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Background: 

 

Genome-wide association studies have identified multiple genetic variants 

associated with prostate cancer (PrCa) risk which explain a substantial 

proportion of familial relative risk. These variants can be used to stratify 

individuals by their risk of PrCa. 

 

Methods: 

 

We genotyped 25 PrCa susceptibility loci in 40,414 individuals and derived a 

polygenic risk score (PRS). We estimated empirical Odds Ratios for PrCa 

associated with different risk strata defined by PRS and derived age-specific 

absolute risks of developing PrCa by PRS stratum and family history.  

 

Results: 
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The PrCa risk for men in the top 1% of the PRS distribution was 30.6 (95% CI 

16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI 3.2-5.5) 

fold compared with the median risk. The absolute risk of PrCa by age 85 was 

65.8% for a man with family history in the top 1% of the PRS distribution, 

compared with 3.7% for a man in the bottom 1%. The PRS was only weakly 

correlated with serum PSA level (correlation=0.09). 

 

Conclusions: 

 

Risk profiling can identify men at substantially increased or reduced risk of 

PrCa. The effect size, measured by OR per unit PRS, was higher in men at 

younger ages and in men with family history of PrCa. Incorporating additional 

newly identified loci into a PRS should improve the predictive value of risk 

profiles.  

 

Impact: 

 

We demonstrate that the risk profiling based on SNPs can identify men at 

substantially increased or reduced risk that could have useful implications for 

targeted prevention and screening programs.  

 

Introduction 
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Genome-wide association studies (GWAS) have identified multiple common genetic 

variants associated with prostate cancer (PrCa) risk. The risks associated with such 

variants are generally modest, but in combination their effects may be substantial, 

and may provide the basis of targeted prevention (1). However, since the risks 

associated with these variants are modest, large studies are required to estimate 

their risks precisely. To facilitate this estimation, we genotyped 25 PrCa susceptibility 

SNPs in studies from the PRACTICAL consortium. PRACTICAL is an international 

PrCa consortium that includes more than 78 studies, including men of European, 

Asian or African ancestry, and has a combined dataset of over 130,000 samples 

(http://practical.ccge.medschl.cam.ac.uk/). In the current analysis, we utilised data 

from 31,833 cases and controls from 24 studies in PRACTICAL and 8,581 samples 

from replication stage of a GWAS (“GWAS stage 3”). Sixteen out of the twenty five 

SNPs that we used in this study were identified through studies that included PRACTICAL 

(2-4) and nine SNPs were identified by other GWAS (5-10). 

 

Materials and Methods 

 

Samples 

The current analysis was restricted to individuals of European ancestry, based on 

self-reported ethnicity, and thus we excluded samples with non-European ancestry. 

Data were contributed from 25 studies in PRACTICAL and GWAS stage 3. Twenty 

five SNPs were genotyped specifically for this analysis in 31,833 cases and controls 

in PRACTICAL phase III, unless the genotype data were already available. We also 

included four studies from the GWAS stage 3 conducted in the United Kingdom and 

Australia, comprising a further 8,581 cases and controls (11). In this replication 
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stage 1,536 SNPs were genotyped, including the 25 susceptibility SNPs analysed 

here. These two datasets were combined to give a total of 40,414 samples (20,288 

cases and 20,126 controls). Three studies (MCCS, PFCS and UKGPCS) that were 

included in the GWAS stage 3 also contributed genotyping of additional samples for 

PRACTICAL phase III (Table1, Supplementary Table 1 and Supplementary Notes). 

Studies provided a minimum core dataset that included disease status, age at 

diagnosis/observation and ethnicity. Twenty two studies provided data on family 

history and eighteen studies provided data on Gleason score. 

 

Where studied included more than one individual from the same family, only the 

index case was included, so that the analyses were based on unrelated men. For 

analyses of the polygenic risk score (PRS) we also excluded 5 studies (MAYO, 

PCFS, TASPRAC, ULM and UTAH) that oversampled cases with family history of 

PrCa. This reduced the total number of samples to 34,986 (16,643 cases and 

18,343 controls). All studies were approved by the relevant ethics committees. 

 

Eighty Nine percent (31,150) of the samples had information on age at diagnosis 

(interview/blood draw for controls). The mean age at diagnosis for the cases was 64 

years, slightly higher than the mean age at interview/blood draw for the controls (58 

years; Supplementary Table 2a). Family history information was available for 21,209 

(60.6%) samples and among samples with family history information, 10.7% of 

controls and 18.2% of cases had a family history of PrCa. Before excluding studies 

with oversampled familial cases, these percentages were 12.9% and 22.6% 

respectively (Supplementary Table 2a and b).  
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Genotyping 

 

Genotyping was performed in two experiments; these were subject to separate QC 

procedures appropriate to the platforms used, before the data were combined for 

statistical analysis. In PRACTICAL phase III, genotyping of samples from 2 studies 

was performed by Sequenom, while 22 study sites performed the 5’exonuclease 

assay (Taqman™) using the ABI Prism 7900HT sequence detection system 

according to the manufacturer’s instructions. Primers and probes were supplied 

directly by Applied Biosystems as Assays-By-Design™. Assays at all sites included 

at least four negative controls and 2-5% duplicates on each 384-well plate. Quality 

control guidelines were followed by all the participating groups as previously 

described (4). In addition, all sites also genotyped 16 CEPH samples.  We excluded 

individuals that were not typed for at least 80% of the SNPs attempted. Data on a 

given SNP for a given site were also excluded if they failed any of the following QC 

criteria: SNP call rate >95%, no deviation from Hardy-Weinberg equilibrium in 

controls at P<.00001; <2% discordance between genotypes in duplicate samples 

and in the CEPH control samples. Cluster plots for SNPs that were close to failing 

any of the QC criteria were re-examined centrally. 

 

GWAS Stage 3 genotypes were generated using an Illumina Golden Gate Assay. All 

SNPs for this analysis passed the QC filters used for this experiment:  call rate>95%, 

a minor allele frequency in controls of >1%, or genotype frequency in controls 

consistent with Hardy-Weinberg equilibrium at p<0.00001. Duplicate concordance 

was 99.99% (11). 
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Statistical methods 

 

We used combined data across all studies for the analysis. We assessed the 

association between each SNP and PrCa using a 1-degree-of-freedom Cochran-

Armitage trend test, stratified by studies. Odds ratios (OR) and 95% confidence 

intervals (95% CI) associated with each genotype and cancer risk, and genotypes 

for pairs of SNPs, were estimated using unconditional logistic regression, stratified 

by study as a covariate. Both per-allele ORs, and genotype-specific ORs, were 

estimated. Heterogeneity in the OR estimates among studies was evaluated using a 

likelihood ratio test, by comparing with a model in which separate ORs were 

estimated for each study. 

 

Modification of the ORs by disease aggressiveness and family history was assessed 

by using both family history (Yes vs. No) and Gleason score (<8 vs. ≥8) as binary 

variables. A test for association between SNP genotype at a locus and Gleason 

score as an ordinal variable was also performed, using polytomous regression. 

Modification of the ORs by age was assessed using a case-only analysis, assessing 

the association between age and SNP genotype in the cases using polytomous 

regression. The associations between SNP genotypes and PSA level were 

assessed using linear regression, after log-transformation of PSA level to correct for 

skewness. 

 

Contribution to Familial Risk  
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The contribution of the known SNPs to the familial risk of PrCa, under a multiplicative 

model, was computed using the formula: 

 

where  is the observed familial risk to first degree relatives of PrCa cases, assumed to 

be 2 (12), and  is the familial relative risk due to locus k, given by: 

 

where is the frequency of the risk allele for locus k,  and is the estimated 

per-allele odds ratio (13). 

 

To evaluate evidence for interactions between pairs of SNPs, we used a likelihood 

ratio test and evaluated the evidence for departures from a multiplicative model, by 

comparing models with and a model without the interaction term for each pair of 

SNPs. The interaction term was the product of the allele doses for the two SNPs, 

hence leading to a 1 degree of freedom test for an interaction. Based on the 

assumption of a log-additive model, we constructed a PRS from the summed 

genotypes weighted by the estimated per-allele log-odds ratios for each SNP, as 

estimated by logistic regression as above. Thus for each individual j we derived: 

Where: 
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ijg : Allele dose at SNP i (0, 1, 2) for individual j 

i : Per-allele log-odds ratio of SNP i   

 

The missing genotypes for an individual were replaced with the mean genotype of 

each SNP separately for cases and controls. A sensitivity analysis, in which 

analyses were based on samples with complete genotype data, gave very similar 

results (data not shown). We then standardised the PRS by dividing by the overall 

standard deviation of PRS in the controls.  

 

The risk of PrCa was estimated for the percentiles of the distribution of the PRS; 

<1%, 1-10%, 10-25%, 25-75% (defined here as “median risk”), 75-90%, 90-99%, 

>99%; and per standard deviation when fitted as a continuous covariate. We 

evaluated the fit of the combined risk score to a log-linear model by comparing the 

model with the PRS fit as a continuous covariate with a model in which separate 

parameters were estimated for percentiles of risk adjusted for age at diagnosis and 

family history, using a likelihood ratio test. 

 

We used a likelihood ratio test to evaluate the evidence for interaction between PRS 

and age at diagnosis/observation, PRS and family history and also family history and 

age at diagnosis/observation by comparing models with and a model without an 

interaction term. Effect sizes by family history were compared using a case-only 

analysis. Analyses were performed using Stata 13. 

 

The relative risk estimates were used to obtain estimates of the absolute risk of PrCa 

by PRS category and family history. Since we observed evidence for an interaction 
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between PRS and age, we used both models with and without PRS x age interaction 

term. Absolute risks were constrained such that the age-specific incidences, 

averaged over all categories of PRS and family history, were consistent with the age-

specific incidences of PrCa for the UK population for 2012 (http://ci5.iarc.fr/CI5plus) 

(14). The model was adjusted for age at diagnosis (age <55, 55-59, 60-64, 65-70 

and 70+). The procedure for deriving the age-specific incidences for each SNP 

profile category has been performed following the procedure explained by Antoniou 

et al. (15, 16), but adjusted to allow for competing causes of death. 

 

For this purpose, we categorised PRS into seven risk groups (k=risk group 1 to 7), 

based on the percentile in the controls: <1%, 1-10%, 10-25%, 25-75%, 75-90%, 90-

99% and >99%. We could not find any evidence for an interaction between PRS and 

family history of PrCa (P-value=0.49) and assumed that family history and PRS are 

independently predictive of PrCa risk. Under this model, the PrCa incidence at 

age t for an individual in risk group k and family history group h (h=1 with family 

history, h=0 no family history) was assumed to follow a model of the form:

)exp()()( 0

h
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category (h=0, k=1), approximated by the odds ratio estimates from the logistic 

regression analysis. To obtain the baseline incidence, , we constrained the PrCa 
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Here is the probability of having no family history in the population (89.26% in the 

controls in this dataset) and 𝑝1 = 1 − 𝑝0 is the probability of having family history in 

the population (10.74% in the controls in this dataset). is frequency of the SNP 

profile risk group k ( =0.01, =0.09, =0.15, =0.5, =0.15, =0.09, 

=0.01) and  is the probability of surviving PrCa by age (t) in the risk group k for 

samples in the family history group h, which can be derived from incidence rates 

for ages <t using the formula ))1(exp()(
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for all k and h, it was possible to solve the above equation recursively, starting at 

age t=0, to obtain the baseline incidences and hence the age-specific PrCa 
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and the PrCa death incidence per 100,000 individuals in UK in year 2012 (14). 
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Results 

 

All 25 SNPs showed evidence of association with PrCa (P=0.02 to P=1.4x10-46), with 

effect sizes that were consistent with previous reports. The largest per-allele OR 

estimate was 1.56 (95% CI 1.44-1.68) for rs16901979 on 8q24 (Table 2). For each 

of the 24 autosomal SNPs, the effect size was larger for rare homozygotes than for 

heterozygotes, and the estimates were consistent with a multiplicative (log-additive) 

model. There was no evidence for heterogeneity among studies (Table 2).  

 

Gleason score was available for 15,107 (74.5%) of the cases used in the analyses; 

of these, 2,139 had a score of 8+ and 12,968 had a score less than 8. One SNP, 

rs1447295, on chromosome 8, showed a larger effect size with increasing grade 

(P=0.001), while four SNPs (rs17021918, rs1512268, rs7127900 and rs2735839) 

showed a larger effect sizes with decreasing grade (P<0.02; Supplementary Table 

3). 

 

Thirteen of the SNPs (rs1465618, rs7679673, rs10486567, rs1447295, rs6983267, 

rs16901979, rs10993994, rs7931342, rs7127900, rs4430796, rs11649743, 

rs1859962 and rs5759167) showed a higher per-allele OR for cases with a PrCa 

family history than those without (P<0.05), while no SNPs showed an effect in the 

opposite direction consistent with the predictions under a polygenic model (17) 

(Supplementary Table 3). 

 

Data on serum PSA level were available for 3,922 controls from 6 studies. Six SNPs 

(rs1447295, rs6983267, rs1512268, rs10993994, rs7127900 and rs2735839) 
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showed association with PSA concentration levels significant at P-value < 0.03. 

rs1447295 showed an association with PSA in the opposite direction of the PrCa risk 

association but the rest of five SNPs showed an association with PSA in the same 

direction of the PrCa risk association (Supplementary Table 4).  

 

Seven SNPs (rs1465618, rs12621278, rs10993994, rs7127900, rs1859962, 

rs2735839 and rs5945619) showed an evidence for a trend in the per-allele ORs 

with age; in each case the effect size was larger for cases diagnosed at younger 

ages (Supplementary Table 5). 

  

The combined effect of all pairs of SNPs was evaluated through a logistic regression 

model that included each pair of SNPs and an interaction term.  The interaction term 

was significant at P-value <0.05 level for 29 pairs (out of 300 possible pairs) 

compared with 15 expected by chance, and significant at the P-value <0.01 level for 

12 pairs compared with 3 expected by chance. However, no pair was significant at 

the P-value <0.05 level after a bonferroni correction for the number of tests (nominal 

significance P-value=1.6x10-4, Supplementary Table 6).  

 

Under the assumption that these 25 SNPs combined approximately multiplicatively 

to alter the risk of PrCa, we constructed a PRS for 16,643 cases and 18,343 controls 

based on the estimated per-allele ORs of 25 SNPs, standardised by the standard 

deviation in controls. The standardised PRS had a mean=0.651 (range -3.81-5.36; 

SD=0.98) in cases and mean=0.104 (range -4.05-4.15; SD=1) in controls.  The 

standardised PRS was strongly associated with disease risk (OR per unit PRS 

=1.74, 95%CI 1.70-1.78). The OR per unit increase of the standardised PRS 
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declined with age from 1.76 (95% CI 1.62-1.92) in cases diagnosed at age less than 

55 to 1.48 (95% CI 1.37-1.60) in cases diagnosed at age 70+ (P-value= 2.6x10-4, 

Supplementary Table 5). 

 

The OR per unit increase of PRS was larger for men with PrCa family history (1.79 

Vs 1.70; P-value= 1.8x10-4, Supplementary Table 3). We found no evidence of an 

interaction between PRS and family history (P-value=0.49) or between age at 

diagnosis and family history (P-value=0.11) but there was some evidence for an 

interaction between PRS and age at diagnosis (P-value=0.003). 

 

There was no evidence of a difference in the OR per unit PRS according to Gleason 

Score (OR=1.75, GS<8 Vs OR=1.65, GS 8+) after adjusting for age at diagnosis and 

family history (P=0.37; Supplementary Table 3). The correlation between PSA and 

the PRS was weak, both in controls (correlation=0.09) and in cases (correlation 

=0.02).  

 

When PRS was categorised by percentile, the top 1% of the population had an 

estimated OR of 30.6 (16.4-57.3) compared with the bottom 1% of the population, 

and an OR of 4.2 (95%CI 3.2-5.5) compared with the median population risk 

(defined as the 25-75% risk group). The bottom 1% of the population had an 

estimated OR of 0.14 (95% CI 0.08-0.24) compared with the median risk (Table 3). 

After allowing for an interaction between PRS and age, the OR for the top 1% of the 

population, relative to the median risk group, decreased from 5.6, for men below age 

<55 years, to 3.8 for men aged 70+ years (Supplementary Table 7 & 8).There was 

no difference between fit of the model with a continuous covariate for PRS and the 
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model with separate parameters for percentiles of the PRS (P=0.24). In particular, 

the predicted ORs for the top 1% and the bottom 1% of the population, based on a 

log-linear model, did not differ from that observed. 

 

To estimate the absolute risk of PrCa for different risk groups defined by the 

combined genotypes at the 25 PrCa susceptibility loci, we fitted a logistic regression 

model that It included parameters for PRS (in 7 categories) together with family 

history of PrCa once with (Supplementary Table 7) and once without a PRS x age at 

diagnosis interaction term (Table 3). We used both models (adjusted for age at 

diagnosis and family history) in order to estimate effect sizes for PRS. Then we used 

the UK age-specific incidences of PrCa (0 to 85+ years) (14) to estimate age-specific 

absolute risks of PrCa in the general population after considering competing causes 

of death for fourteen risk groups defined by PRS and family history (seven PRS risk 

groups and two family history, see methods). Based on this analysis, the absolute 

risk of PrCa by age 85 for a man in the top 1% of the risk distribution with family 

history of PrCa was 65.8% (67.1% in a model not allowing for interaction) and for a 

man in the lowest 1% was 3.65% (3.67% in a model not allowing for  interaction). 

The absolute risk for a man in the top 1% of the risk distribution with no family 

history of PrCa was 35.0% (36.1% in a model not allowing for interaction) and 1.46% 

(1.47% in a model not allowing for interaction) for someone in the lowest 1%. By 

comparison, the estimated absolute risk for a man in the 25-75% category was 

10.2% in the absence of a family history of PrCa, and 23.7% for a man with family 

history (Figure 1 & 2, Supplementary Figure 1 & 2).  

 

Discussion 
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These results demonstrate that risk profiling based on SNPs can identify men at 

substantially increased or reduced risk of PrCa. We derived a PRS based on a sum 

of SNP genotypes, weighted by their per-allele log ORs. The estimated ORs for the 

highest and lowest 1% of the population (4.2 and 0.14, respectively) were consistent 

with those predicted under a simple polygenic model in which the log OR increases 

linearly with the PRS.  We also showed that the effect size, measured by OR per 

unit PRS, was higher at younger ages. As expected, the majority of loci, and the 

PRS, showed a stronger effect for familial cases. In a logistic regression model, both 

PRS and family history were independently associated with PrCa risk. The OR due 

to family history was attenuated after adjustment for the PRS (from 2.63 to 2.50), as 

expected given that family history is, at least in part, a reflection of genetic 

susceptibility. However, the degree of attenuation (5% on a log-scale) was markedly 

less than 18%, the estimated contribution of these 25 loci  to the familial risk of PrCa 

estimated based on their ORs and allele frequencies in this study (see methods). 

The reason for this difference is unclear but might reflect interactions between the 

known susceptibility loci summarised in the PRS and other factors influencing family 

history.  

 

In order to investigate the added value of PRS, once we estimated the absolute risk 

for individuals with family history without fitting their PRS information and then 

repeated the same procedure after adding their PRS information. The absolute risk 

of PrCa for a man at age 85 with family history was estimated to be 26.5% when 

PRS information was ignored. When we incorporated PRS information, a man at age 

85 ,depend on his PRS risk group, could have an absolute risk ranging from 3.67% 
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(if a man is in the bottom 1% of the risk distribution) to 67.1% (if a man is in the top 

1% of the risk distribution, Supplementary Figure 1 and 3). These observations 

indicate that family history and the PRS independently influence risk and can be 

combined to provide stronger discrimination. 

 

Chatterjee et al. derived theoretical estimates for the predictive performance of 

polygenic models for ten complex traits or common diseases, including PrCa, using 

published estimates for individual SNPs (18). They estimated that ~7% of the 

population will be at two-fold risk or greater for PrCa. We estimated, empirically, that 

the (average) risk to men in the 90-99% category of the PRS was 2.41 fold, relative 

to the population median, or approximately 2 fold relative to the population mean. 

However, this is an average risk over the 90-99% category, so that the percentile of 

the PRS at which the risk exceeds 2 fold will be >90%. Based on the estimated 

log(OR) per standardised PRS, approximately 6% of men will have a risk of greater 

than twofold, very close to the estimate of Chatterjee et al (18). 

 

These results show that genetic risk profiling using SNPs could be useful in defining 

men at high risk for the disease for targeted prevention and screening programs. 

The benefits of screening, relative to the costs, will be most favourable among men 

at higher risk. If, for example, the benefit-cost ratio is favourable for screening men 

at a greater than two-fold risk, the PRS provides an effective method for identifying 

such men. 

 

While these analyses demonstrate the value of SNPs for risk prediction, a risk model 

could be improved in various ways. The analyses presented here are based on the 
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25 loci first identified to be associated with PrCa. Recently, however, additional loci 

have been identified (13, 19) and more than 100 common susceptibility loci are now 

known. In total, these loci increase the estimated proportion of the familial risk to 

33% (19). Incorporating all known loci into a PRS should improve the predictive 

value of risk profiles.  

 

Additionally, the analyses presented here consider family history as a binary 

(yes/no) covariate. It is known that the risk of PrCa is dependent on both the number 

of affected relatives and their ages. MacInnis et al. (12, 20) have shown using 

segregation analysis that the familial aggregation of PrCa can be modelled as the 

combined effect of a recessive allele and a polygenic component, and that the 

polygenic component can be further partitioned into a component due to measured 

SNPs and an unmeasured component. This approach should provide more powerful 

prediction, particularly in families with multiple cases of the disease. Finally, it is 

known that serum or urine PSA level is associated with PrCa risk, with the 

association persisting for several decades. Although some of the risks SNPs are 

also related to PSA level in the expected direction, the PSA level is only weakly 

correlated with PRS, indicating that incorporating PSA level and potentially other 

markers such as MSMB (21) into a risk algorithm should further improve the 

discrimination (22). 

 

The absence of clear differences in the relative risk associated with SNPs by 

disease aggressiveness, even in this very large study, is striking. We did not find any 

convincing evidence for differences in the predictive values of the PRS by disease 
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aggressiveness. The effect size was higher for less aggressive disease, but the 

difference was still small (1.75 vs. 1.65). This result is in contrast to the clear 

differences in SNP associations by disease pathology seen in other diseases, for 

example in breast and ovarian cancer, and indicates that aggressive and non-

aggressive disease, at least as measured by Gleason score, share these genetic 

risk factors as a common aetiology.  

 

Analysis of pairwise combinations of SNPs did not identify any clear examples of 

departure from a multiplicative model, after adjusting for multiple testing. We did, 

however, find an excess of interactions at the P<0.01 level over the number that 

would be expected by chance. This suggests that interactions on this scale likely to 

exist, but their effect sizes are small and that very large sample sizes, exemplified by 

this collaborative study, will be required to identify and characterise them. If such 

interactions could be identified reliably, they may improve the predictive value of the 

risk profiling, and also provide insights into the biological interactions between the 

underlying risk variants. 
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Table 1: Total numbers of cases and controls used in the analyses        

        Study Controlsa Casesa Totala 

GWAS Stage 3  4,076 4,505 8,581 

PRACTICAL 16,050 15,783 31,833 

Total 20,126 20,288 40,414 

Totalb  18,343 16,643 34,986 

a
 Analyses were restricted to men of European ancestry (see text).  

b
Total after excluding 5 studies that oversampled cases with family history. 
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Table 2: Summary results of 25 SNPs using PRACTICAL and GWAS Stage 3 
datasets in European. 

 
Marker

a 

Chr/Nearby Gene 
 

 
Alleles

b 

Position
c 

 
MAF

d
 

 
Per allele

e
 OR 

(95%CI) 

 
Het OR

 e,f 

(95%CI) 

 
Hom OR

e,g 

(95%CI) 

 
P-value

h
 

 

 
P-value

i
 

 

rs721048 
2 / EHBP1 

C/T 
63131731 

0.18 1.11 
(1.07-1.16) 

1.09 
(1.04-1.15) 

1.32 
(1.17-1.48) 

9.8x10
-8

 0.13 

rs1465618 
2 / THADA 

G/A 
43553949 

0.2150 1.07 
(1.03-1.11) 

1.08 
(1.03-1.13) 

1.14 
(1.03-1.26) 

1.9x10
-4 

 
0.39 

rs12621278 
2 / ITGA6 

A/G 
173311553 

0.06 .75 
(.70-.80) 

.76 
(.71-.82) 

.38 
(.24-.58) 

4.9x10
-17

 0.57 

rs2660753 
3 / Unknown 

G/A 
87110674 

0.10 1.12 
(1.06-1.18) 

1.12 
(1.06-1.19) 

1.32 
(1.09-1.61) 

1.2x10
-5

 0.73 

rs17021918 
4 / PDLIM5 

G/A 
95562877 

0.35 .88 
(.85-.91) 

.86 
(.83-.90) 

.80 
(.74-.85) 

6.7x10
-15 

 
0.39 

rs12500426 
4 / PDLIM5 

G/T 
95514609 

0.46 1.10 
(1.06-1.13) 

1.11 
(1.06-1.18) 

1.20 
(1.12-1.28) 

4.8x10
-8

 0.54 

rs7679673 
4 / TET2 

C/A 
106061534 

0.40 .88 
(.85-.90) 

.87 
(.83-.91) 

.77 
(.72-.82) 

1.0x10
-16

 0.08 

rs9364554 
6 / SLC22A3 

C/T 
160833664 

0.29 1.10 
(1.06-1.14) 

1.12 
(1.07-1.18) 

1.18 
(1.09-1.27) 

4.8x10
-8 

 
0.85 

rs10486567 
7 / JAZF1 

G/A 
27976563 

0.23 .85 
(.82-.89) 

.86 
(.81-.91) 

.72 
(.63-.81) 

4.5x10
-12 

 
0.21 

rs6465657 
7 / LMTK2 

A/G 
97816327 

0.46 1.10 
(1.06-1.13) 

1.09 
(1.04-1.15) 

1.21 
(1.13-1.28) 

3.4x10
-9

 0.32 

rs1447295 
8 / Unknown 

G/T 
128485038 

0.11 1.41 
(1.35-1.48) 

1.41 
(1.34-1.49) 

2.01 
(1.69-2.41) 

1.4x10
-46

 0.50 

rs6983267 
8 / Unknown 

C/A 
128413305 

0.49 .82 
(.79-.85) 

.80 
(.76-.85) 

.67 
(.63-.72) 

2.3x10
-35 

 
0.61 

rs16901979 
8 / Unknown 

G/T 
128124916 

0.03 1.56 
(1.44-1.68) 

1.55 
(1.43-1.69) 

2.39 
(1.47-3.86) 

3.8x10
-28

 0.29 

rs2928679 
8 / SLC25A37 

C/T 
23438975 

0.48 1.04 
(1.01-1.07) 

1.03 
(.97-1.09) 

1.08 
(1.01-1.16) 

.02 0.10 

rs1512268 
8 / NKX3.1 

G/A 
23526463 

0.43 1.13 
(1.10-1.17) 

1.13 
(1.08-1.19) 

1.29 
(1.21-1.37) 

2.6x10
-16

 0.19 

rs4962416 
10 / CTBP2 

A/G 
126696872 

0.28 1.04 
(1.01-1.08) 

1.03 
(.98-1.08) 

1.11 
 (1.02-1.21) 

.02
 

0.68 

rs10993994 
10 / MSMB 

G/A 
51549496 

0.39 1.24 
(1.20-1.28) 

1.21 
(1.15-1.27) 

1.56 
(1.46-1.66) 

7.9x10
-41

 0.36 

rs7931342 
11 / Unknown 

C/A 
68994497 

0.50 .84 
(.81-.86) 

.86 
(.82-.91) 

.70 
(.65-.74) 

4.8x10
-27 

 
0.86 

rs7127900 
11 / Unknown 

G/A 
2233574 

0.19 1.23 
(1.18-1.28) 

1.24 
(1.18-1.30) 

1.47 
(1.32-1.65) 

6.3x10
-26

 0.63 

rs4430796 
17 / HNF1B 

A/G 
36098040 

0.48 .81 
(.79-.84) 

.81 
(.77-.85) 

.66 
(.62-.71) 

2.7x10
-38 

 
0.79 

rs11649743 
17 / HNF1B 

G/A 
36074979 

0.19 .88 
(.85-.92) 

.88 
(.83-.92) 

.79 
(.70-.90) 

5.6x10
-10 

 
0.25 

rs1859962 
17 / Unknown 

T/G 
69108753 

0.48 1.17 
(1.14-1.21) 

1.22 
(1.15-1.28) 

1.38 
(1.30-1.47) 

3.7x10
-24

 0.19 

rs2735839 
19 / KLK2/KLK3 

G/A 
51364623 

0.15 .81 
(.77-.85) 

.82 
(.78-.86) 

.62 
(.53-.73) 

1.1x10
-19

 0.06 

rs5759167 
22 / BIL/TTLL1 

G/T 
43500212 

0.50 .84 
(.82-.87) 

.83 
(.79-.87) 

.71 
(.67-.76) 

3.4x10
-28 

 
0.87 

rs5945619 
X / NUDT11 

T/C 
51241672 

0.36 1.13 
(1.10-1.16) 

- 1.28 
(1.22-1.35) 

1.9x10
-20

 0.10 

   



31 
 

a
dbSNP rs number, 

b
Major/minor allele, based on the frequencies in controls in PRACTICAL III data, 

c
Build 37 

position,
 d

 MAF in controls in combined European dataset. 
e
OR = odds ratio (minor allele) from a logistic 

regression using all European samples stratified by studies with no adjustment, 
f
OR in heterozygotes, relative to 

major allele homozygotes, 
g
OR in minor allele homozygotes, relative to major allele homozygotes, 

h
Cochran-

Armitage test for trend.
 i 
Heterogeneity P-value among studies 

 

 
Table 3: Odds ratios for PrCa by percentile of the PRS and family history.   

Percentiles OR
a,b 

OR
a,c

 

 

 

 

PRS Group  

< 1% 1       (baseline) 0.14 (0.08-0.24) 

1-10% 2.98 (1.66-5.35) 0.41 (0.36-0.47) 

10-25% 4.59 (2.58-8.17) 0.63 (0.57-0.70) 

25-75% 7.23 (4.08-12.80) 1      (baseline) 

75-90% 12.13 (6.83-21.54) 1.68 (1.54-1.83) 

90-99% 16.70 (9.38-29.72) 2.31 (2.09-2.56) 

>= 99%  30.63 (16.36-57.34) 4.24 (3.24-5.53) 

Family History 2.52 (2.29-2.78)
 

2.52 (2.29-2.78)
 

 

a
ORs obtained by fitting PRS group, family history and age at diagnosis jointly. 

b
ORs compared to men in the 1st percentile as baseline. 

c
ORs compared to men in the 25

th
-75

th
 percentile as baseline. 
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Figure Legend  

 

Figure 1: Absolute risk of PrCa by age in men with family history. 

 

Figure 2: Absolute risk of PrCa by age in men with no family history. 

 

 

 

 



Figure 1 



Figure 2 



 

Supplementary table 1: Total number of cases and controls in PRACTICAL III and 
GWAS stage 3 by population and study 
 

Study Ethnicity No. Study Acronym Study Design Controls
b 

Cases
b 

Total
b 

Age
c
 

 
 
 
 
 
 
 
PRACTICAL 

PIII 

 
 
 
 
 
 
 
 
 

European 

1 Aarhus       Case-Control 592 650 1,242 64 (36-88) 
2 BiPAS  Case-Control 88 176 264 69 (51-85) 
3, 4 CPCS 1 & 2 Case-Control

 
1,474 413 1,887 69 (50-94) 

5 ESTHER  Case-Control 329 330 659 66 (51-75) 
6 FHCRC  Case-Control 1,265 1,309 2,574 60 (35-74) 
7 HaPCS  Case-Control 485 499 984 66 (41-81) 
8 MAYO 

a
 Case-Control 527 884 1,411 65 (41-86) 

9 MCCS       Case-Control
d 

2,332 491 2,823 69 (50-85) 
10 MEC  Cohort Study

e 
396 448 844 59 (46-71) 

11 MOFFITT  Case-Control 372 702 1,074 69 (50-87) 
12 PCFS

a
             Case-Control

f
 82 76 158 65 (42-87) 

13 PCMUS  Case-Control 193 173 366 70 (47-90) 
14 Poland  Case-Control 572 574 1,146 68 (43-90) 
15 ProtecT  Case-Control

g 
2,194 2,204 4,398 63 (45-72) 

16 QLD  3 studies 
h 

1,394 1,346 2,740 63 (40-89) 
17 SFPCS (NC-CCPC) Case-Control 219 302 521 65 (44-80) 
18 TAMPERE  Case-Control 1,851 2,496 4,347 67 (37-95) 
19 TASPRAC

a
 Case-Control 337 492 829 62 (44-82) 

20 UKGPCS Case-Control 212 392 604 60 (36-85) 
21 ULM 

a
 Case-Control 379 702 1,081 64 (42-84) 

22 USC  Case-Control 295 488 783 68 (46-94) 
23 UTAH 

a
 Case-Control 240 466 706 67 (42-87) 

24 Valais  Case-Control 222 170 392 65 (49-84) 
Total 16,050 15,783 31,833 64 (35-95) 

 
 

GWAS 
stage 3 

 
European 

  MCCS       Case-Control
d 548 327 875 69 (49-85) 

 PCFS
b
             Case-Control

f 218 1,025 1,243 57 (41-87) 
25 SEARCH      Case-Control 1,365 1,450 2,815 63 (44-73) 
 UKGPCS  Case-Control 1,945 1,703 3,648 61 (36-85) 

Total 4,076 4,505 8,581 61 (36-87) 

 

Total European (PRACTICAL & GWAS stage 3) 20,126 20,288 40,414 64 (35-95) 
Total European (PRACTICAL & GWAS stage 3)  excluding familial studies 18,343 16,643 34,986 64 (35-95) 

 

a 
Studies that oversampled cases with family history. 

b 
The number of samples given here are those 

that were available for this analysis. These may differ from the numbers for the complete studies 
given in the Supplementary Notes. 

c 
Mean age at diagnosis for cases (min-max). 

d
 Nested case-

control. 
e 
Population-based prospective cohort study. 

f 
Population-based with cases from informative 

families. 
g 
PSA screening selected cases-controls. 

h 
One Cohort study, one hospital based and one 

prospective cohort study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Table 2: Data information for family history and age at 
diagnosis/observation 
   

(a): All samples excluding studies with familial design 

Samples Cases Controls Total 

Without family history 9,740 8,305 18,045 
With family history 2,165 999 3,164 
Total having information 11,905 9,304 21,209 
Missing family history information 4,738 9,039 13,777 
Total  16,643 18,343 34,986 
Family history information 71.53% 50.72% 60.62% 

Percentage of samples with family history among those 
having family history information 

18.19% 10.74% 14.92% 

Age at diagnosis/recruitment  16,503 14,647 31,150 
Mean age (range) 64 (35-95) 58.3 (18-99) 61.5 (18-99) 
Missing age information 140 3,696 3,836 
Total 16,643 18,343 34,986 

Percentage of samples with age information 99.16% 79.85% 89.04% 

(b): All samples 

Samples Cases Controls Total 

Without family history 11,940 9,451 21391 
With family history 3,486 1,397 4,883 
Total having information 15,426 10,848 26,274 
Missing family history information 4,862 9,278 14,140 
Total  20,288 20,126 40,414 
Family history information 76.04% 53.90% 65.01% 

Percentage of samples with family history among those 
having family history information 

22.60% 12.88% 18.58% 

Age at diagnosis/recruitment  20,137 16,262 36,399 
Mean age (range) 64 (35-95) 58.7 (18-99) 61.6 (18-99) 
Missing age information 151 3,864 4,015 
Total 20,288 20,126 40,414 

Percentage of samples with age information 99.26% 80.80% 90.07% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Supplementary Table 3: Grade-specific and family history-specific odds ratios. 
                               

a
 P-value for difference in per-allele OR between GS 8+ and GS <8

 

b
 P-value for trend in OR by Gleason score as an ordinal variable 

c
 P-value for difference in per-allele OR between Family History Yes and No

 

d
 Polygenic Risk Score adjusted for age at diagnosis and family history. For Family history, PRS 

adjusted for age at diagnosis (OR is based on per unit increase of PRS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable/ 
Marker 

 
GS < 8 

 
GS 8 + 

 
P

a
 

 
P

b
  

Family History (FH)  
P

c
 No Yes 

PRS
d
 1.75 (1.68-1.82) 1.65 (1.54-1.77) .37 NA 1.70 (1.64-1.76) 1.79 (1.63-1.96) 1.8x10

-4
 

rs721048  1.13 (1.08-1.18) 1.12 (1.02-1.23) .81 .96 1.09 (1.06-1.16) 1.11 (1.04-1.19) .06 

rs1465618  1.08 (.1.04-1.13) 1.00 (.92-1.09) .09 .22 1.07 (1.03-1.12) 1.13 (1.05-1.21) .02 

rs12621278  .76 (.70-.82) .75 (.64-.88) .79 1.00 .72 (.66-.78) .77 (.67-.88) .21 

rs2660753  1.12 (1.05-1.19) 1.05 (.94-1.18) .29 .82 1.15 (1.08-1.22) 1.07 (.98-1.18) .87 

rs17021918  .88 (.85-.91) .94 (.88-1.01) .03 .007 .87 (.84-.90) .92 (.86-.98) .21 

rs12500426  1.11 (1.07-1.15) 1.02 (.95-1.10) .05 .29 1.10 (1.06-1.14) 1.10 (1.03-1.18) .43 

rs7679673  .86 (.83-.89) .90 (.84-.97) .16 .15 .90 (.87-.93) .84 (.79-.89) 2.9x10
-5

 

rs9364554  1.11 (1.07-1.16) 1.03 (.95-1.12) .16 .60 1.08 (1.03-1.12) 1.18 (1.11-1.26) .15 

rs10486567 .83 (.79-.88) .81 (.73-.90) .79 .90 .87 (.83-.92) .80 (.73-.88) .01 

rs6465657  1.09 (1.05-1.13) 1.06 (.99-1.14) .64 .21 1.08 (1.04-1.12) 1.14 (1.07-1.21) .07 

rs1447295  1.41 (1.34-1.49) 1.48 (1.33-1.64) .64 .001 1.41 (1.33-1.49) 1.54 (1.42-1.68) 1.4x10
-6

 

rs6983267  .82 (.79-.85) .84 (.79-.91) .68 .85 .83(.80-.86) .79 (.75-.84) .003 

rs16901979  1.48 (1.35-1.62) 1.77 (1.50-2.08) .06 .13 1.58 (1.44-1.73) 1.63 (1.42-1.87) .05 

rs2928679  1.05 (1.01-1.09) 1.00 (.93-1.08) .51 .33 1.05 (1.01-1.09) 1.08 (1.02-1.15) .06 

rs1512268  1.16 (1.12-1.20) 1.04 (.97-1.12) .002
 

.02 1.13 (1.09-1.17) 1.19 (1.12-1.26) .16 

rs4962416  1.06 (1.02-1.11) 1.02 (.94-1.11) .35 .80 1.04 (.99-1.08) 1.07 (1.00-1.14) .13 

rs10993994  1.23 (1.19-1.28) 1.21 (1.13-1.30) .82 .80 1.24 (1.20-1.29) 1.32 (1.25-1.41) .002 

rs7931342  .85 (.82-.88) .79 (.74-.86) .19 .50 .85 (.82-.89) .80 (.75-.85) 9.6x10
-5

 

rs7127900  1.28 (1.22-1.34) 1.14 (1.04-1.24) .01 .003 1.21 (1.16-1.27) 1.27 (1.18-1.37) .01 

rs4430796  .80 (.77-.83) .79 (.74-.85) .98 .40 .82 (.79-.85) .77 (.73-.82) .004 

rs11649743  .87 (.83-.91) .87 (.79-.95) .94 .30 .89 (.85-.94) .83 (.77-.90) .003 

rs1859962  1.19 (1.15-1.24) 1.13 (1.05-1.21) .20 .78 1.17 (1.13-1.21) 1.21 (1.14-1.28) .007 

rs2735839  .79 (.75-.83) .93 (.83-1.03) .002 .003 .81 (.76-.85) .80 (.73-.88) .31 

rs5759167  .85 (.82-.88) .85 (.80-.91) .85 .58 .85 (.82-.88) .82 (.77-.86) .04 

rs5945619  1.13 (1.10-1.17) 1.16 (1.09-1.23) .54 .44 1.14 (1.10-1.18) 1.10 (1.04-1.16) .81 



 

Supplementary Table 4: PSA levels by genotype in controls.  
            

Marker Geometric mean PSA (95%CI) P-value
a 

rs721048 
 

CC CT TT  

2.07 (1.63-2.50) 1.78 (1.39-2.16) 2.04 (.70-3.38) .11 

rs1465618 
 

GG GA AA  

1.42 (1.37-1.47) 1.40 (1.32-1.47) 1.30 (1.16-1.45) .29 

rs12621278 
 

AA AG GG  

1.94 (1.61-2.26) 2.03 (1.08-2.97) 1.68 (1.14-2.23) .81 

rs2660753 
 

GG GA AA  

1.90 (1.58-2.22) 2.06 (1.37-2.75) 7.01 (-4.66-18.67) .21
 

rs17021918 
 

GG GA AA  

1.94 (1.48-2.39) 1.87 (1.42-2.31) 2.26 (1.21-3.30) .34 

rs12500426 
 

GG GT TT  

2.07 (1.43-2.71) 2.24 (1.65-2.83) 1.98 (1.07-2.88) .19 

rs7679673 
 

CC CA AA  

1.75 (1.34-2.16) 2.25 (1.69-2.81) 1.48 (1.34-1.63) .38 

rs9364554 
 

CC CT TT  

2.40 (1.79-3.00) 1.63 (1.36-1.90) 1.38 (1.27-1.49) .25 

rs10486567 
 

GG GA AA  

2.80 (1.90-3.70) 2.26 (1.36-3.16) 1.44 (1.17-1.71) .12 

rs6465657 
 

AA AG GG  

1.78 (1.35-2.22) 2.05 (1.57-2.53) 2.07 (1.38-2.76) .83 

rs1447295 
 

GG GT TT  

2.08 (1.70-2.46) 1.54 (1.25-1.84) 1.11 (.93-1.29) .03 

rs6983267 
 

CC CA AA  

2.04 (1.32-2.76) 2.12 (1.65-2.59) 1.61 (1.22-1.99) .01 

rs16901979 
 

GG GT TT  

1.94 (1.62-2.26) 1.56 (1.38-1.75) 1.30 (.69-1.91) .18 

rs2928679 
 

CC CT TT  

1.61 (1.31-1.92) 2.17 (1.63-2.70) 1.91 (1.26-2.57) .27 

rs1512268 
 

GG GA AA  

1.68 (1.30-2.06) 2.13 (1.59-2.66) 1.99 (1.33-2.64) .004 

rs4962416 
 

AA AG GG  

2.06 (1.59-2.53) 1.97 (1.50-2.45) 1.35 (1.21-1.49) .73 

rs10993994 
 

GG GA AA  

2.15 (1.54-2.77) 1.68 (1.38-1.98) 2.45 (1.50-3.40) 3.5x10
-5

 

rs7931342 
 

CC CA AA  

2.36 (1.62-3.09) 2.06 (1.57-2.56) 1.41 (1.33-1.49) .11 

rs7127900 
 

GG GA AA  

1.90 (1.54-2.25) 1.99 (1.35-2.64) 2.90 (.33-5.47) .03 

rs4430796 
 

AA AG GG  

1.54 (1.34-1.74) 2.08 (1.61-2.54) 2.22 (1.41-3.03) .38 

rs11649743 
 

GG GA AA  

2.13 (1.69-2.57) 1.57 (1.27-1.86) 2.59 (.44-4.75) .84 

rs1859962 
 

TT TG GG  

2.05 (1.49-2.60) 1.99 (1.50-2.48) 1.84 (1.34-2.33) .17 

rs2735839 
 

GG GA AA  

2.07 (1.70-2.43) 1.79 (1.15-2.42) 1.08 (.83-1.32) 2.8x10
-13 

rs5759167 
 

GG GT TT  

1.86 (1.28-2.43) 2.16 (1.63-2.69) 1.59 (1.26-1.93) .37 

rs5945619 
 

TT TC CC  

2.63 (1.80-3.46)  2.24 (1.53-2.94) .09 
  

a
Test for trend in log (PSA) by allele dose 

 
 

 

 

 

 

 

 

 

 

 



 

Supplementary Table 5: Age-specific odds ratios. 
 

Variable/ 
Marker 

Age at diagnosis (years)  
Ptrend

a
 <55 55-59 60-64 65-69 70+ 

PRS
b
 1.76 

(1.62-1.92) 
1.85 

(1.72-1.98) 
1.70 

(1.59-1.82) 
1.70 

(1.57-1.83) 
1.48 

(1.37-1.60) 
2.6x10

-4
 

rs721048 1.09 
(.99-1.19) 

1.13 
(1.06-1.21) 

1.12 
(1.05-1.19) 

1.13 
(1.06-1.20) 

1.07 
(.99-1.15) 

.86 

rs1465618 
 

1.14 
(1.04-1.24) 

1.07 
(1.01-1.13) 

1.09 
(1.03-1.15) 

1.09 
(1.03-1.16) 

1.01 
(.94-1.07) 

.03 

rs12621278 
 

.59 
(.49-.71) 

.76 
(.67-.86) 

.67 
(.60-.76) 

.79 
(.71-.88) 

.83 
(.73-.94) 

1.9x10
-5

 

rs2660753 
 

1.16 
(1.04-1.29) 

1.10 
(1.01-1.20) 

1.18 
(1.09-1.28) 

1.13 
(1.05-1.22) 

1.04 
(.95-1.14) 

.12 

rs17021918 
 

.83 
(.77-.90) 

.86 
(.81-.91) 

.91 
(.87-.96) 

.89 
(.85-.94) 

.89 
(.84-.94) 

.06 

rs12500426 
 

1.17 
(1.08-1.27) 

1.16 
(1.09-1.24) 

1.09 
(1.03-1.15) 

1.05 
(1.00-1.11) 

1.07 
(1.02-1.13) 

.08 

rs7679673 
 

.87 
(.81-.94) 

.87 
(.82-.92) 

.90 
(.85-.94) 

.86 
(.81-.90) 

.89 
(.85-.94) 

.08 

rs9364554 
 

1.15 
(1.06-1.24) 

1.13 
(1.07-1.20) 

1.08 
(1.02-1.14) 

1.08 
(1.03-1.14) 

1.07 
(1.01-1.14) 

.07 

rs10486567 
 

.78 
(.69-.87) 

.82 
(.76-.89) 

.90 
(.84-.97) 

.87 
(.81-.93) 

.85 
(.78-.92) 

.19 

rs6465657 
 

1.14 
(1.07-1.23) 

1.11 
(1.05-1.17) 

1.11 
(1.05-1.16) 

1.06 
(1.01-1.11) 

1.09 
(1.03-1.15) 

.69 

rs1447295 
 

1.42 
(1.28-1.57) 

1.43 
(1.33-1.55) 

1.39 
(1.29-1.49) 

1.40 
(1.30-1.51) 

1.45 
(1.33-1.58) 

.75 

rs6983267 
 

.80 
(.74-.85) 

.80 
(.75-.84) 

.80 
(.76-.84) 

.82 
(.78-.87) 

.90 
(.85-.95) 

.06 

rs16901979 
 

1.54 
(1.31-1.81) 

1.53 
(1.35-1.73) 

1.53 
(1.36-1.73) 

1.56 
(1.39-1.75) 

1.60 
(1.39-1.84) 

.06 

rs2928679 
 

1.08 
(1.01-1.17) 

1.03 
(.97-1.09) 

1.02 
(.96-1.07) 

1.04 
(.99-1.10) 

1.04 
(.98-1.11) 

.09 

rs1512268 
 

1.11 
(1.04-1.20) 

1.19 
(1.13-1.26) 

1.15 
(1.09-1.21) 

1.13 
(1.08-1.19) 

1.10 
(1.05-1.16) 

.70 

rs4962416 
 

1.12 
(1.03-1.21) 

1.01 
(.95-1.07) 

1.08 
(1.02-1.14) 

1.01 
(.96-1.07) 

1.01 
(.95-1.09) 

.37 

rs10993994 
 

1.35 
(1.26-1.45) 

1.28 
(1.22-1.36) 

1.21 
(1.15-1.28) 

1.23 
(1.17-1.29) 

1.16 
(1.10-1.23) 

.009 

rs7931342 
 

.83 
(.77-.89) 

.84 
(.79-.88) 

.82 
(.77-.86) 

.87 
(.82-.91) 

.86 
(.81-.92) 

.22 

rs7127900 
 

1.39 
(1.27-1.51) 

1.24 
(1.16-1.32) 

1.22 
(1.15-1.30) 

1.24 
(1.17-1.32) 

1.15 
(1.08-1.23) 

.01 

rs4430796 
 

.80 
(.75-.86) 

.77 
(.73-.82) 

.81 
(.77-.85) 

.85 
(.81-.89) 

.83 
(.79-.89) 

.12 

rs11649743 
 

.91 
(.83-.99) 

.87 
(.81-.93) 

.85 
(.79-.90) 

.91 
(.85-.97) 

.90 
(.83-.97) 

.33 

rs1859962 
 

1.25 
(1.17-1.34) 

1.20 
(1.14-1.27) 

1.24 
(1.18-1.30) 

1.13 
(1.07-1.18) 

1.11 
(1.05-1.18) 

.04 

rs2735839 
 

.77 
(.70-.86) 

.72 
(.67-.79) 

.77 
(.72-.83) 

.85 
(.79-.91) 

.91 
(.84-.99) 

.001 

rs5759167 
 

.80 
(.75-.86) 

.84 
(.79-.88) 

.84 
(.80-.88) 

.84 
(.80-.88) 

.87 
(.82-.91) 

.11 

rs5945619 
 

1.14 
(1.07-1.21) 

1.19 
(1.14-1.25) 

1.16 
(1.12-1.21) 

1.11 
(1.07-1.15) 

1.07 
(1.02-1.12) 

.0003 

 

a 
1df trend test for trend in OR by age, using case only analysis.  

b
 OR is based on per unit increase of PRS. 

 

 

 



 

Supplementary Table 6: The results of 29 pair wise interaction of 25 SNPs 
 significant at P <0.05 (29 out of 300 interactions; Bonferroni correction 
0.05/300=1.67x10-4).  
 

Pair P-value
a 

Pair P-value
a 

rs721048 x rs17021918 0.05 rs9364554 x rs1859962 0.003 
rs1465618 x rs17021918 0.004 rs10486567 x rs16901979 0.01 
rs1465618 x rs12500426 0.001 rs10486567 x rs4962416 0.02 
rs1465618 x rs7679673 0.03 rs10486567 x rs4430796 0.004 
rs1465618 x rs7127900 0.02 rs1447295 x rs7127900 0.04 
rs2660753 x rs12500426 0.02 rs16901979 x rs10993994 0.001 
rs2660753 x rs16901979 0.04 rs4962416 x rs7931342 0.03 
rs2660753 x rs2928679 0.05 rs4962416 x rs4430796 0.01 
rs2660753 x rs5759167 0.04 rs4962416 x rs2735839 0.001 
rs17021918 x rs7679673 0.01 rs10993994 x rs4430796 0.02 
rs12500426 x rs7679673 0.02 rs7931342 x rs4430796 0.02 
rs12500426 x rs11649743 0.04 rs7931342 x rs2735839 0.05 
rs12500426 x rs5759167 0.04 rs7127900 x rs4430796 0.02 
rs7679673 x rs5759167 0.01 rs4430796 x rs2735839  0.004 
rs9364554 x rs16901979 0.001   
a
 Likelihood ratio test  

 
 
 
 
 
 
 
Supplementary Table 7: Estimated odds ratios of PRS percentiles adjusted for age 
at diagnosis of PrCa (five categories) in a model allowing for an interaction between 
PRS and Age.   
  

Covariate  Odds ratio (95% CI)  P-value Odds ratio
a
 (95% CI) P-value 

 
 
 
PRS Group 
 
 
 

<1%  1  0.10 (0.05-0.18) 2.4x10
-13

 
1-10%   3.43 (1.89-6.23) 5.3x10

-5
 0.33 (0.27-0.41) 3.7x10

-26 

10-25%  5.90 (3.22-10.82) 9.5x10
-9

 0.57 (0.50-0.65)
 

2.5x10
-18 

25-75%  10.33 (5.53-19.29) 2.5x10
-13

 1
  

75-90%  19.12 (9.92-36.86) 1.3x10
-18

 1.85 (1.66-2.07)
 

6.6x10
-28 

90-99%  28.92 (14.50-57.69) 1.3x10
-21

 2.80 (2.38-3.30)
 

1.5x10
-34 

>=99%   58.11 (26.99-125.11) 3.1x10
-25

 5.63 (4.05-7.82)
 

6.4x10
-25 

Family History (Yes/No) 2.52 (2.29-2.78) 4.7x10
-77

 2.52 (2.29-2.78) 4.7x10
-77

 

PRS x Age at Diagnosis 
 interaction

b
 

0.97 (0.95-0.99) 0.003 0.97 (0.95-0.99)
 

0.003
 

a
 Odds Ratios were compared to median risk group.

 

b 
PRS and age at diagnosis both as categorical variables. 

  
  
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Table 8: Estimated odds ratios used for estimating absolute risk  
 

(a) Model without interaction 

Family History (FH)  Risk Group 
<1% 1-10% 10-25% 25-75% 75-90% 90-99% >=99% 

No 0.14 0.41 0.63 1.00 1.68 2.31 4.24 

Yes 0.35 1.04 1.60 2.52 4.24 5.83 10.70 

(b) Model with interactiona (samples with no FH) 

Age group <1% 1-10% 10-25% 25-75% 75-90% 90-99% >=99% 

<55 0.10 0.33 0.57 1.00 1.85 2.80 5.63 
55-59 0.09 0.31 0.55 1.00 1.79 2.62 5.09 
60-64 0.08 0.29 0.53 1.00 1.73 2.45 4.60 
64-69 0.07 0.27 0.52 1.00 1.67 2.29 4.16 
70+ 0.06 0.25 0.50 1.00 1.62 2.14 3.76 

(c) Model with interactiona (samples with FH) 

Age group <1% 1-10% 10-25% 25-75% 75-90% 90-99% >=99% 

<55 0.24 0.84 1.44 2.52 4.67 7.07 14.21 
55-59 0.22 0.78 1.39 2.52 4.52 6.61 12.84 
60-64 0.20 0.73 1.35 2.52 4.37 6.18 11.60 
64-69 0.18 0.68 1.30 2.52 4.22 5.78 10.49 
70+ 0.16 0.64 1.26 2.52 4.08 5.40 9.48 
a 
Interaction between PRS and age at diagnosis both as categorical variables. 
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SUPPLEMENTARY NOTES: DESCRIPTION OF OPA AND THE PRACTICAL 

CONSORTIUM GROUPS 

All studies were approved by the appropriate ethics committees. A list of the groups 

is in Supplementary Table 1.  

 

CPCS1+2:  

The CPCS (Copenhagen Prostate Cancer Study) 1 + 2, Copenhagen, Denmark 

The Copenhagen Prostate Cancer Study 1 included 872 unselected patients 

recruited with prostate cancer between 2008-2011 from Herlev Hospital, 

Copenhagen University Hospital, Herlev, Denmark. The Copenhagen Prostate 

Cancer Study 2 included 306 unselected patients with prostate cancer recruited in 

2010-2011 from Rigshospitalet, Copenhagen University Hospital, Copenhagen, 

Denmark. PSA is not routinely screened for in Denmark, and cases are therefore 

mainly clinically detected. Controls were 2,777 (CPCS1) and 798 (CPCS2) prostate 

cancer free men from the general population, whom participated in the Copenhagen 

City Heart Study. Diagnosis of prostate cancer was confirmed by fully trained 

pathologists. All participants were white and of Danish descent. Participants filled out 

questionnaires, gave blood samples for DNA extraction and gave written informed 

consent.  

 

ESTHER 

In the ESTHER study, patients with a first diagnosis of prostate cancer at age 50-75 

years were recruited in hospitals and medical practices in Saarland, a state located 

in southwest Germany, from 2001 to 2003. Controls were selected from participants 

of a general health-check up within the same age range (and frequency matched to 

the cases by 5-year age groups) who were recruited in general practices in Saarland 

in 2000-2002. Cases and controls who were almost exclusively of European 

descent, filled out a detailed standardized questionnaire on life time history of 

potential risk factors and had a blood sample taken, and medical data were 

extracted from medical records. 

 

FHCRC:  Fred Hutchinson Cancer Research Centre, Seattle US 

The study population consists of participants from two population-based case-control 

studies in Caucasian and African American residents of King County, Washington 



 2 

(Study I and Study II), which have been previously described7 Incident cases with 

histologically confirmed PrCa were ascertained from the Seattle-Puget Sound 

Surveillance, Epidemiology and End Results cancer registry.  In Study I, cases were 

diagnosed between January 1, 1993, and December 31, 1996 and were 40-64 years 

of age at diagnosis.  In Study II, cases were diagnosed between January 1, 2002, 

and December 31, 2005 and were 35-74 years of age at diagnosis.  Overall, 2,244 

eligible PrCa patients were identified and 1,754 (78%) were interviewed.  Blood 

samples yielding sufficient DNA for genotyping were drawn from 1,457 (83%) cases 

who completed the study interview.  A comparison group of controls without a history 

of PrCa, residing in King County, Washington, was identified for each study using 

random digit telephone dialling.  Controls were frequency-matched to cases by five-

year age groups and recruited evenly throughout each ascertainment period for 

cases.  A total of 2,448 men were identified who met the eligibility criteria and 1,645 

(67%) completed a study interview.  Blood samples were drawn and DNA prepared 

from 1,352 (82%) interviewed controls.  

 

MAYO, Rochester, Minnesota, US 

The Mayo Clinic study consisted of clinic-based cases, including 476 affected men 

from 185 families with PrCa, 445 men with sporadic PrCa, 199 with aggressive 

(Gleason score > 7) PrCa, and 500 population-based controls. The controls (all 

males) were randomly selected from a sampling frame of Olmsted County, 

Minnesota, provided by the Rochester Epidemiology Project. The methods used to 

ascertain familial and sporadic PrCa patients, as well as controls, have been 

described previously8. All individuals from the Mayo Clinic study included in this 

report were of self-reported European descent.  

 

Cancer Council Victoria Prostate Cancer Program, Melbourne  

The Cancer Council Victoria’s Prostate Cancer Program includes three studies: the 

Melbourne Collaborative Cohort Study (MCCS) and the Prostate Cancer Family 

Study (PCFS). Cases and controls (and informative families) from these studies 

have been used for several stages of this research effort, beginning with the UK and 

Melbourne stage 2 GWAS. 

The MCCS is a prospective cohort study that includes 17,154 men who were aged 

40 and 69 years when recruited between 1990 and 1994. MCCS participants are 
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regularly linked to the Victorian Cancer Registry and the Australian Cancer 

Database to ascertain incident cases (1582 by end of 2008) including men 

diagnosed in other states of Australia. A random sample of MCCS participants who 

were not diagnosed with prostate cancer during follow-up provides a control group. 

The PCFS is a population-based family series of 1428 men diagnosed with prostate 

cancer before the age of 56 years and 256 men diagnosed after the age of 55 years 

who were recruited in Victoria between 1998 and 2010. Cases were ascertained 

using the population-based Victorian Cancer Registry, and family members were 

approached after gaining the consent of each case. Altogether, 77% of cases 

agreed to participate.  

 

MEC: Multiethnic Cohort 

The Multiethnic Cohort Study is a population-based prospective cohort study that 

was initiated between 1993 and 1996 and includes subjects from various ethnic 

groups -African-Americans and Latinos primarily from California (mainly Los 

Angeles) and Native Hawaiians, Japanese-Americans, and European Americans 

primarily from Hawaii. State drivers’ license files were the primary sources used to 

identify study subjects in Hawaii and California. Additionally, in Hawaii, state voter's 

registration files were used, and, in California, Health Care Financing Administration 

(HCFA) files were used to identify additional African American men. All participants 

(n=215,251) returned a 26-page self-administered baseline questionnaire that 

obtained general demographic, medical and risk factor information. In the cohort, 

incident cancer cases are identified annually through cohort linkage to population-

based cancer Surveillance, Epidemiology, and End Results (SEER) registries in 

Hawaii and Los Angeles County as well as to the California State cancer registry. 

Information on stage and grade of disease are also obtained through the SEER 

registries. Blood sample collection in the MEC began in 1994 and targeted incident 

PrCa cases and a random sample of study participants to serve as controls for 

genetic analyses. This nested PrCa case-control study in the MEC consists of 890 

invasive PrCa cases and 895 controls. This study was approved by the Institutional 

Review Boards at the University of Southern California and at the University of 

Hawaii and informed consent was obtained from all study participants. 

 

MOFFITT: Moffitt Study, Tampa, Florida, US 
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This is a hospital-based incident study of 638 patients with primary adenocarcinoma 

of the prostate. They were recruited from 2002 to 2009 at the H. Lee Moffitt Cancer 

Centre (Tampa, FL, US) and James A. Haley Veterans Affairs Hospital (Tampa, FL, 

US). Ninety-five percent of the case subjects who were asked to participate in the 

study agreed. All cancer cases were histologically confirmed by the Department of 

Pathology at each institution. The controls consisted of 147 subjects who were 

visiting the Lifetime Cancer Screening Centre, which is affiliated with the H. Lee 

Moffitt Cancer Centre or VA hospital.  All control subjects were male and had had no 

previous diagnosis of cancer.  The control subjects were frequency matched to the 

patients by age at diagnosis (± 5 years). Eighty-three percent of the control subjects 

who were asked to participate in the study consented. Non-genetic risk factor data 

for the present study were obtained through in-person interviews with the patients 

and controls at enrolment. The questionnaire covered demographic information, 

family history of cancer (i.e., whether they have one or more first-degree family 

member with PrCa), medical history, and detailed tobacco consumption.  For the 

patients, data on cancer stage, Gleason score, and prostate specific antigen level 

were abstracted from the medical records. The subjects were asked to provide a 

blood or buccal sample after the interview as a source of genomic DNA.  

 

PCMUS: Bulgaria 

The Bulgarian sample of PrCa patients consist mainly of newly diagnosed cases, 

which are histopathologically confirmed. The patients (N=150, age range 39-93) are 

of Bulgarian origin. Transrectal biopsy was performed at the Urology Clinic, 

Alexandrovska University Hospital, mainly because of an elevated PSA. Some of the 

patients were referred from other centres to the tertiary university hospital after being 

previously diagnosed with PrCa. A small subset of patients had previously had 

definitive treatment (mainly radical prostatectomy) and they were called 

retrospectively with invitation to join the study. The control group is matched to the 

patients by sex, age, and ethnicity. It consists of two groups: (i) 72 healthy males, 

age range 54-87, presenting to our institution with lower urinary tract symptoms 

caused by benign prostatic hypertrophy (BPH) who had a PSA <3.5. The majority of 

them subsequently underwent surgical treatment with histological verification of the 

BPH; (ii) an additional healthy control group of 78 anonymous males matched to the 

PrCa patients by age and ethnicity, but with no PSA data.  
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POLAND 

Polish case-control series included 458 men with PrCa, diagnosed in north-western 

Poland between 1999 and 2009 at the University Hospital in Szczecin.  Study 

participants were unselected for age and family history. The mean age of PrCa 

diagnosis was 68 years (range 41–90 years). The control group included 476 

cancer-free adult men from the same population (age range, 24–89 years; mean 

63.1) taken from the healthy adult patients of five family doctors practicing in the 

Szczecin region. These individuals were selected randomly from the patient lists of 

the participating doctors.   

 

ProtecT/ ProMPT, UK  

The ProtecT9 (Prostate testing for cancer and Treatment) trial is an NIHR-funded, 

UK-wide study of community-based PSA testing followed by a randomised controlled 

trial of PrCa treatment (radical surgery, radical conformal radiotherapy and active 

monitoring: ProMPT).  Over 200,000 men between the ages of 50 and 69 years, 

ascertained through general practices in nine regions in the UK, were approached 

and over 100, 000 attended for PSA testing and, when PSA was 3.0ng/ml or more, 

for prostate cancer diagnosis. Over 95% of recruited men were of white ethnicity. 

For this study, after QC, 1563 cases identified by PSA screening within the ProtecT 

study were analysed. Controls with normal PSA levels (<3ng/ml) were selected from 

the same GP register and 5 year age band as the cases (n=1474 after QC were 

analysed). 

 

QUEENSLAND (QLD):  Australia 

The Queensland cases included in this study were ascertained from three studies: (i) 

a longitudinal cohort study (Prostate Cancer Supportive Care and Patient Outcomes 

Project: ProsCan) being conducted through CCQ in Queensland, through which men 

newly diagnosed with prostate cancer from 26 private practices and 8 public 

hospitals were directly referred to ProsCan at the time of diagnosis by their treating 

clinician (N=780, age range 43-88 years) (ii) Caucasian patients accrued to date 

through the Queensland node of the Australian Prostate Cancer BioResource 

(APCB) where cases were recruited through local urologists at time of diagnosis 

(N=445) (iii) Prospective collection through various urologists (N=121). All cases had 
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histopathologically confirmed prostate cancer, following presentation with an 

abnormal serum PSA and/or lower urinary tract symptoms.. Controls, recruited 

through QUT and QIMR, comprised healthy male blood donors with no personal 

history of prostate cancer, from the (i) the Australian Red Cross Blood Services in 

Brisbane (N=865, age range 19-76 years) and (ii) the Australian Electoral 

Commission (N=529, age and post-code/area matched to ProsCan, age range 54-90 

years) 

 

SEARCH 

Prostate cancer cases were identified via the Eastern Cancer Registration and 

Information Centre, East Anglia, UK. Incident cases <70 years at diagnosis are 

recruited. Controls are men attending general practice who are frequency- matched 

to cases by age and geographic region. 

 

TAMPERE:  Finland  

Total of 8744 Finnish samples were sent to for typing. Of these, 2960 unselected 

cases and 165 controls (PSA < 4 µg/ml) were collected in Tampere, Finland and all 

are of Finnish origin. The mean age of diagnosis was 68.7 years (range 36-94). The 

patients were diagnosed with PrCa in 1993-2008 in the Tampere University Hospital, 

Department of Urology. Tampere University Hospital is a regional referral centre in 

the area for all patients with PrCa, which results in an unselected, population-based 

collection of patients. The other unselected set of samples were 5522 samples 

collected in the Finnish arm of The European Randomized Study of Screening for 

Prostate Cancer, which was initiated in the early 1990s to evaluate the effect of 

screening with prostate-specific–antigen (PSA) testing on death rates from PrCa. 

This sample set includes 1106 Finnish cancer cases and 4416 controls. These men 

were born in years 1933, 1937 and 1941 and were randomly assigned to a group 

that was offered PSA screening at an average of once every 4 years or to a control 

group that did not receive such screening. In addition to these two sporadic sample 

sets, 97 familial cancer cases (mean age at diagnosis 70 years) from Finnish PrCa 

families were genotyped.   

 

UKGPCS 
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Blood DNA from PrCa cases was collected from cases throughout the UK aged < 60 

years at diagnosis and a systematic series from the PrCa clinic at The Royal 

Marsden NHS Foundation Trust.  Diagnosis is confirmed from medical record or 

death certificate.  60% are clinically detected.  

 

ULM: Germany  

Cases were recruited in two different ways. Familial PrCa probands (index cases) 

were ascertained from all over Germany. They were advised by their attending 

physicians to contact the Clinic of Urology of Ulm. The positive family history was 

then verified by reviewing medical records or death certificates of family members. In 

each case, only one member of each family (e.g. the proband) was enrolled in the 

present study. Sporadic cases, who reported no relatives affected with PrCa, were 

almost exclusively collected at Ulm during their course of treatment (e.g. radical 

prostatectomy) in our Urology Clinic. The control group consists of 213 age-matched 

healthy men and 295 population controls of unknown disease status.  

 

UTAH, US 

All 455 prostate cancer cases were drawn from the set of sampled prostate cancer 

cases belonging to extended Utah high-risk pedigrees.  All cases were selected to 

have kinship coefficients <= 0.0156 with any other case 

included from the high-risk pedigree set. The 256 controls were selected from other 

high-risk pedigree studies as: 1) not related to prostate kindred, 2) not having 

cancer, 3) not having a first degree relative with prostate cancer. 

 

SFPCS (NC-CCPC): San Francisco, California USA  

The San Francisco Bay Area Prostate Cancer Study is a population-based case-

control study of PrCa in non-Hispanic white and African-American men conducted in 

the San Francisco Bay Area (John et al 2005). Eligible cases with localized or 

advanced disease and controls completed an in-person interview; a blood or 

mouthwash sample was collected for advanced cases and controls only. Newly 

diagnosed cases aged 40-79 years  wereidentified through the Greater Bay Area 

Cancer Registry, including on-Hispanic white cases diagnosed between July 1, 1997 

and February 28, 2000, and African-American cases diagnosed between July 1, 

1997 and December 31, 2000.   Control men aged 40-79 years without a history of 
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prostate cancer were identified through random-digit dialing; Incontrols aged 65-79 

years were also randomly selected from the rosters of beneficiaries of the Health 

Care Financing Administration (HCFA). Controls were frequency-matched to cases 

by five-year age group and race. This study included 389 advanced cases and 256 

controls with DNA from a blood sample. 

Esther John, Amit Joshi, Ahva Shahabi 

 

TASPRAC: Tasmania, Australia 

The Tasmanian cases were ascertained from two studies. The fifty-four familial PrCa 

cases included in this study were drawn from the Tasmanian Familial Prostate 

Cancer Study, which has recruited families with multiple individuals affected with 

PrCa. These families were identified using the records of the Tasmanian Cancer 

Registry (a register of all cancer diagnoses in Tasmania, Australia since 1978) and 

the genealogical records from the Menzies Research Institute Tasmania 

Genealogical Database; they comprise families with at least 2 affected first-degree 

relatives.  One case per family was selected for inclusion. Blood samples, pathology 

specimens and pathology reports are available for these familial cases.  The 

remaining 469 sporadic PrCa cases were drawn from the Tasmanian Prostate 

Cancer Case Control Study. Cases were again identified from the Tasmanian 

Cancer Registry, and eligible cases were men <70 years diagnosed with 

histologically confirmed PrCa diagnosed between 1996 and 2005.  The 359 controls 

included here were randomly selected from the Tasmanian electoral roll (registration 

on the electoral roll is compulsory in Australia for individuals > 18 years).  Eligible 

controls were sex and age-matched within 5-year age groups to the sporadic cases 

and self-reported as unaffected with PrCa. Blood samples, physical measures, 

dietary history, environmental exposure data and family history have been collected 

from participating individuals.  Of note, controls diagnosed with PrCa subsequent to 

their recruitment have been removed from the control dataset. Notification of their 

subsequent diagnosis with PrCa was determined by their registration as a confirmed 

case by the Tasmanian Cancer Registry as of the end of 2009. 

Joanne L Dickinson (PI), James R. Marthick 

 

USC: Los Ángeles,  Southern California, USA 
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Subjects were participants in a population-based case-control study of aggressive 

PrCa conducted in Los Angeles County. Cases were identified through the Los 

Angeles County Cancer Surveillance Program rapid case ascertainment system 

large hospitals are screened at least weekly and other sites at least monthly.  

Eligible cases included African American, Hispanic, and non-Hispanic white men 

diagnosed with a first primary PrCa between January 1, 1999 and December 31, 

2003.  Eligible cases also had either (1) prostatectomy with documented tumour 

extension outside the prostate, (2) metastatic PrCa in sites other than prostate, (3) 

needle biopsy of the prostate with Gleason grade >8 or (4) needle biopsy with 

Gleason grade 7 and tumour in more than 2/3 of the biopsy cores.   

Eligible controls were men never diagnosed with PrCa, living in the same 

neighbourhood as a case, and were frequency matched to cases on age (±5 years) 

and race/ethnicity.  Controls were identified by a neighbourhood walk algorithm 

which proceeds through an obligatory sequence of adjacent houses or residential 

units beginning at a specific residence that has a specific geographic relationship to 

the residence where the case lived at diagnosis.  

Sue Ann Ingles, Mariana C. Stern, Roman Corral 

 

BiPAS: The Birmingham Prostatic Neoplasms Association Study (BiPAS) – A 

Genetic and Environmental Case Control Study  

The Birmingham Prostatic Neoplasms Association Study base consists of men living 

in the south Birmingham area, United Kingdom aged >50 years. The study recruited 

men with lower urinary tract symptoms (LUTS) and/or high serum prostate specific 

antigen (PSA) levels referred for prostate biopsies between March 2007 until 

October 2008. PrCa cases were recruited from the Queen Elizabeth Medical Centre, 

Birmingham. Cases are defined as men with histologically confirmed 

adenocarcinoma of the prostate. Controls were also recruited from the Queen 

Elizabeth Medical Centre and Selly Oak Hospital, Birmingham. Men with a normal 

repeat PSA and a negative biopsy were categorized as benign controls.  

A blood sample from every hospital based subject was obtained using standard 

venepuncture methods, and collected in a 5ml tube containing EDTA. Samples were 

transported to the laboratory immediately in a cool bag with cool packs and stored at 

4°C. DNA was extracted using the QIAGEN maxi blood kit. 

Mr David M A Wallace - Queen Elizabeth Medical Centre, Edgbaston, Birmingham 
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Mr Alan Doherty - Queen Elizabeth Medical Centre, Edgbaston, Birmingham 

Mr R I Bhatt - Queen Elizabeth Medical Centre, Edgbaston, Birmingham 

Mr K Subramonian - Queen Elizabeth Medical Centre, Edgbaston, Birmingham 

Dr John Arrand – University of Birmingham 

Louise Flanagan – University of Birmingham 

Sita Ann Bradley - Queen Elizabeth Medical Centre, Edgbaston, Birmingham 

 

AARHUS, Denmark 

The Aarhus Prostate Cancer Study included 661 cases and 601 controls. Cases 

were patients treated for prostate adenocarcinoma at Department of Urology, 

Aarhus University Hospital, Skejby (Aarhus, Denmark) from 1999-2008. Median age 

at diagnosis was 63 years. The vast majority of these patients (91%) were treated by 

radical prostatectomy for clinically localized PrCa, while the remaining patients (9%) 

underwent palliative treatment for disseminated disease (transurethral resection of 

the prostate and/or endocrine treatment). Controls were age-matched males treated 

for myocardial infarction or undergoing coronary angioplasty, but with no prostate 

cancer diagnosis based on information retrieved from the Danish Cancer Register 

and the Danish Cause of Death Register. For SNP genotyping analyses, genomic 

DNA was extracted from frozen blood samples using the automated MaxwellTM 16 

Instrument (Promega), according to the protocol provided by the manufacturer. 

 

VALAIS: Switzerland in collaboration with Montreal, Canada  

Between December 1, 2002 and January 31, 2007, all urologists in a relatively 

isolated alpine region of Switzerland (canton du Valais) invited their patients 

diagnosed with invasive PrCa (all stages) to participate to a research project on 

genetic factors involved in PrCa. Both parents were required to originate from the 

canton du Valais. A detailed family history on at least 3 generations was collected by 

a trained research nurse, as well as a blood sampling. A series of healthy men, 

without a self-reported family history of PrCa, originating from the same region, 

participated as controls (blood donors and elderly patients seen in private practice). 

Most of these men had regular PSA screening. This study has contributed DNA 

samples to molecular work in Montreal. For this report the genotyping was 

performed in the UK on DNA obtained from the Montreal laboratory which was 

sourced from the Valais sample set. 
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Hannover Prostate Cancer Study, Hannover, Germany (HaPCS) 

A hospital-based series of 499 unselected Caucasian patients with prostate cancer, 

who were treated with brachytherapy between October 2000 and September 2007 at 

Hannover Medical School, were enrolled for this study. All patients had biopsy-

proven adenocarcinoma of the prostate. Indication for permanent brachytherapy was 

clinically localized low-risk early prostate cancer (cT2a or less with a PSA serum 

level <10 ng/mL and a Gleason score <7) following the European Society for 

Therapeutic Radiology and Oncology/European Association of Urology/European 

Organization for Research and Treatment of Cancer recommendations. The median 

age at diagnosis was 67 y in this patient series (range, 42-82 y). For comparison, a 

series of 504 genomic DNA samples was established from ethnically matched adult 

male blood donors at Hannover Medical School in the period from 2006 to 2007. 

 

UKGPCS, ProtecT and PRACTICAL co-authorship list 

 

The UK Genetic Prostate Cancer Study Collaborators 

Listed on UKGPC website: www.icr.ac.uk/ukgpcs 

  

The UK ProtecT Study Collaborators 

Prasad Bollina, Sue Bonnington, Lynne 

Bradshaw, James Catto, Debbie Cooper, Liz Down, Andrew Doble, Alan 

Doherty, Garrett Durkan, Emma Elliott, David Gillatt, Pippa Herbert, 

Peter Holding, Joanne Howson, Mandy Jones, Roger Kockelbergh, Rajeev Kumar,  

Peter Holding, Howard Kynaston, Athene Lane, Teresa Lennon, Norma Lyons, Hing 

Leung, Malcolm Mason, Hilary Moody, Philip Powell, Alan Paul, Stephen Prescott, 

Derek Rosario, Patricia O'Sullivan, Pauline Thompson, Lynne Bradshaw, Sarah 

Tidball.  

 

UK Genetic Prostate Cancer Study and The Prostate Cancer Research 

Foundation Study 
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The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, 

Sutton UK 

Stephen Edwards 

Cyril Fisher 

Charles Jameson 

Elizabeth Page 

 

The ProtecT Study 

Paul M. Brown 

Anne George 

Gemma Marsden 

Athene Lane 

Michael Davis 

The UK ProtecT Study Collaborators – as above 

 

AUSTRALIA (Melbourne) 

John Pedersen 

 

AUSTRALIA (Queensland) 

Joanne Aitken 

Robert A. Gardiner 

Srilakshmi Srinivasan 

Felicity Lose 

Mary-Anne Kedda 

Kimberly Alexander 

Tracy O’Mara 

Australian Prostate Cancer BioResource:  

Gail Risbridger 

Wayne Tilley 

Lisa Horvarth 

Australian Prostate Cancer Bio Resource-QLD node: 

Peter Heathcote 

Glenn Wood 

Greg Malone 
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Hema Samaratunga 

Pamela Saunders 

Allison Eckert 

Trina Yeadon 

Kris Kerr 

Angus Collins 

Megan Turner 

 

TASPRAC: Tasmania, Australia 

Simon J. Foote 

James R. Marthick 

Andrea Polanowski 

Rebekah M McWhirter 

Terrence Dwyer 

Christopher L. Blizzard 

 

BULGARIA PCMUS study 

Medical University – Sofia, Department of Urology 

Elenko Popov 

Molecular Medicine Centre and Department of Chemistry and Biochemistry 

Darina Kachakova 

Atanaska Mitkova 

Teodora Goranova 

Gergana Stancheva 

Olga Beltcheva 

Rumyana Dodova 

Department of General and Clinical Pathology 

Aleksandrina Vlahova 

Tihomir Dikov 

Svetlana Christova 

 

DENMARK 

 

AARHUS 
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Department of Urology, Aarhus University Hospital, Aarhus, Denmark 

Prof. DMSc Michael Borre 

CPCS1 

Department of Urology, Herlev Hospital, Copenhagen University Hospital, Herlev, 

Denmark 

Dr. Peter Klarskov 

Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University 

Hospital, Herlev, Denmark 

Dr. Sune F Nielsen 

CPCS2 

Department of Urology, Rigshospitalet, Copenhagen University Hospital, 

Copenhagen, Denmark 

Prof. DMSc Peter Iversen and Dr. M. Andreas Røder 

Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University 

Hospital, Herlev, Denmark 

Dr. Stig E Bojesen 

 

GERMANY 

 

ESTHER 

Division of Clinical Epidemiology and Aging Research, German Cancer Research 

Center (DKFZ), Heidelberg, Germany 

German Cancer Consortium (DKTK), Heidelberg, Germany 

Hermann Brenner  

Aida Karina Dieffenbach 

ULM 

Department of Urology, University Hospital Ulm, Germany 

Christiane Maier 

Antje Rinckleb 

Manuel Luedeke 

Mark Schrader 

Institute of Human Genetics, University Hospital Ulm, Germany 

Josef Hoegel 

Walther Vogel 
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TAMPERE 

The Finnish Cancer Registry 

Liisa Määttänen 

Department of Urology, Tampere University Hospital and Medical School, University 
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Prof. Teuvo Tammela   

Department of Epidemiology, School of Health Sciences, University of Tampere, 

Finland 

Prof. Anssi Auvinen 
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Lori Tillmans 

Shaun Riska 

Liang Wang 
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Department of Preventive Medicine, Keck School of Medicine, University of 
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Epidemiology Program, University of Hawaii Cancer Centre, Department of 
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