
Towards Lensfield: data management, processing and semantic publication
for vernacular e-science

Nick Day, Jim Downing, Lezan Hawizy, Nico Adams and Peter Murray-Rust
Unilever Centre for Molecular Science Informatics, University of Cambridge, CB2 1EW, UK.

ned24@cam.ac.uk

Abstract

Lensfield is a desktop and filesystem-based tool

designed as a “personal data management assistant”
for the scientist. It combines distributed version control
(DVCS), software transaction memory (STM) and
linked open data (LOD) publishing to create a novel
data management, processing and publication tool.
The application “just looks after” these technologies
for the scientist, providing simple interfaces for typical
uses. It is built with Clojure and includes macros
which define steps in a common workflow. Functions
and Java libraries provide facilities for automatic
processing of data which is ultimately published as
RDF in a web application. The progress of data
processing is tracked by a fine-grained data structure
that can be serialized to disk, with the potential to
include manual steps and programmatic interrupts in
largely automated processes through seamless
resumption. Flexibility in operation and minimizing
barriers to adoption are major design features.

1. Introduction

Reuse of scientific data is central to much of
eScience. However, most of the data produced by
individual researchers and groups is never made
publicly available, and is eventually lost. Where data
is made available, effective sharing is often prevented
by lack of common resource discovery mechanisms,
and by format interoperability issues. These problems
are not unique to science, but also apply to, for
example, census data, library catalogues,
encyclopædias etc. “Linked Data” describes a set of
semantic technologies that can be used to publish,
discover and combine data on the world wide web in
an interoperable way. When combined with open
licenses / arrangements[1] as “Linked Open Data”
(LOD), we believe it has great potential to deliver the
same benefits to scientific data. However, a researcher

must surmount considerable technological barriers to
publish LOD. Our goal in this work was to develop a
tool to make the preparation and publication of LOD
painless and straightforward for researchers.

The first incarnation of our tool was a middleware
that allowed researchers to manually or
programmatically upload their data to a server for
“semantification”, the process of converting data into
the triple-based RDF standard required for LOD. The
tool therefore abstracted the semantic web
technologies, but still required the researcher to write
programs that dealt with URLs as references and
interacted with persistent storage through a network
API. This proved clumsy for researchers to deal with
during iterative, day-to-day work.

Whilst working on this first incarnation, we
observed the working habits of a range of
chemoinformaticians, and it became clear that there
was also an opportunity to assist in the preparation and
handling of data. While several “big science” domains
have built large automated data infrastructures, much,
perhaps most, science is in the “long tail”, in common
with chemoinformatics. This is characterized by small
groups with little formal computing and informatics
expertise running on local machines.

In this paper, we present a set of pragmatic
requirements derived from this early experience,
explain how some modern technologies present novel
opportunities in data management, and explain how we
are combining these into Lensfield, the latest
incarnation of our LOD tool.

Lensfield has four main areas of functionality: -
• Data management
• Data production description
• Process automation
• LOD publication

1.1 Computational chemistry as an archetype

We have piloted Lensfield in a number of

chemistry-related domains, and some of these are

described throughout this paper. One of our first pilot
applications was in computational chemistry.
CompChem can predict the properties and behavior of
a very wide range of substances and processes and is
frequently used in preference to experiment.
Calculations can be precisely defined through
parameterization and are reproducible across
institutions and codes. It represents one of the largest
users of computing in chemistry, yet most jobs are
submitted manually and the results are also analysed
manually. Billions of cpu hours are used each year to
create results which are expensive and could be shared
but almost none of this work is made available to the
community for re-use; the same calculations are
probably re-run many times. As members of the
European COST D37 Semantics and Workflow Group
we are developing standards and tools to automate
workflow and are piloting Lensfield with several
groups.

A typical CompChem project could involve many
thousands of molecules (as *.cml files) run with a
range of parameters (“parameter sweep”). Jobs are
created as (say) *.gin files for all combinations and
submitted asynchronously to Gaussian03 program on
distributed computing resources (clusters, clouds, etc.).
The jobs return after seconds, or hours or days
(depending on size, rate of convergence, etc.) as *.g03
(output) files and as resources become freed more jobs
are submitted. Not infrequently jobs crash and need re-
running. The scientist needs someone to keep track of
these jobs and “remember where she has got to”. The
*.g03 files are converted to *.cml (using a specific
“JUMBO-converter”[2] – see section on JUMBO-
Converters, below) which is further converted to RDF
for LOD publishing and also to *.html and *.png for
conventional web pages.

2. Design Requirements

In looking for design approaches we have been

influenced in spirit by the “Principled Design” of Roy
Fielding and Richard Taylor [3]. We take their
seminal work on REST and abstract those fundamental
ways of thinking that lead to successful modern shared
systems.

 In order to minimize the barriers to a researcher
using a tool it must work in their own familiar
environment. Taking this “vernacular” approach to
design we arrived at the following functional and non-
functional requirements for Lensfield:
Desktop based: must work on the researchers’
workstation rather than through a client/server model.
Filesystem based: researchers most commonly use
folder and files to manage their data.

Focus on description before automation: researchers
use a wide range of tools and manual processes in data
preparation; limiting the availability of these would
hinder adoption of the tool. It is more important to
know the provenance of data than to have the
production of it fully automated.
Promote versioning best practice: in order to provide
reliable rollback to reprocess data, it is necessary to
hold versions of data and process (represented by
configuration files, programs, scripts etc) in parallel.
Work “The Wiki Way”: Users progress most quickly
when simple things are simple, and complex things are
possible[4]. Lensfield provides good out-of-the-box
functionality, sensible defaults and automatic
configuration for well-known program outputs.

3. Technology

In most modern software development, the
strengths and weaknesses of an application are driven
by the strengths and weaknesses of the underlying
technologies. Lensfield’s supporting technologies were
carefully selected to make it as simple as possible to
develop a system that meets the requirements described
above.

3.1 Mercurial

In order to enable rollback to previous versions of
processing code and data, some form of revision
control is needed. Revision control is well understood,
with a wide range of mature implementations; it would
be senseless to reinvent this functionality without very
good cause. Lensfield interacts with the Mercurial
Source Control Management (SCM) system to provide
simple, lightweight revision control. Mercurial works
as a Distributed Version Control System (DVCS), an
approach which has several useful benefits when
applied to research data management in Lensfield. In a
DVCS, there is no central, authoritative copy of the
code (or “repository”) that working copies must act as
satellites to. DVCS systems enable sets of changes to
be extracted from any repository and applied to
another, and keep track of a full history of all the
changes that have been applied. This brings a great
deal of flexibility in how networks of repositories can
be arranged, and is most effective when such an
arrangement mirrors natural social patterns of data
sharing. DVCS also allows a repository to participate
in several networks. For example, a researcher might
work on a Lensfield project on their workstation and
send incremental changes to a server for backup. As
the project progresses, they might collaborate with a
colleague, exchanging changes as they improve the

processing and data. Later still, they might wish to
work with a wider community by creating a copy of
their repository on a public server.

3.2 Clojure

A number of factors contributed to the selection of
Clojure[5][6] as the programming language for
Lensfield’s implementation. The chemoinformatics
community has developed a rich set of software
libraries, primarily in the Java programming language
(e.g. JUMBO-Converters, CDK[7]). To leverage these
libraries most effectively we needed a language with
strong Java interoperability for Lensfield. Clojure
programs compile directly to Java bytecode and can
call Java classes directly, without any intermediate
interfaces or proxies.

The trend towards increasing CPU count and cores
per CPU rather than increasing clock speeds means
that applications of all types increasingly have to rely
on concurrency for performance. Functional languages
are perhaps the most promising alternative for writing
concurrent applications as they avoid the difficulties
inherent in managing concurrent access to mutable
state. Clojure takes a pragmatic view, encouraging the
use of pure functions whilst allowing controlled
mutation of state through Software Transactional
Memory[8]. Lensfield’s build execution makes use of
Clojure References[8]. These allow safe concurrent
mutation of state using a similar paradigm to database
transactions: changes to References are guaranteed
atomic, consistent and isolated (although not durable,
since the state is purely held in RAM, c.f. ACID[9]).

As Clojure is a dialect of LISP it provides a
powerful macro system. Whilst the benefits of macros
can be achieved in many programming languages, our
experience in Lensfield is that they provide an
extremely efficient way of abstracting implementation
complexity from users.

3.3 Sesame

For LOD to be truly usable, one needs to be able to
query and retrieve it. Whilst documents containing
RDF data can be made available as simple file-like
web resources, the most utility comes from exposing a
“SPARQL Endpoint” for users to query. SPARQL is
the standard query language of the semantic web, and
comes with a standard protocol for making queries and
returning query results[10]. Lensfield uses Sesame
(Java Open Source RDF store) to provide RDF
indexing and SPARQL language support.

3.4 JUMBO-Converters

Over this decade we have developed software thay
converts legacy documents to CML, originally
legacy2cml and now JUMBOConverters. These have
been designed to be side-effect-free black boxes with
normally one input and one output. These are strongly
typed, and can be linked into chains with information
being converted to and from CML. Besides being used
for creating CML from legacy they are also capable of
creating program input (since most computational
programs have non-semantic input).

4. Architecture

Fig. 1 shows an overall view of Lensfield’s
architecture, showing the version control, build and
publication elements. Rather than take a structure-
based approach to explain architectural features in
Lensfield, this section does so by describing an
archetypal project that uses Lensfield; the processing
and visualization of output files from the Gaussian03
program. The explanation assumes that Lensfield is
already installed on the users system – Lensfield’s
build, distribution and installation are in development
and will be the subject of a future publication.

Figure 1 Architecture diagram for Lensfield.

The project is initialized by creating a folder on the
file-system, as illustrated below:

> lensfield.sh init 
Initialised! 

This sets up an idiomatic file structure, and primes

the mercurial version control by initializing the folder
as a (mercurial) repository, adding the basic files to

this repository and instructing mercurial to ignore
those files it is unnecessary to keep track of. It also
generates a minimal build.clj (further described
below).
The researcher would then begin the process of
assembling their data files and describing their data
processing in build.clj. From time to time the
researcher can use lf-snapshot to create a rollback
point in the project.

> lensfield.sh snapshot 
Would you like to commit/ignore the 
following files? 
./data/gau/n0001.g03 (c/i) 

The philosophy of Lensfield is to provide convenient
shorthands for interactions with the enabling
technologies, rather than limiting the user to a simple
abstraction. In the case of lf-snapshot, Lensfield
helps the user through the process of making sure all
files are either added to version control or else ignored,
and then commits these as a change set to the mercurial
repository. If the researcher is familiar with mercurial,
they are free to interact with the repository directly;
this will not interfere with Lensfield’s operation.
Similarly, if the user has a backup server configured,
they can run lf-backup, which simply pushes their
changes to a remote server, creating the remote
repository if necessary.

>> lensfield.sh backup 
Project backup completed! 

Despite this simplicity, these two functions provide a
snapshot, backup and hence enable rollback and
recovery of data processing projects.

4.1 Lensfield Components

Lensfield is designed to hide most of the

complexity from the user. It contains and manages a
mercurial repository and a sesame RDF engine.
Lensfield (middle layer) provides generic macros (such
as source and product) and functions such as template-
match. The build.clj are specific to each project and
may call additional custom programs (in Java or
Python).

Figure 2 Layer cake of the technologies that comprise
Lensfield.

4.2 Lensfield Build Description

Lensfield uses a software build paradigm for data
processing; rather than describe the process
imperatively with control flow (loops, conditionals
etc.), the focus is on describing data artifacts, and the
relationships between them (Fig. 3). [The examples
and figures in this section describe a typical build for
CompChem.]

Figure 3 A build dependency chain.

In this way a Lensfield build is similar to those

provided by common build tools such as make and
Ant, which allow the specification of a target from a
set of dependencies. These relationships may represent
the artifacts being produced from a computational
process, or by a manual process (e.g. manual
adjustment of parameters / algorithm selection etc).
This is an important principle as it values the recording
of the provenance of the data produced over
comprehensive automation. The build.clj file for
the data build represented in Fig. 4 is shown in Fig. 5:

Figure 4 Directed acyclic graph showing data
conversion flow and build dependencies in a Lensfield
build.

gaussian‐archive‐to‐cml  is a function call to a
g03toCml JUMBOConverter with a single input and
output – many workflows will have a different
converter for each step (see Fig. 5). Lensfield comes
out-of-the box with many JC’s, which are a mixture of
generic transformation and (currently) chemical-format
interconversions.

Figure 5 Example Lensfield build.clj file.

The build is represented as a directed acyclic graph
of a source and a series of products. Through
Clojure’s macro feature Lensfield encapsulates the
implementation efficiently – users solely focus on
describing relationships and Lensfield expands these to
form an appropriate execution strategy, without
requiring the overhead of a Domain Specific Language
or a configuration file and parser.

The build structure and principle of description still
allow extensive data processing automation. Lensfield
executes a build by expanding the build.clj file to
a series of functions that must be run to complete the

build. These are placed into a data structure that is
updated as the build proceeds (Fig. 6), adding logging
information and updating status. This build structure
can be serialized to enable automatic checkpointing.

Figure 6 Description of how a Lensfield build
structure is built up.

Lensfield stores the incremental build structure in a
Clojure STM Reference[8], as explained in section 2.2,
which allows a range of concurrent execution strategies
safely and simply.

As the build structure may be serialized at any
point during execution, it is possible for partial builds
to be run. This is necessary if any manual steps have
been defined in the build.clj. Upon resumption,
Lensfield is able to read in the saved build structure
and resume from the point that execution stopped.

Figure 7 Description of how a Lensfield build may be
resumed after pausing.

After Lensfield has analysed all the dependencies
and determined that no further work is to be done the
RDF files are packaged to a standard Java web archive
file (WAR - Java web archive files bundle the
configuration, resources and programs needed for a full
web application into a single, deployable file) file
which may be independently deployed to a Java
webserver.

Figure 8 Description of how a Lensfield build may be
resumed after pausing.

At any stage the build structure represents the state
and history of the system; therefore the final build
structure is the full data provenance for that run.

5. Further Lensfield Examples

We have created Lensfield builds to describe the
processing in ongoing projects at the Unilever Centre.
The build.clj file shown below describes the steps
necessary to convert CIF files (standard
crystallography interchange format) on a file-system
into RDF, a process used in both CrystalEye[11] and
C3DeR[12].

Figure 9 An example Lensfield build.clj for
converting a standard crystallographic format into
RDF.

As described earlier, the source data for a Lensfield
build need not come directly from a file-system, but
may come from an external source. For instance,
Lensfield contains supplemental‐file‐crawler

which extracts supplementary data from published
chemistry article from several major publishers. In the
example below, the function will start a web-crawler
that searches the latest issue of Nature Chemistry[13]
and returns any CIF files that are found. If the source
in Fig. 8 was replaced with this, then this would give a
Lensfield build that created RDF for all
crystallographic data found in the latest issue of Nature
Chemistry.

Figure 10 A source step for scraping crystallographic
data from Nature Chemistry.

6. Conclusion

Lensfield’s attraction for the scientist is based on
the following:
Principled design leading to low barriers to adoption.
The success of REST in creating a community of
practice has inspired us to design Lensfield for easy
and rapid adoption before over other considerations.
The users we aim at have a low tolerance of
complexity and demands on maintenance, but
appreciate systems which can be run and run
repeatedly. Lensfield is designed as a scientist’s
amanuensis which understands a few simple
commands and looks after the rest.
DVCS making good data practise easy. Data
management is science is often a nightmare, which
traditional backup systems do little to solve.
Researchers frequently create different versions of
work and “forget where they have put them”. Lensfield
can explore the archaeology of a project, for example
in recreating the thought processes that went into
tuning the parameters of a calculation
Recording build progress. Lensfield records the build
at the granularity of each independent “arrow” step.
This trivially allows resuming on the same machine,
but also the project directory can be picked up and run
in a different environment. An example is running a
small number of test jobs before transferring to a more
powerful system. Lensfield also supports the
interjection of processes not under build.clj control
such as the results of physical experimental
experiments. If, for example, a researcher wishes to
compare measurements with computation the lab data
can be labeled as a dependency for a downstream
process which will be able to be run when the data has
been entered.
Easy publication of LOD from e-science. The
packaging mechanism allows a complete project to be

tailored for publication and distributed to the
appropriate server. It also can act as a deposition into
the scholarly publishing process and ultimately trusted
digital repositories.

7. References

[1] Guide to Open Data Licensing, The Open Knowledge
Foundation Wiki, http://wiki.okfn.org/OpenDataLicensing,
accessed on 2009-08-07.

[2] P. Murray-Rust, H. S. Rzepa and M. Wright,
“Development of Chemical Markup Language (CML) as a
system for handling complex chemical content”, New. J.
Chem., 2001, 25, pp. 618-634.

[3] R. T. Fielding and R. N. Taylor, “Principled design of the
modern web architecture”, ACM Transactions on Internet
Technology, 2 (2), 2002, pp. 115-150.

[4] B. Leuf and W. Cunningham, The Wiki Way: Quick
Collaboration on the Web, Addison Wesley, 23 April 2001.

[5] R. Hickey, “The Clojure programming language”,
Proceedings of the 2008 symposium on Dynamic language,
2008.

[6] Clojure homepage, http://clojure.org/, accessed on 2009-
08-07.

[7] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttman
and E. Willighagen, “The Chemistry Development Kit
(CDK): An Open-Source Java Library for Chemo- and
Bioinformatics”, J. Chem. Inf. Comput. Sci., 2003, 43 (2), pp.
493-500.

[8] Clojure Refs and Transactions, http://clojure.org/refs,
accessed on 2009-08-07.

[9] A. Reuter and T. Haerder, “Principles of Transaction-
Oriented Database Recovery”, ACM Computing Surveys, 15
(4), pp. 287-317.

[10] SPARQL Protocol for RDF, http://www.w3.org/TR/rdf-
sparql-protocol/, accessed on 2009-08-07.

[11] CrystalEye, http://wwmm.ch.cam.ac.uk/crystaleye/,
accessed on 2009-08-07

[12] Cambridge Chemistry Department Crystallographic
Repository,
http://wwmm.ch.cam.ac.uk/projects/C3DeR/index.html,
accessed on 2009-08-07.

[13] Nature Chemistry homepage,
http://www.nature.com/nchem/index.html, accessed on 2009-
08-07.

