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Abstract

This paper examines and compares the �nite sample performance of
the existing tests for sample selection bias, especially under the multi-
collinearity problem pointed out by Nawata (1993). The results show
that under such multicollinearity problem, (i) the t-test for sample se-
lection bias based on the Heckman and Greene variance estimator can be
unreliable; (ii) the standard t-test (Heckman 1979) and the asymptotically
e¢ cient Lagrange multiplier test (Melino 1982) have correct size but very
little power; (iii) however, the likelihood ratio test following the maximum
likelihood estimation remains powerful.
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1 Introduction

Sample selection models are widely used in economics (e.g. labour economics).
For these models, testing for sample selection bias (H0 : � = 0) is always
important, since the model can be estimated easily without taking the selection
bias into account.
Recently Nawata & McAleer (2001) investigated the tests for sample selec-

tion bias in Maximum Likelihood (ML) context. They compared the empirical
size of the Lagrange multiplier (LM) test, the Likelihood Ratio (LR) test, and
the Wald test. They found that the Wald test tends to be oversized severely,
and the LM test often yields negative value when the multicollinearity problem
pointed out by Nawata (1993) is severe. On the other hand, the empirical size
of the LR test is much better than those, even though the LR test tends to
be slightly oversized for small sample. However, their investigation for testing
sample selection bias is limited and incomplete.
Firstly, the LM test statistics that often took negative value in Nawata

& McAleer (2001) were computed based on the �information matrix� being
estimated by the Hessian matrix. However, the past research has shown that
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the LM test statistic based on the asymptotically e¢ cient estimator for the
information matrix has better �nite sample performance (Orme(1990), Chesher
& Spady (1991)). Melino (1982) proposed the asymptotically e¢ cient LM test,
which is always numerically positive, and conjectured that it has an optimal
property in testing sample selection bias. Also, as the standard t-test for sample
selection bias proposed by Heckman (1979) is very similar to this asymptotically
e¢ cient LM test, Melino recommended to use this standard t-test.
Secondly, As Olsen (1980) shows that unlike maximum likelihood estimator,

Heckman two-step estimation is consistent when errors in structural equation
are non-normal, as long as its conditional expectation upon errors in selection
equation is linear. If the asymptotically e¢ cient LM test performs as good as
the LR test, the latter is less attractive since the full ML estimation required
in the LR test is much more computationally expensive and more restrictive in
terms of distributional assumptions.
Thirdly, Nawata & McAleer (2001) only investigated the size of the tests

for sample selection bias, however, power properties are an equally (or more)
important issue, under the multicollinearity problem. There is some evidence
that the standard t-test for selectivity bias has very little power under such
multicollinearity problem; see Leung & Yu (1996). If the asymptotically e¢ -
cient LM test has correct size, the only advantage of the LR test following the
full ML estimation would be that the LR test should have more power than
the asymptotically e¢ cient LM test, particularly under the multicollinearity
problem.
The plan of this paper is as follows. The model and estimation methods are

described in Section 2. Various tests for sample selection bias are described in
Section 3. The design and the results of Monte Carlo simulation are discussed
in Section 4. An empirical example is given in Section 5. Finally, Section 6
contains some concluding remarks.

2 The model and estimation

Consider the model

y�1i = x01i�1 + u1i (1)

y2i = x02i�2 + u2i (2)

y1i = I(y�1i > 0), i = 1; :::; n

where (y�1i;x
0
1i; y2i;x

0
2i) 2 R1�Rk1�R1�Rk2 are independently and identically

distributed (iid), x01i and x
0
2i are strictly exogenous, I(A) is an indicator func-

tion, where as I(A) is one if A is true, and zero otherwise. y�1i is not observable,
only its sign. (y2i;x02i) is observed only when y1i = 1. We de�ne n1 being the
number of positive observations of y�1i. Initially we assume that (u1; u2) have a
bivariate normal distribution�

u1
u2

�
� N

�
0;

�
1 ��2
��2 �22

��
,

where � is correlation coe¢ cient �12=�2 with �12 being covariance of u1 and u2,
without loss of generality.1

1When we assume that the variance of u1i is �21; �1 = �
�
1=�1 and �

�
1 is not identi�able.
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2.1 Heckman two-step estimation

The conditional expectation of y2i conditional upon x1i;x2i, and y�1i > 0 is

E (y2ijx1i;x2i; y1i = 1) = x02i�2 + E (u2ijx1i;x2i; y1i = 1)

so that
y2i = x

0
2i�2 + E (u2ijx1i;x2i; y1i = 1) + "2i

where "2i = y2i� E (y2ijx1i;x2i; y1i = 1). By the properties of the bivariate
normal distribution,

E (u2ijx1i;x2i; y1i = 1) = ��2E (u1ijx1i;x2i; y1i = 1) .

Noting that y�1i > 0 implies u1i > �x01i�1,

E (u1ijx1i;x2i; u1i > �x01i�1) = �i with �i =
�(�x01i�1)

1� �(�x01i�1)
=
�(x01i�1)

�(x01i�1)
,

where �(c) = (2�)
�1=2

e�c
2=2 is the standard normal density and �(c) is its

cumulative distribution function. Therefore,

y2i = x
0
2i�2 + ��2�i + "2i, (3)

where �i = �(x01i�1)=�(x
0
1i�1). This result leads to Heckman�s (1976) two-step

estimation method. Firstly, �1 is estimated by the probit ML method to obtain
��1, then the �i of (3) is replaced by ��i = �(x

0
1i
��1)=�(x

0
1
��1), and obtain

y2i = �z
0
2i
2 + v2i (4)

where �z2i = (x02i;
��i)

0 and 
2 = (�02; ��2)
0. Secondly, (4) is estimated by the

ordinary least square (OLS) method to obtain 
̂2 = (�̂
0
2;d��2)0.

For later usage, stacking (4) for all i, we have

y2 = �Z2
2 + v2.

The Heckman-Greene consistent variance estimator (Heckman (1979) and Greene
(1981)), which take the estimation e¤ects and heteroskedasticity of v2i into ac-
count, is

�VHG = �̂
2
2

�
�Z02�Z2

��1 h�Z02 �In1 � �̂2�̂� �Z2 + �̂2�Z02�̂X1

�
n�Vp

��1
X0
1�̂�Z2

i �
�Z02�Z2

��1
(5)

where �̂22 = �̂2v2 +
b�� (d��2)2 with �̂2v2 = n�11

Pn1
i=1 v̂

2
2i,
b�� = n�11

Pn1
i=1 �̂i, �̂i =

��i
�
��i + x

0
1i
��1
�
, �Z2 =

�
X2; ��

�
with X2 = (x21; :::;x2n1)

0 and �� = (��1; :::; ��n1)
0,

�̂2 = (d��2)2 =�̂22, �̂ = diag(�̂i), X1 = (x11; :::;x1n1)
0, and �Vp is any consistent

estimator for the asymptotic variance of the score of probit ML.
Olsen (1980) shows that the bivariate normality assumption can be relaxed

to the assumption of normality of u1 and the linearity of the conditional expec-
tation of u2 upon u1. Thus, unlike maximum likelihood estimator, the Heckman
two-step estimation is consistent when u2 has non-normal distribution, as long
as the conditional expectation of u2 given u1 is linear.
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Nawata (1993, 1994) shows that under certain conditions2 the Heckman
(1979) two-step estimator can su¤er from a multicollinearity between the in-
verse Mill�s ratio ��i and x2i in the augmented structural equation, due to its
construction. On the other hand, Nawata (1994), Nawata and Nagase (1996)
show that the full ML estimator is robust to such multicollinearity problem, and
can produce more reliable estimator in the same circumstances. Hereafter, we
call this �the multicollinearity problem�.

2.2 The scanning maximum likelihood estimation

The log-likelihood of the model (1) and (2) is

ln(�) =
nX
i=1

li(�),

li(�) = (1� y1i) ln [1� �1i]
+yi1 fln� (gi)� ln�2 + ln�(hi)g

where � = (�01;�
0
2; �2; �)

0, �1i = �(x01i�1), gi =
�
x01i�1 +

�
�2
u2i

�
=
�
1� �2

�1=2
,

and hi = u2i=�2.
Olsen (1982) shows that the maximum likelihood function is not globally

concave in �, however, given a value of � it is globally concave in (�01;�
0
2; �2)

0,
because after deleting all columns and rows involving partials with respect to
�, the Hessian matrix is negative semi-de�nite (Olsen 1982 p.238).
Nawata (1994, 1995) points out; 1) when j�j is close to unity the full maxi-

mum likelihood estimation does not converge; 2) because of the potential exis-
tence of local maxima, the estimation result may not be correct even if the proce-
dure converges. Then, Nawata (1994) proposes a scanning Maximum likelihood
method; see Nawata (1994) for details. Basically one obtains ML estimator for
�01;�

0
2; �2 using each value of � varying from 0 to 0.99 (resp. -0.99), increasing

(resp. decreasing) by 0.01, and �nd the value of � which maximises the log-
likelihood with associated ML estimators. By this method, as the log-likelihood
function is continuous in �, the neighbourhood of the global maximum is always
found when the model is correctly speci�ed. Nawata and Nagase (1996) shows
that in terms of mean square errors, the Nawata�s MLE outperforms Heckman
two-step estimator, especially when the multicollinearity problem exists.
Given the superiority of Nawata�s scanning ML estimation method to con-

ventional ML estimation method, we adopt it and �ML�signi�es scanning ML,
hereafter.

3 Tests for sample selection bias, H0 : � = 0

The test for � = 0 is important, since the model can be estimated easily without
taking the selection bias into account. We review the tests particularly referring
to the multicollinearity problem.

2Leung & Yu (2000) point out that there are two conditions to satisfy in order for the
Heckman two-step estimation method to su¤er from the multicollinearity problem pointed
out by Nawata (1993), and Leung & Yu (2000) criticise Nawata (1993) for his Monte Carlo
design �xing one of these conditions and exagerate the possibility of the multicollinearity
problem.
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First of all, we can use the t-test for � = 0 following Heckman two-step
estimation, based on the Heckman-Greene heteroskedastic variance estimator
de�ned by (5),

tHG =
d��2q�
�VHG

�
�

(6)

where
�
�VHG

�
�
is the bottom-right diagonal element of �VHG.

As Heckman (1979) discusses, under the null hypothesis the variance of 
̂1
can be consistently estimated by �VHG0 = �̂2v2(

�Z0�Z)�1. Then, we can use the
conventional t-test statistic for � = 0 in the regression of y2i on �Z (Heckman
1979, p.158-9). We de�ne this t-test as

t1 =
d��2q�
�VHG0

�
�

(7)

where
�
�VHG0

�
�
is the bottom-right element of �VHG0. For the Monte Carlo

simulation below, the squared t-test statistics, t2HG and t
2
1 are used, so that the

results are directly comparable to other tests.
Nawata & McAleer (2001) compare the �nite sample behaviour of the Wald

test, the LR test, and the LM test for � = 0 following the maximum likelihood
estimation. They use the negative Hessian matrix as the variance estimator
of the restricted and unrestricted score. Then, they �nd that; 1) under no
multicollinearity problem, the LR test and the LM test perform adequately; 2)
under the multicollinearity problem, the LR test performs adequately but the
LM test perform badly (almost half of the LM test statistics in their experiments
were negative3); 3) the Wald test tends to reject the null too often, and such
tendency gets worse under the multicollinearity problem.
Before examining their results, we de�ne the test statistics for � = 0. Firstly

the Wald test statistic is

Wald =
~�2

n~I�
(8)

under the null hypothesis, where ~I� is the bottom-right element of the inverse
of the average information matrix estimator, In(~�)�1, evaluated at the unre-
stricted ML estimator, ~� = (~�

0
1;
~�
0
2; ~�2; ~�).

4

The likelihood ratio test statistic is de�ned as

LR = 2

nX
i=1

�
li(~�)�li(��)

�
(9)

where �� = (��
0
1;
��
0
2; ��2; 0)

0 is the restricted maximum likelihood estimator, where
��
0
1 is the probit ML estimator of (1), ��

0
2 and ��2 are OLS estimator from re-

gressing y2 on X2.

3 In their experiments, the LM test accepts the null too often, because they accept the null
hypothesis whenever the LM test statistic is negative. Their decision rule is to �reject the null
hypothesis if the test statistic is larger than the critical value (Nawata and McAleer (2001,
p.110)�.

4 In our simulation, he negative average Hessian matrix estimator for In(�) is used.
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Now let us consider the Lagrange multiplier test. Under the null hypothesis,
it is easily seen that the score indicator for � = 0 is

@li(�)

@�

����
�=0

= y1i�
�1
2 �iu2i.

This basically tests the �omitted variable��i in the structural equation, and it
is the same test indicator as that of the t1 for � = 0 in the Heckman two-step
model. The LM test statistic for � = 0 is

LM =
1

n

@
Pn

i=1 li(
��)

@�0

�
In(��)

��1 @Pn
i=1 li(

��)

@�

where In(��) is any asymptotically valid average information matrix estimator
evaluated at ��.
There are various consistent estimators for In(��). Firstly, we can use an

average negative Hessian matrix, evaluated at the null hypothesis � = 0 as
Nawata & McAleer (2001) do. In their experiments this estimator often pro-
duces negative variance estimates, causing negative value of LM . Next, an
average of outer product of gradients (OPG) estimator is another option, how-
ever, it is well-known that it is not a good estimator (Orme (1990), Chesher &
Spady (1991)). Thirdly, the asymptotically e¢ cient estimator is also a choice,
and which is known to perform much better than OPG. From Melino (1982),
the information matrix evaluated at � = 0 is always positive de�nite matrix.
Also, it can be shown easily that the LM using this information matrix is
u02�

�
�0MX2

�
��1

�0u2=�
2
2 and the asymptotically e¢ cient LM test statistic can

be de�ned as

LMAE =
�u02��

�
��
0
MX2

��
��1
2

���u2

��22
(10)

where �u2 is the OLS residual vector obtained by regressing y2 on just X2, and
�̂22 = �u02�u2=n1. As can be seen, if we replace the denominator of LMAE , ��2,
with �̂2v2 , which is de�ned just below the (5), we have t

2
1. As LMAE is expected

to have optimal properties (Melino 1982), it is recommended to use t1 to test for
� = 0 (Heckman 1979, Melino 1982). In this paper t1 and LMAE are separately
treated, in order to emphasise that the LMAE is the better choice than the LM
test statistic used in Nawata and McAleer (2001).
However, it is easily seen that under the multicollinearity problem, t1 and

LMAE will lack power, because the variance estimator of d�2� in�ates due to�
�0MX2

�
��1

being nearly singular/zero. Indeed, there is evidence that this
e¢ cient t1 lacks the power under the multicollinearity problem stated above.
Leung & Yu (1996) show this lack of power in their limited simulation result
(Leung & Yu (1996), Table 7, p.215), and by using the results of Mroz (1987).
Now, the following question arises: how to test � = 0 under the multi-

collinearity problem? Nawata & McAleer (2001) are only interested in the
empirical size of the Wald, the LR and the LM test, and do not investigate the
empirical power of these tests. However, as discussed above, the power proper-
ties of these tests are of great interest. In addition, the LR and the Wald test
utilise the information under the alternative, where the ML estimation appears
less a¤ected by the multicollinearity problem. Therefore, the LR and the Wald
test may be powerful under the multicollinearity problem.
The �nite sample performance of these tests are considered next.
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4 Monte Carlo design and results

The �nite sample performance of the tests t2HG, t
2
1, LMAE , LR, and Wald

de�ned by (6), (7), (10), (9), and (8) is examined. All tests are assumed to
tend to �21 distribution under the null hypothesis, and hypothesis testing is
conducted accordingly. As the �nite sample behaviour of the tests especially
under the multicollinearity problem is of interest, the experimental design from
Nawata (1993) is adopted.

4.1 Design

Consider a DGP corresponding to (1) and (2)

y�1i = �1 + x1i�1 + u1i

y2i = �2 + x2i�2 + u2i

y1i = I(y�1i > 0); i; :::; n

where x1i and x2i are scalars. To control the multicollinearity, we draw x1i and
x2i such that

x1i � iidU(0; 20)

z2i � iidU(0; 20)

x2i =
�0x1i + (1� �0)z2ip

�20 + (1� �0)2
,

where iidU(0; 20) denotes iid uniform random variables over 0 to 20. The corre-
lation coe¢ cient between x1i and x2i is � = �0p

�20+(1��0)2
and �0 = 0:0; 0:5; 0:8,

and 1:0 (or � = 0:00; 0:71; 0:97; 1:00) are considered. To control �, u1i and u2i
are drawn such that

u1i � iidN(0; 1)

u2i =
�2 [�0u1i + (1� �0)�2i]p

�20 + (1� �0)2
, (11)

where �2 is drawn from i) iidN (0; 1); ii)
�
iid�2(2)� 2

�
=2, to see how the ML

method is robust to non-normality, even they are not justi�ed. The correlation
coe¢ cient between u1i and u2i is � =

�0p
�20+(1��0)2

, and �0 = 0:0; 0:2; 0:4; 0:6; 0:8

(or � = 0:00; 0:24; 0:55; 0:83; 0:97) are considered. Also �2 is set to 10. As �0
increases, the multicollinearity problem becomes severer.
We set �1 = �1 and �1 = 0:1, �2 = �10 and �2 = 1. Also under this

design, the degree of censoring is maintained around 50%.
The number of replications is 5000 for each experiment.5 The sample size is

also set to N = 200 and 400.
Note that t2HG and Wald can be negative. We reject the null hypothesis in

such case, and report the proportion to the number of replications.

5All computations were performed using Gauss 6.0 for Windows (Aptech Systems Inc.,
2004).
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4.2 Results

Table 1a shows the size (�0 = 0:0) and the power (�0 = 0:2; 0:4; 0:6; 0:8) of
the tests varying �0 to control the degree of multicollinearity problem, under
bivariate normal errors. First of all the rejection frequencies of t21 and LMAE

are very similar across the experiments, but the former is always slightly larger
than the latter. Size of t21, and LMAE is correct across the experiments. When
N = 200, LR tends to overreject the null slightly, giving the rejection frequencies
between 6:36% and 7:38%, but LR has correct size when N = 400. Wald rejects
the null far too often even when there is no multicollinearity problem at all,
�0 = 0, which is consistent to Table 4 of Nawata and McAleer (2001). The size of
t2HG is correct for �0 = 0:0; 0:5; 0:8, but when �0 = 1:0, t

2
HG becomes unreliable,

rejecting the null too often. From Table 1b, 4.48% of t2HG in the replications
are rejected due to negative t2HG when N = 200. Even when subtracting 4.48
from 13.62, 9: 14% of t2HG is rejected purely because the test statistics exceeded
the critical values. When N = 400, t2HG tends to overreject the null, but with
less negative statistics.
As conjectured, the power of t21 and LMAE reduces substantially as the

multicollinearity problem becomes severer. When N = 200 and �0 = 1:0, t21
and LMAE exhibit almost no power even when �0 = 0:8. On the other hand,
LR maintains the power, even when �0 = 1:0. For example, when �0 = 0:6
and N = 400, the rejection frequency of LR is 61.80%, while that of LMAE is
7.14%. Wald seems to have power even when �0 = 1:0, however, it can produce
negative test statistic, especially when N is small (here 200), and the value of
� is high. In addition, as the size of Wald is heavily distorted, Wald is not
recommended to be used.
[Table 1a about here]
[Table 1b about here]
Of course, the LR test is justi�ed only when the ML estimation is valid. Table

2a shows the size of the tests when we relax the bivariate normal assumption,
by drawing �2i in (11) from the standardised �22 distribution. Although t

2
HG,

t21, and LMAE show similar rejection frequencies to that of Table 1a, the size of
LR and Wald are more than 90%.
Given these �nite sample evidence, an empirical example is illustrated next.
[Table 2a about here] [Table 2b about here]

5 An empirical example

In this section, we provide an empirical example to illustrate the importance of
our previous discussion. The example is based on the famous Mroz�s (1987) data
set, which contains earnings statistics of 753 white married women extracted
from the 1976 Panel Study of Income Dynamics (PSID). In the selected data
set, 428 women are working. We focus on the determinants of the wage, following
Mroz (1987), or a part of the exercise 6(b), chapter 11 of Berndt (1991). Data
set are available from the accompanied diskette of Berndt (1991). We use 17
regressors: constant, KL6, KL618, WA, WE, WA2, WE2, WAWE, WA3, WE3,
WA2WE, WAWE2, WFED, WMED, UN, CIT, and PRIN; see the appendix for
descriptions of these variables. In the context of model (1) and (2), y1i = 1 if
a woman works and 0 otherwise. y2i is natural logarithm of the woman�s wage
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rate, called LWW, if she works. The same set of regressors are used for the
selection equation and the structural equation.
[Table 3 about here][Table 4 about here]
Table 3 shows the estimation results of structural equation only. The ad-

justed R2 of the regression of ��i on all regressors is 0:979, which shows the
multicollinearity problem is very severe, and the Heckman two-step estimation
result may be unreliable. The Nawata�s scanning maximum likelihood estima-
tion yields ~� = �0:8 with the value of the log-likelihood being �872:3384.6
Table 4 shows the tests for sample selection bias. As our analysis predicts,

the standard t-test and the asymptotically e¢ cient LM test fail to reject the null
of no sample selection bias. The t-test based on the Heckman-Greene variance
estimator also fail to reject the null hypothesis. Re�ecting the tendency of
the Wald test to reject the null too much, the value of the Wald test statistic is
extremely high. Finally the LR test rejects the null hypothesis at 1% signi�cance
level. Therefore, under this model speci�cation, there is strong evidence of
existence of selection bias.7

6 Concluding remarks

Sample selection models are widely used in economics (e.g. labour economics).
For these models, testing for sample selection bias is always important, since the
model can be estimated easily without taking the selection bias into account.
This paper examined and compared the �nite sample performance of the

existing tests for sample selection bias, especially under the multicollinearity
problem pointed out by Nawata (1993). The results show that under such
multicollinearity problem; (i) the t-test for sample selection bias based on the
Heckman-Greene variance estimator can be unreliable; (ii) the standard t-test
for selectivity bias and the asymptotically e¢ cient Lagrange multiplier test
(Heckman 1979, Melino 1982) has correct size but very little power, which is
consistent to the results of Leung & Yu (1996), however; (iii) the likelihood ratio
test following the full maximum likelihood estimation remains powerful, even
when the standard t-test and the asymptotically e¢ cient Lagrange multiplier
test exhibit no power; (iv) the Wald test is very unreliable for all circumstances,
and should not be used, which is consistent to the results of Nawata and McAleer
(2001).
The empirical example, which is shown in section 5, illustrated the impor-

tance of using the likelihood ratio test for sample selection bias under the mul-
ticollinearity problem. The standard t-test, the t-test based on the Heckman-
Greene variance estimator and the asymptotically e¢ cient Lagrange multiplier
test all fail to reject the null of no sample selection bias, on the other hand, the
likelihood ratio test rejects the null soundly. The Wald test also rejects the null,
but its test result is unreliable.

6The maximum likelihood estimation procedure of Stata 8.0 stopped at �̂ = 0.075 with the
value of the log-likelihood being �876:7991, which is a local maximum.

7 It may be worth noting that if x1i includes some variables in x2i or variables highly
correlated with those in x2i, given that �

�
�x01i�1

�
is a non-linear function of x1i, �

�
�x01i�1

�
may pick up any non-linear terms omitted in (2), such as a non-linear function of women�s
working experience here, and �

�
�x01i�1

�
could be signi�cant even though there may be no

selection bias. See Maddala (1983), p.269-270.
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The cost of using the likelihood ratio test are the imposition of bivariate
normal assumption on the model, and the expensive computation. The standard
t-test and asymptotically e¢ cient Lagrange multiplier test are valid when errors
in the structural equation are non-normal, as long as its conditional expectation
upon errors in selection equation is linear (Olsen (1980)). Therefore, in general,
the standard t-test procedure proposed by Heckman (1979) and Melino (1982)
is recommended. When the maximum likelihood estimation is justi�ed, the
likelihood ratio test should be the choice, particularly under the multicollinearity
problem.
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Appendix
The variables used in the empirical example section

LWW woman�s logarithm of estimated wage
KL6 number of kids less than 6 years old
KL618 number of kids between 6-18 years old
WA woman�s age in years
WE woman�s years of schooling
WA2 WA squared
WE2 WE squared
WAWE WA�WE
WA3 WA cubed
WE3 WE cubed
WA2WE WA2�WE
WAWE2 WA�WE2
WFED woman�s farther�s years of schooling
WMED woman�s mother�s years of schooling
UN unemployment rate in county of residence
CIT 1 if she lives in SMSA
PRIN (family income - wage�hours)/1000

11



Table 1a
Size and power of the tests for � = 0 at 5% level

N = 200 N = 400
�0n�0 0.0 0.5 0.8 1.0 0.0 0.5 0.8 1.0

t2HG
0.0 5.22 4.74 5.36 13.62 5.02 4.40 5.20 9.60
0.2 11.02 8.14 5.62 13.42 19.88 13.72 6.48 9.78
0.4 45.54 27.96 8.22 13.48 75.96 51.14 12.92 10.68
0.6 90.50 68.46 15.42 14.06 99.74 93.82 27.14 12.04
0.8 99.30 91.02 23.50 15.08 100.00 99.64 43.50 14.42

t21
0.0 6.00 5.30 5.14 5.42 5.28 4.58 5.04 5.46
0.2 12.42 9.16 5.46 5.22 20.56 14.32 6.44 5.40
0.4 48.28 29.48 8.16 5.00 76.58 51.94 12.66 6.14
0.6 91.44 70.38 15.20 5.64 99.78 93.96 26.96 7.32
0.8 99.34 91.66 22.94 6.52 100.00 99.68 43.40 8.78

LMAE

0.0 5.82 5.18 5.08 5.34 5.22 4.52 4.98 5.40
0.2 12.16 9.02 5.38 5.16 20.44 14.26 6.36 5.28
0.4 47.90 29.22 8.04 4.92 76.50 51.72 12.54 6.14
0.6 91.26 70.12 15.00 5.52 99.78 93.92 26.82 7.14
0.8 99.34 91.52 22.68 6.48 100.00 99.68 43.18 8.74

LR
0.0 6.36 6.62 7.38 7.08 5.24 5.18 5.98 5.46
0.2 13.12 10.30 7.88 7.54 21.04 14.42 7.16 6.42
0.4 51.42 33.36 12.24 10.74 78.92 56.32 17.62 12.36
0.6 95.92 85.10 46.42 37.30 99.92 98.00 73.12 61.80
0.8 100.00 99.86 97.22 95.82 100.00 100.00 99.92 99.88

Wald
0.0 12.68 20.02 42.56 48.52 7.88 11.64 36.10 43.44
0.2 21.54 25.86 43.36 49.56 26.32 24.62 38.98 45.86
0.4 63.84 55.10 54.26 58.26 83.84 69.24 57.70 59.42
0.6 97.90 94.38 85.98 85.64 99.98 99.28 95.08 93.72
0.8 100.00 100.00 99.82 99.64 100.00 100.00 100.00 100.00
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Table 1b
Rejection rate due to negative statistics

N = 200 N = 400
�0n�0 0.0 0.5 0.8 1.0 0.0 0.5 0.8 1.0

t2HG
0.0 0.00 0.00 0.00 4.48 0.00 0.00 0.00 0.50
0.2 0.00 0.00 0.00 4.20 0.00 0.00 0.00 0.62
0.4 0.00 0.00 0.00 4.14 0.00 0.00 0.00 0.70
0.6 0.00 0.00 0.00 4.34 0.00 0.00 0.00 0.96
0.8 0.00 0.00 0.00 4.88 0.00 0.00 0.00 1.36

Wald
0.0 0.00 0.04 0.08 0.08 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.06 0.14 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.02 0.10 0.00 0.00 0.00 0.00
0.6 0.26 0.22 0.36 0.42 0.00 0.00 0.02 0.02
0.8 9.90 9.76 8.20 7.82 1.00 0.98 0.72 0.74

Notes: Figures are computed as

�
The number of negative statistics in the replications

The number of replications

�
�

100.

Table 2a
Size of the tests under non-normal errors
of the structural equation: iid

�
�22 � 2

�
=2

N = 200; �0 = 0:0
�0 0.0 0.5 0.8 1.0

t2HG 4.38 4.62 6.08 13.92
t21 5.28 5.36 5.90 5.14
LM 5.12 5.18 5.86 5.04
LR 91.56 96.58 99.96 100.00
Wald 95.30 98.52 99.96 100.00

Table 2b
Rejection rate due to negative statistics

N = 200; �0 = 0:0
�0 0.0 0.5 0.8 1.0

t2HG 0.00 0.00 0.00 4.74
Wald 87.66 79.92 85.40 99.22
Notes: see notes to Table 1b.
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Table 3
Estimation results by Heckman two-step method and Nawata�s scanning

maximum likelihood method
Heckman two-step Nawata�s ML

Estimates Standard errors Estimates Standard errors
constant -3.24850 (13.77500) 8.19215 (11.63580)
KL6 -0.43228 (0.39578) 0.21624 (0.10569)
KL618 -0.06862 (0.04292) -0.01939 (0.03278)
WA 0.40627 (0.66249) -0.14703 (0.55151)
WE -0.47387 (1.53412) -1.26841 (1.45407)
WA2 -0.01180 (0.01293) -0.00146 (0.01074)
WE2 -0.00555 (0.08393) 0.02994 (0.08065)
WAWE 0.02302 (0.03334) 0.03939 (0.03207)
WA3 0.00007 (0.00009) 0.00001 (0.00008)
WE3 0.00206 (0.00183) 0.00139 (0.00179)
WA2WE 0.00010 (0.00027) 0.00001 (0.00027)
WAWE2 -0.00131 (0.00072) -0.00169 (0.00066)
WFED -0.02108 (0.01410) -0.01270 (0.01300)
WMED -0.00740 (0.01381) -0.00979 (0.01362)
UN -0.00534 (0.01300) 0.00347 (0.01207)
CIT 0.09248 (0.08165) 0.07473 (0.07971)
PRIN -0.00583 (0.01033) 0.00981 (0.00376)
��2 0.62905 (0.78086) � �
� 0.78746 � -0.80000 (0.05406)
�2 0.79883 � 0.80258 (0.04342)

Table 4
Test results for sample selection bias

Statistic p-value
t2HG 0.649 [0.4205]
t21 0.652 [0.4195]
LM 0.679 [0.4099]
LR 8.981 [0.0027]
Wald 219.029 [0.0000]
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