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Abstract 

 

Drought events and their consequences pose a considerable problem for governments, 

businesses and individuals. Superimposed on this risk is the danger of future anthropogenic 

climate change. Climate models are increasingly being used to understand how climate 

change may affect future drought regimes. However, methodologies to quantify the type and 

scale of social and economic effects that could occur under these future scenarios are 

virtually non-existent. Consequently, this study developed a methodology for projecting and 

quantifying future drought risk in terms of economic damages and numbers of lives lost and 

affected.  

 

In this study, historic drought events were identified in regional precipitation data using the 

Standardised Precipitation Index, and their magnitude quantified. Drought magnitude was 

linked to reported historic data on economic damages and the numbers of lives affected and 

lost, to create country specific economic and social drought damage functions for Australia, 

Brazil, China, Ethiopia, India, Spain/Portugal and the USA. Future projections of drought 

magnitude for 2003-2050 were modelled using the integrated assessment model CIAS 

(Community Integrated Assessment System), for a range of climate and emission scenarios, 

and applied to the drought damage functions to estimate future economic and social drought 

effects. Additionally, a preliminary investigation of indirect economic drought damages was 

conducted using the Adaptive Regional Input-Output model (ARIO). 

 

The analysis identified large variability in the scale and trend of economic and social effects 

from future drought. Economic benefits projected to occur in some countries were 

outweighed by negative effects elsewhere, with annual losses to global GDP from drought 

increasing in the first half of the 21st century. The analysis suggested that severe and 

extreme SPI-6 and SPI-12 drought events could cause additional losses to global GDP of 

0.01% to 0.25% annually. Whilst this effect on global GDP may appear small, this is 

considered a conservative estimate namely as the analysis is representative of six countries 

only; the estimates do not incorporate the possibility of successive drought events, or 

compounding effects on vulnerability from interactions with other extreme events such as 

floods. Additionally, the global economic estimates exclude indirect economic effects, and 

social and environmental losses; the possibility of increasing vulnerability due to changing 

socio-economic conditions; and the possibility of irreversible or systemic collapse of 

economies as, under future climate change, drought magnitude may exceed current 

experience and surpass thresholds of social and economic resilience. Yet importantly, even 
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just considering direct economic effects of individual drought events on a handful of 

countries still resulted in a noticeable effect on global GDP. 

 

Stringent mitigation had little effect on the increasing economic and social effects of drought 

in the first half of the 21st century, so in the short-term adaptation in drought ‘hot spots’ is 

crucial. However, stringent mitigation will be required to reduce increasingly severe drought 

events that are projected for the second half of the 21st century. A case study of Spain 

suggested that indirect economic losses increased non-linearly as a function of direct losses, 

amplifying total economic damages of drought. Importantly the non-linearity seen between 

direct and indirect economic costs suggests that the benefits of stringent mitigation policies, 

in terms of avoided indirect losses, may be more substantial than for direct losses in the 

second half of the 21st century. 

 

The main impact of the research is its contribution to the assessment of economic and social 

damages from drought events through the creation and application of drought damage 

functions. The drought damage functions could be incorporated into wider economic 

assessments of climate change or integrated assessment models that currently exclude 

extreme weather events. The inclusion of drought related economic and social damages 

could help to guide appropriate levels of climate change mitigation, help to gauge the 

vulnerability of communities to future drought events, guide drought risk management, and 

inform drought adaptation strategies.  The application of I-O analysis to estimate indirect 

economic losses from drought is a relatively new and developing area of research. The 

research highlights how I-O analysis could be used to provide estimates of economic 

drought damages under future climate change, which are more comprehensive, and useful 

for assessing benefits of future mitigation and adaptation strategies. Consequently, there are 

many gains to be seen from the continued development and application of this research 

methodology for drought. 
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1. Introduction: Setting the context 

Climate change is widely viewed as one of the most serious threats to humanity. It is an 

extremely difficult issue to manage due to the complex nature of the climate system, the 

global scale of the problem, and uncertainties over how the climate system will respond in 

the future to changing greenhouse gas (GHG) emissions. The 2007 review by the 

Intergovernmental Panel on Climate Change (IPCC) concluded that global atmospheric 

warming of the climate system is ‘unequivocal’ and warming over the past 50 years is 

attributable to human activities. The global temperature has risen by 0.74°C in the last 100 

years (from 1906 to 2005) and global temperature is projected to increase by 2.4 to 6.4°C by 

2100 (relative to 1980-1999) (IPCC, 2007b). 

 

Changes in long-term mean climate are important, however the consequences of shifts in 

the intensity and frequency of extreme weather events are likely to result in significantly 

larger impacts on society, the economy, and the environment (Beniston, 2007). As such, 

changing characteristics of extreme weather events are expected be one of the most serious 

consequences of climate change (IPCC, 2007b). Of all extreme weather types, droughts 

have one of the largest impacts on society. Drought affected over 1.5 billion people during 

1980-2008, an average of ~53 million people each year (EM-DAT, 2010). Economic 

damages from drought events can also be catastrophic, with a single drought event capable 

of causing tens of billions of dollars of damage. For example, the 2002 drought in the USA 

was estimated to have caused damages of over 20 billion US$ (Wilhite, 2005). In the EU it is 

estimated that drought and water scarcity has affected at least 11% of the population to date 

with economic losses over the past 30 years estimated at ~139 billion US$ (European 

Commission, 2007). 

 

Evidence already suggests that climate change has begun to affect the intensity and 

frequency of drought events in some parts of the world, and the IPCC concluded that 

drought affected areas are likely1 to increase in extent in the future (IPCC, 2007b). Changes 

in drought patterns and characteristics will affect the type and scale of future economic and 

social impacts. It is the identification and estimation of potential economic and social effects 

of drought, under future scenarios of climate change, which forms the basis for this research. 

The chapter continues with a general introduction to the subject area highlighting current 

gaps in knowledge, and the important research questions that arise. 

 

                                                
1
 The term ‘likely’ is used by the IPCC to denote a probability greater than 66%. 
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1.1 Drought 

Drought is a weather-related phenomenon that reflects the natural variability of the climate 

system. Drought is possible in virtually all regions of the world, regardless of precipitation or 

temperature regimes (Wilhite, 2005). Droughts are slow onset, spatially extensive, events 

that can affect regions for weeks, months or years. Due to these characteristics droughts are 

often considered the most complex of all natural hazards to understand and analyse (Wilhite 

et al., 2007). There is no single, universal definition of drought as definitions can vary 

depending on the subjective views of the user and the particular regions, impacts and 

sectors being assessed (Wilhite, 2005). The IPCC define drought as ‘a prolonged absence 

or marked deficiency of precipitation’, a ‘deficiency that results in water shortage for some 

activity or for some group’, or ‘a period of abnormally dry weather sufficiently prolonged for 

the lack of precipitation to cause a serious hydrological imbalance’ (IPCC, 2007b, p.261). 

Drought events can also be defined based on the duration of the precipitation deficit and the 

particular impacts that evolve over time. Meteorological drought relates to a deficit in 

precipitation from average conditions. Hydrological drought implies a departure in surface 

and sub-surface water supplies from average conditions. Agricultural drought is related to 

the availability of soil moisture to support crop growth. Socio-economic droughts can be 

caused by human effects on the supply and demand of water resources in combination with 

other types of drought (Wilhite and Buchannan-Smith, 2005). 

 

1.1.1 Drought impacts 

Drought has the potential to cause severe direct and indirect impacts to society, the 

economy and the environment. For example, drought can directly cause loss of life, destroy 

crops and reduce water supply and quality. Direct impacts on food and water supply can 

indirectly affect quality of life, lead to malnutrition, starvation, disease, and risk of conflict, all 

triggering humanitarian and human development concerns. Figure 1.1 illustrates direct and 

indirect social, economic, and environmental impacts of drought. 



Introduction 

 

3 

 

 

Figure 1.1: An example of direct and indirect social, economic, and environmental drought 

impacts. Source: Figure adapted from Hochrainer et al., (2007). 

 

 

Drought is an economically important hazard for many countries. Agriculture, livestock, 

forestry, energy, industry, and water sectors are all particularly at risk from drought (NDMC, 

2006c). Direct economic impacts can indirectly affect business production affecting the flow 

of goods and services through extensive and complex sectoral linkages. Secondary 

macroeconomic impacts comprise both the indirect losses and the impacts of government 

reallocation of resources for reconstruction and relief efforts (Hochrainer et al., 2007, 

Mechler, 2003). 

 

However, the lack of observable, physical drought damage to assets and capital commonly 

results in the underestimation of direct and indirect economic damages from drought with 

most estimates carried out in a haphazard and incomplete manner (Below et al., 2007, 

Hayes et al., 2004). Agriculture is an exception as Ding et al., (2010) notes that it is highly 

sensitive to weather variability and so drought impacts can be immediate and physically 

observable. Data and statistics for the agricultural sector are easier to gain than for other 

sectors, and monetary estimates of drought losses are often collected for regions that seek 

disaster aid (with most relief programs available for agriculture only). Consequently, 

economic impacts of drought are not usually considered as severe as from other extreme 

weather types like floods or hurricanes. Yet drought is commonly associated with large 

indirect economic losses due to the dependence of many industrial sectors on water for 

production, and the importance of water for providing services and recreation. These indirect 

damages can propagate rapidly through the economic system affecting regions far from the 
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original event (Wilhite et al., 2007), and continuing to be felt long after the drought has 

ended. 

 

Drought events also have one of the largest impacts on society of all extreme weather types. 

However, as with economic damages, attributing loss of life and lives affected specifically to 

drought is complex because of the indirect effects on society via e.g. food and water 

shortages, poor health, and disease (Sheffield and Wood, 2011). Human activities are linked 

to hydrological, agricultural and socio-economic droughts highlighting the important 

interactions that exist between society, environment and water. Therefore, any changes to 

hydrological systems, such as those caused by drought, pose a significant risk to society. 

Risk can be defined as the probability of harmful consequences, or expected losses resulting 

from interactions between natural hazards and vulnerable conditions (UNISDR, 2004). Thus, 

the scale and severity of drought impacts will be dependent on the underlying vulnerability of 

the population and particular region exposed to the event, as well as the underlying climate 

and weather patterns that determine the frequency and severity of the event. 

 

1.1.2 Socio-economic changes and vulnerability 

Vulnerability can be defined as ‘the degree to which a system is susceptible to, and unable 

to cope with, adverse effects of climate change, including climate variability and extremes’ 

(IPCC, 2007c, p.883). Society is affected by drought when its ability to cope is exceeded due 

to pre-existing vulnerabilities, or due to an event being of such high magnitude that it 

overwhelms an otherwise functioning society. Whilst it is expected that climate change will 

influence the frequency and intensity of future droughts (discussed in section 1.2.3), external 

changes independent of the climate can also affect the vulnerability of society. For example, 

increasing and expanding populations in vulnerable areas will increase the number of people 

at risk, whilst changing infrastructure and developing economies will increase the capital 

assets at risk. Evidence has already been seen to suggest that drought events of lesser 

magnitude are resulting in greater impacts as more people and sectors find themselves at 

risk today than in the past (Wilhite, 2005, Wilhite et al., 2007). In many parts of the world 

societal vulnerability to drought appears to be increasing, sometimes at a significant rate, for 

example in the USA (Hayes et al., 2004). 

 

When assessing the vulnerability of a region to an extreme weather event impacts are often 

considered in terms of economic damages. Consequently, increases in wealth, infrastructure 

and insured goods will mean that damage losses become higher regardless of the 

magnitude of the event. Yet whilst economic damages may increase in value over time, the 
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actual percentage loss to a countries total economy may decrease with development making 

a country less vulnerable overall. Conversely, a developing country may appear 

economically less vulnerable as economic losses will appear much smaller. However, least 

developed, simple economies are often perceived as the most vulnerable as economic 

losses may represent a large percent of a countries total economy (Benson and Clay, 2004). 

In intermediate-stage economies, increasing inter-sectoral linkages tend to increase the 

indirect damages that occur. Conversely, governments of countries with intermediate-stage 

economies may meet a larger share of relief and reconstruction costs rather than receiving 

external aid, and better-developed financial systems can diffuse some of the impacts. 

Developed country economies are often less dependent on vulnerable sectors such as 

agriculture; have higher investment in risk reduction; have improved environmental 

management and adaptation schemes; lower levels of poverty; and economic assets are 

likely to be insured both at private and individual household levels. These factors help to 

reduce vulnerability to extreme weather events (Benson and Clay, 2004). However, this is 

not to say that wealthier, developed nations are immune to impacts of large-scale weather 

events. Indeed, it is sometimes their very capability to be able to shield vulnerable regions 

and cities from ‘ordinary’ weather extremes which can result in countries being unprepared 

when things do go seriously wrong (Tol et al., 2000). 

 

Mirza (2003) reports that in the 1990s on a per capita GDP basis the developing world 

absorbed damages 20 times higher than the developed world due to natural disasters. 

Developing countries are considered especially vulnerable as they do not have the same 

financial, institutional, or infrastructure settings to adapt or protect themselves from these 

risks. Moreover, the societal impacts of drought on developing countries can be catastrophic 

and so impacts may be more severe than macroeconomic data alone would imply. Drought 

statistics from the International Emergency Disaster Database (EM-DAT) highlight these 

trends as developing countries feature predominantly in the top ten countries affected by 

drought events when assessing lives lost or lives affected, whilst developed countries make 

up the majority of the top ten countries affected when assessing economic impacts (EM-

DAT, 2010) (Table 1.1a-b). It is therefore very important to assess consequences of drought 

in more than just economic terms in order to get a true representation of the vulnerability of a 

region and the impacts it may suffer. 
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(a)                                                            (b) 

Country Date 
Damage 

(000 US$) 
  Country Date 

People 
Killed 

China P Rep 1994 13,755,200   China P Rep 1928 3,000,000 

Australia 1981 6,000,000   Bangladesh 1943 1,900,000 

Spain 1990 4,500,000   India 1942 1,500,000 

Iran Islam Rep 1999 3,300,000   India 1965 1,500,000 

United States 2002 3,300,000   India 1900 1,250,000 

Spain 1999 3,200,000   Soviet Union 1921 1,200,000 

Canada 1977 3,000,000   China P Rep 1920 500,000 

China P Rep 2006 2,910,000   Ethiopia 1983 300,000 

Zimbabwe 1982 2,500,000   Sudan 1983 150,000 

Brazil 1978 2,300,000   Ethiopia 1973 100,000 

 

Table 1.1: Top ten drought disasters during 1900 to 2010 defined by (a) economic damage 

(000 US$ in year of event), and (b) number of people killed at a country level.  Source: EM-

DAT, 2010 

 

 

As illustrated above changes in socio-economic conditions can affect the vulnerability of a 

region to drought. At the same time, consequences of climate change are also likely to 

exacerbate economic, social and environmental impacts. The IPCC reports that for most 

sectors current climate change falls largely within the coping capacity of society, however, 

extreme weather events are one exception (IPCC, 2007c). Vulnerabilities to extreme 

weather events are very likely to change as events become more widespread, frequent, and 

intense with future climate change. 

 

1.2 Climate change and drought 

Climate change can affect precipitation patterns and drought due to mechanisms of the 

atmosphere and climate system. Precipitation is principally driven by mechanisms that cause 

air to rise, and the moisture content of the atmosphere determined by the temperature and 

availability of moisture. At higher temperatures, the moisture content of the atmosphere will 

increase as the Clausius-Clapeyron physical law states that the water holding capacity of the 

atmosphere increases by about 7% with every 1°C temperature rise. Changes in 

temperature, radiation, atmospheric humidity, and wind speed will also affect the amount of 

evaporation which can exaggerate effects of decreased precipitation on surface water and 

run-off (IPCC, 2007c). Evaporation over land also depends largely on the moisture supply 

and is thought to be closely related to variations in precipitation and run-off at a global scale 
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(IPCC, 2007b). The resultant impact of climate change is to affect and alter the hydrological 

cycle. Climate change can affect both mean precipitation and the variability of precipitation 

so that an increase in heavy rainfall events is projected, even when there is an overall 

reduction in precipitation (Trenberth et al., 2003). A warmer climate will therefore increase 

the risk of both drought, when it is not raining, and flood when it is, at different times and 

places. Some impacts of climate change on the hydrological cycle have already been 

observed (Huntington, 2006, IPCC, 2007b, Kundzewicz et al., 2008). Furthermore, in 

summer temperatures can be closely tied to moisture availability, with heatwaves common 

during drought conditions as solar heating goes into increasing temperatures rather than 

evaporating moisture. Thus, reduced moisture availability can enhance heatwaves which 

themselves can perpetuate the drought further and amplify and potentially prolong the 

response (Trenberth and Guillemot, 1996).  

 

Research has also identified a link between increasing CO2 concentrations and physiological 

forcing on plants.  Generally, the increased concentration of atmospheric CO2 means that 

plant stomata do not open as wide as they are able to take up CO2 more efficiently. This 

results in increased Water-Use Efficiency (WUE) and reduced transpiration (Cruz et al., 

2010). Recent studies have suggested that such effects can influence hydrological 

conditions and surface air temperature (Alo and Wang, 2008). For example, increased WUE 

in plants can result in increased soil moisture, increased continental run-off, and potentially 

flooding events. Betts et al (2007) simulate a doubling of CO2 from pre-industrial levels and 

find that this results in decreased evapo-transpiration and a 6% increase in global mean run-

off. On the other hand, as increased WUE of plants leads to reduced transpiration this 

process may also lower evaporative cooling resulting in increases in regional air 

temperature. Cruz et al., (2010) suggest that the unusually high maximum surface air 

temperature during the 2002 drought in the Murray-Darling Basin in Australia was in part 

linked to the increased WUE of plants in the area. If changes in plant physiology are 

attributed to CO2 levels then impacts of climate change on the hydrological cycle may 

actually be higher than current predictions suggest, although the IPCC (2007c) note that this 

attribution is still highly uncertain. 

 

Feedback processes between drought events and terrestrial carbon cycling have also been 

recognized in China. Xiao et al., (2009) find that severe drought events in the past have 

caused the countrywide terrestrial ecosystem to switch from a carbon sink to a carbon 

source. Xiao et al., report that drought significantly affects ecosystem carbon exchange 

processes for a variety of reasons including the direct effect of drought on plant stomata and 

leaf expansion, which limits transpiration and water uptake and reduces photosynthesis. In 
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addition, repeated episodes of drought can cause a reduction in leaf area in temperate 

forests reducing gross primary productivity. Consequently, the magnitude of the terrestrial 

carbon sink could be overestimated if extreme climate events are not considered in future 

projections. This is especially important for areas projected to suffer increased drying over 

the 21st century as this feedback could affect future GHG concentrations, and exacerbate 

future drought regimes. 

 

Large scale circulation patterns, such as the El Niño Southern Oscillation (ENSO) and the 

North Atlantic Oscillation (NAO) also effect the frequency, intensity and duration of 

hydrological weather extremes (IPCC, 2002). ENSO is argued to be the single most 

important determinant of variability in global precipitation fields, with approximately 30-60% 

of annual precipitation variance explainable by the ENSO mode (Dai and Wigley, 2000). 

Droughts are more common during El Niño phases whilst excessively wet conditions are 

more common during La Niña phases (Lyon and Barnston, 2005). Major peaks in the spatial 

extent of drought and excessively wet periods are generally associated with extreme phases 

of ENSO (Lyon, 2004). Likewise, the NAO has an important influence on extreme 

precipitation in Europe characterised by increased winter precipitation during its positive 

phase and dryer winter weather in its negative phase, which can contribute to drought. 

Climate change can affect large-scale atmospheric circulation patterns directly, which could 

have major implications for the future occurrence of drought and its related impacts. Some 

observed changes have already been seen in large scale circulation patterns due to climate 

change (IPCC, 2007b, STARDEX, 2005). 

 

1.2.1 Changes in observed drought events 

It is extremely difficult if not impossible to directly link and attribute any particular drought 

event to anthropogenic climate change, as there is always a finite chance that the event in 

question might have occurred anyway due to natural climate variability. However, simple 

statistical reasoning allows us to express how a relatively small change in the mean and/or 

variance of the observed probability density function (PDF) of precipitation will affect the 

frequency of drought events. With a global mean warming of 0.74°C over the 20th century 

(IPCC, 2007b) it is very possible that a change in drought regime will occur in some areas. 

Importantly, the average global temperature rise of 0.74°C masks local and seasonal 

variations across the globe with much more warming seen in the northern hemisphere than 

the southern hemisphere due to the greater extent of land mass, suggesting that there will 

be spatial variability in drought trends. 
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One of the biggest obstacles in trying to analyse past and current trends of extreme weather 

events is the lack of high quality, reliable, and long-term instrumental data (Easterling et al., 

2000b, IPCC, 2002). In the case of drought, difficulties in accurately measuring precipitation, 

especially over the oceans, remain.  Long-term data is required when analysing changing 

trends in drought as a single large historic event can continue to bias future trends. Yet, as 

climate change has only been affecting the temperature record since the 1970s this results 

in a relatively short time-period over which to statistically identify any trends in drought 

events, which by their very definition will be rare (Easterling et al., 2000a). Nonetheless, the 

observational basis of the analysis of extreme weather events has increased substantially 

over the 21st century enabling the 2007 IPCC reports to draw a more conclusive link 

between climate change and drought. Observed precipitation data has highlighted some 

long-term changes in the intensity and frequency of drought over wide areas, especially in 

the tropics and sub-tropics, since the 1970s (IPCC, 2007b). A drying trend over many parts 

of the northern hemisphere, such as Canada, Alaska, southern Eurasia, and northern Africa 

has also been detected since the 1950s (ibid.). A study by Zhang et al., (2007), focusing on 

the detection of human influence on precipitation, concluded from both observations and 

climate model simulations that climate change has had a detectable influence on global 

precipitation during the 20th century. The study finds decreasing precipitation in the northern 

hemisphere subtropics and tropics, and increasing precipitation in the northern hemisphere 

mid-latitudes and southern hemisphere sub-tropics and deep tropics. The effect of climate 

change on soil moisture has also been analysed with the extent of very dry land more than 

doubling, from 12% to 30%, since the 1970s (IPCC, 2007b).  Many country specific studies 

also indicate changes in national and regional drought patterns over the 20th and early 21st 

centuries (inter alia, studies for the USA (Easterling et al., 2000b), Australia (Lynch et al., 

2008), Czech Republic (Dubrovsky et al., 2009), and China (Zou et al., 2005)). 

 

Event specific research, such as that focusing on the European heatwave of 2003, has also 

enhanced the growing conviction that anthropogenic climate change is already influencing 

extreme weather events. For example, Europe suffered a severe heatwave in 2003 which 

was estimated to have caused over 30,000 excess deaths; affected energy supply and 

demand, hydrological resources and the agricultural sector; and caused damages in excess 

of €13bn (UNEP, 2004). The summer of 2003 was the warmest ever recorded in Europe, 

exceeding the 1961-1990 mean by approximately 3°C (Schär et al., 2004). Stott et al., 

(2004) estimated how much human activities may have increased the risk of such an event 

taking place. Results showed that past human activity has more than doubled the risk of the 

2003 heatwave occurring. Likewise, Schär et al., (2004) investigated the scale of the 2003 

heatwave in Switzerland and found that statistically the event was extremely unlikely even 
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when observed increases in temperature were taken into account, attributing the event to 

changes in both the variability and the mean temperature. 

 

In addition to climatological data, disaster statistics used to govern humanitarian action 

following disasters and for disaster preparedness strategies are available. Figure 1.2 

presents global drought statistics from EM-DAT, the only publicly available global drought 

database. EM-DAT records the occurrence and impacts of large-scale disasters that meet at 

least one of the following criteria: 10 or more people reported killed; 100 or more people 

reported affected; a declaration of a state of emergency; or a call for international 

assistance. 

 

 

 

Figure 1.2: Global drought trends from 1970-2009 for: a) number of drought events; b) 

number of people affected by drought events; c) number of people killed by drought events; 

and d) economic damages from drought events (billion US$ in the year of the event). 

Source: EM-DAT (2010). 

 

 

Figure 1.2a highlights a steadily increasing trend in the number of reported drought events 

from 1970-2009, although there is considerable annual variability. Likewise, the average 

number of people affected (that is injured, affected or made homeless) by drought events 
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has increased threefold from the 1970s (figure 1.2b). Conversely, figure 1.2c shows the 

annual number of drought related deaths has been declining since the 1970s, although this 

trend is largely biased by intermittent ‘major’ disasters such as the Sahel Drought in the early 

to mid-1980s (EM-DAT, 2010).  Additionally table 1.1b above indicates that mortality rates 

from drought events appear to have been decreasing since 1900. This trend may suggest 

that society’s adaptive capacity to drought events has been increasing and society is 

becoming less vulnerable. Vulnerability of society to droughts may be reduced due to greater 

wealth, increasing technological options such as early warning systems and drought 

resistant crops, and quick government, international and aid agency responses in the 

immediate aftermath of events. Indeed, one of the major tools for preparing for and tackling 

drought is the use of monitoring and forecasting tools (Sheffield and Wood, 2011). 

Governments and private organisation increasingly have the capacity to develop real time 

pictures of drought over large regions, to help predict the likelihood of drought events 

occurring, the severity of events, and potential cessation of existing conditions. Additionally, 

global drought monitoring systems are being developed, as well as merging regional and 

national monitoring systems, to better reflect the large spatial scale of droughts across 

various national boundaries (ibid.). For example, the economic and social effects of drought 

events linked to the 1997-1998 El Niño were considered to have been mitigated in part as 

the El Niño event itself, and likely drought effects, were predicted before they occurred, 

using SST measuring buoys in the equatorial pacific and computer models. The 

dissemination of such forecasts for use in decision making, and to enhance preparedness, 

was beneficial and the ability to protect lives and reduce economic losses acknowledged 

(Buizer et al., 2000). Conversely, drought effects can also be aggravated by government 

interactions, such as urbanisation changing land use and population numbers in given 

regions, which may be counter-intuitive to drought mitigation measures. Indeed, there is 

evidence that certain measures which have been implemented to alleviate drought in the 

past, such as groundwater pumping and reservoir building, can also exaggerate drought and 

its effects further (Sheffield and Wood, 2011). 

 

Economic damages appear to have been steadily increasing over the past four decades 

(figure 1.2d). However, whilst EM-DAT aims to report the economic impacts there is limited 

information available on damage costs of drought events in the database, especially in the 

earlier data where cost estimates were either limited or not available at all. Although data 

recording techniques have improved since the mid 1960s, data limitations can be a real 

constraint when analysing changing drought trends. In particular, when assessing historic 

economic impact data a caveat is required as total damage costs can be particularly hard to 

ascertain; data on non-market impacts are still very much limited; large indirect costs may be 
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excluded; lagged costs may be excluded; or there may be incorrect reporting or analysis of 

data that is available (Changnon, 2003a). 

 

Figure 1.2 would imply that external factors are already affecting drought frequency, the 

number of people affected by drought, and the scale of economic damages. Therefore, an 

important question to address is how far these trends reflect changing socio-economic 

conditions, and how far, if at all, they reflect climate change? As the criteria for a drought 

event to be added to the EM-DAT database is based on the scale of reported impacts rather 

than meteorological data this may bias the trends. The trends may reflect increasing and 

expanding populations in vulnerable areas, increasing the number of people at risk, and 

developing economies increasing the infrastructure and capital assets at risk. EM-DAT have 

also acknowledged that at least some of the increase in trends in natural disasters may be 

attributed to the improved reporting and monitoring of events by media and special agencies 

over the past decades. 

 

However, the IPCC state that disaster losses, mostly weather-related, have grown much 

more rapidly than population or economic growth, suggesting there have been changes in 

the intensity and frequency of extreme weather events (2007b). In an assessment of 

damages from extreme weather events, the reinsurance firm Munich-Re found similar results 

when adjusting for factors of inflation, population growth and growth in global wealth. The 

study found that economic losses from extreme weather events in the 1990s still showed an 

increase compared to the 1960s, which they attributed to changes in the frequency of 

extreme weather events (reported in  Vellinga and van Verseveld, 2000). Swiss-Re also 

concluded that economic losses from natural disasters have increased, even when taking 

inflation, insurance, price effects and higher standards of living into account (ibid.). Similarly, 

Höppe and Pielke (2006, p.2), who summarise the findings of an international workshop on 

climate change and damage loss from extreme weather events, state that: 

 

 Analyses of long-term records of disaster losses indicate that societal change and 

economic development are the principal factors responsible for the documented 

increasing losses to date. 

 There is evidence that changing patterns of extreme events are drivers for recent 

increases in global losses. 

 Because of issues related to data quality, the stochastic nature of extreme event 

impacts, length of time series, and various societal factors present in the disaster 

loss record, it is still not possible to determine the portion of the increase in damages 

that might be attributed to climate change due to GHG emissions. 
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Consequently, disaster statistics and evidence of changing drought trends ascertained from 

observed precipitation data would suggest that recent changes in the characteristics and 

effects of drought events are a consequence of not only socio-economic changes but also 

changes in the intensity and severity of drought events due to anthropogenic climate 

change. Whilst socio-economic changes may be the principal factor for current trends in 

drought impacts, climate change may start to play a more dominant role in the future. This is 

an ominous course as the IPCC project much greater changes in global temperature over 

the 21st century, which could further exacerbate drought frequency and intensity in some 

regions. Therefore, understanding how drought regimes will change under future projections 

of climate change, and the economic and social implications of this, is a key issue to 

consider. 

 

1.2.2 Future drought trends 

There are numerous types of mathematical climate models which aim to simulate the 

behaviour of the climate system. Climate models range from very simple zero order models 

(providing a single global average) to more complex three-dimensional General Circulation 

Models (GCMs). There is increasing confidence that climate models provide credible 

estimates, based on the foundations of the models in accepted physical laws and principles, 

and their ability to reproduce current and past climate change. Based on a suite of 21 GCMs 

the IPCC concluded that drought affected areas are likely to increase in extent in the future.  

Widespread decreases in precipitation were projected for mid-latitude summer precipitation, 

except for eastern Asia, and the risk of summer drought is likely to increase in central 

Europe, the Mediterranean, and southern Australia (IPCC, 2007b). By the 2090s the extent 

of land surface in extreme drought at any one time is projected to increase ten-fold from 

present, with a global drying trend seen on average (Kundzewicz et al., 2008). As such, 

future drought severity may be further compounded by positive feedbacks such as increases 

in the frequency of heatwaves (Sheffield and Wood, 2011). Figure 1.3 illustrates the mean 

global changes in precipitation and soil moisture, for the period 2080-2099 relative to 1980-

1999 (IPCC, 2007b, p.769).  
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Figure 1.3: Multi-model mean changes in (a) precipitation (mm day-1) and (b) soil moisture 

content (%). To indicate consistency in the sign of change regions are stippled where at 

least 80% of models agree on the sign of the mean change. Changes are annual means for 

the SRES A1B scenario2 for the period 2080 to 2099 relative to 1980-1999. Soil moisture 

changes are shown at land points with valid data from at least 10 models. Source: (IPCC, 

2007b, p.769). 

 

 

The findings of the IPCC have been corroborated by recent studies of future drought 

regimes. At a global scale Sheffield and Wood (2008) projected future drought changes in 

the 21st century using a suite of eight GCMs, which were included in the 2007 IPCC report, 

using high, medium and low emission scenarios. Drought was defined as an extended 

period of anomalously low soil moisture, for a consecutive series of months, and which fell 

below a pre-defined threshold. Results showed a decrease in soil moisture at a global scale 

under all scenarios with regional hotspots identified as the Mediterranean, West Africa, 

central Asia, and Central America (especially for drought events lasting more than a year), 

as well as mid-latitude North American regions. The study reported less significant changes 

over high latitudes and eastern mid-latitude Asia. Drought frequency was projected to 

increase relative to the current climate although significant changes were not seen to occur 

for several decades. One exception was the Mediterranean region where significant changes 

were detected by the mid 21st century. In addition, the study highlighted that changes in the 

frequency of warm season and long-term drought events were likely to be greater than 

changes in cold season and short-term drought events. 

 

                                                
2
 See section 4.1 for further details on the SRES emission scenarios. 
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Similarly, a global study by Burke et al., (2006), which projected changes in drought 

conditions in the 21st century, reported drying over Amazonia, the USA, northern Africa, 

southern Europe and western Eurasia. A wetting trend was projected for central Africa, 

eastern Asia, and high northern latitudes. Hirabayashi et al., (2008) used a high resolution 

GCM, which incorporates a land surface model to estimate runoff, to project daily river 

discharge as an indicator of drought frequency. An increase in drought events globally was 

projected by 2100 (using the IPCC A1B medium emission scenario) with a significant 

increase in the number of drought days over North and South America, central and southern 

Africa, the Middle East, southern Asia from Indochina to southern China, and central and 

west Australia. Northern high latitudes, eastern Australia and eastern Eurasia showed a 

decrease or no significant change in drought conditions. Furthermore, several regions were 

projected to suffer from an increase in both flood and drought frequency reflected changing 

seasonality. 

 

Numerous regional modelling studies also exist which corroborate the global findings of the 

IPCC and other studies indicated above.  For instance, Europe has been the focus of many 

modelling studies, which project northern Europe will become wetter with more intense 

precipitation events whilst southern Europe is projected to suffer more frequent and longer 

duration droughts in the 21st century. The Mediterranean region is expected to face 

considerable risk from future drought events (e.g. Beniston et al., 2007, Blenkinsop and 

Fowler, 2007, Frei et al., 2006, Lehner et al., 2006, Warren et al., In review).  

 

1.2.3 Future drought impacts 

The chapter has already highlighted that socio-economic impacts of drought events have 

been increasing. There is also growing consensus that the economic damages from extreme 

weather events under future climate change will be profound. Allianz stated that climate 

change stands to increase losses from all extreme weather events by 31% within a decade 

‘in an average year’ with losses in a bad year topping 400 billion US$ (Mills, 2007). To put 

this into perspective 400 billion US$ is double the overall losses reported from 2005, which 

included damages from Hurricane Katrina in the USA.  Climate change impacts on the 

availability of water is also likely to affect billions of people living in water-stressed areas 

during the 21st century (Arnell, 2004, Kundzewicz et al., 2008). Consequently, understanding 

the potential impacts that may occur under future climate change is extremely important for 

designing appropriate mitigation and adaptation policies. Since the 1990s there has been an 

increased focus on modelling and understanding changing patterns of extreme weather 

events (Meehl et al., 2000). However, whilst progress has been made regarding the 
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modelling of future weather extremes, as a whole, the quantification of impacts from extreme 

weather events, especially on non-market sectors, is still in its infancy and consistent 

methodologies on economic cost assessments of extreme weather events are still 

developing (Changnon, 2003b, Hallegatte et al., 2007b, Mendelsohn and Williams, 2004, 

Pielke, 2007). In addition, studies that do exist have tended to focus on short-term events 

such as flood and hurricane events, which impose immediate, direct impacts on society and 

infrastructure. In contrast, droughts are much more complex making identifying, measuring, 

and quantifying events and subsequent impacts extremely difficult. Thus, very few studies 

have endeavoured to identify the complexity of drought impacts at the local, regional and 

national scale (Wilhite and Buchannan-Smith, 2005), and to date, almost no studies have 

attempted to provide quantitative estimates of the economic and social effects of drought 

events under future climate change. 

 

It is somewhat disconcerting that a major omission in studies which focus on the costs of 

climate change are the impacts and damages associated with extreme weather events 

(Buchner et al., 2006, Tol, 2002a, Tol, 2009). Indeed the analysis of extreme weather events 

in general is relatively scarce within economic literature (Baade et al., 2007). The exclusion 

of extreme weather events leads one to question the comprehensiveness and utility of 

assessments of total climate change costs, and subsequent climate change policies based 

on them. Ignoring extreme weather events means that such estimates exclude impacts that 

could appreciably increase cost estimates, and arguably cause the greatest socio-economic 

and environmental damages. Equally, the exclusion of extreme weather events from 

economic cost assessments means that the potential benefits of early, stringent mitigation in 

the form of avoided damages will not be recognised. This void in current climate change 

research was recently acknowledged by the IPCC who announced in 2009 that they would 

be increasing their focus on extreme weather events, with more research on modelling and 

quantifying impacts and the economics of extreme weather events. 

 

1.3 Research questions 

The serious societal and economic consequences of drought provide ample motivation for 

further research into the scale and severity of drought effects that may occur under future 

climate change. Whilst many studies focus on changing drought regimes at a regional, 

national and global level, research dealing explicitly with the quantification of associated 

economic and social drought effects has received scant attention. Therefore, the overarching 

aim of this research is to model and quantify the effects of drought on the economy and 
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society under future projections of climate change. In summary, a number of interesting 

research questions arise: 

 

1. Is it possible to establish a link between historic drought events and economic 

damages and societal effects? 

2. What are the implications of climate change for future drought patterns, and the 

subsequent scale and type of direct and indirect economic damages?  

3. What are the implications of changing drought patterns for society?   

4. What are the implications of climate change mitigation for future drought patterns, 

and drought related economic and social effects? 

5. How would the incorporation of direct and indirect economic damages from drought 

events affect global estimates of the costs of climate change, and subsequent policy 

recommendations? 

 

In order to address the above aim chapter 2 begins with a review of the issues that have 

limited the inclusion of extreme weather events in climate change impact analysis to date. 

Various methodological approaches used to quantify drought risk to societies and 

economies are reviewed, and the main issues and limitations discussed. Methodologies are 

discussed in light of their potential application to the quantification of drought effects under 

future projections of climate change. Areas requiring further research are identified, specific 

research objectives are provided in light of these findings, and the structure of the remaining 

chapters outlined. 
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2. Literature Review: Modelling Economic and Social 

Consequences of Drought 

The preceding chapter highlighted how drought frequency and economic and social drought 

effects have been increasing over the 20th and early 21st century, linked to both changing 

socio-economic conditions and anthropogenic climate change. Whilst it is not possible to 

ascertain the proportion of drought damages caused by current climate change, it seems 

likely that socio-economic effects will increase if drought regimes intensify under future 

climate change. Climate modelling studies focusing on drought trends at a global, national, 

and regional level have been developing since the 1990s, yet whilst much is known about 

the potential risks drought poses, estimates of potential socio-economic damages are much 

more difficult to model and quantify. 

 

The chapter begins by exploring why, in general, extreme weather events are so difficult to 

incorporate and model within climate and economic modelling frameworks, and difficulties 

that exist for estimating future effects of extreme weather under projections of climate 

change (sections 2.1-2.3). Section 2.4 reviews methodological approaches used for impact 

analysis of extreme weather events, and potential applications to this study. Section 2.5 

reviews modelling techniques and studies that focus on the indirect economic damages of 

extreme weather events and the potential application to drought. Section 2.6 provides a 

discussion of the chapter, summarises key findings and issues regarding developing a 

methodology to model future economic and societal effects of drought, and outlines the 

research objectives. 

 

2.1 Data requirements 

A major barrier for estimating the economic and social effects of drought, as with other 

extreme weather events, is that of reliable, consistent impact data (Easterling et al., 2000a, 

IPCC, 2002). In order to provide convincing projections of losses under changing climatic 

and socio-economic conditions Changnon (2003b) notes that it is essential to have a good 

understanding of the impacts from historical extreme weather events. Similarly, Hallegatte et 

al., (2007a) comments that a prerequisite for the economic assessment of climate change 

impacts is the availability of relevant physical indicators. As well as having a useful 

application for climate change analysis, the quantification of losses from extreme weather is 

useful for gauging the vulnerability of communities; guiding risk management strategies; 

identifying appropriate levels of mitigation; determining disaster assistance levels; improving 
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recovery and reconstruction decisions; and for informing insurers of their potential liability 

(Okuyama, 2007, Rose, 2004). As such, it would appear an important area of quantitative 

research, yet there is no consistent methodology for recording or calculating economic 

losses from extreme weather events (Committee on Assessing the Costs of Natural 

Disasters and National Research Council, 1999). Damage estimates for a particular event 

can vary widely depending on the reporting body; the range and type of costs included; and 

the time in which estimates are reported (cost estimates made in the immediate aftermath of 

an event are prone to change, usually increasing, over time). In addition, the reporting and 

accuracy of loss estimates tend to improve with the scale of the event (Muir-Wood et al., 

2006). 

 

Importantly, quantitative data on the impacts of past extreme weather events can be used to 

drive projections of future impacts. This has resulted in an extensive empirical assessment 

of historical weather events to provide more definitive impact estimates. Insurance and re-

insurance companies, who are particularly vulnerable to certain weather types, have 

primarily driven this exercise for economic and insured losses, e.g. Munich-Re and Swiss-Re 

both maintain natural catastrophe databases. Good quality data is also essential as issues 

related to poor data quality result in up to 45% of the gap seen between modelled and actual 

incurred losses from natural catastrophes, as assessed by insurance and re-insurance 

industries (Grossi and TeHennepe, 2008). Research centres such as the Centre for 

Research on the Epidemiology of Disasters (CRED), which maintains EM-DAT, also collect 

data on extreme weather events, including details on direct and indirect economic losses 

and non-market effects. 

 

2.2 Extreme weather events and economic modelling 

Economic modelling of climate change has been fundamental in identifying and aggregating 

the scale of future damages, and guiding appropriate mitigation and adaptation strategies. 

Economic modelling is an extremely useful tool to employ as it allows climate change 

policies to be based around a theoretical framework and assessed by quantitative methods, 

something highly desirable to policy makers. As such, climate change costs assessments 

form a vital component in addressing the climate change problem. However, there are 

several limitations associated with the economic modelling of climate change and its 

impacts.  

 

The perceived threat that climate change poses to modern society has been mounting with 

increased scientific learning. Recent reports (e.g. IPCC, 2007b, Stern, 2007) have 
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emphasised that urgent action is required to address the problem and prevent dangerous or 

irreversible anthropogenic climate change. Yet, many traditional economists, who use the 

same mainstream climate science to underpin their analyses, have repeatedly estimated low 

damage costs from climate change. Tol (2009) reviews the existing 14 peer-reviewed 

studies which estimate global economic costs of climate change. The economic estimates 

range from benefits of 2.5% to losses of 4.8% of global GDP. The majority of the studies 

show that climate change will cost only a few percent of global GDP, with most studies 

suggesting that economic benefits will be seen in the short term with temperature changes 

up to 2.5°C. Historically, such findings have led to the conclusion that it is more cost 

effective to take less action now and more action in the future when damages increase and 

the science of climate change is more certain (Marechal, 2007). This economic outlook can 

largely be explained by the traditional and conservative methodological approach used for 

estimating climate change costs. Since the 1990s, the most common approach for 

investigating costs of climate change and designing economically efficient policies has been 

through Cost-Benefit Analysis (CBA). In theory CBA should compare the costs (of 

implementing mitigation and adaptation) and benefits (from avoided damages and ancillary 

benefits) of climate change to emphasise the most beneficial (economically efficient) policy 

response (Desslar and Parson, 2006). Whilst the theory behind CBA seems logical, in reality 

it is often an assessment of costs only as these are far easier to quantify than avoided 

damages and ancillary benefits. The resultant impact is that benefits will rarely outweigh 

costs resulting in a bias towards the status quo and calls for change going unheeded (Frank, 

2000). As well as issues with the underlying methodological framework of CBA, the 

assumptions that underlie traditional economic theory also bias the results. Sections 2.2.1 

and 2.2.2 review these issues, and the effects they have on the assessment of extreme 

weather events, in turn. 

 

2.2.1 Cost-benefit analysis 

To create a socially optimal policy response requires quantitative estimates of the full costs 

and benefits of climate change mitigation, adaptation, and impacts, including the potential for 

irreversible impacts, across a range of scenarios, times, and regions.  However, there are 

uncertainties over all of these costs and benefits. Whereas the economic costs of mitigation 

tend to be easier to quantify as they can be represented by market prices, estimates of 

adaptation costs are much more difficult to determine and are only just becoming available 

(Parry et al., 2009). Similarly, costs and benefits of climate change impacts are extremely 

difficult to identify and value. Ackerman and Heinzerling (2004) differentiate between the 

terms ‘price’ and ‘value’ in CBA, highlighting that non-market costs and benefits may not 
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have a price but can still have substantial value. Nelson (2006, p90-91) emphasises that an 

activity may be profitable if ‘it creates something of greater value than the inputs used to 

make it’. Thus profitability, and consequently the benefit gained, will depend on how you 

measure value. The fact that the value cannot always be expressed in monetary terms does 

not mean that it should be deemed worthless.  

 

A solution to valuing non-market costs and benefits is to assign monetary values based on, 

for example, peoples Willingness to Pay (WTP) or Willingness to Accept (WTA)3.  However, 

the use of alternative economic methods for valuing non-market impacts is still controversial. 

They tend to give more weight to higher income persons and still entail difficult ethical 

decisions, especially when considering the value of human lives. More commonly, non-

market costs and benefits are ignored completely in economic assessments. As a result, the 

potential benefits available from implementing climate change policies will be limited from 

the outset. Many see this explicit need to monetise all costs and benefits from climate 

change as the fundamental flaw of CBA. Specifically, the difficulties in comparing economic 

and non-economic damages from extreme weather events is illustrated by Ackerman (2007) 

who considers the impacts of Hurricane Katrina in the US. The economic losses from 

Hurricane Katrina were estimated at $125bn, the most costly disaster ever to strike the US 

(Graumann et al., 2006). Although such costs are serious, in comparison the costs of the 

displacement of over 250,000 people, the death of over 1,800 people, and the further 

impoverishment of hundreds of thousands of people are priceless. CBA does not consider 

the moral obligations to protect people from such impacts of extreme weather events, or 

climate change in general. It is therefore an inadequate and often grossly incomplete tool.  

 

The importance of including costs and benefits that cannot be monetised has led to new 

decision-making tools, or the applied application of older decision-making tools, being 

increasingly championed to help assess the costs and benefits of climate change more 

comprehensively. Multi-Criteria Analysis (MCA) evaluates projects based on several criteria. 

It can be applied to situations in which socio-economic, ecological and ethical perspectives 

need to be considered together, and does not restrict the analysis to monetary units only. 

The framework can consider other issues such as morbidity and mortality, equity, 

environmental damage, avoiding catastrophic risks, and uncertainty. Furthermore MCA does 

not require results to be amalgamated into a single value as results of specific impacts 

                                                
3 Willingness to pay (WTP) is the costs that you would be willing to pay to preserve e.g. a clean 

environment, whilst willingness to accept (WTA) is the price you would be willing to accept in 

compensation for a dirty environment. 



           Economic and Social Consequences of Drought 

22 

 

presented independently can still provide a valuable insight into the overall costs (Smith and 

Hitz, 2003). These characteristics make MCA particularly useful for investigating damage 

costs from extreme weather events, which can have an array of market and non-market 

impacts across many sectors. However, MCA does not provide a perfect solution as due to 

the disaggregated nature of the analysis it is extremely difficult to compare between different 

studies (Ackerman and Heinzerling, 2004). Moreover, rankings and weightings assigned to 

non-market impacts will still reflect value judgements, which may be biased or differ 

considerably depending on the objectives of the user. 

 

The Precautionary Principle (PP) is an anticipatory, rational decision tool designed to help in 

the assessment and management of risks. More specifically, the PP can address complex 

and unquantifiable risks with scientific uncertainties4 (COMEST, 2005). Current risk from 

climate change, extreme weather events, and catastrophic events has been a strong 

motivator for those advocating its use (Kriebel et al., 2001).  The PP can be applied to cases 

with considerable uncertainties over the causality, magnitude, probability and nature of 

harm, an area where CBA has limited, if any, application. Thus, the PP can help facilitate a 

move towards a more risk-based approach to climate change. Similarly the decision theory 

Pascal’s Wager allows the user to make decisions under uncertainty via a simple decision 

matrix by taking the option where one has most to gain and least to lose, i.e. assessing the 

risk of consequence. Again, this method employs the precautionary principle in that it 

identifies the worst-case scenario and invests to avoid this path.  

 

Cost-Effectiveness Analysis (CEA) differs from CBA in that climate change stabilisation 

targets are not set based on the cost analysis but rather the cost analysis is conducted 

based on a predefined target. For instance following the PP, emission stabilisation targets 

that avoid the worst consequences of climate change with a high degree of certainty can be 

set. Once a target has been set CEA can be implemented to find the most cost-effective way 

to reach the target. CEA avoids some of the shortfalls of CBA in that it only deals with costs. 

As these tend to be market values that can be more readily quantified the problem of valuing 

non-market effects is avoided. In addition, as the initial target is set based on a 

precautionary approach uncertainty is directly addressed (Ackerman, 2007, 2008). Finally, 

as it is expected that most costs will be felt in the short-term CEA reduces the need for a 

discount rate, which as discussed below can also bias CBA. 

 

                                                
4
 Knight (1921) defines risk as the property of outcomes with quantifiable probabilities, e.g. the roll of 

a dice, whereas uncertainty has unknown probabilities. 
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Recognised as a ‘thorny’ issue back in the early 1990s (Nordhaus, 1991) the use of discount 

rates in CBA has received renewed attention since the publication of the Stern Review in 

2007. Due to the natural inertia of the atmosphere and oceans it is imperative to cover long-

term time frames when addressing climate change. To enable the comparison of future costs 

and benefits to present costs and benefits a discount rate is used to calculate the present 

value. The present value is calculated on the basis that a given cost or benefit today is worth 

more than the same cost or benefit in the future. This is based on the premise that people 

will be better off in the future and so an extra unit of wealth in the future will be worth less to 

them (growth rate). Secondly, the present value is calculated on the basis that people are 

impatient and prefer to have things now rather than in the future (time preference). The 

discount rate, r, is generally derived in climate change studies following equation 2.1 where 

δ = Pure Rate of Time Preference (PRTP), η = elasticity of marginal utility of consumption 

(the relationship between utility and consumption), and g = growth rate of per capita 

consumption. 

 

        r = δ+ ηg                       Eq.2.1 

 

The present value (PV) is calculated following equation 2.2 where COST = the expected 

expense, and n = the number of years until the cost is incurred. 

 

PV = COST 

                            (1 + r) n            Eq.2.2 

 

However, there are many complications which arise when applying discount rates to the 

issue of climate change due to the long time horizons of studies; issues of uncertainty over 

future economic growth; and inter-generational and intra-generational equity concerns 

(IPCC, 2007a). For example, the PRTP (δ) is the discount rate which would apply if all 

present and future generations had equal opportunities and resources (Ackerman, 2007). 

The value of the PRTP has caused much debate with some arguing it should be set to zero 

as this gives equal weighting to the welfare of all generations. Stern (2007) used a very low 

PRTP (0.1%) resulting in a low discount rate5 and higher estimates of future climate costs. 

This resulted in the conclusion that the benefits of strong, early climate change action far 

outweighed the costs of inaction. Many traditional economists have argued that Stern’s 

conclusions are almost entirely due to the use of this very low discount rate, however, Stern 

                                                
5
 Stern used a discount rate of 1.4% compared to the UK Treasury’s Green Book guideline of 3.5% 
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(2007) argues that as future generations are expected to suffer more serious consequences 

of climate change it is important to consider all generations as equal. 

 

Intra-generational issues must also be considered as climate change is likely to affect 

individuals and societies living at very different welfare levels, both today and in the future 

(IPCC, 2007a), who will face varying costs and benefits. The second parameter used to 

calculate the discount rate, the elasticity parameter η, defines how much utility a person will 

gain from a certain amount of consumption. Assuming all people are of equal wealth the 

parameter can be taken as a measure of the commodities value to a person. However, this 

ignores differences in wealth as a poor person will place more value on an extra unit of 

money than a rich person. As such, the results of any CBA will be highly dependent on the 

discount rate used. Wright and Erickson (2003) highlight that in policy optimisation studies a 

small change in the discount rate can have a large impact on the optimal policy 

recommended. A lower discount rate will put more value on the future and make any future 

costs or benefits look more important today. As Ackerman (2008, p.7) comments ‘if the 

future matters, the discount rate must be very low’. The choice of discount rate therefore has 

strong ethical consequences when applied to climate change, reflecting the implicit or 

explicit ethical stance of the author (Broome, 2008, European Communities, 2008). Yet, this 

issue is often inadequately addressed or ignored when undertaking CBA.  

 

A further issue with traditional CBA is that it does not address the uncertainties and risks that 

surround climate change and its impacts. This is an important issue when considering high-

risk consequences of climate change such as extreme weather or catastrophic events6. 

Studies which have attempted to incorporated the risk of catastrophic events, such as 

Nordhaus and Boyer (2000) and Stern (2007), have reported substantially increased 

damage costs leading to the conclusion that more stringent climate change mitigation is 

necessary in the short-term (Azar and Lindgren, 2003). Equally, studies which do not 

address the uncertainties surrounding future climate change and its impacts, such as the 

possibility of tipping points (e.g. see Lenton et al., (2008)) tend to estimate lower damages 

compared to those that do (Dietz et al., 2007, Hallegatte et al., 2007a). Whilst some would 

view the incorporation of low-probability high-risk events in economic modelling of climate 

change as ‘alarmist’, this issue emphasises the ability of CBA to provide significantly 

                                                
6
 The term ‘catastrophic’ event is used to represent large-scale system collapses such as the collapse 

of the Thermohaline Circulation or Greenland Ice sheet, or large-scale abrupt temperature changes 

associated with runaway global warming. 
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different policy recommendations depending on the underlying assumptions and factors 

included. 

 

Consequently, the challenges associated with CBA are large when applied to the specific 

issue of climate change and extreme weather events. Such flaws have resulted in ineffective 

climate policy due to incomplete and biased analysis of costs and benefits, the exclusion of 

risk, uncertainty, and ethical considerations. Azar and Lindgren (2003) highlight that a 

growing number of studies now challenge CBA results due to such fundamental flaws. This 

leads one to question the accuracy of past studies that have suggested that economic 

damages from climate change will be very low, requiring un-ambitious mitigation strategies. 

 

2.2.2 Traditional economic theory 

The underlying economic theory used to drive CBA also has repercussions for the 

assessment of economic damages from extreme weather events. A major flaw of traditional 

neoclassical economic theory, the main approach used in the economics of climate change, 

is that it is based upon the notion that the economy has an ‘equilibrium point’ to which it 

naturally progresses (Beinhocker, 2007). This concept was adopted from equilibrium theory 

used in physics with the main benefit that it facilitated the workings of the economy to be 

described through mathematical equations and models. However, turning economics into a 

‘hard’ science has undermined the original purpose of the discipline, which is the study of 

‘real’ human systems. To believe that economies can be fully represented by rigid 

mathematical theories is misguided and underestimates the complexity of human behaviour. 

In order to represent human systems mathematically, traditional economics has to make 

assumptions as to how the system and actors within it works. For example, it is assumed 

that people are perfectly rational in their economic choices, which are based on complete 

information and unlimited foresight, something we know to be untrue in the real world. In 

addition, it is assumed that markets work at full efficiency and full employment, again 

something contradicted by real world data. 

 

Traditional economic theory assumes that the economy jumps between equilibrium points 

with little consideration given to the dynamics in between, although the real economy is 

susceptible to irregularities and shocks. This is demonstrated by Hallegatte et al., (2007b) 

who compares a traditional growth model (Solow), assuming equilibrium, to a non-

equilibrium model (NEDyM) which can experience exogenous shocks and irregularities 

during transient phases. The study highlights the impact of including shocks, such as those 

caused by extreme weather events, in economic analyses of climate change. Figure 2.1 
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highlights that the effect of a sudden 10% decrease in economic productivity is larger in 

NEDyM in both the short and medium term. This is due to amplifications of the initial shock 

through the economic system (i.e. indirect economic losses). As discussed in section 1.2.1 

indirect economic costs from extreme weather events can be sizeable, particularly for 

drought events. The inability of traditional economic models to capture longer-term effects of 

sudden shocks on the economic system will result in an underestimation of damage costs 

from extreme weather events. 

 

 

Figure 2.1: The response of a traditional economic growth model (Solow) and a non-

equilibrium economic model (NEDyM) to a 10% decrease in economic productivity. Source: 

Hallegatte et al. (2007b, p.333) 

 

 

In addition, Frank (2000) and Barker (2008) note that the underlying theory of equilibrium 

economics is based on a rigid and misinformed interpretation of utilitarian ethics7. In 

particular, critics of CBA disagree with the fundamental utilitarian assumption that it is 

possible to trade off the utility gains of some against the utility losses of others, as not all 

losses are equivalent, interchangeable or irreversible. This is especially important when 

addressing drought events as societies in developing countries are considered especially 

vulnerable to socio-economic effects, and they do not have the financial means to adapt or 

protect themselves against these risks (Benson and Clay, 2004). Yet, it is these countries, 

which have contributed least to the problem of anthropogenic climate change. 

 

As such, assessments of climate change costs and benefits will be heavily dependent on the 

assumptions incorporated into the economic models used. However, traditional economic 

                                                
7
 i.e. the morally correct course of action results in the greatest good for the greatest number without 

regard to the distribution of benefits and burdens. 
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theory which has predominantly driven CBA and climate policy is often used without caveat 

or discussion (Marechal, 2007). The inability of traditional economics to represent the 

workings of real economic systems means that climate change analyses and policy 

recommendations will be incomplete, inaccurate, and misleading. For instance, assuming 

the economy is at maximum efficiency and employment means that any climate policy will 

result in costs due to loss of potential output (Barker, 2008). Likewise, no-regret options 

which can offer substantial incentives are incompatible with traditional economics as it is 

assumed that if such options were possible they would have already occurred under 

equilibrium (Marechal, 2007). The growing criticism of traditional economics has led to the 

development of an alternative theory, termed ‘complexity economics’ (Arthur, 1999). 

Complexity economics is based on the premise that the economy evolves and is a complex 

adaptive system, which is dynamic, open, non-linear and far from equilibrium (Beinhocker, 

2007). Thus, the economics of climate change should be more concerned with risk rather 

than cost, with a move towards more multi-disciplinary risk-based analyses of climate 

change (Barker, 2008). 

 

2.3 Extreme weather events, impacts, and IAMs 

A move towards a more risk-based, multidisciplinary analysis of climate change has been 

fundamental in the development and use of Integrated Assessment Models (IAMs). Models 

that focus on just one part of the problem, such as climate or economic models, omit crucial 

drivers and interactions between systems that are important for the analysis of climate 

change, impacts, and extreme weather events. IAMs draw on multiple models usually of 

energy or economic systems, atmospheric chemistry and climate systems, and 

environmental systems.  Consequently, IAMs can consider the complex and multiple 

dimensions of the climate system, impacts, adaptation, mitigation, and socio-economic 

factors, simultaneously in a consistent quantitative framework (Carter et al., 2007, Goodess 

et al., 2003a). IAMs are considered one of the best tools available for assessing climate 

change impacts, the global costs of climate change, and risks (Stern, 2007). The first IAMs 

for climate change were developed back in the late 1980s, including IMAGE 1.0 (Global 

scale) (Rotmans, 1990) and ESCAPE (European scale) (Hulme et al., 1995), with a surge of 

activity since the early 1990s. The increasing number of IAMs available reflects the shift in 

political importance of climate change; improvements in computing capabilities; availability of 

more and better datasets to drive models; and an increase in interest and funding in 

interdisciplinary research (Parson and Fisher-Vanden, 1997). 
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Current IAMs all have different model structures, components and outputs depending on the 

specific research aims and objectives. IAMs can be broadly categorised based on their 

function and approach to assessing climate change impacts. Goodess et al., (2003a) and 

Fϋssel (2010) class policy evaluation IAMs as those which assess the effects of various 

policies on physical systems. This group consists of biophysical IAMs that use climate data 

as an input to specific geographical impact modules, such as ecosystem or agricultural 

models. Alternatively, policy optimisation models can be defined by their aim to determine 

the optimal outcome of mitigation measures. This group generally consists of CBA models 

that use climate output to estimate the costs of climate change through global or regional 

aggregated, monetary damage functions. In general, cost-benefit IAMs tend to focus on 

climate change at a global scale using simple climate models, whereas biophysical models 

commonly use regional scenarios of climate change to assess physical impacts (Goodess et 

al., 2003a). 

 

Historically, less focus has been placed on adaptation in IAMs (Fϋssel, 2010). Adaptation is 

extremely hard to identify and quantify, as it tends to occur at more local and regional scales, 

and as such has commonly been modelled in IAMs in an erratic fashion (Tol et al., 2000). 

However, as adaptation is recognised as an important factor for coping with climate change 

impacts in the shorter term there has been recent development of IAMs that can also 

incorporate and assess adaptation strategies (Dickinson, 2007, Fϋssel, 2010). Such model 

diversity can be an advantage as no single model or hypothesis can comprehensively 

assess all possible scenarios posed by climate change; explain dynamic behaviour across 

all scales in socioeconomic and ecological systems; or represent all the interactions and 

impacts within a single entity (IPCC, 2007c, Tol and Fankhauser, 1998). 

 

The robustness and uncertainty of results from IAMs will relate to the particular models 

utilized. Climate models used in IAMs can range from simple zero order models to GCMs 

that are more complex. Whilst GCMs represent the most sophisticated approach to 

modelling the climate system, the spatial scale of the model output, usually at a resolution of 

hundreds of kilometres, is inconsistent with the scale of output required for regional studies 

of weather extremes and climate change impacts. For example, it is found that precipitation 

is not well simulated in present GCMs, although in certain areas there is greater consistency 

in the direction of precipitation trends, such as for the Mediterranean basin (Kundzewicz et 

al., 2008). As such, some IAMs generate more spatially explicit climate projections by 

incorporating downscaling techniques, whereby climate data at finer spatial scales is derived 

from the coarser GCM output. This provides a useful bridge between the mismatch in GCM 

output and the finer resolution data required for hydrological modelling and climate change 
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impact assessment (Fowler and Wilby, 2007). Although, it is important to note that 

downscaling does not increase confidence in the original climate projections (Wilby and 

Dessai, 2010). Two categories of downscaling techniques exist, dynamical downscaling and 

statistical downscaling. Dynamical downscaling involves embedding a high resolution 

Regional Climate Model (RCM) within the coarser scale GCM to provide regional climate 

change patterns. Statistical downscaling works by first identifying statistical relationships 

linking large-scale climate variables to observed local/regional variables. Future projections 

of local/regional scale climate change are derived by applying the relationships to equivalent 

variables obtained from GCM projections (Christensen et al., 2007). Statistical downscaling 

is based on the assumptions that the statistical relationship developed based on present day 

climate will be applicable to a future warmer climate (stationarity), and that the GCM is better 

at representing large-scale circulation patterns than the local weather patterns (STARDEX, 

2005). There has been extensive growth in the application of statistical downscaling, which 

is less data intensive and computationally demanding than dynamical downscaling, in past 

decades. As such a variety of different statistical downscaling methodologies exist (Wilby et 

al., 2004 provides a good review). However, both statistical and dynamical approaches are 

thought to be equally appropriate for representing smaller scale climate changes and as 

such, no best method is offered (Christensen et al., 2007, Goodess et al., 2003a, STARDEX, 

2005, Wilby and Fowler, 2011).  

 

This is not to say that different downscaling techniques will produce similar results. Wilby 

and Fowler (2011) note that the use of different methods for future climate change scenarios 

have produced divergent outcomes, suggesting that inter-method differences can increase 

uncertainty in outputs at least as large as seen when using different emission scenarios. 

Furthermore, the GCM used and in some cases the RCM employed can have large impacts 

on the climate results generated. This is particularly the case for precipitation scenarios, 

which are highly sensitive to the climate model used. For example, Beniston et al., (2007) 

found that for Europe the projected magnitude of change in heavy precipitation events was 

sensitive to the choice of RCM used, particularly in summer. The detailed patterns of change 

in heavy precipitation events projected were also sensitive, and less robust, to the choice of 

GCM. Using different GCMs was also found to have a more influential effect on drought 

results than changing the emissions scenario (ibid.). The underlying assumptions and model 

components of different IAMs are therefore very important in identifying the robustness of 

results, and the uncertainties. Indeed, as model complexity increases and linkages are made 

between different model components uncertainties increase as they cascade from scenarios 

of socio-economic and demographic change, through global and regional climate change 

projections, to impacts on natural and human systems (Wilby and Dessai, 2010, Wilby and 
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Fowler, 2011). Inter-model comparison projects have focused on uncertainties linked to 

GCMs and downscaling approaches, however much less focus has been placed on 

uncertainties linked to the quality, resolution and parameterisations of impact modules 

(Vasiliades et al., 2009, Wilby, 2010). 

 

Numerous reviews of IAMs have been published, from general reviews, to those focusing on 

the representation of impacts, representation of economic models, and the consideration of 

adaptation (e.g. Dickinson, 2007, Fϋssel, 2010, Goodess et al., 2003a, Tol and Fankhauser, 

1998). In this study, it was important to understand how IAMs have represented extreme 

weather events. Thirteen IAMs, which are prominent in the modelling field, which have led to 

peer-reviewed literature, and which have well documented model structures were reviewed 

(appendix A, table A1). Despite the advancement of climate modelling techniques, only two 

of the IAMs reviewed modelled some form of extreme weather. The review also emphasised 

that very few models consider non-market effects, with none addressing indirect or 

secondary macroeconomic effects of climate change. Similar gaps in the coverage of IAMs 

were also noted by Stern (2007) as demonstrated in figure 2.2. The lack of information on 

extreme weather events in IAMs also restricts the understanding of adaptive capacity to 

such events (Goodess et al., 2003a). Such research is very important for understanding not 

only the potential effects of extremes but also the vulnerability of society to extreme weather 

events, something generally excluded from IAMs (Tol and Fankhauser, 1998). 

 

 

Figure 2.2: Coverage of existing IAMs (the red box highlights the limited coverage of 

bounded risks) 8. Source: Stern (2007, p.150) 

                                                
8 Bounded risks include extreme weather events. Socially contingent refers to second round socio-

economic responses to the impacts of climate change such as, conflict, migration and reduced capital 

investment. 
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2.3.1 Estimating climate change impacts in IAMs 

The exclusion of extreme weather events and their effects from IAMs is largely attributable to 

the focus of most studies on global mean climate change, and the spatial and temporal 

resolution of climate model output (Goodess et al., 2003a). Furthermore, it can be difficult to 

relate GCM output, even when downscaled, to small scale problems for which the climate 

models were not designed (Kundzewicz and Stakhiv, 2010). For example, policy 

optimisation models commonly estimate impacts using climate-damage functions to drive 

CBA. A climate damage function is a reduced form relationship linking market and/or non-

market impacts (e.g. GDP) to climate indicators (e.g. mean global temperature change). 

Climate damage functions are calibrated based on data from a limited number of impact 

studies, estimates derived from the literature, or expert opinion (e.g. Nordhaus, 1991, 

Nordhaus and Boyer, 2000, Tol, 2002a, Tol and Fankhauser, 1998). Whilst the focus of most 

climate-damage functions is on monetary estimates, other physical units such as crop yields 

or ecosystem loss are also utilised. Less commonly used are lives lost or lives affected, and 

Tol et al. (2000) notes that these estimates are still poor and are essentially back-of-the-

envelope calculations. Moreover, even when non-market effects are included they tend to be 

represented in monetary terms, as illustrated by Tol (2002a, 2002b) who calculated the cost 

of lives lost due to climate change. 

 

A simple aggregate damage function is represented in equation 2.3 where D = damage; T = 

change in temperature from the reference level; t = time; α = scale parameter; and β = shape 

parameter. 

 

Dt = αTt 
β                Eq. 2.3 

 

Various problems arise in applying climate damage functions to extreme weather events. 

Firstly, in creating damage-functions some form of impact data is required. In order to make 

convincing projections of losses under climate change it is essential to have a good 

understanding of past impacts. However, as discussed in section 2.1 the availability of 

relevant physical indicators specific to extreme weather events can often be limited. In 

addition, measures of damages from impact studies can be in different physical and 

monetary units. This means the aggregation of impacts across all sectors and regions to 

provide a total damage cost can be very difficult if not impossible. This can have implications 

for extreme weather events where a wide variety of damages, both monetary and physical, 
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can occur. As noted in section 2.2.1 CBA often excludes non-market effects that are 

particularly difficult to model and value. 

 

Secondly, the climate indicator used is typically global mean temperature change. The focus 

on mean global temperature change automatically hinders the incorporation of extreme 

weather events, which require assessment at appropriate temporal and spatial scales. 

Essentially, it is the short-term fluctuations and changes in extreme weather events that are 

expected to cause a major threat to society rather than long-term changes in mean climate 

(IPCC, 2007a). Ideally, daily climate variables would be required for the investigation of 

extreme weather events, however, Goodess et al., (2003a) note that for drought events 

monthly time-series data at a regional scale would be appropriate. In addition, as most IAMs 

focus on equilibrium climate rather than transient climate, regional and inter-annual 

variability in the type, severity and frequency of impacts are ignored (Fisher et al., 2007). 

 

The use of mean temperature change also has implications for the shape of the damage 

function, which will determine the damages before and after the benchmark climate change. 

Many damage functions are created by estimating damages for global mean temperature 

change from the literature, often for 2.5°C or less assumed to be the equilibrium climate 

change associated with a doubling of CO2 (Stern, 2007), resulting in a single point on a 

graph. As such, the shape of the damage function before and after the benchmark climate 

change is speculative and generally reflects the expert opinion of the author. This 

uncertainty is problematic as results based on the damage function will depend significantly 

on the shape and scale parameters used (Dumas and Ha-Duong, 2005). Some authors 

assume a smooth damage function, e.g. those used by Nordhaus and Boyer (2000), 

however certain climate change dynamics and impacts may be more complex and follow a 

different path. Coastal impacts are expected to grow continuously over time in proportion to 

sea level rise. Agricultural impacts are considered to be more complex with some models 

suggesting positive benefits in the short term and losses in the long term giving a ‘humped’ 

damage function (Smith et al., 2001, Tol et al., 2000). Dumas and Ha-Duong (2005) have 

modelled S-Shaped damage functions which allow the possibility of a critical threshold effect 

to be modelled. This is important as future changes in temperature and subsequent 

increases in the magnitude and frequency of extreme weather events may cause natural 

thresholds to be exceeded, and the magnitude of impacts may increase disproportionally. 

Thus, such events and their consequences may be outside the range of historical events on 

which damage functions are based. Figure 2.3 demonstrates various shaped climate-

damage functions for aggregate global impacts.  
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Figure 2.3: Three hypothetical climate-damage functions illustrating the aggregate impact of 

climate change as a function of global mean temperature. Source: Smith et al., (2001, 

p.944). 

 

 

Estimates of damages from climate change, and subsequent policy recommendations, 

therefore vary depending on the type and shape of damage function used in the study. The 

issues and gaps in the coverage of climate change impacts means that climate damage 

functions have predominantly provided illustrative estimates only. As a consequence 

damage functions are generally considered as ‘placeholders’ which need to be replaced by 

more accurate functions as knowledge and estimates of impacts improve (Smith et al., 

2001). Yet, many IAMs still rely upon the damage functions estimated by Nordhaus and 

Boyer (2000) and Tol (2002b) (as indicated by table A1, appendix A). As such, there has 

been limited progress concerning aggregate climate-damage functions utilised in IAMs over 

the past decade (Fϋssel, 2010), and limited extension of damage functions to the coverage 

of extreme weather events and their impacts. For that reason, the following section reviews 

alternative modelling approaches, which aim to quantify future socio-economic 

consequences of extreme weather events. As discussed in the introduction this field of 

research is relatively new and methodologies are still developing and evolving. 

 

2.4 Alternative approaches to modelling effects of extreme weather 

events 

2.4.1 Climate analogues 

Section 2.1 highlighted that the availability of historic data on extreme weather events and 

their impacts is essential for projecting future losses (Changnon, 2003b, Hallegatte et al., 

javascript:history.back()
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2007a). One practical application is to use historic data on weather extremes as an analogue 

for conditions and losses that may occur in the future. Recently, climate analogues have 

focused on temporal changes in extreme weather events (Carter et al., 2007). For example, 

it is possible to use a historical event, such as the 2003 European heatwave, as an analogue 

to identify potential effects which may occur in the future as the probability of the event 

occurring changes due to anthropogenic climate change. For instance, Stott et al., (2004) 

projects that the likelihood of an event of similar magnitude to the 2003 European heatwave 

will increase 100-fold over the next four decades. Schär et al., (2004) suggests that for 

Switzerland about every second summer could be as warm or warmer (and as dry or dryer) 

than 2003 heatwave by 2100. 

 

Wreford et al., (2007) estimated the net present value of future economic damages from 

heatwaves on agriculture and health sectors based on the increasing probability of historic 

events occurring in 2050. The study used the 1995 UK heatwave and the 2003 European 

heatwave as analogues for consequences of climate change on agriculture and health 

respectively. The probability of similar magnitude events occurring in the future was based 

on published estimates from the literature. In addition, the study accounted for the ability of 

society to adapt to heatwaves over time, reducing the scale of impacts, as there is some 

research to suggest that learning can play a role in reducing impacts from subsequent 

extreme weather events. For example, the Sahel drought is thought to have triggered 

autonomous adaptation making farmers more resilient to future droughts (Adger and Brooks, 

2003). Illustrative learning rates used in the study were based on estimates taken from the 

literature. As would be expected, damage costs from heatwaves increased over time as the 

probability of events occurring increased. Preliminary estimates of the net present value of 

damage costs by 2050, for agriculture in the UK and health in Europe, were €2.63 billion and 

€1,442 billion respectively. Adaptation was projected to reduce damage costs by 15% for 

agriculture and by 57% for health, illustrating how incorporation of adaptation could reduce 

economic estimates of impacts from extreme weather events. 

 

The study highlights important benefits of adaptation for reducing future impacts from 

extreme weather events, in the form of avoided damages, something commonly excluded 

from climate change cost assessment. The method also provides an alternative to the 

aggregated global damage estimates of climate change as it is region, sector and event 

specific. However, the study provided an illustrative example only as results were based on 

single numeric estimates from the literature on event return periods and learning rates, and 

adaptation was assumed to happen at no extra cost. Additionally, a disadvantage of using 

temporal analogues to assess future weather extremes is that the specific climate forcing 
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which led to the extreme weather event is unlikely to be repeated over coming decades, and 

even if the same event occurred the effects are likely to differ due to socio-economic 

changes in the intermediate period (Wilby et al., 2009).  

 

Climate variables reflecting historic extreme weather events can also be used for spatial 

analogues. Spatial analogues match the present day climate regime of one region to another 

region that is projected to have a similar climate under future climate change, and assuming 

that the geographic areas are comparable (ibid.). This approach has been used by 

Hallegatte et al., (2007a) for the economic assessment of climate change impacts for 17 

urban cities in Europe, although this was not applied specifically to extreme weather events. 

 

2.4.2 Climate damage functions 

As introduced in section 2.3, climate damage functions provide a method for projecting 

future impacts of climate change based on historical data or estimates from published 

literature. Whilst IAMs have not typically incorporated damage functions applicable to 

extreme weather events, it is possible to create climate damage functions offline. This 

provides an alternative to modifying IAMs and restricting their computational efficiency due 

to the large data requirements needed for analysis of extreme weather events (Goodess et 

al., 2003a). The complexity of climate damage functions created offline can vary depending 

on the type of weather event, the scope of the study, and the data availability. An example of 

a single, aggregated, global damage function is that used by Stern (2007, p.131-132). The 

damage function was based on the simple extrapolation of an estimate of present day 

damage costs from extreme weather events (0.2% of GDP) by 2% per year. This resulted in 

damages from weather extremes of 0.5-1.0% of world GDP by 2050 (above changes in 

wealth and inflation). However, the methodology used by Stern has received criticism as the 

increasing trend in annual losses of 2% per year was taken from a single conference paper 

by Muir-Wood (2006) which itself was biased by recent hurricane events in the US 

(discussed in Pielke, 2007).  

 

Whilst Stern focused on aggregate global impacts of extreme weather Webster et al., (2008) 

focused on the humanitarian costs of flood, drought and hurricane events under future 

climate change. The study focused on four world regions: Central America, East Africa, 

South Asia and Southeast Asia. The study estimated the historical humanitarian costs of 

flood, drought and hurricane events based on the amount of international assistance and 

relief aid provided in the aftermath of disasters from 1992 to 2008. The number of flood, 

drought and hurricane events that resulted in humanitarian relief during 1992-2008 was also 
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estimated. In order to estimate future economic costs the study defined high, medium and 

low estimates of the percentage change in event frequency. These scenarios were 

hypothetical, although they were refined based on expert opinions from climate scientists. It 

was assumed that the future costs of humanitarian responses to flood, drought and 

hurricane events would increase linearly with the change in event frequency. Results were 

presented as aggregate annual changes in humanitarian spending. Under the high scenario 

the study indicated an increase in costs of 16% from 1992-2008 to 2030, equating to an 

additional 28 million US$ (in 2006 values) per year.  

 

Secondly, In order to assess the effect of changing intensity as well as frequency, the study 

incorporated hypothetical estimates from published literature of the percentage change in 

the intensity of flood and hurricane events. Drought events were excluded, as there was 

insufficient evidence in the literature to estimate changes in the future intensity of drought 

events. Results indicated an increase in annual humanitarian spending of 67% by 2030 

compared to 1992-2008. Comparatively, the study also extrapolated trends in the frequency 

of disasters reported in EM-DAT from 1975-2008. The study calculated a best-fit trend line 

for both a linear and exponential fit and extrapolated this to 2030. This resulted in an annual 

increase in humanitarian spending of 800% by 2030. The variation in future cost estimates 

reported by the study highlights the high degree of uncertainty linked to the methodology 

employed, the features of particular weather events incorporated, and the way in which links 

are drawn between trends in extreme weather events and impact data. Furthermore, the 

study focused on relatively large geographical areas; estimates of changing event frequency 

and intensity were not based on projections from climate models; changing vulnerability of 

society was not incorporated; and the study focused on humanitarian spending only whilst 

the total costs of extreme weather events are likely to be significantly higher (Webster et al., 

2008). In order to address such issues, the study calls for more data, more research, and a 

focus on impacts at a country or sub-region scale. However, all the methods employed in the 

study resulted in increasing costs suggesting that future consequences of floods, hurricanes 

and droughts are likely to become more severe, at least in certain areas of the world. 

 

A more integrated use of a climate-damage function is illustrated by Genovese et al., (2007) 

who used a probability based, quantitative approach to assess the risk of flood on specific 

sectors in Europe. Risk is commonly depicted in natural hazard literature by the ‘risk-triangle’ 

(Crichton, 1999) with risk the product of the hazard, vulnerability, and exposure. An increase 

(decrease) in one of the sides of the triangle would increase (decrease) the risk. Genovese 

et al., (2007) assess and combine the exposure, vulnerability and hazard faced from flood 

events using this risk-triangle approach. The flood hazard is modelled based on a digital 
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terrain model to provide a classification of flood depth; a hydrological model, calibrated to 

historical rainfall data and integrated with GIS; and a climate model to calculate flood return 

periods. The study calculates exposure using a land cover map of European artificial and 

natural landscapes, so that the physical assets exposed to floods can be assessed. 

Vulnerability is assessed based on a database of flood depth-damage functions. The depth-

damage functions were created based on a thorough literature review of flood events and 

impacts, and expert opinion. The depth-damage functions represent the potential direct 

monetary losses that would occur for a given flood depth, for each land use type and 

country. The risk of a flood occurring is computed and using the flood depth-damage 

functions direct monetary damages are estimated, providing digital maps of flood related 

monetary risk for Europe. The authors note that the creative methodology is not without 

some limitations. For example, the spatial resolution is still too coarse to assess flood 

impacts at finer regional scales, and there was limited data availability for some EU 

countries. Concerning the flood damage functions only water depth was considered, 

although many flood parameters are important in establishing the size and scale of 

damages. In addition, the damages focused on direct economic losses to human 

conurbations only, ignoring social, environmental, and indirect effects. However, the study 

was event and country specific, employing a depth-damage function database calibrated to 

actual climate data, for each land use type. Furthermore, the future projections of flood 

events were modelled using a climate model rather than simply relying on estimates from the 

literature. This approach moves beyond the use of single estimates of extreme weather 

event impacts, and the creation of single, aggregated, global damage functions. It also 

highlights the potential to combine projections of extreme weather events with damage 

functions calibrated to actual impact data.  

 

The studies reviewed above all focus on economic damages only. Studies aiming to quantify 

social or environmental effects of extreme weather events are extremely uncommon. For 

example Hirabayashi and Kanae (2009) note that the study by Kleinen and Petschel-Held 

(2007) focusing on populations at risk from extensive, long-lasting floods caused by heavy 

precipitation events was the only study of its kind reviewed within the 2007 IPCC report, and 

it did not validate results against actual flood records. This has in part been addressed by 

Hirabayashi and Kanae (2009) who estimate the global population at risk from flood under 

future climate change. The study uses a gridded, global, daily river discharge model to 

establish changes in 50 and 100 year return period flood events over the 21st century. The 

affected population was computed annually based on the total population in the flood 

affected grid cells. The output was compared to data on actual flood affected populations 

during 1990-2006 based on data from EM-DAT. The modelled results were in line with the 
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historic data giving plausibility to the methodology. The results of the analysis highlighted 

that 20 to 300 million people per year are currently affected by floods, projected to increase 

to 350 to 550 million people by 2050 (for a temperature increase of 3°C). By 2100, 800 

million to 1.2 billion people may be affected (for a temperature increase of ~4°C). The study 

accounted for increasing population over the 21st century, although it also found that if the 

population was static the number of people affected by floods was still set to increase due to 

climate change. Likewise, Ciscar et al., (2011) recently published projections of the number 

of people at risk from river flooding in Europe in the 2080s under climate change. A 

hydrological model was used to estimate river runoff under the IPCC A2 and B2 SRES 

scenarios, for two GCMs, to derive changes in flood magnitude at different return periods. 

The population exposed to changing flood magnitude was estimated using country specific 

information on land-use and population density assuming no change in population or flood 

protection standards. The study estimated that river flooding would affect 250,000 – 400,000 

additional people per year in Europe by the 2080s, compared to 1961-1990. 

 

Numerous issues related to the methodological approach for creating damage functions, and 

the data on which they are based, have been raised. These issues have led to the argument 

that climate damage functions are inadequate tools for the assessment of extreme weather 

events as they are often over-simplified, and estimates are rarely calibrated against 

empirical evidence of damage costs from historic events (Dietz et al., 2007, Stern, 2007). 

However, there is great potential for damage functions created offline to address these 

issues. As highlighted by Genovese et al., (2007) damage functions could provide a very 

accessible and useful tool for estimating the economic implications of extreme weather 

events when based on historical impact and climate data, and used in combination with 

future projections of extreme weather events. In addition, non-market effects could be 

assessed in a similar way if sufficient event data was available. Subsequently, climate 

damage functions could be fed back into economic and integrated assessment models. 

Whilst a suitable mechanism would need to be developed to allow extreme weather impacts 

assessed offline to be incorporated back into IAMs, Goodess et al. (2003a) considers 

economic damage functions the most suitable for such a practice. 

 

2.4.3 Catastrophe modelling 

A further approach to consider for modelling future effects of extreme weather events is 

catastrophe modelling, a method commonly used for insurance and disaster risk analysis 

purposes. The calculation of insurance prices in relation to extreme weather events has 

typically been backward looking, using stochastic models, based on historical events, rather 
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than dynamical models of the physical system like those used in climate modelling.  

However, as anthropogenic climate change increases the risks from extreme weather events 

a forward-looking, probabilistic approach has been viewed as the most appropriate way of 

managing risks (Grossi and TeHennepe, 2008). Catastrophe models generally work by 

generating probabilistic direct monetary losses. They do this by simulating a stochastic event 

set, e.g. for floods, based on realistic parameters and historic data to establish the 

probability of such events occurring. A hazard module assesses the level of physical hazard 

for a given region. A vulnerability component calculates the level of expected damages to 

assets at risk, for a given area (in a similar approach to that of the risk-triangle). The main 

output of a probabilistic catastrophe model is an exceedance probability curve, which 

illustrates the annual probability that a certain loss is exceeded for a certain event and return 

period. The loss results can be used by insurers to provide insight into the potential severity 

of catastrophe losses; to understand the volatility of analysed risks; and to make informed 

decisions regarding individual risk assessment, policy pricing, and management of property 

portfolios (ibid.). 

 

Catastrophe models were originally developed to help manage risks in countries with 

established insurance industries. More recently, they have also been used to help create 

new risk transfer mechanisms in the developing world. However, as insurance companies 

focus mainly on risks to infrastructure and assets, extreme weather types that can cause 

large direct impacts, e.g. floods, windstorms and hurricanes, tend to be the focus. Drought 

events, which have less direct impact on infrastructure, buildings, and assets, are not 

commonly modelled. For example drought insurance is only available in 5 out of 18 EU 

countries, and in these countries it is not compulsory or commonly utilised (CEA, 2007). In 

addition, due to the commercial sensitivity of the catastrophe models and data collected on 

insured losses from extreme weather events, the models and data sets are rarely publicly 

available for use in academic studies. 

 

2.5 Modelling indirect economic costs of extreme weather 

Drought events, as with other extreme weather events, can result in severe direct and 

indirect damages.  As noted in section 1.1.1 direct economic costs can be defined as the 

physical impacts on infrastructure and public sector assets, usually seen immediately. These 

direct impacts can subsequently affect the flow of goods and services through extensive and 

complex linkages in the economic system, usually seen in the short to medium-term, i.e. 

indirect costss. For example, intermediate or final demand may decrease if consumption and 

investment is reduced following a natural disaster (backward propagation). Demand for 
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certain goods and services can also increase in the event aftermath. For example, the 

devastating effect of Hurricane Andrew in the US in 1992 was followed by a surge in 

economic activity in South Florida driven by reinvestment of private and public insurance 

payments (Baade et al., 2007). Equally, the production capacity of affected industries can be 

reduced by extreme weather events, affecting the supply of goods (forward propagation). 

Additionally, disruptions to ‘lifelines’ such as transport networks, utility services, and 

communication services can affect production capacities. This can cause significant impacts 

in the disaster aftermath as lifeline systems are highly exposed, and as most economic 

transactions rely on such lifelines (Cole, 2003, Rose and Liao, 2005). Large scale disruption 

to the production capacity of key sectors and/or disruption to lifelines can result in production 

‘bottlenecks’ which can cause considerable constraints on the ability of the economy to 

function and recover, raising indirect economic losses (Bočkarjova, 2007, van der Veen et 

al., 2003). It is important to note that in this case indirect losses are defined as any losses 

other than those caused directly by the extreme weather event, based on Brookshire et al., 

(1997). However, different definitions and concepts of direct and indirect economic losses 

exist within the economic literature. For example van den Veen (2003) distinguishes 

between three approaches: welfare economics; accounting frameworks linked to systems of 

national accounts; and macroeconomics in which definitions of costs vary. 

 

Rose (2004) suggests that indirect damages from natural disasters may be superior to direct 

damages for two reasons. Firstly, indirect losses can affect businesses and consumers not 

directly affected by the event itself. Businesses that did not suffer directly will still have to 

curtail production if lifeline utilities are disrupted or if intermediate inputs are restricted due to 

the reduced production capacity of other businesses. Consequently, effects of an event can 

spill over to the wider national economy. If an event is of sufficient scale it may also have the 

potential to spill over to the wider international economy with effects seen further afield. For 

example, the 1998 flood in Australia caused estimated losses of 5.4bn US$ nationally, but 

the overall global impact was estimated at 6.65bn US$ (Calzadilla et al., 2004). Secondly, 

indirect damages are able to capture the time-dimension of the event as they reflect losses 

occurring after the initial shock. The scale of indirect losses and the length of economic 

disruption will depend on the pre-existing state of the economy, and the ability of individuals, 

businesses, and markets to adapt in the event aftermath (e.g. through substitution of goods, 

the use of inventories to meet demands, use of idle capital, or by serving alternative markets 

(Cochrane, 2003)).  

 

In addition, the scale of impacts and the ability and time society will take to recover are 

highly dependent on the severity of the event itself. A robust economic system can usually 
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cope with and absorb a small shock. Larger events can overwhelm a system, and a major 

shock can cause such serious distortion to the economy that a return to normalcy may not 

be possible (Bočkarjova, 2007). If certain thresholds are passed then the system may not be 

able to cope with the amount of damages leading to more severe long-term consequences 

as seen in New Orleans after Hurricane Katrina (ibid.). These arguments are supported by 

recent economic modelling studies, which have highlighted non-linearity between direct and 

indirect economic losses. The Economic Amplification Ratio (EAR) of an event, defined as 

the ratio of the total production losses to direct losses from a disaster (Hallegatte et al., 

2007b), may be significant and indirect losses may even surpass direct losses for large scale 

events (Hallegatte, 2008, Yamano et al., 2007). Therefore, the inclusion of indirect economic 

damages is crucial for evaluating the total economic consequences of extreme weather 

events. However, published literature and data on the indirect effects of extreme weather 

events is extremely limited. Moreover, most existing IAMs omit not only extreme weather 

events but also factors such as cross-sectoral impacts, and implications for labour supply 

and businesses productivity (Stern, 2007).  

 

As indirect losses are much more difficult to identify and quantify Rose (2004) remarks that 

the validity of indirect losses has been met by scepticism by some engineers, policy-makers, 

and economists. The ambiguity over the scale of indirect economic effects is not entirely 

surprising as this is a comparatively new area of research and published studies are limited. 

Rose (2004, p.31) concludes that ‘improved methods to refine and validate relevant models 

and the estimates from their application are crucial to the acceptance of this important type 

of impact’. More importantly improved understanding and validation of indirect damages from 

past weather extremes is crucial to help improve the estimation of future losses in the 

context of climate change analysis. As Brookshire et al., (1997, p.685) notes ‘loss estimation 

is most useful when it has predictive capability or when it provides policy insights’. This will 

be particularly important when analysing drought as they are already associated with large 

indirect costs (Wilhite et al., 2007). 

 

A variety of economic modelling approaches exist which have been used for the analysis of 

indirect economic costs, including Input-Output (I-O) models, and Computable General 

Equilibrium (CGE) models. The most widely used method is that of I-O analysis with 

significant progress made in recent years in relation to natural disaster studies (Okuyama, 

2007). I-O analysis is an analytical framework, developed by Wassily Leontief in the late 

1930s, to analyse the interdependencies of industries within an economy (Miller and Blair, 

2009). The analysis is based on the premise that each industry produces goods and 

consumes goods from other industries in order to produce such goods. Therefore 
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commodities can have two destinations in I-O tables, firstly the intermediate demand of 

industries and secondly for final demand (e.g. household consumption, government 

purchases, exports). Some of the advantages of I-O models for economic loss estimation 

include the simplicity of the approach, the clear distinction between direct and indirect costs, 

and the ability to integrate I-O models with other models (Okuyama and Chang, 2004, Rose, 

2004, Rose and Liao, 2005). However, the conventional economic theory underlying 

traditional I-O modelling is not immediately applicable to extreme weather events (Okuyama 

and Chang, 2004). I-O models are based on traditional economic theory stressing interaction 

and equilibrium within the economy, whilst in the aftermath of a natural disaster the economy 

is likely to be in disequilibrium (as discussed in section 2.2.2) and potentially outside the 

realm of experience. Due to its linear nature I-O analysis is also viewed as being overly rigid 

and not able to address behavioural changes or market-based mechanisms which may 

occur in the disaster aftermath, such as substitution of goods or the use of inventories. This 

rigidity restricts I-O models from capturing resilience or adaptation within an economy. 

Consequently estimates of indirect economic costs are often viewed as overly pessimistic 

(Rose and Liao, 2005). In comparison, estimates from CGE models are considered overly 

optimistic e.g. for agriculture the unit price of goods increase due to shortages during a 

drought event, which can result in wind-fall gains to farmers who pass these costs on to the 

consumers. Table 2.1 provides a summary of the main advantages and disadvantages of the 

traditional I-O modelling approach. 
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Advantages Disadvantages 

 The simplicity of the modelling framework 

 There is explicit coverage of different sectors 

which allows analysis of impacts at a sector 

by sector level 

 The approach is based on an excellent 

organisational framework for data collection 

and display. This provides a transparent and 

comprehensive view of the structure of the 

economy 

 The modelling approach provides a clear 

distinction between direct and indirect costs 

 The modelling approach can be used to 

highlight the strategic importance of various 

industries and sectors 

 The framework is well suited to distributional 

impact analysis 

 Impacts and changes to the flows of goods 

and services are represented in monetary 

units useful for policy analysis 

 The evaluation of indirect impacts can be 

insightful for evaluating recovery and 

response strategies following disasters 

 The framework is well-suited to short-term 

recovery periods 

 There is the ability to integrate I-O models 

with other models e.g. engineering models 

 The ability exists to modify the traditional I-O 

modelling framework to address certain 

shortcomings, and to apply the models to 

disaster analysis in a more coherent manner 

 Ecosystem goods and services can be 

integrated into I-O models to assess the 

benefits that natural resources make to 

economic development (e.g. through a 

supply orientated approach). 

 The approach is seen as being overly rigid 

due to linearity and as such is characterised 

as providing overly pessimistic results 

 The method traditionally stresses interaction 

and equilibrium whilst natural disasters 

result in disequilibrium of the system 

 I-O models still assume that each industry 

has one, homogenous production function 

and that each industry produces one 

product which does not reflect the real 

economy very well 

 Technologies are ‘fixed’ and independent of 

changes in demand 

 Definitions and concepts of direct and 

indirect effects can vary and there are 

potential issues of ‘double-counting’ 

 Results will be dependent on the availability 

and accuracy of underlying primary data 

 The I-O framework ignores behavioural 

aspects such as substitution or import 

possibilities 

 It is not so well suited to long-term analysis 

as I-O coefficients will not remain static but 

evolve over time regardless of external 

shocks (e.g. due to technological or 

demographic changes) 

 The approach is not so good for addressing 

market-based mechanisms, e.g. price 

dynamics  and indirect costs in terms of 

responses to price changes 

 It is hard to account for Ricardian rents, as 

prices are difficult to model 

 The traditional demand-driven I-O model is 

not so applicable to the incorporation of 

ecosystem goods and services as it implies 

that final consumption, rather than primary 

supply from nature is the main driver of an 

economic system 

Table 2.1: Advantages and disadvantages of Input-Output Modelling. Sources: (Grêt-

Regamey and Kytzia, 2007, Miller and Blair, 2009, Okuyama and Chang, 2004, Rose, 2004, 

Rose and Liao, 2005) 
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However, modifications to the I-O framework with specific application to extreme weather 

events have addressed some of the shortcomings, including relaxing certain traditional 

modelling assumptions to capture supply and demand imbalances. For example, following 

the immediate shock the economic structure of the affected region will be directly affected 

causing a departure from the pre-event equilibrium. In order to address the subsequent 

indirect effects and options for recovery and reconstruction one needs to understand the 

scale of the departure from equilibrium in order to know ‘where to start from’ (Bockarjova et 

al., 2004). A relatively new development to represent the post-disaster phase of 

disequilibrium is to use an Event Accounting Matrix (EAM) as introduced by Cole et al. 

(1993). An EAM is essentially one or more tables with entries corresponding to those in the 

original I-O table, which is initially modified to represent the post-shock conditions so it can 

then trace the development of the economic system and reconstruction periods at selected 

intervals. The method attempts to address the failure of an economic system as a whole by 

mapping the direct effects of the disaster onto the economic system. This allows the 

magnitude, time-scale of market failures, and options for recovery to be integrated within the 

I-O framework (Cole, 2003). Such an approach has been used by van der Veen et al., 

(2003), Steenge and Bočkarjova (2007) and Hallegatte (2008) to address indirect impacts of 

flood and hurricane events. Further extensions to the traditional I-O methodology, with 

specific application to extreme weather events, include: 

 

 increased flexibility in the treatment of adaptation by allowing imports, substitution of 

goods, the ability to over-produce, and the use of existing inventories 

 consideration of system bottlenecks 

 incorporation of macroeconomic variables such as price effects as used in CGE 

models 

 coverage of different timeframes depending on the type of weather event 

 use of multi-regional I-O tables to assess how regional effects can affect the wider 

economy at a national or international level  

 integrative approaches to incorporate the spatial distribution of industries affected by 

extreme weather events, e.g. through use of GIS  

 incorporation of recovery, reconstruction, and mitigation paths 

 

An added challenge in modelling the indirect economic costs of extreme weather events is 

the need to interpret physical damage data as economic data. As no economic model can 

deal with physical data directly, they must be interpreted in a way that allows economic 

models to treat them as inputs (Okuyama and Chang, 2004). This is an important stage of 
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the modelling process as the economic outputs and results will only be as good as the data 

on which they are based. Two differing approaches, applied to extreme weather events, 

have been identified in the literature for estimating direct economic losses. Firstly, studies 

can utilise GIS to map the extent of a historical or hypothetical event and the location of 

businesses, households, or infrastructure affected. This approach has been used by Van 

der Veen et al. (2003), Steenge and Bockjavora (2007), and Bockjavora (2007) for flood 

events. The studies use GIS to map the spatial extent of a historical flood event, and the 

type, size, and value of infrastructure and businesses in the affected area identified and 

linked to economic I-O tables. The direct damage is calculated as the replacement cost of 

the affected infrastructure, buildings and urban property, aggregated by sector. 

Alternatively, direct losses can be calculated as the percent of productive capacity lost at 

the sector level assuming total loss to affected businesses in the flood zone (i.e. partial 

damage is not modelled). 

 

Secondly, studies can use published data on the direct economic damages of historical 

events, and where available the costs to various sectors. Hallegatte (2008, 2011) uses the I-

O model ARIO (Adaptive Regional Input-Output Model) to capture the effects of Hurricane 

Katrina on households and industries through changing demand and supply relations. The 

economic input data is based on reports of damage to capital stock of various sectors as 

reported by the US government in the event aftermath. Where data was only available at a 

more aggregated level it was disaggregated between sectors based on their relative size. It 

is assumed that damage to production capital will be equal to damage to production 

capacity reducing the subsequent production of affected sectors. Similarly, the ARIO model 

is utilised by Ranger et al., (2011) to assess the indirect effects of large scale flood events in 

Mumbai. The study is based on reported economic damages from the 2005 Mumbai flood 

event, for various economic sectors. 

 

Both of these approaches have advantages and disadvantages. The use of GIS linked to I-

O tables provides comprehensive information on the specific properties and assets affected 

and the value of such losses. However, it is difficult to estimate the actual scale of direct 

damages. As such, it is assumed that businesses or infrastructure in the flood area are 

totally destroyed. For example, studies using GIS to assess consequences of floods tend to 

focus on the spatial extent of the flood. Direct and indirect damages will be dependent on 

other factors such as the depth and velocity of the floodwater. In reality, businesses may be 

only partially affected and still have some capacity to produce goods and adapt to the new 

conditions in the event aftermath. Furthermore, results from hypothetical studies are not 

often calibrated against historical event or impact data to validate the accuracy of the results 
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for making future projections. In comparison, using reported event impact data allows one to 

model specific, historic, weather events calibrated to actual event data. This also makes it 

possible to verify results by comparing them to actual economic outcomes. It is also 

possible, depending on the detail of impact data reported, to make assumptions about the 

degree of direct economic losses to particular sectors. However, without the use of GIS it is 

difficult to know how to distribute damages spatially across regions. In general, the 

assumption is made that all industries within a given sector will be equally affected by the 

event. Importantly, results will be highly dependent on the availability, accuracy and detail of 

the reported damage data, which as discussed in section 2.1, can bring with it its own set of 

caveats. 

 

The application of I-O analysis specifically to extreme weather events is a much newer focus 

of research, but one that may provide valuable information for climate change cost analysis 

studies. Indeed, Rose (2004, p.22) highlights the potential role of loss estimation studies to 

project future losses under climate change scenarios. However, loss estimation from 

extreme weather events has traditionally focused on direct economic effects only (Webster 

et al., 2008), and I-O models appear underutilised as a possible methodology for dealing 

with economic shocks such as those caused by extreme weather events (Bockarjova et al., 

2009). Consequently, studies focusing explicitly on the quantitative estimation of indirect 

economic drought losses are scarce. A review by Ding et al., (2010) highlighted just a 

handful of state level studies for the USA which used quantitative estimation methods, 

focusing predominantly on agriculture. This is despite the fact that severe or extreme 

drought affects some part of the USA each year, and average annual losses are higher than 

seen for floods or hurricanes (NDMC, 2006a). 

 

As mentioned above, studies focusing specifically on drought tend to estimate direct and 

indirect economic costs using impact data for the agricultural sector. For example, at a 

regional level Diersen and Taylor (2003) estimated the direct and indirect costs of the 2002 

drought in South Dakota, USA, on farming and agriculture. Direct economic costs to crop 

and livestock were estimated based on various agricultural statistics, e.g. changes in 

production yields of crops, area of pasture affected during drought, changes in numbers of 

culled cattle, costs of additional feed required, and reduced grain and hay inventories. The 

study estimated the indirect economic costs using an I-O modelling framework. The drought 

shock was represented as a decrease in economic activity to affected agricultural industries 

equal to the estimated direct drought damages. Total economic losses were estimated at 

1.4bn US$, comprising of 642 million direct damages and 757 million indirect damages. The 

EAR of the drought was 2.18, i.e. the total economic losses were more than double the 
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direct economic losses. Economic recovery occurred in 2003 following the termination of the 

drought, however, where crop yields remained below average there were still constraints to 

supply for the following years inventories of feedstock. The authors noted that increases in 

crop and cattle prices were observed, which offset some of the previous year’s production 

losses and accounted for economic recovery. However, there is likely to be disparity 

between the producers directly affected and those receiving the benefits of rebounding 

market conditions. 

 

At a national scale Wheaton et al., (2008, 2005) assessed the costs of the 2001 and 2002 

droughts in Canada. Parts of Canada faced some of its worst drought conditions for at least 

100 years during 2001 and 2002 resulting in widespread and devastating impacts. The study 

focused primarily on agriculture and estimated annual direct drought costs as $1.3bn 

Canadian dollars in 2001, and $2.2bn Canadian dollars in 2002. Indirect economic costs at a 

regional and national level were estimated using an Inter-provincial Input-Output Model for 

Canada. Indirect losses to Canada’s GDP were estimated at $2.1bn in 2001 with a loss of 

17,637 jobs across the country. The 2002 drought was more intense with indirect economic 

costs in the region of $3.6bn, and a loss of 23,777 jobs. The severity of the droughts is 

highlighted by the EARs estimated for 2001 and 2002 of 2.62 and 2.64 respectively. 

Moreover, the authors note that some consequences of the successive drought events, such 

as losses to livestock and land degradation, may take years to decades to recover fully back 

to pre-event conditions. 

 

2.6 Summary and research objectives 

Extreme weather events are one of the main channels through which socio-economic 

impacts of climate change are expected to be felt. However, extreme weather events and 

their effects are generally excluded from modelling approaches used for climate change cost 

and risk assessments. The exclusion of extreme weather events, and the risks they pose, 

can reduce the validity of cost assessments and subsequent policy recommendations. 

Economic modelling approaches tend to be based on traditional economic theory assuming 

equilibrium. As such, they are not suited to assessing damage costs from extreme weather 

events, which can cause sudden shocks to the economy resulting in irregularities and 

disequilibrium. Furthermore, economic modelling techniques and policy optimisation studies 

have evolved around the rigid framework of CBA, which has limited application to extreme 

weather, and climate change analysis as a whole. Similarly, there has only been limited 

consideration of extreme weather events, and their effects, within IAMs. Problems in 

incorporating extreme weather events reflects the focus of most modelling studies on mean 



           Economic and Social Consequences of Drought 

48 

 

global or regional temperature change; difficulties in projecting future changes in weather 

events at appropriate spatial and temporal scales; and difficulties in linking this information, 

in a consistent and robust manner, to impact data. The lack of a globally consistent and 

rigorous methodological approach for reporting and recording data on extreme weather 

events also remains a major obstacle for impact analysis. 

 

Quantitative assessment of impacts from weather extremes can be carried out offline from 

economic models and IAMs, ranging from simple linkages between event and climate data 

to more complex probabilistic risk based approaches. A particularly promising development 

has been the creation of damage functions specifically applied to extreme weather types. 

Climate damage functions have been criticised in the past as they have been based on 

limited data; predominantly focus on mean temperature change; use hypothetical shape and 

scale parameters, often based on exert opinion only; and are rarely calibrated to historical 

event or impact data. However, studies by Webster et al., (2008) and Genovese et al., 

(2007) highlight that damage functions created offline can avoid some of these issues. For 

example, climate damage functions created offline can be calibrated to past weather events 

and impact data; be developed for a specific weather type; be region or country specific; and 

linked to specific event characteristics such as intensity or flood depth, without comprising 

the computational efficiency of IAMs. Climate damage functions can also be used in 

combination with future projections of extreme weather events from climate models, rather 

than relying on point estimates from the literature. Furthermore, there is potential for climate 

damage functions to feed back into economic and integrated assessment models, or be 

used to drive assessments of indirect losses through I-O models. Whilst damage functions 

have been created for some extreme weather types, e.g. flood and hurricane events, to the 

best of the authors’ knowledge they have not been applied to drought in any comprehensive 

manner.  

 

Studies specifically aimed at estimating future economic and social effects from drought 

events, under future projections of climate change, are almost non-existent. Thus, new ways 

of approaching and modelling future effects of drought are required. The literature review 

has also highlighted that current impact studies and methodologies focus predominantly on 

direct economic costs although indirect economic costs may be substantial, particularly for 

drought. Therefore, it is essential to calculate both the direct and indirect economic costs of 

drought to avoid inaccurately low assessments of damages and enable a better 

understanding of the full economic effects. One potential technique is I-O analysis, which 

can be used to model and quantify the indirect economic effects caused as the drought 

shock propagates through the wider economy. The application of I-O analysis to extreme 
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weather events and climate change is a relatively new and developing area of research, and 

studies focusing specifically on drought events and their effects are very limited.  

 

Similarly, non-market effects, such as changing mortality and morbidity rates, are generally 

excluded from impact assessments of extreme weather events. Assessing and valuing non-

market effects, which can be intangible, is not only very challenging but also a highly 

contentious issue. Furthermore, when studies do incorporate social effects they tend to be 

represented in monetary terms within aggregate economic damage functions. Yet, 

alternative methodological approaches, such as the PP and MCA, suggest that non-market 

effects can be quantified in metrics more representative of the type of impact, and presented 

in parallel with market effects. It is argued that specific impacts presented independently can 

still provide a valuable insight into the overall costs (Smith and Hitz, 2003). Research aimed 

at quantifying indirect societal effects of drought will be even more challenging. The scale of 

impacts may be high, especially in developing countries where extreme drought events may 

lead to mass migration, social and economic instability, conflict, malnutrition or famine. 

 

In summary, some important issues, and current gaps in research, have been highlighted in 

chapters one and two. These need to be considered when developing a methodology 

specific to drought. In particular: 

 

 The focus on single event analysis means that current methodologies lack generality 

and cannot be applied at the macro-scale. Conversely, aggregate global studies can 

be too generalised and fail to capture spatial variations in weather and impacts. 

Therefore, a general overall approach is needed that it is not case specific but that 

can be applied to drought events universally at an international, national and sub-

regional level. Studies focused at the country or sub-regional level may provide 

greater levels of certainty than larger scale studies.  

 Additionally, this would be beneficial as drought events of similar scales may result in 

largely different consequences depending on the country and region affected. Thus, 

a methodology is needed which accounts for different social and economic conditions 

(i.e. the method should be applicable across both developed and developing 

countries). 

 Droughts are complex weather extremes, and their specific characteristics will need 

to be accounted for and considered within the methodology. For example, the onset 

time, duration, and intensity of events, and the possibility of successive events. 
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Consideration needs to be given to inter-annual variability, spatial variability, and the 

possibility of drought events passing historical climate and impact thresholds.  

 The methodology should aim to address both market and non-market effects, to 

provide a comprehensive estimate of drought effects. An approach that does not rely 

on monetising and aggregating all effects could be employed. Furthermore, the study 

should account for both direct and indirect economic costs. 

 Results should be empirically grounded and calibrated to historical event impact data 

and climate data. 

 Changing socio-economic conditions, which can affect overall societal and economic 

vulnerability, need to be considered. Consequently, the study would benefit from 

modelling drought effects as part of a dynamic system, rather than using the typical 

‘static’ approach. 

 Where possible the impact of adaptation on future effects from drought needs to be 

considered. Planned and autonomous adaptation currently receives limited coverage 

but has the potential to reduce future drought effects. 

 Finally, it is important for the research outputs to be policy relevant. The study should 

provide outputs which are useful and understandable to policy makers; can be 

incorporated into wider climate change cost assessment studies; and help to guide 

climate change policy decisions. 

 

The aim of the research is to model and quantify the effects of drought on the economy 

and society under future projections of climate change. As drought is possible in 

virtually all regions of the world, with the potential to cause severe economic and social 

effects, a comprehensive, interdisciplinary, and integrated approach is needed to derive a 

link between factors causing drought, drought characteristics, drought effects, and 

consequences for society and economies. In order to address the research aim, and in light 

of the above findings, four objectives are outlined. 

 

Firstly, trends between historic drought events and reported impact data are investigated. A 

methodology is developed for identifying and quantifying drought events and their 

characteristics, for given timeframes and regions. Relationships between quantified drought 

parameters and reported impact data are investigated and used to create drought damage 

functions, which can be used to estimate future economic and societal consequences of 

drought. Chapter 3 provides a justification of the modelling tools and data, and the 

methodology is described. Results are presented along with a discussion of the main 

findings and chapter summary. 
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Secondly, the effect of climate change on future drought regimes needs to be modelled and 

quantified. The literature review highlighted that IAMs are one of the best tools available for 

assessing climate change impacts. Therefore, the study utilises the IAM CIAS (Community 

Integrated Assessment Model) (Warren et al., 2008), which incorporates a range of climate 

and emission scenarios and a downscaling module, ClimGen, to provide monthly climate 

data at a grid scale of 0.5° x 0.5°. Based on data from CIAS future drought events and their 

characteristics are modelled and quantified for the first half of the 21st century, for a range of 

climate and emission scenarios. Results are compared to drought characteristics modelled 

for the baseline period 1955-2002. Chapter 4 provides a justification of the modelling tools 

and data, and the methodology is described. Results are presented along with a discussion 

of the main findings and chapter summary. 

 

Thirdly, the drought damage functions need to be applied to the projections of future drought 

events to provide quantitative estimates of the economic and social effects. Future estimates 

of drought effects are compared to past estimates to assess the effects of climate change, 

for a range of climate and emission scenarios. Chapter 5 presents the methodology, results, 

discussion, and chapter summary. 

 

Fourthly, a preliminary investigation of indirect economic costs of drought is conducted. The 

literature review highlighted the potential of I-O analysis for such assessments, although it is 

a relatively new and developing research area. The study utilises the pre-existing ARIO 

Model, which is modified to cover specific characteristics of drought. Estimates of direct 

economic drought costs, presented in chapter five, are fed into the I-O model as a shock to 

simulate indirect effects on the economy and illustrate the importance for total drought costs. 

Chapter 6 provides a justification of the modelling tools and data, and the methodology is 

described. Illustrative results are presented along with a discussion of the main findings and 

chapter summary. 
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3. Creating Drought Damage Functions 

In order to assess the economic and social effects of drought the research investigates 

relationships between characteristics of historical drought events and event impact data. 

Trends identified are used to create drought damage functions, which can be used to 

estimate economic and social consequences of future drought events. In carrying out this 

research objective, a first step was to develop a suitable method for identifying historic 

drought events in climate data. Section 3.1 discusses options for quantifying drought events 

using various drought indices, the methodology employed in this study, and data sources. 

The methodology for quantifying drought events and their characteristics are presented in 

section 3.2 and the resultant drought damage functions are presented in section 3.3.  

Section 3.4 provides a discussion of the results, and benefits and limitations of the 

methodology. Lastly, section 3.5 provides a summary of the chapter and implications for the 

remaining research objectives. 

 

3.1 Literature and modelling tools 

3.1.1 Drought and precipitation indices 

As discussed in section 1.1 drought can be defined in different ways and over different 

timescales, leading to a lack of a single, universal definition. Consequently, a large number 

of drought indices have been developed over the 20th century for drought analysis in the 

domains of meteorology, hydrology, and agricultural analysis. Drought indices assimilate 

climate and hydrological parameters into a single indicator that can be used for analysing 

trends and relaying information to stakeholders, policy makers and the public in a clear 

format. Drought and precipitation indices can range from very simple measurements of 

precipitation to more complex and data intensive algorithms. Thus, it is important to 

understand fully the different characteristics of drought indices to help select the most 

appropriate one, and to be fully aware of the assumptions and limitations that underlie their 

use.  

 

Assessments of meteorological drought using drought indices have received less attention 

when compared to studies of hydrological extremes focusing on river discharge and low flow 

regimes (Vasiliades et al., 2009). Yet, such methods require considerably less input data 

than used by e.g. hydrological or agro-hydrological models, and can reduce the additional 

uncertainties linked to the quality, resolution and parameterisations of impact modules. 

Meteorological drought indicators, which consider parameters such as precipitation, 
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temperature, and evaporation include, inter alia, Rainfall Deciles (Gibbs and Maher., 1967), 

Drought Area Index (DAI; Bhalme and Mooley, 1980), Rainfall Anomaly Index (RAI; van 

Rooy, 1965), Weighted Anomaly Standardised Precipitation (WASP; Lyon, 2004), Palmer 

Drought Severity Index (PDSI; Palmer, 1965), and the Standardised Precipitation Index (SPI; 

McKee et al., 1993). Reviews of drought indices and comparison studies have been 

regularly produced (e.g. Byun and Wilhite, 1999, Hayes, 2006, Heim, 2002, Keyantash and 

Dracup, 2002). Perhaps the most famous and commonly used index is the PDSI developed 

in 1965 by William Palmer. The PDSI is still widely used as an independent index, as well as 

a comparable index when testing newer indices. The PDSI is a standardised index that takes 

into account precipitation, temperature, evapo-transpiration, and soil moisture conditions to 

analyse the intensity, onset, cessation and duration of drought. Although the PDSI marked a 

turning point in the development of drought indices, it has since suffered much criticism over 

its application as a drought index. Alley (1984) provides a thorough critique of the 

methodology, assumptions and limitations of the PDSI. In summary, the main issues are: 

 

 Computations of the PDSI are complex and require data for many variables. 

 Some very basic assumptions were made in order to develop the PDSI. For example, 

soil moisture storage is accounted for by dividing soil into two layers and making 

assumptions about the water storage capacity and moisture removal from the two 

layers. 

 The values of the PDSI used to classify the intensity of drought were arbitrarily 

selected based on limited data from the USA and have little scientific meaning. 

 There are several limitations resulting from the use of a water-balance model in 

calculating the PDSI. For example, there is no universally accepted way to model 

potential evapo-transpiration; no lag time is included for potential runoff; forms of 

precipitation other than rainfall are excluded; and there is a simplistic representation 

of hydrological phenomena. 

 The PDSI fares unfavourably in applications other than that for which it was 

developed (i.e. agriculture in the mid-west US). 

 

Due to such issues and limitations the SPI was developed by McKee et al. (1993) as an 

alternative tool to help drought monitoring and analysis. Like the PDSI the SPI is a 

dimensionless meteorological drought index which can be applied universally to compare 

droughts from different regions (Heim, 2002). As drought is essentially an accumulated 

moisture deficit problem then an abnormally wet month in the middle of a long-term drought 

should not have a major impact on the SPI. Likewise a series of months with near-normal 
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precipitation following a serious drought may not necessarily mean that the drought is over 

(Hayes, 2006). As precipitation deficit will have different impacts depending on the time over 

which it occurs, and as accumulated precipitation can be simultaneously in excess and 

deficit on different timescales (Redmond, 2002), the SPI can be determined for different time 

periods. This allows the dynamics of different types of droughts (agricultural, hydrological, 

and meteorological) to be assessed. However, the use of different time periods will directly 

affect the value of the SPI attained, the drought duration, and the drought frequency. This 

adds further complexity to the task of analysing drought events as drought can be ‘put in 

some historical perspective at each of several timescales’  (McKee et al., 1995, p.235). 

Table 3.1 summarises the information provided by the US National Drought Mitigation 

Centre (NDMC) on interpreting SPI data based on different time periods. 

 

1-month SPI 

Similar to the percent of normal precipitation for a month, the 1-month SPI is 

problematic to use where rainfall is normally very high/low for a given month even 

if the departure from the mean is relatively small. It is important to be aware of a 

regions climatology when using SPI-1, and although still useful caution must be 

observed when analysing maps. 

3-month SPI 

3-Month SPI reflects short and medium term moisture conditions and provides a 

seasonal estimation of precipitation. It can be useful for agriculture as an indicator 

of available soil moisture. It is important to compare the 3-month SPI with longer 

timescales to prevent the misinterpretation that any drought event has ended. 

Again it may be misleading in regions with normally very high/low rainfall seasons. 

6-month SPI 

6-month SPI reflects medium-term trends in precipitation and is very effective at 

showing the precipitation over distinct seasons. It can also be linked to stream 

flow and reservoir levels. 

9-month SPI 

9-month SPI reflects precipitation patterns over the medium-term, which is useful 

as droughts usually take a season or more to develop. At this time scale, SPI 

values of -1.5 or less are usually linked to significant impacts to agriculture and 

other sectors. 

12-month SPI 

The 12-month SPI reflects long-term precipitation patterns. As SPI values at 

longer time periods tend towards zero the 12 month SPI is useful for highlighting 

specific trends such as the wettest/driest year on record. The 12-month SPI can 

be tied to stream flows, reservoir levels, and even ground water levels. 

Table 3.1: Interpretation of SPI time periods as used by the NDMC. Source: Summarised 

from NDMC, 2006 

 

 

Other advantages of the SPI is that it is probabilistic and so can be used in risk-analysis and 

decision making; it is not adversely affected by topography which can affect precipitation 

levels; and as it is not dependent on soil moisture conditions the SPI can be used effectively 

in both summer and winter (Lloyd-Hughes and Saunders, 2002). The SPI is also simpler to 

calculate than the PDSI as it only requires precipitation data. Precipitation is the primary 

factor in the formation and persistence of drought and simple indexes such as the SPI have 
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been shown to perform better than other indexes, including complex indexes like the PDSI 

(Guttman, 1998, 1999, Keyantash and Dracup, 2002, Lloyd-Hughes and Saunders, 2002, 

Redmond, 2002). Consequently, the use of precipitation data alone is considered sufficient 

when assessing meteorological drought. This approach also has benefits as precipitation 

data can be collected for more sites than other variables such as soil moisture; precipitation 

is the key variable in drought definitions as all droughts stem from a precipitation deficit; and 

precipitation data is available for longer time periods than other meteorological data (Byun 

and Wilhite, 1999). The potential advantages of modelling drought using the SPI is reflected 

in its subsequent uptake in over 60 countries, as well as by the NDMC, the National Data 

Climatic Centre (NCDC), and across many states in the US (Wu et al., 2005). However, the 

SPI is not without its own limitations. Importantly:  

 

 It is assumed that a suitable probability distribution can be found to model the raw 

precipitation data for standardisation, which may not always be the case (Lloyd-

Hughes and Saunders, 2002). 

 As with all indices, the accuracy will be dependent on the quantity and quality of 

precipitation data used. It is recommended that long periods of observational data be 

used, depending on the time periods being assessed. Guttman (1999) used at least 

60 years of data in his analysis and McKee et al., (1993) recommended a continuous 

period of data of at least 30 years. In addition the value of the SPI will differ if 

different lengths of precipitation records are used (Wu et al., 2005). However, these 

issues can easily be resolved by keeping the length of data as long as possible, and 

keeping this data length uniform across the study. 

 The SPI can be problematic when applied over short time periods (e.g. SPI-1 and 

SPI-3) for areas with normally low or high seasonal precipitation totals, as a small 

variance in precipitation over one month would cause a misleadingly high or low SPI 

value (Hayes et al., 1999). 

 As other factors such as evapo-transpiration and temperature are excluded, the 

severity of drought characteristics calculated using the SPI (and other similar indices) 

may be underestimated. 

 As the SPI is standardised the probability of drought occurring in a given category of 

severity, (see table 3.2 below for a definition of drought categories), can be given and 

the rarity of the event can be estimated. However, this means that the probability of 

drought events falling in each category will be the same for all locations analysed 

regardless of climate regime. Thus the SPI (like the PDSI) cannot be directly used to 

compare between regions or timescales as the frequency of drought spells will be 
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about the same for all areas looked at regardless of the climate regime. However, if 

past precipitation data is used to generate future precipitation time-series data, and 

the mean monthly precipitation values are assumed unchanged in the future from the 

historical values, then any changes seen in the future precipitation distribution and 

subsequently in drought events can be linked to effects of climate change. This 

technique has been used by several studies assessing climate change effects on 

drought (e.g. Vasiliades et al., 2009) and is used in this study for future projections of 

drought (discussed in chapter 4 section 4.1). 

 

In summary current literature on drought indexes suggests that the SPI may not only be 

favourable to the PDSI but also to other indexes of a similar nature. Moreover, the 

application of the SPI to this study is highly desirable as it provides a method for analysing 

not only the occurrence and intensity of drought events but also for defining drought start 

and end months, duration, and magnitude. Moreover, as the SPI determines deviations from 

mean precipitation it could provide an equally effective measure of wetness (Hayes et al., 

1999). This hypothesis has been tested for historical flood events in Argentina by Seiler et al. 

(2002) and for peak stream flow and flood events in Portugal by Guerreiro et al. (2008). Both 

studies concluded that the SPI satisfactorily explained the development and circumstances 

leading up to major peak flow and flood events, highlighting the potential for the SPI to be 

used as a tool for representing historical flood events and future flood risk. 

 

3.1.2 Calculating the SPI 

In order to calculate the SPI the first process is to prepare the precipitation data for the 

required number of months (m). A time period (i) is selected based on the user objectives, 

e.g. 3, 6 or 12 months, to create a lagged moving average where each new precipitation 

value is determined based on the previous i months.  This new lagged data set is used in 

computing the SPI. The SPI can be computed in different ways depending on the type of 

distribution used to model the index. It is relatively straightforward to calculate the SPI based 

on a normal distribution (Lloyd-Hughes and Saunders, 2002), represented in equation 3.1: 

 

     
    ̂ 
  

 

Eq. 3.1 

Where:                                               

x = precipitation value (observed or simulated) 

σ = standard deviation 
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m = month 

 ̂ = monthly precipitation mean (observed) 

 

However, precipitation is not normally distributed for timescales of twelve months or less 

(McKee et al., 1995). Lloyd-Hughes and Saunders (2002) found that for Europe the fit of the 

normal distribution improved as the timescale of the data was extended. However, it has 

poor performance over shorter periods and the fit was worse for arid regions where 

precipitation distributions are more skewed. In comparison, the gamma distribution was 

shown to fit the data better and improved as the timeframe of the data was extended. 

Guttman (1999) also found that a gamma distribution was favourable to the normal 

distribution. The following computations are used to calculate the SPI based on the gamma 

distribution (taken from Edwards and McKee (1997)), as used in this study. 

 

The gamma distribution is defined by its PDF: 

 

   ( )  
 

    ( )
                                                         Eq. 3.2 

 

Where: 

α = shape parameter 

β = scale parameter 

x = precipitation amount (observed or simulated) 

Γ(α) = gamma function defined in equation 3.3 

 

                                            ( )   ∫     
 

 
                                                       Eq. 3.3 

 

The data needs to be fitted to the gamma function in order to determine the relationship of 

probability to precipitation. In order to fit the data the shape parameter (α) and scale 

parameter (β) are estimated for each value in the lagged data set using equations 3.4 to 3.6. 

 

                                                ̂   
 

  
 (  √  

  

 
 )                                           Eq. 3.4 
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                                             Eq. 3.5 
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                              Eq. 3.6 
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Where: 

n = number of precipitation observations 

 ̂ = monthly precipitation mean (observed) 
 

Integrating the probability density function with respect to x and inserting the estimates of α 

and β yields an expression for the cumulative probability G(x) of an observed amount of 

precipitation occurring for month m and time scale i. Where t = x/β, the equation becomes 

the incomplete gamma function: 

 

 ( )   
 

 ( ̂)
∫   ̂  
 

 
                          Eq. 3.7 

 

However, as the precipitation data may naturally contain zeros and as the gamma function is 

undefined for x=0 the cumulative probability is calculated following equation 3.8: 

 

                 ( )     (   ) ( )                             Eq. 3.8 

 

Where: 

q = the probability of a zero 

 

The final stage is to transform the cumulative probability H(x) to a standard normal 

distribution to provide the SPI value, as illustrated in figure 3.1. To compute this for large 

data sets an approximation conversion process is utilised (from Abramowitz and Stegun, 

1965) to quickly convert the cumulative probability to the SPI value (equations 3.9 to 3.12). 
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Figure 3.1: Conversion from a gamma distributed cumulative probability to a standard 

normal distributed cumulative probability. Source: Edwards and McKee (1997) 

 

 

             (  
           

 

         
     

 )                      for 0 < H(x) ≤ 0.5                            Eq. 3.9 

             (  
           

 

         
     

 )                for 0.5 < H(x) ≤ 1.0                         Eq. 3.10 

 

Where: 

                   √  (
 

( ( )) 
)                                  for 0 < H(x) ≤ 0.5                           Eq. 3.11 

                   √  (
 

      ( ( )) 
)                                for 0.5 < H(x) ≤ 1.0          Eq. 3.12 

 

And: 

c0 = 2.515517,   c1 = 0.802853,  c2 = 0.010328 

d1 = 1.432788,  d2 = 0.189269,  d3 = 0.001308 

 

The resulting output is the SPI value for a given precipitation data point and time period. A 

drought can be categorised based on its SPI value, with each category occurring a known 

percentage of the time (table 3.2). The SPI can be used to establish a definition of drought, 

drought start and end dates, and drought duration. For example, McKee et al., (1993) define 

a drought event as a period in which the SPI is continuously negative and reaches a value of 

-1.0 or less. 
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SPI Value Category Probability (%) 

2.00 > Extremely moist 2.3% 

1.50 – 1.99 Severely moist 4.4% 

1.00 – 1.49 Moderately moist 9.2% 

-0.99 – 0.99 Near Normal 68.2% 

-1.00 – -1.49 Moderately dry 9.2% 

-1.50 – -1.99 Severely dry 4.4% 

-2.00 < Extremely dry 2.3% 

Table 3.2: SPI Categories. Source: McKee et al., (1993) 

 

 

3.1.3 Precipitation data 

The SPI was computed based on precipitation data from the Climatic Research Unit (CRU) 

TS 2.1 dataset (Mitchell and Jones, 2005). The dataset provides monthly gridded 

precipitation data for 1901 to 2002, interpolated from observed data to a resolution of 0.5° x 

0.5° for the entire terrestrial land surface (excluding Antarctica). A base period of 1940 to 

2002 was used to calculate the gamma parameters for the study. The start year was set at 

1940 in order to keep the length of the precipitation data record as long as possible to 

produce robust SPI results, bearing in mind that drought impact data before this time was 

very limited and less robust. The SPI was calculated based on the gamma distribution 

(equations 3.4 to 3.12 above) via a program written in C#. The output of the C# code was 

validated by running a dataset for Denver, Colorado, provided on the Colorado Climate 

Centre website (McKee, 2008) and checking that results obtained were consistent with those 

published on the website. In addition, following the approach of Lloyd-Hughes and Saunders 

(2002), results for the USA, computed using the C# Code, were compared to results 

computed from station data published by Edwards and McKee (1997). Although a slightly 

different data length was used, and this study used gridded precipitation data rather than 

station data, the maps showed excellent agreement (see Appendix B for a comparison of 

maps). The results also corroborate the finding from Lloyd-Hughes and Saunders (2002, 

p.1578) that for the USA SPI values computed from gridded data correlated almost exactly 

to those computed from station data. Thus, it can be argued that for countries which have 

good observational records of precipitation gridded data is representative of station data. 

However, it is also important to note that for countries with limited rain gauge stations the 

reliability of gridded data will be reduced. 
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3.1.4 Drought event data 

In order to link characteristics of historical drought events to their economic and social 

effects, a global drought database was used. Data is used from EM-DAT for the period 

1940-2002 (EM-DAT, 2010). This is the only publicly available drought database that 

documents global drought events (Below et al., 2007). In the absence of multiple drought 

databases, information from EM-DAT has been taken as valid and hence results presented 

here will be highly dependent on the quantity and quality of the data. However, EM-DAT has 

a clear procedure in place for adding events to the database and once added the new event 

undergoes a validation process. In addition, the drought database was recently updated to 

reduce inconsistency in records and problems that arose due to the slow onset, spatially 

extensive, prolonged and complex characteristics of droughts. The review had a large effect 

on the database with a reduction in recorded drought events of 57%, an increase in reported 

deaths of 20% and an increase in economic losses of 35% (ibid.). However, drought events 

are still very difficult to catalogue accurately and there are some important issues to bear in 

mind when using EM-DAT: 

 

 The database records the drought start date as the date when losses were first 

reported. Consequently, there may be a lag between the drought start date 

calculated using the SPI and the start date recorded in EM-DAT. 

 Where no details on the end month or year are specified by reports, and no other 

details can be found, the end date is set to the same year as the start date. Therefore 

start and end dates are indicative only. 

 Only 25% of drought entries (from 1900 to 2004) include data on economic losses, 

although data does increase in quantity over time (Below et al., 2007). Economic loss 

data was defined as all losses directly or indirectly related to the disaster. However, 

as no information is available on the share of direct and indirect losses it is assumed 

in this study that damages reflect direct losses only. 

 States are not required to report to EM-DAT, which is a private non-governmental 

organisation. Therefore, it is compiled from data reported in the media or by aid 

agencies. Smaller scale disasters and localised disasters which do not receive 

international assistance may fail to appear (Webster et al., 2008). 

 Due to the validation method, if the drought event is not reported by the international 

community in at least two suitable sources it is excluded. 

 Reporting of economic losses tends to improve over time. Furthermore, past 

economic losses reported are more likely to solely represent direct losses, whereas 
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more recent estimates are likely to be more comprehensive and reflect direct and 

indirect damages (Muir-Wood et al., 2006). 

 

Nevertheless, the event database still provides a useful guide as to which countries, regions 

and years the SPI drought analysis should focus on. This type of investigative approach has 

been used by Wu et al., (2005) for Nebraska, USA, and globally by Below et al., (2007) as a 

means of identifying periods of climate data over which to analyse historical drought events. 

Additionally, the database has also been used as a means of validating simulated flood 

events and their effects (Hirabayashi and Kanae, 2009). By focusing on historical drought 

events reported in EM-DAT the precipitation data can be linked directly to the impact data, 

and potential relationships identified. 

 

3.2 Quantifying historical drought events 

The task of accurately and systematically quantifying historical drought events is not a 

simple one as each drought event is unique (Wilhite, 2005). Drought analysis is made even 

more complex as the process of defining drought is very much a subjective affair based on 

the overall aims and objectives of the researcher. In order to meet the research objective 

and identify trends between historical drought events and their reported impacts it is 

necessary to devise a methodology for quantifying drought events which can: be justified in 

the field of drought analysis; can accurately reflect historical drought events; is suitable for 

creating drought-damage functions; can be applied to future projections of drought events; 

and provide a generalised framework that can be applied to other countries and studies. This 

section summarises the novel methodological approach devised to quantify historical 

drought events with an application to creating country specific drought damage functions. 

The focus of the study is on eight countries: Australia, Brazil, China, Ethiopia, India, 

Portugal, Spain, and the USA. These countries were selected as they have all suffered 

numerous drought events from 1940-2002, they cover different geographical, climatological, 

and hydrological regimes, and that have different economic structures. In addition these 

countries are already known to suffer water stress and are vulnerable to future climate 

change (Bates et al., 2008).  

 

In devising the methodology it was important to specify which SPI time periods would be 

used as drought characteristics (duration, intensity and magnitude) can be highly variable 

over different time periods. Furthermore, the use of multiple time periods are valuable in 

capturing droughts which may only show up in the short or long-term and which would 

otherwise be excluded. Following the recommendations of Byun and Wilhite (1999, p.2755) 
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two SPI time periods were used to model and characterise drought. The literature review has 

highlighted that most economic damages from droughts are related to agriculture (although 

other sectors vulnerable to drought include recreation and tourism, energy production, 

forestry and transportation). As such, a shorter, seasonal time period would be useful such 

as SPI-6, which can be used to represent agricultural drought. Secondly, non-market effects 

such as the number of lives affected and numbers of lives lost are expected to occur in the 

longer term due to the cumulative and persistent effects of drought on water supply. 

Therefore, SPI-12 is used to represent hydrological drought (see table 3.1 for interpretation 

of the different SPI time-periods and related effects). 

 

Monthly SPI-6 and SPI-12 values were computed for 1940-2002 for each country of interest. 

For each drought event reported in EM-DAT the SPI data were analysed only for the states 

or administrative regions that were listed as being affected. This allowed the reported 

economic and social effects to be linked to the specific drought conditions that prevailed over 

the affected region. As drought will rarely, if ever, affect an entire country (Wilhite, 2005) it 

was hoped this approach would focus results on the drought hit areas only and avoid 

averaging out the SPI data across the whole country, or over large regions, which did not 

suffer impacts. Bar charts of the average SPI time-series data were created for each drought 

event analysed to ascertain if the reported drought event could be detected in the 

precipitation data using SPI-6 and SPI-12. Figure 3.2 provides an example of the time-series 

graphs for the 1995 to 1996 drought, which affected multiple states in the USA.  

 

 

Figure 3.2: Average SPI time-series data for SPI-6 and SPI-12 for the 1995 to1996 drought 

that affected various states in the USA.  Source: Own calculations 
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Drought was defined as a period where negative SPI values could be identified, which 

coincided with the drought details reported in EM-DAT. The drought start date was defined 

as the first month in which the SPI became negative and the drought end date was defined 

as the first month in which the SPI became positive again. In addition, regional SPI maps 

were created using DIVA-GIS9, a free computer program for mapping and analysing spatial 

data, including gridded data (Hijmans et al., 2005). The maps were used in order to identify 

visually each drought event, its location, and to check the accuracy of start and end dates 

ascertained from the average regional time-series data. Once the drought start and end 

dates were determined the SPI values for the drought-affected cells (i.e. cells that had a SPI 

value of 0.0 or less) were analysed. As the values of the SPI will differ depending on the time 

period used drought characteristics were analysed for both SPI-6 and SPI-12 time periods. 

 

McKee et al., (1993, p.2) define drought magnitude as the absolute sum of the SPI values 

across the duration of the recorded drought. However, this definition of drought magnitude 

has only been applied to monthly station data, which does not have a spatial aspect. In order 

to apply the parameter to this study and consider the spatial extent of each drought, the 

definition of drought magnitude has been modified. Equation 3.13 is used to calculate the 

Monthly Drought Magnitude (MDM) of the affected region for each drought month. The Total 

Drought Magnitude (TDM) is then calculated using equation 3.14, which sums the MDM over 

the duration of the recorded drought. 

 

                 Eq. 3.13 

                                                           Eq. 3.14 

Where: 

k = drought month  

n = total number of grid cells affected in month k  

j = grid cells affected in month k 

m = total number of months affected by drought 

 

                                                
9
Available for free download at: http://www.diva-gis.org/  

http://www.diva-gis.org/
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The drought intensity of each grid cell can be inferred directly from the SPI value. Peak 

intensity is defined by McKee et al., (1993) as the minimum SPI value reached during the 

drought event. Again, this definition has been applied to monthly station data that does not 

have a spatial aspect. In order to apply this parameter to this study the definition of peak 

intensity has been modified. Equation 3.15 has been used to calculate the monthly Average 

Intensity (AI) of drought events by averaging the SPI data across all grid cells affected per 

month. The Peak Intensity (PI) is then defined as the minimum monthly AI recorded during 

the drought event. 

 

                                                                    Eq. 3.15 

  

The drought parameters calculated using the above methodology and equations 3.13-3.15 

were recorded in country tables for both SPI-6 and SPI-12 time-periods. Results tables are 

presented in appendix C tables C2, C4, C6, C8, C10, C12 and C14. Blank rows signify that a 

drought event was not detectable using SPI-6 and/or SPI-12, and therefore the drought 

event could not be quantified. Drought events were modelled and quantified even when 

impact data on economic damages, lives lost, or lives affected were not available in EM-

DAT. These drought events cannot be included when establishing links between drought 

parameters and reported impact data, however it does allow a more thorough test of the 

methodology as additional drought parameter data is available for analysis. 

 

Drought impact tables were also compiled for each country assessed reporting individual 

drought data from EM-DAT on the drought location, drought year/s, the number of lives lost, 

the number of lives affected and economic damages, presented in appendix C tables C1, 

C3, C5, C7, C9, C11 and C13. In addition, for each drought event analysed an internet 

search was conducted with any additional information on drought characteristics, effects, or 

specific sectors affected recorded. Data sources were based on those used by EM-DAT 

(2007) as well as from published journal articles and government reports. Missing values in 

the table signify that no data was available from EM-DAT on the economic and/or social 

effects of droughts. Economic damages were reported by EM-DAT in current US$ for the 

year in which the drought occurred. For multiple year droughts the start year of the event 

provided by EM-DAT was assumed to be the year in which US$ were reported. In order to 

account for changing wealth and to enable the comparison of drought events over time the 

reported damages were inflation adjusted to 2002 US dollars based on GDP data from The 
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World Bank (2010)10. Similarly, the number of lives affected and the number of lives lost due 

to drought events are normalised to account for changing populations over time. The method 

proposed by Pielke and Landsea (1998) is used, whereby population is adjusted by 

multiplying by the ratio of current population to the population in the year of the event. Time-

series data for each country’s population was taken from The World Bank (2010). 

 

This type of loss normalisation is widely used in the analysis of natural disasters. Various 

methods exist for loss normalisation, yet, there is no standardised method used consistently 

across studies (Höppe and Pielke, 2006). Adjusting for inflation based on a countries 

changing GDP is a relatively simple way to account for changing economic conditions. 

However, it does not account for changes in socio-economic conditions. Population trends, 

wealth, and the quantity and value of assets at risk can also account for changes in 

economic losses. Crompton and McAneney (2008) and Muir-Wood et al., (2006) have 

argued that a defensible normalisation procedure must also account for changes in 

population and wealth, not just inflation. For example, Pielke et al. (2008) adjust for wealth, 

inflation, and population when assessing hurricane losses in the USA. Wealth is 

incorporated by using the ratio of past fixed assets and consumer durable goods to the 

current ratio, adjusted for population and inflation. Other studies adjust for the change in the 

number and/or value of residential properties exposed to risk (Crompton and McAneney, 

2008); or changes in regional capital stock (Schmidt et al., 2009, 2010). As this methodology 

was devised to be applicable across a range of different regions and countries, for the period 

1940-2002, it was decided to use inflation only to normalise losses, as detailed consistent 

economic time-series data needed to normalise losses based on wealth was not readily 

available for all the countries studied. 

 

3.3 Results 

Using regional, gridded, SPI data enabled 61 (76%) of the drought events reported in EM-

DAT to be identified and quantified using the above methodology11. This is a considerable 

improvement when compared to results of a feasibility study conducted by the author using 

average country precipitation data, where only 26 (32.5%) of the drought events were 

visible. This suggests that the EM-DAT drought data is able to guide an analysis of historical 

drought events at a regional scale. Table 3.3 compares the results of this study to those of 

the previously conducted feasibility study. Results for Ethiopia, Portugal, and Spain are 

                                                
10

 All economic data are presented in US$ (2002) for consistency unless specified otherwise. 

11
 Note that not all historical drought events showed up at both SPI-6 and SPI-12 time periods. 
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similar using both precipitation datasets, suggesting that drought events are more likely to 

affect large swathes of these countries. 

 

Country 

Number of 
drought events 
reported in EM-
DAT 1940-2002 

Total number of 
droughts 

reported in EM-
DAT visible in 
country data 

Total number of 
droughts 

reported in EM-
DAT visible in 
regional data 

Australia 9 2 (22%) 8 (89%) 

Brazil 13 3(23%) 10 (77%) 

China P Rep 22 0 (0%) 14 (64%) 

Ethiopia 8 5 (63.5%) 5 (63.5%) 

India 12 5 (42%) 10 (83%) 

Portugal 2 1 (50%) 1 (50%) 

Spain 4 4(100%) 4(100%) 

United States 10 6 (60%) 9 (90%) 

TOTAL 80 26 (32.5%) 61 (76%) 

Table 3.3: The number of historical drought events reported in EM-DAT detectable in 

regional precipitation data and national precipitation data 

 

 

Of the 61 drought events quantified by this study 56% had data on economic damages, 52% 

had data on the numbers of lives affected, and 26% had data on the numbers of lives lost. 

Of the 19 drought events in the EM-DAT database that could not be quantified using the 

above methodology, seven were affected by the use of the pre-defined SPI time periods. For 

example, where a drought was extremely short and severe and only showed up using a 

smaller SPI time period (e.g. SPI-3), or where multiple year droughts were identified using 

SPI-6 and SPI-12 suggesting a longer SPI time-period would be required to quantify the 

drought as a single event.  The remaining 12 droughts could not be quantified as: 

  

 the droughts did not show up clearly in the precipitation data, especially where no 

data was available in EM-DAT or in the wider literature regarding the specific regions 

affected (5 events) 

 the droughts showed up in preceding or following years to those reported by EM-DAT 

and additional literature could not be found to validate the drought dates (2 events) 

 modelled drought events had not terminated by the end of the precipitation data in 

December 2002 and so could not be fully quantified (5 events) 

 

In addition, drought events were visible in the SPI time-series data which were not reported 

in EM-DAT. The limitations in using the EM-DAT database, discussed in section 3.1.4, 
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provide possible explanations for why not all historical drought events are included in the 

EM-DAT database. For example, a severe drought was identified in 1956-57 in north-west 

China, but was not reported in EM-DAT. A recent study by Xiao et al., (2009) also identifies 

severe drought in north-west China in 1956-58. An explanation for its exclusion may be the 

limited reporting of drought impacts in China to the wider international community prior to the 

1980s (Schmidt et al., 2009). Hirabayashi et al., (2008) used the EM-DAT database to 

validate historic flood events simulated with a GCM and found similar issues. Flood events 

obtained statistically from the daily discharge dataset were not always included in EM-DAT, 

especially for regions with low populations or for regions where damage due to disasters is 

not well reported. However, the authors noted that most severe flood events in the daily 

discharge data were captured by the database. 

 

In order to create country specific drought damage functions relationships between the 

drought parameters calculated and the event impact data were assessed using scatter plots 

of economic damages versus drought parameters (duration, intensity, and magnitude). For 

all countries, the most robust trends were seen when TDM12 was plotted against the 

economic data. Drought magnitude is also a particularly useful drought parameter to use as 

it combines the intensity, duration and spatial extent of drought into one single indicator, 

encompassing multiple features of each drought event. Magnitude is therefore used as the 

main drought variable in creating the country specific drought damage functions. Results for 

the economic drought damage functions are presented in figure 3.3 for both SPI-6 and SPI-

12 time-periods. Best-fit trend lines represent the most statistically significant fit to the data, 

determined by the coefficient of determination (R2). Due to the limited number of drought 

events reported for Spain and Portugal it was decided to amalgamate the data as it was 

deemed that the climate characteristics of the countries were sufficiently similar. This also 

allows the high-risk area of the Mediterranean basin to be included in the analysis. It was not 

possible to create a drought damage function for Ethiopia as no economic loss data was 

available in EM-DAT. The corresponding results tables for all countries analysed are 

provided in Appendix C, tables C1-C14. 

 

                                                
12

 From this point onwards, TDM is referred to simply as drought magnitude for succinctness. 
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Figure 3.3a-f: Country specific drought damage functions: The relationship between drought 

magnitude and direct economic damage (US$ 2002) 

 

 

For Australia (figure 3.3a) the trend line suggests that economic damages increase as 

drought magnitude increases. The fit of the cubic trend line to the data, as determined by the 

R2 values, suggests that the magnitude can account for 70-80% of the variance seen in the 

economic damages using SPI-12 and SPI-6 respectively. It is also important to highlight that 

Australia has suffered from more recent severe drought events. For example, below average 

rainfall and drought conditions have been reported since 2002 in the Murray-Darling Basin 

(Australian BoM, 2009). Whilst EM-DAT does include entries for drought events in 2002 and 

2006, the observed precipitation data is only available until 2002 and so these drought 

events and their consequences are not included in this analysis. 
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The trend seen for Brazil is extremely weak (figure 3.3b), and would suggest that economic 

damages in fact decline as drought magnitude increases. Again, this trend is heavily 

influenced by a single drought event. The drought of 1983 resulted in the highest drought 

magnitude (in line with reports that 1983 was the most severe drought year in Brazil), 

however it had very low damage costs. The reported costs of drought events in Brazil are 

strongly related to the location where they occur. For example, droughts in south and central 

Brazil affected coffee crops, a main export for Brazil, which resulted in high economic costs. 

Droughts in the arid northeast had lower damages as this is a poorer region dominated by 

subsistence farming. Plotting data points by specific regions highlighted much clearer trends 

for the northeast (SPI-6 R2 = 0.9819 and SPI-12 R2 = 0.9717). This suggests that for Brazil 

regional damage functions may be more appropriate however sufficient data to do this in a 

robust manner was not available. 

 

For China (figure 3.3c) data was only used post-1980 as there is concern over the reliability 

of data before this time (Höppe and Pielke, 2006). As noted by Schmidt et al (2009) data on 

event losses in China have increased significantly since the country opened up to the 

outside world in the 1980s. This caveat resulted in the exclusion of the drought event in 1965 

that caused damages of $565 million. The inclusion of the 1965 drought affects the trend 

heavily as it has the largest drought magnitude but relatively small economic damages 

compared to later events. This may reflect the fact that prior to China opening up to the 

international community in the early 1980s the country may have underestimated damages 

to reduce international intervention (ibid.). Alternatively, the drought may have affected a 

region with relatively little economic activity, or it may represent an inaccurate estimation of 

the economic data. 

 

For China, India, Spain/Portugal and the USA (figures 3.3c-f) the fit of the trend lines to the 

data is extremely good, suggesting that drought magnitude can largely account for the 

variance seen in the economic damages. One reason may be that damages are considered 

primarily agricultural and so economic costs are expected to correlate closely to drought 

magnitude. The above results are extremely promising in the context of developing drought 

damage functions, with the exception of Brazil. However, it is also important to note that 

especially in the cases of China, India and Spain/Portugal the number of data points on 

which the trends are fitted are extremely limited. Issues of sampling uncertainty, and the 

subsequent limitations of the damage functions, are discussed in more detail in section 3.4 

below. 
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In the same technique as above relationships between drought parameters and the numbers 

of lives affected and lives lost were assessed using scatter plots, to ascertain whether social 

drought damage functions could be created. Again, drought magnitude was shown to 

provide the most robust trends. Figure 3.4a-d presents results for Brazil, China, Ethiopia and 

India for the number of lives affected using SPI-6 and SPI-12. It was not possible to create 

graphs for Australia, Spain/Portugal, or the USA, as there was insufficient impact data. 

 

 

Figure 3.4a-d: Country specific drought-damage functions: The relationship between drought 

magnitude and the number of lives affected 

 

 

For Brazil and Ethiopia the graphs show an increase in the number of lives affected as 

drought magnitude increases, with relatively good R2 values reported. This would suggest 

that drought magnitude plays an important part in determining the numbers of lives affected. 

However, the numbers of drought events on which to base a trend were limited. In contrast, 

much more data was available for China and India, although the scatter plots show much 

more variability and limited significance. In the case of Brazil, it is interesting to note that the 

severe northeast drought in 1983 did not cause large economic costs (previously discussed) 

but did affect a very large number of lives. 
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Figure 3.5 presents graphs for drought magnitude versus the numbers of lives lost in 

Ethiopia, India, and the USA at SPI-6 and SPI-12. It was not possible to create drought-

damage functions for Australia, Brazil, China or Spain/Portugal due to limited impact data.  

 

 

Figure 3.5a-c: Country specific drought-damage functions: The relationship between drought 

magnitude and the number of lives lost 

 

 

Results for Ethiopia, India and the USA all highlight an increase in the numbers of lives lost 

as drought magnitude increases. However, for Ethiopia and India there are limited data 

points on which to base this trend. In both cases, large differences are seen in the results 

plotted using SPI-6 and SPI-12 data with a more robust trend seen using SPI-12. For the 

USA the fit of the trend lines to the data is very good and suggests that the drought 

magnitude can account for 79-87% of the variance seen in the numbers of lives lost for SPI-

12 and SPI-6 respectively. However, it is important to emphasise that data on historical 

drought related deaths, especially in the USA, is likely to reflect compounding effects such 

as deaths due to heat stress during heatwaves, effects of heat and dust storms on air quality 

and implications for ill health, and wildfires. Indeed, the literature review highlights that these 

are the primary drivers for most deaths in the USA (see Appendix table C.13). As such, the 

statistics used for lives lost in the USA may more accurately reflect drought and heat related 
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death rates, including direct and indirect drought effects, and the consequences of various 

social and environmental conditions. 

 

3.4 Discussion 

The EM-DAT database was used to determine the particular regions and dates on which to 

focus when analysing the SPI data. This method has been successful for identifying 76% of 

the drought events reported in EM-DAT for Australia, Brazil, China, Ethiopia, India, Portugal, 

Spain, and the USA. As would be expected, table 3.3 indicates that the use of regional, 

gridded precipitation data for the analysis of historical drought events is more appropriate 

than using country precipitation data. The consistency between drought events reported in 

EM-DAT and the SPI time series data validates the accuracy of the methodology for 

modelling and defining historical drought events. Based on the historical impact data and 

drought parameters calculated by this study drought damage functions were created for the 

countries of interest. To the best of the author’s knowledge these are the only country 

specific drought damage functions available. 

 

The economic drought damage functions created are very promising and, with the exception 

of Brazil, show very good correlation between the magnitude of historic drought events and 

economic damages. The results also suggest that the methodology employed to identify, 

and quantify historic drought events has been successful. The social drought damage 

functions showed less consistency across the various countries. The correlation between 

drought magnitude and the number of lives affected was respectable for Brazil and Ethiopia. 

Results for China and India, which were based on a greater number of data points, showed 

little correlation. When assessing the number of lives lost there was large variability in the 

results seen for Ethiopia and India depending on the SPI time period used. These findings 

suggest that other external factors have a large influence on the numbers of lives affected 

and lost during drought. For example, the underlying social conditions such as levels of 

poverty and malnutrition, and water scarcity issues. The trend for the USA was more robust 

with the R2 suggesting that drought magnitude could account for 80-86% of the variance 

seen in lives lost. However, it is important to note that a major limitation of the drought 

damage functions presented is the small number of data points on which the trends are 

based. Therefore, there is the possibility that the trends in the data identified are due to 

sampling uncertainty. Similarly, the shape of the damage functions, which are based on the 

trend line which fits the data with the highest R2 value, will reflect this uncertainty. 
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However, the drought damage functions were not expected to show perfect correlation 

between the economic and social impact data and the drought magnitude. As well as 

drought events varying between different regions and being dependent on the particular 

characteristics of that region, economic and social effects may also differ over time due to 

changes in the economic structure, and due to societal interactions. For instance due to 

increased water use, or interferences in the hydrological system such as building dams or 

reservoirs. Indeed, a drought event of similar magnitude which occurs at the same place but 

at different times may have different effects due to changes in societal characteristics and 

infrastructure (Wilhite, 2005, Wilhite et al., 2007). This may in part explain why there is less 

consistency in the trends for lives affected in China and India, and lives lost in Ethiopia and 

India as circumstances may have changed over the period of this study. Additionally, the 

study does not consider external social influences on the propagation of drought such as 

increased water extraction and consumption, changes in land-use, engineering works or 

changing water management strategies. Conversely, socio-economic interventions can also 

reduce the effects of drought. As discussed in section 1.2 trends in drought related economic 

losses, lives lost and lives affected may have been influenced directly over time by better 

seasonal forecasting and warning systems, changing agricultural practices, and government 

interactions such as financial assistance to ease drought effects. For example, the drought in 

Northern Brazil linked to the 1997-1998 El Niño event had significantly smaller economic 

damages than that of two similar sized magnitude events reported in 1988 and 1994, and 

less lives were affected than reported for a similar sized magnitude event in 1970. Whilst this 

could be due to the specific location, economic activities, and social conditions of the region 

affected, this may also be linked to the successful forecasting of the El Niño event and its 

likely effects, and dissemination of this information to enhance preparedness (Buizer et al., 

2000). These issues may also explain why more drought events appear in the precipitation 

record than in EM-DAT database, as the effects of less severe drought events may have 

been adequately mitigated in the past, and so not met the EM-DAT criteria. 

 

The availability of data was a major obstacle in creating the drought damage functions. 

Damage functions were created based on historical drought events for which there was 

reported EM-DAT data only. Only 56% of the drought events quantified by this study had 

data on economic damages. Similarly, only 52% of the droughts assessed had data on the 

numbers of lives affected, and only 26% of the droughts assessed had data on the numbers 

of lives lost. Some drought events were also visible in the precipitation record but not in the 

EM-DAT database due to limitations discussed in section 3.1.4 and as mentioned above. 

Whilst the results suggest that the most severe drought events do show up, a finding 

consistent with Hirabayashi et al., (2008), it is important to reiterate the possible effects that 
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the inclusion of such missing events would have on the drought damage functions, and any 

subsequent estimates made using them. Potentially, the addition of one or two extra events 

could alter the shape and scale of the country specific damage functions, and any 

subsequent estimates of socio-economic effects. 

 
In interpreting the above economic and social drought damage functions it is also important 

to reiterate that results will depend directly on the quality and quantity of the underlying event 

data. EM-DAT provides the only publicly available, global drought database and data are 

therefore taken as valid. All entries added to the EM-DAT database follow a pre-defined 

entry procedure and are subject to subsequent validation. However, Höppe and Pielke 

(2006) note that the quantity and quality of disaster loss data is of particular concern for 

China before the 1980s and prior to the 1970s for Australia, Europe, India, the USA and 

Central America. Data also improves in quality over time as prior to 1980 many smaller 

events may not have been included and only large scale events recorded, giving an 

unbalanced view of the effects of drought. Furthermore there is now more data available on 

direct and indirect losses which may result in recent damage estimates being higher than 

those reported in the past (Muir-Wood et al., 2006). As such, the data from EM-DAT, which 

underlies the damage functions, may be biased by changing reporting practices over time. 

 

However, as drought events occur less frequently than other weather extremes such as 

flood events, it was decided to focus on the period of data in EM-DAT from 1940-2002 so as 

not to restrict the amount of drought data further. However, only one drought event included 

in this analysis occurred prior to 1960, and of the drought events used in the economic 

drought damage functions only two events occurred before the 1970s. As such, it is hoped 

that the above issues will be minimal in this analysis. Additionally, due to concerns over the 

accuracy of impact data reported for China data was only used from the 1980s onwards in 

this case. Unfortunately, there was no economic impact data available for Ethiopia and 

consequently no part of Africa is represented by an economic drought damage function 

(although social damage functions were created). One solution may be to amalgamate 

economic data across multiple countries in Africa, which have similar climate characteristics 

and economies. However, even this may be difficult as for numerous countries in Africa no 

economic data is available. 

 

Other important caveats also exist when interpreting the above drought damage functions. 

Firstly, the drought parameters calculated using the SPI represent meteorological drought 

caused by precipitation deficits from the monthly mean. The results are therefore heavily 

dependent on the quality of the gridded precipitation data, which has been interpolated from 
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observed station data. Section 3.1.3 highlighted that for the USA SPI values computed using 

gridded data correlated almost exactly to those computed using station data. However, the 

approach will be less effective for regions where observational stations are limited. 

Secondly, the drought damage functions assume that social and economic losses will be 

dependent on drought magnitude only. However, the economic and social effects of drought 

will be dependent upon a range of specific factors, which can vary regionally and nationally. 

For example, a regions economic activity, the total value of output produced by a region, the 

geographical features of the region affected, and any external underlying stresses or 

vulnerabilities (e.g. water supply issues, food shortages, or high incidence of disease). 

Evidence of this was seen for Brazil as the drought damage functions highlighted regional 

differences in drought effects on society and the economy between the northeast and south 

of the country. This suggests real potential for more detailed or weighted drought damage 

functions to be created in the future for various country regions, which could capture better 

such vulnerabilities that are overlooked by the country-level damage functions. The use of 

regional economic and social time series data when carrying out the loss normalisation 

process may also improve the accuracy of results. Thirdly, the use of only two SPI time-

periods may have consequences for the accuracy and robustness of the damage functions. 

In this study, SPI-6 and SPI-12 time-periods were used but SPI-12 may be too short to 

interpret accurately multi-year drought events which were reported, and which may instead 

show up as multiple shorter duration events. Thus, the analysis of long-term droughts may 

result in smaller drought magnitudes than if a longer SPI time-period had been used. This 

uncertainty could be reduced by using a wider range of time-periods e.g. extending the 

analysis to incorporate SPI-18 or SPI-24. As reported in section 3.3 seven drought events in 

this analysis could not be incorporated due to the use of the pre-defined SPI time periods. 

 

The above limitations will ultimately affect the robustness of any estimates of social and 

economic losses made through the application of the drought damage functions to future 

drought events. Nevertheless, the R2 values reported for economic damages were still 

extremely promising and do highlight the proportion of damages which could be explained by 

drought magnitude only. The fit appears more robust for developed countries compared to 

developing countries, possibly due to the improved stability of the economies and society, 

and better reporting of drought events. Based on the number of drought events in EM-DAT 

with related impact data, and which could be identified and quantified, the damage functions 

show great potential both for this study, and for future development. Furthermore, the 

coverage of social effects does help to highlight some very interesting regional trends. For 

example, in Brazil severe drought events in the northeast affect a large number of people but 

only cause moderate economic damages. On the other hand, less severe drought events in 
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the south affect much fewer people yet cause large economic damages. This information 

highlights the different vulnerabilities of regions to drought and the particular consequences 

they may face, and could help inform decisions on the priority of adaptive measures. It also 

supports the argument for using both economic and social metrics within this study, as 

economic metrics alone may not always be representative of the full effects of a drought 

event. 

 

A second advantage of the methodology employed is that the shape of the damage function 

can be derived directly from the drought magnitude and the reported impact data, rather than 

reflecting the expert opinion of the author (as discussed in section 2.3.1). This is important 

as Hallegatte et al., (2007b) notes that economic losses from large-scale extreme weather 

events do not tend to increase regularly with the intensity of an event. For example, many 

scientists believe that in the case of hurricanes the relationship between intensity and 

economic damages is at least cubed (Webster et al., 2008). Similarly, a nonlinear 

relationship has been reported between temperature and corn, soybeans, and cotton yields 

in the USA with damages increasing dramatically once a certain threshold has been reached 

(Schlenker and Roberts, 2009). Interestingly, the trends drawn between crop yields and 

increasing temperatures show a similar pattern to the economic drought damage function 

created for the USA by this study. This not only supports the finding but also the above 

argument that the economic damages are primarily related to agriculture, and hence, good 

correlation is seen between the magnitude of drought events and the economic damages 

reported. Consequently, the country specific damage functions not only give some indication 

as to the vulnerability of particular countries to drought, but could also be used to also 

highlight potential drought thresholds that should be avoided.  

 

As well as the potential for highlighting drought thresholds above which risks may rise 

substantially, the above analysis could also form a basis for more conceptually based 

damage functions. Such damage functions could expand on some of the current limitations 

noted above in terms of the exclusion of many important socio-economic variables. For 

example, one could postulate a general drought damage function, based on the above, but 

also by strategically ranking the effects of various components on drought related losses 

based on an extended literature review and expert opinion. For example, a regions main 

economic activity (e.g. the importance of agriculture or water related sectors); the value of 

related economic output; specific geographical features; the level of vulnerability to drought; 

socio-economic conditions; the level and type of infrastructure; the level of drought 

intervention e.g. physical interventions, drought management or forecasting activities; the 

likelihood of successive or cumulative drought events occurring; the likelihood of 
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compounding weather extremes occurring; and the possibility of surpassing theoretical 

thresholds. The date and time-scale of historical drought events could also be considered 

and compared to economic growth in the affected regions to derive and incorporate 

information on drought effects on a regions economic growth, and how this may change over 

time. One could also assign a weight or ranking to each of the above components based on 

the uncertainty and sensitivity of drought related effects to each of the components. 

 

3.5 Summary 

This chapter presents a methodological approach for quantifying historical drought events 

reported in a drought database in order to create economic and social drought damage 

functions. The approach is novel in both its methods and application. Alternative approaches 

for analysing drought events using the SPI have tended to be on a much smaller, case-

specific basis. To the authors knowledge no other study has systematically assessed and 

quantified drought events in this manner at a regional and national level, and across multiple 

countries, and subsequently linked the drought parameters to drought impact data. The 

damage functions for economic analysis are well represented using drought magnitude as 

the main parameter. The application of the methodology to non-market effects, an area 

commonly ignored in assessments of extreme weather events has also been demonstrated. 

In addition, the methodology addresses many of the common limitations of climate damage 

functions as discussed in sections 2.3.1 and 2.4.2. Namely: 

 

 The method avoids issues of unknown shape and scale parameters as the shape 

and scale of the damage functions are a function of the data and are not assumed by 

the author. 

 The damage functions are calibrated to historical climate data, historical event data 

and historical impact data. 

 The damage functions can be applied to market and non-market effects. 

 The damage functions are not overly simple in that they are not based on single 

estimates from literature or on author opinion. 

 The damage functions are country and region specific but can also be aggregated to 

give total costs (although aggregation between market and non-market effects is not 

possible as non-market effects are not monetised here). 

 As the damage-functions are based on actual historical event and climate data it is 

possible to highlight areas where drought magnitude is/is not severe but the 

economic and social effects appear disproportionally low/high, and consequently 

make assumptions regarding the particular vulnerabilities of regions. 
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These advances are very promising and the damage functions provide a tool in which to 

estimate economic and social effects of future drought events. In order to do this the 

following chapter sets out to identify and quantify drought events and their magnitude in the 

first half of the 21st century, under various climate change scenarios. 
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4. Projections of Drought under Future Climate Change 

Climate change is expected to affect the frequency and intensity of drought events in the 

future, potentially increasing the social and economic effects felt (IPCC, 2007b). The 

previous section linked the drought magnitude of historical events to reported data on the 

economic and social effects to create drought damage functions. Therefore, a first step in 

estimating the future economic damages of drought events is to make projections of future 

drought events under climate change and quantify the magnitude of events. Section 4.1 

describes the modelling tools used to project future climate change, and consequences for 

precipitation, and changing drought patterns. The section also describes the different 

emission scenarios and climate models utilised. Section 4.2 describes the methodological 

approach devised for identifying future drought events and quantifying the magnitude to 

allow a comparison against past observations. Results, a discussion of main findings, and a 

summary of the chapter are presented in sections 4.3, 4.4 and 4.5. 

 

4.1 The Community Integrated Assessment System (CIAS)  

In order to assess how climate change could affect the global precipitation regime and 

subsequently the magnitude of drought events the IAM CIAS is used. CIAS is a third 

generation IAM designed to assess policy options, avoided damages and uncertainties 

associated with climate change (Warren et al., 2008). The main distinction between a third 

generation IAM and a second generation IAM is the way in that the model is implemented. A 

second generation IAM is typically modelled as a monolithic whole, incorporating various 

modules that are constrained by the model in which they function. A third generation IAM 

has a conceptual modular structure in which existing modules can be coupled. Modules can 

be changed or switched to allow multiple couplings to be run in order to address 

uncertainties (Hulme, 2001). Figure 4.1 shows a schematic of the CIAS model components 

used in this study13. 

 

                                                
13

 CIAS also incorporates a global impacts module for biome shifts and a hydrological module. For 

more details see Warren et al., (2008). 
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Figure 4.1: Schematic of the model components of CIAS used in this study 

 

 

CIAS can either be driven by stabilisation scenarios provided by an economy component 

which emulates the econometric model E3MG (Energy-Environment-Economy Global 

Model), or by exogenous emission scenarios. E3MG is a macro-scale dynamic simulation 

model developed by teams at Cambridge Econometrics and the University of Cambridge as 

a contribution to the work of the Tyndall Centre for Climate Change Research (Barker et al., 

2006b). It is an estimated model of demand-led growth encompassing both long-term 

behaviour and year-to-year fluctuations. This means it can be used for dynamic policy 

simulation and for forecasting and projecting over the medium and long term. As noted by 

Kemfert (2002) economic modelling approaches in IAMs tend to follow one of two patterns in 

that models either run over long time periods but are highly aggregated so do not cover 

sectoral effects, or they are disaggregated but limited in their time-frames. E3MG is able to 

model the long-term changes to 2100 required for a comprehensive study of the impacts of 

climate change but it is also highly disaggregated covering 20 regions and 42 sectors. E3MG 

is also novel in that it does not necessarily assume equilibrium between supply and demand 

in all markets as most traditional economic models do (discussed in section 2.2.2). Within 

CIAS E3MG provides stabilisation scenarios, which explicitly assume climate change 

mitigation, for 550, 500 and 450ppm CO2  by 2100 (Barker et al., 2006a). E3MG outputs 

global emissions of CO2 on a five yearly basis from 2000 to 2100 which are stored in the 

emission scenario database. 

 

The emissions scenario database in CIAS also includes an alternative set of exogenous 

emission scenarios. These scenarios are representations of the standard IPCC Special 

Report on Emission Scenarios (SRES) interpreted and modelled using different IAMs14. The 

                                                
14

 The data is available at: http://sres.ciesin.org/final_data.html  
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IPCC SRES scenarios provide a range of storylines about how future GHG emissions might 

unfold with changing populations, socio-economic development, and technological change, 

to assist in climate change analysis (Nakicenovic and Swart, 2000). The SRES scenarios 

assume no climate change mitigation. Figure 4.2 shows the projected range of CO2 

concentrations from 1990-2100 relative to 1990 for the six SRES scenarios and for the 

E3MG 450ppm stabilisation scenario. 

 

 

Figure 4.2: Projected CO2 concentrations using the SRES scenarios for 1990-2100 relative 

to 1990. The purple line illustrates the projected CO2 concentrations resulting from the E3MG 

450ppm stabilisation scenario. Source: Modified from IPCC (2001, p.14). 

 

 

The emission scenario database in CIAS provides a link between the stabilisation and 

emission scenario data and the simple climate model (SCM) MAGICC (Model for the 

Assessment of Greenhouse-gas Induced Climate Change). MAGICC is a well-known and 

widely used climate model consisting of a set of linked reduced form models (gas-cycle, 

radiative forcing, climate, and ice-melt). MAGICC has been tuned to emulate seven 

Atmosphere-Ocean General Circulation Models (AOGCMs) used within the IPCC Third 

Assessment Report (TAR) so that the user can force the model to emulate the behaviour of 

any of these (Warren et al., 2008). MAGICC also includes climate feedbacks on the carbon 

cycle and natural climate emissions. The model produces changes in global mean surface 

temperature, and sea level between 2000 and 2100 resulting from anthropogenic 

greenhouse gases.  

 

In order to assess regional patterns of climate change CIAS incorporates the statistical 

downscaling model ClimGen (Climate Generator) developed by Tim Mitchell and Tim 

E3MG 
450ppm 
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Osborn at the University of East Anglia. ClimGen provides monthly climate variations for 

eight climate variables, including precipitation, at a 0.5° x 0.5° resolution for the entire 

terrestrial land surface (excluding Antarctica) for observed climate (1901-2002 based on the 

0.5° x 0.5° resolution dataset of Mitchell and Jones (2005)) and for future climate (2001-

2100). The model outputs can be annual, seasonal, or monthly. ClimGen uses the simple 

statistical method of ‘pattern scaling’ to generate the spatial climate change information for a 

given change in global mean temperature, based on output from MAGICC. Pattern scaling 

involves normalising GCM response patterns, at the resolution of the GCM, according to the 

global mean temperature change of the respective GCM to give the change in temperature 

per degree of global warming. These patterns can then be rescaled using a scalar derived 

from a SCM (e.g. MAGICC) to represent the particular emission scenario under 

consideration (IPCC, 2007b). Pattern scaling is based on the assumptions that the spatial 

pattern of change remains constant over time, that climate responses will be the same for all 

greenhouse gases, and critically that there is a linear relationship between annual global 

mean temperature and local climate change (Goodess et al., 2003a). With regards to 

precipitation Mitchell (2003) finds that although slight non-linearity’s arise estimates of future 

change in precipitation patterns made using pattern scaling accurately represent the 

modelled changes well. Similarly, Cabré et al., (2010) found that for southern South America  

for the 2020s and 2050s the spatial patterns of precipitation change obtained via the scaling 

technique were reasonable. Although, when comparing scaled and simulated patterns of 

change under the B2 scenario for the end of the 21st century results for southern Brazil in 

DJF were of opposite signs. The errors of estimating precipitation changes were considered 

comparable to those inherent to the regional model and to the projected changes 

themselves. Thus, the uncertainties introduced by the scaling technique can be large for 

precipitation, especially for certain regions, and these uncertainties must be considered 

when interpreting the results. 

 

ClimGen uses simulations from five GCMs (HadCM3, CSIRO2, ECHAM4, PCM2 and 

CGCM2), each run with up to four SRES scenarios. The different patterns generated allow 

the range of uncertainty related to the use of different GCMs and emission scenarios to be 

investigated. This is beneficial as due to the complexity and computational costs of running 

GCMs most GCMs only consider a few emission scenarios. In contrast, SCMs demand 

fewer computational resources but are not are able to provide spatial patterns of climate 

change. Thus, the ‘pattern scaling’ approach allows the computational simplicity of SCMs 

and the spatial patterns of GCMs to be combined (Mitchell, 2003). 
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At this stage, the climate change data is still at the coarse resolution of the original GCM. 

ClimGen interpolates the grid data of the GCM using distance-weighted averaging and 

combines the climate change pattern from the GCM with the observed climate data of 

Mitchell and Jones (2005) to simulate absolute climate change at a spatial resolution of 0.5° 

x 0.5°. In addition, the observed deviations in the monthly mean climate are combined to 

represent inter-annual variability in the future time-series, assuming that the magnitude of 

inter-annual variability will not change in the future (Osborn and Mitchell, 2005). The pattern 

of mean climate change is simply added to the observed data however, ClimGen includes 

additional options for downscaling precipitation. The ‘ratio-method’ expresses the 

precipitation changes seen in the GCM pattern as a fractional change from present day 

precipitation rather than an absolute change. The fractional change in precipitation 

generated from the pattern-scaled GCM is combined with the observed precipitation data 

and the observed deviations in the precipitation data by multiplication. This method assumes 

that the ratio of precipitation change is more important than the absolute change and that the 

inter-annual variability will increase in magnitude by the same ratio (ibid.). A third option, the 

‘gamma-method’ (described by Goodess et al., 2003b), models changes in mean 

precipitation in the same way as the ratio-method but considers inter-annual variability 

independently of the mean precipitation changes. This is particularly important for 

addressing extreme weather events, which will be affected by a change in the variance of 

the distribution. The method uses the gamma shape parameter, which provides a measure 

of the skewness of the distribution, to change the precipitation distribution as well as 

changing the mean. In ClimGen the observed inter-annual variability is modified according to 

changes in the shape parameter of the gamma distribution derived from the selected GCM 

simulation (Warren et al., In review). The gamma method is used in this study to downscale 

precipitation patterns to 0.5° x 0.5°. 

 

4.1.1 Timeframe of projections 

CIAS is able to provide projections of monthly precipitation, at a 0.5° x0.5° resolution for the 

period 2001-2100. In this study it was decided to focus on the first half of the 21st century 

(2003 to 2050) which will be compared to observed data from 1955-2002. Although short-

term projections (e.g. to 2015) may provide information on a timescale useful for policy 

makers there may be very little change in the frequency of drought events in such a short 

space of time limiting the usefulness of this assessment. It would be expected that more 

drought events would show up in medium-term projections due to stronger climate forcing 

and give a better indication of potential effects that may occur under future climate change. 

However, it is also important to bear in mind that in the medium-term there may also be 
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changes in the socio-economic structures of the eight countries considered here. In the 

second half of the 21st century greater changes in the frequency and intensity of drought 

events would be expected, however, it was felt that the socio-economic conditions of 

countries would be significantly different by 2100 making the application of the drought-

damage functions less robust. By focusing this study on the first half of the 21st century it is 

hoped that the damage estimates will remain robust, issues related to changing socio-

economic situations will be minimised, and the outputs generated will still be of value to 

policy makers. 

 

4.1.2 Emission and stabilisation scenarios 

As mentioned previously in making projections of future climate change there are many 

sources of uncertainty. Given the sheer number and variety of future global scenarios of 

climate change it is impossible to predict with any certainty which scenario is most likely. In 

order to address this uncertainty a variety of scenarios can be used so that a range of 

outcomes and results can be provided. Two different emission scenarios are used in this 

study. Firstly, the A1FI emission scenario is used from the IPCC SRES emission database. 

The A1FI scenario is part of the A1 group of emission scenarios, which have the highest 

rates of technological change and assume rapid economic growth. The A1FI scenario 

assumes a fossil intensive future resulting in 573ppm CO2 by 2050 and 976ppm CO2 in 

2100. The population projection follows the lowest trajectory, increasing to 8.7 billion people 

by 2050 and declining towards 7 billion people by 2100. Additionally, the E3MG emulator 

450ppm CO2 stabilisation scenario is used as it explicitly assumes mitigation and provides a 

lower stabilisation target than covered by the IPCC scenarios. The scenario projects that 

CO2 emissions will stabilise around 2050 at ~455ppm, declining to ~450ppm CO2 by 2100. 

The population scenario is based on the long-term medium range UN projections from 2030 

onwards, with global population reaching 8.7 billion people by 2050 and 9.1 billion people by 

2100. These emission scenarios were selected as they encompass the full range of the 

IPCC scenarios, and represent different populations, economic output, land use, and 

technology and energy use. The decision to use just two scenarios was due to the focus of 

the study on the first half of the 21st century as projections of CO2 concentrations, and 

subsequently global temperatures, are relatively comparable up to 2030 for all scenarios, 

with only slight divergence by 2050 (highlighted in figure 4.2). 
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4.1.3 Climate models 

CIAS also enables different climate models and their underlying assumptions to be 

assessed. This is important as different GCMs can project diverse patterns of future climate 

variables, often showing opposite signs of change (IPCC, 2007b).  Particularly for the early 

21st century inter-model variability tends to be greater than inter-scenario variability 

(Goodess et al., 2003b). Blenkinsop and Fowler (2007) attribute this divergence and 

uncertainty in GCM performance to the parameterization of small-scale physical processes 

as well as uncertainties in the structures used to represent large-scale climate processes. 

Therefore, any one single model projection provides just one of many possible future 

scenarios. Whilst Blenkinsop and Fowler (ibid.) note the importance of using multiple GCMs 

to provide probabilistic projections of future climate change this has generally been applied 

to studies of mean temperature change at the global scale and the authors note that 

assessments of future drought events have traditionally only used one climate model to 

assess possible impacts. In this study the GCMs HADCM3, CSIRO2, and ECHAM4, which 

are available in both MAGICC and ClimGen, are used. In general, compared to the full range 

of climate models used by the IPCC in the TAR the three models are considered to provide 

medium range projections of future global temperature change. However, the models show 

more pronounced differences for global precipitation with ECHAM4 at the low end of the 

model range, CSIRO2 at the high-end of the model range, and HADCM3 towards the middle 

of the range (IPCC, 2001, figure 9.3). In summary, six scenarios will be investigated using 

the A1FI emission scenario and the 450ppm stabilisation scenario for each of the climate 

models HADCM3, CSIRO2, and ECHAM4. 

 

4.2 Modelling future drought events 

Projections of gridded monthly precipitation data for the period 2003-2050 were derived for 

each of the six scenario runs. The precipitation data was transformed to the SPI following 

the method described in section 3.1.2, for both SPI-6 and SPI-12 time periods. As described 

in section 4.1 observed precipitation data from 1955-2002 were used to create the future 

precipitation time-series data in ClimGen, with the mean monthly precipitation trends for 

1955-2002 assumed unchanged for the period 2003-2050. Consequently, any changes seen 

in the precipitation distribution and subsequently SPI data can be linked to anthropogenic 

climate change. 

 

In creating the drought damage functions bar graphs of the average monthly SPI were 

created for each reported drought event, at SPI-6 and SPI-12 time periods (demonstrated in 

figure 3.2). However, the methodology devised in section 3.2 to identify historic drought 
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events was based on reported information on the specific states/regions affected as reported 

in the EM-DAT database. Such spatial boundaries were not available for future projections of 

drought events. Consequently, an approach similar to that of Giorgi and Francisco (2000) 

has been adopted.  In order to look at regional changes in climate change Giorgi and 

Francisco (2000) divided all land areas in the World into 21 regions. These regions were 

selected in order to represent different climate regimes with a manageable number of 

regions of similar shape. This approach has been widely used (e.g. Ciscar et al., 2011, 

Giorgi, 2006, IPCC, 2007b, Ruosteenoja et al., 2003, Sheffield and Wood, 2008) in order to 

encompass specific climate regimes and provide robust statements of regional climate 

change. The regions used in this study for the eight countries of interest were based 

primarily on those defined in the above studies. However, as some of these regions were still 

very large they were further divided based on country specific climate change reports and 

information on particular precipitation regimes of the countries. This enabled a more 

disaggregated study of drought events to be conducted and aimed to minimise biases in 

spatial averaging when identifying drought events. The country regions used in this study are 

illustrated in figure 4.3 and defined in table 4.1. 

 

 

Figure 4.3: The country regions used in this study (defined in table 4.1) 

 

 

 

 

 

 

 



                                            Projecting Future Drought Events 

88 

 

Name Acronym Latitude (°) Longitude (°) 

Northwest Australia NW-AUS 27.75S – 10.25S 112.75E – 138.25E 

Southwest Australia SW-AUS 43.75S - 28.25S 114.25E – 138.25E 

Northeast  Australia NE-AUS 27.75S – 10.25S 138.75E – 153.75E 

Southeast Australia SE-AUS 43.75S - 28.25S 138.75E – 153.75E 

Northwest Brazil NW-BRA 15.75S – 4.25N 73.75W – 50.25W 

Northeast Brazil NE-BRA 15.75S – 0.25N 49.75W – 34.75W 

Southern Brazil S-BRA 33.25S – 16.25S 57.75W – 38.75W 

Northwest China NW-CH 36.25N – 49.25N 74.25E – 100.25E 

Southwest China SW-CH 22.25N – 35.75N 79.25E – 100.25E 

Northeast China NE-CH 32.75N – 50.75N 100.75E – 119.75E 

Southeast China SE-CH 18.25N – 32.25N 100.75E – 122.75E 

North-Northeast China NNE-CH 38.75N – 53.25N 120.25E – 134.75E 

Ethiopia ETH 3.75N – 14.25N 33.75E – 47.75E 

Northwest India NW-IND 18.75N – 35.75N 68.25E – 79.75E 

Northeast India NE-IND 18.75N – 35.75N 80.25E – 97.25E 

Southern India S-IND 8.25N – 18.35N 72.75E – 84.25E 

Spain SPA 36.25N – 43.75N 9.25W – 3.25E 

Portugal POR 36.75N – 42.25N 9.25W – 6.75W 

North-West USA NW-USA 40.75N – 48.75N 124.75W – 103.25W 

South-West USA SW-USA 29.75N – 40.25N 124.25W – 103.25W 

Central USA C-USA 26.25N – 48.75N 102.75W – 84.75W 

Eastern USA E-USA 24.75N – 47.25N 84.25W – 66.75W 

Table 4.1: Definition of regions used in this study 

 

 

Bar charts of the average monthly SPI were created for each of the regions for future SPI 

data (2003-2050), for each scenario and for both SPI-6 and SPI-12 time periods, so that 

drought events could be visually identified. The same methodology was also applied to the 

observed data for the baseline period (1955-2003) so any changes in future drought 

characteristics could be compared to historic characteristics. This ensured that the results 

could be comparable over time as they were generated using the same methodology. As in 

section 3.2, a drought was recorded as starting when the SPI value fell below zero, and 

ended when the SPI value exceeded zero, and where the SPI reached a minimum threshold. 

In creating the drought damage functions drought was defined as a period where negative 

SPI values could be identified which coincided with the drought details reported in EM-DAT, 

in order to identify and quantify reported historical events. However, in order to compare past 

drought events to future drought events under climate change the threshold was set at SPI -

1.50, representing drought events that are either severely or extremely dry (see table 3.2). 

Setting a standard threshold allowed consistency in modelling drought parameters across 

the different countries, regions and scenarios. In addition, the pre-defined threshold was 

used so that the emphasis of the study was on the effects of severe and extreme drought 

events for the following reasons: 
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 It is assumed that larger magnitude events will result in the most severe 

consequences for economies and society. 

 The NDMC (2006b) state that for longer time-periods, such as SPI-12, SPI values 

below -1.50 are usually a good indicator that fairly significant impacts are occurring in 

agriculture and potentially other sectors. 

 It is assumed that these events will be difficult to cope with compared to more 

moderate drought events, even if future adaptation takes place. 

 There is some evidence to suggest that at a global level the frequency of severe and 

extreme drought events will increase whilst the number of moderate drought events 

will remain stable (Burke et al., 2006). 

 

Once the drought start and end months (and duration) were identified, each drought event 

was quantified using the methodology described in section 3.2 (equations 3.13-3.15). Where 

countries are divided into multiple regions (e.g. the USA, Brazil, China, India and Australia) 

the same drought event could potentially encompass two or more regions resulting in a 

large-scale drought being counted as multiple, smaller events. In order to avoid this issue 

when regional drought dates coincided for a given country maps were created using DIVA-

GIS to identify visually if they were separate drought events or a single event encompassing 

multiple regions. 

 

4.3 Results 

Drought parameters computed for each country and scenario were averaged for the 1955-

2002 and 2003-2050 periods. Results are presented in this manner, as although the method 

provides quantitative estimates of individual drought characteristics it does not aim to 

explicitly present projections of individual events, their exact timing, or location. Instead, the 

results reflect a broader picture of changes that may occur under future climate change. 

However, it is important to bear in mind that this averaging can mask some large variability 

in the characteristics of individual drought events. The study does however help to identify 

‘hot-spot’ regions, which may be particularly vulnerable to drought in the first half of the 21st 

century. The reported changes in drought characteristics, at a national and regional level, 

are reported and reviewed in light of other modelling studies. 

 

Figure 4.4a-d displays the projected change in drought frequency, average duration, 

magnitude, and peak intensity for 1955-2002 to 2003-2050 for the eight countries studied. 

The range represents the results generated under the six climate/emission scenarios and 

highlights how drought characteristics can vary, even being of a different sign, depending on 
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the particular scenario used. The results used to create figure 4.4 and subsequently 

discussed in this section are presented in tables 4.2 and 4.3 at the end of this section. 

Country results are reported and discussed in turn below, including regional findings. 

 

a. Projected Change in Drought Frequency 

 

b. Projected Change in Drought Duration 

 

c. Projected Change in Drought Magnitude 
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d. Projected Change in Peak Intensity 

 

Figure 4.4 a-d: Change in drought characteristics for 2003-2050 compared to 1955-2002 

using ECHAM4, HADCM3 and CSIRO2 and the A1FI and 450ppm scenarios for a) change 

in drought frequency, b) change in drought duration, c) percentage change in average TDM, 

and d) change in PI. Black crosses indicate mean values (left: SPI-6 drought events, right: 

SPI-12 drought events). 

 

 

Results for Australia highlight that on average drought frequency is expected to increase for 

both SPI-6 and SPI-12 drought events, drought duration increases slightly, and drought 

magnitude also increases. Average drought magnitude was projected to increase by 6-21% 

for SPI-6 droughts. Projected changes in average drought magnitude were more mixed 

using SPI-12, ranging from -6% to +64% depending on the GCM used. In all scenarios the 

average peak intensity was projected to increase (i.e. the SPI value became more negative), 

suggesting the potential for more intense droughts in the future. Based on the country 

regions, projections using ECHAM4 and HADCM3 suggested an increase in drought events 

in south and west Australia, particularly the south-west. This finding is in agreement with 

Christensen et al., (2007) who project increased drought in Southern Australia, and a report 

by CSIRO and the Australian BoM (2007) who projected an increase in drought events, 

particularly in the south-west. Conversely, results of this analysis simulated with CSIRO2 

suggested a decline in drought events in south-west Australia. 

 

The general pattern of change for Brazil is for an increase in drought frequency, drought 

duration and drought magnitude. Average drought magnitude is projected to change by 

between -38% to +165% for SPI-6 drought events and by 25% to 282% for SPI-12 drought 

events. This suggests that long-term SPI-12 drought events are likely to become more 

severe under climate change compared to medium-term SPI-6 drought events. All the 
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models consistently projected that average peak intensity of drought events would increase 

or stay the same. Whilst there was some variability in scenario results the general picture is 

one of worsening drought conditions for Brazil. Furthermore, the average drought duration of 

SPI-12 events is projected to increase by 30 months, with some drought events projected to 

last over seven years. Therefore, even in the first half of the 21st century climate change may 

induce multi-year drought events. Regionally, projections using ECHAM4 showed an 

increase in drought events in northern Brazil, particularly the northeast with little change 

seen in the south. Similar projections were seen using HADCM3 although a greater increase 

in drought events was seen in the northwest compared to northeast Brazil. Whilst there are 

few regional precipitation studies for Brazil these findings are consistent with those of 

Marengo et al., (2009) who used the comprehensive Hadley Centre regional model PRECIS 

(Providing Regional Climates for Impacts Studies) to look at changing extreme climate 

conditions from 1961-1990 to 2071-2100. Results suggest that northeast Brazil and eastern 

Amazonia could suffer drier conditions due to increased temperatures and reduced 

precipitation. Likewise, under the A1B scenario Li et al., (2008) highlighted a move towards 

more negative SPI values in the future suggesting more intense effects of anthropogenic 

climate change on Amazon drying, with the potential for a 16% increase in dry events and 

the possibility of more extreme dry events in the 21st century. 

 

Results for China suggest a decline in the frequency and severity of drought events in the 

first half of the 21st century. The results indicate that the average drought frequency and 

drought duration may well decrease for SPI-6 drought events whilst there is little change in 

the intensity and magnitude of events. For SPI-12 drought events drought frequency and 

duration remained stable and drought magnitude and drought intensity decrease. These 

broad findings are consistent with those of other published studies. For example, 

Christensen et al., (2007) report that precipitation is likely to increase in east China in all 

seasons and increase in the Tibetan Plateau, with most models projecting an increase in 

precipitation in all seasons. Kim and Byun (2009) also projected increases in precipitation for 

most parts of Asia leading to a decrease in drought frequency and duration. Unfortunately, 

as there were so few severe drought events visible in the future projections it is difficult to 

make a robust statement about the spatial pattern of change in drought events for China. 

However, the average drought frequency across the six scenarios declined for all of the 

regions assessed, indicating China is likely to become wetter in the first half of the 21st 

century. In comparison, at a regional scale Chen and Sun (2009) project a consistent 

enhancement in summer precipitation in China in the 21st century, with greater increases 

projected for the southern coast of China and north China. Other studies suggest that there 

will be a north-south divide with southern China becoming drier and northern china 
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becoming wetter by the 2050s or later (Gao et al., 2008, Hirabayashi et al., 2008, Xiong et 

al., 2008).  

 

Results for Ethiopia suggest that drought frequency remains relatively stable in the first half 

of the 21st century although drought duration and magnitude are projected to decrease. 

Drought intensity is likely to become less severe for SPI-6 drought events, although slightly 

more severe for SPI-12 drought events. The range in results for some drought 

characteristics were large depending on the GCM used, and particularly for SPI-12 drought 

events where there was less consistency in the direction of change. For example, for some 

scenarios there is an increase in drought frequency although average drought characteristics 

are less severe. In other cases, drought events occur less frequently but when they do 

occur, they are projected to be of greater magnitude than historic drought events. Therefore, 

it is difficult to ascertain any clear trends for changing drought characteristics in Ethiopia. 

However, the general trend for declining drought duration and magnitude are consistent with 

the findings of Christensen et al., (2007) who state that there is likely to be an increase in 

annual mean rainfall in east Africa in the 21st century, particularly in the dry season. These 

findings for East Africa are quite robust across the suite of IPCC models used with 18 out of 

21 models predicting an annual increase in precipitation in the core of this region. Model 

projections also suggest an increase in the intensity of extreme rainfall events (ibid.), 

although regional trends are less clear. As drought events were identified and quantified at a 

country level for Ethiopia no information on regional characteristics were obtained. 

 

Results for India showed a consistent trend in the sign of change for projections of drought 

characteristics across the six scenarios. Average drought frequency, duration, magnitude 

and intensity were projected to decline. The only scenario where severe/extreme drought 

events occurred was for SPI-6 drought events using CSIRO2 suggesting an increase in 

precipitation over India in the first half of the 21st century. These results are consistent with 

the findings of Christensen et al., (2007) for South Asia who project a slight decrease in 

precipitation in DJF (the dry season) but an increase in precipitation for the rest of the year, 

with only three out of the 21 GCMs used projecting an annual decrease in precipitation. In a 

review of GCM output for India Rupa Kumar et al., (2006) also report an increasing trend in 

precipitation, particularly enhanced from the 2040s onwards. At a regional scale, a decrease 

in drought events was projected for all regions of India analysed in this study. However, as 

so few events were visible, including in the observed data, it is hard to make any robust 

statement on the regional affect of climate change on drought events. Rupa Kumar et al., 

(2006) found increasing precipitation trends for India, particularly over the west coast and 

northeast India using the regional PRECIS model. However, at a state level they find that 
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central Indian states are more prone to severe rainfall activities whilst there are slight 

declines in annual rainfall for three states in southern and northeast India. 

 

Results for Spain highlight a general decline in precipitation as average drought duration, 

magnitude, and intensity all increase. There is good consistency in the model results for SPI-

6 and SPI-12 drought events with most scenarios agreeing on the sign of change. However, 

for SPI-12 drought events a slight decline in the frequency of drought is projected. For SPI-6 

drought events average drought magnitude is projected to increase by 18 to 143% in the first 

half of the 21st century. For SPI-12 drought events the average drought magnitude is 

projected to increase by 96 to 341%, highlighting that both medium and longer-term drought 

events are likely to become more severe under future climate change. The effect of climate 

change on drought trends in Portugal was less consistent with more variability in the 

direction of change. However, average results suggest that drought duration, magnitude and 

intensity all increase in the future. As with Spain, drought frequency was projected to 

increase for SPI-6 drought events but results for SPI-12 drought events suggested no 

change on average. The findings for Spain and Portugal are consistent with those reported 

by Christensen et al., (2007) who project that annual precipitation is very likely to decrease 

in most of the Mediterranean area with a decline in the annual number of precipitation days 

and an increase in the risk of summer drought. In addition, numerous other modelling 

studies have focused on the Mediterranean region or the larger European region. There is 

good consensus in modelling studies for a decline in precipitation in the Mediterranean and 

increased drought frequency and duration (e.g. Beniston et al., 2007, Blenkinsop and 

Fowler, 2007, Frei et al., 2006, Lehner et al., 2006, Warren et al., In review). Results were 

estimated for Spain and Portugal at the country level and so no assessment of regional 

drought trends were made. 

 

For the USA the general findings of this analysis were mixed with less model consistency 

seen in the direction of change in trends. Using SPI-6 there was only a slight increase in 

drought frequency and duration projected. For SPI-12 drought events drought frequency was 

projected to decline slightly whilst drought duration was projected to increase on average by 

10 months.   The change in average drought intensity also varied depending on the SPI time 

period used with a decrease in intensity seen for SPI-6 drought events and an increase in 

intensity for SPI-12 drought events. Drought magnitude was projected to increase on 

average by 10% for SPI-6 drought events and by 66% for SPI-12 drought events. Different 

regional trends were seen depending on the scenario used, with no consistent pattern seen. 

For example, using SPI-6 droughts increased in northwest USA using ECHAM4 and 

HADCM3, whilst projections using CSIRO2 highlighted an increase in drought frequency in 
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southwest and central USA with no change in the northwest. For SPI-12 droughts the 

general trend suggested a decline in drought frequency in western USA although the 

magnitude of the events that did occur increased. Inter-model uncertainties have been 

highlighted by other regional studies conducted for the USA. The North American Regional 

Climate Change Assessment Program (NARCCAP) provides precipitation data for North 

America based on a variety of regional and global climate models. Using the A2 IPCC SRES 

scenario seasonal precipitation maps are constructed for the period 2041-2070 and 

displayed online (NARCCAP, 2007). Although the precipitation maps highlight regional 

uncertainties, some common features are visible including a general drying trend in the 

south-west in DJF, wetter conditions in the NE, and drying across western USA during JJA.  

 

The above results highlight that climate change could have large repercussions for future 

drought regimes however the uncertainty seen when using different scenarios can be large. 

Interestingly, it was found that this uncertainty increases as the SPI time period increases 

from SPI-6 to SPI-12.  Additionally, whilst the frequency of SPI-12 droughts generally 

decrease climate change is likely to have a larger effect on their duration and magnitude, 

and for Portugal, Spain and the USA their intensity. As SPI-12 can be tied to hydrological 

drought it suggests that water resources will be very vulnerable to climate change. This 

finding is in agreement with that of Vasiliades et al., (2009) who also used downscaled 

monthly precipitation data, converted to the SPI to assess drought. Furthermore, results 

indicate an increase in multi-year drought events in Australia, Brazil, Spain, Portugal and the 

USA. Multi-year drought events will be harder to cope with due to their compounding effects 

and continued drain on resources and adaptive strategies (Wheaton et al., 2008). 

 

As mentioned, for some of the countries there were significant differences in the direction of 

change in the trend of drought parameters from the 1955-2002 observed data. It was 

assumed that as the time period of the study was for the first half of the 21st century there 

would be little difference in future precipitation projections using different emission scenarios 

as CO2 concentrations, and subsequently temperature change, is relatively comparable up 

to 2030 for all scenarios (figure 4.2). This is confirmed in figure 4.5 which presents the 

average drought magnitude of SPI-6 droughts for Spain calculated by this study, using the 

A1FI, A2, B2 and B1 SRES scenarios and the E3MG 450ppm emission scenario for 2003-

2050 and 2051-2098. Results are generated following the above methodology and using the 

GCM ECHAM4. 
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Figure 4.5: Average drought magnitude of SPI-6 drought events in Spain for 1955-2002 

compared to 2003-2050 and 2051-2098. Results are generated using the GCM ECHAM4 

and various emission/stabilisation scenarios. 

 

 

The similarity between scenarios for the first half of the 21st century is illustrated in the graph. 

In comparison, average drought magnitude in the period 2051-2098 varies widely depending 

on the particular emission/stabilisation scenario used. As expected the largest increase in 

average drought magnitude in the second half of the 21st century occurs under the A1FI 

scenario with average drought magnitude projected to increase by 690%. The 450ppm 

scenario results in the smallest increase in average drought magnitude, although even with 

this stringent stabilisation target the average drought magnitude is still projected to increase 

by 206% in Spain.  

 

Results for 2003-2050 generated using different GCMs exhibit much larger variability than 

that seen using various emission/stabilisation scenarios. Figure 4.6 shows the average 

drought magnitude calculated for the first half of the 21st century for each of the six scenarios 

using SPI-6 and SPI-12. Graphs are presented for Australia, Brazil, China, Portugal, Spain 

and the USA as drought events were visible for these countries across all six scenarios for 

comparison. 
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Figure 4.6: Average drought magnitude for the observed period 1955-2002 and future period 

2003-2050. Results are generated for the SPI-6 and SPI-12 time-periods using the A1FI and 

450ppm scenarios and the GCMs ECHAM4, HADCM3 and CSIRO2. 

 

 

The graphs highlight the large range in results gained using different GCMs compared to the 

similarities in results using the different emission and stabilisation scenarios. As such, much 

of the uncertainty in the results can be attributed to the GCM used and their underlying 

assumptions. As discussed previousy the graphs also highlight the larger effect of climate 

change on magnitude of SPI-12 droughts, and the larger range of results. 

 

The results shown in figure 4.4a-d and discussed above are detailed in tables 4.2 and 4.3 

below. The data tables present the results of the drought analysis for the observed data 
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(1955-2002) and for the future projections (2003-2050) for each country and scenario. The 

tables display the number of drought events identified, average duration, peak intensity, 

magnitude, and the percentage change in drought magnitude from 1955-2002 to 2003-2050. 

Table 4.2 presents results for SPI-6 drought events and table 4.3 presents results for SPI-12 

drought events. Shaded columns indicate that country trends projected under the six 

scenarios are all of the same direction. Orange shading indicates enhanced drought 

conditions (i.e. reduced precipitation) and blue shading indicates improving drought 

conditions (i.e. increased precipitation).  
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Country 
Emission 
Scenario 

GCM 
Drought 

Frequency 

Average 
Duration 
(months) 

Average Peak 
Intensity

a 
Average 

Magnitude
b 

% Change in 
Average 

Magnitude from 
Observed 

Australia 

Observed -- 10 17.2 -1.78 14,628 -- 

A1FI 
(2003-2050) 

ECHAM4 16 18.9 -1.83 16,793 14.8 

HADCM3 12 16.8 -1.87 15,562 6.4 

CSIRO2 8 17.0 -1.95 15,695 7.3 

450ppm 
(2003-2050) 

ECHAM4 17 21.0 -1.81 17,708 21.0 

HADCM3 12 16.8 -1.87 15,873 8.5 

CSIRO2 8 17.0 -1.96 15,760 7.7 

Brazil 

Observed -- 3 25.7 -1.77 22,979 -- 

A1FI 
(2003-2050) 

ECHAM4 8 29.1 -1.87 25,388 10.5 

HADCM3 9 39.0 -2.09 49,596 115.8 

CSIRO2 5 23.8 -1.88 14,224 -38.1 

450ppm 
(2003-2050) 

ECHAM4 11 33.5 -1.92 29,685 29.2 

HADCM3 13 53.5 -2.08 61,048 165.7 

CSIRO2 5 23.8 -1.89 14,314 -37.7 

China 

Observed -- 4 11.3 -1.76 6,976 -- 

A1FI 
(2003-2050) 

ECHAM4 1 8.0 -1.85 7,627 9.3 

HADCM3 1 8.0 -1.71 6,971 -0.1 

CSIRO2 1 8.0 -1.73 7,133 2.3 

450ppm 
(2003-2050) 

ECHAM4 1 8.0 -1.87 7,703 10.4 

HADCM3 1 8.0 -1.72 6,996 0.3 

CSIRO2 1 8.0 -1.73 7,128 2.2 

Ethiopia 

Observed -- 1 18 -1.86 6,304 -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 0 0 0 0 -100.0 

CSIRO2 3 15.3 -1.69 5,615 -10.9 

450ppm 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 0 0 0 0 -100.0 

CSIRO2 4 13.3 -1.66 4,910 -22.1 

India 

Observed -- 5 7 -1.70 3,938 -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 0 0 0 0 -100.0 

CSIRO2 2 5.5 -1.59 3,406 -13.5 

450ppm 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 0 0 0 0 -100.0 

CSIRO2 2 5.5 -1.60 3,427 -13.0 

Portugal 

Observed -- 13 12 -1.83 589 -- 

A1FI 
(2003-2050) 

ECHAM4 19 17 -2.09 1,008 71.1 

HADCM3 18 16 -2.02 875 48.6 

CSIRO2 15 11 -1.88 535 -9.2 

450ppm 
(2003-2050) 

ECHAM4 17 19.5 -2.11 1,120 90.2 

HADCM3 17 16 -2.07 886 50.4 

CSIRO2 15 11 -1.88 535 -9.2 

Spain 

Observed -- 4 11 -1.72 2,143 -- 

A1FI 
(2003-2050) 

ECHAM4 12 19 -1.87 4,085 90.6 

HADCM3 9 25 -1.88 5,196 142.5 

CSIRO2 7 12 -1.77 2,538 18.4 

450ppm 
(2003-2050) 

ECHAM4 11 19 -1.90 4,082 90.5 

HADCM3 9 25 -1.95 4,454 107.8 

CSIRO2 7 12 -1.78 2,534 18.2 

USA 

Observed -- 5 13.0 -1.92 10,127 -- 

A1FI 
(2003-2050) 

ECHAM4 5 14.0 -1.80 10,452 3.2 

HADCM3 5 12.4 -1.81 9,472 -6.5 

CSIRO2 7 16.9 -1.83 13,152 29.9 

450ppm 
(2003-2050) 

ECHAM4 5 14.0 -1.81 10,548 4.2 

HADCM3 5 12.4 -1.83 9,488 -6.3 

CSIRO2 6 18.7 -1.87 13,461 32.9 

Table 4.2: SPI-6 Drought characteristics quantified from observed data (1955-2002) and 

future projections (2003-2050). Shading indicates results are all of the same sign (orange for 

worsening drought conditions and blue for improving drought conditions).a Peak Intensity is 

inferred directly from the SPI values (see table 3.2) and defined in equation 7.15. b Drought 

Magnitude is defined in equation 7.14. 
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Country 
Emission 
Scenario 

GCM 
Drought 

Frequency 

Average 
Duration 
(months) 

Average Peak 
Intensity

a 
Average 

Magnitude
b 

% Change in 
Average 

Magnitude from 
Observed 

Australia 

Observed -- 5 32.8 -1.70 26,524 -- 

A1FI 
(2003-2050) 

ECHAM4 11 43.8 -1.73 40,624 64.0 

HADCM3 8 30.9 -1.72 24,465 -7.8 

CSIRO2 3 30.0 -1.82 28,423 7.2 

450ppm 
(2003-2050) 

ECHAM4 11 43.9 -1.75 40,810 53.9 

HADCM3 8 31.4 -1.74 24,925 -6.0 

CSIRO2 3 30.0 -1.84 28,756 8.4 

Brazil 

Observed -- 3 26.7 -1.73 21,328 -- 

A1FI 
(2003-2050) 

ECHAM4 4 54.8 -1.83 39,956 87.3 

HADCM3 4 87.3 -1.73 81,634 282.7 

CSIRO2 2 34.0 -1.78 26,652 25.0 

450ppm 
(2003-2050) 

ECHAM4 6 61.8 -1.85 43,934 106.0 

HADCM3 7 82.1 -1.79 73,186 243.1 

CSIRO2 2 35.0 -1.78 27,091 27.0 

China 

Observed -- 1 22.0 -2.11 20,499 -- 

A1FI 
(2003-2050) 

ECHAM4 1 23.0 -1.92 19,052 -7.1 

HADCM3 1 22.0 -1.76 15,703 -23.4 

CSIRO2 1 22.0 -1.84 16,606 -19.0 

450ppm 
(2003-2050) 

ECHAM4 1 23.0 -1.93 19,135 -6.7 

HADCM3 1 21.0 -1.77 15,440 -24.7 

CSIRO2 1 22.0 -1.84 16,583 -19.1 

Ethiopia 

Observed -- 1 42.0 -1.67 12,457 -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 1 27.0 -1.59 7,594 -39.0 

CSIRO2 2 48.5 -1.80 17,422 39.9 

450ppm 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 1 26.0 -1.59 7,436 -40.3 

CSIRO2 2 48.5 -1.81 17,619 41.4 

India 

Observed -- 1 25.0 -2.01 13,853 -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 0 0 0 0 -100.0 

CSIRO2 0 0 0 0 -100.0 

450ppm 
(2003-2050) 

ECHAM4 0 0 0 0 -100.0 

HADCM3 0 0 0 0 -100.0 

CSIRO2 0 0 0 0 -100.0 

Portugal 

Observed -- 6 26 -1.80 1,346 -- 

A1FI 
(2003-2050) 

ECHAM4 7 37 -2.13 2,472 83.6 

HADCM3 6 37 -2.01 2,143 59.2 

CSIRO2 4 25 -1.94 1,321 -1.86 

450ppm 
(2003-2050) 

ECHAM4 7 42 -2.22 2,820 109.5 

HADCM3 8 34 -1.98 2,014 49.6 

CSIRO2 4 23 -1.94 1,270 -5.65 

Spain 

Observed -- 4 22 -1.69 4,039 -- 

A1FI 
(2003-2050) 

ECHAM4 3 56 -2.00 13,917 244.6 

HADCM3 2 76 -2.11 17,811 341.0 

CSIRO2 2 42 -1.80 7,925 96.2 

450ppm 
(2003-2050) 

ECHAM4 4 55 -1.95 12,914 219.7 

HADCM3 3 52 -1.96 12,468 208.7 

CSIRO2 2 42 -1.79 7,904 95.7 

USA 

Observed -- 4 24 -1.67 24,321 -- 

A1FI 
(2003-2050) 

ECHAM4 2 30.0 -1.82 20,471 -15.8 

HADCM3 2 35.5 -1.75 54,589 124.5 

CSIRO2 3 36.0 -1.73 46,092 89.5 

450ppm 
(2003-2050) 

ECHAM4 2 30.0 -1.85 20,594 -15.3 

HADCM3 2 35.5 -1.77 54,708 124.9 

CSIRO2 3 36.0 -1.74 46,245 90.1 

Table 4.3: As Table 4.2 but for SPI-12 drought events. 
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4.4 Discussion 

The study utilised the IAM CIAS to make future projections of precipitation at a 0.5° x 0.5° 

resolution for the first half of the 21st century. The projections of precipitation represent a 

high emission scenario (without mitigation) and stringent stabilisation scenario (with 

mitigation), and three GCMs. Precipitation data was converted to the SPI in order to identify 

individual drought events and quantify their magnitude, intensity and duration. The 

projections of drought magnitude will be directly used to determine the economic and social 

drought effects, via the drought damage functions. Therefore, it is important to determine the 

robustness of the results presented. 

 

In order to test the methodological approach the frequency, magnitude, intensity and 

duration of drought events were quantified for each country, scenario and SPI time period. 

The results suggest that climate change in the first half of the 21st century could result in 

worsening drought regimes in Australia (particularly in the south-west), Brazil (particularly in 

the northeast and northwest), Portugal, and Spain. The effect of climate change on average 

drought conditions in the USA was more variable depending on the region and the climate 

scenario used. However, results suggest that changing trends in drought characteristics, 

particularly for long-term drought events, are likely to be negative. Conversely, results for 

China, Ethiopia and India suggest that climate change may well cause increased 

precipitation which could mitigate the frequency and severity of droughts, with very few, if 

any, severe and extreme drought events projected for 2003-2050. The results also 

highlighted that climate change is likely to have a larger effect on the duration and 

magnitude of long-term SPI-12 droughts, with an increase in multi-year drought events 

projected in Australia, Brazil, Spain, Portugal and the USA. Reported changes in drought 

characteristics, at a national and regional level, were presented in section 4.3 and reviewed 

in light of other modelling studies. The results highlighted that the average change in drought 

trends projected for Australia, Brazil, China, Ethiopia, India, Portugal, Spain and the USA 

were in line with projections reported by the IPCC (Christensen et al., 2007), as well as other 

modelling studies reviewed. This is a promising result as it suggests that the SPI and the 

methodology devised to identify and quantify drought events can accurately capture 

precipitation change over the first half of the 21st century. 

 

The study also aimed to address some of the uncertainties that arise when modelling future 

precipitation due to the use of different emission/stabilisation scenarios and climate models. 

As the study focuses on the first half of the 21st century there was little variability seen 

between results generated using the A1FI and 450ppm scenarios. As such, the 
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implementation of a stringent mitigation policy is projected to have limited effect on 

worsening drought conditions from 2003-2050 compared to the A1FI scenario with no 

mitigation. However, the choice of emission scenario will have a larger effect on drought 

conditions in the latter half of the 21st century as demonstrated for Spain in figure 4.5. 

However, even though drought magnitude was significantly reduced after 2050 when 

assuming stringent mitigation compared to the A1FI scenario, drought magnitude was still 

notably affected. This finding is in agreement with Warren et al., (In review) who project that 

even under stringent mitigation scenarios significant increases in drought events may be 

unavoidable for Spain in the second half of the 21st century. 

 

The study also provided a range of results based on the use of three GCMs. Much of the 

uncertainty in future projections of drought events, including the direction of change, can be 

linked to the GCM used (figure 4.6). This finding is consistent with Goodess et al., (2003b) 

who reports that for the early 21st century inter-model variability tends to be greater than 

inter-scenario variability. Interestingly, this study found that the uncertainty increased as the 

SPI time period increased from SPI-6 to SPI-12. The three GCMs used in this study 

(ECHAM4, HADCM3 and CSIRO2) lie in the low, medium and high range of changes in 

global average precipitation projections relative to the larger suite of  IPCC models used in 

the IPCC TAR (IPCC, 2001, figure 9.3). As such, it is anticipated that they provide a good 

representation of the scale of model uncertainty. Whilst the use of three GCMs in this study 

is an advantage as assessments of future drought events have traditionally only used one 

GCM (Blenkinsop and Fowler, 2007), they cannot be assumed to fully address uncertainty 

and a larger range would be required to provide more robust or probabilistic projections.  

 

The study used pre-defined country regions to overcome issues of spatial averaging when 

assessing future drought events. In order for drought projections in the 21st century to be 

comparable to past projections, this method was also applied to observed precipitation data 

from 1955-2002. The method of using pre-defined country regions to identify and quantify 

regional drought parameters differed from the method used to create the drought damage 

functions, where past historical droughts were identified and quantified based on information 

from EM-DAT on the specific states affected. As projections of drought magnitude will be 

correlated to the drought damage functions, to estimate economic and social effects, it is 

important to establish if this difference in methodology has a substantial impact on the 

frequency and characteristics of drought events identified. The frequency of drought events 

in 1955-2002 generated using the coarse country regions (defined in figure 4.3 and table 

4.1), and the frequency of drought events in 1940-2002 generated based on information on 

the affected states from EM-DAT were compared. Whilst the results were found to be 
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comparable, fewer drought events were identified in the SPI time-series data using the 

coarse country regions. This result is to be expected as in many cases the coarse country 

regions encompassed larger areas than the specific states analysed in creating the drought 

damage functions. 

 

This finding can also be explained by the difference in the SPI threshold used to define a 

drought (detailed in section 4.2). That is, in creating the drought damage functions the 

threshold was zero as long as there was a period where negative SPI values could be 

identified which coincided with the drought details reported in EM-DAT. However, in 

modelling past and future drought events using the coarse country regions the SPI threshold 

was set at -1.50, representing severe and extreme drought events, and so some smaller 

magnitude events that only affected a single state or very small regions of a country were 

not captured. Conversely, for SPI-6 drought events the use of coarse country regions 

actually resulted in an increase in drought frequency for Australia and Portugal. For 

Australia, this was linked to the identification of drought events that occurred prior to 1965 as 

EM-DAT only reported drought events and impacts from 1967 onwards. For Portugal, it is 

postulated that the additional drought events that were identified may not have caused 

significant economic or social losses to meet the EM-DAT criteria or data may not have been 

available for the event to be included in the database. It is concluded that the use of the 

coarse country regions enables the largest scale drought events in 1955-2002 and 2003-

2050 to be identified. As the focus of this analysis was on severe and extreme drought 

events only, this methodology is assumed robust. Additionally, future projections of drought 

trends were in agreement with projections made by the IPCC and other published studies, 

for all countries assessed. This suggests that the coarse country regions used were effective 

at capturing spatial patterns of severe and extreme drought. 

 

The methodology also enabled a rudimentary assessment of regional changes in drought 

trends in the first half of the 21st century. Whilst the use of the coarse regions may not be as 

accurate as focusing on individual states, as was the case in creating the drought-damage 

functions, results were promising. Findings for Australia, Brazil, and India were consistent 

with other published studies whilst results for China and the USA were more uncertain. 

However, the coarse regions are still relatively large and in the case of Ethiopia, Portugal, 

and Spain results were analysed at a country level only. Future research may benefit from 

using smaller, pre-defined geographical regions or state boundaries. This would be 

particularly beneficial for countries that have varying regional precipitation regimes such as 

China and the USA. However, it is important to note that the methodology would be less 

beneficial for identifying drought at smaller spatial and temporal scales as it does not 
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represent small-scale weather processes, local topography, land-use, or hydrological 

systems such as rivers, catchment areas, dams, or reservoirs that would be required for a 

study of hydrological drought impacts on this scale. Although precipitation data has been 

downscaled it is important to note that simply interpolating GCM output to the spatial scale of 

the higher resolution observed climatology data does not add any information about smaller 

scale physical processes (Goodess et al., 2003a). 

 

In order to assess drought characteristics the monthly precipitation data was converted to 

the SPI. The SPI is a relatively simple index, which can be applied universally, and to 

various time periods to assess the dynamics of different types of drought. The SPI was also 

considered advantageous for this study as it provides a method for analysing not only the 

frequency of drought events but also the duration, intensity, and magnitude. Magnitude was 

found to be a valuable parameter providing a comprehensive measure of drought by 

combining information on intensity, duration and area affected. The analysis also highlighted 

that drought magnitude may be a better parameter to use for identifying severe or extreme 

droughts, rather than using intensity alone. By setting the drought threshold at a SPI value of 

-1.50 a very slight change in the average SPI value generated by using different emission 

scenarios could result in a drought being recorded in one case and excluded in the other. 

For instance, using the same GCM the SPI value could be very low but not exceed the 

threshold (i.e. a SPI value of -1.49) using one emission scenario, but could fall just on the 

threshold (i.e. -1.50) using the other emission scenario. Therefore, whilst there was minimal 

difference in the SPI value one event would be included in the analysis whilst the other 

would not. Furthermore, it was postulated that the use of the pre-defined SPI threshold 

would result in only severe and extreme drought events being detected. Yet, the method of 

setting a pre-defined threshold may limit the definition of a drought event too much to the 

intensity of drought in a single month and less on the overall magnitude of an event. Thus, 

an interesting finding is that the use of SPI categories could actually be misleading in some 

cases when analysing drought events over spatial and temporal scales. 

 

Another advantage of using drought magnitude in this study is that it can avoid the 

misrepresentation of results seen when focusing on drought frequency or drought duration 

alone. For example, if future drought events occur over increasingly long periods then the 

number of events within a fixed time-period may well decrease. For Spain and Portugal, it 

was projected that there would be almost no change or even a decline in the frequency of 

SPI-12 drought events in 2003-2050 compared to 1955-2002 (figure 4.4a). This result alone 

suggests that climate change does not have a large influence on drought frequency in these 

countries. However, drought duration and intensity are projected to increase substantially 
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during 2003-2050. Warren et al., (In review), who used a similar approach to this study to 

assess the consequences of climate change on drought frequency and duration in Europe, 

also highlighted misleading results when using drought frequency alone to assess SPI-12 

drought events. Therefore, it is important to view changes in drought frequency and 

magnitude together to understand the actual trends taking place. 

 

The SPI is advantageous as it is simple to calculate as it is based on precipitation data alone 

(discussed in section 3.1.1). However, in applying the SPI to future projections of 

precipitation and drought it is also important to consider the specific case of climate change. 

Whilst precipitation may be the primary factor in drought occurrence, under climate change 

high temperatures may have an increasingly large effect on drought events. This is a 

particularly important issue as it is projected that annual average temperatures increase in 

all of the countries assessed in this study in the 21st century (IPCC, 2007c). Wilhite (2005) 

agrees that the effects of future climate change on temperature means that future drought 

projections will require temperature and precipitation data, even where precipitation was 

commonly the main variable causing drought. This already appears to be the case in 

Australia where recent drought events have not been drier than recorded 20th century 

droughts, but they have reportedly been accompanied by higher temperatures (CSIRO and 

Australian BoM, 2007).  

 

Changes in temperature, radiation, atmospheric humidity, and wind speed can also affect 

the amount of evaporation and further exaggerate effects of decreased precipitation on 

surface water and run-off (IPCC, 2007c, Ch 3). CSIRO and the Australian BoM (2007) state 

that a drought index based on rainfall deficiency alone will fail to account for the effect of 

projected increases in potential evaporation, and interactions between precipitation and the 

water holding capacity of soils, something which is particularly important for assessing 

agricultural drought and its consequences. Other studies also note the importance of 

evaporation for future drought projections particularly where the effects of increased 

temperatures are not offset by increased precipitation (e.g Blenkinsop and Fowler, 2007). 

However, evaporation over land will also depend largely on the moisture supply and as such 

is thought closely related to variations in precipitation and run-off at a global scale (IPCC, 

2007b). The results from this study are based on precipitation data only and as such, 

drought parameters for the first half of the 21st century may well be underestimated. 

 

A further advantage of using the SPI is the ability to use different time periods so that the 

effects of climate change on different types of drought can be assessed.  Results of this 

analysis were presented for two different SPI time-periods: the SPI-6 time-period allowed an 
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assessment of medium-term drought events and is effective at showing changes in 

precipitation over distinct seasons. The SPI-12 time-period allowed an assessment of long-

term drought events and is effective at highlighting specific trends and long term changes in 

annual precipitation patterns (NDMC, 2006b). As previously mentioned the results 

highlighted that climate change is likely to have a larger effect on the duration and 

magnitude of long-term SPI-12 droughts representing greater risk to hydrological systems 

and water resources. For example, in the USA the effect of climate change in the first half of 

the 21st century on the average magnitude of SPI-12 droughts was much greater than that 

seen for SPI-6 drought events. Likewise, the change in average drought magnitude for Brazil 

was more than three times as great using SPI-12 compared to SPI-6. One explanation may 

be that the SPI-12 results reflect an average annual decline in precipitation, although this 

decline may not be evenly distributed over seasons. In comparison, the SPI-6 index will be 

more sensitive to short-term variability in the volume and intensity of precipitation. 

Importantly, the averaging of the drought parameters masks large variability in individual 

drought events. 

 

This is an important issue to consider as increased variability in precipitation is an expected 

consequence of climate change due to increasing temperature, increases in the water 

holding capacity of the atmosphere, and increased evaporation affecting and altering the 

hydrological cycle (discussed in section 1.2). Climate change can also enhance seasonality 

with precipitation increasing in one season and declining in another (IPCC, 2007c). Areas 

projected to suffer more drought events in the future may also be at risk from heavy 

precipitation or flood events. This issue has been highlighted by the IPCC (2007b), and more 

recently by Hirabayashi et al. (2008) who modelled the change in return period of 110-year 

flood events from the 20th century to 2001-2031 and 2071-2100. The study showed that 

some areas including Eastern Europe to central Eurasia, inland China and northern North 

America showed an increase in drought events and an increase in annual precipitation. 

 

The timing of drought events is also an important factor to consider when assessing the type 

and scale of effects that may occur. This study did not take into consideration particular 

seasons affected by drought, or indeed, if there were seasonal changes in the timing of 

drought events. Additionally, large-scale atmospheric processes such as monsoon rainfall 

and ENSO events are not well covered by the GCMs or by ClimGen. Consequently, it is 

important to remember that there are many modelling uncertainties and unknown 

parameters in projecting future precipitation regimes. For example, uncertainties in future 

precipitation projections can be caused by a lack of observational data; a lack of regional 

assessments; complexities in understanding and modelling the influence of large-scale 
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atmospheric processes such as the ENSO, NAO, or tropical cyclone behaviour on 

precipitation; difficulties in modelling changes in monsoons; uncertainties over feedback 

processes, e.g. how feedbacks between the Amazonia basin and land use and land-use 

change could affect regional precipitation; and the success of downscaling techniques for 

representing precipitation in certain regions (IPCC, 2007c). As such, it is found that 

precipitation is not well simulated in present GCMs (Kundzewicz et al., 2008). 

 

Finally, it is important to reiterate some of the caveats raised in section 3.4 when creating the 

drought-damage functions. Namely, that the study assesses meteorological drought only 

and does not consider other external socio-economic factors that may change in the first half 

of the 21st century, e.g. increasing populations, increasing demand for water, or increased 

extraction of groundwater. Likewise, whilst increased water consumption may affect future 

droughts it is also important to remember that future adaptation to drier conditions (i.e. 

improved water management systems, increased water storage capacity, and extraction of 

ground water) may offset some of the threat. As stated previously adaptation is not explicitly 

modelled. Instead, the analysis focuses on severe and extreme drought only assuming that 

society will be better able to cope and adapt to moderate drought events. 

 

4.5 Summary 

The above chapter has outlined a novel methodological approach for identifying and 

quantifying SPI-6 and SPI-12 drought events under various scenarios of climate change. 

The results of the analysis suggest that climate change in the first half of the 21st century 

could severely affect drought conditions in Australia (particularly in the south-west), Brazil 

(particularly in the northeast and northwest), Portugal, and Spain. The effect of climate 

change on average drought conditions in the USA was variable depending on the region and 

the climate scenario used. However, results suggest that changing trends in drought 

characteristics, particularly for long-term drought events, are likely to be negative. 

Conversely, results for China, Ethiopia and India suggest that increases in precipitation may 

well mitigate the frequency and severity of droughts, with very few, if any, severe and 

extreme drought events projected during 2003-2050. The results highlight that long-term 

SPI-12 droughts are particularly vulnerable to climate change. Whilst many modelling 

uncertainties remain the modelled drought regimes are in line with projections reported by 

the IPCC (Christensen et al., 2007), as well as other modelling studies reviewed. The use of 

magnitude as a drought parameter has proved to be highly advantageous. The estimates of 

drought magnitude will be used in the following chapter to estimate social and economic 

effects of drought events using the country specific drought damage functions. 



                    Estimating Economic and Social Drought Effects 

108 

 

5. Economic and Social Drought Effects under Future Climate 

Change 

The previous chapter highlighted how climate change in the first half of the 21st century can 

affect the frequency, duration, magnitude and intensity of drought events. The following 

chapter focuses on estimating the economic and social effects that could occur, given such 

changes in drought characteristics, for the first half of the 21st century. The estimates of 

economic and social drought effects form a major output of this study. Section 5.1 outlines 

the methodological approach for estimating future economic damages and social effects of 

drought events via the novel drought damage functions. Section 5.2 presents the results of 

the analysis for economic damages (5.2.1) and social effects (5.2.2). Section 5.3 provides a 

discussion of the main findings and the chapter is summarised in section 5.4. 

 

5.1 Estimating future economic and social effects of drought 

Estimates of direct economic drought damages are made using the drought damage 

functions presented in chapter three. The country specific drought damage functions link the 

magnitude of individual drought events to reported impact data on economic damages, and 

the number of lives lost and affected. The magnitude of individual drought events, identified 

in the 1955-2002 and the 2003-2050 time periods (chapter four), can therefore be used to 

estimate the direct economic costs of each individual drought event and the consequences 

that such an event would have on society. 

 

In order to compare historical drought events economic damages were normalised to 2002 

US$ when creating the damage functions. Consequently, future estimates of drought costs 

based on the drought damage functions are presented in the same metric and the estimation 

of future economic losses is based on the assumption of a static economy. This is a similar 

approach to that used in impact analysis studies which focus on the damage costs of climate 

change, both for direct (e.g. Ciscar et al., 2011, Nordhaus, 1991, Tol, 2002a), and indirect 

economic loss estimation (e.g. Hallegatte, 2007, Hallegatte et al., 2011, Ranger et al., 2011). 

Similarly, the 14 peer-reviewed studies of global costs of climate change reviewed by Tol 

(2009) assume static socio-economic conditions. As such, the economic estimates 

presented do not have a time dimension but are related to a change in global mean 

warming. Using a standard metric across time is beneficial as it avoids the need for 

economic costs to be discounted (as discussed in section 2.2), and means the focus of the 

economic analysis will be on changing economic costs due to climate change rather than 

effects of changing socio-economic conditions. Thus, normalised damages remove the 
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influence of economic growth and allow the results to be interpreted in terms of changing 

climate only. Similarly, the effects of drought events on lives lost and lives affected are 

assumed to affect countries with static populations at 2002 levels. 

 

However, as discussed in section 3.2 normalising economic data by adjusting for inflation 

based on a countries changing GDP is a relatively simple way to account for changing 

economic conditions which does not take into account changes in wealth, assets at risk, or 

changing populations.  As the drought damage functions will be applied to drought events 

occurring in the future the countries studied may have undergone further changes in their 

socio-economic structure. There are merits to using future economic scenarios of GDP to 

estimate the changing assets at risk. However, uncertainties over such changes are 

extremely high as GDP trends will depend on specific economic assumptions made about 

growth and the implementation of technological changes; the characteristics of the economic 

model used to project GDP; and assumptions about future exchange rates (Arnell et al., 

2004). To address the sensitivity of results to different GDP projections numerous economic 

scenarios of annual GDP would also be required for each individual country. Additionally, 

whilst increased economic growth may increase assets at risk and exposure it can also lead 

to an increase in resilience in the affected economy so a country is more able to cope in the 

disaster aftermath (Benson and Clay, 2004). Such complex issues are extremely difficult to 

model, project and quantify.  

 

Whilst the assumption of a static economy and population in the future is improbable, the 

method does allow a first estimate of drought damages under future climate change to be 

made. As noted by Tol (2002a) this is a necessary first step in estimating future impacts of 

climate change. As well as assuming that the economy and population of countries 

assessed is static, and socio-economic vulnerability will remain constant over time, the study 

also assumes no change in adaptation to drought events. Mitigation is explicitly considered 

in the E3MG 450ppm scenario. 

 

5.2 Results 

5.2.1 Direct economic drought costs 

Direct economic damages from drought events were estimated based on the magnitude of 

individual drought events identified in the SPI time-series data, for each SPI time-period, 

country and scenario. Direct economic damages are presented as average annual costs for 

the observed data (1955-2002) and future data (2003-2050), for each scenario. Results are 
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presented as annual costs (i.e. the sum of economic damages from all drought events 

reported divided by the number of years) as the methodology does not aim to explicitly 

present projections of economic damages of individual events for a given time and region. It 

is important to distinguish the difference from the drought characteristics reported in chapter 

four (section 4.3) that were presented as average changes (i.e. the sum of the drought 

parameters form all drought events reported divided by the number of drought events). 

 

Figure 5.1 presents the percentage change in annual direct economic damages from 1955-

2002 to 2003-2050 comparing results for the countries assessed and based on the SPI time 

periods. As the results are derived from the drought magnitude data the general trends 

reflect those previously reported, and while results are presented at a country level the 

economic effects are centred on the regions highlighted as ‘hot spots’ (section 4.3). Figure 

5.1 highlights how the range of economic estimates can vary significantly, even being of a 

different sign, depending on the particular scenario used. It also presents the average result 

(black cross) of the six scenario runs for each country. No estimates are provided for 

Ethiopia, as it was not possible to create a drought damage function due to a lack of 

historical economic data, or Brazil, due to the very weak trend seen in the economic drought 

damage function. The results used to create figure 5.1 and subsequently discussed in this 

section are presented in tables 5.1 and 5.2 below. Economic damages are reported in 2002 

US$ (000’s) and are representative of direct damage from droughts categorised as severe 

and extreme only. 

 

 

Figure 5.1: Percentage change in annual economic damages for 2003-2050 compared to 

1955-2002 modelled using the GCMs ECHAM4, HADCM3 and CSIRO2 and the A1FI and 

450ppm scenarios. Black crosses indicate average values (left: SPI-6 drought events, right: 

SPI-12 drought events). 
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Figure 5.1 indicates that average annual economic drought damages are projected to 

increase for both SPI-6 and SPI-12 drought events in Australia. Across the range of 

scenarios, the mean percentage change in economic damages is estimated to increase by 

76% and 565%, for SPI-6 and SPI-12 drought events in 2003-2050.  In a worst-case 

scenario the results suggest that annual drought losses may increase three-fold from 1.0bn 

US$ in 1955-2002 to 3bn US$ in 2003-2050 for SPI-6 drought events. For SPI-12 droughts 

losses would be particularly devastating, increasing from 1.95bn US$ to 35bn US$ in 2003-

2050. Figure 5.1 shows that the percentage change in annual economic damages for SPI-12 

drought events has an extremely large range depending on the scenario used. This range 

reflects the extremely large drought magnitude of individual events projected using the GCM 

ECHAM4 and the projected decline in magnitude of drought events using HADCM3 

(highlighted in table 4.3). As the economic drought damage function for Australia is 

exponential, the costs estimated for exceptionally large drought events have a big effect on 

the annual estimates. 

 

Presenting results as annual losses masks the variability in the scale of individual drought 

events. The analysis highlights that the largest magnitude individual drought events could 

cost the Australian economy 37bn US$ for SPI-6 droughts alone. To put this into perspective 

the 1981-1982 and 2002-03 drought events were estimated to cost ~12.9bn and ~7.9bn US$ 

respectively (CSIRO and Australian BoM, 2007, EM-DAT, 2010) hence the cost of individual 

drought events are projected to rise dramatically in the future. More importantly, the largest 

magnitude SPI-12 drought event was projected to cost 701bn US$. This value is greater 

than the entire Australian Economy in 2002 and highlights a serious problem with over-

estimating economic damages of drought events at the extreme end of the range. This can 

be linked to the shape and scale of the exponential damage function used, which in turn was 

based on limited data points, and the assumption that the trend identified would remain 

constant for drought events outside the range of historical experience. To demonstrate this 

issue, economic drought damages were also estimated for Australia assuming a linear 

damage function. Whilst this had limited effect on estimates of damages from SPI-6 drought 

events, damages caused by large magnitude SPI-12 droughts were substantially less. For 

example, the largest magnitude SPI-12 drought event was projected to cost 31bn US$ 

assuming a liner damage function compared to 701bn US$ estimated using the exponential 

damage function. 

 

In China average annual economic drought damages were projected to decrease in the first 

half of the 21st century, declining by 74% and 17% for SPI-6 and SPI-12 drought events 

respectively.  This represents an annual decline in drought losses from 883 million US$ in 
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1955-2002 to 220-245 million US$ in 2003-2050 for SPI-6 drought events, and from 579 

million US$ in 1955-2002 to 436-540 million US$ in 2003-2050 for SPI-12 drought events. 

There is good consistency across the six scenarios for both SPI-6 and SPI-12 drought 

events, with all scenarios resulting in a decline in economic damages. Figure 5.1 shows that 

the range in results is also very small which can be explained by the fact that only one future 

drought event was visible in the SPI-6 and SPI-12 data for all scenarios (shown in tables 4.2 

and 4.3). Similarly, mean precipitation was projected to increase in India in the first half of 

the 21st century with drought events projected to decline. Drought events of a severe or 

extreme nature were only projected to occur using the GCM CSIRO2 and for the SPI-6 time-

period (tables 4.2 and 4.3), hence the small range seen in figure 5.1. Average annual 

economic drought damages in India were projected to decrease by 87% and 100% for SPI-6 

and SPI-12 drought events respectively.  This represents a decline in annual drought losses 

from 71 million US$ in 1955-2002 to between 0-28 million US$ in 2003-2050 for SPI-6 

drought events, and from 16 million US$ in 1955-2002 to zero costs in 2003-2050 for SPI-12 

drought events. 

 

Results for Spain suggest that average annual economic drought damages could increase 

by 300% for SPI-6 droughts and by 92% for SPI-12 droughts. In a worst case scenario 

annual drought losses may increase from 330 million US$ in 1955-2002 to 1.8bn US$ in 

2003-2050 for SPI-6 drought events, and from 375 million US$ in 1955-2002 to 1.1bn US$ in 

2003-2050 for SPI-12 drought events. There is good consistency across the six scenarios for 

both SPI-6 and SPI-12 drought events, with all scenarios resulting in an increase in 

economic damages for the region. The use of annualised data hides some significant 

variability in the economic damages of individual drought events. For example the largest 

magnitude events identified in the SPI data were estimated to cost Spain 25.5bn US$ for 

SPI-6 droughts and 26.9bn US$ for SPI-12 droughts, reflecting approximately 4% of the 

country’s GDP (in 2002). These values are significantly larger than the historic estimates of 

drought damages reported by EM-DAT, with the most expensive drought on record 

estimated to have cost Spain 5.9bn US$. Similarly, average annual economic damages are 

projected to increase in Portugal by 69% for SPI-6 droughts and by 38% for SPI-12 

droughts. The average percentage change in annual drought damages are higher for SPI-6 

drought events for both Spain and Portugal, compared to SPI-12 drought events, due to the 

higher frequncy of SPI-6 drought events. 

 

In the USA, average annual economic damages are projected to increase for both SPI-6 and 

SPI-12 drought events, increasing by 87% and 105% respectively.  In a worst-case scenario 

the results suggest that annual drought losses may increase from 5bn US$ in 1955-2002 to 
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17.5bn US$ in 2003-2050 for SPI-6 drought events, and from 35bn US$ in 1955-2002 to 

119bn US$ in 2003-2050 for SPI-12 drought events. Additionally, as the shape of the 

drought damage function for the USA was non-linear the costs estimated for exceptionally 

large magnitude events have a big effect on the annual estimates. Presenting results as 

annual losses masks such variability in the scale of individual drought events. The analysis 

highlights that the largest magnitude individual drought events could cost the US economy 

around 392bn US$ for SPI-6 drought. In comparison, the drought event in 1980-81 which 

affected central and eastern parts of the USA resulted in estimated economic losses of 

~208bn US$ (EM-DAT, 2010). Thus, economic damages of individual drought events may 

be devastatingly high under future climate change. The largest magnitude SPI-12 drought 

event was projected to cost 5,455bn US$, equivalent to 50% of US GDP. In contrast the 

same drought event was estimated to cost 920bn US$ if a linear damage function was 

assumed. As was the case for Australia, this suggests that economic damages of drought 

events at the extreme end of the range may be over-estimated. This issue appears 

particularly pronounced when using a non-linear damage function as it is assumed that the 

trend identified would remain constant for drought events outside the range of historical 

experience. 

 

Tables 5.1 and 5.2 show the estimated annual SPI-6 and SPI-12 drought costs for the 

observed (1955-2002) and future (2003-2050) periods, for each country and 

climate/emission scenario. Results in orange font highlight an increase in drought costs from 

the baseline period and results in blue font highlight a decrease in drought costs from the 

baseline. The tables highlight the large range in results gained using different GCMs 

compared to the similarities in results across the two emission/stabilisation scenarios.  
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Country 
Emission 
Scenario 

GCM 

Estimated 
Annual Drought 

Cost  
(2002 US$ 

000’s)
 

Absolute Change 
in Annual Drought 

Cost from 
observed to 2003-
2050 (2002 US$ 

000’s) 

Percentage 
change in Annual 

Drought Cost 
from observed to 
2003-2050 (2002 

US$ 000’s) 

Australia 

Observed  -- 1,030,619 -- -- 

A1FI  
(2003-2050) 

ECHAM4 2,691,787 1,661,167 161% 

HADCM3 1,597,934 567,315 55% 

CSIRO2 905,399 -125,220 -12% 

450ppm 
(2003-2050) 

ECHAM4 3,123,693 2,093,074 203% 

HADCM3 1,626,592 595,973 58% 

CSIRO2 910,129 -120,490 -12% 

China 

Observed -- 882,617 -- -- 

A1FI 
(2003-2050) 

ECHAM4 242,293 -640,324 -73% 

HADCM3 220,506 -662,111 -75% 

CSIRO2 225,876 -656,740 -74% 

450ppm 
(2003-2050) 

ECHAM4 244,817 -637,799 -72% 

HADCM3 221,337 -661,279 -75% 

CSIRO2 225,726 -656,891 -74% 

India 

Observed -- 70,720 -- -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 -100% 

HADCM3 0 0 -100% 

CSIRO2 28,011 -42,710 -60% 

450ppm 
(2003-2050) 

ECHAM4 0 0 -100% 

HADCM3 0 0 -100% 

CSIRO2 28,022 -42,698 -60% 

Portugal 

Observed -- 376,195 -- -- 

A1FI 
(2003-2050) 

ECHAM4 824,232 448,037 119% 

HADCM3 698,521 322,325 86% 

CSIRO2 406,433 30,237 8% 

450ppm 
(2003-2050) 

ECHAM4 802,666 426,470 113% 

HADCM3 665,850 289,655 77% 

CSIRO2 406,173 29,978 8% 

Spain 

Observed -- 329,655 -- -- 

A1FI 
(2003-2050) 

ECHAM4 1,790,998 1,461,343 443% 

HADCM3 1,678,716 1,349,061 409% 

CSIRO2 672,134 342,479 104% 

450ppm 
(2003-2050) 

ECHAM4 1,640,530 1,310,875 398% 

HADCM3 1,457,221 1,127,566 342% 

CSIRO2 671,118 341,463 104% 

USA 

Observed -- 5,011,213 -- -- 

A1FI 
(2003-2050) 

ECHAM4 6,340,576 1,329,363 27% 

HADCM3 4,511,781 -499,432 -10% 

CSIRO2 17,558,660 12,547,447 250% 

450ppm 
(2003-2050) 

ECHAM4 6,569,432 1,558,219 31% 

HADCM3 4,494,265 -516,948 -10% 

CSIRO2 16,774,378 11,763,165 235% 

Table 5.1: Economic estimates of future SPI-6 drought events. Results in orange symbolise 

an increase in drought costs, results in blue symbolise a decrease in drought costs from the 

baseline. Economic damages are in 2002 US$ (000’s). 
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Country 
Emission 
Scenario 

GCM 

Estimated 
Annual Drought 

Cost  
(2002 US$ 

000’s)
 

Absolute Change 
in Annual Drought 

Cost from 
observed to 2003-
2050 (2002 US$ 

000’s) 

Percentage 
change in Annual 

Drought Cost 
from observed to 
2003-2050 (2002 

US$ 000’s) 

Australia 

Observed  -- 1,956,644 -- -- 

A1FI  
(2003-2050) 

ECHAM4 33,717,025 31,760,381 1623% 

HADCM3 2,877,107 920,463 47% 

CSIRO2 1,560,497 -396,147 -20% 

450ppm 
(2003-2050) 

ECHAM4 35,152,379 33,195,735 1697% 

HADCM3 3,132,850 1,176,207 60% 

CSIRO2 1,623,617 -333,027 -17% 

China 

Observed -- 578,869 -- -- 

A1FI 
(2003-2050) 

ECHAM4 537,897 -40,972 -7% 

HADCM3 443,118 -135,751 -23% 

CSIRO2 468,667 -110,202 -19% 

450ppm 
(2003-2050) 

ECHAM4 540,264 -38,605 -7% 

HADCM3 435,655 -143,214 -25% 

CSIRO2 468,028 -110,840 -19% 

India 

Observed -- 16,111 -- -- 

A1FI 
(2003-2050) 

ECHAM4 0 0 -100% 

HADCM3 0 0 -100% 

CSIRO2 0 0 -100% 

450ppm 
(2003-2050) 

ECHAM4 0 0 -100% 

HADCM3 0 0 -100% 

CSIRO2 0 0 -100% 

Portugal 

Observed -- 213,635 -- -- 

A1FI 
(2003-2050) 

ECHAM4 306,042 92,407 43 

HADCM3 316,702 103,067 48 

CSIRO2 140,271 -73,364 -34 

450ppm 
(2003-2050) 

ECHAM4 471,563 257,928 121 

HADCM3 400,069 186,434 87 

CSIRO2 135,873 -77,762 -36 

Spain 

Observed -- 374,575 -- -- 

A1FI 
(2003-2050) 

ECHAM4 919,643 545,068 146 

HADCM3 780,950 406,375 108 

CSIRO2 354,799 -19,776 -5 

450ppm 
(2003-2050) 

ECHAM4 1,071,282 696,707 186 

HADCM3 825,978 451,404 121 

CSIRO2 353,915 -20,660 -6 

USA 

Observed -- 35,811,162 -- -- 

A1FI 
(2003-2050) 

ECHAM4 7,243,484 -28,567,678 -80% 

HADCM3 93,896,437 58,085,275 162% 

CSIRO2 118,451,286 82,640,124 231% 

450ppm 
(2003-2050) 

ECHAM4 7,243,078 -28,568,085 -80% 

HADCM3 93,961,890 58,150,728 162% 

CSIRO2 119,463,443 83,652,281 234% 

Table 5.2: As table 5.1 but for SPI-12 drought events. 

 

 

Table 5.3 presents average annual economic drought damages as a percentage of each 

country’s GDP (with minimum and maximum values in brackets), based on economic data 

from the World Bank (2010). Losses are particularly severe for SPI-12 droughts in Australia, 
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which cause average losses equivalent to 3.38% of the country’s GDP, or 9.13% of GDP in 

a worst-case scenario. Losses in Portugal are projected to be large, costing on average 

0.53% and 0.25% of GDP annually for SPI-6 and SPI-12 droughts respectively. Losses for 

the USA differ between SPI time-periods with average economic losses of 0.09% for SPI-6 

droughts and 0.71% for SPI-12 droughts. Losses that are more substantial are seen using 

the SPI-12 time-period with losses in the worst-case scenario reaching 1.15% of the 

country’s GDP. However, projected economic losses for SPI-12 droughts in Australia and 

the USA must be used with caution due to the potential issues of over-estimation of 

damages as mentioned above. For comparative purposes, estimates for the USA and 

Australia generated using hypothetical linear damage functions are also displayed in table 

5.3. 

 

Country 

Average annual % loss of GDP 
from future drought events  

(min, max) 

SPI-6 SPI-12 

Australia 
0.47 

(0.24, 0.81) 
3.38 

(0.41, 9.13) 

Australia 
(linear) 

0.43 
(0.27, 0.65) 

0.46 
(0.16, 0.85) 

China 
0.02 

(0.02, 0.02) 
0.03 

(0.03, 0.04) 

India 
0.002 

(0.00, 0.01) 
0.00 

(0.00, 0.00) 

Portugal 
0.53 

(0.34, 0.69) 
0.25 

(0.11, 0.34) 

Spain 
0.20 

(0.10, 0.27) 
0.11 

(0.05, 0.16) 

USA 
0.09 

(0.04, 0.17) 
0.71 

(0.07, 1.15) 

USA (linear) 
0.10 

(0.07, 0.16) 
0.16 

(0.06, 0.23) 

Table 5.3: Average annual economic drought damages in 2003-2050 as a percentage of 

country GDP (in 2002 US$). Numbers in brackets represent the minimum and maximum 

range. Results in green font for Australia and the USA are estimated using linear, rather than 

non-linear, damage functions. 

 

 

Additionally, the average annual economic drought losses are summed across the six 

countries analysed and compared to global GDP. Figure 5.2 displays the losses from the six 

countries as a percentage of global GDP for SPI-6 and SPI-12 droughts, and for each of the 

scenarios. For comparison, the dotted lines represent the average annual drought losses as 
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a percent of global GDP calculated for 1955-2002 for SPI-6 and SPI-12 drought events. The 

graph shows that for SPI-6 droughts economic losses in the six countries assessed, for 

1955-2002, are equivalent to 0.02% of global GDP. This increases under all the climate 

change scenarios, ranging from 0.03% to 0.06% of global GDP in 2002. Economic costs for 

SPI-12 drought events during 1955-2002 are equivalent to 0.12% of global GDP. This also 

increases under the climate change scenarios ranging from 0.13% to 0.37% of global GDP 

in the future. The results highlight that drought events across the six countries are expected 

to have an increasingly negative impact on global GDP in the first half of the 21st century, 

potentially costing 122bn US$ on average a year in a worst case scenario. The benefits of 

reduced drought effects seen in India and China are outweighed by the increasing economic 

damages in Australia, Spain, Portugal and the USA, with all scenarios resulting in greater 

losses as a proportion of global GDP compared to the 1955-2002 period. 

 

  

Figure 5.2: Average annual direct economic costs of SPI-6 and SPI-12 drought events in 

Australia, China, India, Portugal, Spain, and the USA presented as a percentage of global 

GDP (2002 US$), for various scenarios. The dotted lines represent the 1955-2002 losses for 

both SPI-6 (red) and SPI-12 (blue) drought events as a comparison. 

 

 

Importantly, figure 5.2 represents economic drought losses for six countries only as a 

proportion of global GDP. It was not considered feasible to extrapolate the estimates of 

economic drought costs for the six countries assessed to other countries to provide a truly 

global estimate as the above results were generated based on country specific drought 

impact data, and regional projections of future precipitation. Nevertheless, considering 

drought effects under future climate change to just a handful of countries still results in 

noticeable effects on global GDP. 
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Whilst few studies aim to assess the global economic effects of climate change on extreme 

weather events, Stern (2007) reported that extreme weather events would cause additional 

losses of 0.5-1.0% of world GDP by 2050 (above changes in wealth and inflation). This 

estimate was assumed to cover all types of extreme weather events across the entire globe.  

Whilst there is much argument as to the validity of this estimate (see section 2.4.2), it is used 

for comparative reasons in this study due to a lack of other global indicators specifically 

focused on extreme weather events. In comparison, the results presented in figure 5.2 

indicate that severe and extreme SPI-6 and SPI-12 drought events alone could cause 

additional losses to global GDP of 0.01% to 0.25% annually. These losses are lower than 

estimated by Stern, but they reflect drought losses only (compared to multiple extreme 

weather types), and as discussed above they reflect losses to six countries only (compared 

to Stern who provided a global estimate). As such, it is highly possible that if the estimates of 

economic drought damages were made for more countries then this could substantially 

increase the estimate of Stern for total global costs of extreme weather events under future 

climate change. The limitations of the methodology in terms of estimating global economic 

drought damages are discussed in more depth in section 5.3 below. 

 

Comparatively, figure 5.3 displays the losses from the six countries as a percentage of 

global GDP for SPI-6 and SPI-12 droughts, for each of the scenarios, using the damages 

estimated for Australia and the USA using the hypothetical linear drought damage functions. 

In this example, losses as a proportion of global GDP still increase from 1955-2002 to 2003-

2050 for SPI-6 droughts under all scenarios. Economic costs for SPI-12 drought events also 

increase in the future using the GCMs HADCM3 and CSIRO2, although costs are less 

significant than presented in figure 5.2. However, estimated losses from SPI-12 drought 

events in 2003-2050 actually decrease compared to 1955-2002 using the GCM ECHAM4. 

This again highlights the importance of the shape of the drought damage function when 

estimating future drought costs, as well as the variability in results generated using different 

climate change models. Implications for this study of the shape of the damage functions and 

the assumption that the trends will remain unchanged over time are discussed in more detail 

in section 5.3 below. 
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Figure 5.3: As figure 5.2 but economic damages for Australia and the USA are estimated 

using linear rather than non-linear damage functions. 

 

 

5.2.2 Social drought effects 

The social drought damage functions presented in chapter three for lives affected and lives 

lost (figures 3.4 and 3.5) were generally not as robust as the economic damage functions. 

Less social impact data was available in EM-DAT on which to base trends and for Australia, 

Portugal and Spain no social damage functions were created at all. It was also hypothesised 

that external factors would be influential on the numbers of lives affected and lost during a 

drought, in addition to the magnitude of the event. However, this section aims to provide an 

illustrative example of the potential application of the social drought damage functions for 

those countries where relationships between drought magnitude and social impact data were 

identified. Estimates of the numbers of lives affected by drought under future climate change 

are presented for Brazil and Ethiopia. Estimates of the numbers of lives lost due to drought 

under future climate change are provided for the USA. Additionally, as estimates of 

economic drought damages could not be made for Brazil and Ethiopia it is interesting to 

assess the social consequences for these countries, and provide some indication of the 

effects that may be felt using different metrics. 

 

Figure 5.4 presents the average annual number of people affected by severe and extreme 

drought events in Brazil and Ethiopia estimated for 1955-2002 and 2003-2050. The results 

presented for 2003-2050 are representative of the average value taken across the six 

climate/emission scenarios. The results used to generate figure 5.4 and discussed below are 

presented in tables 5.4 and 5.5 for SPI-6 and SPI-12 droughts respectively. The data tables 
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provide the estimated annual numbers of lives affected, the absolute change in the number 

of lives affected from 1955-2002 to 2003-2050, and the percentage change in lives affected. 

 

 

Figure 5.4: Estimates of the annual number of people affected by SPI-6 and SPI-12 drought 

events in 1955-2002 and 2003-2050 for Brazil and Ethiopia. 

 

 

In Brazil under future scenarios of climate change there is a large increase in the number of 

lives affected annually by drought. For SPI-6 the number of lives affected annually increases 

from 2.8 million people to 12.2 million people, an increase of 334%. For SPI-12 the number 

of lives affected annually increases from 2.5 million people to 8.1 million people, an increase 

of 230%. Whilst the changes in drought characteristics for Brazil presented earlier (tables 4.2 

and 4.3) showed a larger increase in the magnitude of SPI-12 droughts compared to SPI-6 

droughts, SPI-6 droughts are projected to occur more frequently which results in a larger 

number of lives being affected annually. The population of Brazil in 2002 was ~179 million 

(World Bank, 2010), as such ceteris paribus the effect of climate change on future drought 

events in the first half of the 21st century could potentially affect 4.5 to 6.8% of Brazils 

population annually. 

 

The social effects of drought events projected for Ethiopia are less severe compared to 

those seen in Brazil, as precipitation in Ethiopia is projected to increase rather than decrease 

in the first half of the 21st century. Results indicate different directions in the change in trends 

depending on the SPI time-period used. For SPI-6 droughts less people are affected 

annually in the first half of the 21st century with 506,000 people affected compared to 

548,000 people in 1955-2002. For SPI-12 droughts 1.2 million people are affected annually 

compared to 1 million people in 1955-2002. Ethiopia’s population in 2002 was reported as 
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~69 million (World Bank, 2010) therefore ceteris paribus drought events in the first half of the 

21st century could potentially affect 1.7% of Ethiopia’s population annually in a worst-case 

scenario. 

 

Country 
Emission 
Scenario 

GCM 

Estimated 
number of lives 

affected 
annually 

(2002 
population) 

(000’s)
 

Absolute change 
in number of lives 
affected annually 
from observed to 
2003-2050 (2002 

population) 
(000’s) 

Percentage change 
in number of lives 
affected annually 
from observed to 
2003-2050 (2002 
population) (000’s) 

Brazil 

Observed  -- 2,810 -- -- 

A1FI  
(2003-2050) 

ECHAM4 8,157 5,347 190% 

HADCM3 16,683 13,873 494% 

CSIRO2 3,175 365 13% 

450ppm 
(2003-2050) 

ECHAM4 12,844 10,034 357% 

HADCM3 29,227 26,417 940% 

CSIRO2 3,190 380 14% 

Ethiopia 

Observed -- 548 -- -- 

A1FI 
(2003-2050) 

ECHAM4 0 -548 -100% 

HADCM3 0 -548 -100% 

CSIRO2 1,428 880 160% 

450ppm 
(2003-2050) 

ECHAM4 0 -548 -100% 

HADCM3 0 -548 -100% 

CSIRO2 1,607 1,059 193% 

Table 5.4: Number of lives affected annually by SPI-6 drought events. Results in orange 

symbolise an increase in drought effects, results in blue symbolise a decrease in drought 

effects from the baseline. Lives affected are in 000’s normalised to 2002 population. 

 

 

Country 
Emission 
Scenario 

GCM 

Estimated 
number of lives 

affected 
annually 

(2002 
population) 

(000’s)
 

Absolute change 
in number of lives 
affected annually 
from observed to 
2003-2050 (2002 

population) 
(000’s) 

Percentage change 
in number of lives 
affected annually 
from observed to 
2003-2050 (2002 
population) (000’s) 

Brazil 

Observed  -- 2,462 -- -- 

A1FI  
(2003-2050) 

ECHAM4 5,802 3,340 136% 

HADCM3 11,439 8,977 365% 

CSIRO2 2,002 -461 -19% 

450ppm 
(2003-2050) 

ECHAM4 9,511 7,048 286% 

HADCM3 18,019 15,557 632% 

CSIRO2 2,031 -431 -18% 

Ethiopia 

Observed -- 1,022 -- -- 

A1FI 
(2003-2050) 

ECHAM4 0 -1,022 -100% 

HADCM3 553 -469 -46% 

CSIRO2 3,167 2145 210% 

450ppm 
(2003-2050) 

ECHAM4 0 -1,022 -100% 

HADCM3 539 -484 -47% 

CSIRO2 3,217 2195 215% 

Table 5.5: As table 5.4 but for SPI-12 drought events. 
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Secondly, the effect of climate change on drought regimes and the numbers of lives lost are 

investigated for the USA. The social drought damage function created for the USA 

highlighted very good correlation between the number of lives lost and the drought 

magnitude of historical events (figure 3.5c) suggesting that drought magnitude has 

historically had a large influence on the number of lives lost. Figure 5.5 presents the average 

annual number of lives lost from drought events in the USA for 1955-2002 and for 2003-

2050. The results presented for 2003-2050 represent the average value taken across the six 

emission/climate scenarios. The results used to generate figure 5.5 and discussed below are 

presented in tables 5.6 and 5.7 for SPI-6 and SPI-12 droughts respectively. 

 

 

Figure 5.5: Estimates of the average annual number of lives lost from SPI-6 and SPI-12 

drought events in the USA for 1955-2002 and 2003-2050. 

 

 

Figure 5.5 indicates that effects of climate change on drought events may cause an increase 

in drought related deaths in the USA in 2003-2050 for both SPI-6 and SPI-12 droughts. The 

annual number of lives lost is projected to rise from 550 people per year to 701 people per 

year using SPI-6, and from 951 people per year to 1,002 people per year using SPI-12. This 

represents an increase of 27% and 5% respectively. Compared to the size of the population 

of the USA (reported as ~304 million people in 2002 (World Bank, 2010)) this change may 

seem negligible, however it still represents an additional 50 to 150 deaths per year over 

2003-2050 due to the effects of climate change on drought regimes. It is very difficult to 

clarify from the EM-DAT database, and wider literature, the specific circumstances for lives 

lost during drought in the USA. As previously discussed in section 3.3 primary factors appear 

to be deaths due to heat stress, or indirectly due to wildfires. Therefore estimates of drought 

related deaths are likely to represent more complex interactions between drought, 



                                                                                                                                                  Chapter 5 

 

 

123 

 

heatwaves, forest fires, air quality, society and environmental conditions. Although 

potentially confounding events such as more intense or frequent heatwaves are not 

specifically modelled here Meehl and Tebaldi (2004) highlight that many areas currently 

susceptible to heatwaves are likely to experience the greatest increases in heatwave 

severity in the future. Additionally, areas not currently susceptible to heatwave, which are at 

risk in the future, may be more vulnerable as they are not currently so well adapted to 

heatwaves. As such, these issues may exaggerate the above estimates of drought effects 

on society. 

 

Conversely, it was stated in the introduction that global trends in the numbers of lives lost 

from drought events have been steadily declining over the 20th and early 21st century (EM-

DAT, 2010). This decline may in part be related to adaptive capacity of society, possibly due 

to greater wealth, increasing technological options such as early warning systems and 

drought resistant crops, and quick government, international and aid agency responses in 

the event aftermath. Such issues are not considered here which may result in the 

overestimation of losses to life. However, it is also important to consider that climate change 

may cause increases in drought magnitude beyond current levels of human experience, 

which could surpass current levels of resilience and adaptability.   

 

Country 
Emission 
Scenario 

GCM 

Estimated 
number of lives 

lost annually 
(2002 

population) 
(000’s)

 

Absolute change 
in number of lives 

lost  annually 
from observed to 
2003-2050 (2002 

population) 
(000’s) 

Percentage change 
in number of lives 
lost annually from 
observed to 2003-

2050 (2002 
population) (000’s) 

USA 

Observed  -- 550 -- -- 

A1FI  
(2003-2050) 

ECHAM4 575 25 5% 

HADCM3 502 -48 -9% 

CSIRO2 1,085 535 97% 

450ppm 
(2003-2050) 

ECHAM4 582 32 6% 

HADCM3 503 -47 -9% 

CSIRO2 958 408 74% 

Table 5.6: Annual number of lives lost from SPI-6 drought events. Results in orange 

symbolise an increase in drought effects, results in blue symbolise a decrease in drought 

effects from the baseline. Lives lost are in 000’s normalised to 2002 population. 
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Country 
Emission 
Scenario 

GCM 

Estimated 
number of lives 

lost annually 
(2002 

population) 
(000’s)

 

Absolute change 
in number of lives 

lost  annually 
from observed to 
2003-2050 (2002 

population) 
(000’s) 

Percentage change 
in number of lives 
lost annually from 
observed to 2003-

2050 (2002 
population) (000’s) 

USA 

Observed  -- 951 -- -- 

A1FI  
(2003-2050) 

ECHAM4 388 -563 -59% 

HADCM3 1,160 209 22% 

CSIRO2 1,452 501 53% 

450ppm 
(2003-2050) 

ECHAM4 391 -560 -59% 

HADCM3 1,163 212 22% 

CSIRO2 1,457 506 53% 

Table 5.7: As table 5.6 but for SPI-12 drought events 

 

5.3 Discussion 

The chapter presents estimates of the economic and social effects of severe and extreme 

drought events under future climate change, based on the drought damage functions and 

future drought magnitude presented in chapters three and four. Economic damages were 

estimated for Australia, China, India, Portugal, Spain and the USA. The results suggest the 

effects of climate change on drought events are likely to cause negative economic damages 

for Australia, Portugal, Spain and the USA. Economic estimates for China and India suggest 

that both countries would benefit economically from a reduction in drought frequency and 

magnitude due to an intensification of their precipitation regimes. The effect of climate 

change on precipitation regimes in China is beneficial in regards to the mitigation of severe 

and extreme drought events and the economic damages they impose, which has also been 

noted by other authors (e.g. Chen and Sun, 2009). However, when damages are summed 

across the six countries and represented as a percentage of global GDP the reduction in 

economic damages seen in China and India are outweighed by increasing costs in other 

countries. There is consensus across the six scenarios, and for both SPI-6 and SPI-12 time-

periods, that climate change in the first half of the 21st century results in greater annual 

losses to global GDP due to drought than during 1955-2002. The results presented in figure 

5.2 indicate that severe and extreme SPI-6 and SPI-12 drought events could cause 

additional losses to global GDP of 0.01% to 0.25% annually. 

 

Whilst economic benefits from climate change, in the context of drought mitigation, are 

projected for China and India, the study also highlights the increased likelihood of heavy 

precipitation events for these countries. This study does not directly aim to analyse or 

quantify heavy precipitation events but the SPI does provide a measure of above average 

precipitation. Therefore, for these countries it could be postulated that under future climate 
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change increased precipitation and increased variability of precipitation may lead to more 

frequent and/or severe flood events, causing increased economic damages. Some studies 

do present evidence of an increased risk of flooding under future climate change (Milly et al., 

2002, Pall et al., 2011). However, to address flood events in detail would require a more 

spatially explicit assessment of changes in precipitation regimes, regional topography, 

catchment areas, river characteristics, and land-use types. Such a methodology could form a 

useful extension to this research in the future. Consequently, the economic estimate 

presented above do not incorporate the possibility that a region or country may become 

increasingly vulnerable due to compounding impacts from interactions with other extreme 

weather events such as floods. For example, a flood event may precede a drought event, so 

that the drought will affect an already vulnerable society potentially resulting in larger 

damages, or a flood may follow a drought event affecting the ability and time-scale of the 

region to recover from the drought in the longer-term. 

 

The findings suggest that in the USA the number of people killed annually by drought events, 

and their compounding effects, is set to increase over the first half of the 21st century. Based 

on past trends the effect of worsening drought conditions on lives lost would be expected to 

be greater for less developed countries, but unfortunately, a lack of historical impact data 

impeded such an assessment. Importantly the result illustrates that increasing drought 

magnitude can cause additional loss of life even in developed countries. Similarly, whilst 

economic costs could not be estimated for Brazil the effect of changing drought magnitude 

on the number of people affected annually was projected to increase significantly. The 

analysis suggests that 4-6% of Brazil’s population could be affected annually by drought 

under future scenarios of climate change. This has major implications for the future 

assessment and management of drought risk in Brazil, especially as the largest effects to 

society are likely to be felt in the poorer northeast region, where people are more dependent 

on subsistence farming and agriculture. These results highlight an interesting dichotomy in 

the risk of future drought depending on whether an economic or social metric is used. The 

metric used to quantify the effects will also have implications for the type of drought 

response or adaptation measures suggested. 

 

The effect of climate change on future drought magnitude and subsequently the number of 

people affected in Ethiopia was more variable. It was projected that Ethiopia would suffer 

smaller magnitude drought events, on average, under future climate change with SPI-6 

droughts projected to affect less people annually. SPI-12 droughts were projected to affect 

slightly more people annually due to larger variability in the magnitude of individual drought 

events. Consequently, changes in the variability of precipitation can result in large drought 
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effects even when mean precipitation is expected to increase. As such, certain countries and 

regions may become more vulnerable to both drought and heavy precipitation events. 

 

The range in economic costs estimated for each country (figure 5.1) is attributed to the 

different GCMs used. Whilst there was some uncertainty in the direction of the trend for SPI-

6 and SPI-12 droughts in Australia and the USA, and for SPI-12 droughts in Portugal, the 

size of potential economic losses seen outweigh any potential benefits. This suggests that if 

these losses are to be avoided, a precautionary approach should be taken towards 

mitigating and adapting to future drought events. Although, it should be noted that the 

average drought effects estimated for each country (represented in figure 5.1 by black 

crosses) can be significantly different from the median value as a small number of events of 

large magnitude can skew the average and make it appear much higher. Figure 5.2 also 

highlights that annual losses to global GDP from drought events in Australia, China, India, 

Portugal, Spain and the USA increase under climate change in 2003-2050, even considering 

the positive benefits seen in India and China. Conversely, the use of different emission 

scenarios has less influence on the economic estimates for the first half of the 21st century. 

Stringent mitigation, as implied by the use of the 450ppm CO2 scenario, does not reduce 

economic costs of drought events in the short to medium term. Although It is difficult to 

establish the water related consequences of climate policies and emission scenarios with 

high accuracy and credibility (Kundzewicz et al., 2008), this will have consequences for the 

way in which countries adapt to, and manage, future drought risk. It suggests a need for 

drought adaptation strategies to be implemented urgently to deal with unavoidable 

consequences. This urgent call for adaptation is also echoed by Kleinen and Petschel-Held 

(2007) when regarding impacts of climate change on future large scale flood events. 

 

Whilst the drought damage functions have proven to be functional tools in the estimation of 

economic and social drought effects it is very difficult to accurately assess the robustness of 

the results. Economic damages were estimated for 1955-2002 using the drought damage 

functions and could be compared to the economic data reported in EM-DAT. In total, the 

damage functions produced higher economic damages than suggested by EM-DAT data 

alone. This is not surprising as economic data was only available for 56% of the drought 

events reported in EM-DAT and used in this study. Furthermore, not all drought events seen 

in the precipitation record were included in EM-DAT due to the constraints of the database 

recording procedure (discussed in section 3.1.4). Alternatively, these results may also 

suggest that the method overestimates the potential economic damages in the baseline 

period, and future period. The study aimed to overcome this issue by ensuring that the same 

methodological approach was used for estimating drought damages from 1955-2002 and 
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from 2003-2050, so that the estimates are comparable over time. It would be interesting to 

evaluate how results of this study compare to loss estimates made using different 

methodologies. However, this requires more quantitative studies on future drought effects to 

be undertaken, contributing to this sparse area of research. 

 

The projected drought damages also differed depending on the SPI time period used. For 

example, for the USA annual economic damages of ~5bn US$ were projected for 1955-2002 

for SPI-6 drought events. This result is consistent with the estimate made in 1995 by FEMA 

that drought events resulted in average annual losses of 6-8bn US$ nationally (FEMA, 

1995).  Conversely, annual economic losses estimated using SPI-12 were 36bn US$ for 

1955-2002, over four times greater than the FEMA estimate. The FEMA estimate is reported 

to be very rough, based mainly on agricultural drought losses, and is likely to exclude 

economic losses associated with mega-drought events like that of the 1950s (Hayes et al., 

2004). Hence, even where quantitative estimates are provided in the literature there can still 

be much uncertainty over their reliability and robustness for validating projected estimates. 

However, it was found that for the largest magnitude SPI-12 drought events seen in the USA 

and Australia estimated damages were exceptionally high. This was linked to the use of non-

linear drought damage functions, resulting in drought damages rising disproportionally as 

drought magnitude increased. The influence of the shape of the drought damage function on 

economic estimates was illustrated in table 5.3, which provided comparative results for 

Australia and the USA assuming a linear damage function. This resulted in a lower estimate 

of future average annual drought damages for SPI-12 drought events in these countries.  

 

An important feature of this study was that the shape and scale of the damage functions 

were fitted to actual historical impact and climate data. Whilst this method has advantages, 

one drawback is that whilst projected drought magnitude and economic damages can 

increase indefinitely under the damage functions, in reality actual drought damages may be 

restricted by the specific characteristics of a region and the total value of assets at risk 

(Hallegatte, 2007). Furthermore, a key assumption in the analysis was that the shape and 

scale of the damage functions, calibrated to historical events, would remain unchanged 

when applied to future drought projections. However, the results presented in chapter four 

illustrated that the projected magnitude of individual drought events has the potential to 

exceed the range of magnitude seen for historical events. Thus, projections of future climate 

change, and increases in the magnitude and frequency of drought events, may cause socio-

economic thresholds to be exceeded, beyond which the magnitude of drought effects may 

increase rapidly (IPCC, 2007c). Consequently, past a certain threshold a linear damage 

function, for example, may become non-linear, causing substantially larger losses than 
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estimated in this study using the stationary drought damage functions. The results of using 

different shaped damage functions for Australia and the USA, discussed above, highlight 

how influential the shape of the drought damage functions are in terms of the estimates of 

economic and social losses.  

 

Similarly, tipping points may exist beyond which the magnitude of a drought is so severe that 

there is irreversible or systemic collapse of economies or catastrophic consequences for 

society. For example, a series of severe droughts may be so destructive to agriculture that 

the economy passes a threshold where agriculture is no longer a viable market. It is reported 

that subsistence farming in Africa could go from a meagre livelihood to no livelihood at all if 

temperature and evapo-transpiration increases, precipitation decreases or increased inter-

annual variability including extremes such as drought increase (IPCC, 2007c). As such, 

countries that already operate close to the threshold limit for agriculture may find themselves 

unable to grow crops in the future resulting in a complete shift in their economic structure. 

The economic structure of region or country may also change as farmers are force to switch 

farming practices, or the types of crops or cattle in which they may specialise, becoming 

more integrative or diverse (Seo, 2010).  The existence of such thresholds and tipping 

points, which are not considered in this analysis, would have large consequences for the 

scale of economic and social drought effects. As mentioned previously (section 3.4) there is 

the potential for estimates of tipping points, in terms of socio-economic effects, to be 

hypothesised from the existing drought damage functions. For example, the level of drought 

magnitude, above which would result in economic losses of a given percentage of a 

countries’ GDP deemed as unsustainable or unacceptable, could be used to define the 

tipping point for unacceptable drought risk. 

 

A second key assumption in the analysis was that socio-economic conditions also remained 

static for future projections. Whilst the justification for this methodological approach was 

discussed previously (section 5.1), there are also implications in terms of future tipping 

points as human interactions alone, which may change under future socio-economic 

development, can increase vulnerability to drought. For example, simulations of Amazon 

deforestation typically generate a decline in precipitation of ~20-30%, lengthening the dry 

season and increasing summer temperature as a large fraction of the precipitation in the 

Amazon basin is recycled (Lenton et al., 2008). Indeed, Lenton et al., (2008) note that land-

use change alone could potentially bring the forest cover to a critical threshold. Thus, there 

is a complex interplay between society, economic development, land use change and the 

response of regional precipitation to anthropogenic climate change. Such complex 

interactions are not reflected by the drought damage functions. Likewise, economies and the 



                                                                                                                                                  Chapter 5 

 

 

129 

 

economic structure of regions and countries can also evolve over time, dependently and 

independently of climate. For example, Marangos and Williams (2005) note that drought in 

Australia has influenced the operations of primary producers and strongly impacted upon 

agricultural investment, with the government investing little in agricultural infrastructure to 

help restore the sector and return it to pre-drought conditions. Thus, future vulnerability to 

drought will be related to the specific characteristics of a region’s economy at a given point in 

time, which may be very different from today. However, the potential implications of 

changing economic conditions and structures are not reflected in the estimates made using 

the drought damage functions. 

 

Furthermore, the study does not consider the levels of socio-economic interferences such as 

irrigation, extraction of groundwater, or other drought management or adaptation strategies 

that may have mediated drought effects in some countries in the past, or how these may 

change in the future and influence drought effects on economies and society (as previously 

discussed in section 3.4). Whilst government and institutional intervention may reduce 

drought losses (e.g. Buizer et al., 2000) there is also the potential for an additional threshold 

to exists in terms of adaptability. For example, in the short-term effects of drought may be 

mitigated through increased used of ground water or irrigation systems. Yet, the ability to 

use such mechanisms under increasingly severe and frequent droughts may reach a 

threshold in the future beyond which the processes themselves, or the levels of investment, 

are no longer viable or sustainable (Sheffield and Wood, 2011).  

 

Other limitations to consider when interpreting the economic estimates include the potential 

for certain countries (e.g. Spain and Portugal) to suffer from increasingly long duration and 

successive drought events. As such, the effect of successive drought events on an economy 

that may already have been weakened by preceding events has the potential to be larger 

than the economic estimates of this study, which focuses on the effects of individual drought 

events on a static economy assumed to be in equilibrium prior to drought. The exclusion of 

such dynamics is likely to result in an underestimation of the economic estimates reported 

above. Additionally, the results presented in this chapter represent direct economic losses 

only (the type and potential severity of indirect economic drought losses are explored in 

more detail in the following chapter). Whilst effects of drought on society have been 

quantified, they have not been monetised or incorporated within the economic estimates and 

the potential for social effects to interact with and compound economic losses (e.g. through 

migration of labour or reduced productivity) has not been analysed. In estimating socio-

economic drought risk, it is also assumed that the drought magnitude is the only factor 

involved (i.e. the spatial and temporal drought extent and intensity). Yet, many other factors, 
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sensitive to climate change in their own right, can influence the type and severity of drought 

related effects such as temperature; preceding soil moisture levels; land-use; the type of 

agricultural crops grown in the affected area; and as mentioned above pre-existing societal 

and economic vulnerabilities. 

 

5.4 Summary 

The chapter presents estimates of the economic and social effects of drought events for 

various countries in the first half of the 21st century. The frequency and magnitude of drought 

events is projected to increase for certain countries, increasing the likelihood of events 

causing severe economic costs. Australia, Portugal, Spain and the USA were all highlighted 

as countries at risk from increasingly high drought damages. In Brazil, the number of people 

affected annually by drought is likely to rise considerably under future projections of climate 

change. The number of annual drought related deaths is set to increase in the USA. Even 

countries that are projected to benefit economically and socially from changing drought 

regimes are not risk free, as the analysis suggests that these areas are likely to be affected 

by heavy precipitation events, and potentially increased flood risk, in the future. This could 

cause equally disastrous consequences although these losses have not been quantified by 

this study.  

 

Total economic damages from drought in Australia, China, India, Portugal, Spain and the 

USA, as a proportion of global GDP, are projected to increase under all scenarios for the first 

half of the 21st century compared to 1955-2002. The results presented in figure 5.2 indicate 

that severe and extreme SPI-6 and SPI-12 drought events could cause additional losses to 

global GDP of 0.01% to 0.25% annually. Whilst the cost of drought to global GDP may 

appear small, it is important to remember that these damage estimates are considered 

conservative as the analysis is representative of six countries only; the estimates do not 

incorporate the possibility of successive drought events, or compounding effects on 

vulnerability from interactions with other extreme events such as floods. Additionally, the 

global economic estimates exclude indirect economic effects, and social and environmental 

consequences; the possibility of increasing vulnerability due to changing socio-economic 

conditions; and the possibility of irreversible or systemic collapse of economies as, under 

future climate change, drought magnitude may exceed current experience and surpass 

thresholds of social and economic resilience. 

 

 Yet, even just considering the direct economic damages from individual drought events on a 

handful of countries under future climate change still resulted in a noticeable effect on global 
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GDP. Furthermore, changes in drought magnitude and economic losses in the latter half of 

the 21st century would be expected to be significantly higher. Crucially, stringent mitigation 

does not reduce the projected effects of drought events on economies and societies in the 

first half of the 21st century. This is not to say that stringent mitigation is not effective in 

reducing the risk of climate change on drought, as it is likely to reduce future drought effects 

in the second half of the 21st century. However, this study does highlight the need for 

investment in adaptation strategies in the short to medium term to deal with drought risk in 

the most vulnerable areas. The study has highlighted that drought risk needs to be 

measured and understood in terms of both economic assets and effects on populations.  
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6. Indirect Economic Drought Costs 

The economic consequences of extreme weather events can be both direct and indirect. 

However, reported data on the costs of extreme weather events tend to reflect the more 

visible direct economic costs only. Consequently, damage estimates from extreme weather 

events are likely to underestimate the total economic cost to society. The literature review 

has highlighted that indirect economic drought costs have the potential to be large and 

widespread even if the initial event is localised and direct damages are modest. The above 

chapter has demonstrated a novel methodology for estimating the future direct economic 

damages of drought events. This chapter provides a preliminary investigation of the potential 

indirect economic effects that may occur during such drought events, through the application 

of a pre-existing I-O model to a case study of Spain. As such, the chapter aims to illustrate 

the importance of considering indirect drought effects within cost assessments, rather than 

providing a precise quantitative assessment. 

 

Section 6.1 outlines the Adaptive Regional Input-Output Model (ARIO) used. Section 6.2 

provides a description of the methodological approach for modelling indirect economic 

drought damages. It outlines the main issues considered when applying ARIO specifically to 

drought events, the modifications introduced to the ARIO model especially for this study, and 

the direct drought impact data and scenarios used. Section 6.3 presents the results of the 

exercise, including validation of the model output and a sensitivity analysis. Section 6.4 

discusses the main findings, and section 6.5 provides a summary of the chapter. 

 

6.1 The Adaptive Regional Input-Output Model (ARIO) 

Section 2.5 of the literature review identified I-O analysis as one of the main tools used in the 

assessment of indirect economic costs caused by sudden shocks to the economic system. 

The literature review highlighted that this methodological approach is advantageous due to 

its simplicity, and the explicit distinction made between direct and indirect economic costs. I-

O analysis has already been applied to the study of indirect costs from natural disasters, and 

more recently, extreme weather events. Numerous modifications have been documented 

within the published literature to address model limitations and account for the particular 

characteristics of natural disasters and the economic shocks they cause. 
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To investigate the potential importance of indirect economic losses caused by drought under 

future scenarios of climate change this study utilises the ARIO Model15, in a similar approach 

to that of Hallegatte et al., (2011) and Ranger et al., (2011). The ARIO model is able to 

capture the direct impact of a disaster on an economy by accounting for interactions 

between industries through supply and demand of intermediate consumption goods 

(Hallegatte, 2008). In equation 6.1, the I-O matrix is represented by A, which shows the 

quantity each sector is providing or buying from other sectors. Assuming equilibrium, 

production (Y) will be equal to the demand for intermediate goods and final demand (C). 

 

        

Eq.6.1 

 

In I-O analysis, direct and indirect effects on sectoral output caused by changes in final 

demand can be estimated using equation 6.2, termed the Leontief inverse matrix. The 

parameter Y would be the new production level, taking into account backward propagation 

as sectoral output is affected by a change in demand and assuming no constraints on 

production. 

 

  (   )    

Eq.6.2 

 

In the ARIO model direct effects on production capacity can also be modelled, as well as 

reconstruction of productive capital, which can cause additional demand to the 

manufacturing and construction sectors. The ARIO model also allows flexibility following a 

disaster as producers can increase production capacities; producers can import goods from 

regions outside the affected area when supply is limited; and goods can be rationed with 

intermediate consumers taking priority over final users. The ARIO model has also been 

recently extended to incorporate the use of inventories (i.e. goods and materials held in 

stock) to allow additional flexibility following a disaster. As such, the ARIO modelling 

approach provides a middle ground between I-O models and CGE models (Hallegatte, 

2011). Full details of the model structure, equations, and parameter values are described in 

Hallegatte (2008, pp.794-798), and Hallegatte (2011). 

 

The ARIO model has previously been used to assess the effects of Hurricane Katrina on the 

economy of Louisiana (Hallegatte, 2008); to assess coastal flood risk in Copenhagen under 

                                                
15 A copy of the ARIO model (version 3.6) was kindly provided by Stéphane Hallegatte, Météo-France. 
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future climate change (Hallegatte et al., 2011); and to assess terrestrial flood risk under 

future climate change in Mumbai (Ranger et al., 2011). Compared to actual economic data 

on production loss in the aftermath of Hurricane Katrina ARIO has been shown to provide 

realistic results, although it underestimates production losses in some sectors. This 

underestimation is linked to the fact that ARIO cannot accurately reproduce the economy in 

the immediate aftermath of a disaster. The ARIO model was also able to represent changes 

in employment, which is assumed proportional to production in each sector, in the disaster 

aftermath. This was verified by comparing the model results to actual labour statistics in 

Louisiana for 2005 and 2006. However, whilst the order of magnitude of results were realistic 

large uncertainties still surround the quantitative results due to limitations in the I-O 

modelling framework, and uncertainties over parameter values used to model adaptation 

and flexibility in the disaster aftermath (Hallegatte, 2008). A sensitivity analysis highlighted 

that model results were especially sensitive to the maximum overproduction capacity 

allowed (α), and the timescale for overproduction to reach this level ( α).  

 

The ARIO-Inventory model has been used to re-assess the economic effects of Hurricane 

Katrina in Louisiana and compared to earlier results from ARIO, which did not include 

inventories. In the ARIO-Inventory model, it is assumed that each sector produces 

commodities by drawing on their inventories. The optimal inventory size is estimated as the 

amount of goods needed to satisfy production demand for a given number of days of 

intermediate consumption (   
 ). Some commodities, such as electricity, cannot be stocked 

and so if a disaster affects these sectors production will stop, reflecting disruption of lifelines 

and causing additional bottlenecks to the system. Results were found to be similar for both 

approaches with indirect losses of $72 billion (in 2000 US$) using the ARIO-inventory model 

and $69 billion using the initial model, for direct losses of $97 billion (Hallegatte, 2011). The 

dynamics of the two models are similar although in the short-term the economic losses were 

smaller using the inventory model due to the smoothing effect of inventories in the 

immediate disaster aftermath. Hence, inventories can provide flexibility following an 

economic shock, as production interruptions to sectors with stockable goods do not have 

immediate impacts on other sectors. However, even though inventories can increase 

robustness in the short-term, in the longer-term if inventories deteriorate this can becomes a 

limiting factor for production. This is because in the ARIO-inventory model production is 

reduced when inventories fall below their optimal level due to supply side constraints, even 

though production may remain possible. 
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In this study, the ARIO-inventory model is used for the assessment of indirect drought costs 

in Spain. The incorporation of inventory dynamics is beneficial as inventories can be 

important when investigating the resilience of the agricultural sector to drought (Diersen and 

Taylor, 2003, Wheaton et al., 2008). However, as with the studies of Hallegatte et al., (2011) 

and Ranger et al., (2011) there are many modelling uncertainties surrounding the 

quantitative estimates presented below, and results should not be interpreted literally. 

However, the exercise is important for investigating the feasibility of applying drought 

damage functions to an I-O model; to demonstrate the advantages of using I-O techniques 

for climate change and drought cost assessments; to highlight the potential issue of 

underestimation of drought damages based on direct economic costs only; and to highlight 

future research questions which will need to be investigated in order to develop a more 

robust methodology for modelling the indirect economic costs of drought events. 

 

6.2 Representing indirect drought damages in Spain using ARIO 

This study focuses on the indirect economic costs of drought at a country scale for Spain. 

The study focused on Spain as: there was good consistency in the direction of drought 

trends modelled (chapter 4); Spain was identified as being at high risk from increasing 

economic losses from future drought events (chapter 5); and drought events affect a large 

proportion of Spain meaning that effects would be relatively homogenous across the country. 

The ARIO model is run at a daily time step assuming that production is constant over the 

year. The ARIO model is based on annual economic data from I-O tables. The I-O tables for 

Spain were publicly available from Eurostat (2010b) for 2005, with values given in millions of 

Euros. The data was converted to 2002 US$ in line with the economic metric used 

throughout this study. Data was available for 59 sectors and was aggregated to the following 

15 sectors used in ARIO: (1) agriculture, forestry, fishing and hunting; (2) mining and 

extraction; (3) utilities; (4) construction; (5) manufacturing; (6) wholesale trade; (7) retail 

trade; (8) transportation and warehousing; (9) information; (10) finance, insurance, real 

estate and leasing; (11) professional and business services; (12) educational services, 

health care, and social assistance; (13) arts, entertainment, recreation, accommodation and 

food services; (14) other services, except government; and (15) government.  

 

The baseline parameter values for inventory and adaptation dynamics were unchanged from 

those used by Hallegatte (2011) in this first application of the model to drought, as outlined in 

table 6.1 below. The sensitivity of model results to these parameters and consequences for 

future research are discussed in sections 6.3.3 and 6.4 below. In the below analysis direct 

economic effects of drought are defined as physical damages to capital which result from the 
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drought, and which are reflected in the ARIO model in terms of reduced production capacity 

to the affected sector (discussed below). The direct economic costs of individual drought 

events in Spain, estimated using the drought-damage functions (chapter 5), are used as 

input for this analysis. The indirect economic losses estimated using the ARIO model, and 

presented here, are defined as losses to the economy due to a change in the flow of goods 

and services resulting from the direct effect of changed production capacity of an affected 

sector (e.g. business interruptions). 

 

Description Parameter Value 

Number of days (   
 ) of intermediate 

consumption used to define optimal 
inventory size 

(   
 ) 30 days 

The time it takes for inventories to be 
restored to their optimal level 

   60 days 

Baseline production capacity (i.e. that 
achievable prior to the disaster 

occurring) 
     100% 

Maximum over-production capacity α 125% 

The time it takes for production 
capacity to increase to its maximum 

level 
 α 1 year 

Table 6.1: ARIO model parameters used. Source: Hallegatte (2011) 

 

 

Before applying the ARIO model to drought two important issues were considered. Firstly, 

the ARIO model has only previously been applied to hurricane and flood events. As the time-

scale of these events are relatively short, direct damages can be imposed on the I-O model 

at a single point in time. Drought events and their direct effects may affect a region over 

many months to years, with impacts growing gradually over time, and evolving with the 

duration and severity of the event. It has been postulated that for the same direct damages, 

an economic shock spread over many months to years would result in smaller indirect 

economic losses than the same size shock imposed instantaneously on the economy. This 

is supported by Hallegatte (2005) who found that modelling a productivity decrease over 20 

years with the NEDyM model resulted in lower damages than if the same productivity 

decrease was imposed on the model instantaneously. Indirect economic damages were 

found to decline as the duration of the economic shock increased. 

 

Secondly, the ARIO model has been designed to represent particular recovery 

characteristics linked to hurricanes and floods. For example, floods and hurricanes are 

known to cause direct damages to buildings, property, and infrastructure directly affecting 

sectors, as well as resulting in large reconstruction costs. The ARIO model can capture the 
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increasing demand to the construction and manufacturing sectors following a disaster, and 

the reconstruction of productive capital over time. Conversely, droughts events are not 

associated with large direct effects to buildings, property, and infrastructure (although 

prolonged effects of droughts on soil moisture conditions can cause subsistence in 

buildings). Therefore, drought events are expected to affect different sectors to different 

degrees. To address these issues four modifications were made to the ARIO-inventory 

model: 

 

1. In ARIO direct economic costs from hurricanes and floods are assumed to affect all 

sectors of the economy. When specific information on sectoral damages of historic 

events was not available direct damages were disaggregated based on the proportion of 

each sectors value-added (VA)16. The literature review highlighted that agricultural, 

industrial, energy, and water sectors are most at risk during drought events. This is 

linked to water-use demand with water abstraction in the European Union primarily used 

for energy production (mainly for cooling water) (44%), agriculture (24%), public water 

supply (21%), and industrial purposes (11%) (European Environment Agency, 2009). 

However, this differs across countries in the EU with countries such as Spain using 

abstracted water predominantly for agriculture, specifically irrigation (ibid.). It was 

therefore assumed that a drought event would affect certain sectors directly, and others 

only indirectly. For Spain direct economic costs from each drought event were 

disaggregated between agriculture, forestry, fishing and hunting (65%); utilities (31%); 

and manufacturing (4%). This disaggregation was based on country specific data on 

each sector’s share of water abstraction from surface water (Eurostat, 2010a). The 

focus of the study on these sectors is supported by reported drought data from historic 

drought events in Spain from the literature review. Additionally, the 1990-95 and 2005 

drought events in Spain were reported to have caused large costs to agriculture, as well 

as to the energy sector and public water supply (European Commission, 2007). 

 

2. Direct economic drought damages were imposed on the economy over the duration of 

the drought event rather than as an instantaneous shock.  The direct economic 

damages were distributed across the drought duration based on the peak intensity of 

the drought event in each month. This information was determined based on the 

average SPI time-series data for each drought event analysed (described in chapter 3). 

It was assumed that the more severe the drought became the higher the direct 

economic damages would be in that month. As the ARIO model used a daily time-step 

                                                
16

 Value added per unit is the difference between the sale price and the production cost of a product 
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the monthly drought damages were disaggregated equally across each day per month. 

For the first day in which the drought is imposed on the ARIO model the production 

capacity of affected sectors is reduced from the pre-event baseline, based on direct 

daily drought damages to each sector (outlined in point one). The initial production 

capacity is defined as the pre-event production of each sector (  
   ). In ARIO it’s 

assumed that if a disaster reduces the productive capital of a sector by x percent, then 

the production capacity of the industry will also be reduced by x percent. Independently 

of its suppliers, the production capacity   
   

of the ith sector reads: 

 

  
   

   (    )  
    

Eq. 6.3 

 

The variable     is the reduction in productive capacity due to the direct consequences 

of the drought. 

 

   
  
  

 

Eq. 6.4 

Where: 

    = stock of productive capital in sector i 

    = amount of damage to the sectors productive capital 

 

After the initial drought shock, the production capacity of affected sectors is reduced 

from the previous day’s production level rather than the pre-event baseline. This 

represents the cumulative effect of the drought on the economy over time. At the end of 

the drought, production capacity is assumed to return to the pre-event baseline (justified 

in point four below). 

 

3. For the agricultural sector alternative scenarios were also considered. The first scenario 

assumed that direct economic costs of drought on agriculture would affect production 

capacity in a cumulative fashion as described above. However, as agricultural goods are 

not a marketable commodity until harvested the second scenario assumed that 

economic drought damages would occur during four months per year, for each drought 

year. This aims to represent approximately losses over a summer harvest season. The 

third scenario assumed that drought would cause a sudden shock to the agricultural 

sector, with losses occurring over one month per drought year only. This scenario is 
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used to represent a sudden failure of a key harvest. Direct economic losses to utility and 

manufacturing sectors were assumed to happen in a cumulative fashion during drought 

under all scenarios. 

 

4. The ARIO model assumes that direct damages to capital are fully repaired. This results 

in additional demands from each industry to the construction and manufacturing sectors. 

In this analysis, it is assumed that there will be no destruction of capital and so no 

additional reconstruction demand. This modelling approach represents a temporary 

retirement of productive capital, as production capacity declines, which can be returned 

to full usage without the need for reconstruction, additional investment, or delays 

following the end of the drought. This method is also used by Wittwer and Griffith (2010) 

when analysing the consequences of drought on agriculture in Australia. 

 

The analysis considers both SPI-6 and SPI-12 drought events in Spain in 1955-2002 and 

2003-2050, so that the effects of climate change on indirect drought costs can be assessed. 

Quantitative estimates are generated using the GCM ECHAM4 and the climate scenarios 

A1FI and 450ppm to provide a range of illustrative results. The GCM ECHAM4 resulted in 

the highest economic damages to Spain compared to results generated using CSIRO2 and 

HADCM3 (see chapter five). In addition, in order to assess the importance of the emission 

scenarios on indirect economic drought costs, and consequences of mitigation, results for 

SPI-6 drought costs in the latter half of the 21st century (2051-2098) are also provided. 

 

6.3 Results 

6.3.1 Validation of the ARIO model 

To test the model modifications and attempt to validate the estimates of indirect economic 

drought costs, simulations were carried out for three historic drought events that affected 

Spain in 1980-1982, 1990-1995, and 1998-2000. The drought in 1980-82 caused direct 

economic damages of 5.1bn US$ (EM-DAT, 2010). Figure 6.1 illustrates the indirect 

economic drought costs, as a percent of VA, estimated for the three agricultural scenarios. 

The results are presented for SPI-6 and SPI-12 droughts. The graphs differ due to the 

different SPI time-periods used to model the drought event as this effects the duration and 

monthly severity of the drought. Figure 6.1 demonstrates that during drought VA declines by 

around 0.20 to 0.25% using SPI-6 and by 0.20 to 0.35% using SPI-12. The differences in the 

evolution of VA losses for each time-period are related to the agricultural scenarios used. 

Losses occur more gradually in scenario one, which assumes cumulative losses to 
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agricultural. Under scenarios two and three VA losses are stepped due to agricultural effects 

occurring more suddenly. 

 

        (a)                                                        (b) 

 

Figure 6.1: Simulated change in VA of Spain’s economy during the 1980-1982 drought 

modelled using (a) SPI-6 and (b) SPI-12 for cumulative drought effects on agriculture 

(scenario one), seasonal drought effects on agriculture (scenario two), and sudden drought 

effects on agriculture (scenario three). 

 

 

In figure 6.1a, a period of mid-term recovery is seen which coincides with a decline in 

drought severity to near normal conditions, and hence direct economic losses. Interestingly, 

whilst cumulative drought losses modelled in scenario one do not cause such drastic 

reductions to VA the sustained reduction in production capacity constrains the recovery of 

the economy. In scenarios two and three direct drought losses are confined over fewer 

months for agriculture causing more drastic declines in VA when they do occur. In 

intermittent periods production capacity of the agricultural sector remains stable (albeit lower 

than its pre-event level). This coincides with a decline in drought severity so the economy is 

able to respond and recover more readily to the economic shock by increasing production 

capacity and imports. Indirect losses were estimated to be 2.35bn, 1.67bn, and 1.86bn US$ 

for scenarios one, two, and three respectively. 

 

Figure 6.1b illustrates the specific drought characteristics modelled using SPI-12, and the 

effect of the agricultural scenarios, on VA. At first glance, this graph appears to be 

contradictory to that shown for SPI-6. Scenario one shows that recovery begins to occur 

after the first year of drought, although it slows as the drought intensity increases in severity 

again. Yet, using scenarios two and three mid-term recovery does not happen until the end 
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of the second year, even in the intermittent months when agricultural production capacity is 

stable. This is explained by the drought event becoming particularly severe in the months 

following the sudden shock to agricultural production capacity in scenarios two and three. 

The production capacity of the manufacturing and utilities sectors decline steeply and this, in 

tandem with the agricultural effects, causes a decline in production capacity and the 

depletion of inventories which place further restraints on production. In scenario three, the 

bottleneck that occurs due to inventory constraints following the termination of the drought 

and increased demand, is so severe that full recovery does not occur until 3 years later. 

Indirect losses were estimated to be 3.1bn, 3.3bn and 3.2bn US$ for scenarios one, two, and 

three respectively. 

 

These findings highlight the importance of the specific drought characteristics and evolution 

of drought effects when assessing the indirect costs of drought, and the ability of the 

economy to recover from drought. During the drought Spain’s actual GDP declined by 0.13% 

representing ~2bn US$ (2002) (The World Bank, 2010). Reported losses were mainly due to 

losses in the agricultural sector with a decline in agricultural value added of 1.5bn US$ 

(ibid.). In this study, for SPI-6 drought events, the change in value added of the agricultural 

sector was estimated to be 1.28bn, 450 million, and 380 million US$ for scenarios one to 

three respectively. Comparatively, results for SPI-12 droughts were estimated to be 1.3bn, 

1.6bn, and 1.5bn US$ for scenarios one to three respectively. Hence, the results highlight 

that for agriculture the use of SPI-12 drought data, and specifically scenario three, 

represents the actual historical agricultural situation most accurately. Results using SPI-6 

vary widely, with scenario one providing the most robust estimate. 

 

Figure 6.2 displays results for the 1990-1995 drought in Spain, which was estimated to have 

cost 5.9bn US$ (EM-DAT, 2010). Results are presented for SPI-12 only as the drought was 

not visible using SPI-6. In scenario one, the decline in VA is smoother as damages 

accumulate gradually over the drought duration. There is limited recovery during years three 

and four coinciding with a decline in the severity of the drought event. However, the ability of 

the system to over-produce is counteracted by continually decreasing production capacity 

levels and the depletion of inventories below optimal levels. Using scenarios two and three 

the decline in VA is more stepped representing the larger short-term shocks to agricultural 

production capacity. However, during years three and four economic recovery is more 

pronounced when agriculture is not affected and production capacity is relatively stable. As 

previously described, a decline in drought severity coinciding with stable agricultural 

production capacity appears to allow the economy time to recovery. 
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Figure 6.2: Simulated change in VA of Spain’s economy during the 1990-1995 drought 

modelled using SPI-12 for the three agricultural scenarios 

 

 

Indirect economic losses were estimated to be 6.9bn, 5.9bn and 5.0bn US$ for scenarios 

one, two, and three respectively. The drought event correlates well to economic time-series 

data which highlights a decline in Spain’s GDP of approximately 5.9bn US$ (2002), in 1994 

and 1995 (The World Bank, 2010). The majority of drought damages were reported to have 

affected the agricultural sector, public water supply and energy industries (European 

Commission, 2007). Economic data highlighted a decline in agricultural value added of 2.1bn 

US$ during the drought (The World Bank, 2010). Comparatively, the model estimates losses 

to value added in the agriculture sector of 4.2bn, 3.2bn, and 2.0bn US$, for scenarios one, 

two and three respectively. As was the case in the previous example for SPI-12 the third 

scenario best represented the actual historical trends in agricultural VA. The economic 

amplification ratio (EAR), defined in section 2.5 as the ratio of the total production losses 

caused by the disaster to its direct losses, for each of the three scenarios is 2.17, 2.0, and 

1.85 respectively, highlighting the potential severity of the drought event in terms of indirect 

economic losses. 

 

Figure 6.3a-b presents results for the 1998-2002 drought in Spain estimated to have cost 

3.55bn US$. Similar trends are seen to those in figures 6.1 and 6.2 discussed above. 

Indirect economic losses were estimated to be 1.3bn, 1.0bn, and 0.96bn US$ for SPI-6 

drought events, and 2.74bn, 2.69bn, and 2.72bn US$ for SPI-12 drought events for the three 

scenarios respectively. During the drought actual agricultural value added was reported to 

have declined by ~300 million US$  (The World Bank, 2010). Comparatively, the model 

estimates losses to value added in the agriculture sector of 745 million, 445 million, and 332 
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million US$, for scenarios one, two and three respectively using SPI-6. The results 

generated using the third agricultural scenario again appear most accurate. However, results 

generated using SPI-12 overestimated the losses on the agricultural sector with VA losses 

ranging from 1.3bn to 1.7bn US$. 

 

         (a)                                                       (b) 

  

Figure 6.3: Simulated change in VA of Spain’s economy during the 1998-2002 drought 

modelled using (a) SPI-6 and (b) SPI-12 for the three agricultural scenarios 

 

 

For the three drought events considered, the results suggest that the third scenario 

represents the effects of drought on agricultural VA most accurately. Ding et al., (2010) 

notes that as agriculture is highly sensitive to weather variability drought effects can be 

immediate, which may explain the above finding. Similarly, in a study of macroeconomic 

implications of drought in Southern Spain Mechler et al., (2009) also suggest that drought 

effects on agriculture would occur over a limited time period and so responses in the form of 

reallocation of resources, such as natural resources, labour, and capital, would be limited. 

As such, the third agricultural scenario is used for investigating future indirect drought losses 

for Spain in section 6.3.2. The above analysis highlights the importance of the unique 

characteristics of each drought event, specifically the monthly evolution of drought severity, 

the duration of the event, and the timing of the shock to the agricultural sector. Additionally, 

the use of different SPI periods results in different drought characteristics and consequently 

different loss estimates. The above results suggest particular SPI time-periods may reflect 

specific historic drought events better than others may. This uncertainty is addressed in this 

study by providing a range of results for both SPI-6 and SPI-12 time periods. 
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6.3.2 Applying ARIO to future projections of drought in Spain 

Indirect economic costs associated with drought events in Spain were assessed using the 

methodology outlined in section 6.2 and the assumption that agricultural losses will occur 

during one month per drought year only. Results are presented for both SPI-6 and SPI-12 

drought events in 1955-2002 and 2003-2050. Additionally, for analysis purposes results are 

also presented for SPI-6 droughts in 2051-2098. Results for 2003-2050 and 2051-2098 were 

based on estimates of the direct economic costs of individual drought events modelled and 

quantified in chapter five using the GCM ECHAM4 and the emission scenarios A1FI and 

450ppm. As stated previously, economic estimates are presented to illustrate the importance 

of indirect economic drought costs, and should not be interpreted as precise quantitative 

estimates. 

 

Figure 6.4a-b present results for SPI-6 and SPI-12 drought events. The graphs illustrate the 

scale of direct to indirect losses estimated for each individual drought event. The indirect 

economic losses are significant compared to the direct losses. Both figures highlight that 

indirect losses increase as direct losses increase. Whilst the trends in losses appear linear, 

closer inspection reveals that on average indirect losses increase in a slightly non-linear 

fashion to direct losses for both SPI-6 and SPI-12 droughts. For example, for SPI-6 

droughts, as direct losses double from 2bn to 4bn US$ indirect losses increase from 1/6th to 

1/5th of direct losses. As direct losses again double to 8bn US$ indirect losses are equal to 

1/3rd of direct losses. Figure 6.4a-b also suggests that for smaller magnitude drought 

events, which cause smaller scale direct damages, there may also be a threshold below 

which indirect losses are non-existent. 

 

 (a)                                                                (b) 

 

Figure 6.4: Relationship between direct and indirect economic drought losses in Spain for (a) 

SPI-6 and (b) SPI-12. Losses are in millions of US$ (2002). 
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Table 6.2 presents the average annual direct, indirect, and total drought losses projected, 

and the EARs. Results are given for SPI-6 and SPI-12 drought events, for each scenario, 

and time-period. Table 6.2 highlights the potential significance of indirect economic drought 

losses for Spain. Previous results presented in section 5.2.1 for direct drought costs 

highlighted that in a worst case scenario annual SPI-6 drought losses could increase from 

330 million US$ in 1955-2002 to 1.8bn US$ in 2003-2050. Using SPI-12 annual drought 

losses could increase from 375 million US$ in 1955-2002 to 1.1bn US$ in 2003-2050. Table 

6.2 illustrates that if indirect economic losses were also considered then future losses would 

be even more severe. 

 

 SPI-6 SPI-12 

Scenario 
Direct 
losses 

Indirect 
Losses 

Total 
Losses 

EAR 
Direct 
losses 

Indirect 
Losses 

Total 
Losses 

EAR 

1955-2002 
observed 

330 76 406 1.23 375 207 582 1.55 

2003-2050 
ECHAM4 A1FI 

1791 645 2436 1.36 920 692 1612 1.75 

2003-2050 
ECHAM4 
450ppm 

1641 592 2233 1.36 1140 822 1962 1.72 

2051-2098 
ECHAM4 A1FI 

4136 3155 7291 1.76 -- -- -- -- 

2051-2098 
ECHAM4 
450ppm 

2811 1268 4079 1.45 -- -- -- -- 

Table 6.2: Projections of annual drought losses in Spain in million US$ (2002). 

 

 

Total annual economic losses could reach 2.4bn US$ in 2003-2050 for SPI-6 droughts, and 

$2.0bn US$ for SPI-12 droughts. Table 6.2 also reiterates the finding that indirect losses 

increase non-linearly with direct losses. For 1955-2003 the EAR is 1.23 for SPI-6 droughts 

and 1.55 for SPI-12 droughts, reflecting the different drought characteristics and scale of 

direct losses seen using the different time periods. For projections of drought in 2003-2050, 

the increase in direct drought losses causes an increase in the EAR to 1.36 for SPI-6 and 

1.72-1.75 for SPI-12. The results for SPI-6 droughts in 2051-2098 highlight that the EAR 

again increases. Under the high emission scenario the average EAR increases to 1.76, i.e. 

total damages are 76% higher than direct damages alone. This is restricted to 45% when the 

450ppm stringent mitigation scenario is used. Yet, even assuming stringent mitigation, the 

ratio of indirect to direct losses still increases from that estimated for 1955-2002. Importantly, 

the results for drought events in 2051-2098 highlight that stringent climate change mitigation 

could have additional benefits in terms of avoided indirect economic costs, which may be 
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larger than the benefits seen in avoiding direct damages. For example, table 6.2 suggests 

that stringent climate change mitigation could reduce direct damages by 32% when 

compared to the high emission scenario, whilst indirect losses are reduced by 60%. 

 

6.3.3 Sensitivity analysis 

The sensitivity of the model results to the values of the inventory parameters and adaptive 

over-production parameters were analysed, using the historic 1990-1995 SPI-12 drought as 

a case study. The value of the parameter    
 , which defines the optimal inventory level in 

number of days of demand, was shown to have a significant influence on model results as 

highlighted in figure 6.5a. Indirect drought costs were estimated to increase from 4.7bn to 

7.0bn US$ as the value of     
  increased from 15 to 60 days (with    = 60). When the 

parameter was set to 80 days indirect losses increased substantially to 24.8bn US$, and for 

parameter values of 90 and above (not shown in figure 6.5a) total economic collapse 

occurred. This finding differs from results of the sensitivity analysis of Hallegatte (2011) for 

Hurricane Katrina in Louisiana, which reported that the parameter    
  had a limited effect on 

results for a range of 3 to 120 days. However, the direction of the trend, showing that indirect 

economic losses increase with inventory size, agrees. 

 

It would seem intuitive that smaller stocks of inventories would make sectors more 

vulnerable to economic shocks in the short-term. However, conversely figure 6.5a also 

suggests that if optimal inventory levels are too large then inventories can later become a 

constraining factor on production. This can be linked to the additional demand that results as 

sectors try to replenish their depleted inventories to their optimal levels. If the demand is too 

large then it will not be met and production will be limited. Additionally, the timescale of 

inventory restoration (  ) was considered as shown in figure 6.5b. 
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       (a)                                                                       (b) 

  

Figure 6.5: Sensitivity analysis of inventory parameters for the 1990-1995 SPI-12 drought in 

Spain for (a) results generated using different values of    
  and (b) results generated using 

different values of   . 

 

 

The sensitivity of model output to the timescale of inventory restoration (  ) was very limited. 

Indirect economic losses ranged from 5.8 to 4.7bn US$ for a parameter range of 30 to 120 

days. Output losses increased as the inventory restoration time decreased. This is in 

contrast to Hallegatte (ibid.) who found that not only was the parameter more sensitive 

than    
 , but that output losses increased as the inventory restoration time increased. The 

finding from this study may relate to the long-term shock imposed on the economy by 

drought, compared to a sudden shock from a hurricane. Using a short restoration time 

means that sectors are able to increase their demands rapidly if inventories are below 

optimal levels. Although increased demand may trigger adaptation in the economy, if the 

demands are very high and happen too quickly, then they cannot be met due to continued 

constraints on production capacity from drought. Inventories cannot be replenished which 

further slows the recovery process. As such, both the size of the optimal inventory and the 

timeframe for inventory restoration should be considered in unison. For example, it was 

reported above that if     
  was greater than 90, with a restoration time of 60 days, total 

economic collapse occurred. However, when the value of    was increased to 90 days, 

spreading the additional demand over a longer time-period, then the economy was able to 

cope much more readily. Therefore, this assessment suggests that resilience of the 

economy to drought is not only related to the size of inventories available, but also the speed 

in which they need to be restored for industries to keep functioning. 
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Sensitivity analysis of the adaptation parameter   , which defines the maximum 

overproduction capacity, showed that indirect losses would be substantially higher with no 

over-production, rising to 10.1bn US$ compared to 5.0bn US$ in the reference scenario 

(figure 6.6a). This highlights the importance of the parameter to the model results, and the 

important role that such resilience could play in the aftermath of a drought event for 

minimising indirect losses. Assuming that   =1.0, over-production capacities of 1.25, 1.5, 

and 2.0 resulted in indirect economic losses of 5.0bn, 4.9bn and 4.8bn US$ respectively. 

Indirect economic losses declined as the parameter value increased, as higher over-

production capacity makes it easier for the economy to keep producing in the disaster 

aftermath. The importance of the timescale for over-production (  ) was also assessed 

assuming that    = 1.25. Figure 6.6b illustrates that indirect economic losses are lower 

where production capacity can be increased quickly, ranging from 5.0bn to 5.2bn US$ as the 

timescale increases from three months to two years. The trends seen for the adaptation 

parameters are consistent with those reported by Hallegatte (2008, 2011). 

 

        (a)                                                                     (b) 

  

Figure 6.6: Sensitivity analysis of adaptation parameters for the 1990-1995 SPI-12 drought 

in Spain for (a) different levels of maximum over-production capacity (  ), and (b) different 

response times for over-production (  ). 

 

 

The results for the adaptation parameters suggest that whilst model results are sensitive to 

the inclusion of over-production they are not sensitive to the level of over-production. As 

such, a small amount of adaptive capacity could substantially reduce damages in the 

aftermath of a drought event of similar magnitude to that seen in 1990-1995 in Spain. In 

order to investigate the above findings further a sensitivity analysis was also carried out for a 
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much larger magnitude SPI-6 drought event, projected to occur in the latter half of the 21st 

century. The drought event was estimated to cause direct damages of 30bn US$ and last for 

84 months. Assuming that   =1.0, over-production capacities of 1.25, 1.5, and 2.0 resulted 

in indirect economic losses of 21bn, 20bn and 18bn respectively, compared to 93bn US$ 

when no over-production was modelled. No differences in trends were seen for the 

parameters    and    when estimated for the larger magnitude drought (graphs not shown) 

compared to the results presented above. Similarly, no differences in trends were seen for 

the inventory parameters    
  and   . This suggests that the values of the inventory and 

adaptation parameters used are not sensitive to the scale of the direct drought damages. 

 

6.4 Discussion 

The analysis aimed to illustrate the importance of modelling indirect economic drought costs 

within climate change cost assessments, by providing a preliminary investigation of potential 

total economic drought losses in Spain. The chapter applies the technique of I-O analysis, 

using the pre-existing ARIO model, to drought events. The modifications made to the ARIO 

model represent a first attempt at capturing specific drought characteristics to assess the 

scale of indirect economic drought costs under various scenarios of climate change. The 

model was validated by running scenarios of three historic drought events in Spain (section 

6.3.1) and comparing model output to past economic data. In addition, the evolution of direct 

drought effects on the agricultural sector, and consequences for indirect losses, was 

assessed. Direct economic costs of drought were modelled to affect agricultural productivity 

cumulatively, seasonally, and as a sudden shock. Sudden shocks to agricultural production 

caused quick and steep declines in agricultural and total VA (see figures 6.1, 6.2 and 6.3). 

Inter-industry multiplier effects were also larger than seen for the other scenarios, particularly 

for manufacturing which processes agricultural goods. However, the results showed that 

over the duration of the drought the largest indirect economic costs to the economy and 

agricultural VA occurred when agricultural damages were modelled in a cumulative fashion 

or seasonally. 

 

This is explained by the ability of the ARIO model to allow adaptation and recovery following 

an economic shock. Whilst cumulative drought effects do not cause such drastic and sudden 

reductions in VA, the continued constraint on production capacity and restricted inventories 

mean that recovery during the drought is limited. When damages to agriculture occur 

suddenly the shocks to VA are more sudden and severe however, in the intermittent months 

that are not affected the production capacity of the agricultural sector remains constant 
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(unless restricted by inventories). During this time, two different dynamics were identified for 

Spain depending on the specific drought characteristics. If the drought event was particularly 

severe in the months following the shock to agriculture then the continued effects on the 

manufacturing and utility sectors meant that recovery was very limited or did not occur (e.g. 

figure 6.1b). Alternatively, if the drought event became less severe in the intermittent months 

when agricultural production was not affected, then increased production capacity and the 

use of inventories resulted in an increase in production (e.g. figure 6.1a). Consequently, 

economic recovery can begin to occur during a drought event where a decline in drought 

severity coincides with stable agricultural production capacity. Over the duration of the 

drought event this can cause substantial reductions in the scale of indirect economic losses. 

This emphasises the importance of drought characteristics, which will be unique for each 

individual event, when modelling indirect economic costs of drought and adaptation policies. 

It also highlights the different pattern of losses economies may face if they suffer from long-

term shocks compared to a sudden, short economic shock. To date most I-O analysis 

studies investigating indirect economic costs of weather extremes have focused on the 

latter. 

 

A main aim of this chapter was to highlight the application of the direct drought costs, made 

in chapter five, to the ARIO model to illustrate the potential scale of indirect losses that may 

occur under future scenarios of drought. The model was used to examine indirect drought 

costs in Spain for various SPI time periods and emission scenarios. Estimated annual 

drought losses in Spain in 2003-2050 were found to be 36% higher for SPI-6 droughts if 

indirect economic costs are considered, and up to 75% higher for SPI-12 droughts. The 

results highlighted a non-linear relationship between direct and indirect economic costs. The 

EARs presented in table 6.2 also highlight this trend as direct drought costs become more 

severe under future scenarios of climate change. This is in agreement with findings of non-

linearity reported by Hallegatte (2008), Hallegatte et al., (2011) and Ranger et al., (2011) for 

hurricane and flood events. Additionally, figure 6.4a-b suggests that for smaller magnitude 

drought events, which cause smaller scale direct damages, a threshold may exist beyond 

which indirect losses do not occur. This is also corroborated by Hallegatte (2008) who 

modelled the effects of varying sized shocks to the economy for the US state of Louisiana, 

and found that the economy could cope with natural disasters causing direct damages of up 

to 50bn US$ with little or no indirect effects. However, above this threshold indirect effects 

appeared and became rapidly larger. 

 

Crucially, the projections of annual SPI-6 drought costs in 2051-2098 highlight drought 

losses may be 45% higher under a stringent mitigation scenario and 75% higher with no 
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mitigation. Stringent climate change mitigation, (also discussed in chapter four for Spain), is 

shown to substantially reduce direct economic drought costs. Importantly, due to the non-

linearity seen the benefits in terms of avoided indirect losses may be more substantial than 

for direct losses in the latter half of the 21st century. In addition, the EARs presented for 

Spain are for average annual drought losses and this averaging can mask the variability in 

the size of losses of individual drought events. For the largest droughts identified in 2003-

2050 EARs were 1.48 and 1.80 for SPI-6 and SPI-12 droughts respectively. For the most 

severe SPI-6 drought in 2051-2098 the EAR was 1.94, i.e. almost doubling direct losses.  

 

It is very difficult to extrapolate the illustrative findings for Spain to other countries. The scale 

of indirect economic effects will depend on the specific economic structure of a country, the 

economic importance of industries at risk from drought, and the particular drought 

characteristics. However, the study does highlight the likely underestimation of economic 

costs of climate change on drought, and other extreme weather types, which are based on 

direct damages only. As touched upon in the literature review (section 2.5) there is some 

uncertainty over the importance of indirect economic losses. Albala-Bertrand (1993, p.104) 

claims indirect effects are ‘often unimportant for the economy and society as a whole and 

are rapidly counteracted within the disaster area’ (quoted in Okuyama, 2007). For example, 

following a disaster the area may benefit from an influx of financial aid, investment for 

reconstruction, and expansion of manufacturing and construction sectors. Such a surge in 

economic activity was seen following Hurricane Andrew in the US in 1992, driven by 

reinvestment of private and public insurance payments (Baade et al., 2007). However, this 

judgment is disputed by Brookshire et al (1997) who argue that short-term benefits such as 

increased investment of savings will dampen the economy in the long-term, and inflow of 

government aid will reduce the financial resources of a nation as a whole. The results of this 

analysis found that all drought events modelled for Spain resulted in negative indirect 

economic costs. Importantly, a surge in reconstruction is not commonplace following 

drought, as with other natural disasters, which further limits the possibility of beneficial 

economic effects. Benefits may occur for certain region and sectors, for example due to 

increasing prices of agricultural goods, although there is likely to be disparity between the 

economic winners and losers of drought (Diersen and Taylor, 2003). 

 

The modelling exercise illustrates how I-O modelling could be used to facilitate climate 

change cost assessments, and investigate specific adaptation and mitigation policies, with 

regard to drought. As such, the study presents some very interesting findings. However, the 

quantitative estimates presented are illustrative only and there is much uncertainty 

surrounding the results of this analysis, with further research needed to quantify and handle 
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the considerable uncertainties. In addition to the uncertainties in the specific modelling 

framework of ARIO (discussed in  Hallegatte, 2008, 2011), when interpreting the drought 

results it is also important to consider some of the specific assumptions made here, and 

highlight caveats of the study. For example, it was assumed that following the end of each 

drought event the production capacity of affected sectors (agriculture, utilities and 

manufacturing) immediately returned to the pre-event baseline. The approach assumed a 

temporary retirement of productive capital as production capacity declined, allowing it to be 

returned to full usage without the need for reconstruction, additional investment, or delays 

following the end of the drought. Yet, whilst productive capital may be directly unaffected it 

may take multiple seasons or even years for the productive capacity of agriculture to recover 

from drought. Wittwer and Griffith (2010) found that for agriculture in Australia not only did 

recovery exceed the end of the drought event but that affected areas did not always recover 

to pre-event levels. This may reflect disinvestment in agriculture resulting in overall 

reductions in output; reduced stocks e.g. due to the sale or slaughter of cattle; reduced water 

availability for irrigation, which can last beyond the drought event even if rainfall returns to 

normal levels; or increasing costs of irrigation water, which can become more valuable even 

when drought conditions have ended. Additionally, delays in recovery of agricultural yields 

can have knock-on effects for supply for the following years feedstock, reducing inventory 

levels (Diersen and Taylor, 2003), and potentially increasing vulnerability. Similarly, in 

Canada two years of severe drought in 2001 and 2002 resulted in significant reductions in 

herd stocks which require a long-term recovery period (Wheaton et al., 2008).  

 

In certain cases for Spain, prolonged recovery periods were modelled following drought 

termination (e.g. figure 6.1b). This can be linked to the sudden jump in demand, which 

occurs as production capacities increase, which can strain inventories causing additional 

production constraints. The research would benefit from a more detailed analysis of specific 

production bottlenecks caused during drought that may limit economic recovery both 

temporarily and permanently. Detailed data on the effects of historic drought events on 

specific economic sectors would be advantageous for such a study. Unfortunately, such data 

appears very challenging to find. 

 

It was also assumed that direct economic drought damages would affect agriculture, utilities 

and manufacturing sectors only. This assumption was based on past impact data on 

droughts in Spain. Disaggregating the direct economic drought costs between these three 

sectors was more complex as the scale of sectoral losses of drought events are very difficult 

to distinguish and quantify, and are rarely reported in the literature. It was assumed that the 

share of sectoral losses would be proportional to each sectors reported share of water 
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abstraction from surface water (i.e. drought would have the largest effects on sectors most 

reliant on water). This assumption is basic especially as, unlike other natural disasters that 

have clear direct economic consequences on infrastructure, direct and indirect effects of 

drought are very hard to distinguish clearly. Furthermore, the direct economic damages to 

utility and manufacturing sectors were assumed to occur over time in a cumulative fashion, 

linked to the specific drought intensity of each month. For agriculture, three scenarios were 

investigated: the effect of cumulative losses, seasonal losses and sudden losses to 

production capacity. Assuming that direct losses to agriculture occurred suddenly provided 

the most robust results. For each drought event studied, the model could reproduce reported 

economic losses to agricultural VA for at least one of the scenarios and SPI time-periods 

used. However, as the evolution of direct drought damages affecting economic sectors is 

theoretical a caveat must be placed here. The modelling approach would benefit from a 

more detailed calibration of the specific evolution of drought losses for each economic sector 

based on actual historic events. Yet as noted above, the availability of such detailed data is 

a major constraint. 

 

Additionally, drought can cause varying degrees of damage to crop yields depending on the 

particular season/seasons in which it occurs. Whilst the above agricultural scenarios 

attempted to represent this in a simple fashion via the three agricultural scenarios, the model 

itself does not account for the seasonal production dynamics of agriculture. Daily production 

in the agricultural sector was assumed constant over the year, whereas in real life production 

is often concentrated over certain time-periods or seasons depending on the agricultural 

goods being produced. As such, monthly agricultural production dynamics need to be 

considered in more detail for the indirect effects of drought on agriculture to be modelled in a 

more realistic manner. 

 

The direct economic costs used as input to the ARIO model were based on the economic 

drought damage functions, calibrated to historic economic impact data from EM-DAT. It was 

assumed that data reported by EM-DAT reflected direct economic damages only. Yet 

particularly for more recent drought events this data may be more comprehensive and 

include both direct and indirect losses. As a result, there may be some double counting of 

indirect economic costs due to uncertainties surrounding the direct economic data. The 

direct economic drought damages for Spain were considered to affect a static economy and 

as such, the I-O coefficients also remain static over time. However, the study analysed 

changing drought trends in 2003-2050 and 2051-2098, which would affect an economy 

potentially very different from that of 2002, and I-O coefficients will also evolve slowly over 

time due to changes in technology, demography, prices, demand, and social and political 
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change external from any weather related shocks (Hallegatte, 2008). Future drought trends 

modelled in section 4.3 also suggest that for Spain drought events increase in frequency and 

duration over the 21st century. This study has considered the indirect costs of individual 

drought events on a stable economy in equilibrium, and assumed that following the event the 

economy will return to its pre-event baseline. The indirect economic costs that may occur if 

successive drought events affected an already vulnerable economy, still recovering from 

previous drought episodes, may be much more severe. Future research focusing on 

economic effects of successive drought events would be interesting for countries such as 

Spain. The sectoral split of direct drought damages is also assumed to remain static 

although the importance of certain economic sectors may change over time. For example, as 

economies develop they may become less reliant on vulnerable sectors such as agriculture 

(Benson and Clay, 2004) and effects of drought might be more heavily felt by e.g. industries 

and public services. Conversely, the transition of developing economies to intermediate and 

developed stages can also increase the inter-sectoral linkages and make systems more 

vulnerable to indirect economic losses (Benson and Clay, 2004, Bočkarjova, 2007). 

 

The study utilised the pre-existing ARIO-inventory model. The model structure, equations 

and assumptions have been well documented and the code was freely available to use. The 

use of the ARIO model was also beneficial in the context of this study as it allowed some 

flexibility in the economy following the onset of drought and incorporated inventory 

dynamics. Adaptation was explicitly considered through increases in production capacity, 

and the ability of producers to switch to suppliers outside the affected area, when supply was 

constrained. The sensitivity analysis showed that the results were not highly sensitive to the 

level of over-production when modelled (figure 6.6a-b), however, costs increased 

substantially when over-production was excluded. The increase in indirect economic costs 

seen when over-production was completely excluded highlights the role that autonomous 

and planned adaptation could have in mitigating indirect drought costs. However, the 

adaptation parameters considered here were applied homogeneously across economic 

sectors. In reality, different sectors may have different adaptive capacities and options 

available to them. Areas that suffer worsening or successive drought events in the future 

may also increase their resilience over time through learning and the implementation of risk 

management strategies. However, as the analysis considered economic costs of individual 

drought events affecting a static economy, such dynamic changes were not considered. 

Further investigation into historic drought events and any specific autonomous or planned 

adaptations that occurred at a sectoral level, and the effect of this, would be beneficial. This 

would improve the robustness of the modelling exercise and results generated. 
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The chapter highlights that each individual drought event is unique and the economic losses 

caused will depend upon on the timing, duration, and magnitude of the event, as well as the 

economic structure and social conditions of the affected region. The methodology developed 

was able to capture some of these specific characteristics to help illustrate the potential full 

economic costs of drought. The study also highlights how drought damage functions can be 

linked with an I-O model to capture indirect economic costs. Importantly, the methodology 

was developed in such a way that it can be applied to other countries or states. Direct 

drought damages can be imposed on high-risk sectors identified in the literature and direct 

losses disaggregated based on the specific water use of sectors in the affected area. 

 

6.5 Summary 

The application of I-O analysis to investigate the indirect costs of weather extremes and 

natural disasters on the economy is a relatively new and developing area of research. The 

application of I-O analysis specifically to drought events is even more limited with only a 

handful of studies existing. The chapter demonstrates how I-O analysis could be used to 

capture some of the specific characteristics of drought in order to investigate potential 

indirect economic costs. The simple modifications made to the ARIO model represent a first 

step in modelling indirect economic drought costs under future scenarios of climate change 

by incorporating direct drought losses estimated via the drought damage functions. 

 

The preliminary investigation for Spain suggested that for SPI-6 droughts total annual 

drought losses in 2003-2050 could be 36% higher than direct losses alone. Total annual 

drought losses in 2003-2050 could be up to 75% higher for SPI-12 droughts compared to 

direct losses alone. In the latter half of the 21st century, average annual indirect losses for 

SPI-6 droughts were estimated to rise to 76% of direct costs under the A1FI emission 

scenario. However, these indirect costs were restricted to 45% assuming stringent 

mitigation. Importantly the non-linearity seen between direct and indirect economic costs 

suggests that the benefits of stringent mitigation policies, in terms of avoided indirect losses, 

could potentially be more substantial than for direct losses in the latter half of the 21st 

century. The dynamics of the economy following direct drought effects, the scale of indirect 

losses, and ability of the economy to recover were linked to the evolution of each drought 

event and the manner and timescale in which direct damages were assumed to occur. 

Interestingly the results highlighted that ceteris paribus long-term versus sudden drought 

impacts did not necessarily cause lower indirect losses. 
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However, the quantitative results presented in this chapter should not be interpreted literally, 

as they are highly uncertain and dependent on a range of simple assumptions that would 

benefit from a more detailed analysis. Namely, better calibration of the model to account for 

the size of inventories and their restoration times; better representation of agricultural 

production dynamics; consideration of specific adaptation and recovery options available for 

sectors following drought; consideration of potential bottlenecks which may limit economic 

recovery; and more detailed information on the way in which drought will effect specific 

sectors. Despite such limitations, the modelling exercise does highlights how valuable I-O 

analysis could be for providing more comprehensive estimates of drought damages under 

future climate change; for investigating economic scenarios of drought effects on agriculture; 

and for assessing specific mitigation and adaptation policies, and implications for the wider 

economy following drought. Consequently, there are many gains to be seen from the 

continued development of this research methodology for drought. 
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7 Discussion and Conclusions 

Drought can affect virtually any region of the world, regardless of precipitation or 

temperature regime, posing a significant risk to both developed and developing countries. 

The complex nature of drought events such as their slow onset, and large spatial and 

temporal extent, make them difficult to analyse and plan for (Wilhite et al., 2007). Historically, 

drought events have had one of the largest effects on society of all extreme weather events, 

and have the ability to cause significant disruption to economic systems.  Evidence suggests 

that the number of people affected by drought events and their economic consequences 

have been increasing over the 20th century and early 21st century (EM-DAT, 2010), primarily 

due to changing socio-economic conditions. Therefore, irrespective of any future changes in 

climate, drought events and their effects already pose a considerable problem for 

governments, businesses and individuals. 

 

Superimposed on this risk is the danger that future anthropogenic climate change poses. 

Evidence suggests that climate change has begun to influence the hydrological cycle, and 

that drought events have been increasing in frequency and intensity in some regions over 

the latter half of the 20th century (Dubrovsky et al., 2009, Easterling et al., 2000b, IPCC, 

2007b, Lynch et al., 2008, Zhang et al., 2007, Zou et al., 2005). Future projections of climate 

change suggest that this situation is likely to be exacerbated in certain regions of the world 

(e.g. Burke et al., 2006, IPCC, 2007b, Sheffield and Wood, 2008, Warren et al., In review). 

Climate models are increasingly being used to model and understand how climate change 

may affect future drought patterns and the countries and regions at risk. However, the 

literature review emphasised that quantitative estimates of the type and scale of social and 

economic effects that could occur under these future scenarios are virtually non-existent and 

clear methodologies are still being developed (Changnon, 2003b, Hallegatte et al., 2007b, 

Mendelsohn and Williams, 2004, Pielke, 2007). 

 

This study aimed to develop a methodology to estimate economic losses and social drought 

effects under future scenarios of climate change. A summary of the research objectives, 

methodologies developed and employed, and key findings is presented below. Following this 

section 7.2 discusses the overall success of the study to address the research aim. 

Limitations, caveats and uncertainties are revisited in section 7.3. To conclude, future 

research avenues are discussed in section 7.4. 
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7.1 Summary of thesis 

7.1.1 Creating drought damage functions 

The first research objective was to investigate the relationship between historic drought 

events and their economic and social effects, in order to establish a link for creating drought 

damage functions. Historical drought events reported in EM-DAT from 1940-2002 were 

modelled for Australia, Brazil, China, Ethiopia, India, Portugal, Spain and the USA. The 

drought events were modelled using monthly gridded precipitation data converted to the SPI. 

The SPI was developed by McKee et al., (1993) and has been found to perform favourably 

compared to other drought indices (Guttman, 1998, 1999, Keyantash and Dracup, 2002, 

Lloyd-Hughes and Saunders, 2002, Redmond, 2002). Importantly, The SPI is beneficial for 

this study as it requires precipitation data only and provides a method for analysing not only 

the occurrence of drought events but also for defining drought start and end months, 

intensity, and magnitude for a variety of time periods. Two SPI time periods were used to 

represent medium-term (SPI-6) and long-term (SPI-12) drought events and their effects, and 

provide a range of results. A methodology was devised to first assess whether each drought 

event reported in EM-DAT correlated to the SPI data, and secondly to quantify each drought 

in terms of its duration, magnitude, and intensity. The relationship between the 

characteristics of individual drought events and their economic and social effects were 

investigated using regression analysis. The most robust trends were identified using 

magnitude, which represents the duration, intensity, and spatial extent of each drought event 

in a single indicator. 

 

The results highlight that for Australia, China, India, Portugal/Spain and the USA, the 

magnitude of historic drought events could account for a large proportion of the variance 

seen in the direct economic losses reported (figure 3.3a-f). Furthermore, where impact data 

was sufficient social damage functions were created for the numbers of lives affected and 

the numbers of lives lost. The correlation seen between drought magnitude and social 

drought effects was generally less robust suggesting that external factors may be more 

influential when considering social drought effects, for example pre-existing food or water 

scarcity issues, or high levels of poverty. However, the creation of social drought damage 

functions highlighted the different vulnerabilities of regions to drought and the particular 

consequences they may face, and could help inform decisions on the priority of adaptive 

measures. Vitally, economic metrics alone may not always be representative of the full 

effects of a drought event. 
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It is widely reported that the availability of relevant data on extreme weather events is a 

major limiting factor in their study (Easterling et al., 2000a, IPCC, 2002). Indeed, the 

availability of data was a large obstacle in creating robust drought damage functions, 

severely restricting the number of data points on which the trends were based. As such, 

issues of sampling uncertainty remain large. For the drought events quantified by this study 

only 56%, 52%, and 26% had available impact data on economic damages, lives affected, 

and lives lost, respectively. 

 

However, the methodological approach and results were extremely encouraging, facilitating 

the research objective and enabling the creation of country specific drought damage 

functions. The methodology for modelling and identifying drought events by applying the SPI 

to spatial and temporal data was novel. In addition, the drought damage functions are, to the 

best of the authors knowledge, the only country specific drought damage functions created 

to date. The drought damage functions improve on many of the current limitations found with 

climate damage functions (Dietz et al., 2007, Smith et al., 2001, Stern, 2007). Namely, the 

drought damage functions and their shape and scale are empirically grounded, calibrated to 

historical event data and precipitation data. The methodology can be used to quantify 

drought magnitude across different countries, regions and time-scales; can capture the 

vulnerabilities of regions with different socio-economic characteristics; and can be applied to 

both market and non-market effects (where sufficient data exists). Importantly, the damage 

functions enable economic and social effects of drought events of a given magnitude to be 

estimated, and can be applied to future projections of drought under climate change. 

 

7.1.2 Projections of drought under future climate change 

The second research objective was to model and quantify the effect of climate change on 

future drought regimes. IAMs are considered one of the best tools available for assessing 

climate change impacts, the global costs of climate change, and risks (Stern, 2007). The 

IAM CIAS (Warren et al., 2008) was used to create future projections of monthly, gridded 

precipitation. In order to address modelling uncertainties precipitation data was modelled 

emulating three different GCMs, each run using a high emission scenario (A1FI) and a 

stringent stabilisation scenario (450ppm). The ability of the IAM CIAS to run scenarios of 

precipitation emulating different GCMs builds upon many existing studies of future drought 

events which have utilised one GCM only. The SPI was used to identify severe and extreme 

drought events and quantify their frequency, duration, intensity and magnitude, for pre-

defined country regions. Drought events were modelled using observed data from 1955-
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2002, and projections of precipitation from CIAS for 2003-2050 to allow a comparison of 

drought characteristics over time. 

 

Results show that south-west Australia, northeast and north-west Brazil, Portugal, and Spain 

are particularly at risk from worsening drought conditions in the first half of the 21st century. 

The effect of climate change on average drought conditions in the USA was more variable 

depending on the region and the climate scenario used. However, changing trends in 

drought characteristics, particularly for long-term SPI-12 droughts, are likely to be negative. 

Projections for China, Ethiopia and India suggest that climate change may well increase 

precipitation over the first half of the 21st century, mitigating the frequency and severity of 

drought events. Climate change is also likely to affect the variability of precipitation and it 

was found that drought events may still be severe when they do occur, even if mean 

precipitation is increasing, agreeing with findings of the IPCC (2007b) and Hirabayashi et al., 

(2008). The results also highlight that climate change is likely to have a larger effect on the 

duration and magnitude of long-term SPI-12 droughts, representing increased risk to 

hydrological systems and water resources. Australia, Brazil, Spain, Portugal and the USA 

were shown to be particularly vulnerable to multi-year drought events. 

 

The average change in drought trends projected for Australia, Brazil, China, Ethiopia, India, 

Portugal, Spain and the USA were in line with projections reported by the IPCC (Christensen 

et al., 2007), as well as other modelling studies reviewed in section 4.3, supporting the 

robustness of the methodology. However, whilst some general trends emerged the use of six 

emission/climate scenarios highlighted the large uncertainty that exists (figures 4.4a-d).  

Most of the uncertainty was attributed to the specific GCMs used. There was little variability 

seen between results generated using the A1FI emission scenario and the 450ppm 

stabilisation scenario. This finding is consistent with Goodess et al., (2003b) who reports that 

for the early 21st century inter-model variability tends to be greater than inter-scenario 

variability. As such, the implementation of a stringent mitigation policy is projected to have 

limited effect on drought and its effects in 2003-2050. The choice of emission scenario is 

much more influential in the latter half of the 21st century, as demonstrated for Spain (figure 

4.5). 

 

7.1.3 Economic and social drought effects 

The third research objective was to apply the estimates of drought magnitude, for 1955-2002 

and 2003-2050, to the social and economic drought damage functions to estimate the scale 

of additional drought effects under climate change. The modelling approach is static in that 
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economic losses and social effects were normalised to country GDP in 2002 US$ and 

population levels in 2002 to allow comparison over time. This approach follows the method 

of other assessment studies that focus on the costs of climate change (e.g. Hallegatte, 2007, 

Hallegatte et al., 2011, Nordhaus, 1991, Ranger et al., 2011, Tol, 2002a, Tol, 2009). Whilst 

the assumptions of stationarity ultimately reduce the robustness of estimates made for future 

drought risks one benefit of using a standard metric across time is that the focus of the 

analysis will be on changing economic and social conditions due to climate change rather 

than consequences of changing socio-economic conditions. 

 

The drought damage functions facilitated quantitative estimates of drought effects in terms of 

direct economic losses, the number of lives affected, and the number of lives lost. Results 

were presented as annual average losses for each SPI time period and climate/emission 

scenario. The effect of climate change on future drought events resulted in negative 

economic costs for Australia, Portugal, Spain, and the USA. Average annual losses 

increased by 76%, 69%, 300% and 87% for SPI-6 droughts, and by 565%, 38%, 92%, and 

105% for SPI-12 droughts for Australia, Portugal, Spain, and the USA respectively. 

Economic estimates of average annual drought costs for China and India suggested that 

both countries would benefit from a reduction in drought frequency and magnitude. However, 

it was consistently found that effects of climate change on drought resulted in greater annual 

losses to global GDP in 2003-2050 compared to 1955-2002 when losses were aggregated 

across the countries analysed, particularly for long-term drought. Hence, the potential 

economic benefits seen in some regions are outweighed by the scale of negative damages 

in others. The results indicate that severe and extreme SPI-6 and SPI-12 drought events 

could cause additional losses to global GDP of 0.01% to 0.25% annually. Whilst this effect 

on global GDP may appear small it is considered a conservative estimate as the analysis 

represents six countries only, for the first half of the 21st century. The estimates do not 

incorporate the possibility of successive drought events, or compounding effects on 

vulnerability and socio-economic conditions from interactions with other extreme weather 

events such as floods. The global economic estimates exclude indirect economic and 

potential social effects. Additionally, possibilities of irreversible or systemic collapse of 

economies, due to passing natural thresholds, are not considered. Consequently, under 

future climate change, drought magnitude may exceed current experience and surpass 

thresholds of social and economic resilience causing unprecedented economic losses.  

 

The study also highlighted that annually drought related deaths are set to increase slightly 

over the first half of the 21st century in the USA. Similarly, the number of people affected by 

drought was projected to increase severely in Brazil for both SPI-6 and SPI-12 droughts, 
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with drought potentially affecting 4.5 to 6.8% of the population annually. Estimates of the 

number of lives affected by drought in Ethiopia varied depending on the SPI time period 

used, with SPI-6 drought events projected to affect less people annually whilst SPI-12 

drought events were projected to affect more people annually. 

 

Large variability in the economic and social consequences of individual drought events was 

seen. It was projected that the effects of some individual drought events will rise dramatically 

in the future, exceeding historic losses reported by EM-DAT. For economic damages, this 

was particularly prominent for Australia and the USA due to the use of non-linear drought 

damage functions. The size of economic losses estimated for some individual drought 

events of severe magnitude were found to be unrealistic and overestimated. Consequently, 

more consideration needs to be given to the evolution of the shape and scale of the damage 

functions as future drought events may exceed historical ranges on which they are based. 

However, this finding also supports the argument that current thresholds of resilience to 

climate change may be exceeded in the future (IPCC, 2007c). If socio-economic drought 

thresholds are exceeded the magnitude of losses may increase rapidly, potentially resulting 

in irreversible or systemic collapse of economies. 

 

The study established the application of drought damage functions as tools for the 

estimation of economic and social drought effects across various countries and timescales. 

The economic and social drought effects were representative of the likely changes in 

drought regimes modelled under future climate change. By modelling individual drought 

events the effects of climate change on the variability of future precipitation and drought 

events was also highlighted. However, it is very difficult to assess the robustness of the 

future projections of economic and social effects as there is limited data and literature on 

which to base comparisons. Consequently, many caveats and limitations were highlighted 

and uncertainties remain large. 

 

7.1.4 Estimates of indirect economic drought costs 

The fourth objective was to model and quantify the indirect economic costs of drought 

events. Improved understanding and validation of indirect damages from past weather 

extremes is crucial to help improve the estimation of future losses in the context of climate 

change analysis. This is particularly important when analysing drought events as they are 

commonly associated with large indirect losses (Wilhite et al., 2007). Crucially, most existing 

IAMs omit not only extreme weather events but also factors such as cross-sectoral impacts, 

and effects on businesses productivity (Stern, 2007). 
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I-O analysis was highlighted as a promising tool for the estimation of indirect losses from 

natural disasters and extreme weather events (Rose, 2004). However, studies focusing 

explicitly on the quantitative estimation of indirect economic drought costs are scarce (Ding 

et al., 2010). In order to explore this issue further the ARIO Model (Hallegatte, 2011) was 

utilised and calibrated to Spain. The study focused on Spain as there was good consistency 

in the direction of drought trends modelled (chapter 4); Spain was identified as being at high 

risk from increasing economic drought losses (chapter 5); and drought events affect a large 

proportion of the country meaning that effects would be relatively homogenous across Spain. 

The shock to the economy during drought was based on the direct economic losses 

estimated previously for Spain. 

 

The ARIO model was modified so that direct economic losses accumulated gradually over 

the drought duration; direct losses were disaggregated between high-risk sectors based on 

historical data on drought impacts and water use; and as it was assumed there was no direct 

damages to infrastructure, production capacity returned to the pre-event level when the 

drought event terminated. In addition, for the agricultural sector three scenarios were 

investigated: the effect of cumulative losses, seasonal losses and sudden monthly losses to 

production capacity. The model was validated by running scenarios for three historic drought 

events in Spain and comparing model output to actual economic data. Assuming that direct 

losses to agriculture occurred suddenly provided the most robust results, which may reflect 

the fact that as agriculture is highly sensitive to weather variability drought losses may be 

immediate (Ding et al., 2010). Contrary to other studies (e.g. Hallegatte, 2005) it was found 

that ceteris paribus modelling direct drought damages as gradual shocks rather than sudden 

shocks did not necessarily cause lower indirect losses. 

 

The model was used to illustrate the potential indirect economic drought costs which could 

occur in Spain for SPI-6 and SPI-12 drought events using ECHAM4 and the A1FI and 

450ppm emission/stabilisation scenarios. Estimated annual drought losses in Spain for 

2003-2050 were found to be 36% higher for SPI-6 droughts if indirect economic losses were 

considered, and up to 75% higher for SPI-12 droughts. The results suggested a non-linear 

relationship between direct and indirect economic costs, in agreement with Hallegatte (2008) 

and Ranger et al., (2011). The results for SPI-6 droughts in 2051-2098 highlighted that under 

a high emission scenario total economic losses could be up to 76% higher than direct 

economic losses alone (table 6.2). This was restricted to 45% when the 450ppm stringent 

mitigation scenario was used. Importantly, the findings highlighted that stringent mitigation 

could have large benefits in terms of reducing indirect economic effects. Stringent climate 
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change mitigation was shown to reduce direct economic losses by 32% when compared to 

the high emission scenario, whilst indirect losses were reduced by 60%. 

 

The analysis emphasised the unique nature of individual drought events. The specific losses 

caused will depend upon the timing, duration, and magnitude of the event, as well as the 

economic structure and social conditions of the affected region. The application of the ARIO 

model was also advantageous at it allows flexibility in the economy following an economic 

shock by drawing on inventories, and adaptation in the form of over-production or increased 

imports. It was found that indirect costs of drought in Spain increased substantially when 

over-production was completely restricted highlighting the role that autonomous or planned 

adaptation could have in reducing future indirect drought costs. However, the modifications 

made to the ARIO model represent a first effort at modelling indirect economic drought costs 

under future scenarios of climate change and quantitative results are illustrative only. In 

interpreting the results it is important to consider some of the specific assumptions made and 

caveats of the study, as well as methodological and data issues which would benefit from 

further research to improve the robustness of the study. Importantly though, the 

methodology has illustrated that drought damage functions can be linked to an I-O model to 

provide estimates of indirect economic costs of drought. Consequently, there are many gains 

to be seen from the continued development of this research methodology for drought. 

 

7.2 Achieving the research aim 

The summary of research presented in section 7.1 highlights that the methodology devised, 

and the modelling tools utilised, have been beneficial for addressing the overall research aim 

of estimating future economic and social drought effects under various climate change 

scenarios. The approach has also addressed many of the current methodological issues 

seen in cost assessment studies of extreme weather events, as identified in chapter two 

(section 2.6). Namely, the methodology is not case specific and is general enough to apply 

to drought events universally at an international, national and sub-regional level. Yet, it is not 

so generalised that it fails to capture spatial variations in drought and its effects. The creation 

of country specific drought damage functions enables the specific characteristics and 

vulnerabilities of individual countries and states to be identified and as such can be applied 

to both developing and developed countries. The damage functions consider the specific 

characteristics of individual drought events by focusing on drought magnitude, which reflects 

the intensity, duration and spatial extent of droughts. The damage functions have been 

applied to market and non-market effects, using various metrics, and empirically calibrated 

to historic precipitation data and impact data. Finally, a novel methodology to assess indirect 
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economic drought costs has been illustrated for Spain. In investigating indirect losses, the 

onset time and evolution of direct damages was considered for agriculture, manufacturing 

and utility sectors. 

 

As discussed a major omission in studies that focus on the costs of climate change are the 

economic damages and social effects associated with extreme weather events (Buchner et 

al., 2006, Tol, 2002a, Tol, 2009). The exclusion of extreme weather events from climate 

change cost assessments leads one to question the comprehensiveness and utility of such 

assessments for informing climate change policies. Therefore, it was also recommended in 

section 2.6 that the research should be policy relevant, providing outputs that are useful and 

understandable to policy makers; which can be incorporated into wider climate change cost 

assessment studies; and which can help to drive decision-making. The importance of 

designing a methodology to help address these factors ultimately drove the research and 

underpinned its aim and objectives. 

 

The effects of future drought events on national and global GDP were provisionally 

addressed in chapter five (section 5.2.1). The results highlighted that the effect of climate 

change on drought regimes in the first half of the 21st century was likely to have a significant 

effect on annual average GDP in Australia, Portugal and the USA. Additionally, the results 

highlighted that direct economic damages from severe and extreme drought events were 

expected to have an increasingly negative effect on global GDP in the first half of the 21st 

century (figure 5.2). Although not directly comparable, results were also presented in light of 

the estimates made by Stern (2007). This suggested that the findings of Stern that extreme 

weather events would cause additional losses of 0.5-1.0% of world GDP by 2050 (above 

changes in wealth and inflation) could well be underestimated when considering the 

conservative estimates of direct economic losses from severe and extreme drought events 

to just a handful of countries. Crucially, this highlights how results could be incorporated 

within climate change cost assessment studies, at either a national or a global scale. 

Additionally, there is potential for the damage functions to be integrated into CIAS or 

incorporated within economic models that currently use the economic damage functions of 

Tol (2002a, b) and Nordhaus and Boyer (2000) to explicitly consider drought. These issues 

are discussed in more detail in section 7.4 below. 

 

Concerning climate change policy the study emphasised that stringent mitigation (implied by 

the 450ppm scenario) will be critical for reducing the effects of climate change on drought 

regimes and socio-economic consequences in the long-term (2051-2098). However, even 

under stringent mitigation economic and social drought effects were not reduced in the short 
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to medium term (2003-2050), when compared to a high emission scenario. Society is 

already committed to a certain degree of climate change in the first half of the 21st century, 

and changes in future drought regimes and socio-economic consequences cannot be 

entirely avoided. Therefore short-term adaptation will be necessary to address impacts 

linked to changing timing, volume, and quality of water (Kundzewicz et al., 2008). This will 

have consequences for the way in which countries manage future drought risk as drought 

adaptation strategies and water management strategies need to be created using a dynamic 

framework, which considers future impacts of climate change.  

 

This is an important issue as to date there has been relatively little evidence of downscaling 

exercises of climate change impacts specifically linked to adaptation assessment (Wilby and 

Fowler, 2011). However, the major driving factor behind this research was the development 

of a methodology to quantify drought effects for inclusion within climate change cost 

assessments in the form of avoided damages, to represent benefits of mitigation in a more 

comprehensive fashion. Whilst downscaled projections of precipitation were utilised here, 

and illustrate how such techniques can be used to detect future drought trends and potential 

socio-economic effects, making a link to specific adaptation planning is difficult. Decisions 

regarding adaptation are often made on much smaller spatial scales than covered here and 

for specific businesses or sectors. Additionally, the uncertainties that surround the estimates 

of drought and its socio-economic consequences, as with any climate change projections, 

make it hard for robust decisions to be made. This can be especially problematic where 

there is uncertainty over the general direction of trends using different scenarios (Economics 

of Climate Adaptation Working Group, 2009). For example, the range of results illustrated in 

figure 4.4a-d, which in some cases differed in direction of change depending on the climate 

scenario used. 

  

Whilst the results of this study may be useful for assessing the costs and benefits of 

adaptation overall, it will be less applicable for informing local adaptation strategies and 

decision-making. Results focus on aggregate effects to economies and society, however the 

specific, and numerous, manifestations these effects can take are not specifically addressed. 

For example, reduced water supply, affected water quality, availability of water for industry 

and energy generation, effects on water-borne transport, increased incidence of water-

related disease, effects on water based tourism and recreation, degradation of aquatic 

ecosystems, reduced sanitation, consequences for agriculture, implications for insurance 

industries, and effects on human health and mortality rates. However, this study does 

identify areas of high drought risk, which are likely to be particularly vulnerable in the future, 

as well as highlighting the types of damages which regions may be more sensitive too. This 
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information can still be useful for identifying areas where adaptation and drought risk 

management will be especially important in the short-term. As noted by Wilby and Fowler 

(2011) simply having information on the trends of climate change and drought events may 

be sufficient to raise awareness of risks and motivate low regret adaptation options. 

 

7.3 Limitations, caveats and uncertainties 

The achievements of the above analysis are considerable. The data sources, methodology, 

modelling techniques and results have all been selected and utilised in order to make the 

results as robust as possible. However, as with any studies that involve making future 

projections there are many limitations, caveats and uncertainties that have been raised and 

discussed in chapters three, four, five, and six. In interpreting the results of the study, it is 

important to be aware of such limitations in the methodology and data. As previously noted, 

as model complexity grows and linkages are made between different components 

uncertainties will cascade through the modelling chain and increase (Wilby and Fowler, 

2011). In this case, it is important to reiterate that modelling limitations and uncertainties 

exist due to: 

 

 modelling drought using the SPI, related to the specifics of the index itself and the 

quality of the historic precipitation data 

 the quality of data available in EM-DAT, specific issues related to its cataloguing, the 

assumption that economic damages reflect direct losses only, and the limited 

availability of the data restricting the data points on which trends were based 

 the focus on drought magnitude only although other socio-economic variables, such 

as increased water demand, can affect the scale and type of drought effects 

 the focus on historic drought events until 2002 only, excluding more recent events 

 the ability of GCMs to model precipitation accurately, for example linked to difficulties 

in modelling large-scale atmospheric processes, monsoons and feedback processes 

 the robustness of the downscaling technique used, and that only three GCM patterns 

were used in downscaling 

 the coarse country regions defined and the spatial scale of the analysis 

 the exclusion of climate variables other than precipitation, e.g. temperature, which 

may affect future drought regimes and the subsequent consequences of drought 

 the implicit treatment of adaptation only, by assuming that society will be more 

resilient and adapt more readily to moderate drought events which were excluded 
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from the analysis (although adaptation options were explicitly modelled for indirect 

economic costs in chapter five) 

 modelling the effects of individual drought events on static economic and social 

systems assumed to be in equilibrium 

 the assumption that the shape and scale of drought damage functions will remain 

valid for future events which exceed historical thresholds 

 the exclusion of indirect social effects, such as increased risk of conflict or migration, 

and environmental effects from the analysis 

 the modelling framework and assumptions which underlie the ARIO model, the 

manner in which direct drought damages were modelled in this study, and the 

sensitivity of the results to the adaptation and inventory parameters used. 

 

7.4 Further research 

This study is unique in its development of a methodology and subsequent creation of country 

specific drought damage functions, contributing to an area of relatively new and developing 

research. It is hoped that the drought damage functions, modelling approaches, and outputs 

of this research will contribute to the current gaps in knowledge highlighted in chapters one 

and two, and due to the interdisciplinary nature of the research will be beneficial to various 

parties. The literature review highlighted some important issues to consider when devising a 

methodology for estimating future economic and social drought effects under future climate 

change (listed in section 2.6). However, some of these issues, such as modelling drought 

effects as part of a dynamic system, have not been addressed by this study, and limitations 

and uncertainties remain large (as discussed in section 7.3). Accordingly, there are many 

potential extensions to this research, which would be useful for enhancing the robustness of 

the methodology and for increasing the applicability of the outputs for climate change 

analysis. Primary areas for further research are outlined below. 

 

Presently, the economic and social drought damage functions have been created for eight 

countries only. It would be useful to create damage functions for other countries, where 

sufficient impact data is available, to facilitate a better estimate of global drought effects.  

The methodology devised is also beneficial as damage functions could also be created for 

use in specific national studies. Likewise, the potential for creating similar damage functions 

for heatwaves or heavy precipitation events would be an interesting avenue to explore. 

However, as a major constraint of this analysis has been the availability of data on drought 

events and their economic and social consequences it may not be possible to provide a truly 

global estimate in this manner. One alternative would be to use countries where damage 
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functions can be created as proxies for countries with similar geographical, climatological 

and economic characteristics. A second alternative, as mentioned in section 3.4, would be to 

devise more conceptually based damage functions centred on the results of this 

assessment, but also incorporating information on the effects of other socio-economic 

criteria on drought related losses, perhaps through a ranking or weighting based framework. 

 

The research would also benefit from temporal extensions. Historical precipitation data was 

available until the end of 2002 only at the beginning of this study, limiting the historical 

analysis of event and climate data to this time. From 2002 until present there have been 

some increasingly severe drought events affecting the countries studied that are not 

incorporated in the drought damage functions. The damage functions could be updated to 

2006 using an extended version of the observed gridded precipitation data recently released 

by the CRU (CRU TS 3.0) 17 and currently being documented. This would help increase the 

number of data points on which the trends are based. It would also provide an interesting 

test of the shape and scale of the damage functions to see how robust they are to the 

addition of new data points, and whether the trends highlighted remain accurate. 

Furthermore, the future drought projections could also be improved as CIAS is currently 

being updated to incorporate the latest version of the SCM MAGICC and the nineteen GCMs 

used in the 2007 IPCC reports. 

 

The drought damage functions are based on economic losses that have been normalised for 

each country based on inflation only. Changing socioeconomic conditions which can affect 

overall societal and economic vulnerability were not considered. This is a major caveat as 

inter alia Crompton and McAneney (2008) and Muir-Wood et al., (2006) have argued that a 

defensible normalisation procedure must also account for changes in population, assets, and 

wealth, not just inflation. The drought damage functions would benefit from more 

comprehensive normalisation techniques. This would increase the robustness of the damage 

functions and make them more amenable to use in other academic studies. In addition, the 

losses could be normalised based on regional economic data, as economic damages from 

drought events are often heavily related to the value and type of regional economic activity. 

Similarly, regional population statistics could be used to account for the varying exposure of 

populations in different regions. 

 

An investigation of whether sub-national damage functions are necessary in some areas 

would also be interesting. For Brazil, the economic drought damage function could not be 

                                                
17

 Available to download at: http://badc.nerc.ac.uk/data/cru/  

http://badc.nerc.ac.uk/data/cru/
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utilised in this study due to the very weak correlation seen between drought magnitude and 

economic damages. Reported drought effects in Brazil were strongly related to the location 

where they occurred. Drought in south and central Brazil affected coffee crops, a main 

export for Brazil, resulting in high economic losses. Drought in the arid northeast affected a 

poorer region dominated by subsistence farming, and so economic losses were smaller 

regardless of the magnitude of the drought. Alternatively, losses in the northeast were much 

more significant in terms of social effects. Unfortunately, a major restraint for creating 

regional/state level drought damage functions is the availability of sufficient drought impact 

data at this scale. Promisingly, the above issues may be reduced if the economic and social 

impact data is normalised based on regional statistics as mentioned above. 

 

As a first step, the study has modelled drought effects on a static system rather than a 

dynamic system. Yet, drought events occurring in the future may affect countries that have 

undergone large changes in their socio-economic structure, which can affect the 

vulnerability, resilience and exposure of regions. Unfortunately, such complex issues are 

extremely difficult to project and available data on future economic scenarios, and assets at 

risk were not consistently available across all countries studied. There are merits to using 

future economic scenarios of GDP to estimate changing assets at risk. However modelling 

uncertainties will also increase as GDP trends will depend on specific economic 

assumptions made about growth and the implementation of technological changes; the 

characteristics of the economic model used to project GDP; and assumptions about future 

exchange rates (Arnell et al., 2004). Such complex issues are extremely difficult to model 

and quantify. 

 

Additionally, whilst increased economic growth may raise assets at risk and exposure it can 

also lead to an increase in resilience in the affected economy so a country is more able to 

cope in the disaster aftermath (Benson and Clay, 2004). For example, in the future there 

may be increased adaptation, especially in high-risk areas suffering from increasingly 

frequent and severe drought events. Planned and autonomous adaptation was not explicitly 

modelled in this study, although it could reduce future effects of extreme weather events 

(Adger and Brooks, 2003, Wreford et al., 2007). Instead, adaptation was treated implicitly by 

presenting results for severe and extreme drought events only, and assuming that moderate 

drought events that occur more frequently would be likely to cause smaller scale effects and 

would be easier to cope with and adapt to in the future. For future research, it would be 

beneficial to model explicitly an adaptation coefficient to adjust the estimates accordingly. 

This would require more research into the specific adaptation measures undertaken during 

past drought events as well as any implementation costs. The ARIO model did explicitly 
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include basic adaptation options when investigating indirect drought costs for Spain. 

However, the adaptation parameters considered were applied homogeneously across 

economic sectors. In reality, different sectors may have different adaptive capacities and 

options available to them. Therefore, investigation into historic drought events and specific 

autonomous or planned adaptations that occurred at a sectoral level, and the effects of this, 

would also be beneficial for the I-O analysis. This would improve the robustness of the 

modelling approach and results generated. 

 

It was also noted in chapters five and six that the projected economic and social drought 

effects presented here may be underestimated as the effects of successive drought events, 

affecting already stressed societies and economies in disequilibrium, were not considered. 

The future drought projections suggest that in the first half of the 21st century an increase in 

the frequency and duration of drought events in Australia, Brazil, Portugal, Spain and the 

USA cause more drought months per year resulting in less recovery time in intervening 

months. Research would benefit from an analysis of successive drought effects over time. 

Again, this would be benefitted by undertaking a second phase of research to assess future 

drought effects in a dynamic manner, using future economic scenarios. 

 

The dominant focus of this research has been on direct and indirect economic drought 

effects. The effects of drought on the numbers of lives affected and lives lost was illustrated 

for Brazil, Ethiopia, and the USA, however, the trends between drought magnitude and 

social effects were less robust and the scope of the study was smaller. It would be useful to 

extend this analysis to focus more on the social effects of drought, especially for developing 

countries that are already facing water scarcity issues. Important interactions exist between 

society, the environment and water. Therefore, any future changes to hydrological systems, 

such as those caused by drought, could pose a significant risk to society (e.g. Arnell, 2004, 

Parry et al., 2004). Furthermore, the study has highlighted the importance of indirect effects 

of drought. Further investigation into the scale of indirect social effects that may occur under 

future scenarios of climate change, such as the scale of people facing water and food 

shortages or consequences for migration would be interesting. This type of extension could 

also provide a connection to secondary economic losses via linkages to increased 

humanitarian spending and relief aid from the international community. For example, drought 

damage functions could be created by establishing relationships between drought magnitude 

and data on humanitarian spending as used by Webster et al., (2008). The study by Webster 

et al., on the humanitarian costs of climate change, did not consider future effects of 

changing drought frequency and severity on humanitarian spending and so this could form a 

useful extension to the research. 
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If the robustness of the drought damage functions were improved and economic damages 

estimated based on various socio-economic scenarios it would also be beneficial to extend 

the analysis to 2100, to assess a wider variety of mitigation strategies. The research outputs 

could be included within climate change cost assessments to help guide appropriate levels 

of climate change mitigation, based on more comprehensive estimates of economic costs, 

as well as helping to gauge the vulnerability of communities to future drought events and 

guide drought risk management. Economic costs of drought events could be incorporated by 

relating the average annual economic costs of drought to the change in global temperature 

projected by 2050 and 2100 under the specific emission/stabilisation scenarios used. In this 

study, the economic and social drought damage functions have been created offline. 

Ultimately, they could be incorporated into CIAS, which would also enable more detailed 

uncertainty analysis to be conducted. There is also potential for the drought damage 

functions to be incorporated into other economic models, which excluded extreme weather 

events, to provide a more comprehensive estimate of the total costs of climate change. 
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Appendix A: Characteristics of 13 Integrated Assessment Models 

Model 
Spatial 
Detail 

Model Details Model Components 
Measurement 

of Impacts 

Weather 
Extremes 
Modelled 

Damage 
costs of 
Extreme 
Weather 
Modelled 

Reference 

AIM 
 

(Asian-Pacific 
Integrated 

Model) 

Global and 
National for 

Asia-
Pacific 
region. 
 

Large scale simulation model 
which aims to assess policy 
options for stabilising global 

climate. 
 

Looks at regional adaptation and 
mitigation strategies for the Asia-

Pacific region. 
 

Biophysical Impacts Model 

Emissions  - Climate Model 
(GCM) - Impact Modules (water, 

agriculture, forestry, natural 
vegetation, malaria) 

Biophysical 
units/Monetary 

Units 

 
 

Drought risk 

 
 

(Matsuoka et 
al., 2001) 

 
 
 

CIAS 
 

(Community 
Integrated 

Assessment 
System) 

Global and 
regional. 

Deterministic simulation model 
which aims to provide robust 

estimates of avoided damages 
and mitigation costs through 
comparison of climate policy 

scenarios compared to no policy 
scenarios. 

 
 

Economy/Emissions  - Simple 
Climate Model – downscaling 

model - impact Modules (biome 
shifts, hydrological model) 

 
Plans to include coastal 
flooding, agriculture and 

incidence of extreme weather 
events. 

Biophysical  
units  

 
(Plans to include 

incidence of 
extreme weather 

events for 
flood/droughts) 

 
 

(Plans to 
quantify 
drought 
damage 
costs) 

(Warren et 
al., 2008) 

CLIMPACTS 
 

(Climate 
Impacts) 

Global and 
New 

Zealand 

Simulation based model used to 
evaluate policy scenarios in 
response to climate change 
including an evaluation of 

adaptation. 
 

Biophysical Impacts Model 

Simple Climate Model – New 
Zealand climate scenario 

generator – Impact modules for 
Agriculture and Horticulture 
(arable crops, fruit crops, 

grasslands, soils) 

Biophysical  
Units 

 
Scenario 

generator is linked 
to an extreme 

event analysis tool 
to estimate return 

periods of 
extreme events 
under climate 

change. 

 
 

(Warrick et 

al., 2001) 

DICE-2007** 
 

(Dynamically 
Integrated 

Climate 

Global Neo-classical optimal growth 
model of the global economy that 
can be used to assess different 

policy options for reducing 
greenhouse gas emissions. 

GHG Emissions - simple 
carbon-cycle and climate model 
-  Impacts Module (Agriculture, 
Sea Level Rise, Health, non-

market damages, and 

Monetary 
Units 

 
Damage 

function based 

 
 

 
 

(Nordhaus, 
2007) 



Appendix A 

 

191 

 

Economy 
Model) 

 
 

 
Policy Optimization/CBA model 

 
(Also related is RICE a 

regionalised version of DICE) 

catastrophic events) on Nordhaus 
and Boyer, 

2000. 

ESCAPE 
 

(Evaluation of 
Strategies to 

address 
Climate 

change by 
Adapting to 

and 
Preventing 
Emissions) 

4 world 
regions 

including 
the EU. 

A quantitative computational 
model to investigate policy options 

concerned with the greenhouse 
effect. It was the first spatially 

detailed model for Europe, 
extending components of IMAGE 
to look at European policies and 

impacts. 
 

Biophysical Impacts Model 

Emissions Model – 2 Climate 
Models – Impacts Model (range 

of ecosystem and economic 
indicators) 

 
 
 

Biophysical 
units/Monetary 

Units 

 
 

 
 

(Hulme et 
al., 1995) 

FUND 2.8** 
 

(Framework 
for 

Uncertainty, 
Negotiation 

and 
Distribution) 

Global and 
16 regions 

 

A computational economic CBA 
Model which can be used for 
studying impacts of climate 

change in a dynamic context, and 
to perform cost-benefit and cost-

effectiveness analysis of 
greenhouse gas emission 

reduction policies. 

FUND links scenarios and 
simple models of Population -  

Technology – Economics – 
Emissions - Atmospheric 

chemistry – Climate - Sea level 
–Impacts (Agriculture, forestry, 

water resources, energy 
consumption, sea-level rise, 
ecosystems, human health 

(diarrhoea, vector borne 
diseases, cardiovascular and 

respiratory disorders) 

Monetary 
Units 

 
Damage 

functions from 
Tol, 2002b 

 
(biophysical  

units included 
but monetised) 

 
 

 
Damage 

Functions  
 

(human 
health 

effects on 
mortality 
include 

impacts of 
heat and 

cold stress)  

(Tol and 
Fankhauser, 

1998) 

ICAM 
 

(Integrated 
Climate 

Assessment 
Model) 

Global and 
17 regions 

A simulation impact-centred 
model, analysing uncertainty and 
climate change impacts. It was 
designed to help explore and 

understand these interactions and 
evaluate ways to avoid, mitigate, 

or adapt to global climate change. 
 

CBA Model 

Links models of demographics 
and economics – Energy and 

Emissions – Atmospheric 
composition and climate model 

based on SCM output – Impacts 
(sea-level rise, other market 

impacts, ecosystems, other non-
market impacts, health) 

Monetary and  
Biophysical  

units 

 
 

 
 

(Dowlatabadi 
and Granger 

Morgan., 
1993) 

 

ICLIPS 
 

(Integrated 
assessment 
of Climate 
Protection 

Global and 
11 regions 

 

A computational, conceptual 
model. It seeks to provide 

Integrated Assessment of Climate 
Protection Strategies. A new 

approach, the Tolerable Windows 
Approach consists of a separation 

Climate Model (Energy Balance 
Model) – Socio-economic model 

– Climate Impact Models 
(natural vegetation, agricultural 

production, fresh-water 
availability) 

Biophysical  
Units 

 
 

 
 

(Toth, 2003) 
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Strategies) of normative settings for "tolerable 
windows" on climate impacts, 

negotiable allowances for 
greenhouse gas emissions, and 

desirable socioeconomic 
development scenarios. 

 
Uses climate impact response 

functions 

IMAGE 2.4 
 

(Integrated 
Model for the 
Assessment 

of the 
Greenhouse 

Effect) 
 
 

Global and 
24 regions 

(plus 
Antarctica 

and 
Greenland) 

An ecological-environmental 
framework. It represents 

interactions between society, the 
biosphere and the climate system 
to assess sustainability issues like 
climate change, biodiversity and 

human well-being. The objective of 
IMAGE (version 2.4) is to explore 
the long-term dynamics of global 

change as the result of interacting 
demographic, technological, 

economic, social, cultural and 
political factors. 

Socio-economic Models – Land 
Allocation and Land Emissions 

Models – Earth System Modules 
including SCM – Impacts 
Modules (Sea Level Rise, 

terrestrial ecosystems, crop 
distribution and productivity, 

biodiversity, water availability, 
energy supply-demand, 

distribution of disease vectors) – 
Policy Module 

Biophysical  
units 

 
SCM used cannot 
address extremes 

but a GCM of 
immediate 
complexity 

coupled to a 
Dynamic Global 

Vegetation Model 
has looked at 

complex 
feedbacks from 
land use change 
on climate and 

extremes 

 
 

(Bouwman 
et al., 2006) 

MERGE 
 

(Model for 
Evaluating 

Regional and 
Global 
Effects) 

Global and 
9 regions 

A general equilibrium model of the 
global economy. The model is 
sufficiently flexible to explore 

alternative views on a wide range 
of contentious issues: costs of 

abatement, damages from climate 
change, valuation and discounting. 

Detailed energy-Economy Model 
– simple carbon and climate 

modules – Damage Functions 
(farming, energy, coastal 

activities, ‘other’ non-market 
impacts) 

 

Monetised 
 

Damage 
function 

 (adjusted from 
Nordhaus, 

1991) 

 
 

 
 

(Manne and 
Richels, 
2005) 

Mini-CAM 
 

(Mini-Climate 
Assessment 

Model) 

Global and 
14 regions 

A highly aggregated integrated 
assessment model that focuses on 
the world’s energy and agriculture 

systems, atmospheric 
concentrations of greenhouse 

gases and consequences 
regarding climate change and sea-

level rise. CBA Model 

Energy and Land Use Modules 
– SCM – DSM – Damage 

Module (non-market impacts 
linked to Land Use model) 

 

Monetary and  
Biophysical  

units 
 
 

 
 

(Brenkert et 
al., 2003) 

PAGE-2002** 
 

(Policy 
Analysis of 

the 
Greenhouse 

Effect) 

Global and 
8 regions 

 A probabilistic optimisation model 
which allows extensive 

specification and propagation of 
uncertainties. Follows a stochastic 
approach by producing estimates 
based on Monte Carlo simulation 

to generate a probability 

Economics Model – Mitigation 
and Adaptation Costs – Impacts 
(Market and non-market sectors 

and catastrophe) 
 

Monetary units 
 

(Damage 
Functions 

linked to 2.5° 
temperature 

rise) 

  

(Hope, 2006) 
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Table A.1: Characteristics of 13 Integrated Assessment Models (** indicates most widely used IAMs) 

 

 

 

 

 

 

 

 

 

 

 

distribution rather than a single 
point estimate. 

 
CBA Model 

 

WIAGEM 
 

(World 
Integrated 

Assessment 
General 

Equilibrium 
Model) 

Global and 
25 regions 

An integrated economy-energy-
climate model to evaluate market 
and nonmarket costs and benefits 

of climate change 

Economic Module - Energy 
Module – Climate Module – 

Impacts (market and non-market 
including  forestry, agriculture, 

energy demand, water 
resources, ecosystem changes,  

mortality due to vector borne 
diseases and cardiovascular 

and respiratory disorders) 

Moneary Units 
 

(Based on 
damage 

functions from 
Tol, 2002b) 

 

 
Damage 

Functions  
 

(human 
health 

effects on 
mortality 
include 

impacts of 
heat and 

cold stress) 

(Kemfert, 
2002) 
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Appendix B: Validation of the SPI calculations 

 

                       SPI-3: June 1988                                       SPI-3: August 1980 

  

           

                                               

    Figure B.1: Validation of SPI code for the 1988 and 1980 US droughts. (Top panels show 

results from Edwards and McKee (1997). Bottom panels show results from this study 

mapped using DIVA-GIS)
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Appendix C: Country Drought Characteristic and Parameter Tables 

AUSTRALIA 

(States  Affected) 
Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 
2002) 

(,000s) 

Notes Sector Specific Impacts 

South-East (New South Wales, 
Victoria and Tasmania) 

1967-69 999 -- 7921996 
Affected wheat yields and almost wiped out entire oat 
crop. Bush fires and dust storms. Loss of 20 million 

sheep across Australia 
Agriculture 

New South Wales (central) 1974-75 -- -- -- Short-term drought -- 

Western NSW, Victoria and 
South Australia 

1976 -- -- -- 

Drought linked to El Nino and failure of autumn/winter 
rains. 40,000 cattle shot in Victoria. Natural disaster 

assistance required to provide cattle fodder and 
disposal. Also affected diary and fruit industries. 

Agriculture and Farming 

Western Australia (South West 
Region) 

1976 -- -- -- 

Drought linked to El Nino.  Affected the wheat belt area 
of Western Australia and diary and fruit industries. 

Natural disaster assistance required to provide cattle 
fodder and disposal. Bush Fires occurred in 1978. 

Agriculture and Farming 

Queensland, NSW, Victoria 
Tasmania 

1978 -- -- -- 
South-east Australia heavily affected despite 

intermittent heavy rain.  Developed through 1977-78 
and again worsened in 1979. Affected wheat belt area. 

Agriculture 

Queensland, New South 
Wales, Victoria, South 

Australia 
1981-82 -- 5263 12856840 

Drought linked to high temperatures and reduced 
rainfall from 1981 to 1982. Many wheat crops failed 
completely and Queensland saw a 10% reduction in 
agricultural production.  Linked to El Nino. Bush fires 

and dust storms. 

Agriculture 

Western Australia (South) 1991 -- -- 618520 
Agricultural production affected, cattle killed or died. 

Bush fires. Linked to significant El Nino phase. 
Agriculture and Farming 

Queensland 1992-95 -- 7859 5015596 

Agricultural production cut by 8%. Many cattle either 
died or shot. Bush fires. Winter crops reduced by 50% 
in 1994. Affected wheat and barley so much that grain 

was imported to Queensland from other states. 
Affected Darling river system and led to the loss of 

irrigation systems in some towns. Linked to a significant 
El Nino event. 

Agriculture, Farming, 
Water Supply 

Table C.1: Drought Characteristics and Impacts for Australia from 1940-2002. Source: EM-DAT (2010), Australian Bureau of Meteorology 

(2010), and Literature review. 
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AUSTRALIA 

(States  Affected) 

SPI-6 SPI-12 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

South-East (New South 
Wales, Victoria and 

Tasmania) 
1965-68 01 04 40 -2.16 14992 1965-68 02 11 46 -1.74 17571 

New South Wales 
(central) 

1975 04 08 5 -0.92 838 -- -- -- -- -- -- 

Western NSW, Victoria 
and South Australia 

1976 06 10 5 -1.48 3247 -- -- -- -- -- -- 

Western Australia (South 
West Region) 

1976-77 05 12 20 -1.58 17254 1976-78 10 06 21 -1.45 17955 

Queensland, NSW, 
Victoria Tasmania 

1977-78 08 04 9 -1.45 7044 1978 02 08 7 -0.87 4670 

Queensland, New South 
Wales, Victoria, South 

Australia 
1982-83 01 04 16 -2.07 26252 1982-83 05 10 18 -1.76 28560 

Western Australia (South) 1990-91 07 08 14 -1.17 8199 1990-92 05 02 22 -1.10 13448 

Queensland 1991-95 08 09 50 -1.78 22070 1992-95 01 12 48 -1.22 23583 

Table C.2: Drought Parameters for Australia at SPI-6 and SPI-12. Source: Own calculations 
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BRAZIL 

(States  Affected) 
Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 2002) 
(,000s) 

Notes Sector Specific Impacts 

Amazon Basin (Acre, Amazonas, 
Roraima, Amapá, Pará, 
Rondônia, Mato Grosso) 

1963-64 -- -- -- 

Record levels of low rainfall in 1963 and 1964. Linked 
to warming of tropical Atlantic rather than El Niño.  
Reports of severe socio-economic impacts but no 

data reported. 

Agriculture, water 
resources. 

North-East 
(Maranhão, Piaui, Bahia, Ceará, 
Rio Grande do Norte, Paraiba, 
Pemambuco, alagoas, Sergipe) 

1970 -- 18637 1195 

Reports of 200,000 people without jobs due to 
agricultural employment falling. Cattle industries 

affected as livestock died or prematurely slaughtered. 
Food shortages in some areas. 

Farming, Agriculture, 
Employment, Food 

Supply. 

Central/Southern 
(Rio Grande do sul, Santa 

Catarina, São Paulo, Paraná, 
Minas Gerais, Mato Grosso do 

sul, Rio de Janeiro, Espirito 
Santo) 

1978 -- -- 5794688 

High crop losses reported, especially coffee beans. 
Drought affected crop production of 1977/78 coffee 

bean harvest. More than 10% of coffee crop 
destroyed in São Paulo and Paraná pushing 

international coffee prices up. 

Agriculture 

North-East 
(Piaui, Bahia, Ceará, Rio Grande 
do Norte, Paraiba, Pemambuco, 

Alagoas) 

1983 27 27456 4479 

Most severe drought to hit Brazil. Rainfall 40% below 
average in rainy season. Linked to El Niño. 
Reduction in agricultural production of 16%. 

Subsistence farmers hit, high levels of 
unemployment, and rising food prices. 

Farming, Agriculture, 
Employment, Food 

Supply. 

Rio Grande do Sul 1985 -- -- 1477254 Slight loss to coffee crops in region. Agriculture 

North East and Minas Gerais 1987-88 -- 948 -- 
Reported rainfall deficiency of 19%, which affected 

up to 60% of crops in area. 
Agriculture 

Rio Grande do Sul, Santa 
Catarina 

1988 -- -- 1531200 

Affected sugar crop and world sugar prices. Drought 
continued into 1989 affecting grain and coffee crops. 

35,000 cattle reported as slaughtered. Reports of 
unusually high temperatures. 

Agriculture, Farming 

Rio Grande do sul, Santa 
Catarina, São Paulo, Paraná, 

Minas Gerais 
1994-95 -- -- 231543 

Destroyed half of coffee crop leading to a doubling in 
coffee prices compared to 1993. Affected cattle, milk 
production, soybean, rice, snap bean and sugar cane 

crops. Reduces water supply affected the natural 
environment and tourism. 

Agriculture, Farming, 
Water Supply, Tourism 

Piaui (North East) 1998-99 -- 10597 73143 
Caused climate refugees, Fires killed cattle and 
crops, affected agriculture and farming. Severe 

drought linked to El Niño. 
Agriculture, Farming 

Pernambuco (North East) 2001 -- 1014 -- 
Reduced rainfall affected reservoir levels and 

generation of hydroelectric power.  
Hydro-electricity 

generation 

Table C.3: Drought Characteristics and Impacts for Brazil from 1940-2002. Source: EM-DAT (2010) and Literature review. 
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BRAZIL 

(States  Affected) 

SPI-6 SPI-12 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Amazon Basin (Acre, 
Amazonas, Roraima, 

Amapá, Pará, 
Rondônia, Mato 

Grosso) 

1963-64 03 09 19 -1.52 23099 1963-65 01 02 26 -1.52 29939 

North-East 
(Maranhão, Piaui, 
Bahia, Ceará, Rio 
Grande do Norte, 

Paraiba, Pemambuco, 
alagoas, Sergipe) 

1970 02 10 9 -1.06 2865 1970-71 03 03 13 -0.92 3588 

Central/Southern 
(Rio Grande do sul, 
Santa Catarina, São 
Paulo and Paraná, 
Minas Gerais, Mato 

Grosso do sul, Rio de 
Janeiro, Espirito 

Santo) 

1977-78 12 08 9 -1.73 4876 1977-78 12 11 12 -1.24 5856 

North-East 1981-84 09 04 32 -1.44 13686 1982-84 03 09 31 -1.56 13966 

Rio Grande do Sul 1985-86 11 03 5 -0.70 194 -- -- -- -- -- -- 

North East and Minas 
Gerais 

1987-88 -- -- -- -- -- 1987-88 02 02 13 -0.75 4077 

Rio Grande do Sul and 
Santa Catarina 

1988-90 06 01 20 -1.33 2281 1988-90 07 02 20 -1.32 2644 

Rio Grande do sul, 
Santa Catarina, São 

Paulo, Paraná, Minas 
Gerais 

1994-95 09 02 6 -1.14 2315 1994-95 10 08 11 -1.06 2523 

Piaui (North East 
State) 

1997-99 11 09 23 -2.22 2208 1997-00 11 01 27 -1.97 2850 

Pernambuco (North 
East) 

2001 03 07 5 -0.44 52.6 -- -- -- -- -- -- 

Table C.4: Drought Parameters for Brazil at SPI-6 and SPI-12. Source: Own calculations 
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CHINA 
(States  Affected) 

Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 2002) 
(,000s) 

Notes Sector Specific Impacts 

Tibet, Sichuan, Yunnan, Guizhou, 
Chongqing, Guangxi, 

Guangdong, Hunan, Hubei, 
Henan 

1965 -- -- 565565 
Reduction in summer precipitation caused by a weakening of 

summer monsoon and an displacement of the western 
Pacific subtropical high. 

-- 

Anhui, Jiangsu 1978 -- 8035 -- Over 90% of cultivated land destroyed in Anhui.  Agriculture 

Tibet 1983 -- -- -- One of the worst droughts recorded in Tibetan history -- 

Hubei, Jiangsu, Henan, Anhui, 
Shandong, and Zhejiang 

1988 1627 56952 4462714 

Drought affected central and southern grain belts. Millions of 
acres of crops destroyed with over ½ arable land in Hubei 

destroyed and 2/3rds of peanut and sesame crop lost. 
Heatwave and temperatures over 100°C reported. 

Agriculture and Farming 

Jiangxi, Hunan 1991 2225 5563 -- 
~1.44 million hectares of farmland were destroyed and in 

Hunan rivers, lakes and dams ran dry. 
Agriculture, Farming, 

Water Supply 

Hunan 1992-93 -- -- 184953 At least 316,000 farmers short of drinking water.  Agriculture, water supply 

North (Inner Mongolia, Shanxi, 
Hebei, Beijing, Tianjin, Shanxi) 

1992 -- 13189 -- 

Water restrictions in north affected 5.8 million people. Water 
levels in dams and reservoirs dropped significantly following 
1993. Dust storms and forest fires. Average temperatures 2-

4°C above normal. Affected grain production. 

Agriculture, Farming, 
Water Supply 

Shandong 1997 -- -- 258061 
Most severe drought in 30 years. Water in reservoirs dried up 
and 2 million people left short of drinking water. Crops were 

water stressed. 

Agriculture, Water 
Supply 

North China Plain (Liaoning, 
Hebei, Shanxi, Henan, 

Shandong, Jiangsu, Anhui) 
1999 -- 19404 -- 

Affected wheat growth in North China Plain. 1999 Summer 
temperatures 1-2°C higher than average. Dry soil conditions. 

Agriculture 

Anhui, Henan 2000 -- 15211 965737 Affected crops and soil and caused major water shortages 
Agriculture, Water 

Supply 

Inner Mongolia Autonomous 
Region 

2000 -- 5070 -- 
Sharp drop in grain production with 2/3rds of the regions 

planting area affected. 600,000 cattle dead and 40 million in 
poor condition due to lack of grass. 

Farming, Agriculture, 
Water Supply, Food 

shortages 

Inner Mongolia Autonomous 
Region 

2001 -- 534 -- Continuation from drought of 2000. 
Farming, Agriculture, 

Water and Food Supply 

Sichuan, Yunnan 2001 -- 15906 -- 
High temperatures and low rainfall. Lack of water supplies for 

people and animals, decrease in production of crops. Over 
3000 industrial factories closed in Sichuan 

Farming, Agriculture, 
Water Supply 

Guangdong, Fujian, Guangxi 2002 -- 60000 -- 
Precipitation from Jan-Mar reduced in South China by 40% 
and above average temperatures. Affected farming and rice 

crop, water shortages, farmland scorched. 

Agriculture, Water 
Supply 

Table C.5: Drought Characteristics and Impacts for China from 1940-2002. Source: EM-DAT (2010) and Literature review. 
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CHINA 
(States  Affected) 

SPI-6 SPI-12 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Tibet, Sichuan, Yunnan, 
Guizhou, Chongqing, 
Guangxi, Guangdong, 
Hunan, Hubei, Henan 

1964-65 12 11 12 -1.38 10282 1965-67 04 05 26 -1.21 19577 

Anhui, Jiangsu 1978-79 03 03 13 -2.49 2030 1978-79 04 06 15 -2.63 2801 

Tibet 1983-84 08 06 11 -1.45 4762.15 1983-85 08 05 22 -1.55 6507 

Hubei, Jiangsu, Henan, 
Anhui, Shandong, and 

Zhejiang 
1988-89 04 03 12 -1.29 3193 1988-89 06 07 14 -1.11 3331 

Jiangxi, Hunan 1991-92 05 02 10 -1.26 962 1991-92 04 04 13 -0.95 855 

Hunan 1992-93 11 06 8 -1.54 591 1993 04 10 7 -1.41 395 

North (Inner Mongolia, 
Shanxi, Hebei, Beijing, 

Tianjin, Shanxi) 
-- -- -- -- -- -- 1992-93 06 06 13 -1.01 4182 

Shandong 1997 04 12 9 -2.14 665 1997-98 06 04 11 -1.20 666 

North China Plain 
(Liaoning, Hebei, 
Shanxi, Henan, 

Shandong, Jiangsu, 
Anhui) 

1999-00 01 10 22 -1.71 7025 -- -- -- -- -- -- 

Anhui. Henan 2000 03 08 6 -1.48 643 2000 04 09 6 -0.44 218 

Inner Mongolia 
Autonomous Region 

2000 07 02 8 -0.94 2186 -- -- -- -- -- -- 

Inner Mongolia 
Autonomous Region 

2001-02 04 02 11 -1.90 8022 -- -- -- -- -- -- 

Sichuan, Yunnan 2001 02 07 6 -1.06 1396 2001 01 08 8 -0.73 976 

Guangdong, Fujian, 
Guangxi 

2002 02 07 6 -1.40 923 -- -- -- -- -- -- 

Table C.6: Drought Parameters for China at SPI-6 and SPI-12. Source: Own calculations 
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ETHIOPIA 

(States  Affected) 
Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 
2002) 
(,000s) 

Notes Sector Specific Impacts 

Nationwide 1965 5422 3968 -- Linked to El Niño Agriculture 

North Ethiopia (Tigray, Afar, 
Amhara) 

1983-84 
1794780 

 
12709  -- 

1984-85 Famine. 1 million people died of starvation. 
Killed crops and cattle. Famine affected most of the 
country. Started in northern Ethiopia and spread by 

1986 to parts of the Southern Highlands. 

Agriculture and Farming 

Tigray, Afar, Amhara, 
Oromia, SNNPR 

1987-88 579 10209  -- 

Failure of rains in main rainy season, however, 
linked to El Nino conditions and so governments 

were pre-warned of potential drought which reduced 
Deaths. Up to 100% crop failure in some states 

including Tigray. 

Agriculture, Food and 
Water Supply 

Borena, Bale,  South Ome 
zone, Somali state 

1997-98 -- 1109 -- 
Rainfall in East and North-east Ethiopia below 

average in August. Food security issues. Links to El 
Nino. 

Agriculture. Food and 
Water Supply 

Southern and South-Eastern 2000 -- 8468 -- 
Reduced rains in main growing season caused food 

shortages. Forest Fires in South of Country. 
Approximately 3 million cattle died. 

Agriculture and Farming 

Table C.7: Drought Characteristics and Impacts for Ethiopia from 1940-2002. Source: EM-DAT (2010) and Literature review. 
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ETHIOPIA 

(States  Affected) 

SPI-6 SPI-12 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Nationwide 1965 03 10 8 -1.3 2494 1965-66 06 04 11 -1.0 2423 

North Ethiopia (Tigray, 
Afar, Amhara) 

1983-85 07 03 21 -1.66 2314 1982-85 07 07 37 -1.74 3801 

Tigray, Afar, Amhara, 
Oromia, SNNPR 

1987-88 09 08 12 -1.28 2087 1987-88 07 08 14 -1.39 2079 

Borena, Bale,  South 
Ome zone, Somali 

state 
1996-97 11 09 11 -0.91 901 1997 04 10 7 -0.90 655 

Southern and South-
Eastern 

1999-00 04 10 19 -1.30 3962 1999-01 05 02 22 -1.06 3750 

Table C.8: Drought Parameters for Ethiopia at SPI-6 and SPI-12. Source: Own calculations 
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INDIA 

(States  Affected) 
Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 
2002) 
(,000s) 

Notes Sector Specific Impacts 

West Bengal/Calcutta 1942 4977662 -- -- Pre-monsoon event. -- 

Rajasthan 1964 -- 1127 -- Linked to winter rains -- 

Karnataka 1964 -- 366 -- -- -- 

Nationwide 1965-67 3227752 215184 863336 
Deficiency in monsoon – late season drought. 

Affected relatively high rainfall region 
-- 

Central (Madhya Pradesh, 
Maharashtra & Goa) 

1972-73 
 

-- 
365935 714090 

Reduced monsoon rains – early season drought. 
Affected low rainfall region 

Agriculture, Farming 

Nationwide 1979-80 -- 15604 673386 
Deficiency in monsoon – late season drought. 

Affected relatively high rainfall region 
Agriculture 

Rajasthan,  Haryana, 
Himachal Pradesh & Punjab, 

Kerala & Tamil Nadu 
1982-83 -- 145964 -- Link to deficiency in monsoon rains 

Agriculture 

Gujarat, Rajasthan, Orissa, 
Madhya Pradesh Andhra 

Pradesh, Maharashtra 
1987-88 

 
394 

 
393890 

-- 
Reduced monsoon rains – early season drought. 
Affected low rainfall region. Affected 60% of crop 

area and affected cattle 
Agriculture, Farming 

Bihar, Orissa, Andhra 
Pradesh, Maharashtra, 

Gujarat, Madhya Pradesh, 
Uttar Pradesh, Karnataka 

1993 -- 1422 -- -- -- 

Gujarat, Rajasthan, Madhya 
Pradesh, Andhra Pradesh, 
Orissa, Maharashtra, New 

Delhi 

2000-01 21 51610 648977 
The worst drought in 100 years in India. Agriculture 

and cattle affected. Water shortages 
Agriculture, Farming, 

Water Supply 

Table C.9: Drought Characteristics and Impacts for India from 1940-2002. Source: EM-DAT (2010) and Literature review. 
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Table C.10: Drought Parameters for India at SPI-6 and SPI-12. Source: Own calculations 

 
 
 
 

INDIA 

(States  Affected) 

SPI-6 SPI-12 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

West Bengal/Calcutta 1942 5 8 4 -1.48 157 1942 -- -- -- -- -- 

Rajasthan (central) 1963-64 3 6 16 -1.56 1617 
1962-
1964 

9 6 22 -1.14 1868 

Karnataka 1964 4 6 3 -1.9 321 1964 3 6 4 -0.71 128 

Nationwide 1965-67 3 2 24 -1.24 19762 1965-67 7 7 25 -1.28 22826 

Central (Madhya 
Pradesh, Maharashtra & 

Goa) 
1972-73 4 6 15 -1.86 4280 1971-73 8 7 24 -1.71 5403 

Nationwide 1979-80 6 2 9 -1.24 6820 1979-80 7 6 12 -1.03 8963 

Rajasthan,  Haryana, 
Himachal Pradesh & 

Punjab, Kerala & Tamil 
Nadu 

1982-83 7 2 8 -1.21 1550 1982-83 8 5 10 -1.25 1834 

Gujarat, Rajasthan, 
Orissa, Madhya Pradesh 

Andhra Pradesh, 
Maharashtra 

1987-88 6 2 9 -1.6 6340 1986-88 7 8 26 -1.58 13999 

Bihar, Orissa, Andhra 
Pradesh, Maharashtra, 

Gujarat, Madhya 
Pradesh, Uttar Pradesh, 

Karnataka 

1991-94 7 1 31 -1.62 13966 1991-94 8 6 35 -1.67 17483 

Gujarat, Rajasthan, 
Madhya Pradesh, 

Andhra Pradesh, Orissa, 
Maharashtra, New Delhi 

2000-01 9 4 8 -1.75 4547 2000-01 9 12 16 -0.98 6438 
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SPAIN & PORTUGAL 

(States  Affected) 
Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 
2002) 

(,000s) 

Notes Sector Specific Impacts 

Southern Spain (Andalucía, 
Extremadura, Castile la 

Mancha) 

1980-
83 

-- -- 4554676 
Linked to Azores high. Reservoirs dried up, 

exceeded water availability. Affected Cereal Crop 
and natural pasture 

Agriculture, Farming 

Portugal (Alentejo and Beja 
community) 

1983 -- -- 5088087 
Linked to Azores High and reduced winter 

precipitation 
Agriculture 

Spain (Nationwide) 1981 -- -- 464825 
Linked to Azores high. Extension of the 1980-83 

drought. 
Agriculture, Farming, 

Water Supply 

Southern Spain (Andalucía, 
Extremadura, Castile la 

Mancha), Portugal 

1990-
95 

-- 6383 5927641 

Linked to Azores high and potentially El Nino. Water 
reservoirs were very low or empty leading to water 
scarcity issues. Desertification and vegetation loss. 
Forest Fires. Water supplies cut in some areas and 

hydro-electric power suspended from 1994-95 

Agriculture, Tourism, 
Water Supply, 

Hydroelectric power 

Spain (Andalucía, 
Extremadura, Castile la 

Mancha, Murcia, Valencia, 
Catalonia, Aragon) 

1998-
99 

-- -- 3554073 

Worst drought in 50 years from reduced rainfall and 
high temperatures. Led to large-scale debt requiring 
large bank loans. Crop failure, farmer protests over 

lack of water for irrigation. 

Agriculture, Farming 

Table C.11: Drought Characteristics and Impacts for Spain & Portugal from 1940-2002. Source: EM-DAT (2010) and Literature review. 
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Table C.12: Drought Parameters for Spain & Portugal at SPI-6 and SPI-12. Source: Own calculations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SPAIN & 
PORTUGAL 

(States  Affected) 

SPI-6 SPI-12 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Event 
Year/s 

Start 
month 

End 
month 

Duration 
(months) 

Peak 
Intensity 

(PI) 

Total 
Drought 

Magnitude 
(TDM) 

Southern Spain 
(Andalucía, 

Extremadura, Castile 
la Mancha) 

-- -- -- -- -- -- 1980-84 02 02 49 -2.05 4249 

Portugal (Alentejo 
and Beja community) 

1982-83 12 08 9 -1.76 182 1982-83 12 12 13 -1.70 292 

Spain (Nationwide) 1980-82 09 04 20 -1.57 3048 1980-82 10 10 25 -1.66 4471 

Southern Spain 
(Andalucía, 

Extremadura, Castile 
la Mancha) 

-- -- -- -- -- -- 1990-95 12 12 61 -2.18 5785 

Spain (Andalucía, 
Extremadura, Castile 
la Mancha, Murcia, 
Valencia, Catalonia, 

Aragon) 

1998-99 10 09 12 -1.48 1645 1998-00 11 11 25 -1.40 3011 
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USA 

(States Affected) 
Year 

Lives 
Lost 

(normalised 
to 2002) 

Lives 
affected 
(,000) 

(normalised 
to 2002) 

Inflation 
Adjusted 
Damage 

(US$ 2002) 
(,000s) 

Notes Sector Specific Impacts 

Central and Eastern USA 1980 12666 -- 208434772 
Heatwaves (Deaths include those from 

heat stress). Loss to agricultural. 
Agriculture, Industry 

Central and Eastern USA 1987-88 8909 -- 157745076 

Heatwaves and Forest Fires. Drought 
affected 36% of US. Costliest drought in 
the US. Affected agriculture and related 

industries and water supply. 

Agriculture, Industry, Water 
Supply 

California 1991 --  -- 1751770 

Reduced run-off from winter snowpack. 
Linked to deficient rainfall since late 

1980s. Affected agriculture and reduced 
crop yields. 

Agriculture, Farming, 
Hydroelectric Power 

Pennsylvania & Maryland 1991 -- -- 586843 -- -- 

South Eastern US: Alabama, 
Georgia, North Carolina, South 
Carolina, Tennessee & Virginia 

1993 18 -- 2208355 

Less than 50% annual rainfall recorded 
and temperature 1.5-3.5°C higher than 

normal. Potential link to El Nino. 
Heatwaves 

Agriculture, Farming 

Texas, New Mexico, Arizona, 
California, Nevada, Utah, 

Colorado, Oklahoma & Kansas 
1995-96 -- -- 14188470 

Affected water supply, wheat crop and 
caused soil degradation. Forest fires. 

Agriculture, Farming, Water 
supply 

Kentucky, Maryland, Ohio, 
Pennsylvania, Virginia & West 

Virginia 
1999 518 -- 1243393 

Heatwaves and Wildfires. Record & near-
record short-term precipitation deficits on 

a local and regional scale 

Agriculture, Farming, Water 
supply 

South Carolina, Georgia, 
Alabama, Florida, Gulf Coast 

Louisiana, West Texas 
2000-02 143 -- 4480780 

Precipitation deficits since mid-1998. 
Wildfires and Severe Heatwaves. Soil 

condition in very poor state due to dryness 
Agriculture, Water Supply 

Midwest 2002 -- -- 3300000 

Dust Storms and Wildfires. Long-term 
drought reported to last 37 months 

(calculated using the PDSI). Drought 
rapidly expanded during early 2002 to 

affect 39% of the country by July. 

Agriculture, Water Supply 

Table C.13: Drought Characteristics and Impacts for the USA from 1940-2002. Source: EM-DAT (2010) and Literature review. 
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USA 
(States  Affected) 

SPI-6 SPI-12 

(a) 
Event 
Year/s 

(b) 
Start 

month 

(c) 
End 

month 

(d) 
Duration 
(months) 

(e) 
Peak 

Intensity 
(PI) 

(f) 
Total 

Drought 
Magnitude 

(TDM) 

(a) 
Event 
Year/s 

(b) 
Start 

month 

(c) 
End 

month 

(d) 
Duration 
(months) 

(e) 
Peak 

Intensity 
(PI) 

(f) 
Total 

Drought 
Magnitude 

(TDM) 

Central and Eastern USA 1980-81 01 06 18 -1.36 19416 1980-81 04 11 20 -1.25 20469 

Central and Eastern USA 1988 02 11 10 -1.65 14560 1987-89 10 05 20 -1.39 23159 

California 1990-91 11 05 7 -1.95 1439 1988-92 02 01 48 -1.90 7568 

Pennsylvania & Maryland 1991-92 06 06 13 -1.80 975 1991-92 08 10 15 -1.74 1050 

South Eastern US: 
Alabama, Georgia, North 
Carolina, South Carolina, 

Tennessee & Virginia 

1993 06 12 7 -1.09 1222 1993-94 08 05 10 -0.78 1035 

Texas, New Mexico, 
Arizona, California, 

Nevada, Utah, Colorado, 
Oklahoma & Kansas 

1995-96 11 08 10 -1.47 10101 1996 01 12 12 -1.24 9395 

Kentucky, Maryland, 
Ohio, Pennsylvania, 

Virginia & West Virginia 
1999-00 07 04 10 -1.24 1849 1999-00 02 06 17 -1.57 3382 

South Carolina, Georgia, 
Alabama, Florida, Gulf 
Coast Louisiana, West 

Texas 

1999-01 07 01 19 -1.38 8405 1999-01 08 04 21 -1.36 10362 

Midwest 2002 02 07 6 -1.23 2905 -- -- -- -- -- -- 

Table C.14: Drought Parameters for the USA at SPI-6 and SPI-12. Source: Own calculations.

 


