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Thesis Summary 

 
Nef, an accessory protein of HIV-1, is a critical determinant of viral pathogenicity. 

The pathogenic effects of Nef are in large part dependent on its ability to decrease the 

amount of CD4 on the surface of infected cells. Early studies suggested that Nef 

induces downregulation by linking the cytosolic tail of CD4 to components of the 

host-cell protein-trafficking machinery. However, the specific sorting pathway that 

Nef uses to modulate CD4 expression remained uncertain. According to one model, 

Nef was thought to interfere with the transport of newly synthesized CD4 from the 

TGN to the cell-surface. Another model claimed that Nef facilitated the removal of 

CD4 from the plasma membrane. 

 
The primary goal of this thesis was to determine which of these models was correct. 

To accomplish this objective, a novel Nef-CD4 system was developed in Drosophila 

S2 cells. Nef was not only able to downregulate human CD4 in S2 cells, but it did so 

in a manner that was phenotypically indistinguishable from its activity in human cells. 

An RNAi screen targeting protein-trafficking genes in S2 cells revealed a requirement 

for clathrin and the clathrin-associated, plasma membrane-localized AP-2 complex in 

the Nef-mediated downregulation of CD4. In contrast, depletion of the related AP-1 

and AP-3 complexes, which direct transport from the TGN and endosomes, had no 

effect. The requirement for AP-2 was subsequently confirmed in a human cell line. 

Yeast three-hybrid and GST pull-down assays were then used to demonstrate a robust, 

direct interaction between Nef and AP-2. This interaction was found to depend on a 

[D/E]xxxL[L/I]-type dileucine motif, located in the C-terminal loop of Nef, that is 

essential for CD4 downregulation. 

 
While mapping the binding site of AP-2 on Nef, a second determinant of interaction 

in the C-terminal loop was identified. Mutation of this motif, which conforms to a 

consensus [D/E]D diacidic sequence, prevented Nef from binding to AP-2 and down-

regulating CD4. However, the same mutations did not affect the ability of Nef to 

interact with either AP-1 or AP-3, providing further evidence that these complexes are 

not required for the modulation of CD4 expression. Additional experiments indicated 

that the Nef diacidic motif most likely binds to a basic patch on AP-2 α-adaptin that is 

not present in the homologous AP-1 γ and AP-3 δ subunits. As with the Nef diluecine 
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and diacidic motifs, the α-adaptin basic patch was shown to be necessary for CD4 

downregulation. Moreover, all three of these motifs were needed for the cooperative 

assembly of a CD4-Nef-AP-2 tripartite complex, which was observed here for the 

first time using a yeast four-hybrid system. 

 
The data in this thesis uniformly support an endocytic model of Nef-mediated CD4 

downregulation. Indeed, there is now strong evidence that Nef simultaneously binds 

CD4 and AP-2, thereby connecting the receptor to the cellular endocytic machinery 

and promoting its rapid internalization from the plasma membrane. In addition, the 

identification of novel motifs required for this process has provided new insights on 

endocytosis, and may facilitate the development of pharmacological inhibitors of Nef 

function. 
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Chapter 1:

Introduction

1



1.1 Abstract 

 
In this chapter, several topics related to the Nef-mediated downregulation of CD4 will 

be introduced. The first topic to be covered is the human immune system. Because of 

the extraordinary complexity of the immune system, this section is not intended to be 

a comprehensive description of its properties. Instead, the discussion of host-defense 

mechanisms will simply provide a framework for understanding the critical role that 

CD4 T cells play in protecting the body from pathogenic organisms. This is followed 

by a more focused examination of the CD4 molecule itself, which in addition to being 

the distinguishing feature of CD4 T cells, is a co-receptor for HIV-1. As explained in 

the next section, the infection and destruction of CD4 T cells by HIV-1 causes AIDS 

because the integrity of the immune system is slowly degraded. This subject naturally 

leads to a discussion about Nef, a key regulator of disease progression. In the section 

devoted to Nef, its contribution to viral pathogenicity and its wide range of functions 

are described. Of all these functions, the downregulation of CD4 is probably the most 

important. This process is believed to depend on interactions between Nef and at least 

some components of the host-cell protein-trafficking machinery. After a brief review 

of this machinery, two models that potentially explain the mechanism by which Nef 

downregulates CD4 are presented. The methodology that will be used in this thesis to 

identify the correct model is described in the final section.  

2



1.2 The human immune system 

 
The human immune system, which is charged with defending the body against attack 

by foreign organisms, has two major components: the innate immune system and the 

adaptive immune system (for a detailed description of these systems, see Janeway et 

al., 2005). The innate immune system is capable of mounting an immediate, but non-

specific response against pathogens: in most cases, this response is able to contain and 

eliminate the infection. However, if the pathogen manages to evade or overwhelm the 

innate immune system, the adaptive immune system is activated. As its name implies, 

this system “adapts” to an infection and produces a specific, sustained response to a 

particular pathogen. 

 
The cells that mediate the innate and adaptive immune responses originate in the bone 

marrow (see Fig. 1.1). There, pluripotent hematopoietic stem cells give rise to the 

myeloid and lymphoid progenitors, which are themselves stem cells of a somewhat 

more limited potential. Myeloid progenitors differentiate into a variety of cell types 

including, but not limited to, macrophages, neutrophils, and dendritic cells. Lymphoid 

progenitors, on the other hand, mature into natural killer (NK) cells, B lymphocytes, 

and T lymphocytes. Each of these cells has a specialized function (Fig. 1.2), and by 

working in a coordinated fashion, they ensure the proper functioning of the innate and 

adaptive immune responses. 

 
1.2.1 Cells of the myeloid lineage 

 
Macrophages, which are present in tissues throughout the body, are generally the first 

immune cells to appear at the site of an infection. Upon encountering a pathogen, they 

initiate the innate immune response by engulfing and destroying the foreign organism 

in a process known as phagocytosis. Activated macrophages also secrete compounds 

that alert other phagocytes, such as neutrophils and dendritic cells, of the emerging 

infection. In response to these signals, large numbers of neutrophils migrate from the 

blood stream to the affected area, where they bolster the innate immune response by 

rapidly ingesting and neutralizing pathogens. Dendritic cells arrive later, and in fewer 

numbers, but they act as an important link between the innate and adaptive immune 

systems. The primary role of these cells is to present peptide fragments, or antigens, 

derived from phagocytosed pathogens on their surface using a special receptor (which 
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is described in more detail below). Antigen-presenting dendritic cells then travel from 

the infection site to a nearby lymph node, where they induce the activation of a subset 

of lymphocytes and thereby stimulate the adaptive immune response. 

 
1.2.2 The major histocompatibility complex receptors 

 
The receptor that dendritic cells use to display foreign antigens belongs to a family of 

highly polymorphic genes called the major histocompatibility complex (MHC). There 

are two kinds of MHC receptors, designated class I (MHC-I) and class II (MHC-II). 

Both classes of receptor bind peptides at an intracellular location, traffic to the plasma 

membrane, and present the peptides on the exoplasmic face of the cell to circulating 

lymphocytes. However, the receptors differ in several important ways, including their 

cellular expression profiles, the source of their peptide ligands, the organelle where 

peptide loading takes place, and the specific kind of lymphocyte they activate. 

 
MHC-I molecules (reviewed by Purcell and Elliot, 2008; van Endert, 1999) are found 

on the surfaces of most cell types, and bind peptides that are obtained from proteins 

produced within the cell. A randomly chosen fraction of all proteins translated in the 

cytosol is degraded by the proteosome into short peptide fragments; these peptides are 

then translocated into the endoplasmic reticulum (ER), where they are loaded onto 

MHC-I receptors moving through the secretory pathway on their way to the plasma 

membrane. Because all newly synthesized proteins are potentially subject to this 

process, many MHC-I antigens are generated from endogenous polypeptides. But if 

the cell is infected with a pathogen, such as a virus, at least some of the antigens that 

are displayed on the plasma membrane will be derived from foreign proteins. 

 
Unlike MHC-I receptors, MHC-II molecules (reviewed by Guermonprez et al., 2002; 

van Niel et al., 2008) are normally expressed only by certain types of phagocytes, like 

the dendritic cells mentioned above. As the MHC-II receptors pass through the ER, en 

route to the cell surface, they are prevented from binding the peptides available in this 

location by the tight association of a transmembrane protein called the invariant chain 

(Ii). This protein then chaperones MHC-II to the phagolysosome (Dugast et al., 2005; 

McCormick et al., 2005), an acidic organelle that contains any endogenous or foreign 

material that the cell may have internalized. Hydrolases in the phagolysosome digest 

this material, and the resulting peptides are loaded onto MHC-II receptors in place of 
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Ii. Once this process is finished, antigen-bound MHC-II complexes are transported to 

the plasma membrane for presentation on the exterior of the cell. 

 
1.2.3 Cells of the lymphoid lineage 

 
As described in the preceding section, the MHC-I and MHC-II antigen-presentation 

pathways play distinct, but complementary, roles in activation of the adaptive immune 

response: MHC-I receptors are used to alert one set of lymphocytes to the presence of 

pathogens within the cell, while MHC-II receptors are used to signal to a different set 

of lymphocytes that there are foreign organisms in the extracellular space. In both 

cases, the lymphocytes that interact with the antigen-MHC complexes are T cells, so 

called because they mature in the thymus rather than the bone marrow. These cells 

express a unique molecule on their surface known as the T cell receptor (TCR). 

 
The function of the TCR is to recognize foreign peptides bound to either MHC-I or 

MHC-II (for a thorough review of this topic, see Janeway et al., 2005). Because each 

TCR can recognize only one antigen, the adaptive immune system must have many 

different TCRs in its repertoire in order to effectively respond to the range of foreign 

peptides that it is challenged with. Diversity among TCRs is generated by a complex 

mechanism called somatic recombination, in which the genes that encode the TCR are 

assembled, in part, by the random joining of highly variable segments of DNA. This 

process occurs during the early stages of T cell differentiation, and once complete, is 

irreversible. Thus, each T cell is endowed with a distinct version of the TCR that has 

unique antigen-recognition properties. 

 
In addition to the TCR, T lymphocytes at this stage of development express several 

other important surface receptors, including CD4 and CD8. These cells (often referred 

to as “double-positive” T cells due to the concurrent expression of CD4 and CD8) 

must undergo two rounds of selection in the thymus before they are allowed to enter 

the peripheral lymphoid organs. The first round, known as positive selection, ensures 

that the TCR has at least some inherent affinity for either MHC-I or MHC-II (for a 

review of this process, see Fowlkes and Schweighoffer, 1995). Positive selection also 

coordinates expression of CD4 and CD8 with the specificity of the TCR (reviewed by 

Germain, 2002). From this point onwards, cells with TCRs that preferentially bind 

MHC-I express only CD8 (and are referred to as CD8 T cells), while those cells that 

9



have MHC-II-restricted TCRs express only CD4 (and are referred to as CD4 T cells). 

T lymphocytes that harbor versions of the TCR incapable of binding one of the MHC 

receptors are eliminated. The remaining “single-positive” T cells are then subjected to 

a round of negative selection, the purpose of which is to delete TCRs that interact too 

strongly with MHC receptors carrying endogenous peptides (reviewed by Hogquist et 

al., 2005). Cells with such TCRs are likely to initiate inappropriate immune reactions, 

and therefore must be purged. CD8 T cells and CD4 T cells that survive both rounds 

of selection are exported from the thymus to the periphery, where they execute their 

effector functions. 

 
The primary function of CD8 T cells is to identify and destroy host cells infected by 

foreign organisms (see Russell and Ley, 2002). As described above, infected cells are 

able to present peptides derived from foreign proteins on their surface via the MHC-I 

antigen-presentation pathway, thus signaling that their health has been compromised. 

Naive CD8 T cells move through the body in search of such cells, using their TCRs to 

sample many different peptide-MHC-I complexes. TCR-dependent recognition of a 

foreign antigen causes the CD8 T cell to rapidly proliferate, creating a large number 

of daughter cells with the same antigen specificity. These clones mature into cytotoxic 

T lymphocytes (CTLs), which seek out and induce the apoptosis of any cell with the 

cognate antigen on its surface.  

 
In an attempt to avoid the CTL-mediated killing of their host cells, many viruses have 

evolved mechanisms to disrupt the MHC-I antigen-presentation pathway (reviewed 

by Yewdell and Bennink, 1999). Often, this involves the downregulation of MHC-I 

from the plasma membrane, either by blocking its exit from the ER, or by promoting 

internalization of the receptor once it reaches the cell surface. Such actions effectively 

mask the presence of the virus, allowing it to replicate within the cell undetected. To 

combat this relatively common evasion strategy, the immune system uses NK cells to 

detect and destroy cells with unusually low levels of MHC-I expression (reviewed by 

Timonen and Helander, 1997). 

 
CD4 T cells, in contrast to the CTLs and NK cells mentioned above, lack the intrinsic 

cytotoxic activity needed to kill infected cells directly. Instead, CD4 T cells promote 

the clearance of pathogens by coordinating the overall immune response (see Janeway 

et al., 2005). This complex process is normally initiated by dendritic cells, which use 
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the MHC-II antigen-presentation pathway to inform CD4 T cells of an infection. The 

TCR-mediated recognition of a foreign peptide induces CD4 T cells to rapidly divide 

and differentiate into helper T cells (reviewed by Reiner, 2007). These cells produce 

and secrete a wide variety of molecules, called cytokines, that influence the behavior 

of target cells. There are two major kinds of helper T cells, known simply as TH1 and 

TH2 cells, that are distinguished largely on the basis of which cytokines they secrete 

(reviewed by Mosmann and Chapman, 1989). TH1 cells release cytokines that drive 

hematopoietic stem cells to mature into macrophages, neutrophils, and dendritic cells; 

activate existing macrophages, neutrophils and dendritic cells; and stimulate CTLs and 

NK cells to attack infected cells. TH2 cells, on the other hand, induce B lymphocytes 

to secrete antibodies that neutralize toxins and target pathogens for destruction. Thus, 

CD4 helper T cells play a critical role in regulating the immune system, maximizing 

its capabilities, and directing its efforts against aggressive foreign organisms. 
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1.3 The CD4 receptor 

 
As described in the previous section, both TH1 and TH2 cells are derived from naive 

CD4 T cells, and express the CD4 receptor on their surface. In addition, CD4 can be 

found in small amounts on the plasma membrane of macrophages and dendritic cells; 

however, the function of the receptor in these cell types is currently unknown. In this 

section, the structure, intracellular trafficking, and physiological role of CD4 in helper 

T cells is examined in greater detail. 

 
1.3.1 Structural features of CD4 

 
Human CD4 is a type I transmembrane protein that, in its mature form, has a mass of 

55 kDa and is comprised of 433 amino acids (reviewed by Bowers et al., 1997). These 

amino acids are distributed unevenly among the three major regions of CD4, resulting 

in a topologically asymmetrical molecule: the N-terminal exoplasmic section contains 

371 residues, the transmembrane domain contains 24, and the C-terminal cytoplasmic 

tail contains 38 (Fig. 1.3). From a structural perspective, the exoplasmic region can be 

further divided into four smaller domains, all of which have an immunoglobulin-like 

fold (Bradley et al., 1993; Ryu et al., 1990; Wang et al., 1990). The first two domains 

(D1 and D2) are located at the N-terminus of the receptor, and are packed together to 

form a rigid rod. A flexible linker joins this structure to a similar rod, composed of the 

third and fourth exoplasmic domains (D3 and D4). Immediately following D4 is the 

α-helical transmembrane domain, which both anchors the receptor in the membrane 

and physically connects the exoplasmic region to the cytoplasmic tail. The tail itself is 

largely unstructured, but under certain conditions, it appears to form an amphiphatic 

α-helix spanning residues 402-419 (Willbold and Rösch, 1996; Wray et al., 1998). 

Within this α-helix lies a pair of leucines (L413 and L414), flanked on either side by 

serine residues (S408 and S417, respectively). In addition, four cysteine residues are 

located in the tail, two upstream of the α-helix (C394 and C397) and two downstream 

(C420 and C423, as part of a CxCP motif [where x is any amino acid]). These cyto-

plasmic motifs are important for the post-translational modification of CD4 and the 

intracellular trafficking of the receptor. 
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1.3.2 Intracellular trafficking of CD4 

 
CD4, like all transmembrane proteins, is partially inserted into the ER during protein 

synthesis. As the receptor is translated, its exoplasmic region is drawn into the lumen 

of the ER, while its tail remains exposed to the cytoplasm. At this stage, carbohydrate 

moieties are added to two consensus sites on the D3 and D4 domains of CD4 (König 

et al., 1998). These N-linked oligosaccharides facilitate proper folding of the receptor 

within the lumen, allowing it to leave the ER and enter the Golgi apparatus (Tifft et 

al, 1992). There one of the oligosaccharides is modified in preparation for transport to 

the cell surface. Meanwhile, on the cytoplasmic side, the C394 and C397 tail residues 

are acylated by the covalent attachment of palmitate, a saturated fatty acid (Crise and 

Rose, 1992). The functional significance of palmitoylating the CD4 cytoplasmic tail 

remains unclear; however, it may stabilize the interactions between CD4 and other 

proteins by decreasing the lateral mobility of the receptor within the membrane. 

 
One of the proteins that CD4 interacts intimately with is p56lck (Lck), a member of the 

Src family of protein tyrosine kinases (Rudd et al., 1988; Veillette et al., 1988). Lck is 

expressed by T lymphocytes, and similar to CD4, is palmitoylated at an early stage of 

the biosynthetic pathway (Bijlmakers and Marsh, 1999). Shortly thereafter, Lck binds 

to the CD4 cytoplasmic tail, and migrates with the receptor to the plasma membrane 

(Bijlmakers and Marsh, 1999). This interaction is mediated by a zinc clasp, in which a 

positively charged zinc ion is coordinated by four cysteines: C20 and C23 on Lck, and 

C420 and C423 on the CD4 tail (Kim et al., 2003; Turner et al., 1990). Upon reaching 

the cell surface, Lck retains CD4 at the plasma membrane by significantly decreasing 

the rate at which the receptor is endocytosed (for further information on endocytosis, 

see Section 1.6). In the absence of Lck, CD4 is internalized at a rate of 2-5% per min 

(Pelchen-Matthews et al., 1991). This process requires the CD4 dileucine motif, and 

is accelerated by the protein kinase C (PKC)-mediated phosphorylation of S408 and 

S417 on the receptor tail (Shin et al., 1990; Shin et al., 1991). In the presence of Lck, 

however, the rate of CD4 endocytosis is reduced approximately ten-fold, to 0.2-0.6% 

per min (Pelchen-Matthews et al., 1992). By trapping CD4 at the plasma membrane, 

Lck ensures that the receptor-kinase complex is in position to participate in helper T 

cell signaling events. 
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1.3.3 Function of CD4 

 
In helper T cells, CD4 cooperates with Lck and the TCR complex to initiate a signal 

transduction pathway that leads to activation of the cell (for a comprehensive review, 

see Janeway et al., 2005). The first step in this pathway occurs when the TCR binds a 

peptide-MHC-II complex on the surface of an antigen-presenting cell. CD4 then binds 

to a non-polymorphic portion of the MHC-II receptor via its D1 domain (see Fig. 1.3; 

Cammarota et al., 1992; König et al., 1992; Wang et al., 2001). The binding of CD4 

and the TCR to the same MHC-II molecule brings Lck into close proximity of several 

immunoregulatory tyrosine-based activation motifs (ITAMs) located in the cytosolic 

region of the TCR complex (Xiong et al., 2001). This allows Lck to phosphorylate the 

ITAMs, which then recruit the kinase ZAP-70 from the cytoplasm (Chan et al., 1992; 

Iwashima et al., 1994). Lck subsequently phosphorylates ZAP-70, thereby passing the 

antigen-recognition signal onto another kinase (Yamasaki et al., 1996). The signal is 

eventually transmitted from the plasma membrane to the nucleus, priming the cell for 

activation (Zhang et al., 1988). Activation is finally achieved when the cell receives a 

co-stimulatory signal, usually induced by the interaction of CD28 on the surface of 

the helper T cell with either CD80 or CD86 on the surface of the antigen-presenting 

cell (Linsley et al., 1990). The integration of antigen-recognition and co-stimulatory 

signals causes the helper T cell to proliferate, differentiate, and produce the cytokines 

that are needed to coordinate the immune response (Harding et al., 1992; Thompson 

et al., 1989). Although many proteins are involved in the activation of helper T cells, 

it is clear that CD4 is a critical component of this process. However, CD4 has another, 

less beneficial function: it also serves as the primary receptor for the human immuno-

deficiency viruses (HIV). 
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1.4 The human immunodeficiency virus 

 
The human immunodeficiency viruses, HIV-1 and HIV-2, are the etiological agents of 

acquired immune deficiency syndrome (AIDS) in humans (please refer to Barin et al., 

1985; Barré-Sinoussi et al., 1983; Gallo et al., 1984; Hahn et al., 1984; Popovic et al., 

1984a; Sangadarhan et al., 1984; Schüpbach et al., 1984; Vilmer et al., 1984). As its 

name suggests, AIDS is a condition characterized by failure of the immune system. In 

nearly all cases, the disease leads to premature death, as opportunistic infections and 

aggressive cancers eventually overwhelm the body (Gottlieb et al., 1981; Masur et al., 

1981; Siegel et al., 1981). Although both viruses can cause AIDS, HIV-1 has had a 

greater impact on public health because it is more infectious, widespread, and virulent 

than HIV-2 (reviewed by Rowland-Jones and Whittle, 2007). This thesis, therefore, 

focuses primarily on HIV-1. 

 
1.4.1 Origin and spread of HIV-1 

 
Sequencing studies performed over several decades have convincingly demonstrated 

that HIV-1 is closely related to a simian immunodeficiency virus (SIV) found in the 

chimpanzees of central Africa (reviewed by Holmes, 2001). Phylogenetic analyses of 

the available sequences later indicated that three strains of this SIV virus were trans-

ferred from chimpanzees to humans between 1910 and 1950, giving rise to the three 

major groups of HIV-1 (Gao et al., 1999; Korber et al., 2000). While it is still unclear 

how the virus managed to cross the species barrier, among humans HIV-1 is spread 

by exposure to certain types of contaminated body fluids. This mode of transmission 

has carried HIV-1 across the globe, creating a pandemic. According to the most recent 

estimates, 33 million people are currently infected with HIV-1, and another 25 million 

people have already died of HIV-1-associated AIDS (Cohen et al., 2008; UN Program 

on HIV/AIDS, 2008). The genome and life cycle of this virus are described below. 

 
1.4.2 The HIV-1 genome 

 
HIV-1 is a retrovirus, meaning that its genome can exist as either a RNA or a DNA 

molecule depending on the stage of its life cycle (for more detailed information on the 

HIV-1 life cycle, see Section 1.4.3). Within the virion, the viral genome is encoded by 

single-stranded RNA. Shortly after the infection of a cell, however, the RNA genome 
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is converted into double-stranded DNA and inserted into a host chromosome. In this 

form, the genetic material of HIV-1 is often referred to as a provirus, because it must 

be transcribed back into RNA before it can be incorporated into another virion. 

 
The HIV-1 provirus contains nine open reading frames (ORFs), flanked on either side 

by long terminal repeat (LTR) sequences (see Fig. 1.4; Muesing et al., 1985; Ratner et 

al., 1985; Sanchez-Pescardo et al., 1985; Wain-Hobson et al., 1985). The LTRs do not 

code for any proteins, but they are required for the integration and transcription of the 

provirus (Bushman et al., 1990; Rosen et al., 1985; Starich et al., 1985). Of the nine 

ORFs, three code for large polyproteins, which are cleaved by proteases into several 

smaller proteins. Thus, HIV-1 can express a total of fifteen proteins (listed in Fig. 1.5; 

also reviewed by Frankel and Young, 1998; Swanson and Malim, 2008). Although a 

detailed description of each of these is beyond the limited scope of this thesis, special 

attention will be paid to the activities of gp120, gp41, reverse transcriptase, integrase, 

Tat, Rev, and Nef during the viral life cycle. 

 
1.4.3 The HIV-1 life cycle 

 
The surface of the HIV-1 virion (depicted in Fig. 1.6) is coated with heterodimers of 

gp120 and gp41, which are glycoproteins that regulate fusion of the virus with a host 

cell (Hu et al., 1986; Robey et al, 1985; Veronese et al., 1985). The gp120 portion of 

this glycoprotein complex binds to CD4 with high affinity, thereby targeting HIV-1 to 

macrophages, dendritic cells, immature CD4 T cells, and helper T cells (see Fig. 1.3; 

Dalgleish et al., 1984; Ho et al., 1986; Klatzmann et al., 1984; McDougal et al., 1986; 

Popovic et al., 1984b). Binding of CD4 by gp120 induces a conformational change in 

the viral glycoprotein that also allows it to interact with a chemokine receptor on the 

surface of the host cell, usually either CCR5 or CXCR4 (Alkhatib et al., 1996; Deng 

et al., 1996; Dragic et al., 1996; Kwong et al., 1998; Oberlin et al., 1996; Trkola et al., 

1996). These secondary interactions, in turn, expose a hydrophobic domain on gp41 

that triggers fusion of the viral envelope with the cellular membrane (Kowalski et al., 

1987; Melkyan et al., 2000). This causes the core of the HIV-1 virion to enter the cell. 

A short time later, the protective layers of the core disintegrate, and the RNA genome, 

reverse transcriptase, integrase, and several other viral proteins are released into the 

cytoplasm (Dvorin and Malim, 2003). 
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Reverse transcriptase uses the single-stranded RNA molecule as a template to create a 

double-stranded DNA genome that, when bound to certain viral proteins, is called the 

pre-integration complex (Harrich and Hooker, 2002). The pre-integration complex is 

subsequently transported to the nucleus, where it directs the immediate synthesis of 

Tat, Rev, and Nef in small but detectable amounts (see Popov et al., 1998; Stevenson 

et al., 1990; Wu and Marsh, 2001). Integrase then inserts the pre-integration complex 

into the host cell chromatin via a LTR-dependent mechanism (Bushman et al., 1990; 

Clavel et al., 1990; Roth et al., 1989). In quiescent cells, the HIV-1 provirus can lay 

dormant, with little or no transcriptional activity beyond basal levels of Tat, Rev, and 

Nef production (Chun et al., 1997; Jordan et al., 2001). Activation of the infected cell 

leads to expression of many endogenous transcription factors, including NF-κB (Sen 

and Baltimore, 1986a; Sen and Baltimore, 1986b). NF-κB binds to specific sequences 

in the LTR, and along with Tat, promotes transcription of the viral genes and genome 

(Berkhout et al., 1990; Liu et al., 1992; Nabel and Baltimore, 1987). Rev then directs 

the export of unspliced RNA genomes to the cytoplasm, so that they can be packaged 

into newly-forming virions (Lever, 2002; Malim et al., 1989). The HIV-1 life cycle is 

completed when these nascent virions bud from the endosomal or plasma membrane 

to infect surrounding cells (Jouvenet et al., 2008; Neil et al., 2008; Pelchen-Matthews 

et al., 2003). 

 
1.4.4 Progression from HIV-1 infection to AIDS 

 
The cycle of HIV-1 replication explained above begins with the infection of a single 

cell; however, the virus eventually overwhelms the body. Although there are several 

routes by which an individual may become infected, the cells most likely to make first 

contact with the virus are macrophages and dendritic cells (reviewed by Martín and 

Bandrés, 1999). These cells are natural hosts of HIV-1, and they readily transmit the 

virus to CD4 T lymphocytes (Groot et al., 1998; McDonald et al., 2003). On average, 

productively infected lymphocytes survive only two to three days (Herz et al., 1996; 

Perelson et al., 1996). The short life-span of virus-producing cells has been attributed 

to a variety of factors, the most important of which appear to be the cytopathic effects 

of HIV-1, CTL-mediated killing of infected cells, and apoptosis (Getchell et al., 1987; 

Meyaard et al., 1992; Plata et al., 1987; Walker et al., 1987). Repeated rounds of viral 

replication leads to the near total depletion of CD4 T cells over a period of three to ten 
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years (Rutherford et al., 1990; Ward et al., 1989). The steady decline of CD4 T cells 

can be slowed, but not averted, by the application of antiretroviral therapy (Larder et 

al., 1989; Ledergerber et al., 1999; Mitsuya et al., 1987; Palella et al, 1998). Once the 

number of CD4 T cells drops below a certain threshold, the body loses its capacity to 

properly coordinate the immune system (Bonavida et al., 1986; Pinching et al., 1983; 

Seligmann et al., 1984). This final stage of the disease is marked by a severe immune 

deficiency, which is the hallmark of AIDS. It is now understood that the progression 

from HIV-1 infection to AIDS depends not only on the viral proteins described above, 

but also on the activity of Nef. 
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1.5 Nef 

 
Sequencing of the proviral genome, performed shortly after the discovery of the virus 

itself, revealed a 3’ ORF of unknown function (Fig. 1.4; Muesing et al., 1985; Ratner 

et al., 1985; Sanchez-Pescardo et al., 1985; Wain-Hobson et al., 1985). The mRNA 

transcript and the protein corresponding to this ORF were subsequently identified in 

samples taken from patients infected with HIV-1 (Allan et al., 1985; Arya and Gallo, 

1986; Lee et al., 1986; Franchini et al, 1986; Rabson et al., 1985). Early studies aimed 

at elucidating the function of this protein found that it was not required for replication 

of the virus in vitro (Ahmad and Venkatesen, 1988; Fisher et al., 1986; Luciw et al., 

1987; Terwilliger et al., 1987). Some of these reports also claimed that expression of 

the protein actually reduced the rate of viral replication in their tissue culture systems 

(Ahmad and Venkatesan, 1988; Luciew et al., 1987; Terwilliger et al., 1987). Based 

on these findings, the protein was called Nef, which is short for “Negative factor” of 

viral growth (Gallo et al., 1988). Over time, it became clear that the role of Nef had 

been mischaracterized. Later studies definitively demonstrated that Nef did not have a 

negative impact on viral replication, and in conditions that more closely resembled the 

natural setting of HIV-1 infection, viruses with functional Nef proteins were found to 

grow more rapidly than viruses that lacked Nef (de Ronde et al., 1992; Hammes et al., 

1989; Kim et al., 1989a; Miller et al., 1994; Spina et al., 1994). Importantly, Nef has 

also been shown to be a key determinant of disease progression in vivo. The results of 

these studies are summarized below. 

 
1.5.1 Nef: a critical determinant of disease progression 

 
A key role for Nef in the development of AIDS is supported by studies on a particular 

class of patients, known as long-term non-progressors (LTNPs), that remain symptom 

free for at least ten years after infection without the aid of antiretroviral therapy (see 

Cao et al., 1995; Learmont et al., 1992; Pantaleo et al., 1995). Analysis of a naturally 

attenuated virus isolated from an Australian LTNP cohort revealed that it was missing 

a large portion of the Nef ORF (Deacon et al., 1995). These patients, all of whom had 

been infected by the same individual, maintained extremely low viral loads and steady 

CD4 T cell counts for 15-25 years (Birch et al., 2001; Gorry et al., 2007; Learmont et 

al., 1992; Learmont et al., 1995; Learmont et al., 1997; Rhodes et al., 1999). Similar 

deletions of the Nef ORF have also been detected among independent LTNP cohorts 
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located in Asia, Europe, and North America (Kirchhoff et al., 1995; Salvi et al., 1998; 

Tobiume et al., 2002). 

 
Further evidence for a role of Nef in disease progression is provided by studies of SIV 

in rhesus macaques. As with humans, deletion of the Nef ORF reduced the pathogenic 

potential of the virus, and dramatically delayed the onset of AIDS (see Kestler et al., 

1991). In fact, the virus appeared to be under strong selective pressure to express Nef. 

When macaques were infected with engineered SIV strains that contained a premature 

stop codon or a 12 bp deletion in the Nef ORF, the expression of full-length Nef was 

quickly and universally restored (Kestler et al., 1991; Whatmore et al., 1995). 

 
Mouse models also indicate that there is a strong correlation between the expression 

of Nef and the virulence of infection. Upon inoculation with HIV-1, chimeric SCID-

hu mice transplanted with human thymic tissue experienced a significant decline of 

CD4 T cells (Aldrovandi et al., 1993; Bonyhadi et al., 1993; McCune et al., 1988). In 

this system, viruses that were unable to express Nef had a slower rate of replication, 

achieved a lower overall titer, and depleted significantly fewer CD4 T cells than their 

wild-type counterparts (Arora et al., 2002; Jamieson et al., 1994). In another mouse 

model system, the expression of Nef in CD4-positive cells rapidly induced an AIDS-

like disease despite the absence of all other HIV-1 proteins (Hanna et al., 1998; Lind-

ermann et al., 1994; Skowronski et al., 1993).  

 
1.5.2 Structural and biochemical features of Nef 

 
Given the considerable influence of Nef on viral pathogenesis, much work has been 

done to characterize its structural and biochemical features, which are described here. 

Translation of the HIV-1 Nef mRNA transcript produces a 27 kDa protein containing 

206 amino acids (Allan et al., 1985; Arya and Gallo, 1986; Lee et al., 1986). Because 

the Nef mRNA molecule is multiply-spliced, it can be exported from the cell nucleus 

without the help of Rev (see Section 1.4.3). Thus, during the early stages of cellular 

infection, the Nef mRNA transcript comprises nearly three-quarters of the total viral 

mRNA load (see Kim et al., 1989b; Klotman et al., 1991; Robert-Guroff et al., 1990). 

This makes Nef the first HIV-1 protein to be translated in significant quantities (Ranki 

et al., 1994). During translation, the viral protein is myristoylated by an endogenous 

enzyme, called N-myristoyltransferase, that cleaves off the initiating methionine and 

28



attaches a saturated fatty acid to the glycine at position two (see Allan et al., 1985; 

Hill and Skowronski, 2005). Myristoylation of Nef promotes its association with the 

cytoplasmic leaflet of cellular membranes, and is required for nearly all of its major 

functions (Aldrovandi et al., 1998; Franchini et al., 1986; Hanna et al., 2004; Mariani 

and Skowronski, 1993; Yu and Felsted, 1992). In addition, Nef has been reported to 

be phosphorylated by various kinases on two serine residues (S6 and S9), but unlike 

myristoylation, the functional consequences of this post-translational modification are 

not clear (Coats and Harris, 1995; Coats et al., 1997; Li et al., 2004; Luo et al., 1997; 

Wolf et al., 2008). 

 
The three-dimensional structure of Nef has largely been solved by a combination of 

NMR spectroscopy and X-ray crystallography (Fig. 1.7). These studies indicate that 

Nef can be divided into three domains: a flexible N-terminal region (residues 1-80), a 

well-folded core (residues 81-147 and 181-206), and a disordered loop (residues 148-

180) near the C-terminus of the protein (see Geyer et al., 1999; Grzesiek et al., 1996a; 

Grzesiek et al., 1997; Lee et al., 1996). Within the flexible N-terminal domain, there 

are two α-helices, both of which appear to be stabilized by the addition of myristate. 

This domain also has four motifs of significance: the aforementioned myristoylation 

site (G2), a small hydrophobic pocket comprised of tryptophan and leucine residues 

(WL57,58), an acidic cluster (EEEE62-65), and two prolines (PxxP72,75). The core 

of Nef contains four α-helices arranged around a five-stranded antiparallel β-sheet. In 

this conformation, an aspartate residue (D123) positioned next to the second β-strand 

is exposed to the solvent. The disordered C-terminal loop connects the fourth and fifth 

β-strands, and projects outwards from the core. This loop is roughly centered on an 

acidic dileucine motif (ExxxLL160-165), and is bordered on either end by negatively 

charged glutamate (EE154,155) and aspartate (DD174,175) pairs. 

 
Myristoylated Nef can adopt a variety of quartenary structures, including monomers, 

dimers, and timers (Arold et al., 2000; Dennis et al., 2005; Kienzle et al., 1993). The 

equilibrium between these states appears to depend on the concentration of Nef, with 

greater amounts of the viral protein favoring more complex oligomeric arrangements 

(Arold et al., 2000). Assembly of these oligomers is mediated by the D123 residue in 

the core domain of Nef (see Fig. 1.8; Arold et al., 2000; Liu et al., 1997). Mutation of 

this residue prevents the formation of dimers and trimers, and abrogates many of the 
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FIG. 1.7: Structure and function of HIV-1 Nef 

 
The structure of HIV-1 Nef is shown in the top panel. In this panel, a ribbon diagram 

(left) and a surface representation (right) of the protein are depicted. Based on its 

structure, Nef can be divided into three major domains: an N-terminal arm, a well-

folded core, and a flexible C-terminal loop. Important functional motifs within each 

of these domains is highlighted. The N-terminal arm contains the myristoylation site 

(MyrG), the CD4 binding site (WL), the acidic cluster (EEEE), and the polyproline 

motif (PxxP). The core harbors a residue that is critical for the oligomerization of Nef 

(D123), while the C-terminal loop contains three motifs that have been implicated in 

CD4 downregulation (EE, ExxxLL, and DD). These motifs have been color-coded for 

easy recognition: green for hydrophobic motifs, orange for acidic motifs, and blue 

for the polyproline motif. Myristate is represented as a black squiggle embedded in 

the light green membrane bilayer. The cytosol is shown in light yellow. The ribbon 

diagram and surface representation are composites of two structures (PDB ID 1QAF 

[Geyer et al., 1999] and 2NEF [Grzesiek et al., 1997]) and were drawn using PyMOL 

(Delano, 2002). Annotations of these images were performed using Microsoft Power-

point. In the bottom panel, the major functions of each motif are provided, along with 

their known binding partners. 
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functions of Nef (Liu et al., 1997). Therefore, oligomerization may be necessary for 

Nef activity in vivo. Oligomerization reduces the amount of solvent-exposed surface 

area for each Nef molecule; however, for a protein of its size, Nef remains extremely 

accessible. Calculations indicate that the total exposed surface area of monomeric Nef 

is 17,600 Å2 (Geyer et al., 2001). By comparison, the compact nuclear import protein 

Ran, which also contains 206 residues, has a total accessible surface area of 9,950 Å2 

(Geyer et al., 2001). Crystallographic models of Nef dimers and trimers suggest that 

oligomerization of the viral protein occludes only a minor fraction of the surface area, 

because in both cases the contact interfaces are predicted to be relatively small (Arold 

et al., 2000). The combination of flexible domains and highly exposed surface areas 

may account for the numerous protein interactions and functions attributed to Nef. 

 
1.5.3 Functions of Nef 

 
Despite initial reports that suggested Nef was a GTPase, the viral protein is not known 

to have any inherent catalytic activities (Backer et al., 1991; Guy et al., 1987; Harris 

et al., 1992; Samuel et al., 1987). Instead, Nef is believed to exert itself by binding to 

endogenous proteins and physically modulating their functions. Nef has in fact been 

reported to interact with several dozen proteins, although it is not clear how many of 

these interactions are biologically significant (for a list of Nef binding partners, please 

see Fu et al., 2009). Nevertheless, by all accounts Nef is a pleiotropic protein, capable 

of executing a variety of intracellular functions that increase the overall pathogenicity 

of the virus (reviewed by Greenway et al., 2000). These include the enhancement of 

virion infectivity, disruption of T cell signaling, regulation of apoptotic pathways, and 

perhaps most importantly, alteration of cell-surface receptor expression (Fig. 1.7). In 

this latter regard, Nef does not appear to affect the expression of all plasma membrane 

receptors indiscriminately; rather, it targets specific receptors for either upregulation 

or downregulation (Fig. 1.8). Nef increases the surface levels of Ii, LIGHT, and TNF, 

while decreasing the levels of CD1, CD4, CD8, CD28, CD71, CD80, CD86, CCR5, 

CXCR4, MHC-I, and mature MHC-II (Aiken et al., 1994; Chadhury et al., 2005; Cho 

et al., 2006; Coleman et al., 2006; Fleis et al., 2002; Greenberg et al., 1998; Guy et al., 

1987; Hrecka et al., 2005; Lama and Ware, 2000; Madrid et al., 2005; Michel et al., 

2005; Piguet et al., 2000; Roeth et al., 2004; Schindler et al., 2003; Schwartz et al., 

1996; Shinya et al., 2004; Sol-Foloun et al., 2002; Stumptner-Cuvelette et al., 2002; 
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FIG. 1.8: Nef targets specific receptors for downregulation 

 
To test whether Nef affects the expression of a large number of cell-surface receptors, 

or targets only a few for downregulation, CD4-CD8 double-positive thymocytes were 

transfected with vectors coding for Nef and stained with a variety of antibodies. These 

cells were compared to similar thymocytes that had been transfected at the same time 

with empty vectors. All cells were analyzed by flow cytometry (see Section 2.7), and 

representative histograms are shown. A total of 54 cell-surface receptors were tested; 

however, these particular thymocytes (JM cells, see Section 2.6.2) expressed only 31. 

Two isotype controls (IgG1 and IgG2a) were also included in the experiment. Each 

condition was repeated a minimum of three times. Background fluorescence (i.e., the 

appropriate isotype control for the given antibody) is shaded gray, while the surface-

expression of receptors is shown in green for cells transfected with the empty vector 

and orange for cells transfected with the Nef vector. Of the 31 receptors found to be 

expressed on the surface of these cells, Nef downregulates only 7. Thus, Nef does not 

appear to disrupt general trafficking pathways; instead, it targets specific receptors for 

downregulation. These receptors are highlighted in red. Following the histograms, a 

chart lists the function of each receptor expressed on the JM cell-surface and tested in 

the assay. This experiment was performed by the author. 

33



IgG1 IgG2 CD1 CD2

CD3 CD4 CD5 CD7

CD8 CD9 CD11a CD18

CD25 CD27 CD28 CD31

CD34 CD38 CD44 CD45

CD45RA CD45RO CD52 CD54

CD57 CD59 CD62L CD69

FIG. 1.8

34



CD71 CD75 CD94 CD97

CD101 CD103 CD107a CD109

CD120B CD122 CD126 CD127

CD132 CD134 CD137 CD150

CD152 CD154 CD161 CD166

CD184 CD185 CD195 CD212

CD247 MHC-I TCR αβ TCR γδ

FIG. 1.8, continued

35



# Antigen Other Names Function(s)

1 IgG1 Immunoglobulin G1 Isotype control

2 IgG2a Immunoglobulin G2 Isotype control

3 CD1 N/A Presentation of lipid antigens

4 CD2 SRBC Adhesion molecule; binds Lck

5 CD3 N/A Associated with the TCR; signal transduction

6 CD4 N/A Co-receptor for MHC-II; binds Lck; binds HIV-1 gp120

7 CD5 LEU-1 Involved in activation and adhesion

8 CD7 LEU-9 Unknown; binds phosphoinositide 3 kinase

9 CD8 N/A Co-receptor for MHC-I; binds Lck

10 CD11a LFA-1 Adhesion molecule; binds CD18 and CD54

11 CD18 N/A Adhesion molecule; binds CD11a and CD54

12 CD27 N/A Involved in the stimulation of B cells

13 CD28 N/A Co-stimulatory molecule; binds CD80 and CD86

14 CD31 PECAM-1 Adhesion molecule

15 CD34 N/A Adhesion molecule; binds CD62L

16 CD38 N/A Involved in activation; NAD glycohydrolase

17 CD44 Hermes antigen Adhesion molecule

18 CD45 LCA Protein tyrosine phosphatase involved in signaling

19 CD45RA N/A Short isoform of CD45; also a tyrosine phosphatase

20 CD52 CAMPATH-1 Unknown

21 CD54 ICAM-1 Adhesion molecule; binds CD11a and CD18

22 CD59 Protectin Inhibits initiation of complement cascade on membrane

23 CD62L L-selectin Adhesion molecule; binds CD34

24 CD69 N/A Involved in activation

25 CD71 Transferrin receptor Uptake of iron

26 CD120b TNFR2 Cytokine receptor for tumor necrosis factor

27 CD122 IL-2Rb Cytokine receptor for interleukin-2b

28 CD132 N/A Cytokine receptor for various interleukins

29 CD166 ALCAM Adhesion molecule

30 CD184 CXCR4 Chemokine receptor; binds gp120 of some HIV-1 strains

31 CD185 CXCR5 Chemokine receptor

32 MHC-I HLA-A, B, C, etc. Presentation of peptide antigens

33 TCR ab T cell receptor T cell activation; binds antigen-loaded MHC-I or MHC-II

FIG. 1.8, continued
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Swan et al., 2001; Swigut et al., 2002). The mechanisms that Nef uses to upregulate 

and downregulate these receptors are poorly understood. In most cases, however, Nef 

seems to alter the expression of surface receptors by interacting with the intracellular 

protein-trafficking machinery. The major components of this machinery are described 

in the next section. 
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1.6 Intracellular protein transport 

 
Within eukaryotic cells, macromolecules are transported between organelles by small, 

membrane-enclosed structures known as vesicles (Palade, 1975). These vesicles bud 

from a donor compartment, travel along the cytoskeleton, and fuse with an acceptor 

compartment (see Bonifacino and Glick, 2004; Hehnly and Stammes, 2007). Central 

to this process are coat proteins, which are distinguished by the polyhedral cages they 

form around nascent vesicles. There are several kinds of coat proteins, but they are all 

either directly or indirectly involved in cargo selection, donor membrane deformation, 

and the recruitment of additional proteins required for vesicle scission, transport, and 

fusion (reviewed by Bonifacino and Lippincott-Schwartz, 2003; Kirchhausen, 2000; 

Schekman and Orci, 1996). The three most well-characterized coat proteins are COPI, 

COPII, and clathrin. Each of these appears to regulate one or more distinct trafficking 

pathways: COPI-coated vesicles traffic primarily from the Golgi complex to the ER, 

although they have also been suggested to have a role in endosomal transport; COPII-

coated vesicles move from the ER to the Golgi; and clathrin-coated vesicles (CCVs) 

shuttle between multiple post-Golgi organelles (Anderson et al., 1977a; Barlowe et al., 

1994; Letourneur et al., 1994; Orci et al., 1986; Pearse, 1975; Roth and Porter, 1964; 

Waters et al., 1991; Whitney et al., 1995). Previous work has demonstrated that Nef 

co-localizes with some clathrin-coated structures (Foti et al., 1997; Greenberg et al., 

1997). Therefore, the remainder of this section focuses on clathrin, clathrin-associated 

proteins, and the interactions between Nef and these proteins. 

 
1.6.1 Clathrin 

 
The first observation of coated vesicles was made during studies on mosquito oocytes 

that were actively taking up yolk (Roth and Porter, 1964). These vesicles were found 

to bud from the plasma membrane, covered in bristle-like projections that were lost as 

the vesicle moved towards the cell center. Similar coated vesicles were subsequently 

described around the Golgi area of the cell (Friend and Farquhar, 1967). Purification 

and characterization of these vesicles revealed that the coats were composed of two 

major proteins: a 180 kDa polypeptide named clathrin heavy chain, and a 33-36 kDa 

polypeptide called clathrin light chain (Kanaseki and Kadota, 1969; Keen et al., 1979; 

Pearse, 1975). Additional studies showed that the basic unit of clathrin cages was the 

triskelion, comprised of three heavy and three light chains (Kirchhausen and Harrison, 
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1981; Ungewickell and Branton, 1981). Electron micrographs have since confirmed 

that these triskelions assemble into the lattice of pentagons and hexagons commonly 

seen on the surface of CCVs (Fig. 1.9; Crowther and Pearse, 1981; Fotin et al., 2004; 

Heuser, 1980). 

 
The incorporation of transmembrane cargo proteins into CCVs was initially believed 

to occur through a direct interaction with clathrin (Anderson et al., 1977b; Brown and 

Goldstein, 1979). However, careful biochemical and ultrastructural analyses of CCVs 

indicated that, in addition to clathrin, the coats contained two 100 kDa polypeptides 

situated between the lattice and the membrane (Keen et al., 1979; Unanue et al., 1981; 

Vigers et al., 1986). These non-clathrin proteins were found to facilitate the assembly 

of CCVs in vitro, and were thus called “assembly polypeptides” (Keen et al., 1979). It 

later became evident that the principal role of the assembly polypeptides was to bind 

cargo molecules and link them to the clathrin lattice (Glickman et al., 1989; Ohno et 

al., 1995; Sorkin and Carpenter, 1993). Their name was therefore changed to “adaptor 

proteins” (APs) to more accurately reflect this function (Pearse and Bretscher, 1981). 

 
1.6.2 The AP complexes 
 
Detailed studies of the APs revealed that they were part of separate heterotetrameric 

complexes (Keen, 1987; Pearse and Robinson, 1984). These distinct complexes were 

designated AP-1 [which is composed of γ, β1, µ1, and σ1 subunits] and AP-2 [α, β2, 

µ2, σ2]. Two more adaptor complexes, AP-3 [δ, β3, µ3, σ3] and AP-4 [ε, β4, µ4, σ4], 

have since been identified by searching sequence databases for homologs of AP-1 and 

AP-2 subunits (see Dell’Angelica et al., 1997; Dell’Angelica et al., 1999; Hirst et al., 

1999; Simpson et al., 1996; Simpson et al., 1997). Phylogenetic analyses indicate that 

the AP complexes appeared during the early stages of eukaryotic evolution; however, 

some lineages have lost AP-4 (see Section 3.3.3; Boehm and Bonifacino, 2001; Hirst 

et al., 1999).  

 
1.6.3 Structural features of AP complexes 

 
The AP complexes share many basic features, including the size of their subunits and 

their three-dimensional structure. In each AP complex, the two largest subunits [γ, α, 

δ, ε and β1-4] are 100-130 kDa, the medium subunit [µ1-4] is approximately 50 kDa 
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and the smallest subunit [σ1-4] is 15-20 kDa (Keen, 1987; Dell’Angelica et al., 1997; 

Dell’Angelica et al., 1999; Hirst et al., 1999; Simpson et al., 1996). Proteolytic assays 

and electron micrographs have revealed that the N-terminal domains of the two large 

subunits combine with the small subunits to form a well-folded core (see Fig. 1.10; 

Heuser and Keen, 1988; Schröder and Ungewickell, 1991; Zaremba and Keen, 1985). 

A flexible linker extends from each of the large subunits to connect the core to folded 

appendages, called “ears” (Heuser and Keen, 1988; Kirchhausen et al., 1989). X-ray 

crystallography studies have provided more detailed information on the structure of 

the core and ear domains (Fig. 1.10; reviewed by Owen et al., 2004). Within the core, 

the large subunits fold into solenoids, while the medium and small subunits form β-

sheets that are flanked by α-helices (Collins et al., 2002; Heldwein et al., 2004). Both 

ears have similar bi-lobal structures and contain platform-like subdomains (see Brett 

et al., 2002; Owen et al., 1999; Owen et al., 2000; Traub et al., 1999). 

 
1.6.4 Cargo recognition by AP complexes 

 
In addition to having a similar structure, all of the AP complexes are able to recognize 

linear peptide motifs (reviewed by Bonifacino and Traub, 2003). These motifs, which 

are present in the cytosolic domains of transmembrane proteins, generally conform to 

one of two consensus sequences: YxxØ (where Ø is a bulky hydrophobic residue) or 

[D/E]xxxL[L/I] (Canfield et al., 1991; Johnson and Kornfeld, 1992; Lazavorits and 

Roth, 1988; Letourneur and Klausner, 1992). A variety of assays have convincingly 

demonstrated that YxxØ-type motifs, often referred to as tyrosine signals, bind to the 

C-terminal region of all four µ subunits (Boll et al., 1996; Dell’Angelica et al., 1997; 

Hirst et al., 1999; Ohno et al., 1995; Ohno et al., 1998; Owen and Evans, 1998). The 

recognition site for [D/E]xxxL[L/I]-type dileucine signals is less certain, as different 

experimental approaches have yielded conflicting results. Phage display screens and 

yeast two-hybrid assays initially suggested that, like tyrosine signals, dileucine motifs 

bound to the µ subunits of AP complexes (Bremens et al., 1998; Craig et al., 2000; 

Rodionov and Bakke, 1998). These findings were contested by photoaffinity labeling 

experiments, which implicated the β subunits (Rapoport et al., 1998). More recently, 

yeast three-hybrid assays have indicated that dileucine signals interact with the AP-1 

γ-σ1 and AP-3 δ-σ3 hemicomplexes (Janvier et al., 2003). Thus, the specific binding 

site for dileucine motifs on AP complexes remains controversial. 
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1.6.5 Cargo sorting by AP complexes 
 
The primary function of AP complexes is to bind transmembrane proteins that contain 

either tyrosine or dileucine signals, and mediate their transport from one organelle to 

another (reviewed by Robinson, 2004). Each AP complex, however, directs a distinct 

sorting pathway. AP-1 is involved in the trafficking of cargo between the trans-Golgi 

network (TGN) and endosomes, although the directionality of this movement is still 

under debate (Doray et al., 2002; Meyer et al., 2000; Puertollano et al., 2003; Reusch 

et al., 2002; Robinson, 1987). AP-2 controls an endocytic pathway, and is responsible 

for transporting a large number of proteins from the plasma membrane to endosomes, 

including CD4 (Ahle et al., 1988; Motley et al., 2003; Nesterov et al., 1999; Pelchen-

Matthews et al., 1993; Pitcher et al., 1999). Both AP-1 and AP-2 interact directly with 

clathrin via a small motif in the flexible linker of their β subunits, and depend on this 

interaction to execute their respective functions (Dell’Angelica et al., 1998; Galluser 

and Kirchhausen, 1993; Shih et al., 1995; ter Harr et al., 2000). In contrast, AP-3 may 

be able to operate independently of clathrin, even though it contains a similar clathrin- 

binding motif (Dell’Angelica et al., 1998; Newman et al., 1995; Peden et al., 2002). 

While its relationship to clathrin is poorly defined, there is widespread agreement that 

AP-3 promotes delivery of cargo from the TGN and endosomes to lysosomes (Cowles 

et al., 1997; Le Borgne et al., 1998; Rous et al., 2002). AP-4 is devoid of a canonical 

clathrin-binding motif, and it does not appear to associate with clathrin (Borner et al., 

2006; Hirst et al., 1999). Thus, like AP-3, the AP-4 complex may utilize another coat 

protein. The sorting function of AP-4 is not yet established, but it has been implicated 

in the trafficking of proteins from the TGN to the basolateral membrane of polarized 

epithelial cells (Simmen et al., 2002). 

 
1.6.6 Interactions of Nef with the AP complexes 

 
Because Nef contains a well-conserved dileucine motif, it has long been considered a 

candidate to interact with the AP complexes (Greenberg et al., 1997; Bresnahan et al., 

1998). Indeed, various assays have suggested that the viral protein binds AP-1, AP-2, 

and AP-3 in a dileucine-dependent manner, although an interaction with AP-4 has not 

yet been reported. As with other dileucine ligands, the location of the Nef binding site 

on AP complexes is disputed. Nef has been shown to interact with µ1 and µ3 by yeast 

two-hybrid experiments, and β1 and β2 by photoaffinity labeling analyses; however, 
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the affinity of Nef for these adaptin subunits appeared to be relatively weak (Craig et 

al., 2000; Greenberg et al., 1998a; Rose et al., 2005). Yeast three-hybrid assays later 

demonstrated that Nef binds far more robustly to the γ-σ1 and δ-σ3 hemicomplexes of 

AP-1 and AP-3, but a similar interaction between Nef and the α-σ2 hemicomplex of 

AP-2 was not detected (Janvier et al., 2003). While the manner in which Nef binds the 

AP complexes must still be resolved, the viral protein most likely relies on these inter-

actions to downregulate cell-surface receptors. The mechanisms used by Nef to affect 

the expression of the two such receptors, MHC-I and CD4, are examined more closely 

in the following sections. 
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1.7 Nef-mediated MHC-I downregulation 

 
As mentioned earlier, many viruses interfere with the expression of MHC-I in order to 

escape detection and destruction by the adaptive immune system (Section 1.2.3; also 

see Yewdell and Bennink, 1999). HIV-1 is among these viruses, as it reduces the level 

of MHC-I on the surface of infected cells (Scheppler et al., 1989). The HIV-1 protein 

primarily responsible for this activity is Nef, which is capable of downregulating two 

of the three major MHC-I alleles: HLA-A and HLA-B (Cohen et al., 1999; Le Gall et 

al, 1998; Schwartz et al., 1996). Nef does not alter the expression of HLA-C, the other 

major MHC-I allele (Cohen et al., 1999; Le Gall et al., 1998). HLA-A and HLA-B are 

known to present antigens to CTLs, while HLA-C interacts with inhibitory receptors 

on NK cells (Lanier, 1998; Littaua et al., 1991; Yokoyama, 1998). The ability of Nef 

to selectively downregulate MHC-I molecules, therefore, protects infected cells from 

the cytopathic effects of both CTLs and NK cells (Section 1.2.3; Cohen et al., 1999; 

Collins et al., 1998; Le Gall et al., 1998). 

 
1.7.1 Direct interaction between Nef and MHC-I 

 
Although multiple mechanisms for the Nef-mediated downregulation of MHC-I have 

been proposed, the most convincing model involves a direct interaction between the 

viral protein and the endogenous receptor (Blagoveshchenskaya et al., 2002; Le Gall 

et al., 1998; Schwartz et al., 1996). Co-immunoprecipitation experiments indicate that 

Nef binds to the cytoplasmic tail of some MHC-I alleles (Williams et al., 2002). GST 

pull-down assays have subsequently demonstrated that this interaction depends on an 

α-helix in the N-terminal domain of Nef, and a YSQAA motif in the tails of HLA-A 

and HLA-B (Cohen et al., 1999; LeGall et al., 2000; Williams et al., 2002; Williams 

et al., 2005). HLA-C lacks the YSQAA motif, which may explain why it is not down-

regulated by Nef (Cohen et al., 1999; LeGall et al., 1998; Williams et al., 2002). 

 
1.7.2 The mechanism of Nef-mediated MHC-I downregulation 

 
In addition to the N-terminal α-helix, mutational analyses have identified three other 

motifs on Nef that are required for the downregulation of MHC-I: the myristoylation 

site, the acidic cluster, and the polyproline motif (Fig. 1.7 and 1.8; Mangasarian et al., 

1999; Peng and Robert-Guroff, 2001). According to the prevailing model of MHC-I 
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downregulation, these regions of Nef work together to connect HLA-A and HLA-B to 

the host-cell protein-trafficking machinery (Kasper and Collins, 2003; Kasper et al., 

2005; Lubben et al., 2007; Noviello et al., 2008; Roeth et al., 2004; Williams et al., 

2005; Wonderlich et al., 2007). The myristoylation of Nef allows it to associate with 

the cytosolic leaflet of most intracellular membranes, including that of the TGN (Yu 

and Felsted, 1992). While located at the TGN, Nef simultaneously binds to the tail of 

an MHC-I receptor, via its α-helix, and the AP-1 µ1 subunit, via its acidic cluster and 

its polyproline motif (Kasper et al., 2005; Noviello et al., 2008; Williams et al., 2005). 

Although HLA-A and HLA-B do not normally interact with AP-1, Nef increases the 

affinity of these molecules for each other by permitting the YSQAA motif to function 

as a canonical tyrosine-based sorting signal (Noviello et al., 2008; Wonderlich et al., 

2007). As ligands for AP-1, HLA-A and HLA-B are no longer transported to the cell-

surface (Kasper and Collins, 2003). Instead, the MHC-I receptors are directed towards 

lysosomes, where Nef ensures that they are degraded (Roeth et al., 2004; Schaefer et 

al., 2008). Like HLA-A and HLA-B, the degradation of CD4 by Nef may also depend 

on interactions with the clathrin adaptor protein complexes. However, the mechanism 

of CD4 downregulation remains uncertain, as described below. 

48



1.8 Nef-mediated CD4 downregulation 

 
Similar to other viruses, HIV-1 reduces the expression of its own receptors soon after 

it enters the host-cell (Dalgleish et al., 1984; Hrecka et al., 2005; Michel et al., 2004; 

Salman et al., 1988). In particular, the downregulation of CD4 appears to be a critical 

step in the HIV-1 life cycle, because viral strains that lack this function have difficulty 

spreading both in vitro and in vivo (Lundquist et al., 2002; Stoddart et al., 2003). This 

diminished level of infectivity is generally attributed to a profound inhibition of viral 

budding. Indeed, the presence of CD4 on the surface of infected cells has been shown 

to trap newly-formed virions as they attempt to bud from the plasma membrane (Bour 

et al., 2001; Marshall et al., 1991; Ross et al., 1999). CD4 surface-expression has also 

been found to decrease the rate of viral replication by making host-cells susceptible to 

superinfection (Pauza et al., 1990; Robinson and Zinkus, 1990). Superinfection occurs 

when multiple virions infect the same cell, and it often results in the accumulation of 

a large amount of unintegrated viral DNA (Bergeron and Sodroski, 1992). This causes 

the host-cell to undergo apoptosis, prematurely ending the production of new virions 

(Daniel et al., 1999). 

 
Given the deleterious effects of CD4 expression on viral replication, it is perhaps not 

surprising that HIV-1 uses three proteins to ensure that the receptor is downregulated 

efficiently (Chen et al., 1996). Nef, Env (the uncleaved precursor of gp41 and gp120), 

and Vpu have all been implicated in this process (Garcia and Miller, 1991; Stevenson 

et al., 1988; Willey et al., 1992; Wildum et al., 2006). Nef is the first of these proteins 

to be expressed during the viral life cycle, as its mRNA transcript is multiply-spliced 

and does not need the aid of Rev to be exported from the nucleus (see Section 1.4.3). 

Although the mechanism that Nef utilizes to downregulate CD4 is still under debate, 

it clearly directs the receptor from a post-Golgi compartment to lysosomes (Rhee and 

Marsh, 1994). Env and Vpu, in contrast, are expressed later in the viral life cycle with 

the help of Rev, and intercept CD4 in the ER (reviewed by Lama, 2003). Env binds to 

CD4 in the ER lumen, forming aggregates that block transport of the receptor to the 

cell-surface. Vpu then induces the degradation of CD4 molecules retained in the ER 

via a proteasomal pathway. 

 
Of the three HIV-1 proteins involved in CD4 downregulation, Nef appears to have the 

most significant role. Indeed, experiments measuring the relative contribution of each 
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protein to this process have demonstrated that Nef accounts for the largest fraction of 

total CD4 downregulation activity (Chen et al., 1996; Wildum et al., 2006). While all 

three viral proteins are required to completely eliminate expression of the receptor on 

the plasma membrane, Nef-mediated CD4 downregulation is capable of enhancing the 

release of nascent virions and protecting host-cells from superinfection (Lundquist et 

al., 2002; Ross et al., 1996; Wildum et al., 2006). Thus, the ability of Nef to modulate 

CD4 surface-levels is a key aspect of viral replication (Lundquist et al., 2004; Ross et 

al., 1996; Miller et al., 2004). 

 
There is evidence to suggest that CD4 downregulation is, in fact, the most important 

Nef function. Of all the activities that have been attributed to the viral protein, it is the 

one that best correlates with faster replication and overall disease progression (Cortes 

et al., 2002; Glushakova et al., 2001; Mariani et al., 1996; Stoddart et al., 2003). In the 

SCID-hu model system described earlier, the depletion of thymocytes was dependent 

on the ability of Nef to downregulate CD4, and not on its ability to modulate MHC-I 

expression (see Section 1.5.1; Stoddart et al., 2003). Similarly, HIV-1 strains isolated 

from some LTNPs have been found to code for Nef proteins that cannot downregulate 

CD4, but are fully functional in all other respects, including MHC-I degradation (Carl 

et al., 2000; Mariani et al., 1996; Tobiume et al., 2002). Conversely, Nef proteins that 

are derived from virulent HIV-1 strains are known to downregulate CD4 aggressively 

(Argañaraz et al., 2003). In order for Nef to execute this critical function, it must bind 

directly to CD4. Details of this interaction are described below. 

 
1.8.1 Direct interaction between Nef and CD4 

 
The binding of Nef to CD4 was first demonstrated in heterologous expression systems 

(Harris and Neil, 1994; Rossi et al., 1996). These initial experiments, which involved 

yeast two-hybrid assays and GST pull-downs, revealed that the CD4 cytoplasmic tail 

was both necessary and sufficient for the interaction with full-length Nef. Subsequent 

NMR studies managed to identify the specific binding site on each protein (Grzesiek 

et al., 1996; Preusser et al., 2001; Wray et al., 1998). According to the NMR data, an 

α-helical region of the CD4 tail containing LL413,414 binds to a hydrophobic pocket 

on Nef composed of WL57,58 (see Sections 1.3.1 and 1.5.2 for more information on 

these motifs). The dissociation constant of this interaction was calculated to be in the 

low micromolar range. A CD4-Nef complex has since been detected in human cells 
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using a variety of methods, including chemical cross-linking, co-immunoprecipitation 

under native conditions, and bioluminescence resonance energy transfer (Bentham et 

al., 2003; Cluet et al., 2005). Sensitive techniques are needed to observe this complex 

in situ because the interaction between CD4 and Nef is relatively weak and probably 

short-lived (Grzesiek et al., 1996; Cluet et al., 2005; Rossi et al., 1996). After binding 

CD4, Nef rapidly downregulates the receptor and promotes its degradation (Aiken et 

al., 1994; Rhee and Marsh, 1994; Piguet et al., 1999). The mechanism that Nef uses to 

eliminate CD4 expression, however, remains highly controversial. In the next section, 

the intracellular trafficking pathways that Nef might exploit to downregulate CD4 are 

presented. 

 
1.8.2 The mechanism of Nef-mediated CD4 downregulation 

 
Two competing models have emerged that attempt to explain the mechanism of Nef-

mediated CD4 downregulation. Both models agree that Nef binds to the CD4 tail on a 

post-Golgi membrane, and then directs the receptor to perinuclear endosomes en route 

to lysosomes (see Fig. 1.11; Piguet et al., 1999). The post-Golgi nature of this process 

strongly suggests that clathrin and a clathrin adaptor protein are involved, and several 

groups have speculated that a CD4-Nef-AP complex forms during the initial stages of 

downregulation (see Section 1.5; Blagoveshchenskaya et al., 2002; Craig et al., 2000; 

Foti et al., 1997; Greenberg et al., 1997; Janvier et al., 2003; Rose et al., 2005). In this 

respect, CD4 downregulation may superficially resemble the effect of Nef on MHC-I; 

however, the manner in which Nef connects CD4 to the AP complex must be entirely 

different than that used for HLA-A and HLA-B (Mangasarian et al., 1999). While the 

Nef acidic cluster and polyproline domains are thought to link HLA-A and HLA-B to 

AP-1, neither motif is required for CD4 downregulation (Stove et al., 2005). Instead, 

Nef uses the leucine-tryptophan hydrophobic pocket in its N-terminal region to bind 

CD4 and the dileucine motif in its C-terminal loop to interact with the AP complexes 

(Craig et al., 2000; Grzesiek et al., 1996). The two models mentioned above differ in 

the particular AP complex deemed most important for CD4 downregulation (see Fig. 

1.12). According to the traditional model, Nef relies on AP-2 to accelerate the rate of 

CD4 endocytosis from the plasma membrane. More recent data, though, has tended to 

favor a model in which Nef utilizes one of the other AP complexes to prevent newly-

synthesized CD4 molecules from reaching the cell-surface. 
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Preliminary studies on the mechanism of Nef-mediated CD4 downregulation reported 

that the expression of Nef did not interfere with the movement of CD4 from the ER to 

the Golgi complex, as determined by resistance of the receptor to endoglycosidase H 

degradation (Craig et al., 1998; Rhee and Marsh, 1994). One of these studies further 

claimed, on the basis of biotinylation studies, that CD4 was transported to the plasma 

membrane with normal kinetics in the presence of Nef, although this finding has since 

been contested by others (Rhee and Marsh, 1994; Rose et al., 2005). Antibody uptake 

experiments, performed in conjunction with the endoglycosidase H and biotinylation 

assays, showed that Nef accelerated the endocytosis of CD4 (Aiken et al, 1994; Rhee 

and Marsh, 1994). Thus, Nef was proposed to act on CD4 only after the receptor had 

reached the cell-surface. In support of this model, Nef was later observed to promote 

the formation of clathrin coated pits at the plasma membrane, and Nef-GFP chimeras 

were found to partially colocalize with AP-2 (Foti et al., 1997; Greenberg et al., 1997; 

Mangasarian et al., 1997).  

 
While these studies provide compelling evidence that Nef uses AP-2 to downregulate 

CD4 via an endocytic mechanism, this model has been undermined by more recently 

acquired data. In particular, the RNAi-mediated depletion of AP-2 by itself does not 

appear to have a substantial effect on the ability of Nef to reduce CD4 expression (Jin 

et al., 2005; Rose et al., 2005). Moreover, a robust interaction between Nef and AP-2 

has not yet been observed. Some reports indicate that Nef binds weakly to AP-2, but it 

is not clear whether this low level of affinity is sufficient to alter the dynamics of CD4 

trafficking (see Section 1.6). Much stronger interactions have been reported between 

Nef and the AP-1 and AP-3 complexes, leading some to argue that these adaptors are 

more likely to be utilized by Nef than AP-2 (Craig et al., 2000; Janvier et al., 2003b; 

Rose et al., 2005). Nef has in fact been shown to stabilize the association of AP-1 and 

AP-3 with intracellular membranes (Janvier et al., 2003a). These results prompted one 

group to reassess the effect of Nef expression on CD4 transport, and their data sharply 

disagreed with earlier reports. Instead of finding that Nef accelerated the endocytosis 

of CD4, they observed that Nef slowed the rate at which CD4 molecules moved from 

the Golgi complex to the plasma membrane (Rose et al., 2005). This group therefore 

suggested that Nef acts on CD4 not at the cell-surface, but in the vicinity of the TGN, 

where it directs the receptor towards lysosomes with the aid of AP-1 or AP-3 (Rose et 

al., 2005). 
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1.9 Objectives of this thesis 

 
The primary goal of this thesis is to determine which model – accelerated endocytosis 

or intracellular retention – most accurately describes the mechanism of Nef-mediated 

CD4 downregulation. This will be accomplished using a variety of techniques drawn 

from the cell biology tool kit, including RNAi knockdowns, yeast three-hybrid assays, 

and GST pull-down experiments. RNAi knockdowns will be used to confirm that the 

ability of Nef to alter CD4 expression depends on clathrin, and to identify the clathrin 

adaptor protein that is most critical for this process. Yeast three-hybrid and GST pull-

down assays will then be used to ascertain whether Nef binds to this AP complex, and 

if so, whether the interaction is direct. If the interaction is found to be direct, then the 

surfaces of both Nef and the AP complex will be closely examined to identify novel 

motifs that are required for binding and CD4 downregulation. Finally, an attempt will 

be made to demonstrate the formation of a CD4-Nef-AP tripartite complex, which has 

long been predicted, but never observed. The results obtained from these experiments 

should provide new insights on the mechanism used by Nef to downregulate CD4, an 

important component of HIV-1 replication and disease progression. 
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Chapter 2:

Materials and Methods
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2.1 Abstract 

 
This chapter is divided into eight major sections (2.2 - 2.9). The first of these sections 

(2.2) describes molecular biology techniques, which were used to generate most of 

the plasmids required for this study. The next four sections (2.3 - 2.6) describe the 

materials and methods used for experiments with bacterial, yeast, Drosophila, and 

human cell lines, respectively. Expression vectors, reagents, and assays particular to 

one cell type are described in the section devoted to that system. Assays performed on 

multiple cell types, such as flow cytometry, immunofluorescence, and immuno-

blotting, are described in the final three sections (2.7 - 2.9). Comprehensive tables 

listing all plasmids, primers, and antibodies used in this work can be found at the end 

of the chapter. 
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2.2 Molecular biology 

 
2.2.1 Polymerase chain reactions 

 
Polymerase chain reactions (PCRs) were carried out using the Phusion High Fidelity 

(HF) PCR Kit (Finnzymes, Woburn, MA, USA) and appropriate primers purchased 

from a commercial vendor (Eurofins MWG Operon, Hunstville, AL, USA or Sigma-

Genosys, Haverhill, Suffolk, UK). The reagents and thermal cycling conditions used 

for the PCRs are listed in Table 2.1, Table 2.2, and Table 2.9. Upon completion of 

each reaction, the PCR product was subjected to agarose gel electrophoresis in Tris-

boric acid-EDTA (TBE) buffer [89 mM Tris, 89 mM boric acid, 2 mM EDTA (pH 

8.0)], and its size was determined by comparison against a 100 bp - 12,000 bp DNA 

ladder (Invitrogen, Carlsbad, CA, USA). The PCR product was then purified using 

the QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA) and eluted in sterile 

water. 

 
2.2.2 Restriction endonuclease digests 

 
PCR products and plasmids were digested with restriction endonucleases (purchased 

from New England BioLabs, Ipswich, MA, USA) according to the manufacturer’s 

instructions. For each digest, 1 µg of DNA was used, and the reactions were carried 

out at 37˚C for 3 hr. In some cases, digested vectors were incubated with a small 

amount of Calf Intestinal Phosphatase (New England BioLabs) at 37˚C for 1 hr to 

prevent re-circularization of the vector during a subsequent ligation reaction. In all 

cases, the digested DNA was analyzed by agarose gel electrophoresis. The desired 

DNA fragments were then purified from the gel using the QIAquick Gel Extraction 

Kit (Qiagen) and eluted in sterile water. Subsequent ligation reactions were carried 

out as described in Section 2.2.3. 

 
2.2.3 Ligation reactions 

 
DNA ligation reactions were performed using the T4 DNA Ligase Kit (New England 

BioLabs) according to the manufacturer’s instructions. The reagents for each reaction 

are listed in Table 2.3. The ligation reaction was incubated at 25.0˚C for 1 hr and then 

the temperature was reduced to 15.0˚C for 15 hrs. After completion of the reaction, 

ligated plasmids were used to transform bacteria as described in Section 2.2.5. 
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2.2.4 Site-directed mutagenesis 

 
Site-directed mutagenesis (SDM) reactions were used to introduce point mutations 

into the open reading frames (ORFs) of selected genes. For each mutagenesis 

reaction, complimentary primers were designed such that they annealed to opposite 

strands of the ORF and coded for the desired mutation (please see Table 2.9 for 

further information on the individual primers). The primers (purchased from Eurofins 

MWG Operon or Sigma-Genosys) were combined with template DNA, containing the 

ORF to be mutated, and reagents from the QuikChange II Kit (Stratagene, La Jolla, 

CA, USA) as described in Table 2.4. The thermal cycling conditions used for the 

mutagenesis reactions are listed in Table 2.5. Upon completion of each reaction, the 

methylated template DNA was digested by incubation with 1.0 µL of DpnI enzyme at 

37˚C for 1 hr. The unmethylated, newly synthesized DNA, containing the mutated 

ORF, was then used to transform bacteria as described in Section 2.2.5. 

 
2.2.5 Bacterial transformations 

 
Competent XL-10 Blue DH-5α Echeveria coli (purchased from Stratagene) were 

transformed with plasmids containing antibiotic resistance markers using the standard 

heat-shock protocol. For each transformation, a small aliquot of bacteria was thawed, 

incubated with the plasmid for 30 min on ice, and then heat shocked at 42˚C for 45 

sec. The transformed bacteria were chilled for 2 min on ice, supplemented with room 

temperature SOC medium [2% tryptone (wt/vol), 0.5% yeast extract (wt/vol), 10 mM 

NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose], and incubated 

at 37˚C for 1 hr with shaking. The bacteria were finally transferred to LB-Agar plates 

containing the appropriate antibiotic [1.0% tryptone (wt/vol), 0.5% yeast extract 

(wt/vol), 1.0% NaCl (wt/vol), 1.5% agar (wt/vol) with either 100 µg/mL ampicillin or 

50 µg/mL kanamycin], and incubated at 37˚C overnight to allow selection and colony 

growth to occur. Purification of DNA from selected colonies was performed as 

described in Section 2.2.6. 

 
2.2.6 DNA purification 

 
All plasmids described here were initially purified from transformed bacteria using 
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the QIAprep Spin Miniprep Kit (Qiagen) according to the manufacturer’s instructions. 

Some of the more frequently used plasmids were subsequently purified in greater 

quantities using the HiSpeed Plasmid Maxiprep Kit (Qiagen). The concentration of 

purified plasmid DNA was measured using a NanoDrop spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA, USA). 

 
2.2.7 DNA nucleotide sequencing 

 
The ORFs of all plasmids described in this work were verified by nucleotide sequence 

analysis (sequencing runs performed by Nora Tsai, Eunice Kennedy Shriver National 

Institute of Child Health and Human Development [NICHD], National Institutes of 

Health [NIH], Bethesda, MD, USA and Geneservice Limited, Cambridge, UK). 
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2.3 Recombinant protein expression, purification, and binding assays 

 
2.3.1 Bacterial expression vectors 

 
The pHis (Section 2.3.1.1), pGEX (Section 2.3.1.2), and pST (Section 2.3.1.3) vectors 

were used to express recombinant fusion proteins in bacteria cells; these proteins were 

subsequently purified and used in various in vitro binding assays. A description of 

these expression vectors, along with information on how the protein coding sequences 

were inserted into the plasmids, is provided below. 

 
2.3.1.1 pHis 

 
The pHis-Parallel2 vector (Sheffield et al. 1999) allows for the expression of an N-

terminal hexahistidine (His6) fusion protein in bacteria under the control of the T7 

promoter. The wild-type NL4-3 Nef coding sequence was amplified from pCI.NefNL4-

3 (described in Section 2.6.1.2) by PCR using 5’ BamHI and 3’ EcoRI primers, 

digested with the appropriate enzymes, and subcloned into pHis-Parallel2 to create 

pHis.Nef (Fig. 2.1) SDM reactions on this construct resulted in the pHis.Nef 

LL164,165AA and pHis.Nef DD174,175AA plasmids. 

 
2.3.1.2 pGEX 

 
The pGEX-5X-1 plasmid (GE Healthcare, Piscataway, NJ, USA) allows for inducible 

expression of a N-terminal glutathione S-transferase (GST) fusion protein. Expression 

of the fusion protein is controlled by the tac promoter, which is a hybrid of the trp and 

lac promoters; its activity is repressed by the LacI protein, which in turn is inactivated 

by isopropyl-β-D-thiogalactopyranoside (IPTG). Therefore, the addition of IPTG to 

the growth medium drives expression of the GST fusion protein from pGEX. The ear 

domains of AP-2 αC-adaptin, AP-3 β3-adaptin, and AP-4 ε-adaptin were subcloned 

into the EcoRI-XhoI restriction sites of pGEX (by Rafael Mattera and William Smith) 

to create pGEX.GST-αC ear, pGEX.GST-β3 ear, and pGEX.GST-ε ear, respectively 

(Fig. 2.2). 

 
2.3.1.3 pST 

 
pST39 (Tan, 2001) is a polycistronic expression vector that allows for the independent 
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translation of four genes from a single mRNA transcript. The plasmid contains a T7 

promoter upstream of four expression cassettes; each cassette has its own ribosome 

binding site and multiple cloning site (MCS). Portions of the four subunits of AP-2 

were subcloned into pST39 (by William Smith and Bridgette Beach of the Jim Hurley 

Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, NIH) 

to generate pST.AP-2CORE. The coding sequence for residues 1-141 of rat µ2-adpatin 

(µ2-N) was subcloned into the XbaI-BamHI restriction sites of cassette 1; the coding 

sequence for residues 1-621 of rat αC-adaptin (αC trunk) with a C-terminal fusion to 

GST was subcloned into the EcoRI-HindIII restriction sites of cassette 2; the coding 

sequence for residues 1-143 of rat σ2-adaptin (full-length σ2) was subcloned into the 

SacI-KpnI restriction sites of cassette 3; and the coding sequence for residues 1-591 

of rat β2-adaptin (β2 trunk) with a N-terminal His6 tag was subcloned into the BspEI-

MluI restriction sites of cassette 4 (Fig. 2.3). Tobacco etch virus (TEV) protease 

cleavage sites were inserted between αC and the GST tag, and between the His6 tag 

and β2, so that those epitopes could be removed from the AP-2CORE construct as 

desired. SDM reactions on pST.AP-2CORE (also referred to as pST.AP-2CORE α wild-

type [WT]) yielded pST.AP-2CORE α KR297,340EE. 

 
2.3.2 Recombinant protein expression and purification 

 
The bacterial expression vectors described in Section 2.3.1 were transformed into 

Escherichia coli Rosetta2 BL21 (DE3) cells (Novagen, San Diego, CA, USA) using 

the standard heat shock protocol. These cells contain a chromosomal copy of the T7 

bacteriophage RNA polymerase under the control of the lac operator; the addition of 

IPTG to the growth medium allows for expression of the T7 RNA polymerase and 

subsequent transcription of genes downstream of a T7 promoter. The Rosetta2 BL21 

(DE3) cells also contain several tRNAs that utilize codons more commonly found in 

eukaryotic systems, thus facilitating the translation of eukaryotic proteins. Methods 

used to purify the His6-tagged, GST-tagged, and AP-2CORE recombinant proteins are 

described in separate sections below. All protein purification steps were carried out by 

either William Smith or Rafael Mattera. 
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2.3.2.1 His6-tagged proteins 

 
Bacteria transformed with pHis.Nef, pHis.Nef LL164,165AA, or pHis.Nef DD174, 

175AA were grown overnight at 18˚C in LB medium supplemented with 0.5 mM 

IPTG. The bacteria were then harvested and lysed in Tris-Buffered Saline (TBS) [50 

mM Tris-HCl with 500 mM NaCl (pH 8.0)], and the supernatants were applied to 

HisTrap Fast Flow columns (GE Healthcare). The His6-tagged Nef proteins were 

eluted in TBS containing 0.25 M imidazole, concentrated, and then purified by gel 

filtration on  Superdex 200 columns (GE Healthcare) in Tris-dithiothreitol-NaCl 

(TDN) buffer [50 mM Tris-HCl with 5 mM dithiothreitol and 150 mM NaCl (pH 

8.0)].  

 
2.3.2.2 GST-tagged proteins 

 
Bacteria that had been transformed with empty pGEX.GST, pGEX.GST-αC ear, 

pGEX.GST-β3 ear, or pGEX.GST-ε ear were likewise grown overnight at 18˚C in LB 

medium supplemented with 0.5 mM IPTG. The bacteria were harvested and lysed as 

described above, and the supernatants applied to glutathione-Sepharose affinity 

columns (GE Healthcare). After extensive washing with TBS, unfused GST, GST-αC 

ear, GST-β3 ear, and GST-ε ear were eluted with 10 mM glutathione, concentrated, 

and purified in TDN using Superdex 200 columns. 

 
2.3.2.3 AP-2CORE complexes 

 
The AP-2CORE constructs were designed to have both a His6-tag (fused to the N-

terminus of the β2 trunk) and a GST-tag (fused to the C-terminus of the αC trunk); 

therefore, a combination of the two protein purification strategies described above 

was used to isolate AP-2CORE complexes. Bacteria that had been transformed with 

pST.AP-2CORE or pST.AP-2CORE α KR297,340EE were grown in LB medium at 37˚C 

to an optical density (OD) of 0.8 at 600 nm. The temperature was then lowered to 

18˚C and expression of the AP-2CORE complexes was induced by the addition of IPTG 

to a final concentration of 0.5 mM. The bacteria were allowed to grow under these 

conditions for 12 hrs, after which the cells were harvested and lysed in TBS. Insoluble 

material was cleared from the lysates by centrifugation, and the supernatants were 

applied to HisTrap Fast Flow columns. After the columns were washed extensively 
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with TBS to remove contaminants, the AP-2CORE complexes were eluted in TBS 

containing 0.25 M imidazole. The complexes were then transferred to glutathione-

Sepharose affinity columns, washed again with TBS, and eluted in TBS containing 10 

mM glutathione. AP-2CORE and AP-2CORE α KR297,340EE were finally purified in 

TDN using Superdex 200 columns. For surface plasmon resonance (SPR) assays (see 

Section 2.3.3.2), purified AP-2CORE was treated with a His6-tagged TEV protease to 

cleave the His6-tag from the β2 trunk and the GST-tag from the αC trunk. The 

complex was then isolated from the protease using a HisTrap Fast Flow column; the 

untagged AP-2CORE complex passed through the column and was collected in the 

filtrate, while the His6-tagged TEV protease remained bound to the column.  

 
2.3.3 Binding assays 

 
The ability of wild-type or mutant Nef proteins to bind wild-type or mutant AP-2CORE 

complexes were assayed by GST pull-down experiments (performed by William Smith 

and Rafael Mattera and described in Section 2.3.3.1) and surface plasmon resonance 

experiments (performed by William Smith and described in Section 2.3.3.2). 

 
2.3.3.1 GST pull-down assays 

 
Saturating amounts (5 µg) of the purified GST-tagged proteins (including AP-2CORE, 

AP-2CORE α KR297,340EE, GST-αC ear, GST-β3 ear, GST-ε ear, and unfused GST) 

were immobilized onto 30 µL of glutathione-Sepharose beads at 4˚C in TBS. The 

beads were then washed with TBS and incubated with 3 µg of a His6-tagged Nef 

protein (either His6-Nef, His6-Nef LL164,165AA, or His6-Nef DD174,175AA) at 4˚C 

for 2 hrs in a final volume of 1 mL of Protein Binding Buffer (PBB) [15 mM HEPES 

(pH 7.0), 75 mM NaCl, 0.25% (vol/vol) Triton-X-100, 0.15% (wt/vol) bovine serum 

albumin (BSA), and supplemented with a protease inhibitor cocktail (Roche Applied 

Science, Basel, Switzerland)]. Following the incubation, the beads were washed with 

PBB lacking BSA, and then centrifuged at 2000 g for 2 min at 4˚C. Proteins bound to 

the beads were eluted by resuspension in 50 µL of NuPAGE Laemmli sodium 

dodecyl sulphate (SDS) sample buffer (Invitrogen) and incubated at 90˚C for 10 min. 

The samples were then centrifuged at 16,000 g for 2 min at room temperature, and 

equal volumes of the supernatants were subjected to SDS-PAGE and immunoblotting 

(please see Section 2.9 for further information). To determine whether the interaction 
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between Nef and AP-2 was salt-sensitive, identical aliquots of immobilized AP-2CORE 

were incubated with His6-Nef in the presence of varying concentrations of NaCl 

(from 0 M to 1.0 M). The beads were prepared for analysis as described above. 

 
2.3.3.2 Surface plasmon resonance assays 

 
Surface plasmon resonance (SPR) was used to measure the binding of untagged AP-

2CORE complex to His6-tagged wild-type and DD174,175AA Nef proteins. All SPR 

experiments were performed using a Biacore T100 instrument (Biacore, Uppsala, 

Sweden) at room temperature with HEPES-Buffered Saline (HBS) [10 mM sodium 

HEPES with 150 mM NaCl (pH 7.4)]. The assay was begun by activating a CM5 

sensor chip (Biacore) using N-hydroxysuccinimide-1-ethyl-3-3-dimethylaminopropyl 

carbodiimide at a flow rate of 5 µL/min for 400 sec. Equivalent amounts of GST-

tagged ε ear domain of AP-4 (used as a negative control) and His6-tagged wild-type 

and DD174,175AA Nef in 10 mM acetate buffer (pH 5.0) were then covalently 

attached to separate surfaces of the CM5 chip by passing the recombinant proteins 

over individual flow cells at a rate of 20 µL/min. With the sensitivity of the Biacore 

T100 set to 10,000 response units (RU), the binding of recombinant untagged AP-

2CORE to wild-type and DD174,175AA Nef was simultaneously measured by passing 

AP-2CORE over consecutive flow cells with association and dissociation times of 120 

sec and 400 sec, respectively. Between subsequent injections of AP-2CORE proteins, 

the chip surfaces were regenerated with an injection of HBS supplemented with 500 

mM NaCl for 15 sec at 100 µL/min. Sensorgram RU data was normalized by 

subtracting the values obtained from the portion of the CM5 chip containing the AP-4 

ε ear domain negative control. Steady-state binding data of AP-2CORE for Nef were 

fitted using Bia-evaluation software (Biacore) with globally floating KD (equilibrium 

dissociation constant), Rmax, and refractive index values. 
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2.4 Yeast expression vectors, transformations, and hybrid assays 

 
2.4.1 Yeast expression vectors 

 
The pBridge (Section 2.4.1.1), pGADT7 (Section 2.4.1.2), and pAD (Section 2.4.1.3) 

vectors were used to express heterologous proteins in Saccharomyces cerevisiae 

HF7c cells for yeast hybrid assays. A description of these expression vectors, along 

with information on how the protein coding sequences were inserted into the 

plasmids, is provided below. 

 
2.4.1.1 pBridge 

 
The pBridge vector (Clontech, Mountain View, CA, USA; Fig. 2.4) has two MCS and 

a TRP1 nutritional marker that allows yeast auxotrophs transformed with pBridge to 

grow on drop-out medium lacking tryptophan. The first MCS (MCS1) of pBridge is 

downstream of a constitutively active yeast alcohol dehydrogenase (ADH1) promoter 

and the coding sequence for the GAL4 DNA Binding Domain (BD). Genes inserted 

into MCS1 are expressed as GAL4BD fusion proteins. These fusion proteins are 

targeted to the yeast nucleus by virtue of a nuclear localization sequence (NLS) that is 

an intrinsic component of the GAL4BD. The second MCS (MCS2) is downstream of 

a conditional MET25 promoter; this promoter induces expression of the gene cloned 

into MCS2 when methionine is absent from the growth medium. An exogenous SV40 

NLS positioned just upstream of MCS2 ensures that gene products expressed from 

this region of pBridge are directed to the yeast nucleus. The pBridge.Tyr.σ1, pBridge. 

Tyr.σ2, and pBridge.Tyr.σ3 plasmids, in which the coding sequence for the cytosolic 

tail of mouse tyrosinase had been subcloned into the EcoRI-PstI sites of MCS1, and 

the ORFs of rat σ1A, rat σ2A, and rat σ3A had been subcloned into the NotI-BglII 

sites of MCS2, have been previously described (Theos et al., 2005). SDM reactions 

on pBridge.Tyr.σ2 yielded the various mutants of this plasmid (listed in Table 2.8). 

The coding sequence for NL4-3 Nef was subcloned from pCI.NefNL4-3 (described in 

Section 2.6.1.2) and inserted into the EcoRI-SalI restriction sites of pBridge MCS1 to 

generate pBridge.Nef. The rat σ1A, σ2A, and σ3A ORFs were subcloned from the 

pBridge.Tyr.σ1, pBridge.Tyr.σ2, and pBridge.Tyr.σ3 plasmids and inserted into 

MCS2 of pBridge.Nef to make pBridge.Nef.σ1, pBridge.Nef.σ2, and pBridge.Nef.σ3. 

SDM reactions on these plasmids generated a large number of mutants used in this 
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study (for a complete list, please refer to Table 2.8). 

 
2.4.1.2 pGADT7 

 
The pGADT7 expression vector (Clontech; Fig. 2.5) has a LEU2 nutritional marker 

that allows yeast auxotrophs carrying the plasmid to grow on limiting medium lacking 

leucine, and a single MCS. The MCS is downstream of the constitutively active yeast 

ADH1 promoter and the coding sequence for the GAL4 Activation Domain (AD). 

Genes inserted into the MCS of pGADT7 are expressed as GAL4AD fusion proteins. 

These proteins are targeted to the yeast nucleus by a SV40 NLS located at the N-

terminus of the GAL4AD. The pGADT7.γ, pGADT7.α, and pGADT7.δ plasmids, in 

which the coding sequences for mouse γ1-adaptin, rat αC-adaptin, and human δ-

adaptin were inserted into the SmaI-XhoI restriction sites of the pGADT7 MCS, have 

been previously described (Janvier et al., 2003b). Resequencing of the original rat 

αC-adaptin cDNA insert revealed the presence of a point mutation that changed an 

alanine at position 131 to threonine. This codon was reverted back to alanine by 

SDM, resulting in the pGADT7.α plasmid used in this study. SDM was also used to 

generate a large number of desired mutations in pGADT7.α (all of which are listed in 

Table 2.8). 

 
2.4.1.3 pAD 

 
To create the pAD series of expression vectors (Fig. 2.6), the pMET25-MCS2-tPGK 

cassette was excised from pBridge (Section 2.4.1.1) by ApaI digestion, polished with 

DNA polymerase I, and inserted into the PvuII site of pGAD424 (Clontech) by blunt-

end ligation. This process generated a new vector, hereafter referred to as pAD, which 

has two MCS: one downstream of the ADH1 promoter and the GAL4AD sequence 

(MCS1), and one downstream of the MET25 promoter (MCS2). Genes inserted into 

MCS1 are expressed as GAL4AD fusion proteins, and are targeted to the nucleus by a 

SV40 NLS located on the GAL4AD. Genes inserted into the MCS2 of pAD are 

expressed as unfused proteins, but are also targeted to the nucleus by the presence of a 

NLS. The coding sequence for the cytosolic tail of human CD4 was amplified from 

pCMV.CD4 (Section 2.6.1.1) by PCR and subcloned into the EcoRI-SalI restriction 

sites of pAD MCS1 to create pAD.CD4. To generate pAD.CD4.α, the αC ORF was 

amplified from pGADT7.α (Section 2.4.1.2) by PCR using primers containing NotI 
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and BamHI restriction sites, digested with the appropriate enzymes, and ligated into 

the compatible NotI-BglII site of pAD.CD4 MCS2. The pAD.CD4.α-KR297,340EE 

plasmid was prepared by a similar procedure, using pGADT7.α-KR297,340EE as the 

PCR template. 

 
2.4.2 HF7c cells and yeast hybrid assays 

 
The haploid Saccharomyces cerevisiae strain HF7c (Feilotter et al., 1994), which is 

commonly used in yeast hybrid experiments (Fields and Song, 1989; Aguilar et al., 

1997; Janvier et al., 2003b; Theos et al., 2005), lacks the TRP1 and LEU2 genes. HF7c 

cells, therefore, are unable to grow on medium lacking leucine and tryptophan unless 

transformed with plasmids (such as pBridge, pGADT7, and pAD) that carry the TRP1 

and LEU2 genes. In addition, HF7c cells are engineered so that the single copy of the 

HIS3 gene is substituted for the GAL4 transcription factor downstream of the GAL4 

promoter. This prevents HF7c cells from growing on medium lacking histidine unless 

the expression of HIS3 is induced by the presence of an artificial GAL4 transcription 

factor. This transcription factor can be reconstituted in the nucleus of yeast cells by 

the physical interaction of proteins fused to the GAL4BD (expressed from pBridge 

MCS1) and GAL4AD (expressed from pGADT7 or pAD MCS1). Additional nuclear-

localized proteins (expressed from MCS2 of pBridge or pAD) may be required for the 

fusion proteins to bind and bring the separate GAL4BD and GAL4AD domains into 

close proximity of each other. Thus, the growth of HF7c cells co-transformed with 

plasmids that express GAL4BD and GAL4AD fusion proteins on medium lacking 

histidine is indicative of an interaction between these two proteins. 

 
2.4.2.1 Transformation of HF7c cells 

 
HF7c cells were transformed with pairs of pBridge and pGADT7 (or pAD) plasmids 

as previously described (Schiestl and Gietz, 1989; Gietz and Schiestl, 1991; Gietz et 

al., 1995). Briefly, the yeast were grown in YPD Broth [1% (wt/vol) yeast extract, 2% 

(wt/vol) peptone, 2% (wt/vol) dextrose (Sunrise Science Products, San Diego, CA, 

USA)] at 30˚C overnight, after which the culture was diluted in YPD to an OD of 

0.35 and grown at 30˚C for 3 additional hrs to an OD of approximately 0.80. The 

culture was then centrifuged at 1000 g for 5 min, resuspended in sterile H2O, and 

centrifuged again at 1000 g for 5 min to collect the yeast. For each transformation, 
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0.80 OD units of HF7c cells were resuspended in 100 µL of LATE solution [0.1 M 

Lithium Acetate, 0.1 M Tris, and 0.5 M EDTA (pH 8.0)] containing 1 µg of single-

stranded salmon sperm carrier DNA (Sigma). The cells were then combined with 1 µg 

of each vector (pBridge and either pGADT7 or pAD), mixed with 600 µL of LATE 

solution that had been supplemented with 40% (wt/vol) polyethylene glycol (PEG), 

and incubated at 30˚C for 1 hr with shaking. At the end of this incubation period, 60 

µL of dimethyl sulfoxide (DMSO) was added to the mixture, and the yeast were 

transformed by heat shock at 42˚C for 15 min. The HF7c cells were then cooled on 

ice for 30 sec, pelleted, resuspended in 30 µL of H2O, and transferred to drop-out agar 

plates lacking leucine, tryptophan, and methionine. Yeast that had been successfully 

transformed with both plasmids produced visible colonies on the plates after 4 days. 

 
2.4.2.2 Yeast three-hybrid assays 

 
For the yeast three-hybrid (Y3H) assay, three heterologous proteins were expressed in 

yeast cells and targeted to the nucleus. Wild-type and mutant versions of NL4-3 Nef 

or the cytosolic tail of mouse tyrosinase were expressed as GAL4BD fusion proteins 

from the pBridge vector, along with rat σ1A, rat σ2A, or rat σ3A (Section 2.4.1.1). 

Mouse γ1, wild-type and mutant versions of rat αC, and human δ were also expressed 

as GAL4AD fusion proteins from the pGADT7 plasmid (Section 2.4.1.2). HF7c cells 

were transformed with pairs of pBridge and pGADT7 plasmids, and co-transformants 

were selected on drop-out agar plates containing all necessary amino acids except 

leucine, tryptophan, and methionine (Section 2.4.2.1). For each sample, colonies were 

allowed to grow on these plates for 4 days, after which they were pooled, normalized 

to 0.1 OD units (at 600 nm) in H2O, and transferred to three sets of drop-out plates: 

those lacking leucine, tryptophan, and methionine (i.e., +His); those lacking histidine, 

leucine, tryptophan, and methionine (–His); and those lacking histidine, leucine, 

tryptophan, and methionine, and supplemented with 1-3 mM 3-amino-1,2,4-triazole, 

an inhibitor of histidine biosynthesis (–His+3AT). Colony growth on the three sets of 

plates was analyzed 4 days later. The growth of transformed yeast on the –His plates 

is indicative of an interaction between the GAL4BD and GAL4AD fusion proteins 

(see Section 2.4.2), while growth on the –His+3AT plates is indicative of stronger 

interactions. 
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2.4.2.3 Yeast two-hybrid and four-hybrid assays 

 
For the yeast two-hybrid (Y2H) and yeast four-hybrid (Y4H) assays, two and four 

heterologous proteins were expressed in yeast cells, respectively. In the Y2H assay, a 

GAL4BD-Nef fusion protein was expressed from pBridge MCS1 (Section 2.4.1.1), 

while a GAL4AD-CD4 cytosolic tail fusion protein was expressed from pAD MCS1 

(Section 2.4.1.3). In the Y4H assay, a GAL4BD-Nef fusion protein was expressed 

from pBridge MCS1, rat σ2A was expressed from pBridge MCS2 (Section 2.4.1.1), 

the GAL4AD-CD4 fusion protein was expressed from pAD MCS1, and rat αC was 

expressed from pAD MCS2 (Section 2.4.1.2). Y2H, Y3H, and Y4H assays using the 

pBridge and pAD plasmids were carried out according to the procedure described 

above with only one modification: following the selection of positive transformants, 

the densities of the corresponding yeast suspensions were normalized to 1.6 OD units 

(at 600 nm), and the suspensions were serially diluted to 0.1 OD units before transfer 

to the +His and –His drop-out agar plates. 
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2.5 Drosophila expression vectors, tissue culture, transfections, and knockdowns 

 
2.5.1 Drosophila expression vectors 

 
The pAc (Section 2.5.1.1) and pMt (Section 2.5.1.2) vectors were used to express 

heterologous proteins in Drosophila melanogaster S2 cells for various cell biological 

assays. The pCo-Blast (Section 2.5.1.3) vector was used in the generation of stable 

cell lines. A description of these expression vectors, along with information on how 

protein coding sequences were inserted into the pAc and pMt plasmids, is given 

below. 

 
2.5.1.1 pAc-V5 

 
The pAc-V5 vector (Invitrogen; Fig. 2.7) contains a constitutive Drosophila actin 5C 

promoter upstream of a MCS and a sequence coding for a V5 epitope tag. Human 

CD4 cDNA was amplified by PCR from pCMV.CD4 (Section 2.6.1.1) and subcloned 

into the EcoRI and XhoI restriction sites of pAc-V5 to create pAc.CD4. A stop codon 

at the end of the CD4 gene prevented the attachment of a C-terminal V5 tag during 

translation. SDM on pAc.CD4 was used to generate pAc.CD4 LL413,414AA. 

Drosophila cDNAs for AP-1 µ1 (CG9388); AP-2 µ2 (CG7057); AP-3 µ3 (CG3035);  

and Golgi-localized, gamma-ear-containing, ARF-binding protein (GGA, CG3002) 

were obtained from the Drosophila Genomics Resource Center (Bloomington, IN, 

USA), while the cDNA for Drosophila clathrin light chain (CLC, CG6948) was 

kindly provided by Henry Chang (Purdue University, West Lafayette, IN, USA). Each 

cDNA was amplified by PCR without a stop codon and inserted into the EcoRI and 

ApaI restriction sites of pAc-V5 such that they would be expressed with C-terminal 

V5 epitope tags; this process was used to generate pAc.µ1-V5, pAc.µ2-V5, pAc.µ3-

V5, pAc.GGA-V5, and pAc.CLC-V5. 

 
2.5.1.2 pMt 

 
The pMt vector (Invitrogen; Fig. 2.8) contains an inducible metallothionein promoter 

upstream of a MCS. The metallothionein promoter is normally inactive; however, it 

drives high levels of expression of downstream genes in response to some divalent 

metal cations, such as Cu2+. The coding sequence for NL4-3 Nef was amplified by 

73



PCR from the pIRES.NefNL4-3.IRES.GFP (described in Section 2.6.1.3) and subcloned 

into the EcoRI-XhoI restriction sites of pMt to create pMt.NefNL4-3. A similar method 

was used to subclone four other HIV-1 and SIV Nef alleles in pMt, using pIRES.GFP 

based plasmids as a template (all described in Section 2.6.1.3); this process generated 

pMt.NefNA7, pMt.NefDH12-3, pMt.Nef248, and pMt.NefSIVmac239. SDM on pMt.NefNL4-3 

created pMt.NefNL4-3G2A, pMt.NefNL4-3WL57,58AA, pMt.NefNL4-3EEEE62-65AAAA 

pMt.NefNL4-3PP72,75AA, and pMt.NefNL4-3LL164,165AA. 

 
2.5.1.3 pCo-Blast 

 
The pCo-Blast vector (Invitrogen; Fig. 2.9) contains a strong, constitutively active 

Drosophila promoter upstream of a blasticidin resistance gene. Blasticidin is a 

nucleoside antibiotic that inhibits protein synthesis in eukaryotic cells. The blasticidin 

resistance gene expressed from pCo-Blast is a deaminase that converts blasticidin into 

a non-toxic compound. The pCo-Blast plasmid is therefore a useful selection marker 

when generating stable clones; Drosophila S2 cells co-transfected with pCo-Blast and 

other plasmids (such as pAc and pMt) can be selected from untransfected cells by the 

addition of blasticidin to the growth medium (see Section 2.5.2.3). 

 
2.5.2 Drosophila S2 cells 

 
Drosophila melanogaster Schneider 2 (S2) cells, originally derived from a late-stage 

Drosophila embryo and having phagocyte-like properties (Schneider, 1972), were 

kindly provided by Mary Lilly (Eunice Kennedy Shriver NICHD, NIH). 

 
2.5.2.1 Tissue culture 

 
S2 cells were cultured in complete Schneider’s medium [Schneider’s Drosophila 

medium (Invitrogen) supplemented with 10% (vol/vol) fetal bovine serum (FBS), 100 

U/mL of penicillin, 0.1 mg/mL of streptomycin, and 2 mM L-glutamine] at 24˚C in 

humidified air containing ambient levels of carbon dioxide (CO2). The S2 cells were 

grown on standard tissue culture plates and passaged every 2 to 3 days. 
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2.5.2.2 Transient DNA transfections 

 
S2 cells were transfected with plasmids using the Amaxa Nucelofector (Amaxa, 

Walkersville, MD, USA). Prior to the transfection, S2 cells were harvested from a 

tissue culture plate and counted using a hemocytometer and trypan blue. 1x106 live 

cells were centrifuged at 1000 g for 5 min, washed once with room temperature 

Phosphate Buffered Saline (PBS) [0.8% (wt/vol) NaCl, 0.115% (wt/vol) Na2HPO4, 

0.02% (wt/vol) KCl, 0.02% (wt/vol) KH2PO4 (pH 7.4)], and centrifuged again at 1000 

g for 5 min. The S2 cells were then resuspended in 100 µL of room temperature V-

solution (Amaxa), to which 1 µg of each plasmid to be transfected had already been 

added. The cells and transfection solution were mixed gently, transferred to a metal-

plated cuvette, and electroporated using the Nucleofector set to program O-20. 

Immediately following the electric shock, the cuvette was withdrawn form the 

Nucleofector, and 1.9 mL of complete Schneider’s medium pre-warmed to 24˚C was 

added. The transfected cells were then divided equally between two wells in a 12-well 

plate, each well having a total volume of 1.0 mL. The next day, one of the wells in the 

pair was treated with 5 µL of 100 mM CuSO4 (for a final concentration of 0.5 mM) to 

activate the metallothionein promoter of the pMt plasmid and induce Nef expression. 

The cells were incubated at 24˚C for another day, at which time various assays were 

performed (48 hrs post-transfection and 24 hrs post Nef-induction). 

 
2.5.2.3 Generation of a stable CD4-Nef cell line 

 
To generate a stable CD4-Nef cell line, in which CD4 was constitutively expressed 

and Nef was expressed upon the addition of CuSO4, 1x107 S2 cells were transfected 

with 4 µg of pAc.CD4, 4 µg of pMt.NefNL4-3, and 1 µg of pCo-Blast using the Amaxa 

Nucleofector as described in Section 2.5.1.2. The cells were initially plated on a 15 

cm2 tissue culture dish and grown for 1 week in complete Schneider’s medium; after 

this period, stable clones were selected and maintained by supplementing the medium 

with 25 µg/mL of blasiticidin. After several weeks, surviving clones were transferred 

to individual wells of a 96-well plate, and then to a 12-well plate, as cell growth 

permitted. At this stage, the clones were assayed by flow cytometry for CD4 surface 

levels before and after induction of Nef expression. Of the clones assayed, the D6 cell 

line was chosen for its uniform CD4 surface expression and consistent, inducible 
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downregulation of CD4 by Nef.  

 
2.5.2.4 RNAi-mediated protein depletion 

 
The Expression Arrest Drosophila RNA-interference (RNAi) Library, a collection of 

double-stranded (ds) DNA templates representing most of the ORFs in the Drosophila 

genome, was obtained from Open Biosystems (Hunstville, AL, USA). Each template 

contained 200-800 bp of cDNA sequence from a particular gene, and was flanked by 

T7 RNA polymerase initiation sites. Sixty-six genes, the homologues of which had 

previously been implicated in protein trafficking processes in yeast and animals, were 

selected from the library for use in this study. Similar dsDNA sequences for another 

five genes (Drosophila CLC, Drosophila Tsg101, human CD4, HIV-1 NL4-3 Nef, and 

Green Fluorescent Protein [the latter three used as controls]) were made by PCR using 

primers containing T7 promoters and the appropriate cDNA sequences (see Table 2.9 

for further information). In vitro transcription (IVT) reactions were carried out on the 

dsDNA templates of the selected genes using the MEGAscript T7 Kit (Ambion, 

Austin, TX, USA) at 37˚C for 16 hrs to produce the desired dsRNAs. Each dsRNA 

was analyzed by agarose gel electrophoresis to determine that a product of expected 

size was obtained, after which the yield of the IVT reaction was quantified using a 

NanoDrop spectrophotometer. To deplete target proteins, S2 cells were treated with 

dsRNAs according to a five day protocol. On day 1, the cells were incubated for 1 hr 

in serum-free growth medium containing 30 ng/mL of dsRNA, after which FBS was 

added to a final concentration of 10% (vol/vol). On day 3, cells receiving a particular 

dsRNA treatment were split into two equivalent wells in a tissue culture dish. On day 

4, the expression of Nef was induced in one of the wells by the addition of CuSO4 (to 

a final concentration of 0.5 mM), while the other well was left uninduced. On day 5, 

the S2 cells were prepared for flow cytometric analysis (96 hrs post dsRNA-treatment 

and 24 hrs post Nef-induction; see Section 2.7 for further information). 
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2.6 Human expression vectors, tissue culture, transfections, and knockdowns 

 
2.6.1 Human expression vectors 

 
The pCMV (Section 2.6.1.1), pCI (Section 2.6.1.2), and pIRES.GFP (Section 2.6.1.3) 

vectors were used to express proteins in JM and HeLa cells for various cell biological 

and biochemical assays. A description of these expression vectors, along with detailed 

information on how protein coding sequences were inserted into these plasmids, is 

provided below. 

 
2.6.1.1 pCMV 

 
The pCMV expression vector (Clontech) contains a human cytomegalovirus (CMV) 

immediate-early enhancer-promoter upstream of a single MCS. The CMV promoter is 

constitutively active and induces high levels of expression of downstream genes in 

many human cell lines, including JM and HeLa cells. The pCMV.CD4 plasmid, in 

which the coding sequence for human CD4 was inserted between the BamHI and 

EcoRI restriction sites of pCMV, was kindly provided by Klaus Strebel (National 

Institute of Allergy and Infectious Diseases [NIAID], NIH; see Fig. 2.10). 

 
2.6.1.2 pCI 

 
Like pCMV, the pCI expression vector (Promega, Madison, WI, USA) has a CMV 

immediate-early enhancer-promoter upstream of a single MCS. Several pCI-based 

plasmids containing different HIV and SIV Nef alleles, including pCI.NefNL4-3, pCI. 

NefDH12-3, pCI.Nef248, and pCI.NefSIVmac239, were kindly provided by Sundararajan 

Venkatesan (NIAID, NIH; see Fig. 2.11). In all cases, the Nef coding sequence had 

been inserted between the EcoRI and SalI restriction sites of pCI. SDM reactions on 

pCI.NefNL4-3 yielded pCI.NefNL4-3LL164,165AA, pCI.NefNL4-3D174E, pCI.NefNL4-3 

D175E, and pCI.NefNL4-3DD174,175AA. 

 
2.6.1.3 pIRES.GFP 

 
The pIRES2.eGFP expression vector (Clontech; hereafter referred to as pIRES.GFP) 

contains a CMV immediate-early enhancer-promoter upstream of a MCS, an internal 

ribosome entry site (IRES), and the coding sequence for enhanced Green Fluorescent 
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Protein (GFP). Thus, this plasmid allows for the independent translation of a gene of 

interest (cloned into the MCS) and GFP from a single bicistronic mRNA transcript 

(see Fig. 2.12). GFP fluorescence can then be used to identify cells that have been 

transfected with the plasmid and that express the gene of interest. The coding 

sequences of NL4-3 Nef, DH12-3 Nef, 248 Nef, and SIVmac239 Nef were subcloned 

from pCI-based vectors (described in Section 2.6.1.2) into the EcoRI-SalI restriction 

sites of the pIRES.GFP MCS to generate pNefNL4-3.IRES.GFP, pNefDH12-3.IRES.GFP, 

pNef248.IRES.GFP, and pNefSIVmac239.IRES.GFP. The NA7 Nef ORF from pCDNA. 

NefNA7 (kindly provided by Jacek Skowronski, Cold Spring Harbor Laboratory, Cold 

Spring Harbor, NY, USA) was amplified by PCR and also inserted into the EcoRI-

SalI restriction sites of pIRES.GFP to create pNefNA7.IRES.GFP. SDM of pNefNL4-

3.IRES.GFP yielded all permutations of this plasmid (for a complete listing, see Table 

2.8). The pαR-V5.IRES.GFP and pαR-KR297,340EE-V5.IRES.GFP plasmids, used 

in the α-adaptin knockdown and rescue assays, are described in Section 2.6.3.4. 

 
2.6.2 JM cells 

 
JM cells are immature CD4+/CD8+ human T cells that were originally isolated from 

an adolescent male lymphoblastoid leukemia patient prior to the thymic selection 

process (Schneider, 1977). The JM cells were obtained from the NIH AIDS Research 

and Reference Reagent Program (NIAID, NIH, Germantown, MD, USA). 

 
2.6.2.1 Tissue culture 

 
JM cells were cultured in complete RPMI-1640 [Roswell Park Memorial Institute-

1640 medium (Invitrogen) supplemented with 10% (vol/vol) FBS, 100 U/mL of 

penicillin, 0.1 mg/mL of streptomycin and 2 mM L-glutamine] at 37˚C in humidified 

air containing 5% CO2. The JM cells were grown in standard tissue culture flasks and 

passaged every 2 to 3 days; a cell density of 1x105 to 8x105 cells/mL was maintained 

at all times. 

 
2.6.2.2 Transient DNA transfections 

 
JM cells were transiently transfected with plasmids using the Amaxa Nucleofector in 

a manner similar to that described in Section 2.5.2.2. For each transfection, 1x106 live 
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JM cells were harvested by centrifugation at 1000 g for 5 min, washed once with 

room temperature PBS, and pelleted again by centrifugation at 1000 g for 5 min. The 

cells were then resuspended in 100 µL of room-temperature V-solution, to which 1 µg 

of DNA had already been added. The cells and transfection reagents were mixed 

gently, placed in a cuvette supplied by the manufacturer, and electroporated using the 

Nucleofector set to program O-17. After the electric shock, the cuvette was 

withdrawn from the Nucleofector, and 500 µL of complete RPMI-1640 pre-warmed 

to 37˚C was added. The transfected cells were then transferred from the cuvette to a 

T-25 tissue culture flask containing 9.5 mL of complete RMPI-1640 and incubated 

overnight at 37˚C. Assays were performed on the JM cells the following day (24 hrs 

post-transfection). 

 
2.6.3 HeLa cells 

 
HeLa cells are human cervical cancer cells originally isolated from an adult female 

patient. The HeLa cells used in this study were purchased from the American Type 

Culture Collection (Manassas, VA, USA). 

 
2.6.3.1 Tissue Culture 

 
HeLa cells were cultured in complete DMEM [Dulbeco’s modified Eagle medium 

(Invitrogen) supplemented with 10% (vol/vol) FBS, 100 U/mL of penicillin, 0.1 

mg/mL of streptomycin, and 2 mM L-glutamine] at 37˚C in humidified air containing 

5% CO2. The HeLa cells were grown on standard tissue culture plates and passaged 

every 3 to 4 days. 

 
2.6.3.2 Transient DNA transfections 

 
HeLa cells were transiently transfected with expression vectors using Lipofectamine 

2000 (Invitrogen) according to instructions provided by the manufacturer. For each 

transfection, two 100 µL aliquots of Opti-MEM I (Invitrogen) were brought to room 

temperature. To one aliquot, 1.0 µg of DNA was added; to the other aliquot of Opti-

MEM I, 3 µL of Lipofectamine 2000 was added. The two solutions were incubated at 

room temperature for 5 min, mixed, and then incubated at room temperature for a 

further 20-25 min. During the second incubation step, HeLa cells growing on a 6-well 
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tissue culture dish at 30-50% confluency were removed from the incubator and 

washed once with room temperature Opti-MEM I; each well was then seeded with 

800 µL of serum-free DMEM supplemented with 100 U of penicillin/mL, 0.1 mg of 

streptomycin/mL, and 2 mM L-glutamine. The transfection mixture was then applied 

drop-wise to the well (for a total volume of 1000 µL), and the tissue culture dish was 

swirled gently before being placed back in the incubator. Three hrs later, 500 µL of 

DMEM supplemented with 30% FBS (vol/vol), 100 U of penicillin/mL, 0.1 mg of 

streptomycin/mL, and 2 mM L-glutamine was added to each well, and the cells were 

incubated for another 24 hrs at 37˚C. Various assays were performed on the cells the 

following day (24 hrs post-transfection) as described below and in Sections 2.7, 2.8, 

and 2.9. 

 
2.6.3.3 Endocytosis assays 

 
Endocytosis assays were used to measure the rate at which CD4 was internalized from 

the plasma membrane in the absence and presence of Nef. HeLa cells growing on 9-

cm-diameter tissue culture plates at approximately 70% confluency were transfected 

with the appropriate plasmids as described in Section 2.6.3.2. The following day, the 

plates were washed with PBS pre-warmed to 37˚C, incubated in detachment buffer 

[PBS supplemented with 2mM EDTA] for 30 min at 37˚C, and harvested. The 

harvested cells were washed twice with ice-cold PBS and then incubated on ice for 30 

min in Endocytosis Binding Buffer (EBB) [Opti-MEM I with 2% (wt/vol) BSA] 

containing a 1:100 dilution of mouse anti-human CD4 antibody. An aliquot of cells 

was incubated without the primary antibody as a control. The cells were then washed 

twice with ice-cold PBS, resuspended in EBB pre-warmed to 37˚C, and incubated at 

37˚C. An aliquot of cells that remained on ice was reserved for the 0-min time point. 

At the indicated time intervals, equal aliquots of cells were transferred from the 

incubation tubes to ice-cold PBS. At the end of the time course, the samples were 

subjected to two additional washes with ice-cold PBS and incubated in PBA [PBS 

with 1% (wt/vol) BSA and 0.1% (vol/vol) sodium azide] containing a 1:100 dilution 

of goat anti-mouse antibody conjugated to allophycocyanin (APC) for 1 hr on ice. 

The cells were finally washed three times with ice-cold PBS, fixed in PBA-F [PBA 

with 1% (vol/vol) paraformaldehyde], and analyzed by flow cytometry as described in 

Section 2.7.3. 
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2.6.3.4 siRNA-mediated protein depletion of µ1, µ2, and µ3 

 
The expression of µ1-adaptin, µ2-adaptin, and µ3-adaptin was depleted in HeLa cells 

by using small interfering RNA (siRNA) duplexes. For each gene to be silenced, 

siRNA duplexes were designed (µ1 sense sequence: 5’-AAGGCAUCAAGUAUCGG 

AAGA-3’, µ2: 5’-AAGUGGAUGCCUUUCGGGUCA-3’, µ3: 5’-AAGGAGAACA 

GUUCUUGCGGC-3’) and purchased, along with a non-targeting oligonucleotide 

duplex called siCONTROL 1, from Dhamacon (Lafayette, CO, USA). For each 

transfection reaction, two aliquots of Opti-MEM I were brought to room temperature. 

The first aliquot of Opti-MEM I (8 µL) was combined with 2 µL of Lipofectamine 

2000, while the second aliquot of Opti-MEM I (185 µL) was combined with 5 µL of 

an siRNA duplex at a stock concentration of 20 µM. The two solutions were allowed 

to incubate at room temperature for 5 min, after which they were mixed and incubated 

at room temperature for another 25 min. At the end of the second incubation period, 

HeLa cells growing on a 6-well tissue culture dish (at ~30% confluence) were washed 

with Opti-MEM I, and each well was seeded with 800 µL of fresh Opti-MEM I. The 

siRNA transfection solution was then added drop-wise to the well (for a total volume 

of 1000 µL and a final siRNA duplex concentration of 100 nM). The dish was swirled 

gently and placed back in the tissue culture incubator; the following day, 500 µL of 

DMEM supplemented with 30% FBS (vol/vol), 300 U of penicillin/mL, 0.3 mg of 

streptomycin/mL, and 6 mM L-glutamine was added to each well. For each siRNA-

mediated protein depletion experiment, HeLa cells were transfected twice with the 

targeting and non-targeting siRNA duplexes over 6 days according to the protocol 

described above. On day 1, HeLa cells received the first siRNA treatment. On day 3, 

the cells were split onto fresh six-well dishes in a 1:3 ratio. On day 4, the HeLa cells 

received the second siRNA treatment. On day 5, the cells were transfected with DNA 

plasmids as detailed in Section 2.6.3.2 and Table 2.6. On day 6, the cells were 

harvested and prepared for flow cytometric analysis (as described in Section 2.7) and 

immunoblot analysis (as described in Section 2.9). 

 
2.6.3.5 α-adaptin knockdown and rescue reagents 

 
HeLa cells express two isoforms of α-adaptin, αA and αC. To simultaneously silence 
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the expression of both isoforms, a single siRNA duplex was designed (sense sequence 

5’-GAGCAUGUGCACGCUGGCCATT-3’; Qiagen) that targeted nucleotides 1053 

to 1072 of the human αA and αC ORFs. An siRNA-resistant version of αC-adaptin 

(hereafter referred to as αR) was generated by introducing three silent substitutions 

into the rat αC cDNA (CT, CT, and GC at nucleotides 1053, 1059, and 1065, 

respectively, of the rat αC sequence). These substitutions resulted in a total of four 

mismatches between αR and the siRNA-sensitive human αA/αC sequences (the rat 

αC cDNA contains an additional AG substitution at position 1062 compared to the 

human αA/αC sequences). The sequence for a V5 epitope tag was fused to the 3’ end 

of the αR ORF by PCR, and the αR-V5 cassette was subcloned into the BamHI-SalI 

restriction sites of pIRES.GFP to generate pαR-V5.IRES.GFP. SDM on this plasmid 

yielded pαR-KR297,340EE-V5.IRES.GFP (also referred to as pαR-KREE-V5.IRES. 

GFP; see Section 2.6.1.3 for more information on the pIRES.GFP expression vector). 

 
2.6.3.6 α-adaptin knockdown and rescue transfections 

 
In HeLa cells, the expression of endogenous α-adaptin was silenced by transfection 

with siRNA and replaced with αR according to a seven day protocol. On day 1, HeLa 

cells growing on six-well plates (at ~15% confluence) were either left untreated or 

transfected with the αA/αC siRNA duplex (100 nM) using Lipofectamine 2000 and 

Opti-MEM I as described in Section 2.6.3.4. On day 3, the cells were split at a 1:3 

ratio onto fresh 6-well plates. On day 4, the cells (at ~50% confluence) were 

transfected with a second round of siRNA and/or a unique combination of DNA 

plasmids (pCMV.CD4; pCI or pCI.NefNL4-3; and pIRES.GFP, pαR-V5.IRES.GFP, or 

pαR-KR297,340EE-V5.IRES.GFP; see Table 2.7) using Lipofectamine 2000 and 

Opti-MEM I. On day 6, the cells were split again onto fresh 6-well plates in a 1:2 

ratio. On day 7, the cells were harvested and prepared for flow cytometric analysis (as 

described in Section 2.7) and immunoblot analysis (Section 2.9). 
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2.7 Flow Cytometry 

 
Flow cytometry was used to quantify the amount of CD4 and other proteins on the 

surface of S2, JM, and HeLa cells in the absence and presence of Nef. Regardless of 

the type, the cells were analyzed by flow cytometry in the same manner, with the 

exception of the method in which they were harvested. 

 
2.7.1 Antibodies used 

 
The following primary and secondary antibodies were used to stain harvested cells for 

flow cytometry: unconjugated mouse immunoglobulin G (IgG [used as an isotype 

control]) (Jackson ImmunoResearch, West Grove, PA, USA), unconjugated mouse 

anti-human CD4 (Caltag, Burlingame, CA, USA), unconjugated mouse anti-human 

transferrin receptor (TfR) CD71 (Sigma-Aldrich), unconjugated mouse anti-human 

lysosomal associated membrane protein 1 (LAMP1) CD107a (Abcam, Cambridge, 

MA, USA), APC-conjugated mouse anti-human CD4 (Caltag), APC-conjugated goat 

anti-mouse IgG (Jackson ImmunoResearch), phycoerythrin (PE)-conjugated mouse 

anti-human CD71 (Sigma-Aldrich), and PE-conjugated goat anti-mouse IgG (Jackson 

ImmunoResearch). 

 
2.7.2 Harvesting of cells 

 
S2 cells, which are only loosely adherent to the surfaces on which they grow, were 

harvested from tissue culture plates by gentle pipetting. JM cells, which grow in 

suspension, were collected by centrifugation. HeLa cells, which adhere strongly to the 

surface of tissue culture plates, were washed once in PBS pre-warmed to 37˚C, and 

then incubated in detachment buffer for 30 min at 37˚C. The HeLa cells were then 

harvested from the tissue culture plates by gentle pipetting. 

 
2.7.3 Staining and analysis of cells 

 
For each sample, the harvested cells were washed three times with 1 mL of ice-cold 

PBS, and then resuspended in 100 µL of PBA  containing a primary antibody diluted 

to the appropriate concentration (please refer to Section 2.7.1 and Table 2.10 for 

further information on the antibodies used). The cells were then incubated for 1 hr on 

ice, with gentle mixing every 20 min. For those samples in which the primary 
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antibody used was conjugated to a fluorophore, the cells were then washed three 

times with 1 mL of ice-cold PBS, and fixed in 100 µL of PBA-F. For those samples in 

which the primary antibody was not directly conjugated to a fluorophore, the cells 

were washed three times with 1 mL of ice-cold PBS, and then resuspended in 100 µL 

of PBA containing a fluorescently-conjugated secondary antibody diluted to the 

appropriate concentration. These cells were incubated for an additional 1 hr on ice 

with gentle mixing every 20 min, and then washed three times with 1 mL of ice-cold 

PBS and fixed in 100 µL of PBA-F. The amount of fluorescence associated with 

intact cells for each sample was measured using a FACSCalibur multicolor flow 

cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). For JM and HeLa cells 

transfected with a pIRES.GFP construct, GFP fluorescence was used as a marker to 

identify and gate around transfected cells. In each case, the data were analyzed using 

CellQuest software (Becton Dickinson). 
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2.8 Immunofluorescence and confocal microscopy 

 
Immunofluorescence and confocal microscopy were used to visualize the distribution 

of CD4 in S2 and HeLa cells either lacking or expressing Nef. The methods used to 

prepare the S2 and HeLa cells for immunofluorescent analysis differed slightly; 

however, all cells were fixed, stained, and imaged in a similar manner. 

 
2.8.1 Antibodies used 

 
Unconjugated mouse anti-human CD4 (Caltag) and Alexa 594-conjugated donkey 

anti-mouse IgG (Invitrogen) antibodies were used for immunofluorescence staining 

and confocal microscopy imaging. 

 
2.8.2 Preparation of cells  

 
S2 cells were transfected (as described in Section 2.5.2.2) and then seeded onto glass 

coverslips coated with poly-L-lysine (Sigma-Aldrich), while HeLa cells were initially 

seeded onto uncoated glass coverslips and then transfected (as described in Section 

2.6.3.2) with the appropriate plasmids. 

 
2.8.3 Staining and imaging of cells 

 
S2 cells (24 hrs post Nef-induction) and HeLa cells (24 hrs post-transfection) were 

fixed for 10 min in PBS-F [PBS with 4% (vol/vol) paraformaldehyde], permeabilized 

for 10 min in PBS-T [PBS with 0.1% (wt/vol) Triton-X-100], and incubated for 1 hr 

in blocking buffer [PBS with 4% (vol/vol) FBS]. The cells were then incubated for 1 

hr in blocking buffer containing mouse anti-human CD4 antibody (1:100 dilution), 

washed three times with PBS, incubated for 1 hr in blocking buffer containing donkey 

anti-mouse antibody conjugated to the Alexa 594 fluorophore (1:100 dilution), 

washed three more times with PBS, and mounted on slides. The cells were imaged on 

a Zeiss LSM510 laser scanning confocal microscope (Carl Zeiss, Thornwood, NY, 

USA) with a 63X plan apochromat 1.4 numerical-aperture objective using the 543 nm 

line of the He-Ne laser. Emission data were collected over the range of 560 to 660 nm 

with appropriate filter sets. 
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2.9 Immunoblotting 

 
Immunoblotting was used to detect the expression of various proteins in S2 and HeLa 

cell lysates following transfection of live cells with DNA plasmids and/or treatment 

with RNAi reagents. Immunoblotting was also used to check for protein interactions 

after GST pull-down experiments (see Section 2.3.3.1 for information on how these 

samples were prepared for electrophoresis and protein detection). 

 
2.9.1 Antibodies used 

 
The following antibodies were used for immunoblotting: unconjugated mouse anti-V5 

epitope (Invitrogen), unconjugated mouse anti-His6 epitope (Abcam), unconjugated 

mouse anti-human CD4 (Caltag), unconjugated mouse anti-human α-tubulin (Sigma-

Aldrich), unconjugated mouse anti-human α-adaptin clone numbers “100/2” (Sigma-

Aldrich) and “8/Adaptin α” (Becton Dickinson), unconjugated rabbit anti-human 

µ1A-adaptin (Juan Bonifacino, NICHD, NIH), unconjugated rabbit anti-human µ2-

adaptin (Juan Bonifacino), unconjugated rabbit anti-µ3A-adaptin (Juan Bonifacino), 

unconjugated rabbit anti-HIV-1 Nef (NIH AIDS Research and Reference Reagent 

Program, originally deposited by Ronald Swanstrom; see Shugars et al., 1993), 

horseradish peroxidase (HRP)-conjugated sheep anti-mouse IgG (GE Healthcare), and 

HRP-conjugated donkey anti-rabbit IgG (GE Healthcare). 

 
2.9.2 Lysis, electrophoresis, and protein detection 

 
S2 and HeLa cells were lysed at 4˚C for 20-30 min in lysis buffer [PBS supplemented 

with 1% (vol/vol) NP-40 and a protease inhibitor cocktail (Roche Applied Science)]. 

The lysates were then centrifuged to remove insoluble material, and NuPAGE 

Laemmli SDS sample buffer was added to the supernatants. The samples were boiled 

for 3 min and then subjected to electrophoresis on 4-12% NuPAGE Novex Bis-Tris 

gradient gels (Invitrogen) using a constant voltage of 150 V for 1 hr. The separated 

proteins were then transferred from the gels to nitrocellulose membranes using a 

constant current of 350 mA for 1.5 hrs. Membranes were blocked in PBS-T-DM [PBS 

with 0.01% (vol/vol) Tween 20 and 5% (wt/vol) dry milk] for 1 hr at room 

temperature or overnight at 4˚C. Primary antibodies were added to the PBS-T-DM 

mixture and incubated with the membranes for 1 hr at room temperature or overnight 
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at 4˚C. The membranes were washed three times with PBS-T [PBS with 0.01% 

(vol/vol) Tween 20], incubated with HRP-conjugated secondary antibodies in PBS-T-

DM for 1 hr at room temperature, and washed three more times with PBS-T. Proteins 

were detected using the Enhanced Chemi-Luminescence (ECL) Plus Kit (GE Health-

care) according to the instructions provided by the manufacturer. 
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Table 2.1: PCR reagents. For each reaction, the following reagents were combined 

to yield a total volume of 50 µL. See Table 2.9 for more further information on the 

individual forward and reverse primers.  

 
Reagent Initial Conc. Volume Final Conc. 
H2O N/A 32.5 µL N/A 
HF PCR Buffer 5X 10.0 µL 1X 
dNTPs 10 mM 1.0 µL 200 µM 
Forward Primer 10 µM 2.5 µL 0.5 µM 
Reverse Primer 10 µM 2.5 µL 0.5 µM 
DNA Template 100 ng/µL 1.0 µL 2 ng/µL 
Phusion DNA Polymerase 2 U/µL 0.5 µL 0.02 U/µL 

 
 

Table 2.2: PCR thermal cycling conditions. The temperature for the annealing step 

was generally set to 2˚C below the calculated primer melting temperature (Tm), and 

the duration of the extension step was set to 1.0 min per 1.0 kbp of PCR product. The 

remaining temperatures and times remained constant for all reactions. 

 
Cycle step Temperature Time Cycles 
Initial denaturation 95˚C 1.0 min 1 
Denaturation 95˚C 0.5 min  
Annealing 55-64˚C 0.5 min 30 
Extension 72˚C 1.0 min per kbp  
Final Extension 72˚C 10.0 min 1 
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Table 2.3: Ligation reagents. For each ligation reaction, the following reagents were 

combined to yield a total volume of 20 µL. 

 
Reagent Initial Conc. Volume Final Conc. 
H2O N/A 13.0 µL N/A 
T4 DNA Ligase Buffer 10X 2.0 µL 1X 
DNA insert 20 ng/µL 3.0 µL 3 ng/µL 
DNA vector 20 ng/µL 1.0 µL 1 ng/µL 
T4 DNA Ligase 400 U/µL 1.0 µL 20 U/µL 
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Table 2.4: SDM reagents. For each mutagenesis reaction, the following reagents 

were combined to yield a total volume of 50 µL. See Table 2.9 for more information 

on the individual forward and reverse primers. 

 
Reagent Initial Conc. Volume Final Conc. 
H2O N/A 37.0 µL N/A 
SDM Buffer 10X 5.0 µL 1X 
dNTPs 10 mM 1.0 µL 200 µM 
Forward Primer 10 µM 2.5 µL 0.5 µM 
Reverse Primer 10 µM 2.5 µL 0.5 µM 
DNA Template 100 ng/µL 1.0 µL 2 ng/µL 
Pfu Ultra DNA Polymerase 2.5 U/µL 1.0 µL 0.05 U/µL 

 
 

Table 2.5: SDM thermal cycling conditions. The following temperatures, times, and 

cycles were used for each mutagenesis reaction. 

 
Cycle step Temperature Time Cycles 
Initial denaturation 95˚C 1.0 min 1 
Denaturation 95˚C 0.5 min  
Annealing 55˚C 0.5 min 18 
Extension 68˚C 12.0 min  
Final Extension 68˚C 12.0 min 1 
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Table 2.6: Combinations of DNA plasmids used to transfect HeLa cells following 

siRNA-mediated protein depletion of µ1, µ2, and µ3. HeLa cells were treated with 

100 nM of the siRNA duplex shown below on days 1 and 4 of the knockdown assay. 

On day 5, the cells were transfected with 0.3 µg of DNA plasmid 1 and 0.3 µg of 

DNA plasmid 2 (if applicable). On day 6, the siRNA-treated and DNA-trasnsfected 

cells were prepared for flow cytometric and immunoblot analysis. See Section 2.5.3.4 

for further detail. 

 
Row siRNA DNA 1 DNA 2 
1 siCONTROL 1 pIRES.GFP None 
2 siCONTROL 1 pNefNL4-3.IRES.GFP pCMV.CD4 
3 siCONTROL 1 pNefNL4-3LL164,165AA.IRES.GFP pCMV.CD4 
4 µ1A-adaptin pIRES.GFP None 
5 µ1A-adaptin pNefNL4-3.IRES.GFP pCMV.CD4 
6 µ1A-adaptin pNefNL4-3LL164,165AA.IRES.GFP pCMV.CD4 
7 µ2-adaptin pIRES.GFP None 
8 µ2-adaptin pNefNL4-3.IRES.GFP pCMV.CD4 
9 µ2-adaptin pNefNL4-3LL164,165AA.IRES.GFP pCMV.CD4 
10 µ3A-adaptin pIRES.GFP None 
11 µ3A-adaptin pNefNL4-3.IRES.GFP pCMV.CD4 
12 µ3A-adaptin pNefNL4-3LL164,165AA.IRES.GFP pCMV.CD4 
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Table 2.7: Combinations of siRNA duplexes and DNA plasmids used to transfect 

HeLa cells for the α-adaptin knockdown and rescue assays. On day 1 of the assay, 

HeLa cells were either left untreated or treated with 100 nM of the α-adaptin siRNA 

duplex. On day 4, the cells were again either left untreated or treated with 100 nM of 

the α-adaptin siRNA, and also transfected with 0.4 µg of DNA plasmid 1, 0.3 µg of 

DNA plasmid 2, and 0.3 µg of DNA plasmid 3. On day 7, the transfected HeLa cells 

were prepared for flow cytometric and immunoblot analysis. See Sections 2.5.3.5 and  

2.5.3.6 for further detail. 

 
Row siRNA DNA 1 DNA 2 DNA 3 
1 None pIRES.GFP pCI pCMV.CD4 
2 None pIRES.GFP pCI.NefNL4-3 pCMV.CD4 
3 α-adaptin pIRES.GFP pCI pCMV.CD4 
4 α-adaptin pIRES.GFP pCI.NefNL4-3 pCMV.CD4 
5 α-adaptin pαR-V5.IRES.GFP pCI pCMV.CD4 
6 α-adaptin pαR-V5.IRES.GFP pCI.NefNL4-3 pCMV.CD4 
7 α-adaptin pαR-KREE-V5.IRES.GFP pCI pCMV.CD4 
8 α-adaptin pαR-KREE-V5.IRES.GFP pCI.NefNL4-3 pCMV.CD4 
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Chapter 3:

Downregulation of CD4 by HIV-1 Nef is dependent on clathrin and involves a

direct interaction of Nef with the AP-2 clathrin adaptor
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3.1 Abstract 

 
Nef, an accessory protein of human and simian immunodeficiency viruses, is a critical 

determinant of pathogenesis that promotes progression of the disease from infection 

to AIDS. The pathogeneic effects of Nef are in large part dependent on its ability to 

downregulate the macrophage and T cell co-receptor, CD4. It has been proposed that 

Nef induces downregulation by linking the cytosolic tail of CD4 to components of the 

host-cell protein trafficking machinery. To identify these components, a novel Nef-

CD4 downregulation system was developed in Drosophila melanogaster S2 cells. It 

was found that human immunodeficiency virus type 1 (HIV-1) Nef downregulates 

human CD4 in S2 cells, and that this process is subject to the same sequence 

requirements as in human cells. An RNA interference screen targeting protein 

trafficking genes in S2 cells revealed a requirement for clathrin and the clathrin-

associated, plasma membrane-localized AP-2 complex in the downregulation of CD4. 

The requirement for AP-2 was confirmed in the human HeLa cell line. Yeast three-

hybrid and glutathione S-transferase pull down assays were also used to demonstrate a 

robust, direct interaction between HIV-1 Nef and AP-2. This interaction requires a 

dilecuine motif in Nef that is also essential for downregulation of CD4. Together, 

these results support a model in which HIV-1 Nef downregulates CD4 by promoting 

its accelerated endocytosis via a clathrin/AP-2 pathway. 
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3.2 Introduction 

 
As mentioned earlier, the primary goal of this thesis is to determine the mechanism of 

Nef-mediated CD4 downregulation (see Section 1.9). Previous studies have revealed 

that several regions of Nef are essential for this process, including the myristoylation 

site, the hydrophobic pocket, and the dileucine motif (see Fig. 1.7; Stove et al., 2005). 

Myristoylation allows Nef to associate with intracellular membranes, where it binds 

to the cytosolic tail of CD4 via the hydrophobic pocket (Grzesiek et al., 1996; Harris 

and Neil, 1994; Peng and Robert-Guroff, 2001; Yu and Felsted, 1992). The role of the 

dileucine motif is less certain, although it has been suggested to connect Nef to some 

components of the host-cell protein trafficking machinery, such as the clathrin adaptor 

protein complexes (Bresnahan et al., 1998; Craig et al., 1998; Greenberg et al., 1998; 

Mangasarian et al., 1997; Janvier et al., 2003b). However, each AP complex controls 

protein sorting at a different location within the cell, leaving in doubt the pathway that 

Nef might use to downregulate CD4 (see Section 1.6). 

 
Prior attempts to clarify this pathway by depleting human cells of the AP complexes 

have produced conflicting results, probably due to low RNAi transfection efficiencies 

and incomplete knockdowns (Jin et al., 2005; Rose et al., 2005). In the next section, a 

similar RNAi-based approach will be utilized to determine which AP complex is most 

important for the downregulation of CD4, and to screen for other endogenous proteins 

that might participate in this process. However, the initial RNAi experiments will be 

performed on Drosophila melanogaster S2 cells expressing Nef and CD4; compared 

to human cells, S2 cells are easier to transfect and are therefore more suitable for use 

in RNAi screens (see Agaisse et al., 2005; Derré et al., 2007; Elwell and Engel, 2005; 

Philips et al., 2005; Ramet et al., 2002). Once the RNAi screen is finished, homologs 

of the most promising candidates will be knocked down in HeLa cells. Although these 

human cells are less amenable to RNAi treatment than the Drosophila S2 cells, they 

provide a more physiologically relevant setting in which to evaluate the contribution 

of endogenous proteins to the Nef-mediated downregulation of CD4. In vitro binding 

assays will then be used to determine whether one of these proteins interacts directly 

with Nef, and if so, whether this interaction depends on the dileucine motif described 

above. When taken together, the data from the RNAi and in vitro binding experiments 

should yield a clearer understanding of how Nef modulates CD4 expression. 
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3.3 Results 

 
3.3.1 Downregulation of human CD4 by HIV-1 in Drosophila S2 cells 

 
To identify host cell factors that are required for the downregulation of CD4 by Nef, 

an RNAi screen was performed using the Drosophila melanogaster S2 cell line. This 

system was chosen because the efficiency of RNAi and DNA transfections is nearly 

100%, RNAi treatment is carried out by the simple addition of dsRNA to the tissue 

culture medium, and an RNAi library targeting most of the Drosophila genome was 

available at a reasonable price. This approach was predicated on the assumption that 

HIV-1 Nef would be able to downregulate human CD4 in the Drosophila cells. To 

determine whether this was indeed the case, S2 cells were transiently co-transfected 

with a plasmid driving constitutive expression of human CD4 (pAc.CD4; see Section 

2.5.1.1) and another plasmid driving Cu2+-inducible expression of the NL4-3 variant 

of HIV-1 Nef (pMt.NefNL4-3; see Section 2.5.1.2). Immunoblot analysis revealed that 

both CD4 and Nef were expressed in the transfected S2 cells; as expected, Nef was 

apparent only in cells incubated with Cu2+ (Fig. 3.1A). Importantly, in the absence of 

Nef expression, CD4 was detected on the plasma membrane of S2 cells by flow 

cytometry (Fig. 3.1B) and immunofluorescence microscopy (Fig 3.1C). The induction 

of Nef expression by the addition of Cu2+ (in the form of CuSO4) caused an 

approximately 3-fold reduction in the surface level of CD4 (Fig 3.1B) and its 

redistribution to intracellular vesicles (Fig. 3.1C). These effects of Nef expression on 

CD4 distribution were similar to those previously demonstrated in human cells by 

others (Fig. 1.11; Aiken et al., 1994; Garcia and Miller, 1991; Rose et al., 2005). 

 
3.3.2 Determinants of Nef-induced CD4 downregulation in S2 cells 

 
Next, the ability of several Nef alleles to downregulate CD4 in Drosophila S2 and 

human JM CD4+ T cells was tested. Despite high primary sequence variability among 

different HIV-1 and SIV clades, the ability to downregulate CD4 in human cells is a 

strongly conserved feature of Nef proteins (Benson et al., 1993; Hua et al., 1997; 

Janvier et al., 2003b; Mariani and Skowronski, 1993). S2 cells were co-transfected 

with pAc.CD4 and pMt.Nef plasmids (see Section 2.5.1.2), while CD4+ JM cells were 

transfected with pNef.IRES.GFP plasmids (see Section 2.6.1.3). CD4 surface levels 

were measured by flow cytometry. The data showed that all four HIV-1 Nef variants 
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tested (from the NL4-3, NA7, DH12-3, and 248 strains), as well as an SIV Nef variant 

(mac239), significantly reduced CD4 surface levels in both S2 and JM cells (Fig. 3.2). 

 
Further evidence for the suitability of a CD4-Nef expression system in S2 cells was 

obtained by pairwise comparisons of various NL4-3 Nef mutants in S2 and JM cells 

(see Roeth and Collins, 2006 for a review of Nef functional domains). S2 cells were 

co-transfected with pAc.CD4 and wild-type or mutant pMt.NL4-3 Nef plasmids (see 

Section 2.5.1.2), while the CD4+ JM cells were transfected with wild-type or mutant 

pNefNL4-3.IRES.GFP plasmids (see Section 2.6.1.3). As before, CD4 surface levels 

were measured by flow cytometry (Fig. 3.3). For both S2 and JM cells, mutation of 

the Nef myristoylation site (G2A), CD4-binding site (WL57,58AA), and dileucine 

motif (LL164,165AA) abrogated the ability of the viral protein to downregulate CD4. 

On the other hand, mutation of the acidic cluster (EEEE62-65AAAA) and the 

polyproline motif (PP72,75AA), which are required for downregulation of the major 

histocompatability complex class I (MHC-I) receptor (Janvier et al., 2001; Piguet et 

al., 2000), had no effect on the ability of Nef to modulate CD4 surface levels in both 

S2 and JM cells. Immunofluorescence assays confirmed that the Nef WL57,58AA 

and LL164,165AA mutant proteins did not alter the plasma membrane-localization of 

CD4 in S2 cells, while the Nef EEEE62-65AAAA and PP72,75AA mutants redirected 

CD4 from the surface to intracellular vesicles (Fig. 3.4). Thus, identical motifs on Nef 

are required for the downregulation of CD4 in S2 and JM cells. Another hallmark of 

Nef-mediated CD4 downregulation in human cells is the requirement of a pair of 

leucines in the CD4 cytosolic tail (Aiken et al., 1994; Anderson et al., 1994). In a 

similar fashion, mutation of the CD4 dileucine motif (LL413,414AA) also prevented 

downregulation of the receptor in S2 cells (Fig. 3.3A). 

 
Taken together, these data provide strong evidence that the downregulation of CD4 by 

HIV-1 Nef occurs via a similar mechanism in S2 and JM cells, and likely involves 

homologous host-cell trafficking proteins. S2 cells were therefore considered to be a 

suitable system for an RNAi screen aimed at identifying host-cell proteins involved in 

Nef-induced CD4 downregulation. 
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FIG. 3.2: Comparison of the downregulation of CD4 by Nef from various HIV-1 

and SIV variants in Drosophila S2 and human JM CD4+ T cells 

 
(A) Flow cytometric histograms of Drosophila S2 cells that were co-transfected with 

pAc.CD4 and pMt vectors encoding a variety of HIV-1 (NL4-3, NA7, DH12-3, and 

248) and SIV (mac239) Nef alleles, incubated without (shaded gray) or with CuSO4 

(bold line), and then stained with a mouse monoclonal antibody to human CD4 and a 

PE-conjugated goat antibody to mouse IgG. Uninduced control cells were also stained 

with a non-specific mouse monoclonal IgG (as an isotype antibody control) and the 

aforementioned PE-conjugated goat antibody to mouse IgG (light gray line) in order 

to demonstrate the level of background fluorescence. 

 
(B) Bar graph depicting the levels of cell surface CD4 in Drosophila S2 cells co-

transfected with pAc.CD4 and pMt.Nef encoding various HIV-1 and SIV alleles (dark 

gray) and in human JM CD4+ T cells transfected with pNef.IRES.GFP encoding the 

same HIV-1 and SIV alleles (light gray). S2 cells were stained with appropriate 

antibodies 24 hours after Nef induction with CuSO4, and the JM cells were stained 24 

hours after transfection, as described in the Materials and Methods (Sections 2.4.2.2 

and 2.5.2.2). For S2 cells, the control represents the amount of CD4 on the surface of 

cells transfected with NL4-3 Nef, but left uninduced. For JM cells, the control 

represents the amount of CD4 on the surface of cells transfected with the empty 

vector, pIRES.GFP. In order to compare between different cell types, CD4 surface 

levels are shown as a percentage of the control condition. Numerical values depicted 

in the bar graph are the mean relative CD4 surface level percentage + the standard 

error of the mean (SEM) from three independent experiments. 
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FIG. 3.3: Determinants of Nef-induced CD4 downregulation in Drosophila S2 

and human JM CD4+ T cells 

 
(A) Flow cytometric histograms of Drosophila S2 cells co-transfected with pairs of 

pAc.CD4 and pMt.NefNL4-3 plasmids, encoding wild-type or mutant versions of CD4 

and NL4-3 Nef, respectively. Following transfection, the cells were either left 

untreated (shaded gray) or treated with CuSO4 to induce Nef expression (bold line). 

The cells were then stained with mouse monoclonal antibody to human CD4 and PE-

conjugated goat antibody to mouse IgG. Uninduced control cells were also stained 

with an isotype antibody control and PE-conjugated goat antibody to mouse IgG 

(light gray line). 

 
(B) Bar graph depicting the level of CD4 on the plasma membrane of Drosophila S2 

cells co-transfected with pAc.CD4 and wild-type or mutant versions of pMt.NefNL4-3 

(dark gray) and human JM CD4+ T cells transfected with wild-type or mutant versions 

of pNefNL4-3.IRES.GFP (light gray). S2 cells were stained with antibodies 24 hours 

after induction of Nef expression with CuSO4, while JM cells were stained 24 hours 

after transfection. The controls are the same as those described in Fig. 3.2B: for S2 

cells, the control represents the amount of CD4 on the surface of cells transfected with 

wild-type Nef and left uninduced, while for JM cells, the control represents the 

amount of CD4 on the surface of cells transfected with the empty vector, pIRES.GFP. 

To compare between different cell types, CD4 surface levels in cells transfected with 

the various Nef mutants are shown as a percentage of the control condition. Values 

are the mean relative CD4 surface level percentage + SEM from three independent 

experiments. 
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3.3.3 RNAi screen in S2 cells reveals a requirement for clathrin and AP-2 in the 

Nef-induced downregulation of CD4 

 
Prior to conducting the RNAi screen, it was necessary to generate a stable CD4-Nef 

S2 cell line, and then to test the efficiency of RNAi-treatment on these cells. The 

wild-type pAc.CD4 and pMt.NL4-3 Nef plasmids were used to transfect S2 cells, 

from which a monoclonal cell line was chosen for its uniform surface expression of 

CD4 and consistent, Cu2+-inducible downregulation of CD4 by Nef (see Materials 

and Methods, Section 2.5.2.3). The ability of RNAi to reduce protein expression 

levels in these cells was tested by the addition of dsRNAs targeted against CD4 and 

Nef (Fig. 3.5A). Compared to the negative control (a dsRNA targeting GFP, which is 

absent in these cells), the dsRNA directed against CD4 knocked down surface levels 

of this protein by approximately 85%, as measured by flow cytometry (Fig. 3.5A and 

Table 3.1). In addition, treatment of the stable cells with dsRNA targeted to Nef 

completely abolished the normal Cu2+-induced downregulation of CD4 (Fig. 3.5A and 

Table 3.1), demonstrating that Nef expression had been effectively eliminated. The 

nearly complete elimination of surface CD4 expression and Nef function by dsRNA-

treatment was taken as a general indicator of the effectiveness of RNAi in this system. 

To further assess the efficiency of RNAi in S2 cells, several epitope-tagged proteins 

were introduced into the cells by transient transfection, targeted for knockdown with 

dsRNAs, and then subjected to immunoblot analysis (Fig. 3.5C). Upon treatment with 

gene-specific dsRNAs, there was a significant reduction in the expression of these 

proteins relative to treatment with a non-specific dsRNA (Fig. 3.5C). Endogenous 

protein levels were not measured for this assay (or for the larger RNAi screen) due to 

a lack of available antibodies for most targets.  

 
Given the effectiveness of RNAi knockdowns in S2 cells, it appeared reasonable to 

proceed with the larger RNAi screen. A total of 68 components of the Drosophila 

protein-trafficking machinery were screened for their potential contribution to the 

Nef-mediated downregulation of CD4. The targets included clathrin and clathrin-

associated proteins, non-clathrin coat proteins, components of the multivesicular body 

(MVB) and endosomal recycling machineries, actin-associated proteins, components 

of the ubiquitin-modification machinery, phosphoinositide metabolism enzymes, and 

miscellaneous others (Table 3.1). For each protein tested in the screen, the stable 
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FIG. 3.5: Effect of selected RNAi treatments on the Nef-induced downregulation 

of CD4 in stably transfected S2 cells 

 
(A) CD4 expression profiles of S2 cells stably expressing CD4 and Nef (the latter 

under the control of an inducible promoter), after treatment with dsRNAs targeting 

GFP (non-targeting control), CD4 (no CD4 expression control), and Nef (no down-

regulation control). A portion of the dsRNA-treated cells were left uninduced (shaded 

gray), while the remainder were incubated with CuSO4 to induce Nef expression (bold 

line). The cells were then stained with mouse monoclonal antibody to human CD4 

and PE-conjugated goat antibody to mouse IgG. Cells stained with an isotype control 

and the PE-conjugated secondary antibody (light gray line) are also included as a 

measure of background fluorescence. 

 
(B) CD4 expression profiles of S2 cells stably expressing CD4 and Nef (the latter 

under the control of an inducible promoter), after treatment with dsRNAs targeting 

the clathrin subunits CHC and CLC; α-COP; AP-complex subunits µ1, µ2, and µ3; 

and GGA. Induction and staining of the dsRNA-treated cells was carried out as 

described above. 

 
(C) Immunoblot (IB) analysis of lysates from S2 cells transiently transfected with V5-

eptiope-tagged Drosophila genes (µ1, µ2, µ3, GGA, and CLC). After transfection, 

each group of cells was seeded into two tissue culture wells and received dsRNA 

targeting either GFP (negative control; lanes 1, 3, 5, 7, and 9) or the specific transgene 

(lanes 2, 4, 6, 8, and 10). Lysates were subjected to SDS-PAGE and probed with anti-

V5 monoclonal antibody. Positions of molecular mass markers (in kDa) are shown on 

the left. 
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CD4-Nef S2 cells were treated with a specific dsRNA, incubated for 3 days, and then 

split into two parallel cultures. One culture was left uninduced, while Nef expression 

was induced in the other culture by the addition of CuSO4. After 24 hours, the CD4 

surface levels of both uninduced and induced cells were measured by flow cytometry. 

The entire screen was conducted in duplicate, and most targets were tested additional 

times for purposes of confirmation. 

 
The results for the RNAi screen are shown in Fig. 3.5B (histograms for selected 

targets), Fig. 3.6 (scatter plot of all the data), and Table 3.1 (numerical values for all 

data). Most of the RNAi treatments, including the non-targeting negative control, fall 

along a single regression line with a slope of 0.45 on the scatter plot (Fig. 3.6), 

indicating that these dsRNAs had no effect on the ability of Nef to downregulate 

CD4. This slope corresponds to an average downregulation of 2.2-fold for the entire 

data set, which is roughly equivalent to the observed value of approximately 2-fold in 

untreated cells. Because in most cases it is not known if the RNAi treatments caused 

effective elimination of the target proteins, it is not possible to rule out the involve-

ment of the targets which tested negative in this screen. In addition, some targets that 

produced minor effects were difficult to replicate beyond the initial screen due to mild 

toxicity (see Table 3.1). A small number of dsRNAs, however, produced reliable 

outliers, evidence that they interfered with the ability of Nef to modulate CD4 

expression. These included dsRNAs targeting the clathrin heavy chain (CHC), the 

clathrin light chain (CLC), the µ2 subunit of AP-2, and α-COP (Fig. 3.5B and 3.6; 

Table 3.1). There also appeared to be a mild inhibition in cells treated with a dsRNA 

targeting Vps41, but the relatively large variation between experimental replicates 

precluded the assignment of this target as a true hit. 

 
The CHC dsRNA displayed the strongest inhibition on Nef function, and was nearly 

as effective as the dsRNA that targeted Nef itself (Fig. 3.5B and 3.6; Table 3.1). A 

dsRNA targeting CLC had a weaker, but reproducible effect on Nef function (Fig. 

3.5B and 3.6; Table 3.1). These findings are consistent with previously proposed 

models of Nef-induced CD4 downregulation that invoke a role for clathrin-dependent 

trafficking intermediaries. Nevertheless, these results are the first to directly 

demonstrate that clathrin is required for the Nef-mediated downregulation of CD4. A 

dsRNA targeting the µ2 subunit of AP-2 reduced Nef activity by roughly half in this 
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FIG. 3.6: Results of the RNAi screen of 68 components of the protein trafficking 

machinery for their involvement in Nef-induced CD4 downregulation in S2 cells 

 
The mean CD4 surface levels (+ the SEM; n = 2 to 10) of cells treated with dsRNAs 

targeting 68 candidate and 3 control genes (see Table 3.1) are represented on an x-y 

plot. Each datum point on the plot represents surface CD4 levels, as measured by flow 

cytometry, for cells treated with a particular dsRNA. The position on the x  axis 

indicates the amount of CD4 on the cell surface without induction, while the position 

on the y axis indicates the amount of CD4 on the cell surface upon induction of Nef 

expression, in relative fluorescence units (rfu). According to this rubric, data points 

that have the same amount of CD4 expression in the absence and presence of Nef 

indicate dsRNA treatments that completely inhibited the ability of Nef to down-

regulate CD4. A least-squares fit regression line (solid black line) for the entire data 

set with 95% confidence intervals (dashed lines) is shown. The line y = x (gray line), 

indicating the position of no downregulation, has also been added to the plot. Data 

points for control targets are shown in green, while data points for selected targets 

from the screen are shown in red. 
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FIG. 3.6
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system (Fig. 3.5B and 3.6; Table 3.1). Interestingly, dsRNAs targeting the γ and µ1 

subunits of AP-1 and the δ and µ3 subunits of AP-3, either alone (Fig. 3.5B; Table 

3.1) or in combinations (data not shown), had no effect on CD4 downregulation. 

Because AP-1 and AP-3 have been proposed to act as mediators of CD4 

downregulation (Bresnahan et al., 1998; Craig et al., 2000; Janvier et al., 2003b; Rose 

et al., 2005), the efficacy of the µ1 and µ3 dsRNAs on protein expression was tested 

directly. Immunoblot analysis clearly indicated a strong reduction of protein levels 

(Fig. 3.5C), supporting the conclusion that neither AP-1 nor AP-3 are required for 

Nef-mediated CD4 downregulation in S2 cells. Drosophila does not have orthologs 

for the subunits of a fourth, non-clathrin-associated AP complex in human cells called 

AP-4 (Boehm and Bonifacino, 2001), so this trafficking protein can be definitively 

ruled out as a required mediator of Nef effects on CD4. 

 
The ability of Nef to downregulate CD4 was also inhibited by treatment of the S2 

cells with dsRNA against α-COP (Fig. 3.5B and 3.6). This effect was somewhat 

unusual in that higher levels of CD4 were found on the cell surface regardless of Nef 

induction. α-COP is a subunit of the heteroheptameric COPI complex that appears to 

be primarily involved in endoplasmic reticulum and Golgi transport processes (for a 

review, see Kirchausen, 2000), although a role for COPI in endosomal traffic has also 

been proposed (Gu and Gruenberg, 1999; Whitney et al., 1995). In this regard, Nef has 

been previously shown to interact with the β-COP subunit of COPI (Benichou et al., 

1994; Schaefer et al., 2008), but the functional significance of this interaction remains 

a matter of debate (Janvier et al., 2001; Piguet et al., 1999; Schaefer et al., 2008).  

 
3.3.4 Requirement of AP-2 for Nef-induced CD4 downregulation in human cells 

 
Next, the role of AP-1, AP-2, and AP-3 in the Nef-mediated downregulation of CD4 

was assessed in the human cell line HeLa (experiments performed in collaboration 

with Wolf Lindwasser). Immunoblot assays indicated that the treatment of these cells 

with RNAi targeting the µ subunits of the three AP complexes reduced the expression 

of µ1A, µ2, and µ3A compared to treatment with non-targeting RNAi (Fig. 3.7A). 

The RNAi against µ2 increased surface levels of the transferrin receptor (TfR) and 

RNAi against µ3A increased surface levels of lysosome associated membrane protein 

1 (LAMP1) as measured by flow cytometry (Fig. 3.7B), indicators of impaired AP-2 
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and AP-3 function, respectively (Janvier and Bonifacino, 2005; Nesterov et al., 1999). 

The amount of plasma membrane-associated CD4 was then measured in RNAi-

treated cells expressing either wild-type Nef or the Nef LL164,165AA null-mutant 

(Fig. 3.7C). Cells treated with a non-targeting RNAi displayed robust downregulation 

of CD4 by wild-type Nef (in comparison to the Nef LL164,165AA mutant), whereas 

cells depleted of µ2 showed decreased downregulation. It should be noted that, in 

both S2 and HeLa cells, depletion of µ2 was only partially effective in blocking the 

effect of Nef on CD4. This may be due to an incomplete knockdown of the AP-2 

complex in RNA-treated cells or the activity of a partially redundant pathway. Given 

the data presented here, it is not possible to distinguish between these two possibilities 

(see Chapters 4 and 5 for additional work on this topic). In agreement with a previous 

study (Roeth et al., 2006), neither µ1A nor µ3A appeared to be required for the Nef-

induced downregulation of CD4 (Fig. 3.7C). A similar experiment was attempted in 

cells depleted of CHC, but these cells proved refractory to transient DNA transfection 

after RNAi treatment, and reproducible results could not be obtained. 

 
3.3.5 Physical interaction of Nef with AP-2 in a yeast three-hybrid system 

 
The RNAi experiments performed on Drosophila and human cells indicated that AP-2 

was involved in the Nef-mediated downregulation of CD4. However, it was unclear if 

AP-2 was directly involved in this process, as there was little evidence in the literature 

of an interaction between Nef and AP-2. Others had previously reported interactions 

of Nef with the γ-σ1 and δ-σ3 hemicomplexes of AP-1 and AP-3, respectively, using 

the yeast three-hybrid (Y3H) system (Janvier et al., 2003b). However, these authors 

had failed to detect an interaction between Nef and the analogous α-σ2 hemicomplex 

of AP-2. (Janvier et al., 2003b). Resequencing of the αC clone used in the Y3H assays 

revealed the presence of a single base-pair mutation that resulted in the substitution of 

a threonine residue for alanine at codon 131. Based on the three-dimensional crystal 

structure of AP-2 (Collins et al., 2002), the A131T mutation placed a hydrophilic side 

chain within the normally hydrophobic core of the α subunit. Such a mutation may be 

expected to have deleterious effects on the folding of the α subunit and stability of the 

α-σ2 hemicomplex. The mutated α residue was therefore changed back to alanine, 

and the Y3H assays were repeated. Nef was now observed to interact strongly with 

the α-σ2 hemicomplex (Fig. 3.8). Indeed, the interaction between Nef and α-σ2 
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FIG. 3.8: Yeast three-hybrid analysis of Nef-AP-2 interactions 

 
(A) Wild-type and mutant versions of NL4-3 Nef were expressed as GAL4BD fusion 

proteins from pBridge, along with either σ1 or σ2. The γ1 and αC subunits were 

expressed as GAL4AD fusion proteins from pGADT7. See Materials and Methods 

(Sections 2.4.1.1 and 2.4.2.2 and Figs. 2.4 and 2.5) for more details. 

 
(B) HF7c yeast cells co-transformed with pairs of pBridge and pGADT7 plasmids 

were inoculated on medium containing histidine (+His) or lacking histidine (–His) in 

the absence or presence of 3 mM 3-amino-1,2,4-triazole (3AT). Growth of yeast on 

the –His medium is indicative of an interaction between the fusion proteins, while 

growth on the –His +3AT medium is indicative of stronger interactions. 
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appeared to be as robust as the previously reported interaction between Nef and γ-σ1 

(Fig 3.8; Janvier et al., 2003b). The Nef dileucine motif (ENTSLL160-165 in NL4-3; 

ExxxLL consensus sequence in all HIV-1 Nef variants, where x is any amino acid) 

fits the canonical [D/E]xxxL[L/I] motif that has been shown to bind to AP complexes 

(Bonifacino and Traub, 2003). To determine whether the Nef dileucine motif also 

mediates binding to the α-σ2 hemicomplex, several ENTSLL residues were mutated 

to alanine, either alone or in combination (Fig. 3.8). Mutation of the acidic residue 

(E160A) caused a partial loss of binding (apparent in the presence of 3-amino-1,2,4-

triazole), while mutation of either the first leucine (L164A) or both leucines together 

(LL164,165AA) completely abrogated the interaction of Nef and α-σ2. Mutation of 

two of the intervening residues (T162A and S163A) had no effect. Interestingly, 

mutation of four other Nef functional motifs (G2A, WL57,58AA, EEEE62-65AAAA, 

and PP72,75AA, initially described in Section 3.3.2) also had no effect on the binding 

of Nef and α-σ2 (Fig. 3.8). These results indicated that the interaction of Nef with the 

α-σ2 hemicomplex is specifically dependent on the conserved residues of the Nef 

dileucine motif. Importantly, these residues are also required for Nef downregulation 

of CD4 in cells (Fig. 3.3, Fig. 3.4; Bresnahan et al., 1998; Greenberg et al., 1998a). It 

is also worth noting that the interaction of Nef with α-σ2 appears to be much stronger 

than a previously reported interaction of Nef and µ2 (Craig et al., 2000). 

 
3.3.6 Direct interaction of Nef and AP-2 in vitro 

 
Although Nef was shown to bind to α-σ2 by Y3H, this association may not be direct, 

as other proteins in the yeast nucleus could potentially contribute to the interaction. It 

was therefore deemed necessary to test the ability of Nef to bind AP-2 in vitro (all 

assays described in this section were performed by William Smith; see the Materials 

and Methods, Section 2.3 for further information on the reagents and experiments 

mentioned below). Others had recently demonstrated that the dileucine motifs of 

several proteins bound in vitro to a recombinant AP-2 “core” complex consisting of 

the N-terminal trunk domains of α and β2, plus the full-length µ2 and σ2 subunits 

(Höning et al., 2005). In addition, these authors showed that the dileucine binding site 

was not contained within the C-terminal domain of µ2 (Höning et al., 2005). Given 

these considerations, a similar AP-2 core construct (denoted AP-2CORE), lacking the 

C-terminal domain of µ2, was designed. The α trunk was expressed as a GST fusion 
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FIG. 3.9: Direct interaction of Nef and AP-2 detected in vitro 

 
Recombinant proteins were purified from bacteria, used in a GST pull-down assay, 

and then separated by SDS-PAGE (see Materials and Methods, Section 2.3). The 

separated proteins were then stained with Coomassie blue (A) and immunoblotted 

with an antibody targeting Nef (B). Proteins were run individually in lane 1 (NL4-3 

Nef LL164,165AA mutant), lane 2 (wild-type NL4-3 Nef), lane 3 (GST-AP-2CORE), 

and lane 4 (GST-ε-ear). Mutant and wild-type Nef proteins were incubated with GST-

ε-ear (lanes 5 and 6; negative control) or with GST-AP-2CORE (lanes 7 and 8). Wild-

type Nef is visible as an approximately 27-kDa band in lane 8 in both panels A and B. 

This experiment is representative of three trials with similar results. Molecular mass 

markers are visible on the left side of the Coomassie blue-stained gel. The masses (in 

kDa) are indicated. 
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FIG. 3.9

A

B

Performed by William Smith
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protein, while the β2 trunk was expressed as a hexahistidine (His6) fusion protein. The 

presence of these epitope tags facilitated the purification of the AP-2CORE complex 

from bacteria. Wild-type Nef and the dileucine mutant, Nef LL164,165AA, were also 

expressed as His6 fusion proteins and purified from bacteria. GST pull down assays 

using these recombinant proteins indicated that wild-type Nef, but not Nef LL164, 

165AA, bound to the AP-2CORE complex, as determined by Coomassie blue staining 

(Fig. 3.9A) and immunoblot analysis (Fig. 3.9B). In contrast, neither Nef construct 

interacted with the GST-ε ear fusion protein, which was used as a negative control 

(Fig. 3.9). These observations thus demonstrated a direct and specific interaction of 

Nef, through its dileucine motif, with the fully assembled AP-2CORE complex. 
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3.4 Discussion 
 
3.4.1 Chapter overview 
 
Recent studies have begun to exploit the ease and efficiency of RNAi screens in 

Drosophila S2 cells to identify host-cell factors that are required for infections by 

human pathogens such as bacteria and fungi (Agaisse et al., 2005; Derré et al., 2007; 

Elwell and Engel, 2005; Philips et al., 2005; Ramet et al., 2002; Stroschein-Stevenson 

et al., 2006). Here, the Drosophila S2 model system was used to investigate the 

molecular machinery involved in an aspect of viral pathogenesis: namely, the 

mechanism by which primate immunodeficiency viruses downregulate their own co-

receptor, CD4. An RNAi screen of 68 components of the protein trafficking 

machinery in S2 cells revealed that CD4 downregulation by HIV-1 Nef requires 

clathrin and the heterotetrameric AP-2 complex, both of which are components of 

protein coats involved in endocytosis from the plasma membrane of host cells. The 

requirement for AP-2 in this process was confirmed in human HeLa cells. In contrast, 

other heterotetrameric (i.e., AP-1 and AP-3) and monomeric (i.e., GGA) clathrin 

adaptors appear to be dispensable for CD4 downregulation. In addition, Y3H assays 

were used to demonstrate an interaction of Nef with a combination of the α and σ2 

subunits of AP-2. Finally, a GST pull-down assay showed a direct and specific 

interaction of Nef with the heterotetrameric AP-2CORE complex in vitro. Importantly, 

both the function and interaction of Nef in these assays exhibited a dependence on a 

dileucine sequence in the viral protein that had previously been identified as critical 

for CD4 downregulation (Bresnahan et al., 1998; Greenberg et al., 1998a). These 

observations thus support a model in which Nef links the cytosolic tail of CD4 to 

clathrin-AP-2 coats at the plasma membrane, leading to the endocytic removal of the 

receptor from the cell surface. 

 
3.4.2 Role of clathrin and AP-2 in Nef-mediated CD4 downregulation 

 
As the major devices for sorting proteins at different stages of the endocytic and 

secretory pathways, clathrin-AP coats have long been suspected to play a role in the 

downregulation of CD4 by Nef (Blagoveshchenskaya et al., 2002; Bresnahan et al., 

1998; Craig et al., 1998; Craig et al., 2000; Foti et al., 1997; Greenberg et al., 1997; 

Janvier et al., 2003a; Janvier et al., 2003b; Le Gall et al., 1998; Piguet et al., 1998). 

This hypothesis was affirmed by the discovery that downregulation is strictly depend-
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ent on a Nef dileucine sequence (Bresnahan et al., 1998; Greenberg et al., 1998) that 

fits the [D/E]xxxL[L/I] consensus motif for signals that mediate clathrin-dependent 

sorting events and interaction with clathrin-associated AP complexes (Bonifacino and 

Traub, 2003). Much work has since been done to elucidate the exact role of clathrin 

and the various AP complexes in the downregulation of CD4. However, the evidence 

has thus far been largely indirect, and different studies have produced conflicting 

results. 

 
Nef has previously been shown to localize to clathrin-AP-2 coated pits at the plasma 

membrane and to promote the recruitment of CD4 to such pits (Burtley et al., 2007; 

Foti et al., 1997; Greenberg et al., 1998a). This is consistent with the finding that Nef 

accelerates CD4 internalization from the cell-surface (Aiken et al., 1994; Rhee and 

Marsh, 1994). These observations led to the testing for an involvement of AP-2 in 

CD4 downregulation. Expression of an AP-2 µ2 subunit construct rendered incapable 

of binding YxxØ-type signals by the mutation of aspartate-176 to alanine (Nesterov et 

al., 1999) was found to block the HIV-1 Nef-dependent redistribution of CD4 to 

endosomes in HeLa cells (Blagoveshchenskaya et al., 2002). This finding is puzzling, 

however, because neither HIV-1 Nef nor CD4 have YxxØ-type signals; instead, 

downregulation depends on dileucine-containing sequences in both Nef and CD4 

(Aiken et al., 1994; Bresnahan et al., 1998; Coleman et al., 2005; Foti et al., 1997; 

Greenberg et al., 1998a). Since YxxØ and dileucine signals have different binding 

sites on AP-2 (Höning et al., 2005; Janvier et al., 2003b; Marks et al., 1996; Ohno et 

al., 1995; Rapoport et al., 1998; Kelly et al. 2008), it is unclear how such a mutant 

could have a “dominant-negative” effect on CD4 downregulation by Nef. Subsequent 

experiments showed that the depletion of µ2 by RNAi caused only a slight inhibition 

of Nef-mediated CD4 downregulation in HeLa cells and T cells (Jin et al., 2005; Rose 

et al., 2005). More complete inhibition required over-expression of a dominant-

negative mutant of Eps15, a regulator of endocytosis, in conjunction with RNAi-

mediated µ2 depletion in T cells (Jin et al., 2005). Attempts to demonstrate a clear 

physical connection between Nef and AP-2 have similarly yielded conflicting results. 

Yeast two-hybrid (Y2H) assays have been used to detect a very weak interaction of 

HIV-1 Nef with µ2 (Craig et al., 2000), whereas an interaction with the AP-2 β2 

(Greenberg et al., 1998a) subunit was observed by using a chemical cross-linking 

approach. Thus, the role of AP-2 in downregulation remained unclear from all of this 
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work. The data presented here – in which RNAi-mediated depletion of either clathrin 

or AP-2 is shown to cause a profound inhibition of CD4 downregulation by Nef, and 

in which Nef is shown to interact robustly and specifically with AP-2 – now provide 

strong support to the AP-2-dependent, endocytic model of Nef action on CD4. 

 
3.4.3 Recognition of dileucine signals by AP-2 

 
Upon correction of a point mutation in the AP-2 α construct used for previous Y3H 

assays (Janvier et al., 2003b), it was possible to detect a robust interaction between 

the α-σ2 hemicomplex and Nef. This interaction requires the co-expression of both 

AP-2 subunits and is not observed with either α or σ2 alone (data not shown). This 

could indicate that Nef simultaneously binds to both the α and σ2 subunits, or that the 

subunits remain properly folded only in the context of the hemicomplex. In addition, 

the Y3H interaction is strictly dependent on the Nef dileucine (LL164,165) sequence 

and partially dependent on the upstream acidic residue (E160). It is not dependent, 

however, on neighboring residues or other functional motifs within the viral protein. 

These requirements exactly match those already defined for CD4 downregulation 

(Bresnahan et al., 1998; Coleman et al., 2006; Greenberg et al., 1998a), indicating that 

the interactions are likely to be functionally relevant. These interactions are analogous 

to those of Nef with the γ-σ1 subunits of AP-1 and δ-σ3 subunits of AP-3 (Janvier et 

al., 2003b), suggesting that these three complexes bind to Nef in a similar manner. 

Moreover, like the corresponding AP-1 and AP-3 hemicomplexes, the AP-2 α-σ2 

hemicomplex would be expected to bind to other [D/E]xxxL[L/I]-type dileucine 

signals involved in internalization from the cell surface. The easy detection of these 

interactions with the Y3H system now opens the way for further studies on the 

mechanism of dileucine signal recognition. 

 
3.4.4 Do AP-1 and AP-3 participate in Nef-induced CD4 downregulation? 

 
In addition to the plasma membrane, HIV-1 Nef has been found to localize to an area 

of the cell that includes the Golgi complex (Janvier et al., 2003a; Mangasarian et al., 

1997), and to induce the retention of CD4 in the Golgi region (Brady et al., 1993, 

Mangasarian et al., 1997). Together, these observations supported a model in which 

the intracellular retention of newly synthesized or recycling CD4 contributes to the 

downregulation of the receptor (Brady et al., 1993; Mangasarian et al., 1997; Rose et 
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al., 2005). The area of the Golgi which Nef has been localized to includes the TGN 

and a subset of endosomes, both of which have clathrin coats containing AP-1 and 

AP-3. Indeed, a variety of biochemical assays have shown interactions of Nef with 

AP-1 and AP-3. Specifically, HIV-1 Nef has been found to interact with AP-1 and 

AP-3 from cell extracts by GST pull-down assays (Bresnahan et al., 1998, Janvier et 

al., 2003a; Janvier et al., 2003b), with the µ1A subunit of AP-1 and the µ3A subunit 

of AP-3 by Y2H assays (Craig et al., 2000; Le Gall et al., 1998), and with the γ-σ1 

and δ-σ3 hemicomplexes of AP-1 and AP-3, respectively, by Y3H assays (Janvier et 

al., 2003b). All of these interactions are dependent on the dileucine sequence of Nef, 

indicating that they may be functionally relevant for CD4 downregulation. However, 

RNAi-mediated depletion of AP-1 and AP-3 subunits has been reported to have no 

effect on the downregulation of CD4 by Nef in human T cells and astrocytes (Roeth et 

al., 2006), a finding that has now been replicated in S2 and HeLa cells. Therefore, it is 

unclear what roles – if any – the interactions of Nef with AP-1 and AP-3 might play 

in CD4 downregulation. It is possible that these complexes participate in the post-

endocytic routing of internalized CD4, but more work will be needed to either 

confirm or refute this hypothesis. Ideally, a Nef mutant capable of binding AP-1 and 

AP-3, but not AP-2, will be identified. Such a mutant would be useful in determining 

whether AP-1 and AP-3 contribute to the Nef-induced downregulation of CD4. 

 
3.4.5 Postendocytic fate of internalized CD4 

 
The downregulation of CD4 by Nef involves not only removal of the receptor from 

the cell surface, but also its targeting to lysosomes for eventual degradation (Piguet et 

al., 1999; Rhee and Marsh, 1994; Sanfridson et al., 1994). Thus, it is likely that Nef 

also functions to prevent the recycling of internalized CD4 to the plasma membrane 

and/or to promote its delivery to lysosomes, perhaps by following the MVB pathway. 

However, the depletion of various components of the endosomal recycling (e.g., 

EHD1, Rabenosyn-5, Arf6, Rab35, and Rabip4; Table 3.1) and MVB pathways (e.g., 

TSG101, STAM1, ALIX, and Vps25; Table 3.1) had no effect on the ability of Nef to 

decrease surface levels of CD4. This observation does not necessarily imply a lack of 

Nef involvement in these processes because of the following caveats: (i) the RNAi 

treatment may not have caused sufficient depletion of the target proteins to elicit an 

effect, (ii) the right target proteins may not have been picked for depletion, and (iii) 
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inhibition of recycling or lysosomal delivery may affect the intracellular distribution 

of the internalized proteins (as may also be the case for AP-1 and AP-3 depletion), 

without preventing the reduction in surface CD4 levels. To fully assess the role of 

these intracellular sorting events on CD4 downregulation, more components of the 

endosomal recycling and MVB pathways would have to be depleted; if possible, such 

depletions would also be verified by immunoblotting. In addition, the depleted cells 

should be subjected to confocal fluorescence microscopy, so that information on the 

intracellular localization of CD4 – and any changes therein – can be collected and 

analyzed. 

 
3.4.6 Distinct mechanisms for CD4 and MHC-I downregulation 

 
CD4 is one of several plasma membrane-associated receptors downregulated by Nef. 

Among the other cell surface proteins that undergo Nef-induced downregulation are 

certain MHC-I haplotypes (Greenberg et al., 1998b; Mangasarian et al. 1999; Roeth et 

al., 2004; Schwartz et al., 1996; Swann et al., 2001). The redistribution of these 

MHC-I receptors from the plasma membrane to intracellular vesicles is thought to 

allow HIV-1 to evade immune surveillance (Cohen et al., 1999; Collins et al., 1998). 

Strikingly, Nef-induced MHC-I downregulation appears to occur by a mechanism that 

is quite distinct from that of CD4 downregulation. Indeed, downregulation of MHC-I 

by Nef primarily involves the misrouting of newly synthesized molecules from the 

TGN to lysosomes (Kasper et al., 2005), and requires AP-1 but not AP-3 (Roeth et al., 

2004). This process is independent of the Nef dileucine sequence (Riggs et al., 1999) 

and instead depends on the acidic cluster (EEEE62-65) and the polyproline (PP72,75) 

motifs (Mangasarian et al., 1999; Piguet et al., 2000; Roeth et al., 2006). In addition, 

Nef promotes the association of MHC-I and AP-1 with sequence requirements that 

are identical to those required for downregulation (Mangasarian et al., 1999; Roeth et 

al., 2004; Williams et al., 2005). Thus, Nef is a multifunctional “connector” molecule 

capable of using distinct interfaces to link the cytosolic tails of different trans-

membrane  proteins to specific AP complexes. These alternative modes of interaction 

endow Nef with the ability to interfere with protein trafficking at different stages of 

the secretory and endocytic pathways.  
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Chapter 4:

A diacidic motif in HIV-1 Nef is a novel determinant of binding to AP-2
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4.1 Abstract 

 
Nef, an accessory protein of the primate immunodeficiency viruses, downregulates 

CD4 from the surface of infected cells. The ability of HIV-1 Nef to reduce the amount 

of CD4 at the cell surface is believed to increase the efficiency of viral replication, 

and contribute to progression of the disease. Current models suggest that Nef induces 

aberrant sorting of CD4 by binding to the cytoplasmic tail and physically linking it to 

specific components of the host-cell protein-trafficking machinery. This process is 

known to depend on the dileucine motif in the C-terminal flexible loop of Nef, which 

has been shown by others to mediate interactions between Nef and the AP-1 and AP-3 

clathrin adaptor protein complexes. This has led to the proposal that Nef recruits AP-1 

and AP-3 to intracellular membranes to redirect CD4 from the secretory pathway to 

lysosomes, where the receptor is degraded. In the previous chapter, Nef was found to 

interact with the plasma membrane-localized AP-2 complex in a dileucine-dependent 

manner. RNAi-mediated depletion of AP-2 inhibited the downregulation of CD4 by 

Nef, but similar knockdowns of AP-1 and AP-3 appeared to have no effect. Here, the 

identification of a second motif in the Nef flexible loop, required for the interaction 

with AP-2, is described. This motif is centered around an acidic pair that fits the 

consensus sequence [D/E]D. Mutation of either of these residues had no effect on the 

binding of Nef to AP-1 or AP-3; however, even minor modifications of the [D/E]D 

site disrupted the Nef-AP-2 interaction and prevented Nef from downregulating CD4. 

Interestingly, the dileucine motif of the endogenous protein tyrosinase was found to 

bind AP-2 independently of the diacidic motif, both in its native context and in the 

context of full-length Nef. Collectively, these results identify a novel type of AP-2 

interaction determinant, support the notion that AP-2 is the key clathrin adaptor for 

the downregulation of CD4 by Nef, and reveal a previously unrecognized diversity 

among dileucine sorting signals. 
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4.2 Introduction 
 
In the previous chapter, RNAi experiments in Drosophila and human cells confirmed 

the role of AP-2 in the Nef-mediated downregulaton of CD4. Yeast three-hybrid and 

GST pull-down experiments were then used to demonstrate a direct, robust interaction 

between Nef and AP-2. This interaction was found to depend on the dileucine motif in 

the C-terminal flexible loop of Nef, which has been shown by others to be crucial for 

CD4 downregulation (Section 1.8; Bresnahan et al., 1998; Craig et al., 1998; Craig et 

al., 2000). In this chapter, the Nef flexible loop will be examined in greater detail to 

determine if it contains any other motifs that are required for AP-2 binding and CD4 

downregulation. 

 
The Nef flexible loop (which is comprised of residues 154 to 180 in the HIV-1 NL4-3 

variant) sits between the final two strands of a β-sheet located in the Nef core, and is 

entirely exposed to the surrounding solvent (see Fig. 1.7). In addition to the dileucine 

sequence, three distinct motifs in the flexible loop have previously been implicated in 

the modulation of CD4 expression. All three of these motifs (EE154,155, DD174,175, 

and ERE177-179) are characterized by the presence of polar residues. Substitution of 

these residues with alanine, a non-polar amino acid, significantly decreases the ability 

of Nef to downregulate CD4 (Aiken et al., 1996; Piguet et al., 1999). Immunoblotting 

indicates that mutation of the charged residues does not affect stability of Nef, which 

is consistent with their position on a solvent-exposed loop (Aiken et al., 1996; Geyer 

et al., 1999; Grzesiek et al., 1996). 

 
Instead, the alanine substitutions described above are believed to interfere with CD4 

downregulation by disrupting electrostatic interactions between Nef and endogenous 

proteins (Aiken et al., 1996; Gibbs and Zoller, 1991). The EE154,155 motif has been 

suggested to bind COPI, which may promote the transport of CD4 from endosomes to 

lysosomes (for more information on this motif and the postendocytic fate of CD4, see 

Sections 3.4.5 and 6.4.2; also see Benichou et al., 1994; Piguet et al., 1999; Schaefer 

et al., 2008). The DD174,175 motif, on the other hand, has been implicated in binding 

to several host-cell proteins: the c-Raf1 kinase, the Eed Polycomb Group protein, and 

the V1H subunit of the vacuolar ATPase (Hodge et al., 1998; Lu et al., 1998; Witte et 

al., 2004). V1H has also been shown to interact with the µ2 subunit of AP-2, leading 

to the proposal that it acts as a bridge between Nef and AP-2 (Geyer et al., 2002). The 
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ERE177-179 motif, unlike the other two polar motifs in the Nef flexible loop, has not 

yet been linked to any protein interactions. 

 
In the next section, each residue in the loop – including those that comprise the three 

polar motifs mentioned above – will be mutated to alanine to determine whether they 

contribute to the binding of Nef and AP-2. Special attention will be paid to D174 and 

D175, as these residues have been suggested by others to participate in AP-2 binding 

in an indirect fashion, via the V1H intermediary protein (Geyer et al., 2002; Lu et al., 

1998). However, data presented in the previous chapter shows that Nef interacts with 

AP-2 directly; yeast three-hybird and in vitro assays will therefore be used to evaluate 

whether the D174 and D175 residues are required for this direct binding. Results from 

these experiments will be correlated with functional data measuring the role of D174 

and D175 in CD4 downregulation. Finally, yeast three-hybrid assays will also be used 

to ascertain whether D174 and D175 are involved in the interaction of Nef with AP-1 

and AP-3, and whether diaspartic acid motifs mediate the binding of adaptins in other 

contexts, such as the cytoplasmic tail of tyrosinase. Collectively, the assays performed 

in this chapter should provide a clearer picture of the AP-2 binding surface on Nef, an 

improved understanding of the CD4 downregulation mechanism, and new insights on 

adaptin-cargo interactions. 
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4.3 Results 

 
4.3.1 Identification of a diacidic motif required for the interaction of HIV-1 Nef 

with the AP-2 α-σ2 hemicomplex 

 
The Nef dileucine motif (ENTSLL160-165 in the HIV-1 NL4-3 strain) is contained 

within a 27-residue C-terminal flexible loop of the protein (residues 154-180 in NL4-

3; see Fig. 1.7), and is highly conserved among all strains of HIV and SIV (Leitner et 

al., 2005; Munch et al., 2005; O’Neil et al., 2006). Such a high degree of conservation 

is consistent with the critical role the dileucine motif plays in CD4 downregulation 

and AP-2 binding (see Fig. 3.3, 3.4, 3.8, and 3.9; Bresnahan et al., 1998; Craig et al., 

1998; Doray et al., 2007; Greenberg et al., 1998a; Janvier et al., 2003b; Rose et al., 

2005). Analysis of 1,290 Nef sequences catalogued in the Los Alamos HIV sequence 

database revealed that this conservation extends beyond the dileucine motif, to 

include most of the residues within the C-terminal flexible loop (Fig. 4.1B). To 

determine whether these residues were also important for binding AP-2, 26 of the 27 

loop residues were mutated to alanine in the context of full-length Nef (residue 156 is 

a naturally occurring alanine). These mutants were then tested for their ability to 

interact with AP-2 in the Y3H assay. Of the four subunits of AP-2, an assembly of 

two, α-σ2, was shown in the previous chapter to be sufficient for the interaction with 

Nef (see Fig. 3.8), thus enabling the use of the Y3H system. As expected, mutation of 

either L164 or L165 of the Nef dileucine motif completely abrogated binding of α-σ2 

(Fig. 4.1C; see also Fig. 3.8). Mutation of the E160 residue, which is part of the 

consensus ExxxLL sequence, caused a partial loss of binding (Fig. 4.1C), as shown 

previously (see Fig. 3.8). Interestingly, mutation of several residues in the C-terminal 

half of the loop also caused defects in α-σ2 binding, with varying degrees of severity 

(Fig. 4.1C). The strongest defects were observed for mutants with alterations of the 

acidic residues D174 and D175, which exhibited no binding to α-σ2 (Fig. 4.1C). 

Mutation of several other residues in this region, including L170, H171, G172, M173, 

P176, R178, E179, and V180 caused partial binding defects (Fig. 4.1C). The charged 

residues in the C-terminal half of the loop have previously been implicated in CD4 

downregulation (Aiken et al., 1996; Iafrate et al., 1997) and localization of Nef to 

clathrin-coated pits at the plasma membrane (Greenberg et al., 1997). In particular, 

the DD174,175AA and ERE177-179AAA mutants have been shown to be null for 
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CD4 downregulation (Aiken et al., 1996; Greenberg et al., 1997). The Y3H results 

presented here suggest that the requirement of these residues for Nef function may be 

due to their roles in mediating the interaction with AP-2. Because mutation of D174 

and D175 caused the most severe defects in binding AP-2, subsequent experiments 

focused on these two residues (referred to below as the “diacidic motif”). 

 
4.3.2 The diacidic motif is required for direct binding of HIV-1 Nef to AP-2 

 
To determine if the diacidic motif was required for the direct interaction of Nef with 

AP-2, in vitro experiments were performed (by William Smith) using recombinant 

proteins produced in bacteria. These experiments were carried out using the AP-2CORE 

complex, which lacks the C-terminal domain of the µ2 subunit (see Section 2.3.1.3 

for further information on this construct). In the previous chapter, pull-down assays 

demonstrated that the GST-tagged AP-2CORE complex interacted with Nef in a manner 

that was dependent on the Nef dileucine motif (see Fig. 3.9). Additional pull-down 

assays showed that the AP-2CORE complex was able to bind wild-type Nef, but not the 

Nef DD174,175AA mutant, as detected by SDS-PAGE followed by Coomassie blue 

staining (Fig. 4.2A, top) and immunoblot analysis (Fig. 4.2A, bottom). Under the 

same conditions, there was negligible binding of both wild-type and mutant Nef to 

GST-ε-ear (Fig. 4.2A), confirming the specificity of the Nef-AP-2 interaction. These 

results were corroborated by surface plasmon resonance (SPR) spectroscopy, which 

showed binding of untagged AP-2CORE to wild-type Nef but not to the DD174,175AA 

mutant (Fig. 4.2B). The affinity of AP-2CORE for wild-type Nef, as calculated from the 

SPR experiments, was 6 + 1 µM (n = 3). The GST pull-down and SPR assays thus 

demonstrated that the diacidic motif is required for the direct interaction of Nef with 

AP-2. 

 
4.3.3 Binding of HIV-1 Nef to AP-2 is dependent on electrostatic interactions 

 
The requirement of the diacidic motif, as well as other charged residues (such as E160 

and ERE177-179), for Nef binding to AP-2 suggested that electrostatic interactions 

might be important contributors to the overall binding affinity. If so, binding of the 

two proteins should be sensitive to high salt concentrations. To test this prediction, 

GST pull-down assays were carried out (by William Smith) to examine the binding of 

Nef to AP-2CORE in the presence of increasing concentrations of NaCl (Fig. 4.2C). 
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The interaction did, indeed, appear to be salt sensitive, as a dramatic loss of binding 

between Nef and AP-2CORE was observed at NaCl concentrations above physiological 

levels (150 mM). This indicated that electrostatic interactions are a driving factor in 

the formation of a Nef-AP-2 complex. 

 
4.3.4 The diacidic motif fits a [D/E]D consensus sequence and is not required for 

interaction with the AP-1 γ-σ1 or AP-3 δ-σ3 hemicomplexes 

 
To further characterize the specific requirements for each residue of the Nef diacidic 

motif, the aspartate residues were mutated – either individually or in combination – to 

alanine, glutamate, and asparagine. The effect of these mutations on the ability of Nef 

to bind the AP-2 α-σ2 hemicomplex was then examined using the Y3H system (Fig. 

4.3B, middle panel). The single or double mutation of Nef D174 and D175 to alanine 

completely abolished the interaction with α-σ2. The isoelectric D174E mutation, on 

the other hand, had no effect on the ability of Nef to bind α-σ2. This result correlates 

with the sequence conservation of Nef, as position 174 is nearly always occupied by 

either D or E (46.0% D, 52.2% E among all HIV-1 Nef variants; see Fig. 4.1B). In 

contrast, D175E displayed severely reduced binding to α-σ2. This is in accordance 

with the almost exclusive occurrence of D at this position (98.9% D among all HIV-1 

Nef variants; see Fig. 4.1B). The isosteric D174N and D175N substitutions resulted in 

elimination and reduction of Nef binding to α-σ2, respectively. Thus, the Nef diacidic 

motif can be generally defined as [D/E]D, with N as a weak substitute for the second 

position. Remarkably, none of the mutations in the diacidic motif had any effect on 

the interaction of Nef with the homologous AP-1 γ-σ1 (Fig. 4.3B, top panel) and AP-

3 δ-σ3 (Fig. 4.3B bottom panel) hemicomplexes. Mutation of the Nef dileucine motif, 

however, disrupted binding to all three hemicomplexes (Fig 4.3; see also Fig. 3.8 and 

Janvier et al., 2003b). Therefore, the interaction of Nef with AP-2 depends on both 

the dileucine and diacidic motifs, whereas the interaction with AP-1 and AP-3 is 

exclusively dependent on the dileucine motif. This strongly suggests that the Nef 

diacidic motif is conserved for the purpose of binding AP-2. 

 
4.3.5 Correlation between the requirements of the Nef diacidic motif and CD4 

downregulation 

 
In order to assess whether – in addition to binding AP-2 – the Nef diacidic motif was 
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required for CD4 downregulation, the activity of several of the Nef mutants described 

above was observed in transfected HeLa cells by immunofluorescence (Fig. 4.4) and 

flow cytometry (Fig. 4.5). In agreement with previously published work (Aiken et al., 

1996; Iafrate et al., 1997), the Nef DD174,175AA mutant, like the Nef LL164,165AA 

mutant, failed to downregulate CD4 in both assays (Fig. 4.4 and 4.5A and B). The 

individual mutation of D174 or D175 to alanine also significantly impaired the ability 

of Nef to downregulate CD4, as measured by flow cytometry (Fig 4.5A and B). 

Remarkably, mutation of D174 to glutamate had no effect on CD4 downregulation, 

while mutation of D175 to glutamate abolished downregulation in both assays (Fig. 

4.4 and 4.5A and B). Immunoblot analysis showed that all constructs were expressed 

at similar levels (Fig. 4.5B), and consistent with a previous report (Stoddart et al., 

2003), mutation of the diacidic motif did not affect the ability of Nef to downregulate 

the MHC-I receptor in HeLa cells, as observed by flow cytometry (assays performed 

by Wolf Lindwasser, data not shown). Therefore, the failure of some Nef mutants to 

downregulate CD4 was not due to either a lack of expression or misfolding of the 

viral protein. Rather, the ability of the Nef diacidic mutants to downregulate CD4 

corresponded closely to their affinity for α-σ2 in the Y3H experiments (see Fig. 4.3), 

which provides further evidence for a causal relationship between Nef-AP-2 binding 

and CD4 downregulation. 

 
Although intracellular retention and enhanced endocytosis have both been proposed 

as potential mechanisms for the downregulation of CD4 by Nef (see Fig. 3.6 and 3.7; 

Aiken et al., 1994; Foti et al., 1997; Greenberg et al. 1998a; Greenberg et al., 1998b; 

Jin et al., 2005; Mangasarian et al., 1997; Rhee et al., 1994; Rose et al., 2005), only 

the latter pathway is consistent with a role for AP-2 in this process. To explore the 

correlation between Nef-AP-2 binding and CD4 downregulation in more detail, the 

rate at which CD4 was endocytosed from the plasma membrane was measured (in 

collaboration with Wolf Lindwasser) in the absence and presence of wild-type and 

mutant forms of Nef (Fig. 4.5C). Compared to an empty vector control, wild-type Nef 

increased the rate of CD4 internalization, but the Nef LL164,165AA dileucine mutant 

did not (Fig. 4.5C). Importantly, the Nef DD174,175AA diacidic mutant also failed to 

increase the rate of CD4 endocytosis above basal levels (Fig. 4.5C). Thus, both the 

dileucine and diacidic motifs of Nef are required for the enhanced endocytosis and 

downregulation of CD4. 
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4.3.6 Distinct requirements of different dileucine motifs for the contribution of 

diacidic motifs 

 
Nef is one of several proteins that, in addition to a dileucine motif, contains a diacidic 

motif in its cytoplasmic domain. Another example is the enzyme tyrosinase, which is 

a type I transmembrane protein involved in the synthesis of melanin in melanosomes. 

Within the cytoplasmic tail of mouse tyrosinase (residues 499-533; Fig. 4.6B), the 

dileucine motif (ERQPLL; residues 513-518) is followed by a diacidic motif (DD; 

residues 522 and 523). The tyrosinase tail has previously been shown to bind to the 

AP-1 γ-σ1 and AP-3 δ-σ3 hemicomplexes using the Y3H system (Theos et al. 2005). 

Here, the Y3H system was used to test the ability of the wild-type tyrosinase tail, as 

well as the LL517,518AA and DD522,523AA mutants, to bind to the AP-2 α-σ2 

hemicomplex. These experiments revealed that the tyrosinase tail interacted with α-

σ2, and that this interaction was completely dependent on the dileucine motif, but 

only slightly dependent on the diacidic motif (Fig. 4.6C, left panel). This latter result 

is in contrast with the absolute requirement of the diacidic motif for the interaction of 

Nef and α-σ2. However, it is possible that the dileucine motif of Nef might be weaker 

than that of tyrosinase, necessitating the additional contribution of the diacidic motif 

for detectable binding. To test this hypothesis, tyrosinase tail constructs were made in 

which the ERQPLL sequence was replaced by the Nef ENTSLL sequence, and vice 

versa. Unlike the wild-type tyrosinase tail, tyrosinase with the ENTSLL sequence was 

not able to bind α-σ2 (Fig. 4.6C, right panel). Importantly, Nef ERQPLL interacted 

with α-σ2 in a manner that was largely independent of the diacidic motif (Fig. 4.6C, 

right panel). Because swapping the dileucine signals involved replacement of only the 

intervening NTS and RQP residues (i.e., the X positions in the [D/E]xxxL[L/I] 

consensus sequence), the data shown here suggest that these residues are important 

contributors to the interaction between dileucine motifs and α-σ2. These experiments 

thus highlight a previously unrecognized diversity among [D/E]xxxL[L/I] sorting 

signals, some of which require additional determinants for binding AP-2.  
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4.4 Discussion 
 
4.4.1 Chapter overview 
 
The results shown in this chapter provide evidence for the existence of a novel, 

conserved diacidic motif within the C-terminal flexible loop of HIV-1 Nef. The 

diacidic motif (DD174,175 in the NL4-3 strain and [D/E]D in general) cooperates 

with the previously characterized dileucine motif (ENTSLL160-165 in NL4-3 and 

ExxxLL in general) to bind the AP-2 complex. Indeed, both the diacidic and dileucine 

motifs were required for the interaction of Nef and AP-2 in Y3H, GST pull-down, and 

SPR assays. Functional analysis of the diacidic motif revealed that it was essential for 

the downregulation of CD4 by Nef, as determined by confocal microscopy and flow 

cytometry. The diacidic motif, however, was not required for the interaction of Nef 

with the AP-1 and AP-3 complexes, nor was it required for the dileucine motif of 

tyrosinase to bind AP-2. Together, these results provide strong support for the 

proposed role of AP-2 in the Nef-mediated downregulation of CD4, and reveal 

qualitative differences among dileucine sorting signals and their binding sites on AP 

complexes. 

 
4.4.2 The Nef diacidic motif is needed for AP-2 binding and CD4 downregulation  
 

The Nef DD174,175 residues were first ascribed a role in CD4 downregulation more 

than a decade ago (Aiken et al., 1996). In that study, the authors identified several 

clusters of conserved, charged residues within Nef. They then mutated those residues 

to alanine, and observed the effect of those substitutions on the stability and function 

of the viral protein. Mutation of the aspartate residues did not reduce the stability of 

the protein when compared to the expression of wild-type Nef; however, the DD174, 

175AA mutant was completely null for CD4 downregulation. Others subsequently 

demonstrated that the failure of Nef DD174,175AA to downregulate CD4 was not due 

to misfolding of the viral protein, as the mutant was capable of reducing the amount 

of MHC-I on the cell surface (Wolf Lindwasser, data not shown; Stoddart et al., 

2003). Several years after the Nef DD174,175 residues were reported to be essential 

for the downregulation of CD4, a research group claimed that these residues were 

important for binding the V1H subunit of the vacuolar ATPase (Lu et al., 1998). The 

same group later suggested that, because V1H binds the µ2 subunit of AP-2, the Nef 

DD174,175 residues were important for linking the viral protein to the endocytic 
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machinery of the host cell (Geyer et al., 2002). This led to a model in which Nef was 

thought to bind to CD4 at the plasma membrane, and then promote the internalization 

of the receptor by interacting with V1H directly and AP-2 indirectly (Geyer et al., 

2002; reviewed in Geyer et al., 2001). 

 
In the previous chapter, Nef was found to bind directly to a combination of the α and 

σ2 subunits of AP-2 (Fig. 3.7 and 3.8). In this chapter, several assays were used to 

show that this interaction depended on the Nef DD174,175 residues (Fig. 4.1, 4.2, and 

4.3). Importantly, the ability of Nef to bind AP-2 was correlated with the amino acids 

most often found in that region of the viral protein (Fig. 4.1 and 4.3). This is best 

exemplified by the observation that glutamate – which is commonly found at position 

174, but virtually never found at position 175 in HIV-1 Nef alleles – was only able to 

substitute for the first aspartate in Nef-AP-2 binding assays (Fig. 4.3). Two different 

functional assays also showed that the Nef D174E mutant, but not the D175E mutant, 

was able to downregulate CD4 (Fig. 4.4 and 4.5). Thus, it appears likely that the Nef 

diacidic motif is conserved for the purpose of directly binding AP-2, which the viral 

protein uses to accelerate the endocytosis of CD4 (Fig. 4.5C). 

 
Compared to the V1H-dependent model of Nef function described earlier (Geyer et 

al., 2002), these results provide a simpler, more straightforward explanation for the 

strict conservation of the diacidic motif and its role in CD4 downregulation. However, 

a role for V1H in the Nef-mediated targeting of CD4 to lysosomes cannot be ruled out 

entirely. Indeed, it is possible that Nef binds to V1H after CD4 is internalized from 

the cell surface and the AP-2-clathrin coat is lost. An interaction between Nef and 

V1H at this stage could facilitate the assembly of functional vacuolar ATPases on 

CD4-positive endosomes, and promote acidification of these compartments prior to 

their eventual fusion with lysosomes (for reviews on vacuolar ATPases, see Nishi and 

Forgac, 2002; Marshansky and Futai, 2008). Additional experiments will have to be 

carried out to determine if Nef and V1H cooperate in this manner. 

 
4.4.3 The AP-1 and AP-3 complexes are largely dispensable for the Nef-mediated 

downregulation of CD4 

 
Although Nef has long been suspected to promote the downregulation of CD4 by an 

endocytic mechanism (Aiken et al., 1994; Rhee et al., 1994), more recent studies have 
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suggested that the AP-1 and AP-3 complexes, which mediate distinct protein sorting 

events, could be involved in the process (Bresnahan et al., 1998; Craig et al., 2000; 

Janvier et al., 2003b; Rose et al., 2005). The conclusions drawn from these studies 

were largely based on the observation that Nef binding to AP-1 and AP-3 depended 

on a dileucine motif in the viral protein, and that this motif was also required for CD4 

downregulation (Bresnahan et al., 1998; Craig et al., 2000; Janvier et al., 2003b; Rose 

et al., 2005). One of the studies, however, did report the delayed transport of newly 

synthesized CD4 to the cell surface in the presence of Nef (Rose et al., 2005). 

 
At least two major factors may have led those authors to include AP-1 and AP-3 in 

their models of Nef-induced CD4 downregulation. First, Nef was shown to interact 

with AP-1 and AP-3 (Bresnahan et al., 1998; Craig et al., 2000; Janvier et al., 2003b) 

several years before assays capable of detecting the robust binding of Nef to AP-2 

were developed (Fig. 3.8 and 3.9). Second, prior to the identification of the diacidic 

motif (Fig. 4.1, 4.2, and 4.3), it was not possible to genetically separate the binding of 

Nef to the various AP complexes. Mutation of the previously mentioned Nef dileucine 

motif, for instance, not only inhibited CD4 downregulation, but also disrupted binding 

to AP-1, AP-2, and AP-3 (Fig. 3.3, 3.8, and 3.9; Bresnahan et al., 1998; Craig et al., 

2000; Janvier et al., 2003b). Thus, it was difficult to ascribe the effect of this mutation 

on the ability of Nef to bind any one AP complex in particular. The RNAi-mediated 

depletion of adaptin subunits indicated that AP-2 was used by Nef to downregulate 

CD4 (Fig. 3.7; Jin et al., 2005), but the potential contribution of AP-1 and AP-3 to 

this process could not be ruled out, as residual amounts of these complexes may have 

been sufficient for Nef function (Fig. 3.7). 

 
Experiments described in this chapter have identified, for the first time, mutants of 

Nef that are capable of interacting with AP-1 and AP-3, but not with AP-2 (Fig. 4.3). 

These mutants have substitutions in the conserved diacidic motif of the viral protein 

that profoundly inhibit the downregulation of CD4 (Fig. 4.3, 4.4, and 4.5). Therefore, 

the ability of Nef to downregulate CD4 appears to be dependent on its interaction 

with AP-2, and independent of its interactions with AP-1 and AP-3. From the data 

presented here, it is clear the Nef relies mainly on AP-2 to redistribute CD4 from the 

cell surface to intracellular vesicles (Fig. 4.4 and 4.5). However, it is still possible that 

Nef recruits AP-1 and/or AP-3 in support of this primary pathway. Nef could, for 
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example, use these other adaptors to either target CD4 from endosomes to lysosomes, 

delay the recycling of CD4 back to the cell surface, or route a small proportion of 

newly synthesized CD4 from the TGN to degradative compartments, as proposed 

earlier (Rose et al., 2005). To determine if this is the case, it will be important to 

measure how much CD4 is degraded in cells expressing a Nef diacidic mutant that is 

incapable of interacting with AP-2, such as DD174,175AA (Fig. 4.2 and 4.3). This 

experiment, and others like it, should provide an indication of whether AP-1 and AP-3 

are invovled in the downregulation of CD4, and could shed light on the mechanism 

Nef uses to target CD4 to lysosomes after the receptor is internalized from the plasma 

membrane. 

 
4.4.4 Analysis of the diacidic motif yields insights on the binding of dileucine 

signals to AP complexes 

 
As mentioned above, the Nef dileucine motif (ENTSLL) is able to mediate binding to 

AP-1 and AP-3 independently of the diacidic motif ([D/E]D), while both motifs are 

required for binding to the homologous AP-2 complex (Fig. 4.3). This immediately 

suggests that the dileucine binding sites on AP-1 and AP-3 differ, at least slightly, 

from that on AP-2, as these complexes have varying affinities for the same ligand. 

This also indicates that the binding site for the Nef diacidic motif is specific to AP-2 

(a topic explored further in Chapter 5). 

 
The Nef dileucine and diacidic motifs probably make direct, simultaneous contact 

with the surface of the AP-2 α-σ2 hemicomplex (Fig. 3.8, 3.9, 4.1, 4.2, and 4.3). The 

properties of the dileucine and diacidic binding sites on α-σ2 are most likely quite 

distinct, as the key residues in these motifs have bulky hydrophobic and charged side 

chains, respectively. Consistent with an important contribution of electrostatic forces 

to the overall strength of the interaction, binding of Nef and AP-2 is inhibited in vitro  

by high salt concentrations (Fig. 4.2C). Interestingly, the observation that increasing 

the ionic strength of the solution disrupts the Nef-AP-2 interaction may indicate that 

charged residues (e.g., the diacidic motif) contribute more to the binding affinity than 

do hydrophobic residues (e.g., the dileucine motif). 

 
Similar to Nef, the endogenous protein tyrosinase contains a dileucine sorting signal 

(ERQPLL) upstream of a pair of acidic residues (DD). These features make tyrosinase  
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an intriguing protein to study in parallel with Nef. Binding assays revealed that the 

diacidic motif was required for the interaction of Nef and AP-2, but was not required 

for the interaction of tyrosinase and AP-2 (Fig. 4.2, 4.3, and 4.6). One reason for this 

discrepancy may be that the tyrosinase dileucine motif is a stronger ligand than the 

Nef dileucine motif. In support of this idea, substitution of the Nef ENTSLL sequence 

for the ERQPLL sequence in the tyrosinase cytosolic tail abrogated binding to AP-2 

(Fig. 4.6). Conversely, the replacement of ERQPLL with ENTSLL in the context of 

full-length Nef allowed the viral protein to bind AP-2 independently of the diacidic 

motif (Fig. 4.6). Thus, the tyrosinase dileucine motif does appear to have a greater 

affinity for AP-2 than the Nef dileucine motif. Since both motifs contain a glutamate 

and a pair of leucines, the differences in affinity must be due to the intervening 

residues (i.e., RQP and NTS). Consistent with this conclusion, a proline immediately 

upstream of the leucine pair has been found to induce more rapid endocytosis than an 

alanine at the same position (Patrycja Kozik and Margaret Robinson, personal com-

munication). 

 
Compared to the tyrosinase dileucine motif, the Nef dileucine motif does seem to be a 

weaker ligand for AP-2 binding. The diacidic motif may be required to compensate 

for this weakness and increase the avidity of Nef for AP-2. Given the reliance of Nef 

on AP-2 for CD4 downregulation, however, it is puzzling that the viral protein has not 

adopted a stronger dileucine motif. One possibility is that bivalent binding causes a 

conformational change in Nef that is required for its effect on CD4. Alternatively, the 

ENTSLL motif may be conserved because some residues are involved in functions 

other than AP-2 binding and CD4 downregulation. Some evidence for this already 

exists. Mutation of the NTS portion of the dileucine motif has recently been shown to 

have deleterious effects on the Nef-dependent upregulation of DC-SIGN and MHC 

class II-associated invariant chain (Coleman et al., 2006), despite the fact that these 

residues play little, if any, role in CD4 downregulation (Coleman et al., 2006; Janvier 

et al., 2003b). 

 
4.4.5: The diacidic motif: specific to Nef or broadly applicable? 

 
The diacidic motif, found in all HIV-1 Nef variants, represents a novel class of AP-2 

cargo interaction determinant, in addition to the already well-characterized dileucine- 

and tyrosine-based sorting signals (reviewed in Bonifacino and Traub, 2003). In some 
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ways, this multiplicity of binding determinants is reminiscent of the endoplasmic 

reticulum-associated COPII complex, which can also interact with diverse signals 

through different interaction surfaces (reviewed in Barlowe, 2003). The Nef diacidic 

motif differs from most dileucine- and tyrosine-based signals, though, in that it does 

not appear capable of binding AP-2 on its own (Fig. 4.2 and 4.3). It remains to be 

seen whether acidic motifs from other proteins mediate interactions with AP-2. A pair 

of acidic residues in the cytosolic tail of tyrosinase, for instance, does not significantly 

contribute to AP-2 binding (Fig. 4.6). However, the cytosolic tails of many trans-

membrane proteins have acidic clusters that are believed to function as sorting signals 

(Bonifacino and Traub, 2003). The acidic cluster of furin, in particular, has previously 

been found to mediate endocytosis as well as TGN localization (Vorhees et al., 1995), 

and is therefore a good candidate for interaction with AP-2. Alternatively, the binding 

of a diacidic motif with AP-2 might be particular to Nef. In that case, the interaction 

could be targeted for disruption by pharmacological agents in order to moderate the 

pathogenic effects of Nef. 
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Chapter 5:

A basic patch on α-adaptin is required for binding of HIV-1 Nef and

cooperative assembly of a CD4-Nef-AP-2 complex
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5.1 Abstract 
 
A critical function of the HIV-1 Nef protein is the downregulation of CD4 from the 

surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to 

the endocytic machinery of the host-cell, thereby increasing the rate at which CD4 is 

internalized. In support of this model, weak binary interactions between CD4, Nef, 

and the endocytic clathrin adaptor complex, AP-2, have been reported. In the previous 

two chapters, dileucine and diacidic motifs in the C-terminal flexible loop of Nef 

were shown to mediate binding to a combination of the α and σ2 subunits of AP-2. In 

this chapter, the identification of a potential binding site for the Nef diacidic motif on 

α-adaptin is described. This site is comprised of two basic residues, lysine-297 and 

arginine-340, on the α-adaptin trunk domain. Mutation of these residues specifically 

inhibits the ability of Nef to bind AP-2 and downregulate CD4. In addition, evidence 

presented here indicates that the diacidic motif and the basic patch on α-adaptin are 

both required for the cooperative assembly of a CD4-Nef-AP-2 tripartite complex. 

This cooperativity explains how Nef is able to efficiently downregulate CD4 despite 

weak binary interactions between components of the tripartite complex. 
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5.2 Introduction 

 
In the previous chapter, the Nef diacidic motif (which is comprised of the DD174,175 

residues in the HIV-1 NL4-3 variant) was found to be essential for AP-2 binding and 

CD4 downregulation (Fig. 4.1, 4.2, 4.4, and 4.5). Importantly, the diacidic motif was 

not required for the interaction of Nef with AP-1 and AP-3 (Fig. 4.3), which suggests 

that these clathrin adaptors contribute less to the modulation of CD4 expression than 

AP-2. Overall, these results are consistent with the RNAi data presented earlier (Fig. 

3.5 and 3.7), and support the endocytic model of Nef-mediated CD4 downregulation 

(see Section 1.8.2). According to this model, Nef physically links the cytosolic tail of 

CD4 to AP-2, thereby increasing the rate at which the receptor is internalized from the 

plasma membrane. 

 
The primary focus of this chapter will be to identify a binding site for the Nef diacidic 

motif on the surface of AP-2. Although a wide variety of motifs, belonging to a large 

number of proteins, have been found to interact with the appendage domains of α and 

β2 (reviewed by Schmid and McMahon, 2007), in vitro experiments indicate that the 

diacidic motif binds to the AP-2 core (Fig. 4.2; for a detailed description of the AP-2 

core, see Fig. 1.10 and Section 1.6). Three other cargo motifs are known to bind to the 

AP-2 core: phosphatidylinositol phospholipid (PIP) headgroups, tyrosine signals, and 

dileucine signals. Negatively-charged PIP headgroups interact with basic patches on 

the α-trunk and the C-terminus of µ2, and are probably responsible for targeting AP-2 

to the plasma membrane (Chang et al., 1993; Collins et al., 2002; Gaidarov and Keen, 

1999; Gaidarov et al., 1996). Tyrosine-based signals, which are found in the cytosolic 

domains of many transmembrane proteins, also bind to the C-terminus of µ2 (Ohno et 

al., 1995; Owen and Evans, 1995). Dileucine-based signals, another motif commonly 

found in transmembrane proteins, interact with the α-σ2 region of the AP-2 core, but 

the specific binding site of these signals is still unknown (Fig. 3.8 and 3.9). 

 
In the next section, a directed mutagenesis strategy will be used in concert with yeast 

three-hybrid assays to identify a candidate binding site for the Nef diacidic motif on 

the AP-2 core. Once this site is identified, it will be further evaluated using GST pull-

downs, and its contribution to CD4 downregulation will be assessed using functional 

assays. Later, a novel yeast four-hybrid system will be used to test whether CD4, Nef, 
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and AP-2 interact simultaneously to form a tripartite complex. The formation of this 

complex – a critical component of the endocytic model of CD4 downregulation – has 

long been hypothesized, but never demonstrated experimentally. If a CD4-Nef-AP-2 

tripartite complex is observed, then additional assays will be performed to determine 

whether assembly of the complex depends on key domains, such as the Nef diacidic 

motif and its prospective binding site on AP-2. When taken together, the results from 

these experiments should provide more information on the mechanism of Nef-induced 

CD4 downregulation, and may identify new targets for the pharmacological inhibition 

of this process. 
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5.3 Results 

 
5.3.1 Identification of basic residues on α-adaptin required for the interaction of 

HIV-1 Nef 

 
Data from the two previous chapters demonstrated that HIV-1 Nef binds to the α-σ2 

hemicomplex of AP-2 (Fig. 3.8), and that electrostatic interactions are an important 

component of the overall binding affinity (Fig. 4.2). In particular, a diacidic motif in 

the C-terminal flexible loop of Nef is essential for the interaction with AP-2 (Fig. 4.2 

and 4.3). However, the Nef diacidic motif is not required for binding to the related 

AP-1 and AP-3 adaptor protein complexes (Fig. 4.3). These findings suggested that 

the Nef diacidic motif interacts with basic residues on AP-2 that are not conserved 

among the three AP complexes. 

 
To test this hypothesis, 21 lysine and arginine residues on α-σ2 that are not present on 

the corresponding γ-σ1 and δ-σ3 hemicomplexes of AP-1 and AP-3 were identified 

(Fig. 5.1). These residues were then changed to either aspartate or glutamate, and the 

resulting α-σ2 mutants were assayed for a loss of binding to wild-type Nef using the 

Y3H system (Fig. 5.2). Several alterations of the α-σ2 hemicomplex, including the 

triple mutant α KKK295,297,298EEE (initially mutated en bloc because the close 

proximity of these residues to each other), the single mutant α R340E, and the double 

mutant σ2 RK124,130EE, impaired the binding of Nef (Fig. 5.2). 

 
In order to determine whether this loss of binding was due to the disruption of the Nef 

binding site, or to more global effects on the hemicomplex, the α-σ2 mutants were 

also tested for their ability to bind to the cytoplasmic tail of mouse tyrosinase. Unlike 

Nef, the tyrosinase tail interacts with α-σ2 in a manner that is not dependent on the 

presence of a diacidic motif (see Fig. 4.6). The α KKK295,297,298EEE and α R340E 

mutants, which were notable for their decreased affinity for Nef, bound to tyrosinase 

with relatively strong avidities (Fig. 5.2), suggesting that these mutations specifically 

interfered with the interaction between Nef and AP-2. The σ2 RK124,130EE mutant, 

on the other hand, failed to bind either Nef or tyrosinase (Fig. 5.2), consistent with an 

adverse effect of these substitutions on either the folding of the σ2 subunit or the 

stability of the α-σ2 hemicomplex. 
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FIG. 5.1: Identification of basic residues in the AP-2 α-σ2 hemicomplex that are 

not conserved in the homologous subunits of AP-1 and AP-3 

 
Sequence alignments of the AP-1 γ-σ1, AP-2 α-σ2, and AP-3 δ-s3 hemicomplexes 

were performed using the ClustalW2 program (available at http://www.clustal.org/). 

Amino acid numbers for the first residue in each row are indicated on the left, while 

amino acid numbers for the last residue in each row are indicated on the right. Lysine 

and arginine residues present in AP-2 α-σ2 but not on the corresponding AP-1 and 

AP-3 subunits are highlighted in red. These residues were mutated to either aspartate 

or glutamate (see Fig. 5.2). Asterisks indicate residues that were also mutated to 

alanine (see Fig. 5.3). Red asterisks denote AP-2 α residues K297 and R340, which 

were found to be required for the interaction with HIV-1 Nef (see Fig. 5.3). 

 
(A) Protein sequence alignment of the trunk domains of human AP-1 γ (γ1 isoform; 

accession number AAH36283), AP-2 α (αC isoform; accession number O94973), and 

AP-3 δ (accession number AAC51761). 

 
(B) Protein sequence alignment of human AP-1 σ1 (σ1A isoform; accession number 

AAA37243), AP-2 σ2 (accession number AAP36470), and AP-3 σ3 (σ3A isoform; 

accession number EAW48952). 

224



A

B

* ** *

FIG. 5.1

225



FIG. 5.2: Y3H analysis of the interaction between HIV-1 Nef and AP-2 α-σ2 

hemicomplexes containing substitutions for nonconserved basic residues 

 
Lysine and arginine residues in AP-2 α-σ2 that are not conserved in the homologous 

AP-1 γ-σ1 and AP-3 δ-σ3 hemicomplexes were mutated, either individually or in 

combination, to glutamate or aspartate (see Fig. 5.1). The resulting α-σ2 constructs 

were then tested for their ability to interact with HIV-1 Nef and the cytosolic tail of 

mouse tyrosinase using the Y3H assay. To test whether mutation of the α subunits 

resulted in self-activation, these constructs were also paired with σ1, a combination 

that under normal circumstances would not bind to either Nef or tyrosinase.  

 
(A) Plasmids used in the Y3H assays. Nef and the tyrosinase cytosolic tail (ct) were 

expressed as GAL4BD fusion proteins from pBridge, along with either σ1 or σ2; α 

was expressed as a GAL4AD fusion protein from pGADT7. 

 
(B) Y3H assay results for the seventeen α mutants. Growth of yeast on media lacking 

histidine (–His), or lacking histidine and supplemented with 1 mM of 3-amino-1,2,4-

triazole (+3AT), is indicative of an interaction with Nef or the tyrosinase cytosolic tail 

at two levels of stringency. 

 
(C) Y3H assay result for the σ2 RK124,130EE mutant. Interactions were analyzed as 

described above. 
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The remaining mutants, all of which were generated by alteration of the α subunit, 

interacted with both Nef and tyrosinase. To determine whether these were genuine 

interactions, each of the α mutants was tested for self-activation by substituting σ1 for 

σ2 in the Y3H assay. Given that α and σ1 do not form a functional hemicomplex 

(Page and Robinson, 1995), this adaptin subunit pair should not be able to bind either 

Nef or tyrosinase, and should not be able to stimulate yeast growth on selective media 

unless expression of the mutants results in self-activation. When combined with σ1, 

none of the α mutants induced yeast growth on the –His plates (Fig. 5.2), indicating 

that (i) the mutations do not cause self-activation, (ii) the observed interactions 

between mutant α-σ2 hemicomplexes and the ligands are genuine, and (iii) the only 

non-conserved arginine and lysine residues on the α-σ2 hemicomplex that potentially 

contribute to Nef binding are α K295, K297, K298, and R340. 

 
5.3.2 The α-adaptin K297 and R340 residues form a basic patch that is required 

for the binding of Nef 

 
In order to analyze the individual contributions of α K295, K297, K298, and R340 on 

Nef binding, several additional constructs were made by mutating these residues to 

alanine or glutamate; the new constructs were then used in the Y3H assay described 

above (Fig. 5.3). As before, mutation of α R340 alone, or the combined mutation of 

all three lysine residues impaired the ability of Nef to bind the α-σ2 hemicomplex 

(Fig. 5.3). The individual mutation of α K295 and K298 revealed that these residues 

do not contribute to the interaction of Nef, while the alteration of α K297 produced as 

significant a defect in Nef binding as the mutation of all three lysine residues at once 

(Fig. 5.3). Consistent with this finding, the double mutation of α K297 and R340 

caused approximately the same decrease in Nef binding as the quadruple mutation of 

α K295, K297, K298, and R340 (Fig. 5.3). Thus, α K297 and R340 were identified as 

key residues for the interaction of α-σ2 with Nef. Although the mutation of α K297 

and R340 to alanine decreased Nef binding (see the –His +3AT plates in Fig. 5.3), 

changing these residues to glutamate had a more dramatic effect (Fig. 5.3), providing 

further evidence that the coupling of Nef and AP-2 is at least partially dependent on 

electrostatic interactions. All of the mutants involving α K297 and R340 bound to 

tyrosinase with wild-type affinity in the presence of σ2, while none bound to either 
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FIG. 5.3: AP-2 α  residues K297 and R340 are required for the interaction of the 

α-σ2 hemicomplex and HIV-1 Nef 

 
The AP-2 α residues K295, K297, K298, and R340 were mutated, individually and in 

combination, to alanine and glutamate (see Fig. 5.1). The effect of these mutations on 

the binding of α-σ2 to HIV-1 Nef and the cytosolic tail of mouse tyrosinase were then 

analyzed using the Y3H system, as shown in the figure. The discordant α-σ1 pair was 

also included as a negative control. Interactions were interpreted as described in the 

legend to Fig. 5.2B. 
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Nef or tyrosinase in the presence of σ1 (Fig. 5.3). These controls demonstrate that the 

alteration of α K297 and R340 specifically affects the ability of α-σ2 to interact with 

Nef in the Y3H system. Interestingly, mapping of α K297 and R340 on the three-

dimensional crystal structure of AP-2 (Collins et al., 2002) shows that these residues 

are brought into close proximity of each other by the folding of the α subunit (Fig. 

5.4). The α K297 and R340 residues can therefore be described as a single basic 

patch, which likely coordinates the binding of a negatively charged, acidic region of 

Nef. 

 
5.3.3 The AP-2 α K297 and R340 residues are required for direct binding of Nef  

 
To determine whether the α K297 and R340 residues were required for the direct 

interaction of AP-2 and Nef, in vitro experiments were performed using recombinant 

proteins expressed in bacteria. In previous chapters, the AP-2CORE construct, which 

lacks the C-terminal domain of µ2 and the hinge and ear domains of α and β2, was 

shown to bind Nef (Fig. 3.9 and 4.2). This construct (referred to in the accompanying 

figure as AP-2CORE α wild-type [WT]) was mutated to generate AP-2CORE α KR297, 

340EE. SDS-PAGE analysis of the purified AP-2CORE constructs, which contain a 

GST-tag on the α-trunk domain and a His6-tag on the β2-trunk domain, indicated that 

the α KR297,340EE mutation did not affect the assembly of the AP-2CORE complex 

(Fig. 5.5A). However, GST pull-down assays showed that the α KR297,340EE 

mutation markedly impaired the binding of His6-Nef (Fig. 5.5B). Immunoblots using 

either anti-His6 (Fig. 5.5B, top panel) or anti-Nef (Fig. 5.5B, bottom panel) antibodies 

revealed that AP-2CORE α KR297,340EE had nearly the same affinity for the viral 

protein as several negative controls. Thus, the α K297 and R340 residues are required 

for the direct interaction of AP-2 with Nef. 

 
5.3.4 The α-adaptin K297 and R340 residues are required for Nef-induced CD4 

downregulation 

 
Earlier, the downregulation of CD4 by Nef was shown to be dependent on AP-2 (Fig. 

3.7, 4.4, and 4.5; Jin et al, 2005). Having already demonstrated that the α K297 and 

R340 residues were required for the direct binding of AP-2 to Nef, the contribution of 

these residues to the Nef-mediated downregulation of CD4 was evaluated next, using 
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FIG 5.4: Location of α  K297 and R340 on the three-dimensional structure of the 

AP-2 complex 

 
In both panels, the three-dimensional structure of AP-2 core (PBD ID numbers 1GW5 

and 2VGL [Collins et al., 2002]) is shown, with the α, β2, µ2, and σ2 subunits drawn 

in dark blue, green, magenta, and gold, respectively. The polyphosphoinostide (PIP) 

binding site on the α subunit is colored in light blue, while the α  K297 and α  R340 

residues (including their side chains) are depicted in red. It should be noted that the α 

K297 and α R340 residues referred to throughout this work (and highlighted in this 

figure) correspond to α K298 and α R341 in the crystal structure of the AP-2 core, 

due to a one residue difference between the α alleles used in the two studies. The 

images were drawn with PyMOL (Delano, 2002) and annotated using Microsoft 

PowerPoint. 

 
(A) Surface representation of the AP-2 core complex. 

 
(B) Magnified ribbon diagram of region surrounding α K297 and α R340. 
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an RNAi and rescue approach. Others have shown that the depletion of AP-2 subunits 

destabilizes the complex and inhibits the internalization of a subset of transmembrane 

proteins from the plasma membrane, including the transferrin receptor (TfR) and CD4 

(Huang et al., 2004; Janvier and Bonifacino, 2005; Jin et al., 2005; McCormick et al., 

2005: Motley et al., 2003; Motley et al., 2006). 

 
Consistent with these results, the siRNA-mediated depletion of endogenous α-adaptin 

in HeLa cells increased the amount of TfR and CD4 on the cell surface, as determined 

by flow cytometry (Fig. 5.6A). The cytosolic tails of TfR and CD4 contain tyrosine-

and dileucine-based sorting signals, respectively, that under normal circumstances are 

recognized by AP-2 for endocytosis from the plasma membrane (Motley et al., 2003; 

Pitcher et al., 1999). The accumulation of TfR and CD4 on the cell surface following 

the knockdown of α expression, therefore, is indicative of impaired AP-2 function. 

 
In an attempt to rescue the function of AP-2, cells depleted of endogenous α were 

transfected with RNAi-resistant versions of wild-type and KR297,340EE mutant α-

adaptin (referred to below as αR-WT and αR-KR297,340EE, respectively). The two 

αR constructs were able to reduce the amount of TfR and CD4 on the cell surface to 

appoximately normal levels (Fig. 5.6B). This demonstrated that both the αR-WT and 

the αR-KR297,340EE constructs could rescue AP-2 function in regards to tyrosine- 

and dileucine-based sorting at the cell surface. 

 
The RNAi and rescue assay was then applied to HeLa cells expressing Nef and CD4.  

Treatment of cells with RNAi against α-adaptin completely eliminated the ability of 

Nef to downregulate CD4 from the plasma membrane (Fig. 5.6C). Importantly, the 

transfection of α-depleted cells with the αR-WT construct restored the ability of Nef 

to downregulate CD4, but expression of the αR-KR297,340EE construct did not (Fig. 

5.6D). Immunoblot analysis of the transfected cells indicated that this disparity in Nef 

function was not due to differences in the silencing of endogenous α, the expression 

of the RNAi-resistant α constructs, or the expression of Nef itself (Fig. 5.6F). This in 

vivo analysis thus demonstrates that the α K297 and R340 residues are specifically 

required for the Nef-mediated downregulation of CD4. 
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FIG. 5.6: The AP-2 α  K297 and R340 residues are necessary for Nef-mediated  

downregulation of CD4 

 
HeLa cells were transfected with siRNA oligos and DNA constructs over a period of 

7 days, as described in the Materials and Methods (see Sections 2.6.3.4 - 2.6.3.6 and 

Table 2.7). Control and α siRNA-treated cells were cotransfected with three DNA 

plasmids: one expressing CD4, one lacking or expressing Nef, and one lacking or 

expressing either an siRNA-resistant version of wild-type α-adaptin (αR-WT) or an 

siRNA-resistant version of KR297,340EE mutant α-adaptin (αR-KR297,340EE). The 

cells were then prepared for flow cytometry and immunoblotting. Cells prepared for 

flow cytometry were either left unstained as a control for background fluorescence 

(shaded gray curves in all plots) or stained with PE-conjugated anti-human TfR and 

APC-conjugated anti-human CD4 antibodies. 

 
(A) Depletion of α-adaptin increases the cell surface expression of TfR and CD4. The 

amount of TfR (left panel) and CD4 (right panel) on the plasma membrane of cells 

left untreated (thin black lines) or treated with siRNA targeting α-adaptin (thick black 

lines) is shown. 

 
(B) Both αR-WT and αR-KR297,340EE prevent the increase in cell surface TfR and 

CD4 expression caused by α siRNA treatment. The amount of TfR (left panel) and 

CD4 (right panel) on the plasma membrane of cells treated with α siRNA and then 

transfected with an empty vector (thick black lines), a vector containing αR-WT 

(blue lines), or a vector containing αR-KR297,340EE (red lines) is shown. 

 
(C) The expression of Nef induces CD4 downregulation in control but not α siRNA-

treated cells. The amount of CD4 on the plasma membrane of cells that had not been 

treated with siRNA (left panel) or had been treated with α siRNA (right panel), and 

that were either lacking Nef (green lines) or expressing Nef (orange lines), is shown. 

 
(D) Nef-induced CD4 downregulation is rescued by αR-WT but not by αR-KR297, 

340EE in α siRNA-treated cells. The amount of CD4 on the surface of α siRNA-

treated cells that had been transfected with either αR-WT (left panel) or αR-KR297, 

340EE (right panel), and were either lacking Nef (green lines) or expressing Nef 
(orange lines) is shown. 
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(E) Bar graph depicting the results of three independent experiments for the rescue of 

Nef-induced CD4 downregulation by αR-WT but not by αR-KR297,340EE [KREE]. 

Statistical analysis of the data from these experiments showed that Nef-mediated CD4 

downregulation (expressed in terms of fold-downregulation [ratio of geometric means 

in the absence and presence of Nef]) was 4.81 + 0.70 for control cells, 1.51 + 0.24* 

for α siRNA-treated cells, 4.60 + 0.94 for α siRNA-treated cells expressing αR-WT, 

and 1.50 + 0.40*† for α siRNA-treated cells expressing αR-KREE (mean + standard 

error of the mean; n = 3). The symbols * and † indicate values that are significantly 

different (P < 0.05) from those of control cells and α siRNA-treated cells expressing 

αR-WT, respectively, as calculated by an analysis of variance followed by a two-tail 

Dunnett’s test. 

 
 (F) Aliquots of transfected cells from all of the experimental groups were lysed and 

subjected to SDS-PAGE, followed by immunoblotting (IB) with the antibodies shown 

on the right. All of the cells were transfected with a plasmid encoding CD4, together 

with plasmids and siRNA oligos indicated in the grid above the blots (wild-type [WT] 

KR297,340EE [KREE]). Note that the anti-AP-2 α (100/2) antibody recognized both 

endogenous isoforms of α-adaptin, αA and αC (apparent as an approximately 100 

kDa doublet in which the upper band represents αA, while the lower band represents 

αC [Ball et al., 1995]), as well as a nonspecific band at approximately 85 kDa. The 

anti-AP-2 α (8/α) antibody, however, recognized only endogenous αA-adaptin, since 

it was raised against a protein fragment unique to that isoform. The siRNA-resistant, 

V5-epitope-tagged αC rescue constructs were detected by both the AP-2 α (100/2) 

and the anti-V5 antibodies. The anti-α-tubulin antibody was used as a loading control. 

Numbers on the left indicate the positions of molecular mass markers (in kDa). 
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5.3.5 The CD4 tail, Nef, and the AP-2 α-σ2 hemicomplex assemble cooperatively 

to form a CD4-Nef-AP-2 tripartite complex 

 
Nef is believed to downregulate CD4 by binding to the cytosolic tail of the receptor 

and linking it to the AP-2 complex, thereby accelerating the rate of CD4 endocytosis. 

Although previous work has provided evidence for weak binary interactions between 

Nef and CD4 (Rossi et al., 1996; Grzesiek et al., 1996; Presseur et al., 2001; Bentham 

et al., 2003), Nef and AP-2 (Fig. 3.8, 3.9, 4.1, 4.2, 4.3, 5.2, 5.3, and 5.6), and CD4 and 

AP-2 (Höning et al., 2005), a tripartite complex involving all three components has 

not yet been demonstrated. The possible formation of such a complex was analyzed 

using a combination of Y2H, Y3H, and Y4H assays. Yeast were transformed with the 

pBridge and pAD vectors, each of which contained two multiple cloning sites under 

the control of independent promoters (Fig. 5.7A). Thus, it was possible to express up 

to four proteins in the yeast system, each of which was targeted to the nucleus by the 

presence of nuclear localization signals. 

 
Using this system, the ability of Nef (expressed as a GAL4BD fusion protein) to bind 

to the cytosolic tail of CD4 (expressed as a GAL4AD fusion protein) either alone or 

in the presence of the AP-2 α and σ2 subunits was tested (Fig. 5.7B). In the absence 

of α and σ2, Nef did not appear to interact with CD4. This result likely differed from 

previous work due to the stringent requirements of the yeast system; only interactions 

of sufficient strength and stability to promote yeast growth could be observed in the 

assay. The individual expression of either α or σ2 also failed to yield a detectable 

interaction between Nef and CD4. However, when both α and σ2 were expressed, 

Nef bound to the CD4 cytosolic tail. The increased affinity of Nef for CD4, in the 

presence of the α-σ2 hemicomplex, indicates that a CD4-Nef-AP-2 complex is formed 

by cooperative assembly. 

 
In order to test whether the assembly of the CD4-Nef-AP-2 complex is dependent on 

binary interactions between its components, the Y4H assay was repeated with several 

mutants (Fig. 5.7C). Mutations that are known to prevent binding of Nef to either 

CD4 (Nef WL57,58AA) (Grzesiek et al., 1996) or AP-2 (Nef LL164,165AA and Nef 

DD174,175AA) (Fig. 3.8, 3.9, 4.2, and 4.3) inhibited formation of the larger complex. 

Expression of the α KR297,340EE mutant, which earlier in the chapter was shown to 
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FIG. 5.7: Cooperative assembly of a tripartite complex consisting of the CD4 

cytosolic tail, full-length Nef, and the AP-2 α-σ2 hemicomplex, as demonstrated 

by yeast hybrid assays 

 
(A) Plasmids used in the Y2H, Y3H, and Y4H assays. In all assays, full-length HIV-1 

Nef was expressed from pBridge as a GAL4BD fusion protein, while the cytosolic tail 

(ct) of human CD4 was expressed from pAD as a GAL4AD fusion protein. In the 

Y2H assay, no other proteins were expressed from these vectors; in the Y3H assay, 

either σ2-adaptin or αC-adaptin was expressed from pBridge or pAD, respectively; 

and in the Y4H assay, both σ2-adaptin and αC-adaptin were coexpressed. 

 
(B) Y2H, Y3H, and Y4H analyses of the interaction between GAL4BD-Nef and 

GAL4AD-CD4 in the absence or presence of one or both components of the α-σ2 

hemicomplex. The plasmids used in the yeast hybrid experiments are noted in to the 

left of the panel, with the pBridge (pBr)-based vectors in the first column and the 

pAD-based vectors n the second column. Row 1 corresponds to the Y2H assay, rows 

2 and 3 correspond to the Y3H assays, and row 4 corresponds to the Y4H assay. 

Yeast from all assays were seeded onto +His and –His plats at increasing levels of 

OD. Yeast grown on the –His plates indicates an interaction between GAL4BD-Nef 

and GAL4AD-CD4. 

 
(C) Y4H analysis of the effect of several Nef and α mutants on the interaction of 

GAL4BD-Nef and GAL4AD-CD4 in the presence of the α-σ2 hemicomplex. 
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be unable to interact with Nef (Fig. 5.3 and 5.5), yielded the same result. In contrast, 

mutation of three Nef motifs not required for binding either CD4 or AP-2 (Nef G2A, 

Nef EEEE62-65AAAA, and Nef PP72,75AA) (Grzesiek et al., 1996; Presseur et al., 

2001) did not significantly affect formation of the complex. Thus, binary interactions 

between CD4, Nef, and AP-2 are required for the assembly of the CD4-Nef-AP-2 

tripartite complex. 
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5.4 Discussion 

 
5.4.1 Chapter overview 

 
In the two previous chapters, Nef was shown to bind directly to AP-2 in a manner that 

depended on the well-conserved dileucine and diacidic motifs of the viral protein. In 

this chapter, a potential binding site for the Nef diacidic motif on AP-2 was identified. 

This site, which is comprised of two basic residues from α-adaptin, K297 and R340, 

is required for the interaction of Nef and AP-2 and the Nef-mediated downregulation 

of CD4. The Nef diacidic motif and the α-adaptin basic patch were also found to be 

essential for the cooperative assembly of a CD4-Nef-AP-2 tripartite complex. Taken 

together, these results begin to define a binding surface for Nef on AP-2, confirm the 

critical role of AP-2 in the Nef-mediated downregulation of CD4, and provide the 

first experimental evidence describing the formation of a CD4-Nef-AP-2 complex. 

 
5.4.2 Characteristics of the α-adaptin basic patch 

 
Y3H data presented earlier demonstrated that the Nef diacidic motif was required for 

the interaction between Nef and AP-2, but not for the interactions between Nef and 

the homologous AP-1 and AP-3 complexes (Fig. 4.3). Separately, GST pull-down 

assays showed that the binding of Nef and AP-2 was at least partially dependent on 

electrostatic interactions (Fig. 4.2). These results suggested that the Nef diacidic motif 

interacts with basic residues on the surface of AP-2 that are not present on either AP-1 

or AP-3. A sequence alignment of the relevant portions of the AP-1, AP-2, and AP-3 

complexes revealed 21 lysine and arginine residues that fit this description (Fig. 5.1). 

Of these, mutation of α K297 and R340 inhibited Nef binding (Fig. 5.2, 5.3, and 5.5) 

and prevented the Nef-mediated downregulation of CD4 (Fig. 5.6C-F). In contrast, 

these residues were dispensable for AP-2 functions that do not depend on the presence 

of a diacidic motif in the ligand, such as the binding of tyrosinase (Fig. 5.3) and the 

maintenance of steady-state levels of TfR and CD4 on the plasma membrane (Fig. 

5.6A and B). Thus, α K297 and R340 define a previously uncharacterized feature on 

AP-2 that is required for the engagement of Nef, likely via the diacidic motif of the 

viral protein. 

 
The K297 and R340 residues of α-adaptin are part of a large, surface-exposed basic 
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patch that rivals in size the polyphosphoinositide binding site near the N-terminus of 

the protein (Fig. 5.8; Collins et al., 2002). K297 itself is contained within a flexible 

loop between helices 14 and 15 of the α solenoid, while R340 is positioned nearby on 

a loop between helices 16 and 17 (Fig. 5.4 and 5.8; Collins et al., 2002). Interestingly, 

the basic patch that α K297 and R340 contribute to is largely absent in the AP-1 and 

AP-3 complexes. Indeed, the AP-1 γ and AP-3 δ subunits not only lack residues that 

are homologous to α K297 and R340, but they are also devoid of several other amino 

acids that make up the α-adaptin basic patch, such as K295 and K298 (Fig. 5.1A; 

Collins et al., 2002; Heldwein et al., 2004). 

 
Although the basic patch appears to be a unique feature of AP-2, many of the residues 

in this region are conserved among α-adaptins of the metazoan lineage (Fig. 5.9). The 

K295, K297, K298, and R340 residues, for instance, are found in both the αA and αC 

isoforms of human α-adaptin, as well as in the α-adaptins of a variety of other animal 

species, including mice, frogs, worms, and fruit flies (Fig. 5.9; see Chapter 3 for more 

information regarding the activity of Nef in Drosophila cells). Since Nef-encoding 

immunodeficiency viruses only infect primates, the phylogenetic conservation of the 

α-adaptin basic patch suggests that it has a more general function. 

 
One possibility is that the basic patch is involved in the recognition of acidic clusters, 

either alone or in combination with other sorting signals. As discussed in the previous 

chapter, furin is one of several transmembrane proteins that has such an acidic cluster 

in its cytosolic tail (reviewed in Bonifacino and Traub, 2003). In conjunction with 

sequences resembling tyrosine-based and dileucine-based sorting signals, the acidic 

cluster directs furin to the TGN (Jones et al., 1995; Schäfer et al., 1995; Voorhees et 

al., 1995) and to the basolateral membrane of polarized epithelial cells (Simmen et al., 

1999). The intracellular movement of furin appears to be aided by the association of 

its acidic cluster with phosphofurin acidic cluster sorting protein-1 (PACS-1), which 

in turn interacts with the AP-1 and AP-3 complexes (Crump et al., 2001; Wan et al., 

1998). Others have shown that, in the absence of all other sorting signals, the acidic 

cluster is also able to promote the clathrin-mediated endocytosis of furin (Lubben et 

al., 2007; Voorhees et al., 1995), even though PACS-1 does not bind to AP-2 (Crump 

et al., 2001). These results suggest that the acidic cluster engages AP-2 in a manner 

that is independent of PACS-1. Given that the α-adaptin basic patch is present only in 
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FIG. 5.8: The α  K297 and R340 residues are part of a large basic patch on the 

surface of AP-2 

 
(A) Surface representation of the three-dimensional structure of the AP-2 core (PDB 

ID numbers IGW5 and 2VGL [Collins et al., 2002]), with the same color conventions 

as described in the legend to Fig. 5.4. Relative to the image shown in Fig. 5.4A, this 

rendering of the AP-2 core has been rotated along the x-axis towards the reader by 

approximately 60º.  

 
(B) Surface representation of the AP-2 core, in the same orientation as depicted in the 

previous panel, but colored according to electrostatic potential (contoured as red to 

blue from -74 kiloTesla [kT]/e to +74 kT/e). The images in panels A and B were both 

drawn using PyMOL (DeLano, 2002) and annotated with Microsoft Powerpoint. 
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FIG. 5.9: Phylogenetic conservation of α-adaptin basic residues involved in the 

binding of HIV-1 Nef 

 
An amino acid sequence alignment of α-adaptins from different metazoan species is 

shown. The alignment was carried out with the ClustalW2 program used to generate 

Fig. 5.1. The sequence shown on top corresponds to residues 292-341 of the human 

αC isoform, and includes the basic residues identified in this chapter as critical for 

Nef binding. AP-2 αC residues analyzed in the experiments depicted in Fig. 5.3 are 

indicated in red. Asterisks above the sequence alignment denote the key αC residues 

K297 and R340, and homologous residues in α-adaptins from other species. Species 

abbreviations and accession numbers are as follows: Hs (Homo sapiens; O94973 for 

the αC isoform and O95782 for the αA isoform), Bt (Bos taurus; Q0VCK5), Rn 

(Rattus norvegicus; P18484), Mm (Mus musculus; P17427), Gg (Gallus gallus; 

NP_001012941), Xl (Xenopus laevis; AAH91638), Dr (Danio rerio; XP_001922436), 

Ta (Trichoplax adhaerens; EDV28677), Aa (Aedes aegypti; XP_001649235), Cq 

(Culex quinquefasciatus; XP_001868082), Ag (Anopheles gambiae; Q7QG73), Dm 

(Drosophila melanogaster; NP_995607), Tc (Tribolium castaneum; XP_971368), Ci 

(Ciona intestinalis; XP_002119553), Ce (Caenorhabditis elegans; AAA68332), Bm 

(Brugia malayi; XP_001892909), Nv (Nematostella vectensis; XP_001641214). 
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            *                                              *
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AP-2, it is tempting to speculate that the furin acidic cluster interacts directly with 

AP-2 via the basic patch and indirectly with AP-1 and AP-3 via PACS-1. Yeast hybrid 

and in vitro binding assays, similar to those described in this chapter, could be used to 

test whether the α-adaptin basic patch does in fact interact with the acidic clusters 

found in furin and other transmembrane proteins. 

 
If, however, these experiments reveal that the basic patch on α-adaptin does not have 

any endogenous binding partners, then this site would be an appealing target for the 

pharmacologic inhibition of Nef function. The use of a rationally designed drug that 

binds to the α-adaptin basic patch with high affinity ought to disrupt the interaction 

between Nef and AP-2 (Fig. 5.2, 5.3, and 5.5) and prevent the downregulation of CD4 

(Fig. 5.6). Because Nef-induced CD4 downregulation has been identified as a critical 

determinant of viral pathogenesis and disease progression (reviewed in Foster and 

Garcia, 2008; Lama, 2003; Levesque et al., 2004), interfering with this pathway may 

be expected to have beneficial consequences for individuals infected with HIV-1. In 

addition, the binding of a small pharmacological agent to the α-adaptin basic patch is 

unlikely to perturb the normal role of AP-2 in the cell, as this region of the complex is 

not involved in the endocytosis of cargo proteins with tyrosine- and dileucine-based 

sorting signals (Fig. 5.6). 

 
5.4.3 Cooperative assembly of a CD4-Nef-AP-2 tripartite complex 

 
The Y4H results shown earlier in the chapter describe, for the first time, the formation 

of a CD4-Nef-AP-2 tripartite complex (Fig. 5.7). This complex is comprised of the 

CD4 cytosolic tail, full-length Nef, and the α and σ2 subunits of AP-2 (Fig. 5.7). The 

detection of the CD4-Nef-AP-2 complex is dependent on the known determinants of 

bimolecular interactions between CD4 and Nef (i.e., the Nef WL57,58 hydrophobic 

pocket) and between Nef and AP-2 (i.e., the Nef LL164,165 dileucine and DD174,175 

diacidic motifs and the α KR297,340 basic patch) (Fig. 5.7). Furthermore, detection 

of the complex is independent of Nef residues that do not participate in binding to 

either CD4 or AP-2 (i.e., G2 myristoylation site, the EEEE62-65 acidic cluster, and 

the PP72,75 polyproline motif) (Fig. 5.7). 

 
Importantly, these results correlate with the available functional data. Mutations that 

disrupt the formation of the CD4-Nef-AP-2 complex also prevent downregulation of 
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CD4 from the plasma membrane (Fig. 3.3, 3.4, 4.4, 4.5, and 5.6; Aiken et al., 1994; 

Aiken et al., 1996; Stove et al., 2005; Swigut et al., 2000), while mutations that do not 

affect assembly of the complex are not essential for CD4 downregulation (Fig. 3.3 

and 3.4; Aiken et al., 1994; Aiken et al., 1996; Mangasarian et al., 1999; Swigut et al., 

2000). The only exception to this correlation is the Nef G2A mutant, which fails to 

downregulate CD4 from the cell surface because it is not myristoylated, and therefore 

cannot associate with the inner leaflet of the plasma membrane (Fig. 3.3; Bentham et 

al., 2006; Kaminchick et al., 1991; Peng and Robert-Guroff, 2001; Stove et al., 2005; 

Yu and Felsted, 1992). However, myristoylation of Nef is not necessary for binding 

either CD4 or AP-2 in vitro (Fig. 3.9, 4.2, and 5.5; Grzesiek et al., 1996; Presseur et 

al., 2001). In a similar manner, the myristoylation of Nef should not be required for its 

incorporation into the CD4-Nef-AP-2 complex described here, as all the proteins in 

the Y4H experiments are targeted to the yeast nucleus by the presence of heterologous 

nuclear localization signals (see Materials and Methods, Section 2.4). The correlation 

between residues that are important for assembly of the CD4-Nef-AP-2 complex and 

the downregulation of CD4 underscores the biological significance of the tripartite 

complex. 

 
In T cells, the majority of CD4 can be found at the plasma membrane in a complex 

with the protein tyrosine kinase Lck (Pelchen-Matthews et al., 1992; Veillete et al., 

1988; reviewed in Oldridge and Marsh, 1998). In this complex, the CD4 cytosolic tail 

and the N-terminus of Lck form a folded zinc clasp structure, which obscures a region 

of CD4 that is bound by Nef and required for downregulation of the receptor (Bandres 

et al., 1995; Gratton et al., 1996; Grzesiek et al., 1996; Kim et al., 2003; Salghetti et 

al., 1995). Previous studies have suggested that Nef induces the dissociation of CD4 

and Lck (Kim et al., 1999; Salghetti et al., 1995), although the mechanism by which 

Nef does so is poorly understood. Interestingly, a Nef mutant lacking the DD174,175 

diacidic motif, which is now known to be critical for the binding of AP-2 (Fig. 4.1, 

4.2 and 4.3) and assembly of the CD4-Nef-AP-2 complex (Fig. 5.7), was found to be 

defective in promoting the dissociation of CD4 and Lck (Kim et al., 1999). Thus, the 

establishment of the tripartite complex may either induce CD4 to separate from Lck, 

or prevent it from reassociating with the membrane-anchored kinase. This would then 

allow Nef to internalize CD4 from the cell surface and direct the receptor towards 

lysosomes for eventual degradation (Aiken et al., 1994; Rhee et al., 1994). 
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The assembly of the CD4-Nef-AP-2 complex is consistent with the previous proposal 

that Nef links the cytosolic tail of CD4 to AP-2 (Greenberg et al., 1997; Greenberg et 

al., 1998a; reviewed in Oldridge and Marsh, 1998). In addition, the data shown here 

indicates that the α-σ2 hemicomplex promotes the interaction of Nef and the CD4 tail 

(Fig. 5.7B). Thus, the formation of the CD4-Nef-AP-2 complex involves cooperative 

interactions among its components. One possible explanation for this cooperativity is 

that the binding of AP-2 to Nef induces a conformational change in the viral protein 

that increases its affinity for CD4. In this model, AP-2 does not make direct contact 

with the CD4 tail. Instead, Nef serves as a physical link between the receptor and the 

clathrin adaptor. An alternative explanation is that each component of the CD4-Nef-

AP-2 complex makes simultaneous contact with the other two, thereby enhancing the 

overall stability of the tripartite complex. This model requires that both Nef and AP-2 

bind to the CD4 tail directly and at the same time. Detailed biochemical and structural 

studies will be needed to distinguish between these models, and to identify all the 

determinants of assembly for the CD4-Nef-AP-2 complex. 

 
The observation of a CD4-Nef-AP-2 complex is not without precedent, as Nef has 

previously been shown to engage in cooperative interactions with other receptors and 

AP complexes. For example, the binding of HIV-1 Nef to the cytosolic tail of MHC-I 

increases the affinity of a tyrosine-like motif in this tail for the µ1 subunit of AP-1, 

thus stabilizing the assembly of a MHC-I-Nef-AP-1 complex (Noviello et al., 2008; 

Wonderlich et al., 2008). Similarly, the binding of SIV Nef to the TCR-associated 

CD3-ζ chain increases its affinity for AP-2, leading to the formation of a CD3-ζ-Nef-

AP-2 complex (Swigut et al., 2003). These cooperative interactions enable Nef to 

reduce the expression of MHC-I and TCR-CD3 on the plasma membrane (Noviello et 

al., 2008; Swigut et al., 2003; Wonderlich et al., 2008). Together with the Y4H data 

shown here, these results indicate that the establishment of cooperative interactions 

with receptors and adaptors is a general feature of Nef that underlies its effect on host 

cell protein trafficking pathways. 
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Chapter 6:

Discussion
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6.1 Abstract 

 
This chapter is divided into four major sections (6.2 - 6.5). The first of these sections 

(6.2) summarizes the major findings of this thesis. The next two sections (6.3 and 6.4) 

describe ongoing and future work, respectively. Ongoing experiments are focused on 

the identification of the Nef dileucine binding site on AP-2, while future experiments 

could either explore how this interaction affects the surface-expression of endogenous 

receptors or the postendocytic fate of CD4. Some concluding remarks are provided in 

the final section of this thesis (6.5). 
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6.2 Summary of results 

 
The primary goal of this thesis was to determine how HIV-1 Nef downregulates CD4 

(see Section 1.9). Previous work on this topic had produced conflicting results; some 

studies favored an endocytic model of downregulation, while other studies favored an 

intracellular retention model (see Section 1.8). According to the endocytic model, Nef 

connects CD4 to AP-2 at the plasma membrane, thereby accelerating the rate at which 

the receptor is internalized from the cell-surface. In contrast, the intracellular retention 

model claimed that Nef uses either AP-1 or AP-3 to prevent newly synthesized CD4 

from reaching the plasma membrane. Both models agree that Nef ultimately induces 

the transport of CD4 to lysosomes, where it is degraded (see Section 6.4). 

 
A variety of cell and molecular biology assays were used to distinguish between these 

contrasting models. First, a novel CD4-Nef downregulation system was constructed in 

Drosophila S2 cells (Fig. 3.1, 3.2, 3.3, and 3.4). The RNAi-mediated depletion of host 

cell proteins in this heterologous system showed that clathrin and AP-2, but not AP-1 

and AP-3, were required for CD4 downregulation (Fig. 3.5 and 3.6; Table 3.1). RNAi 

knockdowns in human HeLa cells later confirmed these results (Fig. 3.7). Yeast three-

hybrid and GST pull-down experiments were then used to demonstrate a robust, direct 

interaction between Nef and the α-σ2 hemicomplex of AP-2 (Fig. 3.8 and 3.9). This 

interaction was found to depend on the Nef dileucine motif, which is essential for the 

downregulation of CD4 (Fig. 3.3, 3.4, 3.8, and 3.9). 

 
Subsequent experiments identified a second motif on Nef required for the interaction 

with AP-2. This motif, which conforms the [D/E]D consensus sequence, is strongly 

conserved among HIV-1 Nef alleles, and is necessary for both AP-2 binding and CD4 

downregulation (Fig. 4.1, 4.2, 4.4, 4.5). Yeast three-hybrid assays showed that the Nef 

diacidic motif was dispensable for binding both AP-1 and AP-3, suggesting that these 

clathrin adaptors do not significantly contribute to the modulation of CD4 expression 

(Fig. 4.3). Yeast three-hybrid assays were also used to identify a prospective binding 

site for the Nef diacidic motif on the surface of AP-2 (Fig. 5.1, 5.2, 5.3, and 5.4). GST 

pull-downs confirmed that this site, a basic patch on the α-adaptin trunk domain, was 

required for the interaction between Nef and AP-2 (Fig. 5.5). RNAi knockdown and 

rescue assays were then used to show that, like the Nef diacidic motif, the α-adaptin  
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basic patch is critical for the downregulation of CD4 (Fig. 5.6). Finally, a novel yeast 

four-hybrid assay revealed that CD4, Nef, and AP-2 interact simultaneously to form a 

tripartite complex, the assembly of which depends on the Nef dileucine and diacidic 

motifs and the α-adaptin basic patch (Fig. 5.7). The results from all these experiments 

uniformly support the endocytic model of downregulation, whereby Nef uses AP-2 to 

direct CD4 from the plasma membrane towards lysosomes (Fig. 6.1). 
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6.3 Ongoing work: identification of the Nef dileucine binding site on AP-2 

 
As described in the last section, two new determinants of interaction between Nef and 

AP-2 were identified during the course of this work: the Nef diacidic motif and the α-

adaptin basic patch. However, these motifs are not sufficient to mediate the binding of 

Nef and AP-2. Another required element of this interaction is the Nef dileucine motif 

(Fig. 3.8 and 3.9). Previous attempts to identify the binding site of the Nef dileucine 

motif on the surface of AP-2 yielded ambiguous results; photoaffinity labeling assays 

indicated that leucine residues bound to β2, while yeast two-hybrid assays suggested 

that µ2 was involved (Craig et al., 2000; Greenberg et al., 1998). Unfortunately, these 

interactions appeared to be of very low affinity, and may have been the result of non-

specific binding. In contrast, the yeast three-hybrid and GST pull-down experiments 

shown here indicate that the Nef dileucine motif binds with relatively high affinity to 

the α-σ2 region of the AP-2 core (Fig. 3.8, 3.9, 4.1, 4.2, and 4.3). 

 
Based on these findings, an effort was made to locate the specific binding site of the 

Nef dileucine motif on AP-2. This motif (ENTSLL in the NL4-3 variant) conforms to 

the [D/E]xxxL[L/I] consensus sequence for dileucine motifs found in a large number 

of transmembrane proteins, including tyrosinase (ERQPLL). An important feature of 

these dileucine motifs is the presence of an acidic residue upstream of the leucine pair 

(reviewed by Bonifacino and Traub, 2003). In the case of HIV-1 Nef, this residue is 

almost always a glutamate (Fig. 4.1). Substitution of the glutamate with a basic amino 

acid, such as lysine, significantly impairs the ability of Nef to downregulate CD4 (see 

Coleman et al., 2006). This suggests that the acidic portion of the Nef dileucine motif 

binds to a basic patch on the surface of the α-σ2 hemicomplex. Indeed, the binding of 

Nef to AP-2 probably involves the formation of salt bridges, as strong ionic solutions 

disrupt the interaction (Fig. 4.2). Furthermore, the region on AP-2 that binds the Nef 

dileucine motif is likely to be conserved among the AP complexes, because mutation 

of either the glutamate or the leucines inhibits the interaction of Nef with γ-σ1, α-σ2, 

and δ-σ3 (Fig. 3.8, 4.1, and 4.3; Janvier et al., 2003). 

 
These considerations were taken into account while devising a strategy to identify the 

AP-2 residues that coordinate binding of the Nef dileucine motif. The first step of this 

strategy was to perform a sequence alignment of γ-σ1, α-σ2, and δ-σ3, and determine 
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which basic amino acids were conserved among all three adaptin hemicomplexes (see 

Fig. 6.2). Conserved arginine and lysine residues in the α and σ2 subunits were then 

changed to aspartate or glutamate, and yeast three-hybrid assays were used to test the 

resulting mutants for a loss of binding to wild-type Nef (ENTSLL) (Fig. 6.3, 6.4, 6.5). 

The same α and σ2 mutants were then tested for their ability to interact with a version 

of Nef that had its glutamate residue changed to lysine (KNTSLL) (Fig. 6.3, 6.4, 6.5). 

These assays were designed to show which AP-2 residues normally interact with the 

Nef glutamate; changing the relevant α-σ2 residues from bases to acids should inhibit 

their binding of Nef ENTSLL but promote the binding of Nef KNTSLL, as the latter 

condition would act as a charge-swap and reconstitute the necessary salt bridge. Only 

one AP-2 residue, α R21, satisfied these requirements (Fig. 6.4). Indeed, the α R21D 

mutant displayed decreased affinity for Nef ENTSLL but markedly increased affinity 

for Nef KNTSLL, when compared to wild-type α-adaptin. This strongly suggests that 

α R21 normally binds to the Nef glutamate. Similar assays were performed with wild-

type and mutant tyrosinase, in place of Nef, to confirm that α R21 binds to the acidic 

portion of dileucine motifs in general (Fig. 6.4 and 6.5).  

 
Because the hydrophobic and acidic portions of dileucine motifs are separated by only 

three amino acids, the AP-2 residues that bind the leucine pair are probably located in 

the vicinity of α R21. Mapping of α R21 on the three-dimensional crystal structure of 

AP-2 indicates that it lies at the interface of the α and σ2 subunits (Fig. 6.6; Collins et 

al., 2002). Thus, residues from either subunit might be responsible for the binding of 

the two leucines. With this in mind, several amino acids on α and σ2 were selected as 

potential leucine-binding partners, based on their proximity to α R21 and their strong 

conservation among the AP complexes (see Fig. 6.6 and 6.7). These amino acids were 

then changed to alanine or aspartate, and the resulting mutants were tested for a loss 

of binding to Nef ENTSLL using yeast three-hybrid assays (Fig. 6.8). The mutation of 

σ2 A63, σ2 V88, and σ2 L103 abolished the interaction between AP-2 and Nef, while 

the alteration of σ2 E89, σ2 E100, and σ2 D102 resulted in binding defects that were 

nearly as profound. Thus, these residues may interact with the leucines in Nef. Similar 

data were obtained when tyrosinase ERQPLL was substituted for Nef, suggesting that 

the σ2 residues mentioned above bind to the hydrophobic segment of other dileucine 

motifs. However, the AP-2 crystal structure indicates that this area of σ2 is normally 
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FIG. 6.2: Identification of basic residues in the AP-2 α-σ2 hemicomplex that are 

conserved with the homologous subunits of AP-1 and AP-3 

 
Sequence alignments of the AP-1 γ-σ1, AP-2 α-σ2, and AP-3 δ-s3 hemicomplexes 

were performed using the ClustalW2 program (available at http://www.clustal.org/), 

as previously described (Fig. 5.1). Amino acid numbers for the first residue in each 

row are indicated on the left, while amino acid numbers for the last residue in each 

row are indicated on the right. Lysine and arginine residues that are present in AP-2 

α-σ2, and conserved among the corresponding AP-1 γ-σ1 and AP-3 δ-s3 subunits, are 

highlighted in red. These residues were mutated to either aspartate or glutamate (see 

Fig. 6.4 and 6.5). The red asterisk denotes AP-2 α residue R21, which was found to 

bind the acidic portion of dileucine sorting signals (see Fig. 6.4). 

 
(A) Protein sequence alignment of the trunk domains of human AP-1 γ (γ1 isoform; 

accession number AAH36283), AP-2 α (αC isoform; accession number O94973), and 

AP-3 δ (accession number AAC51761). 

 
(B) Protein sequence alignment of human AP-1 σ1 (σ1A isoform; accession number 

AAA37243), AP-2 σ2 (accession number AAP36470), and AP-3 σ3 (σ3A isoform; 

accession number EAW48952). 
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FIG. 6.3: Plasmids used for the Y3H assays shown in this chapter 

 
The pBridge and pGADT7 plasmids used in the yeast three-hybrid assays described in 

this chapter are shown here. The following constructs were expressed from pBridge as 

GAL4BD fusion proteins: wild-type HIV-1 Nef (ENTSLL), mutant Nef (KNTSLL), 

wild-type mouse tyrosinase (ERQPLL), and mutant tyrosinase (KRQPLL). Wild-type 

and mutant versions of σ2-adaptin were also expressed from pBridge. The pGADT7 

plasmid was used to express GAL4AD fusions of wild-type and mutant α-adaptin. In 

some cases, the multiple cloning sites of one or both vectors were left empty for use 

as controls. Yeast were transformed with pairs of the pBridge and pGADT7 plasmids 

and plated on selective media as previously described (see Section 2.4). Growth of the 

yeast on media lacking histidine (–His), or lacking histidine and supplemented with 3 

mM of 3-amino-1,2,4-triazole (+3AT) is indicative of an interaction between the α-

σ2 hemicomplex and either Nef or tyrosinase at two levels of stringency. 
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FIG. 6.4
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FIG. 6.5: Y3H analysis of the σ2 mutants: role of the conserved, basic residues in 

binding the acidic portion of dileucine motifs 

 
Lysine and arginine residues in AP-2 σ2 that are conserved in the homologous AP-1 

σ1 and AP-3 σ3 subunits were mutated to aspartate or glutamate, combined with wild 

type α-adaptin, and used in yeast three-hybrid assays to test for interactions with Nef 

ENTSLL, Nef KNTSLL, tyrosinase ERQPLL, tyrosinase KRQPLL, and empty vector 

(as described in the legend to Fig. 6.4). The mutation of several σ2 residues, including 

R15, caused loss of binding to both Nef ENTSLL and tyrosinase ERQPLL. However, 

these mutants failed to bind either Nef KNTSLL or tyrosinase KRQPLL, precluding 

their assignment as ligands of dileucine sorting signals. 
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FIG. 6.5

269



FIG. 6.6: Location of α  R21 and adjacent residues on the crystal structure of the 

AP-2 complex 

 
(A) Ribbon diagram of the α-σ2 hemicomplex (PDB ID numbers 1GW5 and 2VGL 

[Collins et al., 2002]) depicting the location of the α  R21 residue. For clarity, only the 

α and σ2 subunits of the AP-2 core are shown, with the α subunit drawn in dark blue 

and the σ2 subunit in gold. The α R21 residue (including its side chain) is colored in 

red. The locations of α  K297 and α  R340, also colored in red, are provided as points 

of reference. 

 
(B) Ribbon diagram of the α-σ2 hemicomplex, with the locations of several candidate 

residues that might bind the hydrophobic portion of dileucine sorting signals. Only the 

portion of the α-σ2 hemicomplex that lies within the dashed box of panel A is shown. 

As in panel A, the α subunit is drawn in dark blue; the σ2 subunit is colored in gold; 

and the α R21, α K297, and α R340 residues are shaded red. The candidate leucine-

binding residues (and their side chains) are depicted in orange. 
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FIG. 6.6
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FIG. 6.7: Sequence conservation of α-σ2 residues potentially involved in binding 

the hydrophobic portion of dileucine sorting signals 

 
Sequence alignments of the AP-1 γ-σ1, AP-2 α-σ2, and AP-3 δ-s3 hemicomplexes 

were performed as described in the legend to Fig. 6.2. The position of the first amino 

acid in each row is indicated by the number on the left, while the position of the last 

amino acid in each row is indicated by the number on the right. Several α-σ2 residues 

were identified as leucine-binding candidates, based on their physical proximity to α 

R21 (see Fig. 6.6) and their conservation among the homologous γ-σ1 and δ-σ3 hemi-

complexes. These residues are highlighted in orange, and were mutated prior to their 

incorporation in a yeast three-hybrid assay (see Fig. 6.8). The orange asterisks denote 

σ2 V88 and σ2 L103, which were shown to be critical for binding the Nef, tyrosinase, 

and CD4 dileucine motifs (see Fig. 6.8 and Kelly et al., 2008). 

 
(A) Protein sequence alignment of the trunk domains of human AP-1 γ (γ1 isoform; 

accession number AAH36283), AP-2 α (αC isoform; accession number O94973), and 

AP-3 δ (accession number AAC51761). 

 
(B) Protein sequence alignment of human AP-1 σ1 (σ1A isoform; accession number 

AAA37243), AP-2 σ2 (accession number AAP36470), and AP-3 σ3 (σ3A isoform; 

accession number EAW48952). 
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FIG. 6.8: Y3H analysis of the α-σ2 residues potentially involved in binding the 

hydrophobic portion of dileucine motifs 

 
As described in the legend to Fig. 6.7, a small number of α-σ2 residues were chosen, 

based on their physical proximity to α R21 and their conservation among the related 

γ-σ1 and δ-σ3 hemicomplexes, as candidates for binding the hydrophobic portion of 

dileucine-type sorting signals. These residues were then mutated to alanine, aspartate, 

or serine, and the resulting constructs were incorporated into the standard yeast three-

hybrid assay. Each mutant was tested for loss of binding to wild-type Nef (ENTSLL) 

and wild-type tyrosinase (ERQPLL). An empty vector condition, in which neither Nef 

nor tyrosinase were expressed, was included as before (Fig. 6.4 and 6.5). Pairing the 

α-σ2 mutants with empty vectors tests these constructs for self-activation, which may 

otherwise be interpreted as false-positives. In the top panel, the positive control shows 

the interaction between Nef ENTSLL and wild-type α-σ2, while the negative control 

represents the interaction between Nef ENTSAA (i.e., Nef LL164,165AA) and wild-

type α-σ2. Similar positive and negative controls were used for the middle panel, but 

tyrosinase ERQPLL was substituted for Nef ETNSLL, and tyrosinase ERQPAA (i.e., 

tyrosinase LL517,518AA) was substituted for Nef ENTSAA. Unlike the Y3H assays 

shown earlier in this chapter, the positive control for the bottom (empty vector) panel 

was a combination of α-σ2 with empty pBridge, while the negative control combined 

empty pGADT7 and empty pBridge (these controls were included to rule out spurious 

growth that might have been caused by the vector backbones). Mutation of several σ2 

residues (particularly A63, V88, and L103) inhibited binding with Nef and tyrosinase, 

suggesting that these amino acids either interact with the dileucine moiety directly, or 

are adjacent to the dileucine binding site. Mutation of several other σ2 residues (such 

as E89, E100, and D102) also impair binding with Nef and tyrosinase, although to a 

somewhat lesser degree. In general, binding of tyrosinase to α-σ2 was more sensitive 

to mutations of the hemicomplex than Nef. This might be due to subtle differences in 

their respective dileucine binding sites, or the greater overall affinity of Nef for AP-2 

(as demonstrated in Fig. 5.2). 
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FIG. 6.8
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occluded by the N-terminus of the β2 subunit (Fig. 6.9; Collins et al., 2002). Thus, in 

order for these σ2 residues to participate in the binding of dileucine signals, the AP-2 

core would have to undergo a conformational change. Such a rearrangement might be 

triggered by phosphorylation of the β2 N-terminus, which has previously been shown 

to promote the internalization of proteins containing dileucine sorting signals from the 

cell-surface (see Huang et al., 2003). Additional experiments will be needed to verify 

that the σ2 residues identified here bind dileucine signals. These experiments could be 

variations of the GST pull-downs and RNAi rescue assays described earlier (Fig. 5.5 

and 5.6). Much more information, though, would be provided by a crystal structure of 

the AP-2 core bound to a dileucine ligand. 

 
Several months after completion of the yeast three-hybrid assays, the crystal structure 

of AP-2 in complex with a phosphorylated version of the CD4 dileucine sorting signal 

was solved and published (Kelly et al., 2009; see Section 1.3 for a brief description of 

CD4 phosphorylation and endocytosis). This crystal structure confirmed many of the 

observations made using the yeast three-hybrid system, including the role of α R21 in 

binding the acidic portion of dileucine motifs, and the role of σ2 V88 and σ2 L103 in 

binding the hydrophobic portion (Fig. 6.10; Kelly et al., 2009). Four other σ2 residues 

were considered to be candidates for interacting with the leucine moiety, based on the 

results of the yeast experiments (Fig. 6.8). The crystal structure showed that most of 

these residues were adjacent to the dileucine binding site; their mutation in the yeast 

assay may have prevented the Nef and tyrosinase dileucine motifs from accessing the 

appropriate contact points on σ2 and caused loss of binding. The crystal structure also 

showed that the AP-2 core must undergo a significant conformational change in order 

to accommodate dileucine ligands, with the N-terminus of β2 shifting so as to expose 

the binding site on σ2 (Kelly et al., 2009). A comparison of the yeast three-hybrid and 

structural data indicates that there are subtle differences in the specific binding sites of 

each dileucine motif. In particular, σ2 L101 appears to be important for binding CD4 

and tyrosinase, but is not required for binding Nef (Fig. 6.8; Kelly et al., 2009). Thus, 

the residues in dileucine motifs that separate the acidic and hydrophobic moieties (i.e., 

the xxx residues in the [D/E]xxxL[L/I] consensus sequence) most likely interact with 

slightly different regions of σ2. This may explain why each dileucine signal binds to 

AP-2 with a unique affinity (Fig. 4.6). Despite these differences, the dileucine motifs 
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FIG. 6.9: Location of the prospective Nef dileucine binding site on the structure 

of AP-2 

 
(A) Ribbon diagram of the α-σ2 hemicomplex (PDB ID numbers 1GW5 and 2VGL 

[Collins et al., 2002]) with the locations of the σ2 A63, σ2 V88, and σ2 L103 amino 

acids highlighted in orange. For the sake of clarity, only the α and σ2 subunits of the 

AP-2 core are shown in this panel; the α subunit is colored in dark blue, while the σ2 

subunit is shaded in gold. The α R21, α K297, and α R340 residues are highlighted in 

red, and included here as points of reference. Given the location of all these residues, 

Nef probably binds across the α-σ2 hemicomplex, with Nef E160 binding α R21; Nef 

LL 164,165 binding σ2 L103, σ2 V88, and σ2 A63; and Nef DD174,175 binding α 

K297 and α R340. This arrangement may explain why the binding of Nef to AP-2 

requires both the α and σ2 subunits (Janvier et al., 2003b). 

 
(B) Surface representation of the unbound AP-2 core complex (PDB numbers 1GW5 

and 2VGL [Collins et al., 2002]), with the α, β2, µ2, and σ2 subunits colored in dark 

blue, green, magenta, and gold, respectively. The positions of α R21, α K297, and α 

R340 are colored in red. In this conformation, the Nef dileucine binding site on α-σ2 

is occluded by the N-terminus of β2. Thus, for Nef to interact with AP-2, the adaptin 

core must undergo a conformational shift. 
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FIG. 6.10: Location of the CD4 dileucine binding site on AP-2 

 
The three-dimensional crystal structure of the AP-2 core bound to the CD4 dileucine 

signal (pSQIKRLLS) was recently solved and published (PDB ID number 2JKR and 

2JKT [Kelly et al., 2008]). The images shown here are taken from this publication. In 

both panels, the α subunit is colored dark blue, while the σ2 subunit is shaded light 

blue. Residues that were mutated during the course of the yeast three-hybrid assays 

(see Fig. 6.4, 6.5, and 6.8) are surrounded by orange boxes. 

 
(A) Ribbon diagram of the AP-2 core in complex with the CD4 dileucine peptide. For 

the sake of clarity, only the relevant portions of the α and σ2 subunits are shown. The 

side chains of the CD4 residues are depicted in yellow, while the side chains of the α-

σ2 residues are colored red. 

 
(B) Schematic representation of the α-σ2 residues that participate in binding the CD4 

dileucine peptide. In this diagram, the color conventions for the α and σ2 subunits are 

maintained, but the CD4 residues are shown in black. 
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of CD4 and Nef seem to interact with the same general region of σ2, which suggests 

that only one of these sorting signals makes contact with AP-2 in the CD4-Nef-AP-2 

tripartite complex. A tempting model that fits this description has the CD4 dileucine 

motif binding to the Nef hydrophobic pocket, and the Nef dileucine motif binding to 

α-σ2 (see Section 5.4). However, this is only one possibility, and careful biochemical 

and structural studies will be needed to determine the exact configuration of the CD4-

Nef-AP-2 complex. 
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6.4 Future Work 

 
While the work presented in this thesis has firmly established the role of AP-2 in the 

Nef-mediated downregulation of CD4, several related topics remain to be explored. In 

light of the direct binding between Nef and AP-2 shown here, a natural extension of 

this thesis would be to investigate the effect of this interaction on other receptors. This 

line of study should focus on cell-surface proteins that contain dileucine-based sorting 

signals, as the binding of Nef to AP-2 might disrupt their endocytosis from the plasma 

membrane. Another subject that deserves greater attention is the postendocytic fate of 

CD4 itself. These topics will be discussed in more detail below. 

 
6.4.1 The effect of Nef-AP-2 binding on surface receptor expression  

 
The robust binding of Nef to AP-2, via its dileucine and diacidic motifs (Fig. 3.8, 3.9, 

4.1, and 4.2), allows the viral protein to downregulate CD4 (Fig. 3.3, 3.4, 4.4, 4.5, and 

5.6). Interestingly, this interaction may also be responsible for the differential effects 

that Nef has several on other cell-surface receptors, including CD8, CD28, DC-SIGN, 

Ii, LIGHT, and TNF (see Section 1.4). Nef has been shown to downregulate CD8 and 

CD28 by increasing the rate at which these receptors are internalized from the plasma 

membrane (see Fig. 1.8; Stove et al., 2005; Swigut et al., 2001). Mutation of either the 

dileucine or diacidic motif prevents Nef from executing these functions (Stove et al., 

2005), suggesting that like CD4, the downregulation of CD8 and CD28 depends on an 

interaction between Nef and AP-2.  

 
Separately, Nef has also been shown to upregulate the expression of DC-SIGN, TNF, 

Ii, and LIGHT on the cell-surface by slowing their normal rate of endocytosis (Lama 

and Ware, 2000; Schindler et al., 2003; Sol-Foulon et al., 2002; Stumpner-Cuvelette 

et al., 2001). All four of these receptors contain dileucine-type sorting signals in their 

cytosolic domains, and in the absence of Nef, are internalized in an AP-2-dependent 

manner (Dugast et al., 2005; Engering et al., 2002; McCormick et al., 2005; Mitchell 

et al., 2008; Sol-Foulon et al., 2002). Upregulation of each receptor requires an intact 

Nef dileucine motif (see Coleman et al., 2006; Lama and Ware, 2000; Mitchell et al., 

2008; Schindler et al., 2003; Sol-Foulon et al., 2002; Stumpner-Culvette et al., 2001), 

which also suggests that these processes depend on the interaction between Nef and 

AP-2. 
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The results described above have created an apparent contradiction: while the binding 

of Nef and AP-2 probably causes the downregulation of some surface receptors (such 

as CD4, CD8, and CD28), it may also cause the upregulation of other proteins located 

on the plasma membrane (like DC-SIGN, TNF, Ii, and LIGHT). In order to reconcile 

these findings, a new model of Nef activity at the cell-surface has been proposed (see 

Mitchell et al., 2008). According to this model, Nef binds AP-2 with a higher affinity 

than any of the aforementioned receptors, which effectively blocks their access to the 

dileucine binding site and disrupts their usual interaction with the cellular endocytic  

machinery. Downregulation would occur when Nef binds to a receptor and traps it in 

a clathrin-coated pit. On the other hand, upregulation would occur when Nef does not 

bind the receptor; because these proteins are unable to undergo either normal or Nef-

induced endocytosis, they will accumulate on the plasma membrane. Support for this 

model is drawn from a variety of sources, including: the observation that all affected 

receptors have canonical dileucine sorting signals, or variations thereof; a requirement 

for the Nef dileucine motif, as described above; and the direct binding of Nef to AP-2, 

which was observed here for the first time (Fig. 3.8, 3.9, 4.2, and 5.5).  

 
Before this model can be validated, at least two of its predictions must be tested. First, 

it will be necessary to show that Nef connects both CD8 and CD28 to AP-2. For this 

purpose, yeast four-hybrid assays could be used to determine whether Nef promotes 

the formation of CD8-Nef-AP-2 and CD28-Nef-AP-2 complexes. Downregulation of 

CD8 and CD28 requires the same motifs on Nef as the downregulation of CD4 (Stove 

et al., 2005; Swigut et al., 2001), suggesting that these processes are highly similar, if 

not identical. Second, it will be important to show that Nef only affects the expression 

of receptors which contain dileucine signals weaker than its own. Consistent with this 

prediction, Nef has been observed to alter the surface-expression of a limited number 

of receptors (Fig. 1.8). The AP-2 binding assays developed during the course of this 

work (Fig. 3.8, 3.9, and 4.2) should now make it possible to test whether Nef does, in 

fact, bind AP-2 with greater affinity than these receptors. The outcome of such assays 

will do much to explain the activity of Nef at the cell-surface. 

 
6.4.2 Postendoyctic fate of CD4 

 
Nef uses AP-2 to transport CD4, and possibly a small number of other receptors, from 

the plasma membrane to endosomes (Fig. 3.7, 4.4, 4.5, 5.6, and 5.7). Nef then directs 
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CD4 to lysosomes, where the receptor is degraded (Rhee and Marsh, 1994). However, 

the intracellular pathway used by Nef to transfer CD4 from endosomes to lysosomes 

is poorly characterized, and remains controversial. Some groups have suggested that 

this process depends on an interaction between Nef and the COPI complex (Piguet et 

al., 1999; Schaefer et al., 2008), which has been reported to participate in endosomal 

sorting events (Aniento et al., 1996; Daro et al., 1997). The RNAi-mediated silencing 

of COPI expression appears to partially inhibit CD4 downregulation (Schaefer et al., 

2008; Fig 3.5), but this treatment probably affects a wide variety of cellular functions, 

making it difficult to specifically attribute CD4 downregulation to COPI activity. In 

addition, mutation of the COPI binding site on Nef does not prevent CD4 degradation 

(Janvier et al., 2001; Schaefer et al., 2008), indicating that Nef likely uses a different 

pathway to target CD4 to lysosomes. Many receptors are directed towards lysosomes 

via the MVB pathway, which usually involves the attachment of ubiquitin to a trans-

membrane protein and its subsequent recognition by the ESCRT machinery (reviewed 

by Piper and Katzman, 2007). Both Nef and CD4 are ubiquitinated on multiple lysine 

residues (da Silva et al., 2009; Jin et al., 2008), but these modifications do not appear 

to be important for downregulation of the receptor (da Silva et al., 2009). Transport of 

CD4 from endosomes to lysosomes, however, was found to require components of the 

ESCRT machinery (da Silva et al., 2009). Thus, the Nef-mediated downregulation of 

CD4 might be a new example of the small number of cargo proteins which are sorted 

to the MVB pathway in an ESCRT-dependent, but ubiquitin-independent manner (see 

Hislop et al., 2004; Yamashita et al., 2008; Watson and Bonifacino, 2007). Given the 

uncertainty surrounding the final stages of CD4 downregulation, it will be necessary 

to perform additional experiments to determine the precise mechanism used by Nef to 

drive CD4 towards lysosomes. 
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6.5 Concluding remarks 

 
The primary goal of this thesis was to determine whether Nef downregulates CD4 via 

an accelerated endocytosis or intracellular retention pathway (please refer to Section 

1.9). The data presented here uniformly supports the accelerated endocytosis model, 

whereby Nef increases the rate of CD4 internalization by linking the cytosolic tail of 

the receptor to AP-2. These findings (published in Chaudhuri et al., 2007; Chaudhuri 

et al., 2009; Lindwasser et al., 2008) have led to a general agreement within the field 

on the mechanism of Nef-mediated CD4 downregulation (da Silva et al., 2009; Foster 

and Garcia, 2008; Schaefer et al., 2008; Toussaint et al., 2008).  

 
In the absence of an effective HIV-1 vaccine, some scientists have concluded that the 

inhibition of CD4 downregulation is the most promising strategy for combating AIDS 

(Foster and Garcia, 2008; Watkins et al., 2008). The discovery of AP-2 as an essential 

component of Nef-induced CD4 downregulation, and the subsequent identification of 

specific residues required for the interaction between Nef and AP-2, has created new 

opportunities for the development of antiviral agents. Indeed, the results of this thesis 

may now allow for the rational design of a drug that can block the binding of Nef and 

AP-2, prevent the downregulation of CD4, and – hopefully – moderate the pathogenic 

effects of Nef. 
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