabel or CDK module depending on
the Python implementation. The relationship between
these Cinfony modules and the underlying cheminfor-
matics libraries is summarised in Figure 1.

pybel and jybel

OpenBabel provides SWIG [12] bindings for both CPy-
thon and Java (among other languages). pybel is a wrapper
around the CPython bindings, and has previously been
described in detail [7]. jybel is an implementation of the
Cinfony API that allows the user to access OpenBabel
from Jython using the Java bindings. Despite the fact that

Page 4 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

Cinfony

[pybel] [jybel] cdkjpype cdkjython
\ /
\ via

JPype
SWIG Python Boost. Python
bmdmgs bmdmgs
OpenBabel RDKit -
C++ Toolkit C++ Toolkit CDK

OpenBabel RDKit

-

Figure |

Relationship of Cinfony modules to Open Source
toolkits. Python modules are accessible from CPython
(green), Jython (pale blue), or both (striped green and pale
blue). Java libraries are indicated by dark blue, while C++
libraries are yellow.

jybel is used from a Java implementation of Python, and
accesses a C++ library through the Java Native Interface
(JNT), the jybel code differs from pybel in very few respects.
In Jython, it is not possible to iterate directly over the
wrapped STL vectors used by OpenBabel as their Java
SWIG bindings do not implement the Iterable interface.
Also, the current Jython implementation is 2.2 and does
not support generator expressions, which were introduced
in Python 2.4. Although both C++ and Python have the
concept of a global function or variable, this is not the
case in Java. SWIG places such functions, and get/set
methods for accessing the variables, in a special class
named openbabel. Global constants are placed in another
class called openbabelConstants. A convenience module,
obabel, is provided which automatically imports the
appropriate module depending on the Python implemen-
tation.

cdkjpype and cdkjython

Since Jython runs on top of the Java Virtual Machine
(JVM), it can access Java libraries such as the CDK
natively. To access Java libraries from CPython, the
Python library JPype [13] is needed. This starts an instance
of the JVM and uses the JNI to communicate back and
forth. Overall, the differences between the two wrappers
are minor. Jython and JPype differ in the syntax used to
handle Java exceptions. Also, JPype returns unicode
strings from the CDK and these need to be converted to
regular strings (otherwise problems arise if they are passed
to an OpenBabel method expecting a std::string). The
appropriate CDK wrapper, cdkjpype or cdkjython, will be
imported if the user imports the convenience module cdk.

http://journal.chemistrycentral.com/content/2/1/24

rdkit

Support for Python scripting has been part of the design
of the RDKit from the start. The Python bindings in RDKit
were created using Boost.Python [14], a framework for
interfacing Python and C++. The Cinfony module rdkit
uses these bindings to implement its API. It is currently
not possible to access RDKit from Jython. RDKit has only
preliminary support for Java bindings; when these are
complete, a corresponding module will be added to Cin-
fony.

Dependency handling

A fully-featured installation of Cinfony relies on a large
number of open source libraries. In particular, the 2D
depiction capabilities introduce dependencies on several
graphics libraries which may be problematic to install on
a particular platform (Cairo and its Python bindings,
Python Imaging Library, AGG and the Python wrapper
AggDraw). With this in mind, Cinfony treats all depend-
encies as optional and only raises an Exception if the user
calls a method or imports a module that requires a miss-
ing dependency.

For example, the Python Imaging Library (PIL) is required
for displaying a 2D depiction on the screen. If all of the
components of cinfony are installed except for PIL, Cin-
fony works perfectly except that an Exception is raised if
the Molecule.draw() method is called with show = True
(the default). The image can however be written to a file
without problems (show = False, filename =
"image.png"). Similarly, if a user is only interested in
using the CDK and the RDKit, it is not necessary to install
OpenBabel.

Full installation instructions for Windows, MacOSX and
Linux are available from the Cinfony website. It should be
noted that for Windows users, there is no need to compile
or search for missing libraries as the dependencies are
included as binaries in the Cinfony distribution.

Results

Cinfony API

The original Pybel API was designed to make it easy to use
OpenBabel to perform the most common tasks in chem-
informatics and to do so using idiomatic Python. Subse-
quently, we realised that the resulting API could be
considered a generic API for wrapping the core function-
ality of any cheminformatics toolkit. Cinfony implements
an extended version of the original Pybel API for the CDK
and the RDKit, as well as OpenBabel. While the original
Pybel was restricted to CPython, Cinfony can also be used
from Jython to access the CDK and OpenBabel.

Cinfony helps cheminformaticians avoid the steep learn-

ing curve associated with starting to use a new toolkit.

Page 5 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

With Cinfony, all of the core functionality of the toolkits
can be accessed with the same interface. For example, in
Cinfony, a molecule can be created from a SMILES string
with:

mol =
LESstring)

toolkit.readstring("smi", SMI

RDKit

mol = Chem.MolFromSmiles(SMILESstring)
OpenBabel

mol = openbabel.OBMol()

obconversion = openbabel.OBConversion()

obconversion.SetInFormat("smi")

obconversion.ReadString(mol, SMI
LESstring)

CDK

builder = cdk.DefaultChemObject

Builder.getInstance()
sp = cdk.smiles.SmilesParser(builder)
mol = sp.parseSmiles(SMILESstring)

The RDKit was designed with Python scripting in mind,
and of the three toolkits is the most concise. On the other
hand, OpenBabel uses a characteristically C++ approach.
An empty molecule is created, and is passed to an OBCon-
version instance as a container for the molecule read from
the SMILES string. The SmilesParser in the CDK requires
an instance of an object implementing the IChemObject-
Builder interface.

Another advantage of a common API is that a script writ-
ten for one toolkit can easily be modified to use another.
As an example, here is a script that selects molecules that
are similar to a particular target molecule. This script is
taken from the original Pybel paper [7], but uses the CDK
instead of OpenBabel and will run equally well from
Jython and CPython. The only differences compared to
the original script are that "pybel" has been replaced with
"cdk", and the import statement has been changed from
"import pybel":

from cinfony import cdk

targetmol = cdk.readfile("sdf",
mol.sdf").next()

"target

http://journal.chemistrycentral.com/content/2/1/24

targetfp = targetmol.calcfp()

output = cdk.Outputfile("sdf", "similar
mols.sdf")
for mol in «cdk.readfile("sdf", "input

file.sdf"):
fp = mol.calcfp()
if fp | targetfp >= 0.7:
output.write(mol)
output.close()

Alternatively, we could just have made a single change to
the original script, by replacing the import statement from
"import pybel" with "from cinfony import cdk as pybel".

Using Cinfony to combine toolkits

Another goal of Cinfony is to make it easy to combine
toolkits in the same script. This allows the user to exploit
the complementary capabilities of different toolkits
(Table 1). For example, let's suppose the user wants to (1)
convert a SMILES string to 3D coordinates with OpenBa-
bel, then (2) create a 2D depiction of that molecule with
the RDKit, next (3) calculate descriptors with the CDK,
and finally (4) write out an SDF file containing the
descriptor values and the 3D coordinates. The full Python
script is only seven lines long:

from cinfony import rdkit, cdk, obabel

mol = obabel.readstring("smi", "CCC=0")
mol.make3D()
rdkit.Molecule(mol).draw(show = False,

filename = "aldehyde.png")
descs = cdk.Molecule(mol).calcdesc()
mol.data.update(descs)

mol.write("sdf", filename = "alde

hyde.sdf")

For cheminformaticians interested in developing QSAR or
QSPR models, Cinfony can be used to simultaneously cal-
culate descriptors from the RDKit, the CDK and OpenBa-
bel. For example, the following script reads a multiline
input file, with each line consisting of a SMILES string fol-
lowed by a property value. For each molecule, it calculates
all of the OpenBabel, RDKit and CDK descriptors (except
for CDK's CPSA) and writes out the results as a tab-sepa-

Page 6 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

rated file suitable for reading with the statistical package R
[15]. Note that in this example script, if descriptors share
the same name only one is retained. This is the case for the
TPSA descriptor in OpenBabel, which is replaced by the
RDKit's TPSA descriptor.

import string

from cinfony import obabel, cdk, rdkit

Read in SMILES strings and observed prop
erty values

smiles, propvals = [], []

for line in open("data.txt"):
broken = line.rstrip().split()
smiles.append(broken [0])

propvals.append(float (broken))

mols = [obabel.readstring("smi", smile)
for smile in smiles]
Calculate descriptor values using

OpenBabel,
the CDK (apart from 'CPSA') and the RDKit

cdkdescs =
"CPSA']

[for x in cdk.descs if x !=

descs = []
for mol in mols:
d = mol.calcdesc()

d.update(cdk.Molecule(mol).calcdesc(cd
kdescs))

d.update(rdkit.Molecule(mol).calcdesc(
))

descs.append(d)

Write a file suitable for 'read.table'

in R
outputfile = open("inputforR.txt", "w")

descnames = sorted(descs [0].keys(), key =
string.lower)

http://journal.chemistrycentral.com/content/2/1/24

print >> outputfile,
erty"] + descnames)

"\t".Jjoin(["Prop

for smile, propval,
propvals, descs):

desc in zip(smiles,

descvals = [str(desc[descname]) for

descname in descnames]

print >> outputfile,
str(propval)] +

"\t".join([smile,

descvals)
outputfile.close()

Performance

Accessing cheminformatics libraries using Cinfony allows
the user to rapidly develop scripts that manipulate chem-
ical information. However, there is a small price to be
paid. Firstly, there is the cost of moving objects across the
interface between Python and the cheminformatics librar-
ies. Secondly, the additional code required by Cinfony to
implement a standard API may slow performance further.

To assess the performance penalty for accessing chem-
informatics toolkits using Cinfony rather than directly in
the native language, we looked at two simple test cases:
(1) iterating over an SDF file containing 25419 molecules,
(2) iterating and printing out the molecular weight of
each of the molecules. The SDF file used was 3_p0.0.sdf,
the first portion of the drug-like subset of the ZINC 7.00
dataset [16]. The Cinfony scripts, Java and C++ source
code are available as Additional file 2. The results are
shown in Table 3.

While accessing the CDK using Jython is almost as fast as
a pure Java implementation, there is a considerable over-
head associated with using JPype to access the CDK from
CPython (89% slower for the second test case). This over-
head is due to passing objects between the JVM and CPy-
thon. For OpenBabel, there is little performance cost
associated with accessing OpenBabel from either imple-
mentation of Python, although the jybel scripts are some-
what slower than pybel scripts. A small portion of this
speed difference can be attributed to a slower startup
(about 1.6 seconds for jybel, compared to 0.8 seconds for
pybel). Finally, from the RDK:it results in Table 3, it is clear
that using Boost.Python to wrap a C++ library is more effi-
cient than using SWIG. The difference in run times
between the C++ and Python implementations is negligi-
ble.

In practice, the performance of a particular Cinfony script
will depend on the extent to which information is passed

Page 7 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

http://journal.chemistrycentral.com/content/2/1/24

Table 3: Performance of Cinfony modules compared to a native Java or C++ implementation.

Iterate over SDF

Iterate and calculate molecular weight

CDK Time (s) Normalised Time (s) Normalised
Native Java 21.2 1.00 36.8 1.00
cdkjython 23.1 1.09 41.6 1.13
cdkjpype 33.0 1.57 69.5 1.89
OpenBabel

Native C++ 319 1.00 43.0 1.00
pybel 34.1 1.07 45.1 1.05
jybel 38.0 1.19 49.6 1.15
RDKit

Native C++ 99.7 1.00 100.7 1.00
rdkit 99.9 1.00 101.0 1.00

The times reported are wallclock times from the best of three runs on a dual-core Intel Pentium 4 3.2 GHz machine with |GB RAM.

back and forth between Python and the underlying Java or
C++ library. Where most of the time is spent on computa-
tion in the underlying library, the speed difference
between a native implementation and one using Cinfony
is expected to be small.

Comparison of toolkits

Cinfony makes it easy to compare the results obtained by
different toolkits for the same operations. This can be use-
ful in identifying bugs, applying a test suite, or finding the
strengths and weaknesses of particular implementations.
For example, where different toolkits calculate the same
descriptors, if the calculated values are not highly corre-
lated it may indicate a bug in one or the other. Earlier, we
mentioned that a difference in the treatment of implicit
hydrogens causes different toolkits to give different values
for molecular weight unless hydrogens are explicitly
added. Ensuring that a particular result is in agreement
with that obtained by another toolkit can act as a sanity
check in such instances to avoid errors.

When carrying out the same operation with several
toolkits, it is often convenient to iterate over the toolkits
in an outer loop:

from cinfony import obabel, rdkit, cdk
for toolkit in [obabel,

rdkit, cdk]:

print
"CCC") .molwt

toolkit.readstring("smi",

As an example of how such comparisons can be used to
identify bugs in toolkits, let us consider depiction. As a
dataset, we randomly chose 100 molecules from
PubChem [17], with subsequent filtering to remove mul-

ticomponent molecules. For each molecule, PubChem
provides an SDF file containing coordinates for a 2D
depiction, as well as the depiction itself as a PNG file.
PubChem uses the CACTVS toolkit [18] to generate the
2D coordinates as well as the corresponding depiction.
Using a script similar to the following, we used Cinfony to
generate 2D depictions using OASA (the depiction library
used by pybel), the CDK and a development version of
RDKit that all use the same 2D coordinates taken from the
SDF file:

from cinfony import pybel, rdkit
for toolkit in [rdkit, pybel]:
name = toolkit. name

for mol in
"dataset.sdf"):

toolkit.readfile("sdf",

mol.draw(filename =
(mol.title, name),

"%s_%s.png" %

show = False,
usecoords = True)

When the resulting images were compared for the
PubChem entry CID7250053, an error was found in the
depiction of the stereochemistry of an isopropyl group
(Figure 2). Since the error only occurred in certain cases, it
had not been previously noticed and would have been dif-
ficult to identify without such a comparative study. Once
reported, the problem was quickly solved and the subse-
quent RDKit release depicted the stereochemistry cor-
rectly. A comparison of depictions by commercial toolkits

Page 8 of 10

(page number not for citation purposes)

Chemistry Central Journal 2008, 2:24

Cactvs RDKit (devel) OASA CDK

AR U S

o o

i |

RDKit (release)

Figure 2

Comparison of depictions of PubChem CID7250053
using different toolkits. The depiction using the develop-
ment version of RDKit showed incorrect stereochemistry
for the isopropyl substituent of the thiazole ring.

and depictions generated by Cinfony is available here (see
Additional file 3).

Conclusion

Cinfony makes it easy to combine complementary fea-
tures of the three main Open Source cheminformatics
toolkits. By presenting a standard simplified API, the
learning curve associated with starting to use a new toolkit
is greatly reduced, thus encouraging users of one toolkit to
investigate the potential of others.

Cinfony is freely available from the Cinfony website [19],
both as Python source code and as a Windows distribu-
tion containing dependencies. Installation instructions
are provided for MacOSX, Linux and Windows.

Availability and requirements
Project name: Cinfony

Project home page: http://cinfony.googlecode.com

Operating system(s): Platform independent

Programming language: Python, Jython

http://journal.chemistrycentral.com/content/2/1/24

Other requirements: OpenBabel, CDK, RDKit, Java,
OASA, JPype, Python Imaging Library

License: BSD
Any restrictions to use by non-academics: None

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

NMOB conceived and developed Cinfony. GRH is the
lead developer of OpenBabel and created the Python and
Java SWIG bindings. All authors read and approved the
final manuscript.

Additional material

Additional file 1

Miniwebsite API. A mini-website of the Cinfony API documentation.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1752-
153X-2-24-S1.zip|

Additional file 2

Timing Code. A zip file containing Python, Java and C++ code used for
run time comparisons for two test cases.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-2-24-S2.zip]

Additional file 3

Miniwebsite Depictions. A mini-website showing a comparison of the
depictions generated by several cheminformatics toolkits.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
153X-2-24-S3 zip|

Acknowledgements

Cinfony would not be possible without the work of many Open Source
projects. In particular, we thank several developers who responded quickly
to bug reports or queries: Beda Kosata (OASA), Greg Landrum (RDKit),
Tim Vandermeersch (OpenBabel), Steve Ménard (JPype). Thanks also to
Gilbert Mueller and Chris Morley for feedback on installing Cinfony.
NMOB thanks Google Code for providing free web hosting and develop-
ment tools for Cinfony. We thank the anonymous reviewers for several
useful suggestions.

References

I. OpenBabel v.2.2.0 [http://openbabel.org]

2. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen E:
Recent Developments of the Chemistry Development Kit
(CDK) - An Open-Source Java Library for Chemo- and Bio-
informatics. Curr Pharm Des 2006, 12:2110-2120.

3. Landrum G: RDKit. [http://www.rdkit.org].

4. Murray-Rust P, Rzepa HS: Chemical Markup, XML, and the
Worldwide Web. |. Basic Principles. | Chem Inf Comput Sci 1999,
39:928-942.

Page 9 of 10

(page number not for citation purposes)

http://cinfony.googlecode.com
http://www.biomedcentral.com/content/supplementary/1752-153X-2-24-S1.zip
http://www.biomedcentral.com/content/supplementary/1752-153X-2-24-S2.zip
http://www.biomedcentral.com/content/supplementary/1752-153X-2-24-S3.zip
http://openbabel.org
http://www.rdkit.org

Chemistry Central Journal 2008, 2:24 http://journal.chemistrycentral.com/content/2/1/24

5. Apodaca R, O'Boyle N, Dalke A, Van Drie |, Ertl P, Hutchison G,
James CA, Landrum G, Morley C, Willighagen E, De Winter H:
OpenSMILES. [http://www.opensmiles.org].

6. Daylight Chemical Information Systems Manual [http:/
www.daylight.com/dayhtml/doc/theory/theory.smiles.html]

7. O'Boyle NM, Morley C, Hutchison GR: Pybel: a Python wrapper
for the OpenBabel cheminformatics toolkit. Chem Cent | 2008,
2:5.

8. Kosata B: OASA. [http://bkchem.zirael.org/oasa en.html].

9. Raymond ES: The Art of UNIX Programming 2003 [http://www.catb.org/
~esr/writings/taoup/index.html]. Reading, MA: Addison-Wesley

10. Symyx CTfile formats [http://www.mdli.com/downloads/public/
ctfile/ctfile.jsp]

I1. KNIME - Konstanz Information Miner [http://knime.org]

12. SWIG v.1.3.36 [http://www.swig.org]

13. Ménard S: JPype. [http:/jpype.sf.net].

14. Boost.Python [http://www.boost.org/libs/python/doc/]

15. R development core team: R: A language and environment for
statistical computing. [http://www.R-project.org].

16. Irwin J], Shoichet BK: ZINC - A Free Database of Commercially
Available Compounds for Virtual Screening. | Chem Inf Model
2005, 45:177-182.

17. PubChem [http://pubchem.ncbi.nim.nih.gov/]

18. CACTVS Chemoinformatics Toolkit: Xemistry GmbH: Lah-
ntal, Germany. .

19. O'Boyle NM: Cinfony. [http:/cinfony.googlecode.com].

Publish with ChemistryCentral and every
scientist can read your work free of charge

“Open access provides opportunities to our
colleagues in other parts of the globe, by allowing
anyone to view the content free of charge.”

W. Jeffery Hurst, The Hershey Company.

e available free of charge to the entire scientific community

e peer reviewed and published immediately upon acceptance
e cited in PubMed and archived on PubMed Central

e yours — you keep the copyright

Submit your manuscript here: i
http://www.chemistrycentral.com/manuscript/ Chemist ry Central

Page 10 of 10

(page number not for citation purposes)

http://www.opensmiles.org
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18328109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18328109
http://bkchem.zirael.org/oasa_en.html
http://www.catb.org/~esr/writings/taoup/index.html
http://www.catb.org/~esr/writings/taoup/index.html
http://www.mdli.com/downloads/public/ctfile/ctfile.jsp
http://www.mdli.com/downloads/public/ctfile/ctfile.jsp
http://knime.org
http://www.swig.org
http://jpype.sf.net
http://www.boost.org/libs/python/doc/
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15667143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15667143
http://pubchem.ncbi.nlm.nih.gov/
http://cinfony.googlecode.com

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Common Application Programming Interface
	Interoperability
	Implementation
	pybel and jybel
	cdkjpype and cdkjython
	rdkit

	Dependency handling

	Results
	Cinfony API
	Using Cinfony to combine toolkits

	Performance
	Comparison of toolkits

	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

