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Abstract

This paper considers the problem of forecasting under continuous and dis-
crete structural breaks and proposes weighting observations to obtain optimal
forecasts in the MSFE sense. We derive optimal weights for continuous and
discrete break processes. Under continuous breaks, our approach recovers ex-
ponential smoothing weights. Under discrete breaks, we provide analytical
expressions for the weights in models with a single regressor and asympotically
for larger models. It is shown that in these cases the value of the optimal
weight is the same across observations within a given regime and differs only
across regimes. In practice, where information on structural breaks is uncer-
tain a forecasting procedure based on robust weights is proposed. Monte Carlo
experiments and an empirical application to the predictive power of the yield
curve analyze the performance of our approach relative to other forecasting
methods.
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1 Introduction

It is now widely recognized that parameter instability is an important source of fore-
cast failure in macroeconomics and finance as documented by Pesaran and Timmer-
mann (2002), Pesaran, Pettenuzzo, Timmermann (2006), Koop and Potter (2007),
Giacomini and Rossi (2009), Inoue and Rossi (2011), among others. Clements and
Hendry (1999, 2006) and Rossi (2011) provide reviews. Parameter instability can
arise as a result of changes in tastes, technology, institutional arrangements and
government policy. Broadly speaking, there are two basic approaches to modeling
parameter instability: parameters can be assumed to change at discrete time in-
tervals or continuously. Under the former break dates are estimated, and forecasts
are typically constructed using the post-break observations.! Assuming that the
break dates are accurately estimated, the forecasts based on observations after the
last break is likely to be unbiased, but as pointed out by Pesaran and Timmer-
mann (2007) the forecasts from the post-break window may not minimize the mean
square forecast error (MSFE) as the estimation uncertainty due to the relatively
short post-break window may be large. For this reason Pesaran and Timmermann
(2007) suggest an optimal estimation window that may include pre-break observa-
tions. When the time and size of the break is uncertain, Pesaran and Timmermann
(2007) consider averaging forecasts across estimation windows (AveW), which, as
Pesaran and Pick (2011) show, improves forecasts without relying on estimates of
break dates and sizes.

Under the continuously changing parameter model, the breaks are assumed to
occur every period, and observations are down-weighted to take account of the
slowly changing nature of the parameters. Within this framework a prominent
approach is the exponential smoothing (ExpS) first proposed by Holt (1957) and
Brown (1959). Other approaches using Kalman filters have also been proposed
as generalization of ExpS. Hyndman, Koehler, Ord, and Snyder (2008) provide a
comprehensive survey. Like AveW forecasts, no estimates of the break date and
size are required but exponential smoothing forecasts are highly sensitive to the
down-weighting parameter.

In this paper, we develop a unified approach to obtaining optimal forecasts under
both types of structural breaks. We consider forecasts based on weighted observa-
tions as in ExpS approach but derive weights that are optimal in the sense that
the resulting forecasts minimize the MSFE. In the case of continuous breaks, our
approach recovers the ExpS weights. But the optimal weights can differ markedly
from the ExpS weights when the breaks are assumed to occur at discrete time in-
tervals. We show that, conditional on the break size and date, the optimal weights
follow a step function that allocates constant weights within regimes but different
weights between regimes. A striking result emerges under multiple breaks: observa-
tions of the last regime that continues into the forecast period may not receive the
highest weight. The intuition for this result is that the bias component of the MSFE
can be reduced by giving the largest weights to observations in an early regime to
counterbalance biases of the opposite sign in intermediate regimes.

In practice, however, the dates and sizes of the breaks are unknown and must

!There are many statistical procedures that can be used for detection of break dates. See, for
example, Brown et al. (1975), Andrews (1993), Andrews et al. (1996), Bai and Perron (1997, 2003),
and Altissimo and Corradi (2003).



be estimated. But such estimates tend to be quite imprecise and their use lead to
deterioration of forecasts, sometimes quite substantially. In order to address this
problem, we develop weights that are robust to the uncertainty that surrounds the
dates and the sizes of the breaks. The robust weights are derived by integrating the
optimal weights with respect to a uniformly distributed break dates. An interesting
insight from these derivations is that the effect of uncertainty of the break size on
the weights is of order 772 if the break is in the slope coefficient, and of order 73
if the break is in the error variances, where 7' is the sample size including the pre-
break observations. For estimation of the robust weights knowing the break date is
more important than knowing the size of the break, and that breaks in slopes are,
in turn, more important than breaks in error variances.

We provide Monte Carlo experiments that compare the forecasts from optimal
weights to a range of competing forecasting methods. Under a discrete break, the
key factor is the size of the break. A larger break leads to more precise estimates of
the break date and improves forecasts that are conditional on these estimates, which
include the optimal weights forecast, post-break forecasts, and optimal window
forecasts. In contrast, when the break is small relative to the noise in the DGP,
the robust weights produce the best forecasts as they do not rely on the imprecise
estimates of the break date and size. When the break process is continuous, ExpS
forecasts that estimate the down-weighting parameter perform well. However, the
forecasts from the robust weights perform similarly well and in some settings provide
the best forecasts even in this setting.

We apply the different methods considered in the paper to forecasting real GDP
using the slope of the yield curve across nine industrial economies over the period
1994Q1-2009Q4. The general finding is that breaks are difficult to estimate with
sufficient accuracy and, similar to the Monte Carlo results, forecasts based on es-
timates of break dates perform poorly. Robust weights and exponential smoothing
forecasts perform well and deliver large improvements over forecasts based on equal
weights.

The rest of the paper is set out as follows. Using a linear regression model,
derivations of optimal weights under different break processes are set out in Section
2, and the MSFE outcomes are compared across different forecasting methods. Op-
timal weights that are robust to the uncertainty of the break process are motivated
and derived in Section 3. Monte Carlo evidence on the comparative performance
of the different forecasting methods is discussed in Section 4. Empirical results are
presented in Section 5. The paper ends with some concluding remarks in Section 6.
A few of the less essential derivations are collected in a mathematical appendix.

2 Optimal weights under different break processes

Consider the linear regression model
yt:ﬂgxt—i—atst, EtNiid(O,].), t:1,2,,T,T—|—1 (1)

where x; is a k X 1 vector of stationary regressors, and the k x 1 coefficient vector,
B,, and the scalar error variance, o7, are subject to breaks. The breaks can be
continuous, that is, B8, changes its value in every period. A prominent example is

the random walk model

B; = Bi_1 + Spve, where vy ~ 4d(0,I}),



where I}, is the identity matrix of order k, and the break variance, X3 = S3S’,
is assumed to be small relative to 02.2 Alternatively, the breaks could be discrete
where the parameters change at distinct points in time, T3 ;, 7 = 1,2,...,n,

B(l) forl<t< Tb,1

B(2) for Tb,l <t< Tb,2
Bi=19.

B(n) for Tb,n <t<T

Additionally, oy may be subject to a similar break process.? In contrast to the con-
tinuously changing parameter model, the number of discrete breaks, n, is assumed
to be small, although the break sizes, measured by H Bu) — 'B(i_l)H could be large
relative to o;. There are merits in both specifications, and a choice between them
would depend on the particular forecasting problem under consideration.

We propose a general approach to achieve a minimum mean square forecast
error (MSFE) under both break processes. We weigh past observations by weights
w; in the estimation

T -1
Br(w) = (Z thtX;g> Zthth,
t=1 t=1
subject to the restriction Zthl wy = 1. The weights w = (wy,ws,...,wr) are

chosen such that the resulting MSFE of the one-step ahead forecast

N ~/
Ur+1 = BrXTi1

is minimized.

Closed form solutions under the continuous break process are only available
when we simplify the model to one without regressors. In this setting the optimal
weights recover the exponential smoothing forecast. For the discrete break process
we derive new results for the same simple model but also for models with one or
more regressors.

2.1 Optimal weights in a model with continuous breaks

Consider the following model

Yt = Bt + 0cet, (2)
where 8 = Bi—1 + oyvt, and &, and vy are iid(0,1). The optimal weights can be
found by minimizing E(yr11— Y1 wy:)? with respect to wy, t = 1,2, ..., T, subject

to ZZ;I wy = 1. For a solution to this problem we first note that the forecast error
is given by

€T+1 = YTr+1 — BT+1(W) = Bry1 — W/B + Ua(ET-',-l - W’€)7

2The covariance matrix 33 is said to be small relative to oy if |Zg]| /ot is small, where ||A||> =
tr(AA’) denotes the Euclidean norm of matrix A.

3Note that brackets around subscripts denote subsamples between breaks, such that §; is the
parameter at period t but ;1) the parameter after break .



where 3 = (81, B2, .., 0r) . But using the random walk formulation of 3 we have

B = Borr + o Hv,

where v = (v, v2,...,v7) and
1 0 0 0O 1
11 0 00 1
H = T R y TT =
11 --- 10 1
11 --- 1 1 1

Also, fry1 = Bo + 0TV + oyvry1. Hence,
o tery = [(thv — wHV) 6 + (ery1 — We) + dvrya]

where §2 = 02 /o2. Therefore, (noting that by assumption v and € are independently
distributed)

E(U;2€%+1 |w) ?wHH'w — 268°wHrp + w'w.

The first order condition for minimization of E(c;2e}.,; |w) subject to the con-
straint, w'rp = 1, is given by

SHH'w — 8°Hrp +w — 077 = 0,

where 0 is the Lagrangian multiplier applied to the w77 = 1. Solving for w in
terms of 6§ we have
w = (*HH' + I7) " (8*H+017) 77, (3)

Also, since T/w = 1,

1 T (*HH + Ir) 16*Hr

0
TIT((SzHH/ + IT)_ITT
It is easily seen that for the extreme values of 42 = oo and 0 we obtain the
random walk and equal weighted solutions, w(co) = (1,0,...,0) and w(0) =

T-Y(1,1,...,1)’, respectively.
The literature on exponential smoothing has traditionally used a different solu-
tion to address the time varying ;. Write the model in terms of the observables

Y — Ye—1 = OV + 0c(er — €4-1), (4)

which represents an MA(1) process in Ay, with the MA parameter given by +, or
more specifically
Ayt = & — Y61, (5)

where &; is a serially uncorrelated process with mean zero and a constant variance,
and by equating the first order autocorrelation in (4) and (5) we have

v o? 1

1+12 202402 2+02
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Hence,
v (24+6%)y+1=0. (6)

This equation has two real roots given by

2 2\1/2
7_(2+5)ig(4+5) | -

Since § > 0, then v = 14 62/2 — §(1 + 62/4)'/2 is the root that lies within the unit
circle and should be used.* The optimal forecast of y71 is now given by

E(yri1lyr, yr—1,.-.) = yr — ¥,
but since 0 < v < 1 we can invert the MA process to obtain
&r = (1 —vL) " (yr — yr-1),

and hence

E(yrs lyr,yr—1,-..) = yr —y(1—~vL) yr —yr—1),
= (1= (yr +vyr—1 +Yyr—2+...).

In practice, the infinite series must be truncated to yield the ExpS forecast

T
Yr+1 = 11 7T > ATy, (8)
—T =
and the quality of the approximation will depend on T and +, and could be poor
when T is relatively small and v close to unity. For large T" and v not too close to
unity the elements of w; will be very close to (1 —y)y! =t for t = T, T —1,... It
is worth noting that the weights w; add up to unity and adapt to the sample size
T, whilst the MA weights are optimal only for large 7" and when -y is not too close
unity.
Assuming that 0 < v < 1, the relationship between § and v is given by®
s=v 177 )
Oc Nal

This suggests that for values of + in the range 0.95 — 0.99 used in the literature,
changes in 3 (per unit of time) must be quite small relative to o, the size of
innovations to the errors. For example, for v = 0.95, 0, /0. = 0.05, and for v = 0.98
we have o, /0. = 0.02.

2.2 Optimal weights in a model with a single, discrete break

Again consider model (2) but now assume that f; is subject to a single, discrete
break at Ty, 1 <Tp < T,

8, = By fort <Ty
T 6(2) for T, <t <T+1

4Since § > 0 then it is easily seen that 0 <y =1+ 52/2 =01+ 52/4)1/2 <L
SUsing (6), note that (1 — )2 = ~6>.



In this case the forecast is g1 = BT( ) where 6T w) = Zt 1 Wy and

Ty T
Br(w) — Br = (/B(l) - /3(2)) Z we + Zwtﬂa&-
t= t=1
Therefore, the forecast error is given by
ert1(w) = yrq1 — BT(W)

T T
= Oe&&t — (5(1) - 5(2)) Zwt - Ztha&,
t=1 t=1

and the MSFE scaled by the error variance is

2 7
E[Js 6T+1( =1- )‘2 <Z wt) - ngv (10)
t=1

where \ = (B(l) - 5(2))/05.

We can now obtain the optimal weights by minimizing (10) subject to Zthl Wy =
1. The first order conditions are: for ¢t < T} we have 2)\? 221 wy + 2wy + 6 = 0,
and for T, < t < T, 2w;+ 6 = 0, where 6 is the Lagrange multiplier associated with
Zthl wy = 1. Note that w; for t < T}, does not depend on ¢ and the same is true
for wy for t > Tp. Hence

w0, — w():—)\QZt qwe—0/2 for1<t<T,
wp) = —0/2 for T, <t <T

and

Ty
W) — W) = A2 Zwt = )\Qwa(l).

Solving for wyy and substituting into Zle wy = Tywqy + (T — Ty)weey = 1 yields
the optimal weights

1 1
_ 1 11
YO T T TR Th(1 = A2 (11)
and
1 1+ TbA?

YO T TR Th(1 - b)AY (12)

where b =T,/T.
We can use the fact that the weights are constant in the subsamples in (10) to
obtain the scaled MSFE

E(0-%6711) = 1+ (Thhwq))® + Tywly + (T — Tp)wy,

and using (11) and (12) it is straightforward to show that this reduces to

1 1+Tb)\?
E(Gs 26T—i—l) = + T 1+ Tb(l _ b)>\2 (13)
= 1 —I—w(z)

7



Namely, the MSFE varies with A through the post-beak weight, w(y).

We can now compare the forecasts based on optimal weights to those from
a range of competing forecasting methods: post-break window observations, the
optimal estimation window, averaging across estimation windows, and exponential
smoothing.

2.2.1 Optimal window and post-break window forecasts

We now consider the optimal window that gives equal weights to observations within
the window and zero weights to preceding observations as suggested by Pesaran and
Timmermann (2007). Suppose that the optimal window size contains observations
T, to T (inclusive), where v = (T'— T, + 1) /T so that T, = T'(1 — v) + 1. Then, as
we show in Appendix A.1, the scaled MSFE of the post-break window is

9 1
Elo-%F lv=>1-b)] =1+ T =b) (14)
and the expected, scaled MSFE for the optimal window is
1 1 1
—2-9 _
k ("8 eT+1‘“5><1—b>) =t Ta oy T TP e o2 (15)

which cannot be greater than the MSFE (14) as the elements of the last fraction
are non-negative. Hence, the optimal window size is

1-b : 2 T
—t— N> gy
° = 1_2,\2(1—b)T AT=T)T
: 2 T
1 if A < ST=TyVT;

Comparing the MSFEs of the forecasts from the optimal window to that of the
optimal weight forecast, using (15) and (13), we have

E (0£2€%+1lv5>(1_b)) —E(0: %)

1 1 1 1 1+7Tb)\
[T(l —b)  TZ4N2(1— b)Q} " T1+Tb(1—Db)X\2
1 TA%b(1 —b) +2TA%b(1 —b) — 1

= T AT 0PN+ Th(1— b)Y (16)

where the last inequality follows since v° < 1, implies that TA%2b(1 — b) > 1/2.
Therefore, forecasts obtained from optimal weights will have a smaller MSFE than
forecasts giving equal weight to observations in an optimally chosen window. In the
case where TA? < 1/2, the optimal window contains all observations, so that the
comparison is between the optimal weights and equal weights. Clearly, by merit
of the optimality of the weights the forecast based on optimal weights will have a
lower MSFE.

While optimal weights lead to a lower MSFE, it is interesting to get a quan-
titative sense of the difference. Table 1 reports the ratio of MSFEs of different
forecasting methods to that of the equal weight forecast using all observations for a
range of values of A and b. That is, for forecast method i we report MSFE; /MSFE, .
The first line gives the ratio of MSFE for the forecast using optimal weights, the



Table 1: Relative MSFE for a single break in drift for known b and A

b 0.95 0.9

A 05 1 2 0.5 1 2
opt. weights 0.901 0.610 0.258 0.884 0.600  0.258
post-break obs. 0.971 0.628 0.260 0.907 0.604 0.259
opt. window 0.939 0.622 0.259 0.899 0.603  0.259
AveW (vpin = 0.05) 0.966 0.900 0.829 0.941 0.830  0.704
ExpS(vy = 0.95) 0.973 0.924 0.872 0.958 0.883  0.799

Note: The table reports the ratio of MSFEs of a range of forecast methods
to that the equal weight forecasts using all observations, MSFE; /MSFE,jobs.,
where MSFE; is forecasting method ¢. These are (i) using the optimal weights,
(ii) using the post-break observations, (iii) forecast based on the optimal window,
(iv) AveW forecasts with vmin = 0.05 and m = T'(1 — Umin) + 1 windows, and
(v) ExpS forecasts with v = 0.95. Finally, T' = 100.

second line that when using only the post-break observations, and the third line
that when using the optimal window.

It can be seen that the forecast based on optimal weights has the lowest MSFE
across all parameter combinations. The MSFE of the forecast based on the post-
break window is relatively similar to that using optimal weights when either the
break or the post-break window is large (b = 0.9). For breaks of smaller magnitude,
however, the post-break window forecast has a substantially higher MSFE. Forecasts
based on the optimal window perform better than those based on the post-break
window and has the second lowest MSFE.

2.2.2 Averaging across estimation windows

Pesaran and Pick (2011) discuss theoretical properties of averaging forecasts from
sub-windows (AveW). For the case of the random walk (2) they show that the AveW
forecast

m T
" N ) 1
Yyr+1 = E gr+1(v@)), where gri1(ve)) = —7——— Z Ys»
, T-T,,+1
i=1 @ 5=Tu(;
v(;) is the minimum (shortest) window, and m is the number of sub-windows, has
the MSFE

9. A = v — (1—D)
B0 lvg) = 14 |23

v — (1 =b)]
i—1 UG ©

Pesaran and Pick (2011) show that for the case of the random walk it will
improve over equal weight forecasts using all observations unless the break is very
small. This is reflected in the results in the fourth line of Table 1, which report
results for vy, = 0.05. The AveW forecast has smaller MSFEs than the single
window forecast using all observations but they have a substantially larger MSFE



than the forecasts obtained using the optimal weights. The intuition for this result
is that averaging over estimation windows can be seen as a weighting observations
where weights are smoothly decaying. The optimal weights (11) and (12), however,
have a discrete change and will only be approximated poorly by the weights implied
by the AveW forecast. Given the optimality of w(;) and w(y), this means that the
AveW MSFE will be necessarily larger than that of the forecasts using w;) and
w(g). However, these results are not surprising as averaging forecasts is based on
the idea that it will be beneficial when the break date and size are uncertain or
where multiple breaks of unknown time and size may be present. We will explore
such settings in the Monte Carlo experiments in Section 4.

2.2.3 Exponential smoothing

In Section 2.1 we have shown that under continuous breaks optimal weights recover
ExpS weights. While the application of ExpS weights is not optimal under discrete
breaks, it is nevertheless interesting to get a quantitative sense of the loss implied
in using weights for continuous breaks when there is a single discrete break.

The MSFE of the exponential smoothing forecast can be shown to be

14+Tb T\ 2 2T
9. 0 - 1—~ 1—~
E(052€%+1\7)—1+)‘2< 1—9T ) +<1—7Y><1—72>'

See Pesaran and Pick (2011). The last line in Table 1 reports results for v = 0.95.
Similar to the AveW forecasts, the ExpS forecasts improve on the results from the
forecasts using all observations but have a larger MSFE than the forecasts based
on the optimal weights. The reason is that, just as the AveW forecasts, the ExpS
forecasts use smoothly decaying weights for the observations, where we have shown
that discretely changing weights are optimal.

2.3 A single, discrete break in a multiple regression model

We now turn to the multiple regression model where the slope parameters and the
error variance are subject to a single break at time t = Tj,
= ,Bl(l)xt +oqyer for 1 <t <7, (17)

,8’(2)Xt +oper for Ty +1<t<T

where x; is a k x 1 vector of exogenous regressors and ¢; ~ #d(0,1). Again, suppose
that the slope parameter is estimated by weighting observations over the whole

sample

T
Bl = (z wtxtx;) S s
t=1 t=1

Deriving and maximizing the scaled MSFE similar to the derivations in Section 2.2,
we obtain the optimal weights, with the details provided in Appendix A.2. For

10



t < Ty we have
(xS~ (wW)xi] qut (19)

g1
=xp St E Pwlxix, + Z w2xx, (W)xy
t=Ty+1

— [x7487! (W)Sl(w(l)>)‘] [xiS™! (w)S2(W(2)A] ,

and for t > T, +1
(X418 (W)xe] wy (20)

T
2. o | @1
=xp St E FPwxx) + Z wixexy | ST (W)xy
t=Tp+1

+ [XITJrlsf (W)Sl(W(l)))\] [X;Sil(w)sl(W(l))A} .

where A = (,8(1) - ,3(1))/(7(2) and q= 0'(1)/(7(2).

These optimal weights have a number of interesting properties. First, in the
absence of a break, that is when A = 0 and ¢ = 1, then w; = w for all ¢, as to be
expected. To see this, note that when A = 0 and ¢ = 1, then for all ¢ we have

871 (w) (0, wixixg ) S (w)x,

X/T+1S_1(W)Xt

wy =

It is now easily seen that w; = w (fixed) is a solution to the above. Note that for
wy = w, we have S(w) = wS(1) and therefore

xS (1) (ZL XtXQ) STHLx % STHL)S(1)S (L)%,
“H(1)x

wt = = w.

w=x  STH(1)xy - wx S
Consider now the case where XA # 0 and ¢ # 1, but suppose that x; = xs, then
using (19) and (20) the optimal weights for t = 1 and ¢t = 2 we have

¢ X1 STH(w)xa] (w2 —wy) = 0.

Hence, the weights within a given regime will be the same if the regressor values for
the two points of time in that regime are identical. But the same is not true of the
weights for time points in different regimes. For example, for the first regime select
t = 1 and for the second regime select ¢ = T, and suppose that x; = x7. Then
from (19) and (20), and recalling that it follows that Si(w(;)) + Sa2(w(9)) = S(w),
we have

[X/T+1871(W)XT] (wp — q2w1) = [X'Tﬂsfl(w)sl(w(l)))\] (X’T)\) ,

which suggests that, in general, when A % 0 and ¢ # 1 the weights across the two
regimes differ even if the regressor values are the same. Therefore, in general, the
optimal weights will differ both within and across regimes.

11



An exact analytical solution does not seem to be available and the unknown
weights in (19) and (20) must be solved numerically. To this end let

T, T
d(w) =S~ (w) ZQQWEXtXQ‘i' Z wixix; | S7HW)xr 1
=1 t=Ty+1

pi(w) =871 (w)S1(w))A, and  pa(w) =S7H(W)S2(w(z)A
(W) = X787 HW)S1(w())A
Ot(w) = {

where d(w), p1(w) and pa(w) are k x 1 vectors, and y(w) and 6,(w) are scalar
functions of w. Then, the T equations in (19) and (20) can be written as

% ST Hw)x, it < T,
X ST Hw)x,  ift > T,

Ow)ow = Xd(w)+vy(w) ( _Xil)P2<W) )
= Xd(w) +7(W)Z(w),

/
where X is the T' x k matrix of observations on x, X = (X’(l),X’(2)> , X(1) and

X2y are Ty x k and (T'—Ty) x k matrices of pre-break and post-break observations
on x. Also O(w) = (01(w),02(w),...,0p(w)) and ® denotes element by element
vector multiplication. We now need to minimize the function

m“i,n ' (w)f (w)

subject to ¢/-w = 1 and w; > 0, where
£(w) = B(w) © W — Xq(w) — (W) Z(w).

The asymptotic weights given in Section 2.3.2 below can be used as starting values
for the numerical optimization.

2.3.1 A single, discrete break in a model with one regressor

Analytically more tractable results can be obtained when & = 1. In this case the
scaled MSFE (56) simplifies to

(21)

_ 37T+15(W 1 )/\ ?
Elogled(w)] = 1+ [”

S(w)
22 (ZTb 2w2x2+ZT w2$2)
T+1 t=194 Wy Ty t=T,+1 Wt T¢

[S(w)]?

+

where A = (B(1) — B(2))/0(2), and the first order conditions (19) and (20) simplify to

T 2.2

il - Rl ot <,
U Ehudad | pesiva) for t > Ty +1

Sw) A 5w ort =1y +

12



Similar to the case of model (2), w; for ¢ < T} does not depend on t and the same
is true for wy for ¢t > Tj. We can, therefore, set

weyy for t < T
wy = (1)
w() fort >1T,+1

Using the above results it now readily follows that U}(g)—q2’U)(1) = w(l)Sl(l))\2, where
Si(1) = 21 x?. Also using the constraint Zthl wy = 1 we have w)Ty + (T —
Ty)w(g) = 1. Hence, for T} reasonably large, which is not a restrictive assumption

for the problem under consideration, and solving for w(;) and w(,) we obtain

1 1

_1 22
YO T T (1= b)(2 + ThAZw?2)’ (22)
o = & ¢* + ThbA’w? (23)
@7 Th+ (1 -b)(g® + ThA2w2)
where w2 = plimg, (4 ST, 22).
Given that for the optimal weights we have that wg()ptlmal) = w(y) for t <Tp and
wEOpﬁmal) = wyg) for t > T}, (21) can be rewritten as
. 22, wib(Thg? + ¢*) + wy (1 - b)
E (O.(*Qie%_i_”wg pt~)> ~ 1 + T+1 (1) (2) (24)

Twi wwb+ (1= bug)”

From (22) and (23) it can be seen that we) = (Th¢* + ¢*)w(r) and (24) simplifies
to

2
_ t. T4
E (0'(2§€:2Z~+1"LU§OP )> ~1+ w;— w(g)y-
x

Namely, the MSFE varies with A and ¢ through the post-break weight, w,. Note
that
-2 t.
OF (U(2)e%+1’w§0p )> . b

_ >0
g Tw2 b+ (1 — b)g + Th(1 — b)d2)2

In the standard case where the estimation uses the entire sample with equal
weighting, that is, wieq') =1/T,
—1 Tb 2
T, > i
i=1

E(oGalof™) = 14824, | —5—
(2) T-137 x

Ty
b(¢*—1) %, TS a? )
1 t=1 1 Ty
tr 2 T\ 2
(T_l i 55?) T

or approximately

_ o x5
E <O'(2?6%+1|’wt( q')) ~1-+ 73);1 [b2¢2 +

T

bg® + (1 —b)
)
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where we have used that for T}, large and T — T, small w? = plimp_, (% Ethl x?),
and ¢? = w2\2. ¢ and ¢ measure the sizes of the breaks in 8 and o, and b gives the
proportion of pre-break observations.

Comparing MSFE of optimal weights with the one based on equal weights we
have

2 Tb2 2 1—9b 2 2
(MSFEey — MSFEpy) = b(Th" ) + (=) Tho” +4

23, T T+ (1 —b)(The? + ¢)]

_ b1 -D)-Th P
T[b+ (1 —b)(Th¢? + ¢2)] '

Similarly, when w; are set independently of z; (as in the case of exponential down-
weighting) we have

2

Ty T
£ (oeta) = Tt o (Sou) < 0T St
t=1 t=1

When only post-break observations are used, the implicit weights are wngSt) =0

for t <Tj and wﬁpOSt) = (T —Ty) /T for t > Ty. We therefore have

E( 22w post)> Nl_i_x?rﬂ 1
T(2)T+11% - w2 T(1-0)

Comparing it to the MSFE based on post-break observations we have

w2 b

o (MSFEpost = MSFEopt.) = 5 =3 55 (1 = ) (Tho® 1 )

> 0,

namely, optimal weight forecasts dominate post-break forecasts for all values of
0 < b < 1, but, as to be expected, the superiority of the optimal-weight forecasts
diminishes as T'(1 — b) — oo.

2.3.2 Asymptotic results with £ > 1 stationary regressors

The general solution in (19) and (20) can be simplified if we assume that 7' and
T, are sufficiently large with T' — T; fixed, and x; is a stationary process with
E(x4x}) = Q,z, a positive definite matrix. That is we assume that 7' — oo and
b — 1but T(1—b) — 7, where 7 is a relatively small, constant number of post-break
observations. Under these assumptions (and conditional on the weights, w;)

T
S(w) — (Zwt> E(x:x}) = Qup (25)
til .
Si(way) — (Zwt> E(x/x}) = (Z wt> Qs (26)
t=1 t=1

and

T T
waxtx; — (Z w?) Quz, (27)



and the MSFE simplifies to

E(o (2§€%+1) =1+ (x741) (Z wt> (28)
Ty
+ (XLFHQ;;XTH) Zq w; + Z w;
t=1 t=Tp+1

The solution is similar to the case for £ = 1 and is given by

1 1

_ 2
o Tb+(1—b)(q?+ The?)’ (29)
1 q> + The?
ve) Tb+ (1-1b)(@ +Tbp?)’ (30)
where .
_ X7 A
(X/THQ;xlXTH)I/?

The above result is also in line with the result obtained for the simple case of k = 1.
In that case Q. = wg and ¢ = Aw,.

2.4 Multiple discrete breaks in a multiple regression model

Consider now the case of multiple breaks in the slope coeflicient of a linear regression
model
yr = Byxs + oy

where the parameter vector 3, is subject to n breaks at points b; = T}, ; /T, such
that b1 < by < -+ < b,. For simplicity of exposition here we assume that the
error variance is not subject to breaks. Initially, assume that n = 2, such that the
parameter vector is
Bay forl<t<Tp,
Bi =B forThy <t<Tp»
ﬁ(3) for Ty, <t <T

Using the weighted least squares estimator (18) we have that

R T

Br(w)—B) =S~ (W) [S1(wa))(Ba) — Bs) + S2(W(2)) (Bea) — ﬁ(s))} +87H(w) Y wixyoey,
t=1

T T
where S1(w(1)) = >0 wixiX}, Sa(w(y)) = Zti,’;b,l-l-l wxyxy, and S(w) = Z?:l WX
Consequently,

er+1(W) = yrq1 — XT+1BT(W)
= oery1 —Xp ST H(w) [Sl(wl)(:@(l) —B) +S2(W(2)(B2) — Bes)

—I—X/7~+1 S_l(W) Z WXtOE¢

15



and

_ _ 2
E [O’ 2€%+1(W>] = 1+ {X/T+1S 1(W) [51(W(1))>\(1) + SQ(W(Q)))\(Q)]}
T
+x 1S H(w) (Z w2xtxt> ST (W)xr41
t=1
where 3 3 3
Ag) = (1) ) and A@ = &) 3)
o o
Optimal weights can therefore be obtained from
w* = argmin f(w),
subject to ¢'w = 1, where
_ 2
fw) = {xp1S7HwW) [S1(way)Aa) + S2(wWiz))A@)) }
T
+x7 1S (w) <Z w?xpc%) S™Hw)xpy1. (31)
t=1

The first order conditions are

wy [X’THS_I(W)AtS_l(W)XTH] = xS Hw) [Sl(W(l)))\(l) + Sg(w(g))/\(g)]
x {xp 187 (W) ASTH(W) [S1(w(1)) Ay + S2(w2))A2)] — X717 (W) AN }

T
+xp 1S (W) AS T (w) (Z w?xtxff) S™Hw)xri1 +6/2,
t=1

where again 6 is the Lagrange multiplier associated with ¢/'w = 1 and

Ay it <Ty,
A= A(Q) if Tb’l <t< Tb,2
0 if Tb’g <t<T

Again, by multiplying both sides by w; and aggregating over ¢t = 1,2,...,7T it can

easily be verified that 8 = 0.
Hence, for x; # 0 the optimal weights are

v~ XS [Siwe)Aa) + SiWe)Ae] |
X,T+1871(W)Xt
X {Xésfl(w) [Sl<W(1)))\(1) + SQ(W(Q))A(Q)]}
xS (w) (L wixixt) 7 (w)xi
x’THS_l(W)xt
X 8THW) [Si(wy) A + Sa(wig))A)] (1)
X%+1S_1(W>Xt

_|_
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For n breaks it is easily seen that

xS (w) {Z}L—f Sj(W(j))A(j)} {Xés_l(w) [23':11 Sj(W(j)))‘(j)H

W =
! x’THS_l(w)xt
xS 7L (w) (D7 wixix)) ST (whxier %487 (w) [S02] 85(w0) A0 | (iAw)
* x/, . STHw)x a xS H(w)x ’
T+1 t T+1 t
where

,\(1) _ Bw=Bu+y if t <Tpq

a

A = 2o Pesn gy cr <y,

g

)‘(n) — B)=Bn+1) if Tbm_1 <t< Tb,n

[

0 if Ty, <t<T

As in the case of a single break, numerical methods are necessary to obtain the

weights.

2.4.1 Optimal weights for multiple breaks in a simple regression model

In the case of a single regressor we can solve for the weights analytically. In this

case, (32) simplifies to

o = BV + 52 (We)Aol® | 3o, wing
! S(w) S(w)

where A(;) is defined as above but is now a scalar. Therefore, defining S1(1) =

ZtTii 2?7 and S3(1) = ZtTi%b 41 22, solving for the optimal weights yields

= [S1(wW) Ay +S2(W2)) A2y Ay

1 1+ )\%2)52(1) — A A@2)52(1)

wo T 7 52
11+ )\%1)51(1) — A A@2)S1(1)
We) = 7 s
vy = 11+A%Sﬂn+A@Sﬂn
T s 2

where as2 = 1+(1—b2) Sl(l)A%l) + 52(1))\%2)} +[)‘(1) - /\(2)] [(bg — bl)Slﬂ)A(l) — blSQ(l))\(g)] .

This result generalizes to n breaks where

1 1+ E?:l,j;éi )‘%j)sj(l) = A6 2?:1,#1’ )‘(J')Sj(l)

w(i)|i <n = T -
LY S
Wn+1) — T Qan
and
n+1 n n n
Qsp = 14 Z(bl - blfl) Z /\%j)Sj(l) — Z A(l)(bl - blfl) Z )\(J)Sj(l)
=1 =141 =1 j=1,j£1
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2.4.2 Asymptotic results in the multi-break case with k£ > 1 stationary
regressors

Similar to the case with one break, we can simplify the solution when there are
two or more regressors if we assume that many observations are available between
breaks and x; is a stationary process with E(x;x}) = Q... Note, however, that we
make no assumption about the number of observations since the last break. Initially
consider the case of two breaks. In addition to (25) and (27) we have

Tb,l Tb,l
Si(wy) — Zwt E(xiz)) = Zwt Q.0
t=1 t=1

Tb,2 Tb’g
SQ(W(Q)) — Z Wt E(thg) = Z Wt sz
t=Tp1+1 t=Tp1+1
Then (31) simplifies to
Tp,1 Tp,2 2 T
Fow) = [ [ A D_we+ A D, wi || + X Y wiQuexr .
t=1 =T} 1 +1 =1

The optimal weights are therefore

11T - b1)¢7y — T(b2 = b1)dyd(a)

W) = . (33)
1 141197, — Thidyd(2)
W) = 7 : )aa ; (34)
1 L Thigy + T(ba — bi)epy, 55)
w@) = T Qg9

where Qg2 = 1 +T(l - bg)bl(ﬁ%l) +T(b2 - bl)(l — b2)¢(22) +Tb1(b2 — bl)(gf)(l) — ¢(2))2
and

X A
by = - @ g fori=1,2.
(X/T—s—l Q. XT+1)
An interesting result is that the weights for two breaks are not necessarily de-
creasing in the distance from 7'. In particular,

o w) > wz) > w) if ¢1) <0, g2y > 0 and big(y) > —(ba — b1)P(2)
o w) > wz) > w) if ¢1) >0, g2y <0 and b1y < —(ba — b1)P(2)
® w) > wz) > wq) if ¢1) <0, g2y > 0 and b1y < —(ba — b1)P(2)
® Wy > w(z) > w) if ¢y >0, P2y <0 and b1g) > —(ba — b1)p(y)

Figure 1 plots the weights for 7" = 100, by = 0.3, by = 0.6, ¢y = —0.5 and
¢@2) = 1.5. Under this parameter constellation it is easily seen that w() > w(g) >

w(Q) .
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Figure 1: Weights for 7' = 100, by = 0.3, b = 0.6, ¢(1) = —0.5 and ¢ o) = 1.5

x10°

16

14y

12r

Note also that the weights w(;) and w() can be negative. We do not restrict the
weights to be positive as the weights (33), (34), and (35) give a unique minimum.
In the case of n breaks, the weights for the n + 1 segments are given by

Wipin = 1L+ T30 (b = 0=y — Ty Xy jeibj = bj—a)
ilisn = 7

LTS (b — by )6,
Wn+1) = T

Qa,n

Qa,n

where don = 1+ T Y% (b = biot) X 0 67 (b5 = b1) = T X0 dy (b —
bi_1) Z;L:l,j;él ¢%j)(bj —bj—1) and by = 0.

3 Optimal weights when the time and size of the break
are uncertain

So far we have assumed that the time and the size of the break are known. However,
this may not be the case in many situations of practical interest. In particular, the
size of the break is difficult to estimate unless a relatively large number of post-break
observations is available.® It is, therefore, worthwhile to develop weights that are
reasonably robust to the point and the size of the break(s). As a simple example,
consider the model with a single break at time 7} both in the slopes and the error
variances. Using (22) and (23) we first note that

1
T =
YO T (A= b)2 + To(1 — b)g?’
2 2
q +Tbp
Twe) =

b+ (1—0)g?> 4+ Th(1 —b)gp?

SAlso in finite samples distribution of the estimated break point does not have a closed form
expression and depends on the distribution of x: and ;. (See Hinkley (1970)). Asymptotic re-
sults can be obtained that do not depend on the distribution of the regressors or the error term
(e.g. Bai 1997), but such results might not be reliable in small samples.
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where ¢? = \202, with @2 = T~} ZtT:l x?. The time profile of the weights can be

T
written as

Twi(b, ¢, ¢*) = w2y + [way — wey] AT, — 1)
fort=1,2,...,T. Hence

2

g
b —b)q?
+(1T )g +b(1 — b)¢?

T+ by’

Tw(a7 b7 q27 ¢2) =

] 1(b—a), (36)

where a = t/T € [0,1], and as before b = T},/T € [0, b], where b < 1.
Initially, consider the case where the break is in the error variances only, namely
¢ =0 and ¢%> # 1, Then

q2

l1—gq
ﬂ”“@f):b+u—wm2+[h+u—bm4lw_“%

or

1 Y
Tw(a,b,q”) = 1+hﬁ+<1+b¢>ﬂb—a)

where ¢ = (1 —¢?)/¢* = (0(22) - 0(1))/0(1). It is also worth noting that w)/wg) =

1 —|— P = (22) /0(21), and more weights will be given to pre break observations if

( ) > 0(2 1) and wice versa. This is in line with the result obtained by Pesaran and

Timmermann (2007) using the concept of the optimal window.

In situations where b and ¢ are uncertain their effects on the optimal weights
can be integrated out with respect to a given distribution of b and ¢%. Here, we
assume that b and ¢? are independently distributed and focus on the uncertainty of
b for a given value of ¢% or 9. For b we assume that it is uniformly distributed over
the range b and b, namely the probability density of b is given by

Q ifb<d B
fby=< (b—0b)"' ifb<b<b
0 ifb>0.

The expression for w(a, ¢*) depends on whether a falls within the range [b, b] or not.
Specifically we have,

(b—b)~ jfﬁ%@ ifa<b
2 . 7
Tw(a,q®) =< (b-b)" ﬁ]+wdb+b S S0 pdb ifb<a<h
(b—b)~" J b ifa>b

Also, it is easily seen that

and hence

TwWA%—%5—®4[¢4bg<



Figure 2: Robust optimal weights (37) for break in variance, T' = 100, ¢> = 0.5,b =
0.3,b=10.9
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Since 1) = (1 — ¢?)/q¢?, we can also write

_ I V2 .
(b—b)! 1,1q2 log <Zigi,gggz) ifa<b
_ T 7\ 2 o 72 . _
Tu(a,¢?) = (-6 |15 log (Frip% ) +log (LHESG )] ife<a<)
S g br(1-b)g? e
(b—b)"' 1% log (918_532) if a>b
(37)
Over the range b < a < b
2 2
Towla,q) _ Gy —U=d) _ 1 %)~ %
da Toat(-a) b-bopyla+(1-a)g’]

and the optimal weights w(a, ¢>) monotonically rise (fall) with a if 0%1) > 0(22) (0(21) <
0'22 ). In other words, more weights will be placed on more recent observations only
if post break error variance is smaller than pre-break error variance. This result
holds for all values of T. Figure 2 shows the optimal weights for T' = 100, ¢*> = 1/2,
b=0.3 and b=0.9.

The expression for w(a, ¢?) simplifies further if we assume that the break point
could be any point within the range (0,1). For this case we have

Tw(a,q?) = - log (q2) —log [a+ (1— a)q2] , 0<a<l.

A discrete time approximation is given by

_1 ¢
CT1—¢g?

1 t t
log (¢°) — 7 log [4-(1—)(12], t=1,2...T.

we(g?) T 7

As to be expected, lim,1 Tw(a,q?) = 1. Furthermore, it is easily seen that
w(a,q?) = w(l—a,1/¢?). Using these results the uncertainty regarding the value of
¢? can be integrated out by assuming a suitable density for ¢?>. We shall not pursue
this idea, since we will show below that the effects of breaks in error variances are
dominated by the potential effects of breaks in slope coefficients.
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Consider now the more general case where #? > 0. Using (36) we have for
b<a<bd
¢ 1—¢?
Z5m + b —b
T T
Tw(avbv q27¢2) = ¢ +
PO fp(1—b)  HDE 4 p(1 - b)

I(b—a),

For given values of ¢*> and ¢? and assuming that b lies in the range [b,b] with
0<b<b< 1, wehave forb<a<b

b %72 + b
Tl o) = [ &7 db (35)
‘ b [42+§11¢*2q2)b} 4 b(l _ b)

b ¢
T
+ / db,
o PEODE b1 - )
This result further simplifies when ¢? = 1, and we have (for b < a < b)

b4 2T b bT ¢
2 92 4y _ — &2
Tw(a|¢®,q —1>—/b T - ? / T b1 - bT2 "

It is now easily seen that

ow(a ‘ng,qQ =1) _ ag?

T =
da T-1+a(l—a)¢?

> 0,

namely, for all values of ¢> > 0, w(a ‘(Z)z,qQ = 1) is a monotonically increasing
function of a with the observations farthest from the end of the sample getting the
smallest weights. The decay rate of the wights depends on 7. When ¢ # 1, we
have ,

Taw(a‘¢2,q2) B —(%—a)

TR =

2
In this more general case the weights increase monotonically in a if a > 1¢_2(71, , which

is clearly satisfied if ¢> > 1.

3.1 Large T approximation

Consider now a large T approximation of the optimal weights and note that
2 1—qg2

£ (—d)‘fT—b)I(b—a)

Tw(a,b, 7, ¢2) = b(1—b) (1 + %) b(1—1b) (1 + %>

)

where 0 = [2 + (1 — g2)b] /¢2b(1 — b) > 0. Using (1+ £)™' =1 - £ + O(T2),
and replacing 6 in terms of b, ¢, and ¢, we have

o o 1 1 1 s ¢* + (1 —¢*)b
Tw(a,b,q",¢%) = 1-b ml(b—a) + T Lﬁ?b(l —b) h #?b(1 — b)?
1 1-¢  ¢@+(1-¢"b
YT e —n) T (1 — b2

] I(b—a)+O(T?).
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Figure 3: Robust optimal weights (40) for break in variance, T' = 100,b = 0.3,b =
0.9
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But since
¢ A= FU-b)-¢-01-¢) -1
#?b(1—b)  ¢*(1-b)? $?b(1 — b)? (1)
1-¢>  @#+0-¢ (1-)0-0+F+01-¢)b 1
(1 —b) = $2b(1—b)2 $2b(1 — b)2 T 92b(1 — b)2
the weights profile simplifies to
1 1
Tw(a,b,¢* ¢*) = T ml(b —a) (39)
1 1 1 1 _2
7 [ =ap) * 7 [ 100 + 0T

It is interesting that the first order term in this expansion does not depend on the
sizes of the breaks, and depends only on the break point, b. Also, the terms up to
order 7! are independent of ¢ as long as ¢?> > 0, that is, a break in the error
variance is dominated by a break in the mean of the process.

Therefore, for large T, robust optimal weights are determined by the distribution
of b. Here, we assuming that b ~ Uniform(b,b) with 0 < b < b < 1, and obtain

0+0(T1), . fora<b
Tw(a)={ G- f) gdb— (b=~ [ db+O(T™Y), forb<a<b
(b—0b)~! ff) Tdb+ O(T™1), for a > b
and
0, ifa<b

—1

_ -1 1—a . < < T
w(a) = T(b-b) log (11)) , ifb<a<b (40)
_1 1—b . —
mlog<g>, ifa>b

Figure 3 shows the approximate optimal weights for T = 100,b = 0.3 and b = 0.9,
assuming that ¢ > 0.
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In the case where b and b are close to the end points of 0 and 1, we have

w(a) ~ —log(1 —a)

T ,a€[0,b]. (41)

A discrete time version can be obtained by setting Tb =T — 1, or b =1 — 1/T.7
Namely,

—log(1 —t/T
w: = 0%1(_1/),f01‘t:1,2,...,T1 (42)
-1 T-1 log(T)
R 1 1— = 43
wr T—10g< T > T-1 (43)

Due to the approximation/discretization these weights do not sum to unity, and

can be scaled as §

Wy
=———— fort=1,2,...,T. (44)
T * b b b )
Zs:l Wy
For b and b close to the end points of 0 and 1 and using calculations detailed in
Appendix A.3, we can also obtain the MSFE implied by the robust weights (40) as

W

o[ (ogehan) ~ 1] 2 b+ (1 )log(1 — b (45)

Ly
(¢ - 1)

7

[—(1 — b [log(1 — b)]2 + 2(1 — b)log(1 — b) + 2b} + %

Comparing this result to the equal weight MSFE we have

;}7926 (MSFEeq. - MSFErobust) = ¢2¢¢(b) + @2;1)%(5) - %7
TT41
where
bo(b) = [b? = b+ (1 = b) log(1 — )|
= [2b+ (1 —b)log(1l — )] [—(1 — b)log(1 —b)],
and

1q(b) = (1 —b) [log(1 — b)]* — 2(1 — b) log(1 —b) — b

Consider the case where ¢ = 1. Then

w2 L
—5" (MSFEcq. — MSFE,opust) = ¢°6(b) — -
T+1

It is easily seen that for values of 0 < b < b, 1 (b) > 0 and attains its maximum
at b = 0.80 giving ¥(0.80) = 0.41. For relatively large breaks the robust optimal
weights will dominate the equal weights in MSFE. Only in cases where T and ¢ are
small and b close to the beginning of the sample one would expect the equal weights
to perform better than the robust weights.

"Clearly, one could set b to other values close to 1, say 1 — 0.5/7. But for relatively large T,
the choice of w7} for the forecasts is unlikely to be of great importance.
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Figure 4: Comparison of optimal weights, robust optimal weights, and fitted expo-

nential smoothing weights, ¢? = 0.1 various ¢? and T

T=50 q?=0.5 and ¢?=0.1 T=500 ¢%=0.5 and ¢?=0.1

0.09

0.014

0.081
0.0121

0.07-

0.01-
0.06

----- w(ale’.¢)
Wl
= = = ExpS(y=0.99432)

----- w(ale’.¢)
Wl
= = = ExpS(y=0.97817)

0.05r 0.008

0.04 !

0.006 -

.
s
h

0.03
0.004 -

0.02

-
T
R

- 0.002
0.011

o
L

. . . . . . .
0 10 20 30 40 50 0 100 200 300 400 500

When ¢ # 1 the relative performance of the two sets of weights depend on the
sign of (g% — 1) ¢g(b). It can be shown that 1(b) > 0 if b < 0.91, and negative

2_
otherwise. However, for reasonable values of ¢? (say 1/2 or 2), the term (a T D) 1hq(b)
is relatively unimportant when 7" is 100 or more. Note that maxg<p<o.95 [14(b)| =

0.202 and for T' = 100 the contribution of (qu_ 1)z/Jq(b) to the relative performance
of the two weights can be ignored, unless ¢ is very small and b very close to 0 or 1.

It is also interesting to explore the fit of the robust weights and the ExpS weights
to the optimal weights for a range of T', ¢* and ¢2. Figures 4 and 5 plot the optimal
weights w(a|q?, ¢?) in (38), the robust weights, w;, in (44) and the exponentially
smoothing (ExpS) weights used in (8), where v is now set so that the distance
between w(a|q?, $?) and w§(7) is minimized. The plots show that the accuracy of
the robust optimal weights depends largely on ¢?: for larger ¢ the robust weights
are very close to the optimal weights, for the smaller ¢? a good approximation
requires large 7. The plots also show that, as predicted by our theory, ¢ has a
very minor influence that is only visible when T and ¢ are both small. Finally,
the down-weighting parameter v in the exponential smoothing weight that best
approximates the exact optimal weight varies between 0.944 and 0.994, and the
ExpS weights generally give too low a weight to the most recent observations as
compared to the optimal weights.

Robust weights that allow for high order terms in the expansion (39) are provided
in the Appendix A.4. However, we will not pursue them further in this paper.

3.1.1 Robust weights for regression models with two breaks

Consider the case of two breaks, where the weights conditional on b and A are given
in (33) to (35). Clearly, b < by < by < b and Pr(b1,bg) = Pr(b1)Pr(b2[b1), further
by < by < by and by < by < by where by < by and by < by, then

0 if by <bl
Pr(b;) = ﬁ if by < by < by

0 if by >l_)1
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Figure 5: Comparison of optimal weights, robust optimal weights, and fitted expo-

nential smoothing weights, ¢? = 1 various ¢> and T
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Analytic solutions for the robust weights under two breaks are not easy to obtain.
However, we can obtain numerical solutions using (33) to (35) and integrating over
a grid for b; and by taking into account that b; < by and setting by = 1/T", by = 2/T,
by = (T —2)/T and, finally, by = (T — 1)/T.

Figure 6 plots the robust weights for two breaks and T = 100, where the first
graph reports the weights for ¢(;) = —0.5 and ¢(9) = 1.5, the second for ¢(;) =0
and ¢ () = 1, the third for ¢(;) = 2 and ¢y = 1. It can be seen that the shape of
the weights depends on the parameters chosen. The first graph the parameters ¢(y)
and ¢(9) are those that under known break dates resulted in the example in Figure 1
where the first subsample receives the largest weights. The pattern is the same with
the very early observation receiving higher weights than the last observations. The
second graph is for parameters that would lead to equal weights in the first and last
subsample if the break dates were known. The final graph uses breaks that decrease
in size, which results in continuously increasing weights.

In practice, given that the break date is uncertain, the size of break is also likely
to be unknown. In addition to the break date, we therefore also integrate over
the break sizes in the weights. Figure 7 plots the weights when ¢(;) and ¢ are
integrated with respect to a unform distribution in the range —2 to 2. The first
graph shows the weights for T' = 50 and the second for T" = 200. It can be seen that
the shape of the weight function is largely independent of the sample size. Most
weight is given to the most recent observations. Interestingly, the first observations
receive a higher weight than the observations in the middle of the sample, which
reflects the possibility that the two weights could counteract each other.
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Figure 6: Robust weights for two breaks, T' = 100, and different values of ¢(;) and
¢2)

Robust weights for two breaks, T=100,¢,=-0.5 and §,=1.5 Robust weights for two breaks, 9,=0 and ¢,=1 Robust weights for two breaks, T=100,¢,=2 and g,=1

Note: The first graph plots the weights for ¢(;) = —0.5 and ¢(2) = 1.5, the second for ¢y = 0
and ¢(2) = 1, and the third for ¢(;) = 2 and ¢(2) = 1. The weights are given in (33) to (35) and
integrating uniformly over b1 and b2 over the range 1/T to (T —1)/T.

Figure 7: Robust weights for two breaks and ¢() and ¢ o) integrated out, T = 50
and 200
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Note: The first graph plots the weights for 7' = 50 and the second for 7" = 200. The weights are
given in (33) to (35) and integrating uniformly over b; and bs over the range 1/7 to (T —1)/T
and ¢(1) and ¢(2y over the range —2 to 2.

4 Monte Carlo evidence on the forecast performance

4.1 Data generating process

We now turn to evaluating the performance of the forecasting methods discussed
above in a range of Monte Carlo experiments. The first series of experiments concern
the continuous break model (2) in Section 2.1. A second experiment concentrates
on the random walk model (2) with a discrete break discussed in Section 2.2. In
this model the MSFEs of the different forecast models are known conditional on T}
and A\ and have been reported in Table 1. The Monte Carlo experiments will show
how much the uncertainty around the break date and size affects the forecasts. In
a final set of experiments we add a regressor in the design using the simple linear
regression model discussed in Section 2.3.1.
The first model considered is

yr = e + orer, €~ N(0,1) (46)
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where the mean follows a random walk
pe = pg—1 + opve,  ve ~ N(0,1)

and t =1,2,...,7,T+1 with T' = 50, 100, 200, and v = {0.8,0.9,0.95,0.98}, which
corresponds to 0 = o /o, &~ {4.471,9.487,19.494,49.497}.
Next, we assume that the mean in (46) has a discrete break

_ ] ra t <Ty _J oo t<Ty
He { H(2) t>1T, and oy 0(2) t>1T,

and t = 1,2,..., 7,7 + 1 with T" = 50,100,200. We set b = {0.95,0.9}, A =
(1) — m2))/o@) = {0.5,1,2} and q¢ = 0(1)/0(2) = {0.5,1}. We assume that Tj, A
and ¢ are unknown and have to be estimated.

The third model adds a regressor, such that

Y = Prry + o, € ~ N(0,1)

where

_ ) Bay t<T _Joow t<T
ﬁt_{ 5(2) t>1T, and oy = 0(2) t>1T,

we set b and X as in the second experiment but restrict attention to ¢ = 1. Regressors
are generated as x; ~ idN(0, 1), and forecasts are conditional on xpy;.

Forecasts based on the full estimation window with equal weights will serve as
the base line to which all other forecast methods are compared. We also include
forecasts based on the optimal weights that use the true parameter values of the
break process as another baseline method. This baseline provides an upper bound
to the performance of the feasible forecasting methods. For model (46) with the
continuous breaks the weights are given by (3), for the model with discrete breaks
the weights are given in (11) and (12), and for the simple regression model they are
given by (22) and (23).

We then estimate v from an MA(1) in first differences, which also yields an
estimate of § via (9). The MA(1) estimation at times suffers from a relatively
flat likelihood, and for this reason we restrict this estimation to the random walk
model. We also report the MSE of the estimation of . We forecast the model
with weights (3) using the estimated é and by ExpS with weights (7) using 4. For
comparison we also add ExpS forecasts based on v = 0.95 and v = 0.98.

We use the Bai and Perron (1998, 2003) procedure to estimate the break dates,
b =(b1,b2)’, and conditional on these dates the break sizes, A = (A1), \(2))’. We
then use these estimates to compute feasible forecasts based on the optimal weights
(11) and (12) in the random walk model or (22) and (23) in the simple linear
regression model with b and X in place of b and A. For the DGP with continuous
breaks we allow for two breaks, for the DGP with a discrete break we restrict
attention to testing for one break.

We also make forecasts using the robust weights developed above. First, we
assume that the forecaster uses the information that the break is in the last quarter
but not in the last 2% of the sample. The corresponding weights are given by (40).
Second, we assume that break dates in the full sample are equally likely with the
weights given in (44). Finally, in the experiments with continuous break process we
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use robust weights assuming two breaks, where the weights are calculated numeri-
cally integrating over (by > ba) and ¢(1) and ¢ 9y over the range —2 to 2.

For comparison, we construct forecasts based on the observations after the es-
timated break date and using optimal estimation window based on the estimated
break date and size. Given uncertainty over the break dates, we also average over
estimation windows with minimum window vy, = 0.05.

Using each of these methods we construct one-period ahead forecasts and base
comparisons on the MSFE. We report the ratio of MSFEs relative to that of the
forecasts using equal weights, MSFE,, , so that for method 7 we have

MSFE;

eq.

(47)
The results are based on 10,000 replications.

4.2 MC Results

Continuous breaks DGP Table 2 reports the results for the DGP with con-
tinuous breaks. The first line reports the results for the infeasible optimal weights
forecasts based on the true d, which produces forecasts with the largest improvement
in MSFE relative to the full sample equal weight forecasts.

The second and third line contains the results for the optimal and ExpS weights
based on the estimated & and 4. As suggested by our theoretical results in Sec-
tion 2.1, these two forecasts are identical. Table 3 reports the MSE of the estimation
of ~v across the experiments, and the MSE decreases foremost in T" and to a lesser
extent in . This is reflected in the forecast results, which are close to those for
known § when T is large but less so when T = 50.

The next two lines report the results for v = 0.95 and 0.98, which are set a priori.
The benefit of using an a priori given value for v versus estimating it depends on the
deviation of the selected v from the true value and on the estimation uncertainty of
4. ExpS with fixed parameter v = 0.95 improves on its estimated counterparts when
the true ~ is at least 0.9 for 7" = 50 and 100 or v = 0.95 for T" = 200 as it avoids
the estimation uncertainty. However, it can result in considerably worse forecasts
when the true v is below 0.95. ExpS with v = 0.98 improves on the estimated
counterpart when true v is at least 0.95 when 7' = 50 and 100 but for T' = 200 it
required the true v to be 0.98. These results clearly show the sensitivity of ExpS to
the a priori choice of v, even if the underlying break process is continuous as the
theory of ExpS requires.

Amongst the methods that assume a discrete break, the robust weights generally
perform best. For smaller v the robust weights integrating b over the range b = 0.75
and b = 0.98 deliver the best forecasts. Notably, for true values of v = 0.8 and
0.9 and T = 50, and for v = 0.9 and 7" = 100 they deliver the best forecasts of
all feasible forecasts, including those that assume continuous breaks. For larger ~’s
the robust weight forecast performance remains close to that of the methods that
assume discrete breaks.

Forecasts based on optimal weights under the assumption of discrete breaks
perform well when v = 0.8, that is when g; has a large variation. For larger ~
the performance deteriorates and for the v = 0.98 it is generally worse than the
equally weighted forecast. The results for the forecast from the optimal window
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are similar to the optimal weights forecast. The post-break window forecast is the
least favorable forecasting methods in this setting and often leads to the highest
MSFE. In short, the robust weights proposed in the paper are likely to perform well
even when the underlying break process is continuous so long as the break sizes per
period are no too small.

Finally, the AveW forecasts perform well when v = 0.95 and v = 0.98, and
provide the best forecast for 7' = 50 and v = 0.95 and the second best forecast for
T = 100 and v = 0.98. However, when the true value of v is small the AveW pro-
cedure performs poorly since it does not discount past observations heavily enough.
Still, it improves over ExpS with fixed gamma when T is 50 or 100.

Discrete breaks DGP Table 4 contains the results when the break in the un-
derlying random wlk process is discrete. Amongst the feasible forecasts the relative
performance depends foremost on the size of the break and then the sample size.
The second line reports the results using the estimated optimal weights. When the
breal size, A, is small, the detection of the break is difficult and using estimated
optimal weights lead to forecasts with a higher MSFE than most other forecasting
methods. However, when \ = 2 the estimated optimal weights produce MSFEs that
are among the smallest across all methods. The benefit of using optimal weights
therefore depends on the ability to detect the break accurately.

The next two lines in the Table report the results for the robust weights. For
the smaller breaks and T' = 50 and 100 the forecasts that use the information that
the break is in the last quarter of the sample provide the best forecasts across all
feasible methods. For 7" = 200 it is second to the ExpS forecast with v = 0.95. The
robust forecasts that integrate b over the last quarter of the sample always perform
better—and for larger breaks substantially—than those integrating over the entire
sample, which shows how powerful this additional information is for the resulting
forecasts. For large values of A the robust weights still improve vastly over the equal
weights forecast but not as much as the estimated optimal weights.

Forecasts based on post-break observations (with the break date estimated) have
the highest MSFE when the break size is small, but their performance improves
dramatically when A is large, where the post break forecasts have MSFE’s very
similar to the ones obtained for the estimated optimal weights. The optimal window
forecasts perform also quite similar to the estimated optimal weights forecasts, and
their performance depends largely on the size of the break.

AveW forecasts perform well when 7' = 50 and the break is small but less good
when T is 100 or more. Still, in all examples, AveW offers substantial improvements
over the full sample equal weight forecasts.

Forecasts that incorrectly assume the break process is continuous also reduce the
MSFE relative to the full sample based forecasts, but as to be expected are generally
less efficient than those based on weights derived assuming a discrete break DGP.
However, as T increases these methods improve.

The results in Table 5 show that the influence of a break in the error variance
is of negligible importance of the forecasts, which confirms our theoretical results.

Table 6 reports the results for the simple linear regression model. The magnitude
of the relative MSFE results are now also affected by the variance of the regressor,
xy, although the relative ranking of the various forecasting methods is very similar
to the ones reported above for the random walk model. Notable differences are that
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Table 2: Monte Carlo results for the random walk model with continuous breaks

v 0.8 0.9 0.95 0.98
0 4.472 9.487 19.494 49.497

T =50

opt.weight (cont.break; ¢) 0.633 0.899 0.981  0.999
estim.opt.weight (cont.break; ) 0.696 0.961 1.027 1.012
ExpS(%) 0.696 0.961 1.027 1.012
ExpS(y = 0.95) 0.778 0.922 0.980  1.003
ExpS(y = 0.98) 0.897 0.962 0.988  0.999

estim.opt.weight(disc.bre_ak; b, 5\) 0.698 1.007 1.095 1.103
robust weights(b = 0.75,6 = 0.98) 0.649 0.905 1.006 1.038

robust weights(b = 0,b = 1) 0.725 0.908 0.982 1.010
robust weights(two breaks) 0.829 0.938 0.983  0.999
post-break obs.(i)) 0.704 1.026 1.118 1.127
opt.window (b, \) 0.684 0.968 1.055 1.061
AveW (wpin = 0.05) 0.744 0912 0.980 1.007
T =100

opt.weight(cont.break; ¢) 0.444 0.772 0.956  0.999
estim.opt.weight (cont.break; 0) 0.455 0.794 0.995 1.022
ExpS(%) 0.455 0.794 0.995  1.022
ExpS(y = 0.95) 0.557 0.799 0.956 1.015
ExpS(y = 0.98) 0.744 0.885 0.968  1.000

estim.opt.weight(disc.brefmk;3,5\) 0.510 0.856 1.085 1.121
robust weights(b = 0.75,b =0.98) 0.508 0.781 0.963  1.029

robust weights(b = 0,b = 1) 0.620 0.829 0.958  1.007
robust weights(two breaks) 0.761 0.888 0.969  1.000
post-break obs.(b) 0.511 0.864 1.105 1.144
opt.window (b, \) 0.503 0.828 1.042 1.081
AveW (wpin = 0.05) 0.644 0.840 0.959  1.005
T =200

opt.weight(cont.break; §) 0.285 0.630 0.879  0.982
estim.opt.weight (cont.break; §) 0.290 0.642 0.893  0.997
ExpS(%) 0.290 0.642 0.893  0.997
ExpS(y = 0.95) 0.351 0.647 0.879  0.995
ExpS(y = 0.98) 0.511 0.733 0.901  0.982

estim.opt.weight (disc.break; b,A) ~ 0.368 0.685 0.953  1.081
robust weights(b = 0.75,b = 0.98) 0.399 0.672 0.882  0.986

robust weights(b = 0,5 = 1) 0.533 0.745 0.906  0.982
robust weights(two breaks) 0.699 0.833 0.937 0.987
post-break obs.(b) 0.368 0.688 0.961  1.097
opt.window(b, \) 0.368 0.675 0.926  1.052
AveW (wpin = 0.05) 0.562 0.762 0.912  0.983

Note: The table reports the ratio of MSFE of forecast method i relative to that using equal weights,
MSFE;/MSFEcquai. The DGP is y; = ¢ + 0.er where 8 = fi1 + 0yv:, § = 0:/0y, and 0 = /7/(1 — 7).
Forecast methods: (i) infeasible optimal weights as function of §, (ii) optimal weights for continuous breaks where §
is estimated from an MA(1) in the first difference of the data, (iii) ExpS with + estimated from an MA(1) in the first
difference of the data, (iv) ExpS with fixed v = 0.95 and (v) v = 0.98. (vi) optimal weights based on point estimates
of b and A for up to two breaks, (vii) robust weights (40) with b = 0.75 and b = 0.98, (viii) robust weights (44), (ix)
robust weights for two breaks with ¢(1), #(2) € (—2,2), (x) post-break window, (xi) optimal window based on point
estimates of b and A for the last break, (xii) AveW forecasts with m = T(1 — vmin) + 1 windows and vmin = 0.05.
The results are based on R = 10,000 repetitions.
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Table 3: MSE of %y in Monte Carlo experiments with continuous breaks

T\v 038 0.9 0.95 0.98
50 0.013 0.012 0.009 0.004
100  0.005 0.003 0.005 0.002
200  0.003 0.002 0.002 0.001

Note: The table reports the MSE of the
estimation of the MA parameter v in an
MA(1) model in the Monte Carlo experi-

ments reported in Table 2.

the robust weights now also deliver the best forecasts for the largest breaks when
T = 50 and 100 and the post-break window size is small. Also, the optimal weight
forecasts now dominate the optimal window forecasts when \ = 1.

Overall, the Monte Carlo results suggest that when the break size is small and /or
the sample is too small for an accurate estimation of the break process, the robust
weights developed in this paper deliver the most precise forecasts. This is true for
discrete as well as contnious break processes. When the break process is continuous
and the sample large, estimated optimal weights and ExpS forecasts with estimated
down-weighting parameter will result in the most precise forecasts for v not too
close to unity. If true v is large, robust weight forecasts dominate even in large
samples. ExpS forecasts can work well even when the break process is discrete, so
long as the break is small and the sample large. However, this relies on a prior:
knowledge of the correct down-weighting parameter, which will not be available to
the forecaster in real time. Discrete breaks that are large and easily identified imply
that the optimal weight forecasts will provide the best forecasts.

5 Application to the yield curve as a predictor of real
economic activity

5.1 The empirical model

The slope of the yield curve has emerged as a valuable leading indicator of GDP
growth; see Stock and Watson (2003) for a survey of the literate. However, recent
evidence suggests that the relationship between GDP growth and the yield curve
may be subject to structural breaks (Estrella, Rodrigues and Schich 2003, Giacomini
and Rossi 2006, Schrimpf and Wang 2010). We will use the forecasting methods
discussed in the previous sections to investigate whether they can help in improving
the forecasts of GDP growth using the slope of the yield curve as the predictor.
The forecasts are based on the regression model

Yet+h = Po + P15t + €t (48)

where y; 445 = 1001n(Y34p/Y:), Y; is the level of real GDP in quarter ¢, and s; =
il — i, is the slope of the yield curve defined as difference between the long term

interest rate, il’, and the short term interest rate, zf . This specification is the most
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Table 4: Monte Carlo results for random walk model with a discrete break, ¢ = 1

b 0.95 0.9

A 0.5 1 2 0.5 1 2
T =50
opt.weight(disc.break; b, \) 0.923 0.653 0.284 0.910 0.634 0.276

estim.opt.weight (disc.break; b,A) ~ 1.040 0.873 0.428 1.040 0.842 0.342
robust weights(b = 0.75,b = 0.98) 0.948 0.782 0.604 0.927 0.717 0.480

robust weights(b = 0,b = 1) 0.956 0.857 0.751 0.940 0.810 0.662
post-break obs. (b) 1.060 0.885 0.427 1.060 0.856 0.343
opt.window(b, A) 1.004 0.847 0.451 1.003 0.813 0.349
AveW (win = 0.05) 0.966 0.888 0.805 0.948 0.836 0.709
estim.opt.weight (cont.break; &) 0.994 0.961 0.798 0.992 0.930 0.577
ExpS(9) 0.994 0961 0.798 0.992 0.930 0.577
ExpS(y = 0.95) 0.973 0915 0.852 0.958 0.872 0.775
ExpS(y = 0.98) 0.989 0.969 0.947 0.983 0.951 0.916
T =100

opt.weight(disc.break; b, \) 0.893 0.603 0.256 0.875 0.592 0.257

estim.opt.weight (disc.break; b,A) ~ 1.022 0.826 0.320 1.014 0.737 0.263
robust weights(b = 0.75,b = 0.98) 0.934 0.796 0.648 0.901 0.705 0.480

robust weights(b = 0,b = 1) 0.953 0.867 0.775 0.931 0.805 0.662
post-break obs.(b) 1.039 0.839 0.319 1.030 0.747 0.262
opt.window (b, \) 0.991 0.800 0.329 0.986 0.722 0.268
AveW (wpin = 0.05) 0.965 0.900 0.830 0.940 0.831 0.706
estim.opt.weight(cont.break; 5) 0.992 0.944 0.666 0.984 0.847 0.337
ExpS(%) 0.992 0.944 0.666 0.984 0.847 0.337
ExpS(y = 0.95) 0.949 0.849 0.741 0916 0.759 0.579
ExpS(y = 0.98) 0.980 0.944 0.905 0.963 0.899 0.826
T =200

opt.weight(disc.break; b, \) 0.869 0.571 0.238 0.862 0.577 0.248

estim.opt.weight (disc.break; b,A) ~ 1.010 0.711 0.245 0.984 0.618 0.249
robust weights(b = 0.75,6 =0.98) 0.924 0.788 0.643 0.892 0.697 0.474

robust weights(b = O,B =1) 0.949 0.863 0.771 0.928 0.802 0.658
post-break obs.(b) 1.027 0.720 0.244 0.998 0.621 0.249
opt.window (b, \) 0.984 0.695 0.249 0.966 0.613 0.251
AveW (wpin = 0.05) 0.962 0.899 0.831 0.937 0.828 0.704
estim.opt.weight(cont.break; 5) 0.989 0.898 0.391 0.973 0.727 0.265
ExpS(%) 0.989 0.898 0.391 0973 0.727 0.265
ExpS(y = 0.95) 0.905 0.725 0.533 0.874 0.635 0.363
ExpS(y = 0.98) 0.954 0.876 0.793 0.926 0.797 0.651
Note: The table reports the relative MSFEs for the DGP y: = 8¢ + ower with a break in S
and o: at Ty. Here, ¢ = 0(1)/0(2) = 1. The first forecast method uses optimal weights for a

discrete break with known b and A. For the remaining forecast methods see Table 2.
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Table 5: Monte Carlo results for random walk model with a discrete break, ¢ = 0.5

b 0.95 0.9

A 0.5 1 2 0.5 1 2
T =50
opt.weight(disc.break; b, \) 0.927 0.656 0.284 0915 0.637 0.277

estim.opt.weight(disc.break; b, A) ~ 1.042 0.853 0.411 1.048 0.835 0.333
robust weights(b = 0.75,b = 0.98) 0.942 0.778 0.602 0.925 0.715 0.479

robust weights(b = 0,5 = 1) 0.955 0.856 0.750 0.940 0.810 0.662
post-break obs. (b) 1.065 0.864 0.410 1.073 0.850 0.334
opt.window (b, \) 1.002 0.824 0.426 1.006 0.803 0.335
AveW (wppin = 0.05) 0.964 0.887 0.804 0.947 0.835 0.709
estim.opt.weight (cont.break; §) 0.997 0.939 0.648 0.999 0.895 0.424
ExpS(%) 0.997 0.939 0.648 0.999 0.895 0.424
ExpS(y = 0.95) 0.972 0914 0.852 0.958 0.872 0.774
ExpS(y = 0.98) 0.989 0.968 0.947 0.983 0.951 0.916
T =100

opt.weight(disc.break; b, \) 0.896 0.605 0.257 0.878 0.593 0.257

estim.opt.weight(disc.break; b, A) ~ 1.031 0.807 0.311 1.021 0.731 0.262
robust weights(b = 0.75,b = 0.98) 0.930 0.794 0.647 0.900 0.704 0.480

robust weights(b = 0,b = 1) 0.952 0.866 0.774 0.931 0.805 0.662
post-break obs.(b) 1.054 0.821 0.311 1.042 0.742 0.261
opt.window(b, \) 0.994 0.780 0.316 0.990 0.714 0.265
AveW (wpin = 0.05) 0.964 0.899 0.830 0.939 0.830 0.706
estim.opt.weight (cont.break; &) 0.990 0.910 0.469 0.978 0.769 0.289
ExpS(%) 0.990 0.910 0.469 0.978 0.769 0.289
ExpS(y = 0.95) 0.946 0.847 0.740 0.916 0.758 0.579
ExpS(y = 0.98) 0.979 0.943 0.905 0.963 0.899 0.826
T =200

opt.weight(disc.break; b, \) 0.871 0.572 0.238 0.863 0.578 0.248

estim.opt.weight(disc.break; b, A) ~ 1.024 0.704 0.243 0.992 0.613 0.249
robust weights(b = 0.75,b = 0.98) 0.923 0.787 0.642 0.893 0.697 0.474

robust weights(b = 0,b = 1) 0.949 0.863 0.771 0.928 0.802 0.658
post-break obs. (b) 1.047 0.714 0.243 1.010 0.616 0.248
opt.window(b, \) 0.991 0.686 0.245 0.971 0.607 0.249
AveW (wpin = 0.05) 0.962 0.898 0.831 0.937 0.828 0.704
estim.opt.weight (cont.break; §) 0.979 0.800 0.288 0.952 0.648 0.263
ExpS(%) 0.979 0.800 0.288 0.952 0.648 0.263
ExpS(y = 0.95) 0.903 0.724 0.533 0.875 0.635 0.363
ExpS(y = 0.98) 0.954 0.876 0.793 0.926 0.797 0.651

Note: Here, ¢ = 0(1)/0(2) = 0.5. Otherwise see footnote of Table 4.
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Table 6: Monte Carlo results for single regressor and a discrete break, ¢ =1

b 0.95 0.9

A 05 1 2 05 1 2
T =50
opt.weight(disc.break; b, \) 0.979 0.853 0.542 0.971 0.832 0.520
estim.opt.weight(disc.break;5,5\) 1.005 0.978 0.851 1.009 0.952 0.631
robust weights(b = 0.75,b = 0.98) 0.981 0.898 0.753 0.975 0.869 0.673
robust weights(b = 0,5 = 1) 0.980 0.925 0.836 0.975 0.907 0.783
post-break obs.(b) 1.007 0.980 0.849 1.012 0.957 0.633
opt.window (b, \) 1.007 0.980 0.850 1.012 0.957 0.634
AveW (wyin = 0.05) 0.982 0.933 0.854 0.977 0.911 0.794
ExpS(y = 0.95) 0.985 0.950 0.896 0.981 0.933 0.851
ExpS(y = 0.98) 0.993 0.979 0.959 0.991 0.972 0.941
T =100
opt.weight(disc.break; b, \) 0.961 0.800 0.499 0.952 0.796 0.502
estim.opt.weight(disc.break;5,5\) 1.003 0.913 0.607 1.003 0.877 0.520
robust weights(b = 0.75,b = 0.98) 0.974 0.896 0.776 0.962 0.856 0.668
robust weights(b = 0,5 = 1) 0.979 0.929 0.854 0972 0.903 0.783
post-break obs. (b) 1.006 0.916 0.608 1.006 0.881 0.520
opt.window (b, \) 1.006 0.916 0.608 1.006 0.881 0.520
AveW (wyin = 0.05) 0.983 0.941 0.880 0.974 0.911 0.800
ExpS(y = 0.95) 0.978 0.920 0.832 0.967 0.882 0.731
ExpS(y = 0.98) 0.990 0.967 0.934 0.984 0.948 0.885
T =200
opt.weight(disc.break; b, \) 0.955 0.786 0.473 0.945 0.793 0.485
estim.opt.weight (disc.break; b, A) ~ 1.013  0.874 0.491 1.001 0.822 0.487
robust weights(b = 0.75,b = 0.98) 0.972 0.894 0.757 0.957 0.853 0.649
robust weights(b = 0,5 = 1) 0.980 0.930 0.842 0970 0.903 0.771
post-break obs.(b) 1.018 0.878 0.491 1.006 0.823 0.486
opt.window (b, \) 1.018 0.878 0.491 1.006 0.823 0.486
AveW (wyin = 0.05) 0.984 0.945 0.878 0973 0.913 0.796
ExpS(y = 0.95) 0.966 0.865 0.685 0951 0.824 0.573
ExpS(y = 0.98) 0.982 0.936 0.856 0.969 0.901 0.766

Note: The results are for the simple linear regression model, y. = Bix: + ower with a single

break in (; at T. For definitions and forecasting procedures see the footnote of Table 2 and 4.
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common in the literature (e.g., Estrella and Hardouvelis 1991, Estrella and Mishkin
1997, and the literature cited above).

We evaluate the forecasts for horizons, h = 1, 2, 3,4 quarters. An issue involving
direct forecasts with horizons greater than one is the overlap implicit in the regres-
sions. Pesaran, Pick and Timmermann (2011) show that accounting for the overlap
of observations can lead to gains in forecast accuracy but that these gains materi-
alize at forecast horizons that are larger than the ones we consider here. In order
not to complicate the forecast exercise further we restrict attention to estimation
that do not account for the overlap.

We take data on GDP, long and short term interest rates from the data set
available with the GVAR toolbox (Smith and Galesi 2010). The data set contains
quarterly observations for 33 countries. As not all countries have a long history in
GDP and interest rate data, we restrict attention to 9 industrialized countries with
long time series: Australia, Canada, France, Germany, Italy, Japan, Spain, UK,
and USA. The data are quarterly, start in 1979Q1, and end in 2009Q4. Recursive
out-of-sample forecasts are constructed, and the first forecast uses the observations
up to 1993Q4 in the estimation.

We report results for the entire forecast period and for the sub-periods 1994Q1-
2000Q4, 2001Q1-2006Q4, and 2007Q1-2009Q4. The first period includes the build-
up of the dot-com bubble, the second contains the time after the dot-com bubble
burst and the build-up of the sub-prime mortgage market, the third contains the
observations following the collapse of the sub-prime mortgage market.

We will use the forecast methods outlined in Section 4. However, we do not
impose knowledge of the timing of the structural break on the robust weights as
such knowledge may not be available to the researcher at the time. We also do
not estimate the down-weighting parameter v due to the computational complexity
when applied to model (48). We are also careful not to use ex post knowledge in
the choice of v and set it to 0.95 and 0.98 a priori. We base the comparisons on the
relative MSFE as defined in (47).

5.2 Results for GDP growth forecasts

Table 7 reports the results over the entire forecast period for the countries separately.
The MSFE when using equal weights are in the first line. The second line gives the
relative MSFE of the forecasts using optimal weights based on the estimated break
date and size. With the exceptions are Japan and Spain for h = 1 and 2, the optimal
weight forecasts fail to improve on those using equal weights. This suggests that,
in general, the breaks are difficult to estimate with sufficient accuracy.

The next two lines give the relative MSFEs for the forecasts using the robust
weights assuming one and two breaks, respectively. The robust weights deliver
better forecasts than equal weights in the overwhelming majority of countries and
forecast horizons. The robust forecasts perform better the shorter the forecast
horizon. An exception is the case of Australia, where all forecasts except the AveW
forecast fare worse than the forecasts based on equal weights over the four forecast
horizons. For h = 1 the robust weights for one break produce better forecasts than
the robust weights for two breaks. For larger h this distinction is less clear cut.

With the exception of Japan, forecasts based on the post-break sample (using the
estimated break date) do not consistently improve over the equal weight forecasts.
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This contrasts with the AveW forecasts, which lead to improvements over the equal
weights forecasts in many cases, even if the improvements are usually smaller than
the robust weight forecasts. However, when these forecasts perform poorly the
AveW forecasts usually perform less bad, so that AveW forecasts can be seen as a
conservative forecasting strategy that generally leads to modest gains.

The ExpS forecasts with v a priori set to 0.95 perform well and together with
the robust forecasts for one break delivers the best forecasts for most countries
and forecast horizons. However, in the case of Australia ExpS(y = 0.95) produces
the worst forecasts for all horizons. It is the least conservative forecasting method
delivering often the best but, in particular at h = 4 also often the worst forecasts.
ExpS with v = 0.98 is more conservative with forecasts that are rarely the best but
also rarely the worst forecasts. The difference between the ExpS forecasts for the
two +’s demonstrate the sensitivity of the forecasts to the choice of v, which needs
to be chosen by the forecaster without the benefit of hindsight.

Tables 8 reports the results for the first subsample of forecasts, 1994Q1-2000Q4.
In this subsample the gains from accounting for breaks is very large for US GDP
growth. Robust weights forecasts, for example, have MSFE that is just over half as
large as that of equal weights for h = 3. In contrast, none of the forecasts for France
improve over those from equal weights. The cases of Germany and Italy show how
inaccurate estimates of break dates can lead to highly imprecise forecasts when the
forecasting method relies on the estimated breaks dates. In both cases the forecasts
using optimal weights and, in particular, the post-break sample forecasts have a
considerably higher MSFE than the equal weights forecast.

The forecasts for the second subsample, 2001Q1-2006Q4, which are in Table 9,
show that during this period structural breaks are not a problem for forecasting
GDP growth in the USA and the UK, and only small gains are made for France and
Australia. Also, where gains from taking breaks into account are made, such as for
Japan and Germany, they are smaller than in the first subsample. The exception is
Canada, where gains increase in this subsample.

The results for the last subsample, 2007Q1-2009Q4, are in Table 10. The first
line, which reports the MSFE of the equal weights forecast, shows that GDP growth
is much harder to forecast in this subsample. This is not surprising given the col-
lapse of GDP in many countries following the subprime mortgage market crisis.
The poor equal weights forecasts are also partially due to breaks because the robust
weight forecasts and the ExpS forecasts vastly improve over the equal weights fore-
cast. The exception is Australia where the equal weights forecast cannot be beaten
systematically.

Table 11 reports averages across countries over the whole sample and over the
three subsamples. For the whole sample, the results for GDP weighted averages
and equally weighted averages lead to similar conclusions. The estimated optimal
weight forecasts improve in only two cases over the equal weights forecasts and, in
general, are more precise than the post-break forecasts but less precise than the
remaining forecast methods. This reiterates that breaks are not identified with suf-
ficient accuracy. The robust weights, in contrast, deliver vastly improved forecasts
compared to equal weights. In fact, they provide the best forecasts for h = 2,3,4
and the second most precise forecast for h = 1. Allowing for one break appears
sufficient as the MSFE is smaller than when allowing for two breaks, an exception
is h = 4 using equal weighting across countries.

37



Table 7: Predictive power of the yield curve: Relative forecast accuracy per country (all
forecasts: 1994Q1-2009Q4)

USA Japan  Ger. UK F It. Spain Can. Aus.
h=1
prop. breaks 0.063 1.000 0.328 1.000 0.250 1.000 0.141 0.031 0.625
equal weight(MSFE) 0.463 1.097 0.682 0.469 0.293 0.542 0.343 0.444 0.350
estim.opt.weight 1.083 0.921 1.084 0.998 1.163 1.191 0.978 1.083 0.999
rob.weight(1 break)  0.877 0.874 0.941 0.853 0.957 0.914 0.915 0.905 0.999
rob.weight(2 breaks) 0.934 0.922 0.964 0.930 0.979 0.952 0.954 0.938 1.002
post break 1.046 0.892 1.120 0.962 1.425 1.014 1.803 1.276 1.000
AveW 1.001 0.982 0.980 0.985 0.996 0.986 0.998 1.003 0.985
ExpS(y = 0.95) 0.877 0.850 0.949 0.831 0.958 0.867 0.933 0.898 1.021
ExpS(y = 0.98) 0.932 0925 0.971 0.921 0.985 0.946 0.979 0.948 0.992
h=2
prop. breaks 0.047 0.875 0.453 0.969 0.094 0.969 0.047 0.000 0.000
equal weight(MSFE) 1.533 3.139 1.871 1.635 0.874 1.627 1.248 1.615 0.724
estim.opt.weight 0.999 0.953 1.152 1.031 1.039 1.141 0.999 1.000 1.000
rob.weight(1 break)  0.852 0.849 0.997 0.947 1.000 0.913 0.988 0.906 1.058
rob.weight(2 breaks) 0.923 0.904 0.977 0.977 0.995 0.947 0.988 0.932 1.025
post break 1.349 0.944 1.159 1.011 1.077 1.027 1.891 1.000 1.000
AveW 1.007  0.981 0.995 1.003 0.999 0.983 0.999 1.003 0.993
ExpS(y = 0.95) 0.857 0.829 1.019 0.938 1.012 0.854 1.064 0.902 1.087
ExpS(y = 0.98) 0.911 0.909 1.001 0.979 1.002 0.940 1.009 0.935 1.011
h=3
prop. breaks 0.063 0.095 0.587 0.048 0.095 0.968 0.016 0.000 0.000
equal weight(MSFE) 3.059 5.751 3.473 3.240 1.722 3.146 2.598 3.284 1.144
estim.opt.weight 1.014 1.004 1.275 1.033 1.078 1.065 1.005 1.000 1.000
rob.weight(1 break)  0.896 0.844 1.041 1.003 1.035 0.938 1.009 0.921 1.066
rob.weight(2 breaks) 0.942 0.894 0.987 1.002 1.009 0.958 1.007 0.933 1.030
post break 1.187 0.983 1.423 1.022 1.105 1.039 1.006 1.000 1.000
AveW 1.001 0.979 1.000 1.004 1.001 0.993 1.000 1.003 0.996
ExpS(y = 0.95) 0.901 0.830 1.072 1.019 1.047 0.869 1.044 0.922 1.094
ExpS(y = 0.98) 0.933 0.899 1.019 1.009 1.017 0.954 1.016 0.937 1.012
h=4
prop. breaks 0.097 0.403 0.710 0.661 0.113 0.952 0.000 0.000 0.000
equal weight(MSFE) 4.780 9.121 5.232 4.913 2.738 5.029 4.200 5.095 1.513
estim.opt.weight 0.973 1.000 1.188 1.097 0.995 1.073 1.000 1.000 1.000
rob.weight(1 break) 0.931 0.834 1.074 1.029 1.063 0.980 1.019 0.951 1.058
rob.weight(2 breaks) 0.953 0.883 0.990 1.011 1.021 0.977 1.019 0.943 1.025
post break 0.976 1.0561 1.430 1.053 1.016 1.055 1.000 1.000 1.000
AveW 0.996 0.978 1.007 1.010 1.004 1.010 1.001 1.002 0.990
ExpS(y = 0.95) 0.940 0.823 1.106 1.048 1.077 0.911 1.024 0.962 1.101
ExpS(y = 0.98) 0.953 0.889 1.030 1.028 1.029 0.980 1.018 0.951 1.006

Note: The table reports the MSFE of the forecasts with equal weights and for all other forecast meth-
ods the ratio of MSFE, that is, the MSFE of forecast method i relative to that using equal weights,
MSFE; /MSFEcqual, for different forecast horizons, h. Forecast methods: (i) equal weights, (ii) optimal

weights for discrete breaks based on point estimates of b and A for up to two breaks, (iii) robust weights that

integrate the break date over the entire sample, (iv) robust weights for two breaks with ¢(1), 2y € (—2,2),

(v) post-break window, (vi) AveW forecasts with m = T'(1 — vmin) + 1 windows and vmin = 0.05 ExpS with

(vil) v = 0.95 and (viii) v = 0.98. The line denoted “prop. break” reports the proportion of forecasts where a
break was detected by the Bai and Perron (1997,2003) test. The countries are: USA, Japan, Germany, UK,

France, Italy, Spain, Canada, and Australia. The date given above denotes the periods for which one-period

ahead forecasts are made. The h = 2 forecast makes the first forecast for the observation one quarter later,

the h = 3 forecast for that two periods later, and the h = 4 forecast for that three quarters later.
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Table 8: Predictive power of the yield curve: Relative forecast accuracy per country

(subsample 1: 1994Q1-2000Q4)

USA Japan Ger. UK F It. Spain Can. Aus.
h=1
prop. breaks 0.000 1.000 0.143 1.000 0.357 1.000 0.214 0.000 0.143
equal weight(MSFE) 0.317 0.834 0.404 0.156 0.187 0.300 0.199 0.292 0.482
estim.opt.weight 1.000 0.987 1.163 0.994 1.143 1.270 1.024 1.000 0.997
rob.weight(1 break)  0.794 0.800 0.955 0.773 1.020 1.116 0.787 0.978 0.979
rob.weight(2 breaks) 0.904 0.861 0.985 0.935 1.011 1.024 0.915 0.974 0.996
post break 1.000 0.951 1.272 0.729 1.231 1.216 1.059 1.000 1.003
AveW 1.003 0.970 0.950 1.003 1.000 1.041 0.977 1.016 0.978
ExpS(y = 0.95) 0.811 0.802 0.982 0.78 1.0563 1.091 0.796 0.993 0.989
ExpS(y = 0.98) 0.901 0.897 0.984 0.872 1.027 1.054 0.878 1.023 0.982
h=2
prop. breaks 0.037 0.889 0.222 1.000 0.222 1.000 0.074 0.000 0.000
equal weight(MSFE) 0.962 2.280 0.813 0.561 0.534 0.504 0.635 1.088 0.792
estim.opt.weight 1.005 0.782 1.588 0.988 1.149 1.470 1.017 1.000 1.000
rob.weight(1 break) 0.611 0.721 1.022 0.777 1.121 1.292 0.788 0.981 1.010
rob.weight(2 breaks) 0.827 0.806 0.993 0.976 1.057 1.046 0.940 0.951 1.006
post break 1.066 0.859 1.759 0.734 1.295 1.512 1.021 1.000 1.000
AveW 1.028 0.968 0.983 0.980 1.002 1.136 0.978 1.020 0.987
ExpS(y = 0.95) 0.633 0.726 1.070 0.787 1.157 1.228 0.805 0.992 1.008
ExpS(y = 0.98) 0.832 0.866 1.022 0.868 1.071 1.119 0.872 1.009 0.978
h=3
prop. breaks 0.115 0.038 0.423 0.000 0.231 1.000 0.038 0.000 0.000
equal weight(MSFE) 2.090 4.085 1.566 1.133 1.150 0.779 1.239 2.546 1.193
estim.opt.weight 1.050 1.104 2.193 1.000 1.278 1.976 1.023 1.000 1.000
rob.weight(1 break) 0.552 0.690 1.084 0.790 1.158 1.444 0.792 0.990 0.982
rob.weight(2 breaks) 0.819 0.768 1.010 1.001 1.070 1.070 0.967 0.937 0.993
post break 1.016 1.113 3.028 1.000 1.377 1.713 1.032 1.000 1.000
AveW 1.003 0.963 0.997 0.972 1.004 1.283 0.980 1.019 0.990
ExpS(y = 0.95) 0.569 0.689 1.129 0.811 1.197 1.348 0.821 1.003 0.973
ExpS(y = 0.98) 0.821 0.840 1.038 0.886 1.083 1.180 0.876 1.002 0.956
h=4
prop. breaks 0.240 0.840 0.440 0.320 0.280 0.960 0.000 0.000 0.000
equal weight(MSFE) 3.744 7.274 2.453 1.839 1976 1.284 2.023 4.490 1.650
estim.opt.weight 0.915 0.998 1.557 1.122 0.983 1.860 1.000 1.000 1.000
rob.weight(1 break)  0.570 0.697 1.147 0.820 1.184 1.506 0.819 1.019 0.922
rob.weight(2 breaks) 0.836  0.767 1.021 1.025 1.085 1.087 0.998 0.943 0.965
post break 0.925 1.168 2.965 1.059 1.054 1.703 1.000 1.000 1.000
AveW 0.974 0969 1.018 0.978 1.006 1.331 0.981 1.017 0.979
ExpS(y = 0.95) 0.591 0.691 1.182 0.868 1.225 1.401 0.862 1.034 0.927
ExpS(y = 0.98) 0.843 0.844 1.055 0.921 1.094 1.201 0.894 1.011 0.926

Note: See footnote of Table 7. The date given above denotes the periods for which one-period ahead

forecasts are made. The h = 2 forecast makes the first forecast for the observation one quarter later, the

h = 3 forecast for that two periods later, and the h = 4 forecast for that three quarters later.
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Table 9: Predictive power of the yield curve: Relative forecast accuracy per country

(subsample 2: 2001Q1-2006Q4)

USA Japan  Ger. UK F It. Spain Can. Aus.
h=1
prop. breaks 0.000  1.000 0.333 1.000 0.083 1.000 0.000 0.000 1.000
equal weight(MSFE) 0.227  0.430 0.265 0.072 0.139 0.181 0.070 0.197 0.199
estim.opt.weight 1.000 1.099 1.108 1.054 1.182 0.824 1.000 1.000 1.008
rob.weight(1 break)  1.041 0.955 0.823 1.053 1.040 0.886 0.913 0.938 1.005
rob.weight(2 breaks) 1.010 0.950 0.903 1.014 1.020 0.978 0.925 0.961 1.002
post break 1.000 1.121 1.152 1.009 1.276 0.811 1.000 1.000 0.988
AveW 1.001  0.984 0.959 1.002 0.993 0.921 0.986 0.992 0.981
ExpS(y = 0.95) 1.095 0.959 0.828 1.088 1.062 0.931 0.969 0.991 1.014
ExpS(y = 0.98) 1.021  0.955 0.912 1.007 1.029 0.927 0.893 0.947 0.976
h=2
prop. breaks 0.000  0.958 0.542 1.000 0.000 1.000 0.000 0.000 0.000
equal weight(MSFE) 0.614 1.181 0.849 0.145 0.281 0.497 0.185 0.681 0.495
estim.opt.weight 1.000 1.143 0.996 1.203 1.000 0.738 1.000 1.000 1.000
rob.weight(1 break) 1.184 0.980 0.885 1.087 1.070 0.831 0.942 0.892 1.090
rob.weight(2 breaks) 1.039 0.950 0.915 0.989 1.025 0.970 0.922 0.924 1.036
post break 1.000 1.107 0.947 1.072 1.000 0.724 1.000 1.000 1.000
AveW 0.999 0.982 0.987 0.980 0.996 0.847 0.979 0.993 0.996
ExpS(y = 0.95) 1.208 1.003 0.896 1.146 1.111 0.892 1.024 0.964 1.105
ExpS(y = 0.98) 1.036  0.955 0.949 0.973 1.047 0.889 0.871 0.886 1.015
h=3
prop. breaks 0.000  0.208 0.625 0.000 0.000 1.000 0.000 0.000 0.000
equal weight(MSFE) 1.096 1.905 1.711 0.253 0.460 0.831 0.355 1.290 0.843
estim.opt.weight 1.000 0.789 0.928 1.000 1.000 0.721 1.000 1.000 1.000
rob.weight(1 break) 1.523 0.977 0.922 1.035 1.129 0.871 1.077 0.854 1.134
rob.weight(2 breaks) 1.140 0.930 0.919 0.947 1.046 1.008 0.974 0.893 1.052
post break 1.000 0.602 0.885 1.000 1.000 0.718 1.000 1.000 1.000
AveW 1.002 0.975 0.992 0.960 1.001 0.815 0.978 0.995 1.000
ExpS(y = 0.95) 1.695 1.020 0.926 1.082 1.195 0.955 1.160 0.916 1.151
ExpS(y = 0.98) 1.137  0.938 0.961 0.913 1.068 0.919 0.908 0.842 1.038
h=4
prop. breaks 0.000  0.167 0.875 0.917 0.000 1.000 0.000 0.000 0.000
equal weight(MSFE) 1.569  2.457 2.645 0.373 0.660 1.084 0.568 1.989 1.020
estim.opt.weight 1.000 1.002 1.027 1.204 1.000 0.816 1.000 1.000 1.000
rob.weight(1 break)  1.703  0.963 0.939 0.922 1.200 1.023 1.141 0.848 1.172
rob.weight(2 breaks) 1.176 0.889 0.906 0.871 1.071 1.084 1.004 0.885 1.057
post break 1.000 0.963 0.888 0.967 1.000 0.801 1.000 1.000 1.000
AveW 1.010 0.964 1.001 0.933 1.006 0.853 0.983 0.998 1.002
ExpS(y = 0.95) 1.888 1.021 0.931 0.952 1.263 1.127 1.210 0.883 1.187
ExpS(y = 0.98) 1.156  0.899 0.963 0.828 1.090 1.016 0.931 0.830 1.056

Note: See footnote of Table 7. The date given above denotes the periods for which forecasts are made at

all horizons.
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Table 10: Predictive power of the yield curve: Relative
(subsample 3: 2007Q1-2009Q4)

forecast accuracy per country

USA Japan Ger. UK F It. Spain Can. Aus.
h=1
prop. breaks 0.333  1.000 0.750  1.000 0.333 1.000 0.250 0.167 1.000
equal weight(MSFE)  1.277  3.046  2.168 1.997 0.850 1.831 1.227 1.294 0.346
estim.opt.weight 1.161 0.828 1.043 0.995 1.167 1.234 0.957 1.153 0.993
rob.weight(1 break) 0.866  0.899 0.964 0.854 0.898 0.843 0.964 0.856 1.059
rob.weight(2 breaks)  0.924  0.953 0.970 0.924 0.948 0.920 0.971 0.912 1.022
post break 1.089 0.790 1.046 1.001 1.573 0.977 2.176 1.506 1.003
AveW 1.000 0.990 0.998 0.980 0.995 0.977 1.007 1.000 1.009
ExpS(y = 0.95) 0.838 0.849 0.964 0.820 0.875 0.768 0.980 0.820 1.132
ExpS(y = 0.98) 0919 0934 0.980 0.924 0.948 0.909 1.027 0.910 1.045
h=2
prop. breaks 0.154  0.692 0.769 0.846 0.000 0.846 0.077  0.000 0.000
equal weight(MSFE)  4.656 8.984  6.297 7.033 2.825 6.414 4.752  4.669 1.031
estim.opt.weight 0.997 1.001 1.067 1.031 1.000 1.145 0.993 1.000 1.000
rob.weight(1 break) 0.877 0.888 1.020 0.972 0.934 0.858 1.052 0.872 1.110
rob.weight(2 breaks)  0.936  0.948 0.989 0.976 0.963 0.926 1.008 0.925 1.049
post break 1.574  0.950 1.041 1.058 1.000 0.987 2.221  1.000 1.000
AveW 0.999 0.988 1.001 1.008 0.998 0.977 1.007 0.998 1.003
ExpS(y = 0.95) 0.844 0.842 1.037 0.956 0.931 0.782 1.145 0.836 1.207
ExpS(y = 0.98) 0915 0921 1.009 0.999 0.964 0916 1.062 0.911 1.064
h=3
prop. breaks 0.077  0.000 0.846 0.231 0.000 0.846  0.000 0.000 0.000
equal weight(MSFE)  9.086 17.054 11.129 13.781 5.487 12903 10.032 8.870 1.640
estim.opt.weight 0.999 1.000 1.102 1.040 1.000 0.990 1.000 1.000 1.000
rob.weight(1 break) 0.916 0.895 1.064 1.039 0.963 0.881 1.062 0.898 1.129
rob.weight(2 breaks)  0.955 0.951 1.001  1.004 0.974 0.937 1.020 0.942 1.066
post break 1.317  1.000 1.098 1.027 1.000 0.992 1.000  1.000 1.000
AveW 1.000 0.987 1.004 1.011 1.001 0.978 1.007 0.995 1.000
ExpS(y = 0.95) 0.876  0.861 1.099 1.054 0.954 0.795 1.096 0.874 1.226
ExpS(y = 0.98) 0.940 0920 1.030 1.034 0.978 0.929 1.060 0.924 1.072
h=4
prop. breaks 0.000  0.000 0.923 0.846 0.000 0.846 0.000 0.000 0.000
equal weight(MSFE) 13.360 26.297 16.192 20.399 8480 20.720 15.997 12.569 2.214
estim.opt.weight 1.000 1.000 1.123  1.088 1.000 0.998 1.000  1.000 1.000
rob.weight(1 break) 0.961 0.889 1.095 1.072 0.983 0.908 1.063 0.932 1.163
rob.weight(2 breaks)  0.969 0.948 1.008 1.013 0.982 0.951 1.025 0.960 1.087
post break 1.000  1.000 1.123 1.056 1.000 0.998 1.000  1.000 1.000
AveW 1.005 0.987 1.005 1.019 1.002 0.984 1.007 0.992 0.998
ExpS(y = 0.95) 0.921 0.863 1.140 1.086 0.976 0.825 1.0563 0.934 1.292
ExpS(y = 0.98) 0.969 0913 1.045 1.055 0.988 0.947 1.056 0.945 1.084

Note: See footnote of Table 7. The date given above denotes the periods for which forecasts are made at

all horizons.
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Table 11: Predictive power of the yield curve: Relative forecast accuracy averaged

across countries

GDP weighted ave.

Equally weighted ave.

h 1 2 3 4 1 2 3 4
All forecasts: 1994Q1-2009Q4

equal weight(MSFE) 0.560 1.731 3.343 5218 0.521 1.585 3.046 4.736
estim.opt.weight 1.070 1.032 1.055 1.027 1.056 1.035 1.053 1.036
rob.weight(1 break)  0.906 0.912 0.945 0.970 0.915 0.946 0.973 0.993
rob.weight(2 breaks) 0.953 0.953 0.966  0.973 0.953 0.963 0.974 0.980
post break 1.103 1.226 1.144 1.056 1.171 1.162 1.085 1.065
AveW 1.005 1.010 1.009 1.008 0.991 0.996 0.997 1.000
ExpS(y = 0.95) 0.901 0.915 0.949 0.977 0.909 0.951 0.978 0.999
ExpS(y = 0.98) 0.954 0.952 0.966 0.979 0.956 0.966 0.977 0.987
Subsample 1: 1994Q1-2000Q4

equal weight(MSFE) 0.380 1.041 2.074 3.619 0.352 0.908 1.753 2.970
estim.opt.weight 1.051 1.076 1.239 1.084 1.064 1.111 1.292 1.160
rob.weight(1 break)  0.866 0.798 0.785  0.807 0.911 0.925 0.943 0.965
rob.weight(2 breaks) 0.939 0.906 0.903  0.916 0.956 0.956 0.960 0.970
post break 1.042 1.125 1.294 1.234 1.051 1.138 1.364 1.319
AveW 1.005 1.024 1.022 1.015 0.993 1.009 1.023 1.028
ExpS(y = 0.95) 0.880 0.813 0.796 0.822 0.923 0.934 0.949 0.976
ExpS(vy = 0.98) 0.941 0.915 0.912 0.929 0.958 0.960 0.965 0.977
Subsample 2: 2001Q1-2006Q4

equal weight(MSFE) 0.232 0.637 1.123  1.584 0.198 0.547 0.971 1.374
estim.opt.weight 1.041 1.029 0.958 1.017 1.030 1.009 0.938 1.006
rob.weight(1 break)  1.001 1.079 1.245 1.336 0.962 0.996 1.058 1.101
rob.weight(2 breaks) 0.996 1.008 1.054 1.066 0.974 0.975 0.990 0.994
post break 1.050 1.010 0.928 0.981 1.040 0.983 0.912 0.958
AveW 0.999 0.995 0.993 0.997 0.980 0.973 0.969 0.972
ExpS(y = 0.95) 1.038 1.152 1.349 1.445 0.993 1.049 1.122 1.162
ExpS(y = 0.98) 0.997 1.002 1.046 1.052 0.963 0.958 0.969 0.974
Subsample 3: 2007Q1-2009Q4

equal weight(MSFE) 1.637 5.469 10.533 15.817 1.559 5.185 9.998 15.137
estim.opt.weight 1.093 1.027 1.022 1.029 1.059 1.026 1.015 1.023
rob.weight(1 break)  0.902 0.929 0.962 0.992 0.911 0.954 0.983 1.007
rob.weight(2 breaks) 0.950 0.965 0.980 0.991 0.949 0.969 0.983 0.994
post break 1.138 1.328 1.166 1.027 1.240 1.204 1.048 1.020
AveW 1.007 1.009 1.010 1.013 0.995 0.998 0.998 1.000
ExpS(y = 0.95) 0.876 0.910 0.942 0.976 0.894 0.953 0.982 1.010
ExpS(y = 0.98) 0.949 0.957 0.975 0.993 0.955 0.974 0.988 1.000

Note: The GDP weighted average uses weights w; = Y;/(3.

N

j=1

Y;), where Y; is the 2008 GDP

in purchasing power terms for country i available from the GVAR data base and N = 9. The

equally weighted average uses w; = 1/9. For other details see the footnote of Table 7.
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Post-break window forecasts are substantially worse than equally weights fore-
casts and result in the least precise forecasts out of all methods considered. Again,
the AveW forecasts improve over the equal weights forecasts but less so than the
robust or the ExpS forecasts. Finally, ExpS(y = 0.95) delivers the relatively pre-
cise forecasts for all forecast horizons: for A = 1 it is the most precise and for the
other forecast horizons it is only second to the robust weights. ExpS(vy = 0.98) also
performs well but is less precise overall.

When considering the subsamples separately some interesting additional pat-
terns emerge. We see that in the first subsample with forecasts for the period
1994Q1-2000Q4 the robust forecasts with one break deliver the best forecasts for
all forecast horizons irrespective of how the country results are averaged. The ExpS
forecasts also perform well and the forecasts that rely on estimated break dates per-
form very poorly. The second subsample 2001Q1-2006Q4 offers a different picture.
Most forecasting methods cannot improve on the equal weight forecasts. The ex-
ception are the AveW forecasts and, with equal weighted averages across countries,
robust weights for two breaks and ExpS(y = 0.98). The reason for this difference
is the poor performance of the forecasting methods for the USA. AveW forecast
are the only forecasting method that delivers improvements irrespective of horizon
and country weights. In the last subsample, 2007Q1-2009Q4, GDP growth is much
harder to forecast and forecasts based on robust weights and ExpS weights can im-
prove the forecast by up to 10%. The relative performance is similar to the that
of the first sub-period: the robust forecasts and the ExpS forecasts deliver the best
results, whereas forecast that require estimates of break dates perform poorly.

Overall, forecasting methods that rely on estimates of break points perform
poorly in this application. AveW leads to modest but consistent improvements over
equal weighted forecasts. ExpS forecasts lead to larger improvements but depend
on the choice of 7. Finally, robust weight forecasts also lead to improvements over
equal weight forecasts, and only require the investigator to decide on the potential
number of breaks.

6 Conclusion

This paper presents a new approach to forecasting in the presence of structural
breaks. Under continuous break processes our approach recovers the exponential
smoothing weights that have long been considered in the literature. Under discrete
breaks, our approach delivers new forecasts based on optimal weights. In practice,
dates and sizes of breaks are unknown and their estimates can be unreliable. For
such cases we derive robust weights that do not require a priori knowledge of the
break dates or their sizes.

We evaluate the forecast performance of the different weighting scheme in Monte
Carlo experiments and in an application to forecasts of GDP growth using the slope
of the yield curve. Forecasts based on robust weights, which do not require knowl-
edge of the break dates or a downweighting parameter, lead to forecasts than per-
form better that other feasible alternatives in a wide range of settings. In contrast,
using only post-break data leads to highly inefficient forecasts unless the break date
can be determined with great precision. The optimal weights forecasts developed
in this paper also require precise knowledge of the dates and sizes of the structural
breaks to deliver good forecasts.
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A Appendix: Mathematical details

A.1 MSFE of post-break and optimal window

For the window that contains T, of T observations the one-step ahead forecast is

- 1
Yyr+1 = mzyS_T T+1Zy5 T_T +1 T+ Zys
s=Ty s=Tp+1
(Ty = Ty + Dy + po) (T — Tb) 1
= s 4
T—T,+1 T T+1zT:(Ie (49)
Set v = % so that T, = T'(1 — v) + 1, and re-write the above as
yre1 = pe){l —Iv— (1 -0)]} (50)
(L=b)ug) +[v-01-0)u
- (-] {2 ol sza

where I(c) is an indicator function equal to 1 if ¢ > 0 and equal to 0 otherwise. The
one-step ahead forecast error is

(1-b)

(Y

1 T
] o= (1 =0)] +oer — - > o (51)

er+1 = (K@) — 1)) [1 -
s=T,

The expected squared error normalized by o? is

Bortth) = 1+ L@ LR Oy gy L
= 1+A2[1—(1U_b)]21[ —(1-0b)+ J}U (52)

Initially consider windows that do not contain the break. The window with all

observations after the break will minimize the MSFE, so vy__, = (1 —b) and
9 1
E[O’a2€%ﬂ+1"[1:(1—b)] :1+m (53)

This is also the MSFE of the forecast using the post-break window observations.
Now consider windows that include the break so that Ij[v — (1 —b)] =1 in (52).

The first order condition is

2(1-b) 2(1-1b)? 1

2 v3 Tv?

Then from (54), the expression for the optimal window (among those containing a

break) is

A2 =0, (54)

v

2(1 — b)2)\2 1
v’ = _2L=bAT )2 = (1-b)—F—

(55)

It can be seen that the optimal window is the distance to break scaled by an
expression that is larger the smaller the break and the smaller the distance to
break. A condition of the optimal window is that it cannot exceed 1. Therefore

o __ 2(1_17)2)\2 : 2 T
R TR RS P < LA < gopmym

Using (55) in the MSFE (52) yields the results in (15).

the optimal window contains all observations.
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A.2 Derivation of optimal weights for multiple regression model
with a single break

Using Bp(w) in (18) we can write
Br(w) =By =S~ (W)S1(w1))(B) — B) + S~ ZthtUtEt,

where S(w) = S1(w(1))+S2(W(2)), S1(W(1)) = Y12 wixix}, Sa(W(z) = Y y_g, 41 WiiX}.
Hence,

er+1(W) = yr41— XIT+1BT(W)
= _X/T+1 [BT(W) - 5(2)} +oery,
= OT+1€T+1 — X/T+1371(W)SI(W(1))<5(1) ~Bw)

—x71S7H(W) Z WXt TtE

and
E[aae?pﬂ(w)\xt, t:1,2,...,T—|—1} (56)
— 1+ [¥p STH(W)S1(wipy)A]

+xp, 87 (Zq w2xx, + Z wtxtxt) S~Hw)xry1,

t=Tp+1

where A = (ﬁ(n — B2))/o@) and ¢ = o(1y/0(2)

In order to obtain the optimal weights we minimize (56) with respect to w
subject to ¢/-w = 1. Using 6 as the Lagrange multiplier associated with ¢/-w = 1, the
first order conditions for the above optimization problem are given by the following.
For ¢ < Tb

[¢°x71 87 (W) AS™H (W)xri1] w
= 0/2+ [xp1STHW)S1(way)A] [X7 1 STHW)ASTH(W)S1 (W) A]

+X/T+1S_1( (qutxtxt+ Z wtxtxt) _I(W)XTH

t=Ty+1
— [X'T_HS_ (W)Sl(W(l))}\] [XTHS_ (W)AA] .

where A; = x4x} and for ¢t > T, + 1

(X1 ST (W) AS T (W)xi1] wy
= 0/2+ [¥p1S™ (W)Si(wq M [x’T+1S‘1<w>A S™HW)S1(wr))A

+x7 1S H(w) (Zq WK} + Z wtxtxt) S™H(w)xry1.

t=Tp+1
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Multiplying both sides of the above two expressions by w; and aggregating across
t=1,2,...,T it is again easily seen that § = 0. The above expressions are 17" highly
non-linear equations in the 7" unknown weights, w;, t =1,2,...,T.

If A; = 0 the solution for w; is indeterminate and without loss of generality can
be set to 0. So we consider solutions where A; # 0, which yields for t < T,

B [xép+1S_1(w)Sl(W(1)))\] [X;S_l(w)Sl(W(l))}\}
We = 2/ -1 (57)
*xXp, 1S (W),
xiS~Hw) (S0 qPubxe + g wixixt) S7H(w)xry1.
q2X/T+18_1(W).’13t
[ ST WS (wr))A] (XA
q2X,T’+1sfl(W)$t .

+

and for t > T + 1

w - [X/T_HS_l(W)Sl)(:v(l);i]l([V):})Sm—l(w)sl(W(l))A] (58)
T+1 t

— T T —
xiS7Hw) (S0, qPudxed + g, wixext ) S7Hw)xr

X£.F+1S_1(W)wt

+

The last result follows since

[(X7187 (W)S1(w)A] [xiS )Sl(Wu)N — ¥ STHW)S1(w(r)A] [x]
= — [} STHW)S1(w()A] x; [Ik —S7H(w)S1(wp))] A

=[x STHW)S1 (W) A xiSTH (W) [S(W) — S1(w(y))] A
= = [Xp ST W)S1(wy)A] [xiSTH(W)S2(w(z)A

A.3 MSFE for robust weights

Consider the MSFE associated with the robust optimal weights defined (40). For
these weights we need to compute ZtTi 1 W, Zﬁ Lw?, and YT w?. Note that when
T and Ty are relatively large we can use the following approximations (noting that
by assumption b < b < b)

Ty b
-1 / 1—a
Wy 1g< >d
; (b=2) Jy 1-b
Ty b . 2
waz_lz/ [log(l a)] da
t=1 T(b_b) b 1-0

St () e ()

Al



[
Ko
2

2t~ g [ ()]

I S b ) Pda . 2los(l=b)
= - /b[log(l a)]” da - )Q/blog(l a)da

T (b-b) T(b—b
log(1 — b)* (b — b)
EECET
and )
/ log(l—a)da=—(1—-"0b)log(1—b)+ (1—>b)log(l—-b)+b—>b
b
/b log (1 —a)*da = —(1—b)[log(1—b)]*+2(1—b)log(1l —b)+2b
b
+(1 = b) [log(1 = b)]* = 2(1 — b) log(1 — b) — 2b.
Similarly,

Bt < s [ b e b (D)

B 1 b 9 2log(1 —b) b
_ /b log (1 — a)] da—_/b llog (1 — a)] da

T (b—b)° T (b-b)
log(1—b)*(b—b) = (1-b) 1-b\7"
TTre-n’  Te-b [1°g<1—b>}

The above expressions simplify considerably if we set b = 0. We have

Ty
b (1—1b)log(1—b)

(1—b) [log(1 — b)]* +2(1 — b) log(1 — b) + 2b
Zth ) [log(1 — b)]* JTer( ) log(1 - b) +

and

20+ 2(1 — b)log(1 — b)
Zwt ~ TH2

Using these results in (28), we have

2 T, 2 T T
2$PGAm@%ﬂ%ﬁ(ZW>+W—UZ@wXﬁ%
t=1 t=1 t=1

TT41
b (1 —b)log(1 —b)]?
=4 [b * ; ]
2y | —(1=1b)[log(1 = b)]* + 2(1 — b) log(1 — b) + 2

L 25 +2(1-D)log(1 - )
T5?
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In practice if we choose b to be very close to unity but not unity then (1 — b)log(1 —
b) ~ 0 and (1 — b)[log(1 — b)]? ~ 0 and the result in (45) follows.

A.4 Robust weights with higher order terms

Consider now the second order term in (39) and let

T¢*H(b,a) = “a _1b)2 + 10 i b)g.r(b —a),

and note that for a < b
b
T¢2/ H(b,a) =0 when a < b.
0

This is so since by assumption the probability of drawing b less than b is zero.
Consider now the value of the integral when b < a < b, and note that

b b b
T¢2/b H(b,a) = —/b (1_1b) db+/b b(ll_b)21(b—a)db
a b b
= [t [t [ e
a b
= [ at [

R —(1_2)_(1[)_[))4-10g <§> —I—log<i:z>.

Finally, for a > b we have

T$H(b,a) — — /b Ly /b SR S 7 et B
p (1—0)? b b(1—0)? (1-0b)(1-0)
Combining these results, we obtain
0 fora < b
T(Zlb log <1;—g) + T2¢21(l37g) X
w(a) ~ X f(l((za(_lb)b) + log (g) + log (%2)} forb<a<b
T(Elb) log (%) a T2¢>21(b—b) (1—%7(%—@ fora>b
and the discrete time version is
(0 for t <Tb
iy o8 () + e
Wi ™ X r(l[s/Tz;%l]b) + log <m>] for Tb <t <Tbh (59)

-1 - 1 1 i
T(0-3) log (1—_@> ~ TR R D) for t > Tb
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Inthecasewherebzo,andl_)T:T—l,orle—l/Twehavefor1§t§T—1

-1 1 t (T —1)
f = log (1 —t/T) — —1 —_— 60
wi =g ls =T~ rr gy [T—t Og(t(T—t))}’ (60)
and for the final date using the last part of (59) we obtain
. log(T) 1
= - —. 61

The scaled version of these weights (that sum up to unity) are given by

wy
— fort=1,2,...,T.
T b b b )
Zs:lw;

In practice one could set ¢> = 1/2 or 1.

wy =
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