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Abbreviations$

Systemic Lupus Erythematosus (SLE) 

ANCA-associated vasculitis (AAV) 

Peripheral blood mononuclear cells (PBMC) 

Ribonucleic acid (RNA) 

RNA sequencing (RNA-Seq) 

Complementary deoxyribonucleic acid (cDNA) 

Messenger ribonucleic acid (mRNA) 

Quantitative polymerase chain reaction (qPCR) 

Type 1 interferon inducible (IFN-I) 

Enzyme-linked immunosorbent assay (ELISA) 

Anti-neutrophil cytoplasmic antibodies (ANCA) 
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Abstract$

A small but increasing number of gene expression based biomarkers are becoming available for routine 

clinical use, principally in oncology and transplantation. These underscore the potential of gene 

expression arrays and RNA sequencing for biomarker development, but this potential has not yet been 

fully realized and most candidates do not progress beyond the initial report. The first part of this review 

examines the process of gene expression-based biomarker development, highlighting how systematic 

biases and confounding can significantly skew study outcomes. Adequate validation in an independent 

cohort remains the single best means of protecting against these concerns. 

The second part considers gene-expression based biomarkers in Systemic Lupus Erythematosus (SLE) 

and systemic vasculitis. The type 1 interferon inducible gene signature remains by far the most studied 

in autoimmune rheumatic disease. While initially presented as an objective, blood-based biomarker of 

active SLE, subsequent research has shown that it is not specific to SLE and that its association with 

disease activity is considerably more nuanced than first thought. Nonetheless, it is currently under 

evaluation in ongoing trials of anti-interferon therapy. Other candidate markers of note include a 

prognostic CD8+ T-cell gene signature validated in SLE and ANCA-associated vasculitis, and a 

disease activity biomarker for SLE derived from modules of tightly correlated genes. 

 

Introduction$

Over the last decade, high-throughput genomic technology has matured to the extent that we can now 

study tissue RNA abundance across the genome. In oncology, five prognostic, multi-gene expression-

based biomarkers are currently available for clinical use in patients with breast cancer, with at least one 

of these having additionally been shown to predict benefit from adjuvant chemotherapy [1]. In cardiac 

transplantation, some centers have implemented a gene expression biomarker in place of surveillance 

biopsies to screen for graft rejection [2]. Together, these examples highlight the wide potential of gene 

expression profiling as a discovery tool for biomarker development. Its major advantage lies in its 

ability to quantify sample messenger RNA (mRNA) for a large fraction of known genes, resulting in a 

hypothesis-free dataset that can then be studied for truly novel markers and pathways. Usual practice is 

to combine the expression of multiple genes into a single biomarker or ‘signature’, which means the 

range of potential biomarkers is vast and can be tailored to clinical requirements. 
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The promise of gene expression-based biomarkers is, however, yet to be fully realised. For every such 

biomarker in the late stages of clinical development, many more published candidates never progress 

beyond the initial report [3]. The first part of this review examines in general terms the process of 

discovery and subsequent translation of gene expression-based biomarkers because an understanding of 

this process and of the reasons that so many fail is central to identifying the biomarkers most likely to 

translate into useful clinical tests. 

The second part applies this knowledge in a critical appraisal of gene expression-based biomarker 

research in ANCA-associated vasculitis (AAV), Systemic Lupus Erythematosus (SLE) and related 

vasculitides. These diseases all feature dysregulation of various immune cell subsets, ultimately 

causing pathology through autoantibody production and tissue inflammation. Many of these cells are 

readily sampled in the peripheral blood as they traffic between lymph node and tissues, providing a 

rationale that gene expression profiling of blood is as likely to yield relevant patterns as the more 

technically challenging approach of profiling inflamed tissues. 

Of gene-expression based biomarkers in rheumatology, the most studied is the type 1 interferon 

inducible (IFN-I) gene signature that was first described for SLE over a decade ago [4,5]. We also 

consider in detail a CD8+ T-cell prognostic gene signature shared between flaring SLE and AAV 

patients, and an SLE disease activity biomarker based on 'modules' of tightly correlated genes in 

peripheral blood mononuclear cells (PBMC) [6,7]. These three examples are chosen for their potential 

to change clinical practice, and because they highlight very distinct approaches to gene expression-

based biomarker discovery. A number of other early-stage biomarkers are also covered briefly, but in 

recent years the field has become too broad for an exhaustive review to be informative. 

 

1.$Gene$expressionIbased$biomarker$discovery.$

Biomarkers$are$measurable$surrogates$for$underlying$biological$processes.$

As the term 'biomarker' has become more pervasive, precision in its definition has been eroded. By 

biomarker, we mean "an objectively measurable characteristic that reflects underlying biological 

processes." [8] Clinically useful biomarkers are those that have been shown to correlate with important 

clinical parameters such as diagnosis, disease phenotype, prognosis, response to therapy or disease 
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activity. There is a complex interplay between biomarker development and research into disease 

pathogenesis: for example, a role for type 1 interferon in SLE was known well before the description of 

an IFN-I signature of SLE, but the first IFN-I signature papers were based on a non-hypothesis driven 

analysis of gene expression data. Here, the term gene signature and gene expression-based biomarker 

are overlapping concepts. In general, gene expression-based biomarkers guide decision-making by 

using the expression of a shortlist of genes (or ‘signature’) to derive either a continuous ‘score’ or to 

classify samples into distinct groups. 

 

An$idealized$biomarker$development$pathway$is$similar$to$that$for$a$new$drug. 

In an attempt to increase the proportion of proposed biomarkers that translate to the clinic, various 

organisations (e.g. the Early Detection Research Network) have begun to codify a stepwise process for 

biomarker development that mirrors the phased approach for novel therapeutics [9]. This process 

always begins with the initial discovery of a candidate marker (Figure 1). When proposed gene 

expression-based biomarkers fail to progress, it can often be traced back to flaws in this initial 

discovery step. Common problems that arise include choices made during patient and sample selection, 

clinical annotation, experimental design, technical bias, and data analysis. 

 

Choosing$patients$and$deciding$sample$types.$$

Consider a biomarker study for renal transplant tolerance, in which the whole blood gene expression 

profiles of a group of operationally tolerant transplant recipients off immunosuppression were 

compared to those from a matched group of immunosuppressed transplant recipients and a second 

group of healthy volunteers [10]. The study found that a signature dominated by B-cell expressed genes 

was able to differentiate tolerant recipients from those still receiving immunosuppression and proposed 

that a subset of these genes might form a useful tool for screening renal transplant recipients for 

tolerance. However, the cohorts also differ by presence or absence of immunosuppression, and the 

alternative possibility that this drives the B-cell signature needs to be considered. Obviously, few 

alternative study designs are feasible in a transplant tolerance study, and the authors present some 
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additional evidence that their signature may be tolerance-related, but this illustrates how significant 

baseline differences between cohorts have the potential to confound a gene expression study. 

A related issue to consider is that of generalizability: to what extent can a candidate biomarker be 

applied to a population different to that used in its discovery? Can a biomarker derived from a 

population with flaring disease then be applied to a treated population encompassing a range of disease 

activities? These questions are relevant because it is often expedient to undertake biomarker discovery 

using a homogenous subset of active patients, minimizing the chance of within-cohort variation 

obscuring important between-group differences and allowing sample sizes to be kept small. Ultimately, 

the only way to demonstrate generalizability is to study biomarker performance in the intended 

population. 

The type of sample chosen has a significant impact on the practicality and cost of a biomarker study. 

Using whole blood, PBMC or other mixed cell populations in preference to purified cell subsets is 

convenient, cheap and speeds translation. Whole blood, in particular, is a sample of convenience: it can 

be collected directly into a tube containing RNA-stabilizing reagents (e.g. PAXgene), allowing the 

sample to be kept at room temperature for up to two days [11]. Any resulting expression-based 

biomarker can be transformed into a workable clinical diagnostic by designing and validating an 

appropriate multiplex quantitative PCR (qPCR) panel. The key drawback of this approach is that gene 

expression signals seen in mixed samples often reflect changes in sample composition, something 

perhaps more easily determined by flow cytometry or histology. Examples include the ‘B-cell’ 

signature discussed above or the ‘immature granulocyte’ signature of SLE discussed below, reflecting 

increased B-cell and granulocyte proportions, respectively [5,10]. Using mixed samples also tends to 

obscure changes in gene expression within single populations, with the consequence that potentially 

informative biomarkers are missed [12]. While the barriers for translating a biomarker based on 

separated cell populations into a clinical diagnostic are higher, novel technologies such as RNAscope 

(Advanced Cell Diagnostics) have the potential to facilitate this process by combining fluorescence-

based quantitation of cellular mRNA transcripts with flow cytometry to identify subpopulations [13]. 
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Experimental$design$and$technical$bias.$

Microarrays remain the most commonly used technology for gene expression-based biomarker studies, 

although this will change as sequencing based technologies (i.e. RNA sequencing [RNA-Seq]) become 

more accessible. Modern Affymetrix microarrays contain upwards of 750,000 25-base-pair 

oligonucleotides synthesised in bulk directly on the microarray surface. Matching complementary 

DNA (cDNA) derived from the sample mRNA bind to their complementary probe on the array. Bound 

cDNA is detected by fluorescence – where greater fluorescence implies greater expression – and then 

mapped back to a specific oligonucleotide and ultimately gene by position on the microarray [14]. 

As with other high throughput technology, microarrays are sensitive to the precise conditions under 

which the assay was performed. Samples run separately will incorporate subtle assay-derived variation 

or 'batch effects' [15]. Studies that do not account for this by using standard protocols and ensuring 

assay runs are balanced across cohorts of interest are at risk of introducing systematic bias due to these 

batch effects, as happened in one prominent study of gene expression across ethnic groups [16]. This is 

of particular relevance where stored samples are accessed for a study: consider a biomarker study that 

is to use stored RNA samples from SLE patients and prospectively recruited matched healthy 

volunteers as a comparison cohort. Unless the healthy volunteer samples are processed in an identical 

fashion to the banked samples and arrayed together, technical differences between the two cohorts 

could easily be misinterpreted as biological variation [17]. 

 

The$bioinformatics$of$biomarker$discovery.$

Class%prediction.%

Whilst there are almost as many informatic methods as there are biomarker studies, these will generally 

fall under one of two strategies: class prediction, or class discovery [18]. For class prediction, the 

researcher attempts to assign samples to known, clinically relevant classes using only the gene 

expression data (e.g. can I define whether a patient with SLE will respond to rituximab based on their 

B-cell gene expression?). It is the most commonly used strategy, but sensitive to biases in patient and 

sample selection. To minimize this possibility, class prediction is best done in a prospective study 

design where samples are processed without prior knowledge of their clinical phenotype. Moreover, 
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class prediction assumes that samples within the classes being predicted are homogenous. If not, then 

variation in gene expression within a class may obscure inter-class differences – a particular risk in 

heterogeneous diseases such as SLE. 

Increasingly sophisticated algorithms are used for class prediction, but most perform two tasks: feature 

reduction, in which a subset of the most informative genes are identified, and then the class prediction 

exercise itself. This can be as simple as taking the mean expression of the chosen genes and using a 

pre-determined threshold to classify samples, or as complex as training a support vector machine [19]. 

 

Class%discovery.%

Class discovery makes no prior assumptions about the samples and proceeds without knowledge of 

their clinical phenotype. Instead, the researcher attempts to discover structure (e.g. clusters of samples) 

intrinsic to the expression data itself. If structure is identified, then the clinical phenotype of each 

cluster is examined for potential correlates (e.g. prognosis, disease activity). In class discovery, 

researchers should explicitly demonstrate that any clusters identified are unlikely to be an artifact of 

random variation given that most clustering algorithms will identify clusters in a randomly generated 

sample [20]. 

 

Independent$validation$is$essential.$

Regardless of whether a class prediction or class discovery approach is implemented, two further 

concerns arise. First, the likelihood of chance associations or clusters in a dataset containing tens of 

thousands of data points per sample is high, and in a hypothesis-free analysis any one of these spurious 

associations might be taken forward as a positive result. Second, there is a significant risk of 

overfitting, where multi-gene signatures are matched so closely to the data that they model technical 

and random variation instead of, or alongside, true biologic differences. 

While careful experimental design is the best, if not the only, way to defend against bias and while 

there are increasingly sophisticated statistical techniques to account for multiple-testing and minimise 

over-fitting, most authors agree that the single most important protection against these types of error is 

prospective validation of candidate biomarkers in a properly independent population [21]. This will 
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inevitably occur downstream of the discovery process, either to validate a clinical assay developed 

from the candidate biomarker or to validate a biomarker’s role in clinical decision-making. However, 

given the time and resources expended before these points are reached, it is increasingly expected that 

researchers build a validation component into the discovery process. The early validation of biomarkers 

is not done well, if at all [3]. The most common errors are inappropriate use of cross-validation and 

inadequately powered validation cohorts resulting in error rates with (usually unreported) confidence 

intervals that are so wide as to be meaningless [22]. Cross-validation is a statistical technique for 

undertaking biomarker validation using the original dataset, but unless implemented in a rigorous and 

unbiased fashion it is very prone to overestimating biomarker performance. As such, studies 

implementing cross-validation alone should be viewed with caution [23]. 

 

From$candidate$to$clinical$laboratory$assay.$

The remaining steps in biomarker development centre on translating the candidate biomarker into a 

clinical-grade assay with well-defined performance characteristics. A clinical grade assay ideally uses a 

well-validated technology (e.g. multiplex quantitative polymerase chain reaction [qPCR] or enzyme-

linked immunosorbent assay [ELISA]) that is robust to delays in sample processing (e.g. whole blood 

collected into RNA-stabilising tubes).  By the time it reaches the clinic, the biomarker’s performance 

using 'real-world' cohorts across multiple centres should be well known. Exactly how these later stage 

trials are structured will depend upon the nature of the biomarker (e.g. diagnostic (versus similar 

diseases or reflecting disease activity) or prognostic (of disease course untreated or of response to 

specific therapies)). 

A subset of biomarkers with potentially great impact in rheumatology are those intended as endpoints 

or to identify patient subgroups in clinical trials. The increasing interest in identifying patient 

subgroups stems from the recognition that while many newer therapies target specific biologic 

pathways (e.g. infliximab and the TNF-alpha pathway in rheumatoid arthritis, sifalimumab and the type 

1 interferon pathway in SLE and autoimmune myositis), the relationship between biologic pathway and 

disease is not always one to one. For example, a subset of patients with clinical SLE will have no 

identifiable dysregulation of the type 1 interferon pathway and a plausible hypothesis would be that 

this subset of patients will not benefit from anti-interferon therapy [24]. If this proves to be the case 
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then using upregulation of IFN-I genes to choose patients for anti-interferon alpha therapy should result 

in increased clinical response rates. This in turn should allow pre-registration clinical studies to be 

adequately powered with fewer patients and ultimately make costly medications more cost-effective to 

health-care funding bodies. It should be noted that the bar for validation of biomarkers intended for 

drug development is set higher, with specific regulatory processes laid down by the US Food and Drug 

Administration and European Medicines Agency [25,26].  

Recent court cases have also raised questions about the patent status of gene-based tests. The key 

decision was handed down in June 2013, when the United States Supreme Court decided in Association 

of Molecular Pathology v. Myriad Genetics that genomic DNA and the information therein was patent-

ineligible. The subtleties and consequences of this decision are evolving, but the additional physical 

processing and intellectual property inherent in a gene expression-based biomarker may leave this class 

of test unaffected [27,28]. 

 

2.$Gene$expressionIbased$biomarkers$in$rheumatology.$

The$type$1$interferon$signature.$

A role for type 1 interferons in SLE was first recognised in the late 1970s [29]. It has also long been 

known that therapy with exogenous type 1 interferons would occasionally precipitate a lupus-like 

syndrome. In vitro work in 2001 then provided additional evidence that interferon-alpha may 

contribute to the pathogenesis of SLE through its effects on the differentiation of dendritic cells [30]. 

So the 2003 publication of two independent microarray-based papers describing a marked upregulation 

of IFN-I genes (‘the interferon signature’) in the peripheral blood of SLE patients was not wholly 

unexpected. However, the striking prominence of this interferon signature, its apparent association with 

disease activity, and its sensitivity to high dose steroid were novel findings that raised the possibility of 

a much-needed objective disease activity biomarker for SLE [4,5]. 

Research into the interferon signature since these initial observations has proceeded along the 

following lines: (i) the clinical significance of the interferon signature in SLE, (ii) its translation into a 

clinical diagnostic test and subsequent application as a pharmacodynamic marker in trials of anti-

interferon therapy, and (iii) its role in other autoimmune diseases (Table 1). 



  

11 
  

 

The%clinical%significance%of%an%interferon%signature%in%SLE.%

One of the most enticing possibilities has been that the interferon signature represents a biomarker for 

SLE activity. A problem for researchers has been how to test this possibility in the absence of a 

definitive gold standard. Generally, studies aim to show that the interferon signature correlates with 

one of two broadly used clinical disease activity scores: SLEDAI, or BILAG [31,32]. Both are well-

validated instruments that have been shown to correlate with disease activity surrogates such as 

escalation of treatment and clinician’s impression [33]. However, as such they incorporate clinical 

assumptions about the significance of inflammation in one organ system (e.g. central nervous system) 

versus another (e.g. skin). For this reason it may be inappropriate to expect a biologically derived 

marker of disease activity to follow these scores closely. Instead, it is better that a proposed activity 

biomarker show moderate correlation with multiple relevant parameters (e.g. number of organ systems 

involved, treatment escalation) than excellent correlation with one. 

There are now numerous studies examining the correlation between SLE activity and the IFN-I 

signature, using multiple versions of the interferon signature and a number of ways of assessing disease 

activity (Table 1). In our experience, different versions of the interferon signature are so tightly 

correlated that it is reasonable to consider these studies together. Of these studies, those with a cross-

sectional design show a consistent, moderate association between IFN-I gene expression and disease 

activity measured by SLEDAI, BILAG, number of organ systems involved, and renal involvement, 

among others. 

Unfortunately, the two published studies that follow IFI gene expression longitudinally report that the 

interferon score does not track disease activity within an individual over time [34,35]. Instead, its 

expression in an individual appears to be largely stable when followed over a period of months. In the 

longer-term, the expression of the interferon signature appears to decline with age from a peak in the 

second and third decade [36]. Indeed, these data would suggest that the interferon signature in SLE 

may be better thought of a risk factor predicting more severe disease than as a biomarker of day to day 

activity that can be used to detect flares in the clinic. 

The ability of an interferon high state to predict disease activity was also addressed by Bauer et al in 

studies of interferon inducible serum cytokines in SLE [37]. They used a protein microarray platform 
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to assay 160 serum cytokines in a cohort of SLE patients. In doing so, they identified a cluster of 

twelve cytokines that were demonstrably interferon inducible in vitro and correlated with the IFN-I 

gene expression signature. A composite chemokine score was derived from three chemokines in this 

cluster (CCL2, CCL19 and CXCL10) and taken forward for independent validation [38]. A high 

chemokine score in the validation cohort was sensitive (sensitivity 83%) but not specific (specificity 

49%) for detecting active disease. However, a high chemokine score was associated with an increased 

hazard of 2.5 for an SLE flare in the following 12 months suggesting that this assay (and perhaps by 

extrapolation the IFN-I signature) may be best used to risk stratify patients in remission. 

Other non-expression-based surrogate markers for the interferon signature have also been studied (i.e. 

Siglec-1 expression or CD64 surface expression on monocytes by flow cytometry) and in these a 

correlation with disease activity is also observed [39,40]. 

Nearly all studies of the interferon signature in SLE include a subset of patients with at least moderate 

upregulation of IFN-I genes despite clinically inactive disease and another of patients with clinically 

active disease, and no detectable interferon signature. Are there subgroups of SLE patients that 

preferentially exhibit an interferon signature independently of disease activity? This is a difficult 

question to address, because many relevant subgroups (e.g. cerebral lupus, renal involvement) also 

identify patients with more severe disease. However, one study found that after adjusting for SLEDAI, 

anti-U1RNP antibodies remained independently associated with interferon-high patients [41]. This is 

consistent with other univariate analyses demonstrating an association between anti-RNP, anti-Ro and 

anti-La autoantibodies and an interferon signature in SLE [42,43]. 

Evidence is accumulating that an active interferon signature may be associated with worse vascular 

disease in SLE, an important finding given the contribution of accelerated vascular disease to long-

term mortality in this condition. Lood et al report that an interferon signature in platelets from SLE 

patients correlates strongly with a history of vascular disease [44]. Somers et al report an association 

between interferon signature and coronary calcification and carotid intima media thickness, both early 

subclinical markers of vascular disease [45]. Finally, single nucleotide polymorphisms in IRF8, a 

transcription factor of the type 1 interferon pathway, have been associated with ischaemic heart disease 

in SLE, albeit at sub-genomewide significance in a targeted “within cases” genetic analysis [46]. 
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The%interferon%signature%to%guide%anti:interferon%alpha%therapy.%

Recently, the focus has shifted from the interferon signature as a disease activity marker to its ability to 

select patients for and as a pharmacodynamic marker of anti-type 1 interferon therapy. As an adjunct to 

their development of sifalimumab, a human anti-interferon alpha monoclonal antibody, MedImmune 

have defined and validated a whole blood IFN-I signature assay. The assay output is a single 

continuous interferon score, based on the expression of 21-genes. The genes were chosen from those 

upregulated after PBMC stimulation ex vivo with type 1 interferon and SLE patient serum. This 

upregulation had to be attenuated in the presence of anti-interferon alpha and anti-interferon alpha 

receptor monoclonal antibodies and the genes also had to be overexpressed in the blood of SLE 

patients versus healthy volunteers [47]. 

This biomarker was successfully able to identify type 1 interferon high samples at baseline and 

inhibition of the signature by sifalimumab in a phase 1 randomised controlled trial [48]. As a qPCR-

based assay, it exhibited high correlation with a microarray-based gold standard determined in parallel 

and also with interferon activity in paired skin biopsies. 

The assay has subsequently been implemented in a follow-up phase 1b study of sifalimumab where it 

was used in block randomization of patients at baseline, and as an exploratory pharmacodynamic 

endpoint. This study again confirmed dose-dependent, incomplete inhibition of the IFN-I signature and 

found a trend to improved disease activity in the subgroup that were interferon high at baseline and 

treated with sifalimumab [24]. It is not surprising that inhibition was incomplete: only a subset of type 

1 interferons are neutralized by the two current anti-interferon alpha antibodies, sifalimumab and 

rontalizumab. Indeed, the observation highlights the importance of including the interferon signature as 

a pharmacodynamic marker in these studies. 

A 7-gene qPCR assay was developed by Genentech for their phase 1 study of rontalizumab in SLE 

[49]. Again they were able to identify interferon high patients (as compared with a microarray gold 

standard) and demonstrate dose-dependent reduction in interferon score after rontalizumab. This assay 

was subsequently used to classify participants into interferon high and low groups for a follow-up 

phase 2 study of subcutaneous or intravenous rontalizumab versus placebo in moderate to severe SLE. 

Although currently only published in abstract form this study concluded, paradoxically, that only 

patients who were interferon low at baseline had a significant response to anti-interferon therapy [50]. 
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It is difficult to know how to interpret this in light of the sifalimumab observations above, and factors 

such as other clinical and laboratory differences between the interferon high and low groups, and the 

degree of inhibition achieved by rontalizumab in the interferon high group will have to be examined 

carefully when the study is ultimately published. 

A separate, 13-gene, interferon assay has also been developed specifically for trials in dermatomyositis 

and polymyositis. Although the assay was developed from expression data generated in a longitudinal 

study of dermatomyositis and polymyositis patients, the 13 genes chosen are a subset of the 21-gene 

MedImmune assay, and there is a tight correlation between the two (r=0.82) [51]. This has since been 

used for a phase 1b clinical trial of sifalimumab in autoimmune myositis, with similar outcome to the 

SLE studies above [52]. 

In summary, a range of assays based on overlapping lists of IFI genes are entering use in clinical trials 

of anti-interferon therapy. From the initial reports, these biomarkers have highly similar properties and 

all have been validated to varying degrees as surrogate markers for a microarray defined interferon 

signature. 

 

Type%1%interferon%signature%in%diseases%other%than%SLE.%

Since the identification of a type 1 interferon signature in SLE, similar signatures have been described 

for a number of other autoimmune diseases [53–55]. In a 2011 study, Higgs et al compared the whole 

blood transcriptome of patients with SLE, dermatomyositis, polymyositis, rheumatoid arthritis and 

systemic sclerosis [53]. In each of these diseases there was a subset of patients with a detectable 

interferon signature. Moreover, by comparing differentially expressed gene lists and by pathway 

analysis, the authors showed that the genes comprising the interferon signature in each disease were 

broadly similar. The proportions of polymyositis, dermatomyositis and systemic sclerosis patients with 

a detectable interferon signature (using a threshold determined based on healthy volunteers) were 

similar to that of SLE (61, 66, 68 & 73% respectively), whereas the proportion of rheumatoid arthritis 

patients with a detectable signature was only one third. These frequencies are similar to previous 

reports [5,55,56]. A substantial majority of patients with Sjogren’s syndrome also demonstrate an 

interferon signature [57]. Other autoimmune rheumatic diseases, notably AAV, have been studied by 

microarray and are not associated with upregulation of type 1 interferon [58]. As with SLE, researchers 
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have shown an association between the interferon signature and disease activity for systemic sclerosis 

and polymyositis [53]. In rheumatoid arthritis, two publications confirm that an interferon signature at 

baseline is associated with a poor response to rituximab and in Sjogren’s syndrome, the signature was 

shown to be associated with anti-Ro and anti-La autoantibody titres [57,59,60]. 

Does the presence of an interferon signature allow conclusions to be drawn regarding a common 

pathogenesis for these disorders? Certainly, the overlap between SLE and Sjogren’s syndrome is well 

described and recent in vitro work has shown a link between anti-nucleic acid antibodies and interferon 

production [54,61]. Anti-nucleic antibodies (e.g. anti-Jo1, targeting a tRNA synthetase) have also been 

described in the inflammatory myopathies and systemic sclerosis is characterized by a range of 

autoantibodies against nuclear components, albeit not always nucleic acids. An interferon signature has 

been shown to predate the onset of clinical disease in a cohort at high risk for developing rheumatoid 

arthritis [62]. 

 

Summary%–%Type%1%interferon%signature%

The type 1 interferon signature remains the most well-studied gene expression-based biomarker in 

autoimmune disease. It is associated with more severe disease in SLE, but is insensitive to short-term 

fluctuations in disease activity. Subgroups of patients from an expanding number of autoimmune 

diagnoses can be identified to have similar upregulation of interferon signaling pathways. 

A number of unanswered questions remain. In particular, differences in interferon signature between 

disease or in individual cell types have not been studied in humans to any great extent. Given the 

increasing appreciation of the complexity of interferons (the type 1 interferon family comprises 16 

members) and their downstream signaling pathways even small differences may be important (e.g. 

reflecting shifts in the balance of type 1 interferon cytokines) [63]. 

There are two likely applications for an interferon-based assay in clinical practice. First, given the 

association with disease activity in cross-sectional studies, it may prove to be useful in risk-stratifying 

SLE patients for planning maintenance therapy during remission. Second, if anti-interferon antibodies 

enter clinical use, an interferon score may be useful in identifying patients for treatment and providing 

pharmacodynamic correlation with treatment efficacy. 
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A$CD8+$TIcell$prognostic$signature$in$AAV$and$SLE.$

In 2010 McKinney et al reported a CD8+ T-cell gene signature that robustly divides flaring AAV and 

SLE patients into good and poor prognostic groups [6]. They began with the observation that when the 

unfiltered transcriptome of purified peripheral blood CD8+ T-cells was subjected to unsupervised 

clustering, samples separated neatly into two statistically distinct subgroups. Subgroup membership 

was most highly correlated with number of flares and time to flare over a median follow-up of three 

years. A shortlist of the most influential genes defining these subgroups was able to recapitulate this 

prognostic classification in a validation cohort of 27 flaring AAV patients and in a third cohort of 26 

flaring SLE patients (Figure 2). 

A follow-up study from the same laboratory reports that a highly similar CD8+ T-cell signature 

classifies patients with active inflammatory bowel disease into good and poor prognostic subgroups 

[64]. Such a consistent observation across four distinct autoimmune and autoinflammatory conditions 

suggests the signature reflects fundamental differences in T-cell biology. Genes encoding T-cell 

receptor and IL-7 receptor signaling pathway components were enriched in the poor prognosis 

subgroup, hinting at a role for T-cell survival and the development of T-cell memory. 

The ability to classify patients at presentation by prognosis using a small number of CD8+ T-cell 

expressed genes raises the real possibility of personalizing treatment. Patients in the poor prognosis 

group may benefit from an intensified maintenance immunosuppression regimen, while those with a 

good prognosis could potentially be weaned off maintenance therapy more rapidly. However, a number 

of hurdles stand between this biomarker and its clinical application. It must be transformed from a 

technically complex marker based on fresh, separated leukocytes into a simplified, robust clinical 

assay. Alongside this, a strategy for classifying new samples as they arise needs to be developed. The 

new assay will then require validation both against the original CD8+ T-cell based classification and 

against clinical prognosis. Other open questions, such as the effect of treatment on classification, and 

the longitudinal stability of prognostic assignments are also important given the broad range of clinical 

scenarios in which this biomarker would be of potential use. 
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Peripheral$blood$transcriptional$modules$and$SLE.$

Chaussabel and colleagues have used a module-based approach to build a potential disease activity 

based biomarker for paediatric SLE [7]. They subjected PBMC-derived gene expression data from 239 

patients with a broad range of immune-related diagnoses including sepsis, organ transplantation and 

autoimmune disease to repeated rounds of gene clustering to yield 28 modules. Each module represents 

a cluster of genes that are tightly correlated across at least six out of the eight diagnoses in the dataset. 

Literature mining allowed functional annotations to be attached to most, but not all, of these modules. 

The output from an individual module - a single value reflecting whether genes in that module are 

highly or lowly-expressed in a given sample – is combined with that of the other modules to generate 

an ‘at a glance’ summary of the PBMC transcriptome for a given patient at a given point in time.  

The validity of this approach was established by demonstrating that type 1 interferon, ‘granulopoiesis’ 

and plasma cell modules were upregulated in SLE in a novel SLE cohort. Summary measures of these 

and 8 additional modules that were also correlated with SLE were then examined for their association 

with disease activity and and for confounding by treatment. Concomitant steroid or cytotoxic therapy 

appeared not to affect this modular signature of SLE, but certain modules (‘interferon’, ‘immature 

granulocytes’, ‘erythrocytes’, ‘T-cell lymphopaenia’ and ‘ribosomal down-regulation’) did correlate 

with disease activity. A quantitative PCR assay using two genes from each of these five modules was 

also correlated with activity (spearman rho=0.63 for an independent SLE cohort). A composite ‘u-

score’ was then used to summarize gene expression in these modules. This score has the advantage of 

being non-parametric and scale independent, but as at it relies on a given sample’s gene expression in 

relation to others, it may not translate seamlessly to a clinical setting. Nonetheless, the u-score mirrored 

changes in SLEDAI over time (2-4 time points) for most patients assessed and whilst individual gene 

expression correlated poorly across platforms, module level expression was at least moderately 

correlated when two markedly different array technologies were applied to the same samples. 

This work is ongoing: a re-analysis has replaced the initial 28 transcriptional modules with a set of 260, 

derived from an expanded set of now whole blood gene expression data obtained from healthy 

volunteers and patients with infection and immune-related conditions. Of relevance to SLE, the 

interferon transcriptional module was split into three, each with distinct properties. In a cohort of SLE 

patients, the expression of two of these modules varied over time, and one showed a modest correlation 

with a number of indices of disease activity. The authors show differences in the expression of these 
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modules in patients receiving exogenous interferon alpha and beta and hypothesise that these 

differences are due to differing sensitivities of the three modules to interferon-alpha, beta and gamma 

[65]. 

 

Overall, this implementation of disease-independent modules of correlated gene expression represents 

an interesting and innovative approach to biomarker development. Key advantages include the ability 

to combine multiple transcriptionally independent modules to improve the correlation of individual 

modules with relevant clinical parameters, as well as its comparatively straightforward translation to 

the clinic. However, even in the updated analysis many of these modules seem to detect changes in the 

relative proportions of leukocyte subsets within a sample, rather than cell-level alterations in gene 

expression. While this doesn’t affect the validity of the approach, it complicates biologic interpretation 

and raises the question as to whether detailed immunophenotyping may be an alternative approach that 

is more amenable to widespread implementation. 

 

Other$notable$gene$expression$studies$and$signatures.$

The%granulopoiesis%signature%of%SLE%

The first microarray studies of SLE patients found an overrepresentation of granulocyte-specific genes 

in peripheral blood mononuclear cell samples. Flow cytometry subsequently confirmed that this was 

due to the presence of immature granulocytes retained within the PBMC layer, as had been reported 

previously [5,66]. This granulopoiesis signature correlated with disease activity at least as well as the 

interferon signature, but unlike the interferon signature has not been developed further as a potential 

biomarker. Instead, the observation has stimulated a substantial body of research into the role of 

neutrophils in SLE, uncovering substantial interactions between neutrophils and interferon-producing 

plasmacytoid dendritic cells [67]. 
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Gene%expression%profiling%in%ankylosing%spondylitis%

The two major studies of peripheral blood gene expression in ankylosing spondylitis (AS) have 

conflicting findings. The first used PBMC samples from a cohort of 18 AS patients, ten of whom were 

receiving immunosuppression (anti-TNF therapy and/or corticosteroid), and age- and gender matched 

healthy volunteers [68]. Differential expression analysis identified predominantly downregulated 

immune-associated genes, and four of these (NR4A2, TNFAIP3, CD69 and RORA) were chosen for 

qPCR validation in a second cohort of 35 AS patients. NR4A2, TNFAIP3 and CD39 were also 

significantly underexpressed in the validation cohort, with an area under receiver operator curve of 

77% for discriminating AS from healthy volunteers. However, the second study examined the whole 

blood gene expression of 16 patients with untreated, active AS, reporting significant upregulation of 

TLR4 and TLR5 as well as other genes in related pro-inflammatory pathways, confirmed in a second 

cohort [69]. Although identified by the first study, NR4A2, TNFAIP3 and CD69 were not differentially 

expressed in this analysis. Differences in sample type (whole blood as compared with PBMC) may 

explain this, but the results of the first study may also be confounded by immunosuppression. 

Downregulation of TNFAIP3 is reported as predictive of response to anti-TNF therapy, and reduced 

CD69 expression in lymphocyte subsets has been reported in cells treated in vitro with etanercept 

[70,71]. 

 

Conclusion$

The process of discovering gene expression-based biomarkers is painstaking, and the process of turning 

these candidate biomarkers into a practical and useful clinical test even more so. Biology does not 

always line up neatly with clinical parameters. Peripheral blood is a useful but imperfect mirror for 

disease processes occurring in tissues. Processing and technical artefacts are difficult to avoid. 

Despite this, after a decade of gene expression-based biomarker research in rheumatology a number of 

promising candidates are moving forward. The need for a pharmacodynamic marker for anti-interferon 

therapy has driven forward development of the interferon signature into well-validated qPCR-based 

assays that are now integral to a number of clinical trials. Our current understanding of the interferon 

signature in autoimmune disease suggests that although it is a risk factor for more active disease, it 
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does not reflect short term changes in disease activity and perhaps will be most clinically relevant in 

stratifying patients in remission for maintenance therapy. 

Another candidate biomarker of prognosis is the CD8+ T-cell marker described by McKinney et al 

[6,64]. Although in its current form the marker is technically complex and more suited for a research 

setting, it offers the prospect of tailoring a patient’s treatment to their prognosis on presentation.  

Chaussabel et al have developed a flexible framework for biomarker development in autoimmune 

disease using whole blood samples [7]. By combining multiple independent modules of expression 

they have developed a biomarker of SLE disease activity with impressive performance in a small 

validation cohort. A larger validation study will be important to determining its clinical role. 

Looking back over the last decade of gene expression-based biomarker research, an approach 

characterized by individual centres using small cohorts and unique protocols has been a significant 

brake on the pace and scope of biomarker discovery. Multicentre collaborations are already starting to 

emerge (e.g. the FOCIS Human Immunophenotyping Consortium, working to standardize 

immunophenotyping panels and procedures between centres) and developing these collaborations 

further using common methodology optimized for emerging high throughput technology is likely to be 

the key to making the next decade of research even more productive than the last. 
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Figures$

Figure 1. An overview of the biomarker development process, highlighting important design 

considerations at each step. 

Figure 2. Kaplan-Meier plots showing shorter time to first flare in poor prognosis ‘8.1’ SLE group 

(left) and poor prognosis ‘8.1’ ANCA-associated vasculitis group (right). Significance was measured 

with the log-rank test. Modified from McKinney et al, Nat. Med. 2010; 16(5):586–91. [6] 
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Table 1. Summary information for the primary research articles describing interferon-based 

biomarkers referenced in this review. 
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