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Abstract:

This paper generalises the approach taken by Dasgupta & Maskin

(1986) and Simon (1989) and provides necessary and su¢ cient condi-

tions for the existence of pure and mixed strategy Nash equilibrium in

games with continuous strategy spaces and discontinuous payo¤ func-

tions. The conditions can be applied widely, and examples for existence

of pure strategy and monotonic equilibria in First-Price auctions are

provided. The conditions are also appropriate for ensuring that com-

puter generated equilibrium solutions can be extended to continuous

strategy spaces.

Keywords: Nash Equilibrium, Discontinuous Payo¤ Function, First-

Price Auctions.
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A Note on the Existence of Nash Equilibrium in Games with
Discontinuous Payo¤s

J. Rupert J. Gatti1

The seminal paper on the existence of Nash equilibria in games with

discontinuous payo¤ functions is Dasgupta & Maskin (1986). In that

paper Dasgupta & Maskin weaken the assumption of continuous payo¤

functions made in the classical existence theorems (e.g. Debreu (1952))

and generate existence results for mixed strategy Nash equilibrium in

a family of games possessing a very speci�c form of discontinuity in

their payo¤s. Simon (1987) and Reny (1999) generalize their results

to a broader set of games, while Reny allows for the analysis of pure

strategy, as well as mixed strategy, Nash equilibria. This paper strictly

generalizes the results of Dasgupta & Maskin and Simon, but in a

di¤erent way to Reny, allowing existence of pure and mixed strategy

Nash Equilibrium to be proven in classes of games not considered by

Reny. The usefulness of this result is demonstrated with an application

to First-Price auctions which itself extends existence theorems provided

by Maskin & Riley (2000), Athey (2001), Jackson et al. (2001) and

Reny & Zamir (2004).

The general approach taken by Dasgupta & Maskin (1986) to

the problem of determining conditions for the existence of a mixed

strategy Nash equilibrium in games with compact strategy spaces and

discontinuous payo¤s is to consider a sequence of consecutively �ner

�nite approximations of the strategy space, converging to the compact

space at the limit. Mixed strategy Nash equilibria exist for games

with �nite strategy spaces (Nash 1951), so conditions are derived which
1Faculty of Economics, University of Cambridge.
email: rupert.gatti@econ.cam.ac.uk
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ensure that the limit of a sequence of ��nite game�Nash equilibria is

itself a Nash equilibrium of the limit game. As the limit of any sequence

of ��nite game�Nash equilibria will be non-empty, and there exist games

without Nash equilibria (Sion & Wolfe (1957)), it must be the case that

additional restrictions on the game are required.

Dasgupta & Maskin consider games where the points of disconti-

nuities in each player�s payo¤ function can be represented by a �nite

number of continuous and one-to-one functions of the strategies of other

players. The main result of their paper (1986a, Theorem 5, p.14) iden-

ti�es additional conditions on the agents�payo¤ functions which ensure

that the limit of any sequence of ��nite game�Nash equilibria is a Nash

equilibrium of the limit game.

Simon explains that these conditions are stronger than is necessary.

If a particular sequence of �nite approximations of the strategy space

is referred to as a ��nite test sequence�, then for any �nite test sequence

we may consider a �limit set�of mixed strategies which are the limit of

a sequence of (mixed strategy) Nash equilibria in games along the test

sequence. The conditions identi�ed by Dasgupta & Maskin e¤ectively

ensure that every element of every limit set for every �nite test sequence

is a Nash equilibrium of the limit game. Simon (1987, Lemma, p.575)

derives conditions which ensure that every element of the limit set

for a particular �nite test sequence is a Nash equilibrium of the limit

game. He then goes on to identify conditions on the payo¤ functions

of agents which are su¢ cient to satisfy the conditions in his lemma .

The increased generality of these results is that the conditions need not

hold true for every test sequence, but only for one.

Reny (1999) takes a di¤erent approach to that of Dasgupta &Maskin

and Simon, considering a sequence of approximations of the payo¤

function rather than of the strategy space. He obtains conditions for

the existence of Nash equilibrium in the limit game if Nash exist for
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each approximation game, and shows that these conditions are strictly

more general than those obtained by Simon. Moreover Reny�s results

are applicable to pure as well as mixed strategy games.

However, even conceptually, it is clear that Simon�s conditions are

stronger than required for existence. Considering just one �nite test

sequence, it is not necessary that every element of the limit set be a

Nash equilibrium of the limit game but just that there exists an element

where this is true. Furthermore we need not restrict the test sequence

to include only �nite strategy spaces. The main result in this paper

(Theorem 1) provides su¢ cient conditions for an element of a limit set

to be a Nash equilibrium of the limit game, and does not restrict the

test sequence to be �nite. Furthermore it is shown that an acceptable

test sequence satisfying the conditions exists for any Nash equilibrium

of the limit game.

The characteristic feature of Theorem 1 is that it requires the

identi�cation of a speci�c test sequence and a speci�c element of

the limit set. Thus, for example, it is particularly applicable for

testing the generality of equilibria obtained by computer simulation

(with necessarily �nite strategy spaces) to games with continuous

strategy spaces. For theoretical work however, where conditions on the

primitives of the model are probably more applicable, this requirement

may appear overly restrictive. However Theorem 1 can be applied

in tandem with any primitives based existence theorem to extend the

existence result to a wider class of games. Theorem 1, in combination

with any condition su¢ cient for the creation of an acceptable test

sequence, will ensure the existence of equilibria in the limit game

and existence results generated using alternative approaches, see for

example Baye et al (1993) and Tian (1992), can be applied if desired.

This feature is highlighted in the application.

In the following section the primary notation and de�nitions are
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introduced and the main result of the paper stated. An application of

this result to First-Price auctions is provided in Section 2, while Section

3 concludes.

1 The Existence Result.

Consider a game G = (S; U), where S =Xi2ISi , I is the �nite set of

all agents, Si is a compact metric space of strategies for agent i 2 I
, U =Xi2IUi and Ui : S ! R is the utility function for agent i. I

assume that the utility function is bounded and Borel measurable. Let

N(G) denote the set of (pure strategy) Nash Equilibria of the game G,

we are interested in obtaining conditions that will ensure that N(G) is

non-empty. To do this we consider a sequence of games all possessing

Nash equilibria and converging to the game G.

Let F (Si) be the set of closed, non-empty subsets of Si and F (S) =

Xi2IF (Si). Paired with the Hausdor¤ metric, dH , F (S) is a compact

metric space (Hildenbrand 1974, p17).2

De�ne a Test Sequence for S; � : N! F (S); to be a mapping from

the Natural numbers into F (S); so �(n) � S; and limn�!1 dH(�(n); S) =
0:We may consider a test sequence for S as a sequence of progressively

�ner approximations of S, converging to the compact metric space S

in the limit, but notice that the test sequence need not be �nite. A

test sequence, combined with the utility function U , can be used to

generate a sequence of games Gn = (�(n); U) which converges to the

limit game G; and a corresponding sequence Nn 2 F (�(n)) [? where
Nn = N(Gn) is the set of all (pure strategy) Nash Equilibria of the

2"For every two non-empty subsets E and F of the metric space (X; d) one de�nes

the Hausdor¤ distance dH(E;F ) (with respect to the metric d on X ) by

dH(E;F ) = inff" 2 (0;1)jE � B"(F ) and F � B"(E)g;
where B"(E) denotes the "-neighbourhood of E." (Hildenbrand, p.16)
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Game Gn:

Assigning the topology of weak convergence, every (non-empty)

sequence in compact metric space S possesses a convergent sub-

sequence (Hidenbrand, p49). Without loss of generality we consider

only convergent sub-sequences, and will call a test sequence � acceptable

when, for all n, Nn is non-empty and limn�!1Nn = N�� 2 F (S): The
existence of such a sequence is not guaranteed, but Theorem 1 identi�es

conditions which ensure that there exists an element s� 2 N�� such that
s� 2 N(G) when an acceptable sequence has been identi�ed. In fact
Theorem 1 provides necessary and su¢ cient conditions for the existence

of Nash equilibrium, thus we also know that for any Nash equilibrium of

the limit game there exists at least one acceptable sequence satisfying

the conditions.

Before stating Theorem 1 two further de�nitions are required, both

of which are direct extensions of concepts developed by Simon and Reny.

Consider a test sequence � and a convergent sequence of strategies

(sn)n2N where sn 2 �(n); limn!1 sn = s� 2 S and limn!1 Ui(sn) is
de�ned for all agents i 2 I.3

De�nition 1 We will say that the utility function U has the comple-

mentary discontinuity property (cdp) for the sequence (sn)n2N
if, for any agent i 2 I where limn!1 Ui(sn) > Ui(s�) there exists an-
other agent j 2 I where limn!1 Uj(sn) < Ui(s�).

The complementary discontinuity property ensures that, if an agents

expected payo¤ decreases discontinuously along the sequence (sn)n2N
at s� then there exists another agent who experiences a discontinuous

increase in utility. Notice that, in contrast to Simon and Reny, this

property does NOT need to hold for every sequence - but is de�ned for
3As S is compact and Ui is bounded every test sequence will posses a sub-sequence

with these properties, without loss of generality we consider only these sub-sequences.
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the speci�c sequence (sn)n2N:4

Let Zni : ��i(n) ! R be the best response value function for agent

i , where Zni (s
n
�i) = maxsni 2� i(n) Ui(s

n
i ; s

n
�i) and similarly let Zi(s�i) =

maxsi2Si Ui(si; s�i): The best response value function represents the

highest level of utility agent i can obtain in the game Gn given the

strategies played by all other agents. Clearly, from the de�nition

of Nash Equilibrium, sn 2 Nn if and only if, for all agents i 2 I;

Ui(s
n) = Zni (s

n
�i):

De�nition 2 We will say that the Utility function is payo¤ secure

(ps) for the sequence (sn)n2N if, for all agents i 2 I and all � > 0
there exists n <1 such that for all n � n; Zni (sn�i) > Zi(s��i)� �:

Payo¤security ensures that, along the sequence (sn)n2N, every agent

can obtain a payo¤ against opponents� strategies su¢ ciently close to

s��i which is almost as good as the best payo¤ obtainable by the agent

in the limit game against s��i: Once again, the generalization of this

condition over similar conditions de�ned by Simon and Reny is that

payo¤ security is de�ned for a speci�c sequence and need not hold for

all possible sequences. Having introduced this terminology, the main

existence theorem can now be stated.

Theorem 1 Existence Theorem.

A vector of strategies s� 2 S will constitute a Nash equilibrium of the
game G = (S; U) if and only if there exists an acceptable test sequence

� and a sequence of strategies (sn)n2N , where sn�Nn and limn!1

sn = s� , such that the utility function U

a. possesses the complementary discontinuity property for the

sequence (sn)n2N and
4Using slightly di¤erent terminology to Simon, Reny refers to this property as

reciprocal upper semicontinuity rather than complementary discontinuity.
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b. is payo¤ secure for the sequence (sn)n2N:

Proof. a. Su¢ ciency

The proof is by contradiction.

Assume that s� =2 N(G), so there exists an agent i 2 I , �i > 0 and
ti 2 Si such that Ui(ti; s��i) > Ui(s�) + �i:
As the sequence is acceptable and U is payo¤ secure along the

sequence we have that

lim
n!1

Ui(s
n) = lim

n!1
Zni (s

n
�i)

> Zi(s
�
�i)� �i

� Ui(ti; s
�
�i)� �i

> Ui(s
�)

As U possess the complementary discontinuity property along the

sequence, there exists another agent j 2 I and �j > 0 such that

lim
n!1

Uj(s
n) < Uj(s

�)� �j:

Payo¤ security ensures that there exists n < 1 such that for all

n � n there exists tnj 2 Sni where

Uj(t
n
j ; s

n
�j) > Uj(s

�)� �j
2

> lim
n!1

Uj(s
n) +

�j
2

Thus, for n su¢ ciently high, Znj (s
n
�j) � Uj(t

n
j ; s

n
�j) > Uj(s

n) and

sn =2 Nn, a contradiction.

b. Necessity

The proof is by construction, we show that for any s� 2 N(G) it
is possible to construct a (�nite) acceptable sequence, along which the

conditions hold.
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Speci�cally we make use of the fact that if s� 2 S
0 � S and

s� 2 N(G) then s� 2 N(G0
) where G

0
= (S

0
; U): Consider the �nite

strategy space where for all i 2 I; S1i = fs�i g: Along any sequence �
such that S1i � Sni � Sn+1i such that limn!1 dH(Sn; S) = 0 have

that s� 2 N(Gn) and Zni (s��i) = Ui(s�) along the sequence. Thus the
complementary discontinuity property and payo¤ security are trivially

satis�ed along any such sequence sequence.

This completes the proof of Theorem 1.

The characteristic di¤erence between Theorem 1 and other existence

results (e.g. Reny (1999), Athey (2001)) is that Theorem 1 relies

on the identi�cation of a speci�c sequence of approximation games

and Nash equilibria, rather than being on the primitives of the game

itself. Thus it can be easily applied to equilibria generated by computer

approximation to ensure they remain equilibria in continuous strategy

spaces. As Athey (2001) notes, computer simulations are becoming an

increasingly powerful tool for solving games with discontinuous payo¤s.

The result is also applicable in speci�c games where more restrictive

�general� properties over the primitives of the game fail. Examples

of the former can be easily constructed - being any game where (for

example) the �misbehaviour�of the payo¤s can be shown to occur at an

irrelevant part of the payo¤ function.

However Theorem 1 can also be applied in less speci�c settings to

provide existence results which are based on the primitives of the game.

For example, Corollary 1 provides general conditions on the payo¤

function which ensure existence of a pure strategy Nash equilibrium

in the game G = (S; U) whenever a acceptable test sequence can be

established.

Following Reny (1999), for all s 2 S let U(s) = (U1(s); : : : UI(s)):

The graph of the vector payo¤ function is the subset of SxRI given by

f(s; u) 2 SxRI j u = U(s)g: We will say that:
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a. player i can secure a payo¤ � 2 R at s 2 S if there exists an
s 2 Si such that Ui(s; s0�i) � � for all s0�i in some open neighbourhood
of s�i
b. U is payo¤ secure everywhere if for every s 2 S and " > 0 each

player i can secure a payo¤ Ui(s)� " at s.
c. U possesses the complementary discontinuity property everywhere

if, whenever (s; u) is in the closure of the graph of its vector payo¤

function and Ui(s) � ui for every player i, then Ui(s) = ui for every

player i.

Corollary 2 If the utility function possesses the complementary dis-

continuity property everywhere and is payo¤ secure everywhere then a

pure strategy Nash equilibrium exists whenever an acceptable test se-

quence exists.

Proof. If the utility function is cdp and ps everywhere then it is

cdp and ps for any acceptable test sequence. Thus the result follows

directly from Theorem 1. QED.

Reny (1999, Theorem 3.1) provides an existence theorem with similar

features. The di¤erence between Corollary 1 and Reny�s result is that

this Corollary requires only the existence of an acceptable test sequence

(a weaker condition than quasi concavity of the game) while Reny

requires better-reply security (a weaker condition than cdp and ps).

Extending Theorem 1 and Corrolary 1 to allow for mixed strategy

equilibrium is straight forward, requiring only the extension of de�ni-

tions to the new setting. Of course the advantage of considering mixed

strategies in this setting is that, applying Nash�s theorem, every game

with �nite strategy spaces possesses a mixed strategy Nash equilibrium.

Thus any test sequence � , where �(n) is �nite for all n possesses an

acceptable subsequence in mixed strategies.

Let (M(S);	) denote the mixed strategy extension of the limit game
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G = (S; U), and (M(�(n));	) denote the mixed strategy extension of

Gn = (�(n); U); where

M(X) =Xi2IM(Xi) and M(Xi) is the set of probability

measures de�ned on the Borel subsets of Xi, and

	(�) =Xi2I	i(�) where 	i : M(S) ! R such that 	i(�) =R
Ui(s)d�:

For every mixed strategy �(n) 2 M(�(n)) there exists an obvious
extension �n 2 M(S); thus the any sequence of strategies (�(n))n2N
can be written as a sequence (�n)n2N . As, by assumption, S is compact

and U is bounded and Borel measurable, the set M(S) paired with the

Prohorov metric,�, is a compact metric space and 	i is bounded.

It follows directly that Theorem 1 can be applied to the mixed strat-

egy speci�cation (M(S);	) where the de�nitions of the complemen-

tary discontinuity property and payo¤ security are applied to the new

�mixed�strategy spaceM(S) and �expected�utility function 	: In prac-

tice some care is required in making the transition to the new speci-

�cations. Simon shows that even if the complementary discontinuity

holds universally for the game (S; U) it may fail in the mixed strategy

extension (M(S);	) (Simon, footnote 7, p596). Similarly, the proof of

the necessity condition also requires careful interpretation - as it is now

the support of the equilibrium mixed strategies which must be available

along test sequence.

Reny (Corollary 5.2) shows that any game where the expected utility

function possesses the complementary and discontinuity property gen-

erally possesses a mixed strategy Nash equilibrium, and demonstrates

that this result generalizes previous mixed strategy equilibrium results

of Nash (1950), Glicksberg (1952), Mas-Colell (1984), Dasgupta and

Maskin (1986), Robson (1994) and Simon (1987). Corollary 2 provides

an alternative proof for this result.

Corollary 3 (Reny Corollary 5.2) The game (S; U) possesses a mixed
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strategy Nash equilibrium if the expected utility function 	 possesses

the complementary discontinuity property and is payo¤ secure for all

sequences (�n)n2N:

Proof. As every �nite test sequence is acceptable and generates

a convergent sequence of Nash strategies, and the expected utility

function possess the c.d. property and is payo¤ secure along every

sequence, Theorem 1 must be satis�ed. QED.

In the following section we further demonstrate the power of

Theorem 1 by developing existence results for pure strategy and

monotone equilibria in First-Price Auctions.

2 Application: High Bid Auctions

There are numerous examples of First Price or High Bid auctions which

possess pure strategy Nash equilibria when the strategy is space is �nite

but where existence of a Nash equilibrium fails for continuous strategy

spaces.5 The failure of existence with continuous strategy spaces is

due to the possibility of ties, at winning bids, between bidders who

value winning the auction di¤erently. Jackson et al. (2001) show that

there always exists a tie breaking rule which will support equilibrium

in the continuous strategy game, and that this tie-breaking rule can be

implemented with the addition of a �cheap talk�phase to the auction

game. However, two major caveats are identi�ed for the generality and

applicability of these results. First, they are considering equilibrium

solutions in mixed strategies rather than pure strategies. Second, the

tie-breaking rule in equilibriumwill generally depend on the distribution

of types of the bidders involved - information a real auctioneer is unlikely

to possess. Thus, they note that
5Athey (2001), Jackson et al. (2001), Maskin & Riley (2000), Reny & Zamir (2003).
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"It seems an important challenge to identify circumstances in which

uniform action rules - not depending on such information - su¢ ce to

guarantee existence of equilibrium." (Jackson et al. 2001, footnote 4,

p4)

Maskin & Riley (2000) address this problem directly and propose

a two stage auction where, in the �rst stage, bidders participate in a

standard �High Bid�auction. If, however, two or more players submit

the same highest bid then the tie is broken by a second round �Vickery�

auction amongst only the high bid players. Maskin & Riley proceed

to identify conditions which ensure that a monotonic pure strategy

equilibrium exists for the two stage auction with continuous strategies

(Proposition 2, p.444). As they demonstrate with an example (Example

3, p.444), these conditions are more restrictive than required for the

existence of a monotonic pure strategy equilibrium in the case of �nite

strategy spaces.

In this section we propose an alternative second round �tie breaking�

auction, speci�cally a cheap-talk high bid auction where bidders

submit costless messages drawn from an ordered and �nite message

space. We show that, when the set of bidders and types are �nite,

this second round auction will support a pure strategy equilibrium

under any conditions su¢ cient for equilibrium in �nite strategy spaces

(in fact the main result is more general than this). Furthermore

equilibrium properties such as monotonicity that exist in the �nite

auctions will survive in the continuous strategy equilibrium. Thus for

�nite type spaces this result is a direct generalisation of Maskin &

Riley and, for example, allows us to directly extend any existence and

monotonicity results generated in �nite strategy spaces to continuous

strategy spaces.6

To prove these assertions requires the introduction of further nota-
6Extending the results to continuous type space is objective of present research.
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tion. Consider a �standard��nite type high bid auction, A = (B;ui;Ti)i2I ,

where :

i. There is a �nite set (I) of potential bidders for a single, indivisible,

product.

ii. Each player i 2 I has a type ti 2 Ti, where Ti is a �nite set, which
is known to the player but unobserved other players.7 Let f(t1; :::; tI)

denote the probability of (t1; :::; tI) 2 Xi2ITi; and de�ne the conditional
probability

gi(tijt�i) =
f (ti; t�i)P
t0�i
f(ti; t

0
�i)

Assume further that, for all i 2 I and all ti 2 Ti, there exists

t0�i 2 T�i such that f(ti; t0�i) > 0; ensuring that gi(tijt�i) is always
well de�ned.

iii. Each player selects whether or not to participate in the auction,

a bid bi 2 B = [b; b] � R and receives a payo¤ ui(bi; ti; t�i) if awarded

the product auctioned, and zero otherwise.8,9 Assume further that all

payo¤ functions are bounded and are continuous and non-increasing

with respect to the players bid, bi:

iv. A strategy for each agent consists of a vector of type dependent

bids which can be written si = (bi(t))t2Ti 2 Xt2Ti
B = Si; where Si is a

compact metric space.

The standard high bid auction awards the product to the partici-

pating bidder submitting the highest �bid�, or randomly amongst those
7Standard abuse of notation allows us to write i 2 I = f1; :::; Ig: For notational

ease we restrict the set of types, T , and the space of bids,B, to be the same for all
bidders - but the results can easily be extended to allow the type and strategy spaces
to be type dependent.

8Following standard notation, let x�i denote the vector x without the ith
component.

9The bounds on the set of bids could be justi�ed by assuming either that the
buyer and seller are wealth constrained, or by assuming that there exists a minimum
(reservation) bid the seller will accept and a bid so high as to guarantee negative
utility if successful. For simplicity we assume that the nonparticipation decision is
represented by the bid bi = ?; and that the product auctioned will only ever be
assigned to a participating bidder.
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bidders submitting the highest bid if more than one does so. Notice that

the payo¤ functions from winning remain quite general, and may di¤er

between bidders. It is NOT necessary that all winning bidders �pay�

their bid in full - thus this general speci�cation allows the auctioneer

to �favour�one player over another when awarding the commodity.

We wish to augment the standard high-bid auction by introducing a

second round �cheap talk�high bid auction. Speci�cally we introduce a

�nite and ordered message space, � = f0; :::;Mg: Bidders who tie for
the highest bid in the �rst round submit a costless message, �i 2 �;
and the auction winner is then selected randomly from amongst those

who have submitted the highest message. We denote this �cheap talk�

message augmented auction by bA = ((B;�);ui;Ti)i2I ; and the set of
Nash equilibrium in this auction N( bA): As before, we will consider a
sequence of approximations of the bid space Bn converging to B; so

limn!1 dH(Bn; B) = 0; and the corresponding sequence of auctions

An = ((Bn;ui;Ti)i2I .

The main result is now stated in Theorem 2, with the proof contained

in the Appendix.

Theorem 4 For any acceptable sequence of high-bid auctions An =

((Bn;ui;Ti)i2I converging to A = (B;ui;Ti)i2I ; any s� 2 N� =

limn!1N(An); and any �cheap talk�message augmented auction bA =
((B;�);ui;Ti)i2I where #� = M + 1 > T = �i2I Ti;

there exist an equilibrium bs� 2 N( bA) such that s� and bs� assign the
same ��rst round�bid to all players. That is, for any i 2 I and ti 2 Ti;
if s�i (ti) = b 2 B then bs�i (ti) = (b; �i(ti)).
Furthermore, if there exists a sequence sn 2 N(An) such that

limn!1 sn = s� and sn is (strictly) monotonic for all n su¢ ciently

large, then so to is the equilibrium bs� 2 N( bA):
Once again, the application of Theorem 2 requires the existence of
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an acceptable test sequence to be demonstrated. The Theorem can be

interpreted as saying that for any auction with �nite types where an

acceptable sequence can be shown to exist, imposing a �cheap talk�high

bid message auction as the tie breaking rule will ensure an equilibrium

exists in the continuous auction. Notice that the theorem does not

require, but certainly allows, the test sequence to be �nite. Maskin &

Riley (2000), for example, present three examples of �rst price auctions

where Nash equilibria are shown to exist for any �nite space of bids, but

fail to exist when continuous bids are allowed. It follows directly from

Theorem 2 that all three will necessarily have equilibria when the cheap

talk high bid message tie breaking rule is imposed - which they show is

not the case for the Vickery auction tie breaking rule they proposed.10

3 Conclusion.

In this paper we develop necessary su¢ cient conditions for the existence

of Pure and Mixed Strategy Nash equilibrium in games with discontin-

uous payo¤s and continuous strategy spaces. The approach is a direct

generalization of the existence results developed by Dasgupta & Maskin

(1986) and Simon (1989), and the conditions identi�ed di¤er from the

su¢ cient conditions developed by Reny (1999). These di¤erences are

explained, and the result used to provide alternative proofs to some

general existence results �rst presented by Reny. The main theorem

(Theorem 1) identi�es properties for the limit of a sequence of solu-

tions to approximating games to be an equilibrium in the limit game.

The properties identi�ed are reasonably transparent and are particu-

larly appropriate for testing computer generated solutions to speci�c

games, where �nite approximations of continuous strategy spaces are a

technical necessity. In an application the main theorem is applied to
10Speci�cally, their Example 3 (p.444) does not possess an equilibrium with the

Vickery tie-breaking rule.

15



First-Price Auctions, where a speci�c �cheap talk�tie breaking rule is

proposed - with ties in the highest bid being broken by a second round,

costless, High-Bid message auction. It is shown that implementing this

tie breaking rule will ensure existence and (strict) monotonicity of Nash

equilibria in continuous First-Price auctions whenever these properties

exist in �nite First-Price auctions.
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4 Appendix

Proof of Theorem 2.

By de�nition, for every s� 2 N� = limn!1N(An) there exists a

convergent subsequence sn 2 N(An) such that limn!1 sn = s�: The

proof proceeds by showing that for every such subsequence sn it is

possible to construct a sequence of (costly) message augmented auctions

(cAn) which converges to the costless message augmented auction bA;
and an associated sequence of Nash equilibria bsn 2 N(cAn) such that
limn!1 bsn = bs� 2 N( bA) and that the Nash equilibria bs� and s� are
related in the manner described in the Theorem.

We show (Lemma 3) that for any sequence sn 2 N(An) there exists
a sequence of �nite high price auctions An such that sn 2 N(An) and
limn!1 dH(An; A) = 0: We obtain conditions (Lemma 1) that enable

a �nite high bid auction to be represented by a strategically equivalent

�nite message-augmented auction. We then (Lemma 2) apply Theorem

1 to identify conditions which ensure that the limit of a sequence of

equilibria of the �nite message-augmented auctions is an equilibrium of

the limiting message-augmented auction. We then show by construction

(Lemma 3) that the limit of any sequence of Nash equilibria in high

bid auctions can also be obtained as the �rst round bid component of

the limit of a sequence of Nash equilibria in �nite message-augmented

auctions that satisfy the conditions identi�ed in Lemma 2. Thus, as

required, the limit of this sequence constitutes an equilibrium of the

continuous-bid message augmented auction. Finally, we show that

messages are costless in the limiting auction, and that the monotonicity

property survives in the limit.

Some initial notation is required.

Let X be a �nite and ordered set. Without loss of generality, let

X = fx1; x2; :::; x#Xg where x1 < x2 < ::: < x#X :
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For any x 2 X let R(x;X) : X ! N denote the relative ranking of

x within X and let R�1(i;X) : N ! X be the inverse mapping. Thus

R(xi;X) = i and R�1(i;X) = xi:

De�ne a mapping � : X � Z+ ! X such that for any x 2 X

and any non-negative integer z 2 Z+; �(x; z) = fy 2 XjR(y;X) =
minfR(x;X) + z;#Xg: Thus �(x; z) gives the element of X which is

ranked z higher than x or, if no such element exists, the largest element

in the set X:

Lemma 5 A �nite �rst price auction An = ((Bn;ui;Ti)i2I can be

represented by a strategically equivalent �nite �message-augmented�high

bid auction cAn = ((cBn;�); vi;Ti)i2I ; where � = f0; 1; :::;Mg and
vi((b; �); ti; t�i) = ui(� (b; �) ; ti; t�i); if there exists cBn � Bn such that
the mapping � : cBn ��! Bn is one-to-one and onto.

Furthermore, if auctions An and cAn are strategically equivalent, then
for any sn 2 N (An) there exists bsn 2 N �cAn� if and only if for all i 2 I
and ti 2 Ti, sni (ti) = �

� bsni (ti)� :
Proof:

If the mapping � : cBn��! Bn is 1-1 and onto then the two spaces

map into each other uniquely and, given the utility function, the two

auctions are identical providing they determine the winner identically.

This requires that for all �; �0 2 �; �(x; �) < �(y; �0) if x < y, and that
�(x; �) < �(x; �0) if and only if � < �0: These properties follow directly

from the requirement that � : cBn ��! Bn is 1-1 and onto - and so

�(x;M) < �(y; 1) if and only if x < y:QED:

It may be worth noting that, as de�ned, the messages are not

costless when the bid space is �nite. However, as the distance between

consecutive bids converges to zero, so too does the cost of any message.

As in Theorem 1, we now consider a sequence of �nite bid spaces (Bn)
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converging to the continuous bid space (B); so limn!1Bn = B; and

the corresponding sequence of �nite-bid message augmented auctionscAn = ((cBn;�); vi;Ti)i2I converging to the continuous bid message
augmented auction bA = ((B;�); vi;Ti)i2I : We will call this sequence
of auctions acceptable if, for all n, there exists a Nash equilibriumbsn 2 N(cAn):Without loss of generality we can consider only convergent
subsequences, for which limn!1 bsn = bs�:
Lemma 6 If, for the message augmented auction bA, there exists
an acceptable sequence of �nite message augmented auctions and a

sequence of strategies
� bsn�

n2N where for all n; bsn 2 N(cAn), and
limn!1 bsn = bs� = (b�i (ti); ��i (ti))i2I , such that
a. for all i 2 I; ti 2 Ti , ��i (ti) < M; and
b. if there exists i; j 2 I such that b�i (ti) = b�j(tj) then bni (ti) = bnj (tj)

for all n

then bs� 2 N( bA):
Proof:

The proof is a direct application of Theorem 1. First we show that

the conditions identi�ed ensure that the payo¤ function possesses the

complementary discontinuity property along the sequence, and then

that the payo¤ function is also payo¤ secure along the sequence.

A players expected payo¤ in the auction can be written as

Vi((b; �); cs�ijti) =X
l�0

0@ X
t�i2P li ((b;�);ds�i)

�
1

l + 1

�
vi((b; �); ti; t�i)f(t�i j ti)

1A (EqnA)

where

P li ((b; �); cs�i) = ft�i 2 T�ijfor all j 6= i; (bj(tj); �j(tj)) � (b; �)
and

#fj 2 Inij(bj(tj); �j(tj)) = (b; �)g = lg
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denotes the subset of types where, given the strategies played by other

players (s�i); player i making bid b with message � will tie for the

highest bid with l other players.

a. Complementary Discontinuity.

We show that, along the sequence, the payo¤ function for all players

is continuous, and so the complementary discontinuity property is

satis�ed trivially.

By assumption, vi((b; �); ti; t�i) = ui(�(b; �); ti; t�i) is continuous in

it�s �rst term, so Eqn A shows that any discontinuity in Vi((b; �); cs�i j ti)
is due to a discontinuity in one or more of the partitions of the type

space P li (b; cs�i): More formally, along the sequence � bsn�n2N ;
limn!1 Vi((bni (ti); �

n
i (ti));

csn�ijti) = Vi((b�i (ti); ��i (ti)); cs��ijti)
if for all l � 0; limn!1 P li ((bni (ti); �ni (ti)); csn�i) = P li ((b�i (ti); ��i (ti)); cs��i).
As P li ((b

n
i (ti); �

n
i (ti));

csn�i) is a subset of a �nite space the limit
of this sequence is well de�ned and there exists a subsequence such

that P li ((b
n
i (ti); �

n
i (ti));

csn�i) = P � T�i for all n: Discontinuity of this

sequence in the limit requires that P li ((b
�
i (ti); �

�
i (ti));

cs��i) 6= P .
As the message space is �nite we know that there exists a subse-

quence such that, for all i 2 I and ti 2 Ti , �ni (ti) = ��i (ti): Condition
(b) ensures that b�i (ti) = b

�
j(tj) if and only if b

n
i (ti) = b

n
j (tj) for all n:

Thus t�i 2 P li ((bni (ti); �ni (ti)); csn�i) = P li ((bni (ti); ��i (ti)); csn�i) if and only
if t�i 2 P li ((b�i (ti); ��i (ti)); cs��i); and so P li ((b�i (ti); ��i (ti)); cs��i) = P as

required.

b. Payo¤ security.

Let Zti(cs�i) = max(b;�)2B�� Vi((b; �); cs�ijti) denote the best re-

sponse value function for agent i of type ti;

and let Znti(
csn�i) = max(bn;�)2Bn�� Vi((b

n; �); csn�ijti): We show that

the conditions in Lemma 2 ensure that for all i 2 I and ti 2 Ti along
the sequence

� bsn�
n2N ; and all � > 0; limn!1 Z

n
ti(
csn�i) > Zti(cs��i)� �:

For any X � B and s�i 2 Xtj ;j 6=i(X;�); let
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�(s�i) = fx 2 Xjthere exists j 2 Ini and tj 2 Tj such that

sj(tj) = (x; �j(tj))g denote the set of bids that may be realised by
players other than i; given s�i:

Suppose that z 2 B and m 2 � are best responses for agent i 2 I
of type ti 2 Ti; so Vi((z;m); cs��i j ti) = Zti(cs��i):We consider separately
the case where z 2 �(cs��i) and z =2 �(cs��i):
i) If z 2 �(cs��i); then there exists a sequence zn 2 �(csn�i) where

limn!1 zn = z and there exists n <1 such that for all n > n

Znti(
csn�i) � Vi((z

n;m); csn�i j ti) > Vi((z
�;m); csn�i j ti) � �

2 =

Zti(
cs��i)� �

2 ;

thus limn!1 Znti(
csn�i) > Zti(cs��i)� �; as required.

ii) If z =2 �(cs��i); then consider the largest observable bid less than
z; speci�cally consider y = fmaxx 2 �(cs��i) such that x < zg:
By construction no other player of any type is playing a strategy

with a bid in the range (y; z]; and by assumption no player of

any type is playing (y;M): Thus for all b 2 (y; z] , � 2 � and

l � 0, the subsets P li ((z;m); cs��i) = P li ((b; �);
cs��i) = P li ((y;M);

cs��i)
and P li ((z;m);

cs��i) = ? if l > 0: By assumption we have that

vi((b; �); ti; t�i) is continuous and non-increasing in b and m thus, from

Eqn. A we have that Vi((y;M); cs��i j ti) � Vi((z;m); cs��i j ti): As
Vi((z;m); cs��i j ti) = Zti(

cs��i) we have that Vi((y;M); cs��i j ti) =
Zti(

cs��i) = Vi((z;m); cs��i j ti): As y 2 �(cs��i) we can now apply part
(i) to show that limn!1 Znti(

csn�i) > Zti(
cs��i) � �; as required. This

completes the proof of Lemma 2.

Lemma 7 For any acceptable sequence of high-bid auctions An =

((Bn;ui;Ti)i2I converging to A = (B;ui;Ti)i2I and any s� 2 N� =

limn!1N(An); we can construct a sequence of strategically equivalent

message augmented auctions cAn = ((cBn;�); vi;Ti)i2I with #f�g > T
that converges to bA = ((B;�); vi;Ti)i2I and a possesses sequence of

Nash equilibrium strategies
� bsn�

n2N converging to bs� which satisfy the
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conditions of Lemma 2 (thus bs� 2 N( bA)) and where s� and bs� assign
the same ��rst round�bid to all players.

Proof:

The proof makes use of the fact that one can systematically remove

unused strategies from players without disrupting Nash equilibrium.

More formally, consider a game G = (S; U) and a Nash equilibrium

s 2 N(G); if s 2 S0 � S and G0 = (S0; U) then s 2 N(G0):The proof
proceeds in three steps.

Step 1

Consider the sequence of �nite auctions (An)n2N converging to A

and any sequence of Nash equilibrium strategies (sn)n2N converging to

s: For every b 2 �(s) there exists a non-empty subset of players whose
equilibrium strategies converge to b, that is for which limn!1 sni (ti) = b:

Consider the set Bn(b) = fx 2 Bnj there exists (i; ti) such that
limn!1 sni (ti) = b and sni (ti) = xg: As the sets of agents and types
are �nite there are at most T =

P
i2I Ti elements in Bn(b): Let bn

(resp: bn) denote the min (max) values of Bn(b); and consider the set

Bnb = (B
nn[bn; bn])[Bn(b); which removes all the �unused�values of Bn

within the range [bn; bn]:

Consider a message space � = f0; 1; :::;Mg and the mapping � :

Bnb ��! Bnb . Providing M � T; for all x 2 Bn(b) there exists � < T
such that �(b; �) = x, and for all � � T have �(b; �) > b:
Notice that for any pair of bids b; b0 2 �(s); b 6= b0 if and only if

[bn; bn] \ [bn0; bn0] = ? for all n su¢ ciently large: (If not, there exists a
sequence of bids that converges to both b and b0; thus b 6= b0).
We can now repeat this deletion procedure for every b 2 �(s); to

obtain

Bn = Bnnf
S
b2�(s)[b

n; bn]g [ f
S
b2�(s)B

n(b)g:
By de�nition sn 2 N(An) along the sequence (sn)n2N converging to
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s: By construction sn 2 Bn � Bn and limn!1Bn = B: Thus, for the

high bid auction An = (Bn;ui;Ti)i2I we have that sn 2 N(An) and the
sequence of auctions An is acceptable and converges to A:

Step 2.

Consider now a set cBn � Bn such that
i. R�1(1; cBn) = R�1(1;Bn), so the lowest element of both sets is

the same

ii. for every b 2 �(s); bn 2 cBn; so the lowest element of every set of
sequences converging to b is an element

iii. For any x; y 2 cBn such that R(y; cBn) = R(x; cBn) + 1; we
have that M < R(y;Bn) � R(x;Bn) < 2M + 1 and, furthermore,

R(y;Bn) � R(x;Bn) = M + 1 if y 6= bn for some b 2 �(s): Thus cBn
takes every (M + 1)th element of Bn; with the proviso that the lowest

element de�ned in (ii) are elements and no two elements have a rank

di¤erence of less than M + 1 in Bn:

Now, consider the space fBn � Bn de�ned by the set cBn and the
mapping � : Bn � � ! Bn; so that x 2 fBn if and only if there exist
y 2 cBn and � 2 � such that �(y; �) = x. By construction,
for all n; sn 2 fBn thus sn 2 fAn = (fBn;ui;Ti)i2I
dH(fBn; B) � (2M + 1)dH(Bn; B); so the sequence fBn converges to

B; and the sequence fAn converges to A and is acceptable
the mapping � is one to one and onto

Step 3

We can now apply Lemma 1, to show that the sequence of

message augmented auctions cAn = ((cBn;�); vi;Ti)i2I are strategically
equivalent to the acceptable sequence of auctions fAn = (fBn;ui;Ti)i2I :
By the construction of cBn; for all b 2 �(s) and all (bni (ti); �ni (ti))

converging to (b; �) ; bni (ti) =b
n and �ni (ti) = � < T �M:
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Thus we can apply Lemma 2, to show the limit of the sequence bsn
is a Nash equilibrium of the limit game bA = ((B;�); vi;Ti)i2I : This

completes the proof of Lemma 3.

Finally to consider monotonicity we need to de�ne an ordering (O)

over the space B � M: Speci�cally we shall select the lexicographic
ordering, s.t. (b1;m1) >O (b2;m2) if and only if b1 > b2 or b1 = b2 and

m1 > m2: Clear if the strategies along the sequence sn are (strictly)

monotonic then the corresponding strategies in the message augmented

auctions must also be monotonic and either assign higher bids, or higher

message. As neither bids nor messages converge in the limit - the

limiting strategies must also preserve monotonicity. This completes

the proof of Theorem 2.
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