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Summary

Lattice materials are used as the core of sandwich panels to construct light and

strong structures. This thesis focuses on metallic sandwich structures and has two

main objectives: (i) explore how a surface treatment can improve the strength of a

lattice material and (ii) investigate the collapse response of two competing prismatic

sandwich cores employed in ship hulls.

First, the finite element method is used to examine the effect of carburisation and

strain hardening upon the compressive response of a pyramidal lattice made from

hollow tubes or solid struts. The carburisation surface treatment increases the yield

strength of the material, but its effects on pyramidal lattices are not known. Here,

it is demonstrated that carburisation increases the plastic buckling strength of the

lattice and reduces the slenderness ratio at which the transition from plastic to

elastic buckling occurs. The predictions also showed that strain hardening increases

the compressive strength of stocky lattices with a slenderness ratio inferior to ten,

but without affecting the collapse mode of the lattice.

Second, the quasi-static three-point bending responses of simply supported and

clamped sandwich beams with a corrugated core or a Y-frame core are compared

via experiments and finite element simulations. The role of the face-sheets is as-

sessed by considering beams with (i) front-and-back faces present and (ii) front face

present, but back face absent. These two beam designs are used to represent single

hull and double hull ship structures, and they are compared on an equal mass basis

by doubling the thickness of the front face when the back face is absent. Beams

with a corrugated core are found to be slightly stronger than those with a Y-frame

core, and two collapse mechanisms are identified depending upon beam span. Short

beams collapse by indentation and for this collapse mechanism, beams without a

back face outperform those with front-and back faces present. In contrast, long

beams fail by Brazier plastic buckling and for this collapse mechanism, the presence
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of a back face strengthens the beam.

Third, drop weight tests with an impact velocity of 5 m/s are performed on sim-

ply supported and clamped sandwich beams with a corrugated core or a Y-frame

core. These tests are conducted to mimic the response of a sandwich hull in a ship

collision. The responses measured at 5 m/s are found to be slightly stronger than

those measured quasi-statically. The measurements are in reasonable agreement

with finite element predictions. In addition, the finite element method is used to

investigate whether the collapse mechanism at 5 m/s is different from the one ob-

tained quasi-statically. The predictions indicate that sandwich beams that collapse

quasi-statically by indentation also fail by indentation at 5 m/s. In contrast, the

simulations for beams that fail quasi-statically by Brazier plastic buckling show that

they collapse by indentation at 5 m/s.

Finally, the dynamic indentation response of sandwich panels with a corrugated

core or a Y-frame core is simulated using the finite element method. The panels

are indented at a constant velocity ranging from quasi-static loading to 100 m/s,

and two indenters are considered: a flat-bottomed indenter and a cylindrical roller.

For indentation velocities representative of a ship collision, i.e. below 10 m/s, the

predictions indicate that the force applied to the front face of the panel is approxi-

mately equal to the force transmitted to the back face. Even at such low indentation

velocities, inertia stabilisation effects increase the dynamic initial peak load above

its quasi-static value. This strengthening effect is more important for the corrugated

core than for the Y-frame core. For velocities greater than 10 m/s, the force ap-

plied to the front face exceeds the force transmitted to the back face due to wave

propagation effects. The results are also found to be very sensitive to the size of the

flat-bottomed indenter; increasing its width enhances both inertia stabilisation and

wave propagation effects. In contrast, increasing the roller diameter has a smaller

effect on the dynamic indentation response. Lastly, it is demonstrated that material

strain-rate sensitivity has a small effect on the dynamic indentation response of both

corrugated and Y-frame sandwich panels.
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Chapter 1

Introduction

Minimising the mass without sacrificing the strength of a structure is an engineering

challenge that has led to the development of new materials, such as lattice materials,

and new structural designs, such as sandwich structures. These two examples con-

stitute fundamental components of this dissertation which aims to (i) improve the

strength of lattice materials and (ii) give a better understanding of the quasi-static

and dynamic behaviour of sandwich structures. The concepts of lattice materials

and sandwich structures are both introduced below, followed by the scope of this

thesis.

1.1 Lattice materials

A lattice is defined as “a connected array of struts or plates” (Ashby, 2005). Lat-

tices can be made from metals, ceramics or polymers. The term “material” here

emphasises that the lattice is considered at a macroscopic length scale, much larger

than the length scale of its constituent lattice elements. Hence, the macroscopic

properties of lattice materials, such as their density, stiffness and strength, can be

directly compared to those of fully-dense solid materials.

The strength of both lattice materials and fully-dense materials is plotted in Fig.

1.1 as a function of density. The figure indicate clearly that lattice materials (which

include polymer and metal foams, composite pyramidal and aluminium lattices)

occupy a region of the material property space that is left empty by fully-dense

materials; this region is the left hand side of the figure where the density is less than
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Figure 1.1: Material property chart of strength versus density for lattice and fully-
dense engineering materials. Text boxes are used to distinguish lattice materials from
fully-dense materials. Adapted from Russell (2009).

0.1 Mg/m3. The low density of lattice materials makes them ideal candidates for

the core of sandwich structures, which are presented in the next section.

1.2 Sandwich structures

A sandwich structure usually consists of two thin but stiff face-sheets, made from a

fully-dense material, separated by a thick and light core. The result is a structure

with a high bending stiffness and strength with a low overall density. In fact, the

bending stiffness and strength of a sandwich structure is always superior to that of

a monolithic structure made from the same material and having the same mass.

Numerous examples of sandwich structures are found in nature. In this regard,

Galileo (1638) writes:

Art, and nature even more, makes use of these in thousands of operations

2



1.2 Sandwich structures

in which robustness is increased without adding weight, as is seen in the

bones of birds and in many stalks that are light and very resistant to

bending and breaking.

The skull of birds present a variety of sandwich topologies. For example, the skull

of a magpie is a double sandwich construction (see Fig. 1.2(a)) whereas the skull

of larger birds, such as owls, is a multiple sandwich construction (see Fig. 1.2(b)).

Another example is the stiff toucan beak, which constitutes one third of the bird’s

length, but only one twentieth of its weight (Seki et al., 2005).

(a) (b)

Figure 1.2: Examples of sandwich structures in nature: bird skulls of (a) a magpie
and (b) a long-eared owl. Adapted from Gibson et al. (2010).

The first industrial application of a sandwich construction is attributed to Fairbairn

(1849) who used iron face-sheets riveted to a wooden core in the construction of

bridges. However, the potential of sandwich structures was limited by the core ma-

terials available; restricted to Balsa and other types of wood. The popularity of

sandwich structures increased significantly when novel cores were introduced such

as the honeycomb core in the 1940s and polymer foams in the 1950s. The sandwich

construction was adopted rapidly by the aerospace and aeronautic industries (Her-

rmann et al., 2005) and more recently, it has been applied in high speed trains and

ship hulls (Vinson, 2005), as illustrated in Fig. 1.3.

A sandwich structure can be made from different materials; aluminium, steel or

carbon fibre reinforced polymers are some examples. This thesis focuses only on

metallic sandwich panels. These have two main advantages over their composite

counterparts: (i) the joining process for metals is well known, avoiding debonding

problems between the face-sheets and core and (ii) the ductility of metals enable the

sandwich structure to be used in energy absorption applications. This thesis will

focus on one particular industrial application where energy absorption is important,

ship hull design.

3
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(a)

(b)

Sandwich roof

and side panels

Figure 1.3: Examples of sandwich structures in industrial applications: (a) the car
body of a high speed train in Japan (Shinkansen 700 series) and (b) Y-frame ship hull
design developed by Damen Schelde Naval Shipbuilding. Adapted from Matsumoto
et al. (1999) and McShane (2007).
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1.3 Scope of this thesis

1.3 Scope of this thesis

This thesis focuses on metallic sandwich structures and has two main objectives:

1. explore how a surface treatment can improve the strength of a lattice material

and

2. investigate the collapse response of two competing prismatic sandwich cores

employed in ship hulls.

A considerable amount of work has been published on metallic sandwich structures

and a review is presented in Chapter 2. First, lattice materials are introduced with

an emphasis on their manufacturing route and their compressive and shear strengths.

Second, the collapse mechanisms of a sandwich panel loaded quasi-statically under

three-point bending are presented. Third, the dynamic responses of sandwich struc-

tures subjected to (i) low-velocity impacts and (ii) blast loads are reviewed and

finally, the potential of using a sandwich construction to increase the resistance of

ship hulls against collision and grounding is also discussed.

As it will be shown in Chapter 2, the pyramidal lattice possesses a high compres-

sive strength. The potential of using a surface treatment, such as carburisation, to

increase its strength is investigated in Chapter 3. In this chapter, the finite ele-

ment method is used to predict the compressive response of a carburised pyramidal

lattice made from hollow tubes or solid struts. The effect of carburisation upon the

compressive strength and the collapse mode of the lattice is examined.

The pyramidal lattice is strong, but more difficult to manufacture than prismatic

lattices such as the corrugated core and Y-frame core. Consequently, prismatic cores

are more attractive for industrial applications like ship hull design. The quasi-static

three-point bending response of sandwich beams with a corrugated core or a Y-

frame core is investigated in Chapter 4. The role of the face-sheets is addressed by

considering beams with (i) front-and-back faces present and (ii) front face present,

but back face absent. Those two beam designs are used to represent double hull and

single hull ship structures, respectively. Experimental tests are complemented by

finite element simulations to gain additional insight into the collapse mechanisms.

Large vessels such as oil and chemical tankers are exposed to ship collisions that

occur at relatively low speeds, roughly 5 m/s. The response of a sandwich hull

construction to a ship collision is mimicked in Chapter 5 by performing drop weight

5



Chapter 1. Introduction

tests, with an impact velocity of 5 m/s, on sandwich beams with a corrugated core

or a Y-frame core. The beam response at 5 m/s is compared to its quasi-static

response to assessed the effect of velocity. This comparison is done via experiments

and finite element simulations.

Full-scale ship collision tests on a Y-frame sandwich hull have indicated that the

structure deforms by indentation (Wevers and Vredeveldt, 1999). For this reason,

the dynamic indentation response of sandwich panels with a corrugated core or a

Y-frame core is simulated in Chapter 6 using the finite element method. The

objective is to quantify the importance of (i) material strain-rate sensitivity, (ii)

inertia stabilisation effects and (iii) wave propagation effects upon the indentation

response.

Finally, Chapter 7 contains a summary of the conclusions reached in this thesis

and suggestions for future work.
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Chapter 2

Literature review

Summary

An overview of the literature on metallic sandwich panels is presented in this chapter.

First, three families of lattice materials are introduced: metal foams, truss cores

and prismatic cores. The manufacturing route and the strength of each family of

lattices are reviewed. Second, the quasi-static three-point bending strength of a

sandwich panel is discussed with an emphasis on three collapse mechanisms: face

yield, core shear and indentation. Third, the dynamic behaviour of lattice materials

and sandwich structures is reviewed for both low-velocity impacts and blast loadings.

Finally, the potential of employing a sandwich construction to increase the structural

performances of ship hulls is addressed as it constitutes an important industrial

application of the work done in this thesis.

2.1 Lattice materials used as core topologies

The concept of lattice materials was introduced previously in Section 1.1. Lattice

materials possess a reasonably high strength at very low densities, which makes them

ideal candidates for the core of sandwich structures. The mechanical properties of

lattice materials are governed by three factors (Ashby, 2006):

1. the topology of the lattice,

2. the parent material and

7
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3. the relative density ρ̄ defined as the volume fraction of solid material.

Several different topologies have been developed with the objective of maximising

the strength and minimising the density of the lattice. These topologies can be

classified in three families (Evans et al., 2001; Wadley, 2002): foams, truss cores and

prismatic cores, see Fig. 2.1. Foams have a random microstructure and accordingly

they fall in the stochastic category. In contrast, truss cores and prismatic cores are

constructed from a precise unit cell, which is repeated in an array. Consequently,

they form the category of periodic lattice materials. The research done for each of

these three families is presented below.

Lattice materials

Stochastic Periodic

Foams Truss cores Prismatic cores

- Open-cell

- Closed-cell

- Tetrahedral

- Pyramidal

- Kagomé

- Honeycomb

- Corrugated

- Y-frame

Figure 2.1: Classification of lattice materials proposed by Evans et al. (2001) and
Wadley (2002).

2.1.1 Metal foams

Metal foams are frequently made from aluminium filled with gas pores to form a

cellular structure. These pores can be either sealed (closed-cell, see Fig. 2.2(a)) or

interconnected (open-cell, see Fig. 2.2(b)). Numerous techniques have been devel-

oped to manufacture metal foams; the method employed influences the pore size and

their type (closed or open). For example, closed-cell foams can be manufactured by

bubbling gas through molten aluminium whereas open-cell foams can be fabricated

by casting using a polymer or a wax template. For more information about the

manufacturing process, the reader is referred to the textbooks of Gibson and Ashby

(1997) and Ashby et al. (2000).

Metal foams have poor structural performances. When a remote compressive stress

is applied, the ligaments forming the foam pores deform in bending. Consequently,

8



2.1 Lattice materials used as core topologies

(a) (b)

Figure 2.2: Aluminium metal foams with (a) closed-cell and (b) open-cell. Repro-
duced from Paul and Ramamurty (2000) and Nieha et al. (2000).

the stiffness and compressive strength of metal foams scale with ρ̄2 and ρ̄3/2, respec-

tively (Ashby, 2006). The yield behaviour of metal foams can be predicted using

the constitutive model of Deshpande and Fleck (2000a); this model has been imple-

mented in finite element simulations and the predictions were found to be in good

agreement with the measured deformation of metal foams (Bart-Smith et al., 2001;

Chen et al., 2001).

2.1.2 Truss cores

The bending-dominated behaviour of metal foams explains their poor compressive

strength. This led to the development of truss cores, which are designed to be

stretching-dominated rather than bending-dominated. Ashby (2006) demonstrated

that for stretching-dominated structures, the stiffness and strength of the lattice

both scale linearly with the relative density ρ̄. This implies that the strength of

a stretching-dominated structure is three times greater than that of a bending-

dominated structure when ρ̄ = 0.1. The behaviour of bending- and stretching-

dominated lattices is compared in Fig. 2.3.

Examples of truss cores include the tetrahedral, pyramidal and Kagomé lattices, see

Fig. 2.4. The stiffness and strength of tetrahedral lattices was investigated ana-

lytically and experimentally by Wallach and Gibson (2001) and Deshpande et al.

(2001). In both studies, the authors note the superior performances of the tetrahe-

dral lattice compare to metal foams. Furthermore, experimental (Wang et al., 2003)

and numerical (Hyun et al., 2003) work on the Kagomé lattice revealed that it is

slightly stronger than the tetrahedral lattice.
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ρ

σpk

σ
Y

Ideal

bending-dominated

behaviour

Ideal stretching-dominated behaviour

0.01 0.1 1

10

1

10
-2

10
-3

10
-4

10
-1

Foams

1.5

1Kagomé

HoneycombPyramidal

F

F

(a) (b)

(c) F

F

Figure 2.3: Relative strength as a function of relative density ρ̄ for different core
topologies. The relative strength is defined as the compressive strength of the core
σ̄pk divided by the yield strength of the material σY . Examples of (b) bending- and
(c) stretching-dominated lattices. Adapted from Ashby (2005).

(a) (b)

(c)

Figure 2.4: Examples of truss cores: (a) tetrahedral, (b) pyramidal and (c) Kagomé
lattices. Reproduced from Kooistra and Wadley (2007).
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In the experimental studies reported above, the tetrahedral and Kagomé lattices

were fabricated by investment casting. This manufacturing route has important

limitations; low relative densities are difficult to manufacture because of their sus-

ceptibility to casting defects and the process requires an alloy with a high fluidity.

So far, aluminium-silicon and copper-beryllium alloys have been used, but their poor

ductility impairs the structural performances of the lattice. A novel manufacturing

route was proposed by Kooistra et al. (2004) to overcome those limitations. The

process involves perforating and folding a metallic sheet, as shown in Fig. 2.5(a).

Using this method, tetrahedral lattices with a relative density as low as ρ̄ = 0.02

were manufactured with ductile 6061 aluminium (Kooistra et al., 2004) and type

304 stainless steel (Sypeck and Wadley, 2002).

The fabrication method illustrated in Fig. 2.5(a) wastes a lot of material, especially

for lattices with a low relative density. This waste can be avoided by using the

Step 1: Slitting and expanding Step 2: Flattening Step 3: Folding

(a)

(b)

Figure 2.5: Two manufacturing routes for truss cores: (a) perforating and folding
and (b) slitting, flattening and folding. Reproduced from Kooistra and Wadley (2007).
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manufacturing process proposed by Kooistra and Wadley (2007). The fabrication

method is illustrated in Fig. 2.5(b) and involves slotting and expanding a metal

sheet. Note that only the pyramidal core can be manufactured with this method.

The strength of truss cores can be significantly increased at low relative densities

if the solid struts are replaced by hollow tubes. Queheillalt and Wadley (2005a)

fabricated a lattice by brazing together an array of stainless steel tubes as shown

in Fig. 2.6. At low relative densities, the compressive strength of this lattice was

found to be higher than that of a pyramidal core.

Figure 2.6: Lattices made from hollow tubes arranged in (a) square and (b) diamond
orientations. Reproduced from Queheillalt and Wadley (2005a).

The potential of a lattice made from hollow tubes was extended further by Queheil-

lalt and Wadley (2005b, 2011) who fabricated a pyramidal core made from hollow

tubes. The measured compressive and shear strengths of this hollow pyramidal lat-

tice are compared to other core topologies in Fig. 2.7; the hollow pyramidal lattice

is significantly stronger than other lattices at low values of relative density. This

experimental work was extended by finite element simulations to develop collapse

mechanism maps for the hollow pyramidal lattice loaded in compression (Pingle

et al., 2011a) and in shear (Pingle et al., 2011b). In Chapter 3, the finite element

method will be used to examine the potential of using a surface treatment to increase

the compressive strength of the hollow pyramidal lattice.

2.1.3 Prismatic cores

Prismatic cores are composed of an assembly of plates; four examples are given in

Fig. 2.8. Prismatic cores are easier to manufacture than truss cores and consequently
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0.1

1

0.01 0.1 1

Hollow pyramidal

Pyramidal

(transverse)

Square
honeycombτ

σ
pk

Yρ

ρ

Shear

Y-frame
(longitudinal)

Corrugated
(longitudinal)

2

0.1

1

10

0.01 0.1 1

Square honeycomb
Hollow pyramidal

Compression

Corrugated

σ

σ
pk

Yρ

ρ

Y-frame

Pyramidal

(a) (b)

Figure 2.7: Measured normalised peak strength of stainless steel lattices loaded in (a)
compression and (b) shear. The lattice compressive strength σ̄pk and shear strength
τ̄pk are normalised by the relative density ρ̄ and the yield strength of stainless steel
σY . Data taken from Côté et al. (2004); Côté et al. (2006); Queheillalt and Wadley
(2011); Rubino et al. (2008a); Zok et al. (2004).

(a) (b)

(c) (d)

Figure 2.8: Examples of prismatic cores: (a) corrugated, (b) Y-frame, (c) square
honeycomb and (d) diamond cores. Reproduced from Zok et al. (2005) and Côté et al.
(2006).
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they are more attractive for industrial applications. Square honeycomb and diamond

cores can be assembled by cutting and slotting metal sheets, whereas corrugated and

Y-frame cores require a folding operation. Finally, the sheets can be either brazed

(for lab-scale specimens) or welded together (for industrial applications) to make a

sandwich panel.

The compressive and shear strengths of the square honeycomb were measured by

Côté et al. (2004) and its performances were found to be similar to those of the

pyramidal core, see Fig. 2.7(a). On the other hand, the mechanical properties of

corrugated and diamond cores were measured by Côté et al. (2006). The compressive

and transverse shear strengths of the corrugated core are inferior to those of the

square honeycomb, see Fig. 2.7. In contrast, the longitudinal shear strength of the

corrugated core is similar to that of the square honeycomb (see Fig. 2.7(b)), making

the corrugated core a promising topology for sandwich panels.

The compressive response of the Y-frame core was studied numerically by Pedersen

et al. (2006). They found that the introduction of a horizontal flange between the

upper and lower sections of the Y-frame changed its behaviour from a stretching-

dominated to a bending-dominated structure. This reduces the compressive strength

of the Y-frame core, but increases its energy absorption capacities. The compressive

and shear strengths of the Y-frame core were measured by Rubino et al. (2008a) and

they were found to be similar to those of the corrugated core, as shown in Fig. 2.7.

2.1.4 Hierarchical topologies

At high relative densities, the compressive strength of prismatic and truss cores

is governed by yielding or plastic buckling of the core members. However, at low

relative densities, the core members are slender and collapse by elastic buckling.

This change in collapse mechanism reduces significantly the compressive strength of

the core. To increase the elastic buckling strength of the core members it is possible

to fabricate hierarchical cores, where the core members are made from a sandwich

construction of a smaller scale (Fleck et al., 2010).

This principle was investigated experimentally by Kooistra et al. (2007) who fabri-

cated a second order corrugated core with a relative density ρ̄ = 0.02, as shown in

Fig. 2.9(a). A comparison with a first order corrugated core of equal relative den-

sity (Fig. 2.9(b)) revealed that the compressive strength of the hierarchical core was
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2.1 Lattice materials used as core topologies

about ten times stronger. However, the second order construction is only beneficial

for low values of relative density, ρ̄ < 0.05.

(a) (b)

Figure 2.9: Photographs showing the collapse mechanisms of (a) second order and
(b) first order corrugated cores, both with a relative density ρ̄ = 0.02. Reproduced
from Kooistra et al. (2007).

2.1.5 Multifunctionality

In previous sections, lattice materials were presented with a strong emphasis on their

compressive and shear strengths. However, the advantages of lattice materials are

not limited only to their structural performances. For example, closed-cell foams can

provide thermal and sound insulations (Gibson and Ashby, 1997; Ashby et al., 2000).

On the other hand, open-cell foams can be used as heat exchangers by pumping a

fluid through the foam pores (Lu et al., 1998; Evans et al., 2001). Prismatic and

truss cores can also be used as heat exchangers and, depending on the application,

they usually outperform metal foams (Lu et al., 2005; Valdevit et al., 2006a).

Truss cores, such as the Kagomé lattice, have the potential to be actuated by elon-

gating or contracting the core members (Hutchinson et al., 2003; Symons et al.,

2005a,b). This work on the actuated Kagomé lattice was extended to other core

topologies by Mai and Fleck (2009). Finally, another advantage of lattice materials

is their use as the core of sandwich structures, and this is covered in the next section.
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2.2 Sandwich structures under quasi-static three-

point bending

Three families of lattice materials were introduced in the previous section: metal

foams, truss and prismatic cores. Their high compressive and shear strengths at low

densities make them ideal candidates for the core of sandwich structures. In this

section, the collapse mechanisms applicable to metallic sandwich structures loaded in

three-point bending are introduced along with simple analytical formulae to predict

their collapse strength. Subsequently, the research conducted on sandwich beams

with either a metal foam core, a truss core, or a prismatic core will be presented

in turn. For an extensive coverage of the design and the mechanics of sandwich

structures the reader is referred to the classic textbooks of Plantema (1966), Allen

(1969) and Zenkert (1995).

2.2.1 Collapse mechanisms

A sandwich panel loaded in three-point bending can collapse in different ways –

referred to as collapse mechanisms – depending on its geometry and material prop-

erties. The relevant collapse mechanisms for metallic sandwich panels are: face yield,

core shear and indentation (Ashby et al., 2000). These three collapse mechanisms

are illustrated in Fig. 2.10 for a sandwich beam with a metal foam core. For each

collapse mechanism, simply supported and clamped sandwich beams are compared

to show the effect of the boundary conditions. Analytical predictions for each of the

three collapse mechanisms are presented below.

(a) Face yield (b) Core shear (mode B) (c) Indentation

Figure 2.10: A sandwich beam with a metal foam core loaded in three-point bending
that collapsed by (a) face yield, (b) core shear (mode B) and (c) indentation. For
each collapse mechanism, simply supported and clamped sandwich beams are shown.
Reproduced from Tagarielli and Fleck (2005).

16



2.2 Sandwich structures under quasi-static three-point bending

Consider the simply supported and clamped sandwich panels loaded in three-point

bending and illustrated in Fig. 2.11(a) and (b), respectively. The geometry of the

panel is defined by: the span 2L, the overhang H , the face-sheet thickness t, the

core thickness c and the width b (normal to the plane). The core and face-sheets are

made from rigid perfectly plastic solids with a yield strength σc
Y and σf

Y , respectively.

In addition, the core is assumed to have a shear strength τ cY .

F, δ

2L
H H

F/2 F/2

t

σ  , τc
Y

σ
Y

f

c
Y

a

c

F/2 F/2

2L

F, δ

a
t

σ  , τc
Y

c
Y

σ
Y

f

c

(a) (b)

Figure 2.11: (a) Simply supported and (b) clamped sandwich panels loaded in three-
point bending.

Face yield

Slender sandwich panels can collapse by face yield, see Fig. 2.10(a). Assuming the

formation of two global plastic hinges on each side of the indenter, see Fig. 2.12(a),

the collapse load for a simply supported panel is given by (Ashby et al., 2000):

Ffy =
2bt(c + t)

L
σf
Y +

bc2

2L
σc
Y . (2.1)

For clamped beams, two additional plastic hinges are forming at the fixed ends, see

Fig. 2.12(b), which doubles the collapse load (Tagarielli and Fleck, 2005). Equation

(2.1) assumes that the face-sheets and core yields simultaneously; however, other

models proposed by Triantafillou and Gibson (1987a) and McCormack et al. (2001)

have neglected the contribution of the core in their estimation of the face yield

collapse load by setting σc
Y = 0 in Eq. (2.1).
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(a) (b)

F, δ

a

Global plastic hinge

F, δ

a

Global plastic hinge

Figure 2.12: Face yield collapse mechanism for (a) simply supported and (b) clamped
sandwich panels.

Core shear

When a sandwich panel is loaded in three-point bending, the transverse shear force

is carried mostly by the core and consequently the panel can collapse by core shear.

Two modes of core shear are possible for simply supported panels and they are

illustrated in Fig. 2.13. Mode A assumes the formation of four plastic hinges in the

face-sheets and shearing of the core over a length 2(L +H). The collapse load for

mode A is given by (Ashby et al., 2000):

FA =
bt2

L
σf
Y + 2bcτ cY

(

1 +
H

L

)

. (2.2)

On the other hand, mode B assumes four additional plastic hinges at the supported

ends and shearing of the core over a length 2L. The collapse load for mode B is

given by (Ashby et al., 2000):

FB =
2bt2

L
σf
Y + 2bcτ cY . (2.3)

F, δ

2L

F/2 F/2

t
Mp

a

H H

Core shear

(a) (b)

F, δ

2L

F/2 F/2

Mp
a

H H

Core shear

Plastic hinge

Figure 2.13: Core shear collapse mechanisms: (a) mode A and (b) mode B.
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The operative mode is the one associated with the lowest collapse load; mode A is

operative for short overhangs H , whereas mode B is active for large values of H .

The transition between the two modes occurs at an overhang Ht given by:

Ht =
t2σf

Y

2cτ cY
. (2.4)

Tagarielli and Fleck (2005) noted that only mode B is applicable for clamped bound-

ary conditions, see Fig. 2.10(b). Core shear can also occur while the face-sheets are

loaded elastically (Chiras et al., 2002), in these cases, the contribution of the faces

can be neglected by setting σf
Y = 0 in Eq. (2.2) and (2.3).

Indentation

The indentation collapse mechanism consists of a localised failure of the core un-

derneath the mid-span indenter, see Fig. 2.10(c). Assuming the formation of four

plastic hinges in the front face and yielding of the core in compression, as shown

in Fig. 2.14, the collapse load can be obtained with an upper bound calculation

(Ashby et al., 2000):

F =
4Mp

λ
+ (a+ λ)bσc

Y , (2.5)

where the full plastic moment of the face-sheet is Mp = σf
Y bt

2/4. Minimising F with

respect to λ gives the collapse load:

FI = 2tb
√

σf
Y σ

c
Y + abσc

Y , (2.6)

F, δ

2L

F/2 F/2

t Mp

a

σ c
Y

θλ

Plastic hinge

Figure 2.14: Indentation collapse mechanism.
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where λ = t
√

σf
Y /σ

c
Y . Note that a lower bound calculation gives the same collapse

load; therefore it can be concluded that Eq. (2.6) gives the exact solution for rigid

perfectly plastic materials. It is interesting to note that the indentation collapse

load is independent of the span 2L and of the boundary conditions.

The analysis above assumes that the front face and core both yield plastically. Ad-

ditional models have been developed in which the core yields plastically, but the

front face is loaded elastically, see for example Soden (1996), Shuaeib and Soden

(1997) and Steeves and Fleck (2004). In all studies cited above, the compressive

strength of the core is considered, but its longitudinal shear strength is neglected.

This assumption is not adequate for cores with a longitudinal shear strength com-

parable to their compressive strength, such as the corrugated and Y-frame cores.

To account for this, an analytical indentation model incorporating the longitudinal

shear strength of the core has been developed by Rubino et al. (2008a, 2010).

Collapse mechanism maps

The operative collapse mechanism is the one associated with the lowest collapse

load. Collapse mechanism maps provide a graphical representation of the opera-

tive collapse mechanism and associated collapse load as a function of two design

parameters. An example is given in Fig. 2.15(a) where the collapse mechanism and

contours of normalised collapse load F̄ = F/(2bLσf
Y ) are plotted as a function of t/c

and c/(2L). Those results were obtained for a normalised indenter size a/(2L) = 0.1

and the following material properties: σc
Y /σ

f
Y = 0.005 and τ cY /σ

f
Y = 0.005.

The normalised indenter size has a strong effect upon the collapse mechanism map;

reducing a/(2L) expands the indentation regime as shown in Fig. 2.15(b). The

map is also sensitive to the boundary conditions; the face yield domain decreases

when the boundary conditions are changed from simple support to fully-clamped

(Tagarielli and Fleck, 2005).

Collapse mechanism maps were developed for different core topologies including:

metal foams (McCormack et al., 2001; Bart-Smith et al., 2001), the tetrahedral core

(Deshpande and Fleck, 2001), the pyramidal core (Zok et al., 2004; Côté et al., 2007),

the square honeycomb core (Zok et al., 2005) and the corrugated core (Valdevit et al.,

2006a). The research done on each of these core topologies will be presented below

in more details.
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Figure 2.15: Collapse mechanism maps for a simply supported sandwich panel: (a)

contours of normalised collapse load F̄ = F/(2bLσf
Y ) for a/(2L) = 0.1 and (b) influ-

ence of the normalised indenter size a/(2L) upon the operative collapse mechanism.

In both cases, σc
Y /σ

f
Y = 0.005 and τ cY /σ

f
Y = 0.005. Adapted from Ashby et al. (2000).

2.2.2 Sandwich beams with a metal foam core

The three-point bending response of simply supported sandwich beams with a metal

foam core was investigated by Triantafillou and Gibson (1987b), McCormack et al.

(2001) and Bart-Smith et al. (2001). Chen et al. (2001) extended this work to simply

supported beams loaded in four-point bending whereas Tagarielli and Fleck (2005)

investigated the influence of the boundary conditions by comparing the responses

of simply supported and clamped beams. These studies revealed that the analytical

formulae presented in Section 2.2.1 gave an accurate prediction of the measured

collapse load. The measurements were also in good agreement with finite element

predictions, in which the metal foam core was treated as a homogeneous solid using

the constitutive model of Deshpande and Fleck (2000a).

2.2.3 Sandwich beams with a truss core

Sandwich beams with a tetrahedral core were first manufactured by investment

casting of an aluminium-silicon alloy (Deshpande and Fleck, 2001) or a beryllium-

copper alloy (Chiras et al., 2002). Subsequently, the technique illustrated in Fig.

2.5(a) was employed by Rathbun et al. (2004) to fabricate sandwich beams made

from stainless steel. In these three studies, the beams were tested under simply

supported boundary conditions and all geometries considered were found to collapse
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by core shear. The measured collapse loads were also found to be in good agreement

with the analytical predictions of Wicks and Hutchinson (2001, 2004).

Stainless steel sandwich beams with a pyramidal core were tested by Zok et al. (2004)

and Côté et al. (2007). Zok et al. (2004) tested both simply supported and clamped

beams and proposed an orthotropic constitutive law to model the behaviour of the

pyramidal core. On the other hand, Côté et al. (2007) tested simply supported

beams only, but focused on their resistance to fatigue.

Sandwich beams with a truss core made from stainless steel tubes, as shown in Fig.

2.6, were tested by Rathbun et al. (2006b) under simply supported and clamped

boundary conditions. For both end conditions, the collapse load measured with

the diamond orientation (see Fig. 2.6) exceeded the one measured with the square

orientation. This is due to the fact that the longitudinal shear strength of the core

is greater in the diamond orientation than in the square orientation.

2.2.4 Sandwich beams with a prismatic core

Stainless steel sandwich beams with a square honeycomb core were tested by Zok

et al. (2005) under simply supported and clamped boundary conditions. The beams

collapsed by core shear or face yield depending upon their geometry, and the mea-

sured responses were used to calibrate an orthotropic constitutive law for the core.

Simply supported sandwich beams with a corrugated core were tested by Valdevit

et al. (2006a) and the measured collapse loads were found to be in good agreement

with analytical predictions. This work was extended by Rubino et al. (2010) who

compared the three-point bending strength of sandwich beams with a corrugated

core to those with a Y-frame core for both simply supported and clamped boundary

conditions. Both core topologies were found to have a similar three-point bending

strength. In all cases, the sandwich beams collapsed by indentation, and the mea-

surements were found to be in good agreement with finite element simulations, as

shown in Fig. 2.16.

2.2.5 Optimisation studies

The studies reported above have investigated the three-point bending response of

sandwich beams with different core topologies. However, one fundamental question
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(b) Finite Element Prediction
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Figure 2.16: A simply supported sandwich beam with a Y-frame core loaded in three-
point bending and collapsing by indentation: (a) experiment and (b) finite element
prediction. A side view showing half the beam (left) and a view of the core deformation
obtained by sectioning the beam at mid-span (right) are included. Reproduced from
Rubino et al. (2010).

is left unanswered: for a given load, which core topology provides the lightest sand-

wich panel? This optimisation problem was investigated analytically by Valdevit

et al. (2004), Rathbun et al. (2005) and Wei et al. (2006). These studies revealed

that the differences between the mass of the optimised sandwich panels are very

small; about 15% variations between the different core topologies considered. Con-

sequently, the authors suggest that the choice of core topology should be based on

considerations other than strength, such as manufacturing costs and the potential

for multifunctionality (Rathbun et al., 2005).

2.3 Lattice materials and sandwich structures un-

der dynamic loading

So far, the behaviour of lattice materials and sandwich structures has been examined

for quasi-static loading only. In this section, their behaviour under dynamic loading

will be addressed. The dynamic collapse response of a structure can be significantly

different from its quasi-static response because of three effects described below:
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Material strain-rate sensitivity. The yield strength of several alloys, such as

mild steel, increases with increasing strain-rate (Jones, 1989; Stout and Fol-

lansbee, 1986).

Inertia stabilisation. Take for example a column loaded dynamically in compres-

sion; its lateral inertia will stabilise it against buckling. This effect can be

important at low impact velocities for which wave propagation effects are neg-

ligible (Calladine and English, 1984; Karagiozova and Jones, 1996).

Wave propagation. As the impact velocity is increased, wave propagation effects

become important. Again, consider a column loaded dynamically in compres-

sion. An axial plastic wave propagates along the column and only the portion

of material engulfed by the plastic wave buckles (Vaughn et al., 2005; Vaughn

and Hutchinson, 2006). If the impact velocity is greater than the plastic wave

speed, the column does not buckle and material accumulates at the impacted

end (Taylor, 1948; McShane, 2007).

Three topics will be covered in this section. First, the literature on the dynamic

compressive response of lattice materials is reviewed. Second, the low-velocity im-

pact response of sandwich structures is presented, and finally, the use of sandwich

panels for blast protection is covered.

2.3.1 Dynamic compressive response of lattice materials

When a sandwich panel is loaded dynamically, some energy is absorbed by crushing

of the core. Consequently, the dynamic performances of sandwich panels are highly

dependent on the compressive response of the core (Liang et al., 2007; McShane

et al., 2007). The dynamic compressive response of a lattice material can be mea-

sured using a strain-gauged Kolsky bar, as shown in Fig. 2.17. The stresses on

front and back faces can be obtained from two independent tests. In the front face

configuration, the specimen is fixed to the striker and they are both fired on the

Kolsky bar. Alternatively, in the back face configuration, the specimen is fixed on

the stationary Kolsky bar and impacted by the striker.

This method was used by Deshpande and Fleck (2000b) to measure the dynamic

compressive response of closed-cell and open-cell aluminium foams, and their dy-

namic responses were found to be relatively similar to their quasi-static responses.

The same method was used to test truss and prismatic cores made from stainless
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Strain gauge

Kolsky bar
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(a) Back face configuration

(b) Front face configuration

Figure 2.17: Direct impact Kolsky bar setup in (a) back face and (b) front face
configurations. Adapted from Lee et al. (2006).

steel, such as the square honeycomb core (Radford et al., 2007); the corrugated and

Y-frame cores (Tilbrook et al., 2007); the I-core (Ferri et al., 2006) and the pyra-

midal core (Lee et al., 2006). The measured dynamic compressive response of truss

and prismatic cores was stronger than its quasi-static response. This strengthening

is attributed to the three factors introduced above: (i) material strain-rate sensi-

tivity, (ii) inertia stabilisation of the core members against buckling and (iii) wave

propagation effects. In general, material strain-rate effects were found to have a

small influence on the results. On the other hand, inertia stabilisation effects were

predominant at low velocities (less than approximately 50 m/s, depending on the

lattice) whereas wave propagation effects appeared at high impact velocities.

In most practical engineering applications, a sandwich panel is not loaded in uni-

form compression. For example, during a ship collision, a sandwich hull structure

deforms by indentation. What will be the importance of the three dynamic strength-

ening effects mentioned above if the loading is changed from uniform compression

to localised indentation? This question will be addressed in Chapter 6.
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2.3.2 Sandwich structures subjected to a low-velocity im-

pact

Sandwich structures used in aerospace, automotive and marine applications are ex-

posed to low-velocity impacts (below 10 m/s). These can be replicated in laboratory

using a drop weight apparatus. The literature on the low-velocity impact response

of sandwich structures is vast and can be divided in two categories aiming at:

1. quantifying the damage caused by a localised impact on a sandwich panel or

2. comparing the quasi-static and low-velocity responses of a sandwich structure.

The first category regroups most of the literature on low-velocity impacts and is

primarily interested in composite sandwich panels used in the aerospace industry.

These structures often have a Nomex or aluminium honeycomb core, which is glued

to the face-sheets that can be made from graphite, glass or carbon fibre reinforced

polymers. When these panels are subjected to a localised impact, delamination,

core crushing and debonding of the core and faces can occur. Several studies have

proposed methods to quantify and measure the damage inferred to the sandwich

panel (Hazizan and Cantwell, 2003; Meo et al., 2005; Castanié et al., 2008; Park

et al., 2008; Shin et al., 2008). These studies are not of primary interest in this

thesis; the second category is more relevant.

The second category includes a few papers only. The quasi-static and low-velocity

impact responses of simply supported sandwich beams with a metal foam core were

investigated by Yu et al. (2008). The authors showed that the collapse mechanism

obtained during drop weight tests at 5 m/s is the same as the one observed quasi-

statically. This finding was corroborated by other experimental studies on sandwich

beams with a metal foam core (Yu et al., 2003; Crupi and Montanini, 2007) or a

honeycomb core (Crupi et al., 2012).

The low-velocity impact response of sandwich beams with a corrugated core or a

Y-frame core will be investigated experimentally and numerically in Chapter 5. The

objective is to determine whether the collapse mechanism observed during a ship

collision at 5 m/s is the same as the one observed under quasi-static loading.
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2.3.3 Sandwich structures subjected to blast loading

Most of the literature on dynamic loading of metallic sandwich structures focuses

on their use for blast mitigation. Even though the emphasis of this thesis is on

the quasi-static and low-velocity impact response of sandwich structures used in

the construction of ship hulls, it is insightful to cover the blast response of sand-

wich structures to (i) determine the sensitivity of the dynamic response to the core

topology and (ii) evaluate the accuracy of the finite element method to simulate the

measured dynamic response.

Analytical and numerical studies

An analytical model was developed by Fleck and Deshpande (2004) to describe the

structural response of a clamped sandwich beam subjected to a blast. Their model

consists of three sequential stages:

Stage I is the one-dimensional fluid-structure interaction during which the front

face acquires an uniform velocity.

Stage II involves compression of the core until the velocities of the front and back

faces equalise.

Stage III is the dissipation of the beam’s kinetic energy through plastic bending

and stretching.

The analytical predictions of Fleck and Deshpande (2004) were found to be in good

agreement with the finite element simulations of Qiu et al. (2003). In the simulations

done by Qiu et al. (2003), the core was treated as a homogeneous solid based on the

metal foam constitutive model of Deshpande and Fleck (2000a). Xue and Hutchinson

(2004) performed finite element simulations on sandwich beams with three fully-

meshed core topologies: a square honeycomb core, a corrugated core and a pyramidal

core. The maximum back face deflection was used as a metric to compare the

performances of sandwich plates to those of a monolithic plate of the same mass.

The results are reproduced in Fig. 2.18 where the normalised maximum back face

deflection w/L is plotted as a function of the normalised blast impulse I/M
√

σY /ρf

for both air and water blasts. Note that the blast impulse is I, the back face

deflection is w, the beam has a span 2L, an areal mass M and is made from a

material with a yield strength σY and a density ρf . The main findings are:
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1. Sandwich beams outperform monolithic beams on an equal mass basis.

2. The advantage of sandwich structures is sensitive to the core topology; pris-

matic cores, such as the corrugated and square honeycomb cores, are preferable

to truss cores because of their high longitudinal strength.

3. The benefit of using a sandwich construction is more important for a water

blast than for an air blast because the impulse transmitted to the front face of

the sandwich beam is lower than the one transmitted to a monolithic beam.
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Figure 2.18: Normalised maximum back face deflection w/L as a function of the

normalised blast impulse I/(M
√

σY /ρf ). Adapted from Rathbun et al. (2006a).

Experimental studies

Radford et al. (2005) proposed to use metal foam projectiles to produce dynamic

pressures representative of air and water blasts. This technique can generate peak

pressures around 100 MPa over a duration of about 100 µs. This approach was

used by several authors (Rathbun et al., 2006a; Radford et al., 2006a; Rubino et al.,

2008b) to compare, on an equal mass basis, the dynamic performances of clamped

sandwich beams with different core topologies to that of monolithic beams. Similar

work was done on circular plates (Radford et al., 2006b; McShane et al., 2006) and

on rectangular plates (Rubino et al., 2009). All studies have shown that sandwich

structures have a lower maximum back face deflection than their monolithic coun-

terparts. In addition, a good correlation was found between experiments and finite

element simulations; see for example Fig. 2.19 where the results of Rubino et al.

(2009) are reproduced.
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Experiments Simulations

(a)

(b)

(c)

Figure 2.19: Photographs and finite element simulations of (a) monolithic, (b) Y-
frame and (c) corrugated plates impacted by a metal foam projectile with a momentum
of 3 kNs/m2. All plates have the same mass. Reproduced from Rubino et al. (2009).

One disadvantage of using metal foam projectiles to simulate blast loading is that

the pressure pulse is localised over a central patch whereas a real shock wave would

spread over the entire front face. To address this issue, a few experiments have been

performed on rectangular sandwich plates loaded by an explosive charge detonated

in air (Dharmasena et al., 2008, 2011). Again, sandwich panels were found to have

lower back face deflections than monolithic plates.

2.4 Ship hull design

Commercial vessels need to resist accidental loads such as ship collisions and ground-

ings (when a ship hits the seabed). Recently, the growing threat of terrorist attacks

and the impressive growth of offshore oil and gas extraction systems have forced

commercial shipbuilders to also consider explosions as a potential accident scenario

(ISSC, 2006b). In this section, design strategies to minimise the consequences of

such accidents are presented with a focus on ship collisions and groundings. These

two accident scenarios are more likely to occur than explosions and are also more

relevant to this thesis.
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2.4.1 Regulations

The design of ship hulls was influenced by major pollution catastrophes such as the

grounding of the Exxon Valdez of the coast of Alaska in 1989. When the single hull

construction of the tanker was breached, over ten million gallons of crude oil flooded

into a sensitive ecosystem within the first five hours only (Skinner and Reilly, 1989).

The environmental consequences of the oil spill attracted the public’s attention and

forced the political power to legislate on the maritime transport of oil and other

hazardous chemical products. The United States introduced the Oil Pollution Act

in 1990 (OPA 90) and the International Maritime Organization (IMO) followed with

a similar legislation in 1992. One important aspect of this legislation was that all

new tankers should be built with a double hull construction.

The OPA 90 and IMO regulations offer design guidelines for the construction of

double hull vessels; the plate thickness and the spacing between inner and outer

hulls are given as a function of the overall ship dimensions. From a structural point

of view, these design requirements are sub-optimal. However, the IMO regulations

allow shipbuilders to propose alternative designs as long as their crashworthiness is

proven to be equal or superior to that of a conventional double hull construction.

Only the ADNR regulations, regarding navigation on the Rhine River, quantify the

energy absorption capacity of a ship hull; the side structure must absorb 22 MJ if

the design differs from a conventional construction.

2.4.2 Evaluating the resistance of ship hulls

The issue of ship collisions and grounding events can be tackled from two different

angles. The first angle is to investigate how and why accidents occur. This leads to

the development of risk assessment methods to quantify the probability and severity

of different accident scenarios, see for example the work of Pedersen (2002) and

Friis-Hansen and Simonsen (2002).

The second perspective is more relevant to this thesis and examines the response

of the ship structure during an accident. Different methods have been developed

to evaluate the structural damage occurred during a ship collision or a grounding

event. Those methods can be divided in four categories: (i) empirical methods, (ii)

simplified analytical methods, (iii) finite element simulations and (iv) experimental

tests on full-scale and/or lab-scale structures.
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The most famous empirical method is certainly the one developed by Minorsky

(1959). By analysing several accidents, the author suggested that the energy ab-

sorbed by the ship structure E during an accident is given by:

E(MJ) = 47.2RT (m
3) + 32.7 , (2.7)

where RT is the volume of deformed material. This empirical formula neglects several

parameters such the vessel speed, the structural arrangements and the material

properties. Several authors have proposed revised Minorsky formulae, for example

Pedersen and Zhang (2000).

Simplified analytical methods allow to study the motion of ships during a collision

(external dynamics) as well as the deformation of the structural components (internal

dynamics). The effect of the surrounding water, vessel speed and collision angle can

be used to estimate the contact forces (Simonsen, 1997; Pedersen and Zhang, 1998;

Zhang, 1999; Tabri et al., 2009).

Finite element simulations can capture accurately the deformation of a ship hull

under different loading scenarios. The method takes into account large deformations,

contact friction, non-linear material properties and even fracture. However, the

definition of an adequate fracture criterion is problematic due to the large mesh size

used to discretise the ship structure (Urban, 2002; Törnqvist, 2003; Simonsen and

Törnqvist, 2004).

Experimental tests are useful to validate the results of finite element simulations but

they are expensive when performed on full-scale structures. Tests on lab-scale struc-

tures are less expensive, but present scaling issues (Jones, 1979). See Pedersen et al.

(1993) and Wang et al. (2000) for a review of full-scale and lab-scale experiments,

respectively.

2.4.3 Design against collision and grounding

The regulations mentioned above have forced shipbuilders to migrate from a sin-

gle hull to a double hull construction. A double hull structure can absorb more

energy than a single hull construction of the same mass and overall dimensions

(Ozguc et al., 2005). The energy absorption capacity of a ship structure can also be

increased by using a high strength steel instead of traditional mild steel in its fabri-
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cation (Lehmann and Peschmann, 2005). Recently, Paik (2003) proposed structural

design alternatives to increase the resistance of ship structures against collisions and

grounding events. A few examples are given here:

Soft bow. During a ship collision, the rigid bulbous bow of the striking ship can

penetrate the side of the stuck vessel. To limit the damage induced to the

struck ship, soft buffer bows can be designed to absorb a part of the collision

energy (Endo et al., 2004; Yamada and Endo, 2004).

Variable bottom height. About 65% of grounding accidents involve the front

part of the vessel. To account for this risk, the spacing between the inner

and outer hulls can be varied along the length of the ship to offer a better

protection of the inner hull (LR, 1991; Amdahl and Kavlie, 1995).

Mid-deck tanker. The mid-deck construction has double hull sides, but a single

hull bottom with a deck at mid-height. In the event of a side collision, the

mid-deck provides structural reinforcement to the side panels. On the other

hand, in the event of grounding, the design allows the oil to flow upward in

the mid-deck since the density of sea water is superior to the density of oil.

See Kawaichi et al. (1995) for more details.

Sandwich construction. The inner and outer hulls can be connected with a light

core to increase the structural performances of the ship hull. This concept was

proposed by Jones (1976), but it has been adopted by shipbuilders only re-

cently. Examples of core topologies considered for ship hulls include the X-core

(Törnqvist, 2003; Törnqvist and Simonsen, 2004) and the Y-core (Ludolphy,

2001; Konter et al., 2004). The Y-frame core is of particular interest in this

thesis and its development is reported in the next section.

2.4.4 Development of the Y-frame sandwich hull design

Full-scale collision tests were performed by Damen Schelde Naval Shipbuilding to

compare the resistance of different conventional and innovative hull designs. Four

structures were considered: (i) a conventional single hull, (ii) a conventional double

hull, (iii) a double hull with a Y-frame core and (iv) a double hull made from

two corrugated panels. These designs are illustrated in Fig. 2.20. The results

were striking; all structures were perforated except the Y-frame double hull, which

showed only a small dent after not only one, but two successive impacts, see Fig.

32



2.4 Ship hull design

2.21 (Wevers and Vredeveldt, 1999). Those experimental results were also supported

by finite element simulations, which revealed that the Y-frame double hull design

can absorb two times more energy than a conventional double hull before perforation

of the outer hull (Naar et al., 2002).

(a) (b) (c) (d)

Figure 2.20: Four hull designs considered in full-scale collision tests: (a) a conven-
tional single hull, (b) a conventional double hull, (c) a double hull with a Y-frame core
and (d) a double hull made from two corrugated panels. Adapted from ISSC (2006a).

Figure 2.21: Photographs of full-scale collision tests performed on the Y-frame dou-
ble hull structure. Adapted from Konter et al. (2004) and Wevers and Vredeveldt
(1999).

The examination of the Y-frame double hull structure after the full-scale collision

tests revealed that the inner hull played a minor role and underwent no visible plastic

deformation (Wevers and Vredeveldt, 1999). This motivated Damen Schelde Naval

Shipbuilding to develop a Y-frame single hull design where the Y-frame stiffeners

are fixed to the bulkhead with the back face absent. Full-scale collision tests were

also performed on this Y-frame single hull structure and it was found to be as

resistant as the Y-frame double hull design. However, the results did not allow a

direct comparison between the Y-frame single and double hull constructions; the

two designs had a slightly different geometry and a different mass. The strength of
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Y-frame single and double hull designs will be compared on an equal mass basis in

Chapter 4.

The Y-frame single hull was approved by the classification society Germanischer

Lloyd and it is now a patented design1. So far, 24 inland waterway tankers have

been manufactured with the Y-frame single hull design. The Y-frame profile is

obtained by welding together folded mild steel plates, see Fig. 2.22 (Graaf et al.,

2004). The superior crashworthiness of the Y-frame single hull design (compared

to a conventional double hull design) allows Damen Schelde Naval Shipbuilding to

build the inline waterway tankers with four tanks of 550 m3 instead of six tanks

of 380 m3 as usually required by the ADNR regulations (Vredeveldt and Roeters,

2004). Using four tanks instead of six is a considerable competitive advantage for

Damen Schelde Naval Shipbuilding as it reduces the cost of piping equipment.

Figure 2.22: Construction of inland waterway tankers with a Y-frame single hull
structure. Adapted from Graaf et al. (2004) and Vredeveldt and Roeters (2004).

2.5 Concluding remarks

Metallic lattice materials have been introduced in this chapter and classified in three

families: foams, truss and prismatic lattices. They were shown to be ideal candidates

for sandwich cores on the account of their high strength and low density. Of all

stainless steel lattice materials tested, the pyramidal lattice made from hollow tubes

offered the highest compressive strength. The potential of using a surface treatment

to increase the strength of this lattice will be the subject of the next chapter.

Prismatic lattices, like the corrugated and Y-frame cores, are easier to manufacture

than truss lattices. Consequently they are more attractive for industrial applications

such as the construction of ship hulls. Extensive research has been conducted on the

1International Patent Application No.PCT/NL99/00757 with Publication No.WO 00/35746
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quasi-static and the blast responses of both the corrugated core and the Y-frame

core. However, some aspects regarding their use in sandwich ship hulls remain

unclear and will be addressed in Chapters 4, 5 and 6. A comparison between the

strength of single and double hull designs will be presented in Chapter 4 for quasi-

static loading. Then, the response of a sandwich hull construction to a ship collision

at 5 m/s is compared to its quasi-static response in Chapter 5. Finally, the influence

of the loading velocity upon the indentation response of a sandwich ship hull is

addressed in Chapter 6.
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Chapter 3

Compressive response of a

carburised pyramidal lattice

Summary

The finite element method was used to simulate the compressive response of a pyra-

midal lattice made from inclined tubes or solid struts. First, the response of both

lattices was compared for two levels of material strain hardening: (i) a perfectly plas-

tic solid and (ii) a strain hardening solid representative of stainless steel. The com-

pressive collapse mode of the lattice was relatively insensitive to the level of strain

hardening. In contrast, strain hardening increased the peak compressive strength of

both inclined tubes and struts with a slenderness ratio inferior to ten. Second, the

response of a carburised pyramidal lattice was simulated. Carburisation increases

the yield strength of the parent material and influences the collapse mode of the

lattice; the transition between plastic and elastic buckling occurred at a smaller

slenderness ratio when the lattice was carburised. Carburisation also increased the

peak compressive strength of the lattice, except for those collapsing by elastic buck-

ling. Finally, a comparison with other lattice materials revealed that the pyramidal

lattice made from carburised tubes is stronger than aluminium or titanium lattices

and as strong as those made from carbon fibre reinforced polymers.
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3.1 Introduction

Lightweight metallic sandwich panels comprise of two face-sheets separated by a

low density core (Zenkert, 1995). The core has to be light but also strong as its

compressive and shear strengths have a significant influence on the overall bending

strength of the sandwich panel. The compressive and shear strengths of the core

depend on three parameters: (i) the topology, (ii) the relative density and (iii) the

mechanical properties of the material from which the core is made (Ashby, 2006).

Over the last decade, several different core topologies have been manufactured from

type 304 stainless steel, for example: the corrugated core (Côté et al., 2006), the

square honeycomb core (Côté et al., 2004) and the pyramidal core made from solid

struts (Zok et al., 2004) or hollow tubes (Queheillalt and Wadley, 2005b, 2011). The

measured compressive strength σ̄pk of each core topology is plotted in Fig. 2.7(a)

(on page 13) as a function of the relative density ρ̄. The results indicate clearly that

the hollow pyramidal core is stronger than other core topologies, especially for low

values of relative density.

The unit cell of a hollow pyramidal lattice is shown in Fig. 3.1(a); its geometry is

defined by the inclination angle ω, the tube length l, the tube outside diameter d and

the wall thickness t. Pingle et al. (2011a) used the finite element method to examine

the influence of the tube geometry upon the collapse mode of a hollow pyramidal

lattice with ω = 55◦. Their results are presented in the form of a collapse mechanism

map1 reproduced in Fig. 3.2. Six collapse modes are identified dependent upon the

tube slenderness ratio l/d and the normalised wall thickness t/d. This map was

developed for a hollow pyramidal lattice made from stainless steel, which possesses

an important strain hardening capacity.

In the first part of this study, the effect of strain hardening upon the collapse mode

and upon the compressive strength of a hollow pyramidal lattice will be evaluated.

In the second part, the effect of carburisation will be investigated. Carburisation is a

heat treatment process that hardens the surface of a metal. A low temperature car-

burisation treatment has been developed recently for stainless steel and, depending

on the duration of the treatment, carburisation depths of 25-70 µm can be achieved

(Cao et al., 2003; Michal et al., 2006). In this study, the effect of carburisation upon

the collapse mode and upon the compressive strength of a hollow pyramidal lattice

will be examined. The potential of carburisation to increase the strength of lattice

1Similar collapse mechanism maps were developed for vertical tubes made from aluminium by
Andrews et al. (1983) and Guillow et al. (2001).
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Figure 3.1: (a) Unit cell of the hollow pyramidal lattice. (b) Top view of the lattice.
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Representative geometries considered in this study are indicated by filled black circles
and contours of relative density ρ̄ are plotted as grey lines. Adapted from Pingle et al.
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materials made from stainless steel has not been investigated before; however, other

surface treatments, such as plasma electrolytic oxidation and electrochemincal an-

odizing, have been used recently to increase the compressive strength of aluminium

metal foams (Abdulla et al., 2011; Bele et al., 2011; Dunleavy et al., 2011).

The effect of strain hardening and carburisation will be studied using the finite

element method. The study will focus on two trajectories on the collapse mechanism

map shown in Fig. 3.2. The first trajectory is indicated by a dashed line and

represents tubes with a normalised wall thickness t/d = 0.1. The second trajectory

is the right hand side of the map and represents pyramidal lattices made from solid

struts, t/d = 0.5. For both trajectories, the slenderness ratio l/d will be varied from

1 to 100.

This chapter is organised as follows. First, the geometry and the analytical collapse

load of the hollow pyramidal lattice are presented in Section 3.2. Second, the effect

of strain hardening is addressed in Section 3.3 and then, the effect of carburisation

is analysed in Section 3.4. Both Sections 3.3 and 3.4 include a description of the

finite element models, an analysis of the compressive responses and a comparison

between the compressive strength of inclined tubes and solid struts.

3.2 Geometry and analytical collapse load of the

pyramidal lattice

3.2.1 Relative density

The unit cell of a hollow pyramidal lattice is shown in Fig. 3.1(a). Its geometry

is defined by the tube length l, the outside diameter d, the wall thickness t and

the inclination ω. A top view of the lattice, see Fig. 3.1(b), reveals that the tube

centres are offset by a distance k from the centre of the pyramid. The distance k is

constrained such that:

k ≥ kmin =
d
√
1 + sin2 ω

2 sinω
. (3.1)

The tubes are touching each other at the face-sheets when k = kmin. The relative

density of the hollow pyramidal lattice is given by:
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ρ̄ =
2π (d2 − (d− 2t)2)

(4k + 2l cosω)2 sinω
=

2π t
d

(

1− t
d

)

(

2γ + l
d
cosω

)2

sinω
, (3.2)

where γ is a function of the inclination ω and is given by:

γ =

√
1 + sin2 ω

2 sinω
. (3.3)

In this study, the tube spacing k = kmin and the inclination angle ω = 55◦ in all

cases. With these two parameters fixed, Eq. (3.2) is used to plot contours of relative

density ρ̄ on the collapse mechanism map shown in Fig. 3.2.

3.2.2 Analytical collapse load

When the hollow pyramidal lattice is compressed by a downward displacement δ, a

vertical force P develops in each tube of the lattice. The nominal compressive stress

σ̄ on the front face-sheet can be expressed as:

σ̄ =
8P

(4k + 2l cosω)2
, (3.4)

and the corresponding nominal compressive strain is:

ǭ =
δ

l sinω
. (3.5)

Assuming that the lattice is made from an elastic perfectly plastic solid, two collapse

modes can be anticipated: (i) plastic collapse or (ii) elastic buckling. An analytical

expression for the plastic collapse load can be obtained by setting:

Ppl = σY
π

4

(

d2 − (d− 2t)2
)

sinω , (3.6)

where the yield strength of the material is σY . Substituting Eq. (3.6) in Eq. (3.4)

returns the plastic collapse stress of the lattice:

σ̄pl = ρ̄σY sin2 ω . (3.7)
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3.3 Influence of strain hardening

Alternatively, an expression for the elastic buckling load can be obtained with:

Pel =
4π2EI

l2
sinω , (3.8)

where the Young’s modulus of the material is E and the second moment of area of

the tube is I = π
64
(d4 − (d − 2t)4). Equation (3.8) assumes that the inclined tube

has both ends built in (Timoshenko and Gere, 1963). Substituting Eq. (3.8) in Eq.

(3.4) returns the elastic buckling stress of the lattice:

σ̄el =
π3E t

d

(

1− 3 t
d
+ 4

(

t
d

)2

− 2
(

t
d

)3
)

(

l
d

(

2γ + l
d
cosω

))2
sinω . (3.9)

Finally, the transition from plastic collapse to elastic buckling can be obtained by

setting Pel = Ppl. This transition occurs at a slenderness ratio:

l

d
=

√

√

√

√

π2E

2σY

(

1− 2
t

d
+ 2

(

t

d

)2
)

. (3.10)

3.3 Influence of strain hardening

3.3.1 Description of the finite element models

All simulations were performed with the implicit solver of the commercially available

finite element software Abaqus (version 6.10). The boundary conditions, mesh,

geometric imperfections, material properties and dimensions employed are detailed

below.

Boundary conditions

It is sufficient to consider only one inclined tube to capture the compressive re-

sponse of the hollow pyramidal lattice. The boundary conditions employed in the

finite element simulations are illustrated in Fig. 3.3. Front and back face-sheets

were modelled as rigid surfaces and a perfect bonding was assumed between the

inclined tube and the face-sheets. The back face was clamped against translational
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Chapter 3. Compressive response of a carburised pyramidal lattice

and rotational displacements whereas the front face had a prescribed downward dis-

placement δ, see Fig. Fig. 3.3. No lateral motion (in the x1 and x2 directions) and

no rotation were allowed for the front face. A hard frictionless contact was defined

between all surfaces of the model allowing the lattice to densify at large values of

nominal compressive strain ǭ.

ω = 55°

A

A

Section A-A

d

t

P,δ

L

x3

x2

x1

Figure 3.3: Finite element model used to simulate the compressive response of an
inclined tube.

Mesh and geometric imperfections

The inclined tubes were meshed using three-dimensional hexahedral elements (C3D8R

in Abaqus notation) with at least five elements through the wall thickness. A small

geometric imperfection was included in all simulations. The imperfection had the

shape of the first buckling mode with an amplitude ζ = 0.05t. The sensitivity of the

compressive response upon the choice of imperfection is discussed in Appendix 3.A.

Material properties

The material properties were chosen to be representative of AISI 304 stainless steel.

This material was used in previous experimental and numerical studies on the hollow

pyramidal lattice (Queheillalt and Wadley, 2005b, 2011; Pingle et al., 2011a,b). The

parent material of the lattice was modelled as a rate-independent elastic-plastic solid

in accordance with J2-flow theory. The elastic regime was linear and isotropic, as

characterised by a Young’s modulus E = 200 GPa and a Poisson’s ratio ν = 0.3.

The yield strength of the material was set to σA
Y = 200 MPa. In this section, two

levels of strain hardening are compared: (i) Et = 0, representing a perfectly plastic
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3.3 Influence of strain hardening

solid and (ii) Et = 2 GPa, a realistic value for stainless steel. The uniaxial tensile

responses of these two material models are compared in Fig. 3.4.
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Figure 3.4: Uniaxial tensile responses of the two material models employed in the
finite element simulations analysing the influence of strain hardening.

Dimensions analysed

In this study, the inclination angle was kept fixed at ω = 55◦ and two different cross-

sections were considered: (i) a tube with t/d= 0.1 and (ii) a solid strut corresponding

to t/d = 0.5. For these two values of t/d, the slenderness ratio l/d was varied from

1 to 100.

3.3.2 Results for an inclined tube

The collapse of an inclined stainless steel tube with t/d = 0.1 can be catalogued

into four distinct modes (A, D, E and F) depending on the slenderness ratio l/d,

see Fig. 3.2. Four selected geometries with l/d = 1, 3, 20 and 100 that collapse

in mode A, D, E and F, respectively, are marked on the map in Fig. 3.2 and their

compressive responses are shown in Fig. 3.5. The responses are plotted in terms

of the nominal compressive stress σ̄, normalised by the relative density ρ̄ and the

yield strength σA
Y , versus the nominal compressive strain ǭ. For each geometry, the

compressive response is given for two strain hardening moduli: (i) Et = 0 and (ii)

Et = 2 GPa. The deformed meshes corresponding to these responses are given in

Table 3.1 to exemplify the four collapse modes of the inclined tube.
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Figure 3.5: Influence of the strain hardening modulus Et on the compressive response
of an inclined tube t/d = 0.1. Results are given for (a) l/d = 1, (b) l/d = 3, (c)
l/d = 20 (d) l/d = 100.
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E  = 0

ε = 0.2

l/d = 1

l/d = 3

l/d = 20

l/d = 100

ρ = 0.15

ρ = 0.064

ρ = 0.004

ρ = 0.0002

Geometry t E  = 2 GPat

ε = 0.5ε = 0.5

ε = 0.5ε = 0.5

ε = 0.2

ε = 0.2ε = 0.2

Mode A

Mode D

Mode E

Mode F

Table 3.1: Influence of the strain hardening modulus Et on the deformed meshes of
an inclined tube t/d = 0.1. Results are given for selected values of l/d.
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Chapter 3. Compressive response of a carburised pyramidal lattice

All compressive responses shown in Fig. 3.5 exhibit a peak stress σ̄pk. The axial

compressive stress in the tube reaches the yield strength when σ̄/(ρ̄σA
Y ) = sin2 ω ≈

0.67, see Eq. (3.7). Of the four collapse modes shown in Fig. 3.5, only mode F:

elastic buckling has a peak stress inferior to the yield limit. The influence of strain

hardening will be discussed below for each collapse mode.

Mode A: axisymmetric bulge is the collapse mode for l/d = 1, see Fig. 3.5(a).

Material strain hardening has a significant influence on the compressive response for

this collapse mode; the peak stress increases by a factor of three when Et is increased

from 0 to 2 GPa.

An inclined tube with l/d = 3 collapses by Mode D: two-lobe diamond, see Fig.

3.5(b). The two “bumps” in the compressive response represent the formation of

the two lobes. Again, material strain hardening increases the peak stress, but the

increase is slightly less than for l/d = 1.

Mode E: global plastic buckling is the operative collapse mode for an inclined tube

with l/d = 20 and its compressive response is shown in Fig. 3.5(c). Note that strain

hardening has no influence on the peak stress; in both cases the axial compressive

stress in the tube reaches the yield strength σ̄/(ρ̄σA
Y ) ≈ 0.67, then the tube buckles

and forms a plastic hinge at mid-length. However, the post-peak response is stronger

for Et = 2 GPa than for Et = 0.

Finally, an inclined tube with a slenderness ratio l/d = 100 collapses by Mode F:

elastic buckling, see Fig. 3.5(d). As expected, strain hardening as no influence on

the peak stress for this collapse mode. The stress drops sharply after the peak due

to the development of a plastic hinge at mid-length. Despite the formation of a

plastic hinge, strain hardening has a negligible effect on the post-peak response.

The deformed meshes, corresponding to the responses given in Fig. 3.5, are shown

in Table 3.1. The deformed meshes of simulations with a strain hardening solid

(Et = 2 GPa) have more diffuse plastic hinges than those obtained with a perfectly

plastic solid (Et = 0). Nevertheless, the collapse mode appears to be insensitive to

the strain hardening modulus.

3.3.3 Results for an inclined solid strut

The map in Fig. 3.2 indicates that the collapse of an inclined solid strut (t/d = 0.5)

made from stainless steel can be catalogued into three distinct modes (B, E and F)
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3.3 Influence of strain hardening

depending on the slenderness ratio l/d. As marked in Fig. 3.2, one geometry was

selected in each of the three collapse modes: l/d = 3 for mode B, l/d = 20 for mode

E and l/d = 100 for mode F. The compressive responses of these three selected

geometries are shown in Fig. 3.6. In each plot, results are given for Et = 0 and

Et = 2 GPa. In addition, the deformed meshes corresponding to these compressive

responses are shown in Table 3.2.

An inclined solid strut with l/d = 3 collapses by mode B: plastic barrelling and its

compressive response is particularly sensitive to strain hardening, see Fig. 3.6(a).

Note that the response for this collapse mode does not exhibit a peak stress (below

ǭ = 0.5). For this particular case, the peak stress σ̄pk will be defined as the stress at

a nominal compressive strain ǭ = 0.5. The same definition was adopted by Pingle

et al. (2011a).

As the slenderness ratio of the inclined solid strut is increased, the collapse mode

changes to mode E: global plastic buckling, see Fig. 3.6(b), and subsequently to

mode F: elastic buckling, see Fig. 3.6(c). The influence of strain hardening on the

responses of these two collapse modes was discussed above for inclined tubes, and

the results for inclined struts are similar: (i) the peak stress for l/d = 20 and 100 is

insensitive to Et and (ii) strain hardening strengthens the post-peak response when

l/d = 20, but has minimal effect when l/d = 100.

The deformed meshes shown in Table 3.2 for inclined solid struts confirm the ob-

servations made above for inclined tubes: strain hardening results in more diffuse

plastic hinges, but the collapse mode is insensitive to Et. For the tube and the solid

strut, our simulations indicate that the collapse mechanism map shown in Fig. 3.2

is relatively insensitive to the strain hardening modulus, at least for the two values

of Et considered in this study.

3.3.4 Comparison between tube and solid strut

Above, the compressive responses of inclined tubes and solid struts were presented

separately for selected values of slenderness ratio l/d. To summarise these results,

the normalised peak stress σ̄pk/(ρ̄σ
A
Y ) is plotted in Fig. 3.7 as a function of the

relative density ρ̄ for both inclined tubes (t/d = 0.1) and solid struts (t/d = 0.5).

For both values of t/d, the collapse modes are identified and results are given for

Et = 0 and Et = 2 GPa. Three regimes can be identified in Fig. 3.7:
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Figure 3.6: Influence of the strain hardening modulus Et on the compressive response
of an inclined solid strut t/d = 0.5. Results are given for (a) l/d = 3, (b) l/d = 20
and (c) l/d = 100.
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E  = 0Geometry t E  = 2 GPat

ε = 0.4ε = 0.4

ε = 0.2ε = 0.2

ε = 0.2ε = 0.2

l/d = 3

l/d = 20

l/d = 100

ρ = 0.18

ρ = 0.011

ρ = 0.0006

Mode B

Mode E

Mode F

Table 3.2: Influence of the strain hardening modulus Et on the deformed meshes of
an inclined solid strut t/d = 0.5. Results are given for selected values of l/d.

51



Chapter 3. Compressive response of a carburised pyramidal lattice

ρσY
A

σ

ρ

pk

0.1

1

0.001 0.01 0.1

E  = 2 GPa
E  = 0

t/d = 0.5

t

t
t/d = 0.1

EF
B

EF
A

D

5

Collapse modes for t/d = 0.1

Collapse modes for t/d = 0.5

FE predictions

Eq. (3.9)

Eq. (3.7)

Analytical

predictions

Figure 3.7: Influence of the strain hardening modulus Et on the compressive strength
of an inclined tube t/d = 0.1 and an inclined solid strut t/d = 0.5.

1. The inclined tube with ρ̄ < 0.0005 and the inclined solid strut with ρ̄ <

0.002 both collapse by Mode F: elastic buckling. For this collapse mode, the

normalised peak stress increases with increasing relative density as suggested

by the analytical expression for elastic buckling, Eq. (3.9). This equation is

also plotted in Fig. 3.7 and is in excellent agreement with the simulations, for

both the tube and the solid strut. As mentioned above, strain hardening has

no influence on the peak stress for this collapse mode.

2. When the relative density of the inclined tube is in the range 0.0005 ≤ ρ̄ ≤
0.01, the collapse mode is E: global plastic buckling. The same collapse mode

is operative for inclined solid struts with relative densities 0.002 ≤ ρ̄ ≤ 0.04.

Equation (3.7) predicting the plastic collapse of the lattice is also included in

Fig. 3.7; there is a good agreement between the analytical formula and the

simulations. Again, for those intervals of relative density, the peak stress is

insensitive to the level of strain hardening.

3. Finally, when ρ̄ > 0.01 for the inclined tube and when ρ̄ > 0.04 for the inclined

solid strut, the peak stress becomes sensitive to strain hardening; values of

σ̄pk/(ρ̄σ
A
Y ) obtained with Et = 2 GPa exceed those obtained with Et = 0.

Note that an inclined tube with ρ̄ = 0.01 and a solid strut with ρ̄ = 0.04 both
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3.4 Influence of carburisation

correspond to a slenderness ratio l/d = 10, see Fig. 3.2 or refer to Eq. (3.2).

It is clear from Fig. 3.7 that the tube outperforms the solid strut for low values of

relative density, ρ̄ < 0.002. This is because the transition from global plastic buckling

(Mode E) to elastic buckling (Mode F) occurs at a lower value of relative density

for the tube than for the solid strut. In contrast, at high values of relative density,

ρ̄ > 0.1, the solid strut collapses by plastic barrelling (Mode B) and outperforms

the tube, especially for Et = 2 GPa.

3.4 Influence of carburisation

Carburisation is a heat treatment process during which carbon is absorbed by a

metallic part making its surface harder. Different carburisation depths can be

achieved depending upon the duration and temperature of the heat treatment. The

cross-sections of a carburised tube and a carburised solid strut are illustrated in

Fig. 3.8. The carburisation depth h adds a third non-dimensional parameter to the

analysis; the compressive strength of the pyramidal lattice is now governed by l/d,

t/d and h/d (recall that the inclination angle is fixed at ω = 55◦).

h h

t

d

Carburised stainless steel

Annealed stainless steel

d

h

Annealed

stainless steel

Carburised

stainless steel

(a) (b)

Figure 3.8: Cross-sections of a carburised (a) tube and (b) solid strut.
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3.4.1 Description of the finite element models

The boundary conditions, the mesh details and the geometric imperfections used in

this section were the same as those used previously, see Section 3.3.1.

Material properties

Both annealed and carburised stainless steels were modelled as rate-independent

elastic-plastic solids in accordance with J2-flow theory. The elastic regime of both

materials was linear and isotropic, as characterised by a Young’s modulus E = 200

GPa and a Poisson’s ratio ν = 0.3. Each material had a different plastic behaviour.

Annealed stainless steel had a yield strength σA
Y = 200 MPa and a linear strain

hardening response with a tangent modulus Et = 2 GPa. In contrast, carburised

stainless steel was considered to be perfectly plastic (Et = 0) with a yield strength

σC
Y = 2 GPa. The yield strength of carburised stainless steel is estimated from a

hardness test reported by Michal et al. (2006). The unixial tensile responses of

annealed and carburised stainless steels are compared in Fig. 3.9.
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Figure 3.9: Uniaxial tensile responses of annealed and carburised stainless steels
employed in the finite element simulations analysing the influence of carburisation.

Dimensions analysed

Again, the slenderness ratio l/d was varied from 1 to 100 for both the inclined tube

(t/d = 0.1) and the inclined solid strut (t/d = 0.5). Four values of normalised
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carburisation depth were considered h/d = 0, 0.02, 0.04 and 0.05. Note that for h/d

= 0.05, the entire cross-section of the tube (t/d = 0.1) is carburised.

3.4.2 Results for an inclined tube

The influence of carburisation upon the compressive response of an inclined tube

with t/d = 0.1 is shown in Fig. 3.10 for the four selected geometries identified in

Section 3.3.2. For each geometry, the results are given for a non-carburised tube,

h/d = 0, and for a tube with a normalised carburisation depth h/d = 0.05. The

deformed meshes corresponding to these responses are given in Table 3.3.

Carburisation significantly increases the peak compressive stress σ̄pk of short inclined

tubes with l/d = 1 and 3, see Fig. 3.10(a) and (b), respectively. Note that both

carburised tubes (h/d = 0.05) have the same peak stress σ̄pk = 6.7ρ̄σA
Y , which

corresponds to the plastic collapse stress evaluated by Eq. (3.7) by setting the

yield strength to σC
Y = 10σA

Y = 2 GPa (recall that for h/d = 0.05 the entire cross-

section of the tube is carburised). In addition, the peak stress occurs at a larger

value of nominal compressive strain for non-carburised tubes than for carburised

ones. Annealed stainless steel has a tangent modulus Et = 2 GPa and the response

of non-carburised tubes display a significant amount of plastic hardening before

reaching the peak stress. On the other hand, carburised stainless steel is modelled

as a perfectly plastic solid and consequently the response of carburised tubes do not

display any plastic hardening.

The non-carburised inclined tube with a slenderness ratio l/d = 20 collapses by

mode E: global plastic buckling and has a peak stress σ̄pk = 0.67ρ̄σA
Y , see Fig 3.10(c).

Carburising this tube increases the peak stress to σ̄pk = 5.7ρ̄σA
Y , which is inferior to

the plastic collapse load σ̄pl = 6.7ρ̄σA
Y prescribed by Eq. (3.7). Thus, carburisation

increases the peak stress, but also changes the collapse mode from mode E: plastic

buckling to mode F: elastic buckling.

The peak stress of long inclined tubes collapsing by mode F: elastic buckling is

insensitive to carburisation, see Fig. 3.10(d). This result was expected as both

annealed and carburised stainless steels have the same Young’s modulus E = 200

GPa. On the other hand, the post-peak response is sensitive to carburisation; the

carburised tube is significantly stronger than the non-carburised one.

Finally, the deformed meshes of non-carburised tubes (h/d = 0) are compared to
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l/d = 1

l/d = 3
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Table 3.3: Influence of the carburisation depth h/d on the deformed meshes of an
inclined tube t/d = 0.1. Results are given for selected values of l/d.
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those of carburised tubes (h/d = 0.05) in Table 3.3. In general, carburisation has a

relatively small effect on the deformed meshes.

3.4.3 Results for an inclined solid strut

The compressive response of an inclined solid strut (t/d = 0.5) is shown in Fig. 3.11

for the three selected geometries identified in Section 3.3.3. For each geometry, the

response of a non-carburised strut, h/d = 0, is compared to that of a carburised strut

with h/d = 0.05. For completeness, the deformed meshes corresponding to these

responses are displayed in Table 3.4. In contrast with the carburised tube analysed

in the previous section, the cross-section of the carburised strut with h/d = 0.05 is

not entirely carburised; it has an outside layer of carburised stainless steel with an

inside core of annealed stainless steel.

The compressive response of a strut with l/d = 3, which collapses by mode B:

plastic barrelling, is shown in Fig. 3.11(a). Carburisation clearly increases the yield

stress of the lattice from 0.67ρ̄σA
Y to approximately 1.8ρ̄σA

Y . However, the slope of

the plastic hardening response, which is characteristic of plastic barrelling, is less

for carburised struts than for non-carburised ones. This can be explained by the

level of strain hardening of the two materials: carburised stainless steel is modelled

as a perfectly plastic solid (Et = 0) whereas annealed stainless steel has a strain

hardening modulus Et = 2 GPa.

Carburisation significantly increases the peak stress of an inclined strut with l/d =

20, see Fig. 3.11(b). The collapse mode of the carburised strut (h/d = 0.05) is

classified as mode F: elastic buckling because at σ̄pk, the axial compressive stress in

the strut is inferior to the yield strength of carburised stainless steel (but greater

than the yield strength of annealed stainless steel). A similar change in collapse

mechanism was observed in the previous section for an inclined tube with the same

slenderness ratio.

Similarly to the inclined tube analysed in the previous section, the peak stress of a

long inclined strut with l/d = 100, which collapses by mode F: elastic buckling, is

insensitive to carburisation, see Fig. 3.11(c). Nevertheless, carburisation strengthens

the post-peak response.

Finally, the deformed meshes of non-carburised struts (h/d = 0) are compared to

those of carburised struts (h/d = 0.05) in Table 3.4. It is clear from Table 3.4 that

58



3.4 Influence of carburisation

(a)

(b)

ε

ρσY
A

σ

ε

ρσY
A

σ

(c)

ε

ρσY
A

σ

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5

l/d = 3

h/d = 0

h/d = 0.05

ρ = 0.18

Mode B: plastic barrelling

0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15 0.2

l/d = 100

h/d = 0.05

h/d = 0

ρ = 0.0006

Mode F: elastic buckling

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.05 0.1 0.15 0.2

l/d = 20

h/d = 0.05

h/d = 0

ρ = 0.011

Mode E: global

plastic buckling

Mode F: elastic buckling

Figure 3.11: Influence of the carburisation depth h/d on the compressive response
of an inclined solid strut t/d = 0.5. Results are given for (a) l/d = 3, (b) l/d = 20
and (c) l/d = 100.
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h/d = 0 h/d = 0.05

l/d = 3

l/d = 20

l/d = 100

ρ = 0.18

ρ = 0.011

ρ = 0.0006

Geometry

ε = 0.4

ε = 0.2

ε = 0.2

Mode B

Mode E

Mode F

ε = 0.4

ε = 0.2

ε = 0.2

Mode F

Table 3.4: Influence of the carburisation depth h/d on the deformed meshes of an
inclined solid strut t/d = 0.5. Results are given for selected values of l/d.
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3.4 Influence of carburisation

carburisation has only a small effect on the deformed meshes.

3.4.4 Comparison between tube and solid strut

The normalised peak stress σ̄pk/(ρ̄σ
A
Y ), for both t/d = 0.1 and 0.5, is plotted as a

function of relative density in Fig. 3.12. The results are shown for four selected

values of normalised carburisation depth h/d ranging from 0 to 0.05. In addition,

the collapse modes are identified for both the tube and the solid strut. Note that the

collapse modes are different for non-carburised (h/d = 0) and carburised (h/d > 0)

lattices. Four regimes can be identified in Fig. 3.12:

1. Inclined tubes with ρ̄ < 0.0005 and inclined solid struts with ρ̄ < 0.002 both

collapse by mode F: elastic buckling. It is clear from Fig. 3.12 that carburisa-

tion has no effect on the peak stress for this particular collapse mode.

2. When the relative density of the inclined tube is in the range 0.0005 ≤ ρ̄ <

0.004 and that of the inclined strut is between 0.002 ≤ ρ̄ < 0.02, the non-
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Figure 3.12: Influence of the carburisation depth h/d on the compressive strength
of an inclined tube t/d = 0.1 and an inclined solid strut t/d = 0.5.
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Chapter 3. Compressive response of a carburised pyramidal lattice

carburised lattices collapse by mode E: global plastic buckling whereas the

carburised ones collapse by mode F: elastic buckling. In this regime, car-

burisation increases the peak stress of the lattice and this increase is more

important for the tube than for the strut.

3. The peak stress of inclined tubes with ρ̄ > 0.004 has reached the yield strength

of the material. Carburisation increases the peak stress of the lattice, but does

not change the transition between the plastic collapse modes A, D and E. There

is a similar regime for inclined struts with 0.02 ≤ ρ̄ < 0.1, but it covers only

mode E: global plastic buckling.

4. This regime is specific to inclined struts with ρ̄ ≥ 0.1, which collapse by

Mode B: plastic barrelling. Recall that the response for this collapse mode

does not exhibit a peak stress, see Fig. 3.11(a), and σ̄pk was defined as the

stress at a nominal compressive strain ǭ = 0.5. Based on this definition, the

normalised peak stress appears to be insensitive to carburisation, but this

result is dependent upon the definition of σ̄pk.

3.4.5 Position of carburised lattices on the strength-density

chart

A material property chart allows us to position different materials on a figure where

each axis is a material property (Ashby, 2010). A chart of strength versus density is

presented in Fig. 3.13. The chart was generated using the software CES EduPack

20102. The strength of fully-dense materials such as metals, ceramics, composites

and polymers is compared to that of lattice materials such as metal and polymer

foams, tetrahedral lattices made from aluminium (Al) and pyramidal lattices made

from titanium (Ti) and carbon fibre reinforced polymer (CRFP). For comparison

purposes, the results of the finite element simulations for an inclined tube (t/d = 0.1)

with a normalised carburisation depth h/d = 0.05 are also plotted in Fig. 3.13.

Carburised stainless steel was assumed to have a density ρs = 8000 kg/m3, hence

the density of a carburised stainless steel lattice is given by ρl = ρ̄ρs.

The results indicate that carburised pyramidal lattices are stronger than their metal-

lic counterparts made from aluminium or titanium. For densities below 0.1 Mg/m3,

the carburised pyramidal lattices are positioned at the frontier of material space,

2Granta Design Limited, Rustat House, 62 Clifton Road, Cambridge, CB1 7EG, UK.
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Figure 3.13: Strength versus density material chart. The simulated compressive
strength of a pyramidal lattice made from carburised tubes (t/d = 0.1, h/d = 0.05) is
also included. Al, aluminium; CRFP, carbon fibre reinforced polymers; Ti, titanium;
TMC, titanium matrix composites.

performing as well as the strongest pyramidal lattices made from carbon fibre rein-

forced polymer. Recall that carburised stainless steel was assumed to possess a yield

strength σC
Y = 2 GPa in this study. If carburisation (or another heat treatment)

is able to increase the yield strength above 2 GPa, this would expand the current

material space.

3.5 Concluding remarks

The finite element method was used to simulate the compressive response of a pyra-

midal lattice made from tubes (t/d = 0.1) or solid struts (t/d = 0.5), both with an
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Chapter 3. Compressive response of a carburised pyramidal lattice

inclination angle ω = 55◦. First, the effect of material strain hardening was exam-

ined by comparing the compressive response of a lattice made from stainless steel

to that of a lattice made from a perfectly plastic solid. Strain hardening was found

to increase the compressive strength of lattices with a slenderness ratio l/d inferior

to ten, but had no influence on the compressive strength of lattices with l/d > 10.

Furthermore, strain hardening had a negligible effect on the collapse mode of the

pyramidal lattice. This holds true for both lattices made from tubes and those made

from solid struts.

Then, the influence of carburisation upon the compressive response of a pyrami-

dal lattice was analysed. The slenderness ratio l/d at which the collapse mode

changes from plastic to elastic buckling was less for carburised lattices than for their

non-carburised counterparts. Carburisation also increased the peak stress of the

lattice, except for geometries that collapse by elastic buckling. This increase of the

peak stress was more important for a lattice made from tubes than for one made

from solid struts. Finally, the performances of the pyramidal lattice made from car-

burised tubes were compared to other engineering materials and lattices on a chart of

strength versus density. The carburised lattice is stronger than other metallic lattices

made from aluminium or titanium and offers similar performances to pyramidal lat-

tices made from carbon fibre reinforced polymers. The simulations presented in this

chapter suggest that the carburisation surface treatment can significantly enhance

the strength of lattice materials, and this combination has the potential to expand

the current material space. However, the embrittlement that may be caused by the

carburisation surface treatment was neglected in the simulations presented above,

and experimental tests are necessary to validate this assumption and to evaluate the

accuracy of the finite element predictions.

3.A Influence of geometric imperfections

In this appendix, the sensitivity of the compressive response to the choice of geo-

metric imperfection is explored. The imperfection consists of one or multiple elastic

buckling modes, which can have different amplitudes. The effect of the number of

modes superimposed and the effect of amplitude will be addressed below. The sim-

ulations were done for an inclined tube t/d = 0.1 made from annealed stainless steel

(σA
Y = 200 MPa and Et = 2 GPa).

64



3.A Influence of geometric imperfections

3.A.1 Influence of the number of superimposed modes

The effect of the number of modes superimposed upon the compressive response

of an inclined tube with t/d = 0.1 is shown in Fig. 3.14 for selected values of

slenderness ratio l/d. In each plot, three cases are compared: (i) a perfect structure

(no imperfection), (ii) an imperfection of amplitude ζ = 0.05t in the form of the

first buckling mode and (iii) an imperfection of amplitude ζ = 0.05t in the form of

the first four buckling modes superimposed. Except for the case of l/d = 1, the

compressive response of an inclined tube is imperfection sensitive; case (i) differs

from cases (ii) and (iii). However, the results indicate that the compressive response

is relatively insensitive to the number of modes superimposed; cases (ii) and (iii)

are similar. For this reason, an imperfection in the shape of the first buckling mode

only was included in all simulations.
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Figure 3.14: Influence of imperfection shape on the compressive response of an
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are given for (a) l/d = 1, (b) l/d = 3, (c) l/d = 20 (d) l/d = 100.
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3.A.2 Influence of amplitude

The effect of imperfection amplitude upon the compressive response of an inclined

tube with t/d = 0.1 is shown in Fig. 3.15 for selected values of l/d. In each plot,

results are given for a perfect structure (no imperfection) and for an imperfection in

the form of the first buckling mode with three different amplitudes ζ = 0.01t, 0.05t

and 0.1t. Except for the case of l/d = 3, the compressive response of an inclined tube

is insensitive to the imperfection amplitude in the range ζ = 0.01t − 0.1t. Based

on the results of Fig. 3.15, an imperfection amplitude ζ = 0.05t was used in all

simulations.
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Figure 3.15: Influence of imperfection amplitude on the compressive response of an
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3.A.3 Influence of imperfection on the deformed meshes

The effect of including a geometric imperfection on the deformed meshes of an

inclined tube with t/d = 0.1 is shown in Table 3.5 for selected values of l/d. Results

are shown for a perfect structure (no imperfection) and for simulations with an

imperfection in the form of the first buckling mode with an amplitude ζ = 0.05t. For

l/d = 1, the deformed meshes are imperfection insensitive. In contrast, introducing

an imperfection has a strong influence on the deformed meshes of inclined tubes with

l/d ≥ 3. Note that for l/d = 20 and 100, a higher order buckling mode is obtained

when no imperfections are included.

Perfect

l/d = 1

l/d = 3

l/d = 20

l/d = 100

ρ = 0.15

ρ = 0.064

ρ = 0.004

ρ = 0.0002

Geometry First mode ζ = 0.05t

ε = 0.5

ε = 0.5

ε = 0.2

ε = 0.2

Mode A

Mode D

Mode E

Mode F

ε = 0.2

ε = 0.2

ε = 0.5

ε = 0.5

Table 3.5: Influence of a geometric imperfection on the deformed meshes of an
inclined tube t/d = 0.1. Results are given for selected values of l/d.
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Chapter 4

The influence of the back face on

the bending response of prismatic

sandwich beams

Summary

Stainless steel sandwich beams with a corrugated core or a Y-frame core have been

tested in three-point bending and the role of the face-sheets has been assessed by

considering beams with (i) front-and-back faces present, and (ii) front face present

but back face absent. These competing beam designs were compared on an equal

mass basis by doubling the front face thickness when the back face is absent. The

quasi-static, three-point bending responses were measured under simply supported

and clamped boundary conditions. For both end conditions and for both core topolo-

gies, the beams containing front-and-back faces underwent indentation beneath the

mid-span roller whereas Brazier plastic buckling was responsible for the collapse of

beams without a back face. Three-dimensional finite element predictions were in

good agreement with the measurements and gave additional insight into the defor-

mation modes. The finite element method was also used to study the effect of (i)

mass distribution between core and face-sheets and (ii) beam span upon the collapse

response of a simply supported sandwich panel. Panels of short span are plastically

indented by the mid-span roller and the panels without a back face are stronger than

those with front-and-back faces present. In contrast, panels of long span undergo

Brazier plastic buckling, and the presence of a back face strengthens the panel.
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4.1 Introduction

Oil tanker spills pose a significant environmental threat to the oceans and coast-

lines of the world: 60% of worldwide oil transportation is by tankers and many

heavily trafficked routes pass through regions of high marine biodiversity (Burgherr,

2007). The conventional double hull design, with minimal mechanical coupling be-

tween inner and outer hulls, is commonly used to safeguard oil tankers against spills.

Recently, design alternatives have been proposed to improve the structural perfor-

mances of ship hulls over those normally achieved with a conventional double hull

construction, see for example the review by Paik (2003). One such alternative is

to employ a sandwich construction to increase the stiffness, strength and energy

absorption of the hull.

An example of sandwich construction is the Y-frame double hull design, as proposed

by Damen Schelde Naval Shipbuilding1 and as illustrated in Fig. 4.1(a). Full-scale

collision tests have been performed on this structure and its resistance to tearing was

found to exceed that of a conventional double hull design (Wevers and Vredeveldt,

1999). In these collision trials, the inner hull played a minor role and underwent

negligible plastic deformation. This motivated the development of a single hull

structure where the Y-frame stiffeners are welded directly to the bulkheads as shown

in Fig. 4.1(b). Full-scale collision tests have also been performed on this single hull

Y-frame structure. It has similar crashworthiness to the Y-frame double hull design,

but it is significantly simpler and cheaper to manufacture. Several inland waterway

tankers have been manufactured using the Y-frame single hull design (Graaf et al.,

2004). The corrugated core, under the trade-name Navtruss2, is a competing design

to the Y-frame. No large-scale collision tests on the Navtruss design have been

reported in the open literature, and little is known about its crashworthiness relative

to that of the Y-frame core.

The relative performance of corrugated and Y-frame cores has been explored re-

cently for a range of loadings in a laboratory setting. For example, the out-of-plane

compressive strength and longitudinal shear strength of the Y-frame core and cor-

rugated core have been investigated by Rubino et al. (2008a) and Côté et al. (2006),

respectively. The three-point bending response of sandwich beams with a corrugated

core was studied by Valdevit et al. (2006a); they proposed failure maps for simply

supported beams. This work was extended by Rubino et al. (2010) who compared

1Damen Schelde Naval Shipbuilding, Glacisstraat 165, 4381 SE Vlissingen, The Netherlands.
2Astech Engineering Products Inc., 3030 Red Hill Ave., Santa Ana, CA 92705, USA.
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(a) (b)

Figure 4.1: The Y-frame sandwich core in (a) double hull and (b) single hull designs.

the three-point bending responses of sandwich beams with a corrugated core and a

Y-frame core under both simply supported and clamped boundary conditions. It

was found that sandwich beams with a corrugated core or a Y-frame core have com-

parable responses on an equal mass basis. However, these studies have been limited

to sandwich beams with identical front-and-back faces.

The objective of this chapter is to explore the sensitivity of the three-point bending

response of a sandwich beam to the relative placement of material in the core, front

face and back face. The relative allocation of material can be represented in a

diagram resembling a triple phase diagram, as shown in Fig. 4.2. Any point on this

diagram corresponds to a sandwich structure of total areal mass m, with fraction

(mc/m) in the core, (mf/m) in the front face and (mb/m) = 1− (mf/m)− (mc/m)

in the back face.

This study focuses on two trajectories in the design space of Fig. 4.2. The first

one is indicated by the vertical dashed line and includes all sandwich beams with

identical front-and-back faces, mf = mb. The second trajectory is the left-hand edge

of the triangle and denotes all sandwich beams without a back face, mb = 0.

The three-point bending response of sandwich panels of geometry along these two

trajectories will be compared on an equal mass basis. Consider, as the reference de-

sign, a sandwich panel with identical front-and-back faces. If the back face material

is relocated to the front face or to the core, will the three-point bending strength

increase or decrease? This question will be addressed for a corrugated core and a

Y-frame core, and for both simply supported and clamped boundary conditions.
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Figure 4.2: The design space for mass distribution within a sandwich panel of areal
mass m. The proportion of mass in the core, in the front face and in the back face
are denoted by mc/m, mf/m and mb/m, respectively. The mass distribution of the
test geometries is indicated for two choices of areal mass.

4.1.1 Choice of test material

There is a need to select a pertinent test material, which in the as-manufactured

state has similar properties to that of commercial shipbuilding steel, such as Lloyd’s

Grade A steel. The uniaxial tensile response of Lloyd’s Grade A steel has been

measured by Broekhuijsen (2003) and is shown in Fig. 4.3. It is used by Damen

Schelde Naval Shipbuilding in the construction of tankers with a Y-frame sandwich

core.

In previous laboratory studies (Côté et al., 2006; Valdevit et al., 2006b; Rubino et al.,

2008a, 2010) corrugated cores and Y-frame cores have been manufactured by brazing

together AISI 304 stainless steel sheets. In order to compare the uniaxial properties

of this material with those of Lloyd’s Grade A steel, preliminary uniaxial tests have

been performed on dog-bone specimens cut from as-received AISI 304 stainless steel

sheets; these were subjected to the same braze cycle as that used in the manufacture

of sandwich beams (see Section 4.2.1). The uniaxial tensile response of the brazed

304 material, at an applied strain rate of 10−3 s−1, is included in Fig. 4.3. The

measured Young’s modulus E and 0.2% offset yield strength σY are 210 GPa and
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Figure 4.3: Measured uniaxial tensile responses of as-brazed AISI 304 stainless steel
and Lloyd’s Grade A steel, at a strain rate of 10−3 s−1.

210 MPa, respectively. The observed strain hardening response is close to linear,

with a tangent modulus of Et = 2.1 GPa. Lloyd’s Grade A steel has a slightly higher

yield strength of 280 MPa and a somewhat reduced ductility and strain hardening

capacity. In broad terms, however, the as-brazed stainless steel is representative of

Lloyd’s grade A steel at strain levels below 10%. To confirm this, a limited set of

finite element simulations have been performed on the three-point bending response

of sandwich beams made from as-brazed stainless steel and Lloyd’s grade A steel, as

summarised in Appendix 4.A. The simulations confirm that sandwich beams made

from as-brazed stainless steel or from Grade A steel have similar responses. Based

upon these exploratory findings, the sandwich beams of the present study were

manufactured by brazing together type 304 stainless steel sheets.

4.1.2 Scope of study

First, the methodology used to manufacture and test the sandwich beams is reported

along with a description of the finite element models. Second, the measured three-

point bending responses of sandwich beams, with and without a back face, are

compared for simply supported and clamped boundary conditions. Then, to gain

additional insight into the collapse mechanisms, the beam responses are simulated
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by three-dimensional finite element simulations. Finally, the three-point bending

response of simply supported sandwich panels is explored numerically as a function

of span and of relative proportion of material in the core and face-sheets. The two

asymptotic responses of indentation at short span and a bending instability at long

span are analysed and used to determine the collapse load as a function of span.

4.2 Methodology

4.2.1 Specimen manufacture

Corrugated and Y-frame cores, of cross-section shown in Fig. 4.4, were used to con-

struct prismatic sandwich beams. These cores are approximately 1:20 scale models

of the cores used in a ship hull and had a relative density of 2.5%. Both cores were

made from AISI 304 stainless steel sheets of thickness 0.3 mm and density ρ = 7900

kg/m3.

The corrugated core was manufactured by alternately folding stainless steel sheets

at ±60◦ under computer-numerical-control (CNC). In contrast, the Y-frame core

was manufactured by CNC folding of stainless steel sheets and then assembling two

sections: the ±45◦ upper part of the Y-frame and the Y-frame leg. Slots were cut

periodically into the central flange of the upper part of the Y-frame and a matching

set of keys were cut into the top of the Y-frame leg to facilitate assembly, as described

by Rubino et al. (2008a).

Stainless steel face-sheets were brazed to the cores to produce two classes of sandwich

beam:

1. a beam, with front-and-back faces of thickness t and

2. a beam, with only a front face of thickness 2t.

Two different values of thickness t were considered, 0.3 mm and 0.6 mm, giving

sandwich beams of areal mass m = 9.1 and 13.8 kg/m2, respectively, as shown in

Fig. 4.4(c). These test geometries are also included in the design space of Fig. 4.2.

The proportion of mass in the core mc/m is 0.48 and 0.31 for sandwich beams with

an areal mass m of 9.1 and 13.8 kg/m2, respectively.

The sandwich beams were assembled as follows. First, the face-sheets were spot-
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Figure 4.4: Cross-sectional dimensions of the sandwich beams: (a) corrugated core
and (b) Y-frame core. (c) The chosen values of face-sheet thickness used in the exper-
imental study. All dimensions are in mm.
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welded to the core, and second, a thin layer (of thickness 10 µm) of Ni-CR 25-P10

(wt.%) braze powder was applied over all sheets of the assembly. Third, brazing was

performed in a vacuum furnace (at 0.03-0.1 mbar) using a dry argon atmosphere at

1075◦C for one hour, followed by a slow furnace cool.

4.2.2 Geometry of the three-point bending tests

Simply supported and clamped sandwich beams were tested and their dimensions

are shown in Fig. 4.5. In all cases, the prismatic axis of the core was aligned with

the longitudinal direction of the beam (x3-axis). The span of the beams was held

fixed at 2L = 250 mm and load introduction at mid-span was via a steel roller of

diameter D = 9 mm.

Simply supported beams

Steel rollers of diameter D = 9 mm were also used to provide simple outer support

to the sandwich beams, see Fig. 4.5(a). For those specimens without a back face,

preliminary tests revealed that the core crushed and splayed out-of-plane (in the

x1-direction) at the outer supports. To prevent this mode of collapse, short sections

of back face were brazed to the core at both ends of the beam, see Fig. 4.5(a). These

additional face plates had the same thickness as that of the front face-sheet. No such

reinforcement was required for the sandwich beams with front-and-back faces.

Clamped beams

To achieve a fully-clamped boundary condition, the ends of the sandwich beams

were filled with an epoxy resin to make the core fully dense. Then, the end portions

of the sandwich beams were bolted to the test rig using steel clamping plates and

M6 bolts, as shown in Fig. 4.5(b). For those specimens without a back face, local

reinforcement was again achieved by brazing short sections of back face to the core

at each end of the beam.
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Figure 4.5: The test fixtures used for (a) simply supported and (b) clamped beams.
A sandwich beam with a Y-frame core and without a back face is shown. All dimen-
sions are in mm.
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4.2.3 Finite element models

The commercial software Abaqus was used to develop three-dimensional finite el-

ement (FE) models for all sandwich beams tested. The geometries used in the

simulations were identical to those employed in the experimental investigation, re-

call Fig. 4.4 and 4.5. Perfect bonding between core and face-sheets was assumed

in all cases. Four noded, linear shell elements with reduced integration (S4R in

Abaqus notation) were used to discretise the sandwich beams using a mesh size of

0.5 mm. A convergence study showed that further mesh refinement did not improve

significantly the accuracy of the simulations.

Boundary conditions

Only one quarter of the sandwich beam was modelled in the simulations, with sym-

metric boundary conditions at mid-span (x3 = 0) and at mid-plane (x1 = 0). The

mid-span roller was modelled as a rigid body in the FE simulations and its displace-

ment was prescribed during the analysis. A frictionless hard contact condition was

used to model the interaction between the roller and front face. The same contact

properties were used between all potentially contacting surfaces of the sandwich

beam.

The overhang of the simply supported sandwich beams beyond the outer rollers

was included in the FE analysis. Alternatively, the clamped boundary condition

was enforced by imposing zero displacement on the nodes of the end face of the

sandwich beam (x3 = L).

Material properties

The as-brazed AISI 304 stainless steel was modelled as a rate-independent, elastic-

plastic solid in accordance with J2-flow theory. The elastic branch was linear and

isotropic, as characterised by a Young’s modulus E = 210 GPa and a Poisson’s ratio

ν = 0.3. The uniaxial yield strength was σY = 210 MPa, and the hardening response

was tabulated in Abaqus from the plot in Fig. 4.3.
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4.3 Experimental results

The three-point bending tests were conducted using a 100 kN screw driven test

machine with a constant cross-head velocity of δ̇ = 5 × 10−3 mm/s. The load F

applied to the specimen was measured by the load cell of the test machine and the

mid-span roller displacement δ was measured via a laser extensometer.

The three-point bending responses of all sandwich beams tested are given in Fig.

4.6 and 4.7 for simply supported and clamped boundary conditions, respectively.

In each figure, results are shown for sandwich beams with a corrugated core and a

Y-frame core, and for an areal mass m = 9.1 and 13.8 kg/m2. The mid-span roller

displacement δ is normalised by the beam half-span L = 125 mm whereas the load

F is normalised by σY bc, where the yield strength is σY = 210 MPa, the width of

the sandwich beams is b = 55 mm and the core thickness is c = 22 mm.

4.3.1 Simply supported beams

The simply supported beam response is shown in Fig. 4.6(a) for the corrugated core

and in Fig. 4.6(b) for the Y-frame core, both at m = 9.1 kg/m2. Likewise, the

response is given in Fig. 4.6(c) and (d) for the corrugated core and Y-frame core,

respectively, at m = 13.8 kg/m2. In each plot, results are shown for sandwich beams

with both faces present and for sandwich beams with the back face absent.

All simply supported sandwich beams have an initial elastic regime. The elastic

stiffness is, however, sensitive to the distribution of face-sheet material: beams con-

taining both front-and-back faces are at least 40% stiffer than those with the back

face absent. In contrast, the peak load reduces by less than 20% when the back face

material is relocated onto the front face.

The peak load for sandwich beams with a corrugated core exceeds that of beams

with a Y-frame core by 15-25%. In all cases, the peak load is followed by a softening

response, with more pronounced softening for the corrugated core than for the Y-

frame core: the load drops to less than 35% of the peak load for sandwich beams

with a corrugated core when δ/L is increased to 0.15. In contrast, for the Y-frame

core the load at δ/L = 0.15 exceeds 55% of the peak load.
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Figure 4.6: Three-point bending responses of simply supported sandwich beams.
Sandwich beams with an areal mass m = 9.1 kg/m2 are shown with (a) a corrugated
core and (b) a Y-frame core. Likewise, sandwich beams with an areal mass m = 13.8
kg/m2 are shown with (c) a corrugated core and (d) a Y-frame core.
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Figure 4.7: Three-point bending responses of clamped sandwich beams. Sandwich
beams with an areal mass m = 9.1 kg/m2 are shown with (a) a corrugated core and
(b) a Y-frame core. Likewise, sandwich beams with an areal mass m = 13.8 kg/m2

are shown with (c) a corrugated core and (d) a Y-frame core.
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4.3.2 Clamped beams

The measured three-point bending responses of clamped sandwich beams are shown

in Fig. 4.7. The layout of Fig. 4.7 is the same as that in Fig. 4.6: structures with a

corrugated core and a Y-frame core are shown in Fig. 4.7(a) and (b), respectively,

for an areal mass m = 9.1 kg/m2. Likewise, the responses for m = 13.8 kg/m2 are

given in Fig. 4.7(c) and (d) for the corrugated core and Y-frame core, respectively.

In each plot, the response of a sandwich beam with front-and-back faces present is

compared to that of a sandwich beam without a back face.

In all cases, an initial elastic regime is followed by a peak load Fpk. Subsequently,

the clamped beams soften and then re-harden due to longitudinal stretching of

the beam. The core topology has a similar influence upon the initial peak load

of clamped beams to that of the simply supported beams: sandwich structures

with a corrugated core are 10-25% stronger than their counterparts with a Y-frame

core. The initial peak load of sandwich beams with an areal mass m = 9.1 kg/m2 is

sensitive to the distribution of face-sheet material: beams without a back face are 25-

35% stronger than those with front-and-back faces. In contrast, for m = 13.8 kg/m2,

the sandwich beams with front-and-back faces present have comparable initial peak

strengths to those without a back face. For all clamped beams considered, the load

drop following the initial peak load Fpk is at most 20%. We note in passing that the

simply supported Y-frame core shows load drop of this order, whereas the corrugated

core exhibits much larger load drops, recall Fig. 4.6.

4.3.3 Collapse mechanisms

To gain additional insight into the collapse mechanisms, photographs of the deformed

sandwich beams with an areal mass m = 13.8 kg/m2 are shown in Fig. 4.8-4.11.

Simply supported sandwich beams with a corrugated core and with a Y-frame core

are given in Fig. 4.8 and 4.9, respectively. Likewise, photographs of clamped sand-

wich beams with a corrugated core and a Y-frame core are reported in Fig. 4.10 and

4.11, respectively. In part (a) of each figure, the deformed geometry is shown for

front-and-back faces present, whereas in part (b) the images are for the back face

absent. The photographs were taken after deforming the sandwich beam to δ = 0.2L

and then unloading. Two views are shown in the figures: on the left, a side view

along the x3-direction showing half of the sandwich beam and on the right, a view

of the core deformation after sectioning of the beam at mid-span.
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(a)

(b)

(c)

(d)

CL
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Figure 4.8: Photographs of the simply supported sandwich beams with a corrugated
core (m = 13.8 kg/m2) (a) with front-and-back faces and (b) without a back face.
Deformed finite element meshes of the same sandwich beam (c) with front-and-back
faces and (d) without a back face. A side view showing half of the beam and a view
of the core deformation at mid-span are given. To clarify the predicted deformation
modes, the undeformed (dashed line) and deformed (solid line) cross-sections at mid-
span are included in (c) and (d). The images are for beams loaded to δ = 0.2L and
then unloaded.
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(a)

(c)
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Figure 4.9: Photographs of the simply supported sandwich beams with a Y-frame
core (m = 13.8 kg/m2) (a) with front-and-back faces and (b) without a back face.
Deformed finite element meshes of the same sandwich beam (c) with front-and-back
faces and (d) without a back face. A side view showing half of the beam and a view
of the core deformation at mid-span are given. To clarify the predicted deformation
modes, the undeformed (dashed line) and deformed (solid line) cross-sections at mid-
span are included in (c) and (d). The images are for beams loaded to δ = 0.2L and
then unloaded.
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(a)

(b)

(c)

(d)
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Figure 4.10: Photographs of the clamped sandwich beams with a corrugated core (m
= 13.8 kg/m2) (a) with front-and-back faces and (b) without a back face. Deformed
finite element meshes of the same sandwich beam (c) with front-and-back faces and
(d) without a back face. A side view showing half of the beam and a view of the
core deformation at mid-span are given. To clarify the predicted deformation modes,
the undeformed (dashed line) and deformed (solid line) cross-sections at mid-span
are included in (c) and (d). The images are for beams loaded to δ = 0.2L and then
unloaded.
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Figure 4.11: Photographs of the clamped sandwich beams with a Y-frame core (m
= 13.8 kg/m2) (a) with front-and-back faces and (b) without a back face. Deformed
finite element meshes of the same sandwich beam (c) with front-and-back faces and
(d) without a back face. A side view showing half of the beam and a view of the
core deformation at mid-span are given. To clarify the predicted deformation modes,
the undeformed (dashed line) and deformed (solid line) cross-sections at mid-span
are included in (c) and (d). The images are for beams loaded to δ = 0.2L and then
unloaded.
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The photographs of sandwich beams with front-and-back faces present, as shown

in part (a) of Fig. 4.8-4.11, indicate that beam collapse is by indentation of the

core beneath the mid-span roller. This holds true for both corrugated and Y-frame

core topologies and for both simply supported and clamped beams. The normalised

initial peak loads, F̂ = Fpk/(σY bc), for all sandwich beams tested are summarised

in Table 4.1. It is clear from the table that the initial peak load for indentation of

sandwich beams with both faces present has only minor sensitivity to the choice of

boundary conditions.

The images shown in part (b) of Fig. 4.8-4.11 reveal that the beams without a back

face collapse by plastic buckling at mid-span. This alternative mode is reminiscent of

the buckling of circular tubes by ovalisation of their cross-section, as first identified

by Brazier (1927). The progressive reduction of flexural plastic modulus of the

sandwich beams in bending induces a Brazier-type instability, and we shall refer to

this collapse mode by the generalised term Brazier plastic buckling. The mode of

Brazier plastic buckling is more diffuse than the highly localised indentation mode

beneath the central roller, compare the images as given in parts (a) and (b) of Fig.

4.8-4.11. For an introduction to Brazier buckling, see Calladine (1983).

Specimen F̂ = Fpk/(σY bc) (10−3)
Boundary Areal mass Core Number

Measured FE
condition (kg/m2) topology of faces

Simply
supported

9.1
Corrugated

1 6.5 5.8
2 6.5 4.9

Y-frame
1 4.8 4.9
2 4.9 4.6

13.8
Corrugated

1 7.0 6.6
2 8.3 7.8

Y-frame
1 5.7 5.4
2 7.1 7.4

Clamped

9.1
Corrugated

1 8.6 9.0
2 6.8 6.4

Y-frame
1 7.2 7.6
2 5.2 5.3

13.8
Corrugated

1 9.6 10.2
2 9.0 8.7

Y-frame
1 8.7 7.7
2 8.0 8.3

Table 4.1: The measured and predicted values of normalised peak load F̂ =
Fpk/(σY bc).
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The peak load Fpk associated with Brazier plastic buckling occurs at a significantly

larger value of δ/L than the indentation mode for simply supported beams, recall

Fig. 4.6. Also, the value of Fpk for Brazier plastic buckling is sensitive to the choice

of boundary condition: clamped beams are 30-50% stronger than simply supported

beams (see Table 4.1). This is consistent with the fact that for a given applied load

F , the bending moment at mid-span of clamped beams is less than that for simply

supported beams.

4.4 Finite element predictions

A Finite Element (FE) investigation of the three-point bending response of sandwich

beams with corrugated and Y-frame cores has been conducted with the following

objectives:

1. to obtain additional insight into the measured responses presented in Section

4.3,

2. to explore the influence of mass distribution between core and face-sheets upon

the three-point bending response of a sandwich panel and

3. to analyse the effect of beam span upon the collapse mechanism.

All computations were performed using the commercial software Abaqus (version

6.9). Most simulations were done with the implicit solver, but the explicit solver

was also used when convergence issues were encountered. The explicit solver can

handle more easily the complex contact conditions that arise within the sandwich

beam when the core is crushed beneath the mid-span roller. To ensure that a

quasi-static solution was obtained with the explicit solver, the kinetic energy of the

sandwich beam was monitored to ensure it never exceeds 10% of the strain energy,

as suggested within the Abaqus documentation3.

4.4.1 Comparison between measurements and simulations

The FE predictions for all sandwich beams tested are included in Fig. 4.6 and 4.7

for simply supported and clamped boundary conditions, respectively. In each figure,

3Dassault Système Simulia Corp., Abaqus analysis users manual, version 6.9, Providence, RI,
USA.
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the simulated response of sandwich beams with a corrugated core (part (a)) and

a Y-frame core (part (b)) is shown for m = 9.1 kg/m2. Likewise, the results for

sandwich beams with m = 13.8 kg/m2 are shown with a corrugated core (part (c))

and a Y-frame core (part (d)).

It is evident from Fig. 4.6 that the predicted peak loads of the simply supported

beams slightly underestimate the measured peak loads. This is attributed to the

fact that the FE analysis assumes frictionless contact between the sandwich beam

and rollers, and neglects the strengthening due to the presence of the braze alloy

over all surfaces of the sandwich beam. In contrast, the FE analysis somewhat

overpredicts the strength of the fully-clamped beams following the initial peak load.

This is traced to the fact that perfect clamping is assumed in the FE simulations

whereas the test rig was unable to achieve this. The finite additional compliance of

the test fixture is particularly significant for the sandwich beams of areal mass m

= 13.8 kg/m2 because the reaction force and moment at the supports is greater for

these specimens.

The predicted shapes of deformed sandwich beams of areal mass m = 13.8 kg/m2 are

compared with photographs of the as-tested specimens in Fig. 4.8-4.11. Recall that

simply supported beams with a corrugated core and a Y-frame core are shown in Fig.

4.8 and 4.9, respectively. Likewise, clamped beams with a corrugated core and a Y-

frame core are given in Fig. 4.10 and 4.11, respectively. In each figure, beams with

front-and-back faces present (part (c)) are compared with those without a back face

(part (d)). Additional views are included in parts (c) and (d) to show the predicted

cross-sections at mid-span.

The observed and predicted deformation of the sandwich beams with front-and-

back faces present is by indentation beneath the central roller. In contrast, for the

sandwich beams without a back face, the observed and predicted deformation mode

is by Brazier plastic buckling at mid-span.

4.4.2 Sensitivity of the sandwich panel response to span and

proportion of mass in the core

In the experimental investigation presented in Section 4.3, the proportion of mass

in the core and the span of the sandwich beams were held fixed. The sensitivity

of collapse strength to these geometric parameters is now explored using the FE
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method. At this stage in the study, the perspective is changed from comparing

FE predictions with the measured responses of sandwich beams to predicting the

collapse response of sandwich panels in three-point bending. Sandwich panels are

more commonly used in engineering practice (such as ship hulls) than sandwich

beams, and it is of interest to evaluate the relative performance of corrugated cores

and Y-frame cores in the sandwich panel configuration. We shall limit our attention

to the simply supported case, and consider sandwich panels with identical front-

and-back faces and panels with the back face absent. Results are presented in

non-dimensional form so that they are applicable over a wide range of length scales;

from laboratory test to industrial application.

The cross-sections of the sandwich panels are given in Fig. 4.12 for the corrugated

core and Y-frame core. The panels are subjected to three-point bending, and are

idealised by unit cells in the width-direction, as defined in Fig. 4.12. Under three-

point bending, the panels will deform plastically over a limited portion along their

length, and display negligible straining in the width direction, x1. Consequently,

the behaviour of a panel of large width is adequately captured by considering the

response of a unit cell with symmetric boundary conditions imposed along the sides,

as shown in Fig. 4.12.

Dimensional analysis

In the simulations, the core shape is held fixed and parameterised in terms of the

core thickness c, as shown in Fig. 4.12. The relative mass distribution between

core and face-sheets is dictated by the thickness of the core members and of the

face-sheets according to the following prescription.

The areal mass of the core mc scales with the thickness of the core members tc

according to:

mc = Aρtc , (4.1)

where the constant of proportionality is A = 1.843 for both corrugated core and

Y-frame core. Likewise, the areal mass of the sandwich panel m scales with the

thickness of the face-sheets tf according to:
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Figure 4.12: Cross-sectional dimensions of the sandwich panels considered in the
numerical analysis: (a) corrugated core and (b) Y-frame core. (c) The sandwich
panels, shown here with a corrugated core, are simply supported and loaded in three-
point bending.
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m = ρtf +mc , (4.2)

when the back face is absent and as:

m = 2ρtf +mc , (4.3)

when both front-and-back faces are present. Now, Eq. (4.1) can be rewritten in

non-dimensional form as:

tc
c
=

1

A

mc

m

m

ρc
, (4.4)

and likewise Eq. (4.2) and (4.3) can be re-arranged to form:

tf
c
=
(

1−
mc

m

)

m

ρc
, (4.5)

and

tf
c
=

1

2

(

1−
mc

m

)

m

ρc
, (4.6)

respectively. Thus, the sheet thickness of the core and face-sheets can be expressed

directly in terms of the areal mass ratios mc/m and m/(ρc).

The three-point bending strength of a simply supported sandwich panel of width b,

core thickness c and span 2L scales as:

Fpk =
2Mp

L
=

2σY bctf
L

f1(tc, tf , c) , (4.7)

where Mp is the plastic moment of the cross-section and f1 is a function of the

cross-sectional geometry. Equation (4.7) can be rewritten in non-dimensional form

as:

F̂ =
Fpk

σY bc
= f2

(

tc
c
,
tf
c
,
2L

c

)

, (4.8)
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and using Eq. (4.4)-(4.6), the sheet thickness ratios can be expressed as areal mass

ratios giving:

F̂ =
Fpk

σY bc
= f3

(

m

ρc
,
mc

m
,
2L

c

)

, (4.9)

Therefore, the non-dimensional collapse load F̂ is a function of the normalised span

2L/c and of the areal mass ratios m/(ρc) and mc/m.

In the experimental study, and associated numerical simulations reported above, the

normalised span 2L/c was held fixed at 11.4. The mass ratios were m/(ρc) = 0.052

andmc/m = 0.48 for sandwich beams of areal massm = 9.1 kg/m2, and were m/(ρc)

= 0.079 and mc/m = 0.31 for sandwich beams of areal mass m = 13.8 kg/m2.

We proceed by considering the sandwich panel response for corrugated cores and

Y-frame cores, first with m/(ρc) held fixed at 0.052 and second with varying mass

ratio m/(ρc). The simulations with m/(ρc) = 0.052 represent the case considered in

the above experimental study with m = 9.1 kg/m2 and c = 22 mm. Simulations were

performed for selected values of mc/m in the range 0.15 to 0.95 and of normalised

spans 2L/c in the range from 5 to 30. The overhang of the simply supported sand-

wich panels was 0.5L and the length of the face-plates added to the extremities of

the sandwich panels without a back face was 0.56L: again, these values were equal

to those used in the experimental investigation, recall Fig. 4.5(a). In all cases, the

central and support rollers had a diameter D = 9 mm, giving D/c = 0.41.

Peak loads

The normalised peak load F̂ = Fpk/(σY bc) is plotted in Fig. 4.13 as a function of

normalised span 2L/c for four selected values of mc/m. The responses of sandwich

panels with a corrugated core and a Y-frame core are shown in Fig. 4.13(a) and

(b), respectively. In each plot, results are shown for sandwich panels with both faces

present and for sandwich panels with the back face absent.

The peak load of all sandwich panels increases with increasing proportion of mass

in the core, mc/m. This increase in strength is more significant for short panels

than for long panels. Also, with increasing mc/m, the peak strength becomes less

sensitive to whether the sandwich panel contains both face-sheets or only the front

face-sheet: this is consistent with the fact that the peak strength is dominated by
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Figure 4.13: Normalised peak load F̂ = Fpk/(σY bc) as a function of the normalised
span 2L/c for simply supported sandwich panels and selected values of mc/m (m/(ρc)
= 0.052). Results are shown for sandwich panels with (a) a corrugated core and (b) a
Y-frame core.

the presence of the core rather than the relatively thin face-sheets at high mc/m.

Next, consider the role of the back face upon the peak strength. For 2L/c less than

approximately 15, sandwich panels with a front face of double thickness but without

a back face are stronger than those with front-and-back faces present. This is due

to the fact that the thicker front face gives rise to a higher indentation strength.

In contrast, sandwich panels with front-and-back faces have higher peak loads than

panels without a back face for 2L/c > 15; this is consistent with the fact that the

Brazier buckling load is reduced when the back face is removed.

In order to determine the degree to which sandwich panel collapse is dictated by

core indentation or by Brazier buckling, a series of additional calculations have been

performed to obtain the collapse strength due to each of these mechanisms acting

in isolation. The details are as follows.

Collapse mechanisms

Indentation The FE method was also used to obtain the indentation strength of

the sandwich panels of geometry given in the previous section. To achieve this, the

boundary conditions were changed such that the panel was adhered to a rigid foun-

dation as shown in Fig. 4.14(a). This was achieved by constraining the translational

degrees-of-freedom to zero along the bottom face of the panel.
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Figure 4.14: The boundary conditions on finite element models to simulate (a)
indentation and (b) bending. A sandwich panel without a back face is shown.

Representative collapse responses of sandwich panels resting upon a rigid foundation

are given in Fig. 4.15(a) for m/(ρc) = 0.052 and mc/m = 0.5. The predictions of

indentation strength are limited to 2L/c = 11.4, as used in the experimental study

on sandwich beams. Results are shown for corrugated and Y-frame cores, and for

sandwich panels with and without a back face. The responses exhibit a peak load FI

at a roller displacement δ of approximately 1% of the core thickness c. A small load

drop ensues and subsequent deformation occurs at almost constant load. These

simulations were repeated for other selected values of mc/m and the results are

summarised in Fig. 4.15(b): the normalised indentation strength F̂I is plotted as a

function of the proportion of mass in the core.

For all sandwich panels analysed, the indentation strength increases with increasing
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Figure 4.15: (a) The predicted indentation response of sandwich panels withmc/m=
0.5 resting on a rigid foundation. (b) Normalised indentation strength F̂I = FI/(σY bc)
as a function of mc/m (m/(ρc) = 0.052).
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Chapter 4. The influence of the back face on the bending response

mc/m. The indentation strength is also sensitive to topology:

1. sandwich panels with a corrugated core have higher indentation strengths than

their counterparts with a Y-frame core, and

2. the indentation strength of panels with a double thickness front face and with-

out a back face exceeds that of sandwich panels with front-and-back faces

present. These features have already been noted above in reference to Fig.

4.13.

Brazier plastic buckling The critical bending moment causing a sandwich panel

to collapse by Brazier plastic buckling was also obtained with the FE method. For

these simulations, all nodes (and corresponding degrees-of-freedom) at the right

end of the panel were tied to a rigid surface as illustrated in Fig. 4.14(b). The

rigid surface was rotated by an angle ω about the x1-axis, with the axis of rotation

positioned at mid-height of the panel. Otherwise, the rigid surface was free to

translate in the x2 and x3 directions to ensure that no axial or transverse forces

were applied to the panel. To prevent rigid body motion, the x2-component of

nodal displacement was constrained to equal zero for one node of the front face

(x1 = 0), at the left-hand end of the panel (x3 = 0).

The representative collapse response of sandwich panels with m/(ρc) = 0.052 and

mc/m = 0.5 is given in Fig. 4.16(a). Results are shown for both corrugated and

Y-frame core topologies and for sandwich panels with and without a back face. As

the angular displacement ω is increased, the reaction moment M increases up to a

peak value MB due to Brazier plastic buckling, and this is followed by a softening

response. These simulations have been repeated for selected values of mc/m and the

normalised Brazier buckling moment M̂ = MB/(σY bc
2) is plotted in Fig. 4.16(b)

as a function of the proportion of mc/m, with m/(ρc) = 0.052. The simulations

are done for sandwich panels with 2L/c = 11.4, but the peak moment is relatively

insensitive to this ratio.

It is clear from Fig. 4.16(b) that the Brazier buckling moment for a sandwich panel

without a back face increases with increasing mc/m. For these structures, the posi-

tion of the neutral axis is sensitive to the proportion of mass in the core; an increase

in mc/m moves the neutral axis closer to the centre of the core, increases the struc-

tural efficiency in plastic bending and leads to an increase in the Brazier buckling

strength. In contrast, for sandwich panels with front-and-back faces present, the
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Figure 4.16: (a) The predicted bending response of sandwich panels with mc/m
= 0.5. (b) Normalised Brazier buckling moment M̂ = MB/(σY bc

2) as a function of
mc/m (m/(ρc) = 0.052).

position of the neutral axis is independent of the proportion of mass in the core and

consequently M̂ is relatively insensitive to the value of mc/m.

Interpretation of the three-point bending strength in terms of indentation

and Brazier buckling We anticipate that, at a sufficiently short span 2L, the

three-point bending strength Fpk is approximated by the indentation strength FI and

is independent of span. In contrast, the three-point bending strength of long panels

is dictated by Brazier plastic buckling; for a simply supported sandwich panel, the

collapse load associated with Brazier plastic buckling scales with the panel length

2L according to:

FB =
2MB

L
. (4.10)

The indentation load and Brazier buckling moment, as given in Fig. 4.15(b) and

4.16(b), are now used to estimate the collapse load of a panel in three-point bending.

The lower value of FI and FB determines which collapse mechanism is active. These

asymptotic predictions of collapse loads are compared with the three-point bending

collapse loads in Fig. 4.17. Comparisons are made in Fig. 4.17(a) and (b) for

sandwich panels with front-and-back faces present, and in Fig. 4.17(c) and (d) for

sandwich panels with the back face absent.

In broad terms, there is excellent agreement between the predicted indentation load
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Chapter 4. The influence of the back face on the bending response

and the three-point bending load at short spans, and between the predicted Brazier

buckling load and the three-point bending load at long spans. The deformation

mode of the panels in three-point bending confirms this (not shown). The switch

in response from indentation to Brazier buckling occurs at a transition value of

span 2Lt/c. For sandwich panels containing front-and-back faces, 2Lt/c decreases

with increasing mc/m. This is consistent with the feature that FI increases with

increasing mc/m whereas MB is relatively insensitive to mc/m for panels containing

front-and-back faces. In contrast, the transition span 2Lt/c for sandwich panels with
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Figure 4.17: Normalised peak load F̂ = Fpk/(σY bc) as a function of the normalised
span 2L/c for simply supported sandwich panels and selected values of mc/m (m/(ρc)
= 0.052). The three-point bending results are reproduced from Fig. 4.13. The in-
dentation and Brazier buckling strengths are included as short and long dashed lines,
respectively. Sandwich panels with front-and-back faces are shown with (a) a corru-
gated core and (b) a Y-frame core. Likewise, sandwich panels without a back face are
shown with (c) a corrugated core and (d) a Y-frame core.
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4.4 Finite element predictions

the back face absent is only mildly influenced by the value of mc/m. This arises

from the fact that FI and MB both increase with increasing mc/m for sandwich

panels without a back face.

Sensitivity of the three-point bending strength to the value of m/(ρc)

It has been demonstrated above that the three-point bending strength is adequately

represented by the two asymptotic behaviours of core indentation and Brazier buck-

ling, with the operative collapse mode dictated by the beam span. Here, the depen-

dence of the indentation strength and the Brazier buckling strength upon m/ρc is

explored.

The indentation strength and Brazier buckling strength are plotted as a function of

mc/m in Fig. 4.18 and 4.19, respectively, for selected values of m/(ρc) in the range

of 0.015 and 0.15. Indentation strengths are shown in Fig. 4.18(a) for panels with

a corrugated core and in Fig. 4.18(b) for panels with a Y-frame core; in each plot,

results are given for panels with both faces present, and for panels with the back

face absent. For all sandwich panels considered, the normalised indentation strength

per unit mass ρcF̂I/m increases with increasing value of m/(ρc). The observations

made previously for sandwich panels with m/(ρc) = 0.052 also hold true for other

values of m/(ρc):

1. sandwich panels with a corrugated core have higher indentation strengths than

those with a Y-frame core and

2. relocating the back face material onto the front face increases the indentation

strength of the sandwich panel.

The results for the Brazier buckling moment are given in Fig. 4.19(a) for panels

with front-and-back faces present and in Fig. 4.19(b) for panels with the back face

absent. In each plot, sandwich panels with a corrugated core are compared to those

with a Y-frame core. The limit of mc/m tending to zero is not included in Fig.

4.19(a) and (b) as this limit has no practical value and is not associated with a

peak moment. It is clear from Fig. 4.19(a) that the Brazier buckling moment is

relatively insensitive to mc/m when front-and-back faces are present. In contrast,

when the back face is absent, the Brazier buckling strength increases with increasing

mc/m. This was observed previously for sandwich panels with m/(ρc) = 0.052 (see

Fig. 4.16(b)) but the results of Fig. 4.19 demonstrate that it holds true for other
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Chapter 4. The influence of the back face on the bending response

selected values of m/(ρc). Now consider the effect of m/(ρc) upon the normalised

Brazier buckling strength per unit mass ρcM̂/m. Regardless of whether the back

face is present or absent (and regardless of the core topology), ρcM̂/m increases by

a factor of about 3 when m/(ρc) is increased by a factor of 10 from 0.015 to 0.15.
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(a) a corrugated core and (b) a Y-frame core.
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Figure 4.19: Normalised Brazier buckling moment per unit mass ρcM̂/m as a func-
tion of mc/m for selected values of m/(ρc). Results are shown for sandwich panels (a)
with front-and-back faces present and (b) without a back face.

4.5 Concluding remarks

Sandwich beams with corrugated and Y-frame cores have been manufactured by

brazing together AISI 304 stainless steel sheets. The dimensions of the cores were
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4.A Influence of parent material

approximately 1:20 scale models of the cores used in a ship hull. In addition, the

uniaxial tensile response of as-brazed stainless steel was found to be representative

of shipbuilding steel up to strain levels of about 10%.

The three-point bending responses of sandwich beams with (i) front-and-back faces

present and (ii) front face present, but back face absent have been measured and

compared on an equal mass basis. The tests were done using simply supported and

clamped boundary conditions, with the prismatic axis of the core aligned with the

longitudinal axis of the beam. Sandwich beams with front-and-back faces present

collapsed by indentation whereas beams without a back face collapsed by Brazier

plastic buckling. Despite having different collapse mechanisms, sandwich beams

with front-and-back faces and those without a back face had comparable three-point

bending strengths for the choice of beam span employed.

Three-dimensional FE models were developed and the simulations were found to be

in good agreement with the measured responses. The FE method was also used

to study the influence of the mass distribution between the face-sheets and core.

Upon concentrating the mass of the sandwich panel within the core the three-point

bending strength of the structure increases. The analysis also showed the influence

of the span upon the collapse response of a sandwich panel; short panels failed

by indentation and long panels collapsed by Brazier plastic buckling. Sandwich

panels with a corrugated core, and without a back face have the highest indentation

strength and are thereby optimal for short spans, recall Fig. 4.18. In contrast, it

is clear from Fig. 4.19 that panels with front-and-back faces have greater Brazier

buckling strengths than their counterparts with the back face absent; consequently,

panels with front-and-back faces are optimal for long spans. However, the choice of

core topology plays only a minor role in the Brazier buckling regime: the corrugated

core is either stronger or weaker than the Y-frame core depending upon the precise

values of m/(ρc) and of mc/m and upon whether the sandwich panel has the back

face present or absent.

4.A Influence of parent material

The influence of the parent material on the three-point bending responses of simply

supported and clamped sandwich beams was investigated using the finite element

method. The models used to simulate the experiments (see Section 4.2.3) were used
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Chapter 4. The influence of the back face on the bending response

for this analysis, except that the material properties of as-brazed stainless steel were

replaced by the ones of Lloyd’s grade A steel. The yield strength was taken to be

σY = 280 MPa and the hardening response of the material was tabulated in Abaqus

from the plot given in Fig. 4.3. Both grades of steel have a Young’s modulus of E

= 210 GPa and a Poisson’s ratio of ν = 0.3.

The three-point bending responses of beams with a Y-frame core are compared in

Fig. 4.20 for the two choices of material. The responses of sandwich beams with

front-and-back faces are shown in Fig. 4.20(a) whereas their counterparts without a

back face are shown in Fig. 4.20(b). In each figure, results are shown for both simply

supported and clamped boundary conditions, and the load F has been normalised

by the yield strength of the as-brazed stainless steel, σY = 210 MPa. The peak

load of sandwich beams made from as-brazed stainless steel are within 12% of those

made from grade A steel. In general, the results in Fig. 4.20 indicate that the three-

point bending response of a sandwich beam made from as-brazed stainless steel is

representative of one made from Lloyds grade A steel.
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Chapter 5

Drop weight tests on prismatic

sandwich beams

Summary

To mimic the response of a sandwich hull design to a ship collision, drop weight

tests with an impact velocity of 5 m/s were performed on stainless steel sandwich

beams with a corrugated core or a Y-frame core. These tests were conducted on

both simply supported and clamped beams, and the responses measured dynamically

were compared to those measured quasi-statically. The dynamic peak load of the

beams could not be measured accurately due to an artifact of the experimental setup;

however, the instrumentation was able to capture precisely the post-peak response

of the beams. The post-peak response at 5 m/s was slightly stronger than the

one measured quasi-statically. Three-dimensional finite element simulations were

found to be in reasonable agreement with the measurements and gave additional

insight into the experiments. The finite element method was also used to investigate

whether the peak load and collapse mechanism at 5 m/s are different from those

obtained under quasi-static loading. The predictions indicated that sandwich beams

which collapse quasi-statically by indentation also fail by indentation at 5 m/s. In

contrast, the simulations for beams that fail by Brazier plastic buckling under quasi-

static loading indicated that they collapse by indentation at 5 m/s. Finally, for all

sandwich beams considered in the simulations, the dynamic peak load was found to

be higher than its quasi-static value, and the mass of the front face was found to be

an important factor contributing to this increase.
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Chapter 5. Drop weight tests on prismatic sandwich beams

5.1 Introduction

More than 200 maritime accidents were recorded in the Gulf of Finland from 1997

to 2006 (Kujala et al., 2009). About 50% of those accidents were groundings and

another 20% were ship-ship collisions. For large vessels such as oil and chemical

tankers, ship collisions and groundings occur at low speeds, approximately 5 m/s1.

These accidents are in general considered as quasi-static loading scenarios (ISSC,

2006c). This assumption seems reasonable for vessels with a conventional hull de-

sign which can absorb energy only by bending and stretching of the outer hull.

The validity of this assumption is questionable for vessels with a sandwich hull con-

struction because additional energy is absorbed by crushing of the core, and the

crushing response of most core topologies is very sensitive to velocity. For exam-

ple, Tilbrook et al. (2007) have shown that when the corrugated core or the Y-frame

core are crushed dynamically, their dynamic strength is superior to their quasi-static

strength due to inertia stabilisation effects, even at low velocities between 1-10 m/s.

This strengthening effect was observed in compression by Tilbrook et al. (2007) and

here, its influence on the dynamic bending response will be investigated.

The objective of this chapter is to compare the dynamic response of sandwich beams

impacted at 5 m/s to their quasi-static response. Sandwich beams with a corrugated

core and a Y-frame core will be considered under simply supported and clamped

boundary conditions. Recall that their quasi-static responses have been measured

previously in Chapter 4, and two collapse mechanisms were identified: indentation

and Brazier plastic buckling. Will these collapse mechanisms change at 5 m/s? This

question will be addressed below via experiments and simulations.

A drop weight apparatus will be used to impact the sandwich beams at 5 m/s.

Similar tests were performed on aluminium sandwich beams with a metal foam core

(Crupi and Montanini, 2007; Yu et al., 2003, 2008) and more recently on aluminium

sandwich panels with a honeycomb core (Crupi et al., 2012). In both cases, the

responses measured dynamically were similar to those measured quasi-statically,

and no change in the collapse mechanism was observed when comparing the quasi-

static and dynamic deformation modes. No drop weight tests have been performed

on metallic sandwich beams with a corrugated core or a Y-frame core; hence, the

motivation for this chapter.

1This collision speed is based on discussions with Mr. Joep Broekhuijsen, research coordinator
at Damen Schelde Naval Shipbuilding.
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5.2 Methodology

This chapter is organised as follows. First, the drop weight apparatus and the

dimensions of the tested sandwich beams are presented along with a description of

the finite element models. Second, the measured dynamic responses are compared to

the quasi-static responses for both simply supported and clamped sandwich beams.

Third, finite element predictions are compared to the experiments and finally, the

finite element method is used to explore if the quasi-static peak load and collapse

mechanism of a sandwich beam are different during an impact at 5 m/s.

5.2 Methodology

5.2.1 Geometry of the tested sandwich beams

Sandwich beams with a corrugated core and a Y-frame core were tested and their

cross-sectional dimensions are given in Fig. 5.1. The core and face-sheets were made

from AISI 304 stainless steel sheets of thickness t = 0.3 mm and density ρ = 7900

kg/m3. Both corrugated and Y-frame cores had a relative density ρ̄ = 0.025 and a

core thickness c = 22 mm. The face-sheets were brazed to the core to produce a

sandwich beam of areal mass m = ρ(2t + ρ̄c) = 9.1 kg/m2. The brazing cycle used

to manufacture the sandwich beams was detailed previously in Section 4.2.1.
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Figure 5.1: Cross-sectional dimensions of the tested sandwich beams with (a) a
corrugated core and (b) a Y-frame core. All dimensions are in mm.

Simply supported and clamped sandwich beams were tested, both with a span 2L =

250 mm. In all cases, the prismatic axis of the core was aligned with the longitudinal

direction of the beam (x3-axis). Steel rollers of diameter D = 9 mm were used to

provide simple support to the sandwich beams, see Fig. 5.2(a). On the other hand,

the fully-clamped boundary condition was achieved in two steps. First, the ends of
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Chapter 5. Drop weight tests on prismatic sandwich beams

the sandwich beams were filled with an epoxy resin to make the core fully dense.

Second, the end portions of the sandwich beams were bolted to the testing rig using

steel clamping plates and M6 bolts, see Fig. 5.2(b).

5.2.2 Drop weight apparatus

The sandwich beams were impacted using a drop weight apparatus illustrated in

Fig. 5.2. A projectile of mass M was dropped from 1.3 m to achieve an impact

velocity of 5 m/s. The mass M was varied depending on the boundary conditions:

2 kg was used for simply supported beams whereas clamped beams were tested with

3 kg. Consequently, the kinetic energy of the projectile is 25 J for simply supported

beams and 37.5 J for clamped beams.

The contact force was measured by a piezoelectric load cell (PCB model 218C). The

load cell was mounted on a roller of diameter 2R = 20 mm. This assembly was

placed stationary at mid-span on the sandwich beam to be tested. During the test,

the projectile hits the load cell and the roller transfers the kinetic energy of the

projectile to the sandwich beam. To reduce ringing in the load cell, a rubber pad of

thickness tr = 1.5 mm, was added to the bottom surface of the projectile, see Fig.

5.2.

High-speed photography was used to capture the experiments with 10,000 frames per

second. The displacement of the mid-span roller as a function of time was inferred

from those images. For both simply supported and clamped beams, the duration

of the first impact was 8-10 ms. The first impact was followed by a succession of

rebounds and elastic impacts. The energy involved in these rebounds is negligible,

approximately 1 J or less, as estimated from the rebound height of the projectile.

5.2.3 Finite element models

Three-dimensional Finite Element (FE) models were developed to simulate the dy-

namic response of all sandwich beams tested. All simulations were done with the

explicit solver of the commercial software Abaqus (version 6.9).
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Figure 5.2: Experimental setup used to perform drop weight tests at 5 m/s on
(a) simply supported and (b) clamped sandwich beams. A sandwich beam with a
corrugated core is shown. All dimensions are in mm.
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Rigid mid-span roller

The FE simulations do not model the impact between the projectile and the assembly

of the mid-span roller and load cell. To simplify the analysis, only the contact

between the mid-span roller and the sandwich beam is simulated, see Fig. 5.3. The

mid-span roller is modelled as a rigid body in the simulations. It is given an initial

velocity vi = 5 m/s and then progressively slows down. The rigid mid-span roller is

also given a mass in the simulations corresponding to the mass of the projectile used

in the experiments. This ensures that the initial kinetic energy in the simulations

is the same as that in the experiments. The interaction between the rigid mid-span

roller and the front face of the sandwich beam was modelled as a hard frictionless

contact.

1/4 of the sandwich beam

Rigid mid-span roller

M / 4

v  = 5 m/si

(b)

L = 125

R = 10

Rigid mid-span roller

M / 4

v  = 5 m/s
i

L = 125

R = 10

(a)

D = 9

1/4 of the sandwich beam

62.5

x2

x3

x2

x3

Figure 5.3: Finite element models used to simulate the drop weight tests on (a)
simply supported and (b) clamped sandwich beams. All dimensions are in mm.

Geometry and mesh of the sandwich beams

The geometry of the sandwich beams used in the simulations was identical to those

employed in the experimental investigation, see Fig. 5.1. In all cases, the face-

sheets were assumed to be perfectly bonded to the core. The sandwich beams were

discretised using four noded linear shell elements (S4R in Abaqus notation) with

an average mesh size of 0.5 mm. Numerical experimentation revealed that further

mesh refinement did not improve significantly the accuracy of the calculations.
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5.2 Methodology

Boundary conditions

It is sufficient to model only one quarter of the sandwich beam in the simulations,

applying symmetric boundary conditions at mid-span (x3 = 0) and at mid-plane

(x1 = 0). The overhang of simply supported beams beyond the outer rollers was

included in the simulations. Simply supported boundary conditions were modelled

by placing the sandwich beam on a rigid cylindrical roller with the same contact

properties as those mentioned above. On the other hand, clamped boundary con-

ditions were enforced by constraining to zero all degrees-of-freedom on the nodes of

the end face of the sandwich beam (x3 = L).

Material properties

The uniaxial tensile response of as-brazed AISI 304 stainless steel was measured in

Chapter 4 at a nominal strain-rate of 10−3 s−1 and is reproduced in Fig. 5.4(a). In

the simulations, the material was modelled as a rate-dependent, elastic-plastic solid

in accordance with J2-flow theory. The material has a density ρ = 7900 kg/m3, a

Young’s modulus E = 210 GPa, a Poisson’s ratio ν = 0.3 and a quasi-static (10−3

s−1) yield strength σY = 210 MPa. The hardening plastic behaviour was tabulated

in Abaqus from the data shown in Fig. 5.4(a).

The strain-rate sensitivity of stainless steel was investigated by Stout and Follansbee
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Figure 5.4: (a) The quasi-static (ǫ̇p = 10−3 s−1) uniaxial tensile response of AISI 304
stainless steel and the estimated high strain-rate responses based on the data of Stout
and Follansbee (1986). (b) Dynamic strengthening ratio R as a function of plastic
strain rate ǫ̇p.
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Chapter 5. Drop weight tests on prismatic sandwich beams

(1986) for strain-rates in the range 10−4 s−1 ≤ ǫ̇ ≤ 104 s−1. Their results are

reproduced in Fig. 5.4(b), where the dynamic strengthening ratio R is plotted as a

function of the plastic strain rate ǫ̇p. The ratio R is defined as the dynamic stress

σd(ǫp = 0.1) at an applied strain-rate ǫ̇p divided by the corresponding quasi-static

stress σqs(ǫp = 0.1) at ǫ̇p = 10−3 s−1. Stout and Follansbee (1986) also mentioned

that the ratio R is reasonably independent of ǫp. Consequently, the dynamic stress

σd versus plastic strain ǫp response can be expressed as:

σd(ǫp, ǫ̇p) = R(ǫ̇p)σ
qs(ǫp) , (5.1)

where R is given in Fig. 5.4(b). This prescription was employed in all simulations

with σqs(ǫp) given by the measured quasi-static response shown in Fig. 5.4(a).

To illustrate the influence of material strain-rate sensitivity, the estimated uniaxial

tensile responses of type 304 stainless steel at four selected additional values of

strain-rate are given in Fig. 5.4(a).

5.3 Experimental results

The dynamic responses at 5 m/s for all sandwich beams tested are given in Fig. 5.5

for simply supported beams and in Fig. 5.7 for clamped beams. In each figure, re-

sults are shown for sandwich beams with a corrugated core and a Y-frame core. For

each beam, the dynamic response is compared to the quasi-static response measured

previously in Chapter 4. In each plot, the mid-span roller displacement δ is nor-

malised by the beam half-span L = 125 mm whereas the load applied at mid-span

F is normalised by σY bc, where the quasi-static yield strength is σY = 210 MPa, the

width of the sandwich beams is b = 55 mm and the core thickness is c = 22 mm.

5.3.1 Simply supported beams

The quasi-static and 5 m/s responses of simply supported sandwich beams are given

in Fig. 5.5(a) for the corrugated core and in Fig. 5.5(b) for the Y-frame core. All

simply supported beams have an initial elastic regime up to a peak load, which is

followed by a softening response. For both core topologies, the dynamic peak load

is significantly higher than its quasi-static peak load. In contrast, the post-peak
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response at 5 m/s is only slightly stronger than that under quasi-static loading. The

energy absorbed by the beams at 5 m/s is 24 and 25 J for the tests on the corrugated

core and on the Y-frame core, respectively. These values are in excellent agreement

with the kinetic energy of the projectile, which is 25 J.
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Figure 5.5: Quasi-static and 5 m/s responses of simply supported sandwich beams
with (a) a corrugated core and (b) a Y-frame core.

One surprising result in Fig. 5.5 is that both core topologies have the same peak

loads at 5 m/s whereas their quasi-static peak loads are different. We anticipate
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Chapter 5. Drop weight tests on prismatic sandwich beams

that the peak load measured during the drop weight tests is influenced by the mass

of the load cell and steel roller that are placed on the sandwich beam. To test this

hypothesis, an additional drop weight test was performed using aluminium roller

instead of a steel roller, and the influence on the measured response is shown in Fig.

5.6 for a simply supported sandwich beam with a Y-frame core. Note that a simply

supported sandwich beam has a total mass of approximately 200 g. In contrast,

the steel roller and load cell have a combined mass of 146 g, and replacing the steel

roller by an aluminium roller reduces the mass of this assembly to 64 g.
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Figure 5.6: Influence of the mid-span roller mass upon the measured 5 m/s response
of a simply supported sandwich beam with a Y-frame core. The measured response
with a steel mid-span roller is reproduced from Fig. 5.5(b).

It is clear from Fig. 5.6 that the mass of the mid-span roller has a strong influence

on the peak load measured at 5 m/s. Replacing the steel roller by an aluminium

roller reduces the mass of this component by about 50% and accordingly, the peak

load is also reduced by the same proportion. To minimise the effect of the mid-span

roller upon the measured dynamic peak load, the aluminium roller was used for the

tests on clamped beams, which are presented below.

5.3.2 Clamped beams

The responses of clamped sandwich beams are given in Fig. 5.7(a) and (b) for the

corrugated core and the Y-frame core, respectively. In each plot, the quasi-static

response is compared to the one measured at 5 m/s. All clamped sandwich beams
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have an initial elastic regime followed by a peak load. This peak load is often followed

by a small load drop, and then the beam hardens due to longitudinal stretching. The

measured energy absorbed by clamped beams at 5 m/s is 34 J for the corrugated

core and 33 J for the Y-frame core. These values are slightly inferior to the kinetic

energy of the projectile, which is equal to 37.5 J.
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Figure 5.7: Quasi-static and 5 m/s responses of clamped sandwich beams with (a)
a corrugated core and (b) a Y-frame core.

The initial peak load of clamped beams is significantly higher at 5 m/s than for quasi-
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Chapter 5. Drop weight tests on prismatic sandwich beams

static loading; again, this is due to the inertia of the mid-span roller as demonstrated

in the previous section. For the corrugated core, the post-peak hardening response

measured at 5 m/s is stronger than the quasi-static response, see Fig. 5.7(a). In

contrast, the post-peak hardening response appears to be relatively insensitive to

the loading velocity for the Y-frame core, see Fig. 5.7(b). High-speed images taken

during the drop weight tests revealed that the test fixture was unable to ensure

perfectly clamped boundary conditions; a displacement of the order of 1-2 mm was

observed at the clamped ends. The compliance of the testing rig softens the post-

peak response of clamped beams and it is more important at 5 m/s than during

quasi-static tests.

5.3.3 Collapse mechanisms

The simply supported and clamped sandwich beams tested both collapse by inden-

tation under quasi-static loading, recall Section 4.3.3 on page 82. To verify whether

the collapse mechanism is the same at 5 m/s, high-speed images of the dynamic

tests performed on a sandwich beam with a Y-frame core are shown in Fig. 5.8(a)

and (b) for simply supported and clamped boundary conditions, respectively. For

both end conditions, the images indicate clearly that the beam collapses by inden-

tation of the core underneath the mid-span roller. High-speed images of the drop

weight tests performed on the corrugated core (not shown here) also indicate that

the beam fails by indentation. Hence, for the limited number of experiments done,

it appears that sandwich beams which collapse quasi-statically by indentation also

fail by indentation at 5 m/s.

The number of experiments done was limited because the drop weight tests do not

allow us to measure accurately the peak load of the beam. No drop weight tests

have been performed on sandwich beams which collapse quasi-statically by Brazier

plastic buckling. Will these sandwich beams also fail by Brazier plastic buckling at

5 m/s? This question will be addressed below using the finite element method.

5.4 Finite element predictions

Finite element simulations were performed with the following objectives: (i) to gain

additional insight into the drop weight tests and (ii) to compare the peak load
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δ/L = 0.05

δ/L = 0.10

(a)

δ/L = 0.05

δ/L = 0.09

(b)

Figure 5.8: High-speed images captured during a drop weight test at 5 m/s on (a)
a simply supported and (b) a clamped sandwich beam with a Y-frame core. The
deformed beams are shown for two selected values of mid-span roller displacement
δ/L. All images are showing a side view of the beam.

115



Chapter 5. Drop weight tests on prismatic sandwich beams

and collapse mechanism obtained at 5 m/s to the ones obtained under quasi-static

loading.

5.4.1 Comparison between simulations and measurements

The FE predictions for all sandwich beams tested are included in Fig. 5.5 and 5.7

for simply supported and clamped boundary conditions, respectively. In each figure,

results are shown for the corrugated core in part (a) and for the Y-frame core in

part (b). Simulations for the quasi-static beam responses are also included; they are

reproduced from Chapter 4.

The simulations underestimate the measured 5 m/s responses of simply supported

beams, see Fig. 5.5. The large discrepancy between the measured and predicted peak

load is attributed to the fact that impact between the projectile and the assembly of

the mid-span roller and load cell is not included in the simulations. Additional FE

simulations in which all parts used in the experiments are modelled as deformable

solids are presented in Appendix 5.A as an attempt to capture the measured peak

load more accurately. In addition, an analytical model given in Appendix 5.B gives

additional insight into the contact force generated by the impact of the projectile

on the assembly of the mid-span roller and load cell.

The post-peak response of simply supported beams measured at 5 m/s is also slightly

underestimated by the FE method. This discrepancy is traced to the fact that the

simulations assume a frictionless contact between the beam and the rollers. As

a result of underestimating the force, the simulations significantly over-predict the

maximum mid-span roller displacement of simply supported sandwich beams; for the

Y-frame core, the maximum mid-span roller displacement measured is δmax/L = 0.13

whereas the simulations predicts δmax/L = 0.18.

The initial peak load of clamped beams measured at 5 m/s is also underestimated by

the simulations for the same reason mentioned above for simply supported beams.

However, the post-peak hardening response of clamped beams at 5 m/s is over-

predicted by the FE calculations, see Fig. 5.7. This is attributed to the fact that

perfect clamping conditions were assumed in the simulations whereas the test fixture

was not able to achieve this. The maximum mid-span roller displacement predicted

by the FE analysis is in good agreement with the experiments, but this is the result

of first underestimating the initial peak load and then over-predicting the post-peak

measured response of clamped beams.
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5.4.2 Sensitivity of the peak load and collapse mechanism

to the loading velocity

The experimental investigation reported in Section 5.3 has an important limitation;

the finite mass of the mid-span roller and load cell does not allow us to measure

accurately the peak load on the sandwich beam. To overcome this problem, the

finite element method is used in this section to compare the predicted peak loads

in the quasi-static and 5 m/s simulations of sandwich beams that collapse quasi-

statically by (i) indentation and (ii) Brazier plastic buckling. This comparison will

allow us to evaluate if one of the two collapse mechanisms is more sensitive to

velocity.

Simply supported and clamped sandwich beams with a corrugated core or a Y-frame

core are considered. Similarly to the work done in Chapter 4, two types of beams

are analysed:

(i) beams of dimensions shown in Fig. 5.1 with front-and-back faces present and

(ii) beams with cores of dimensions given in Fig. 5.1, but with a front face of

thickness 2t = 0.6 mm and no back face.

Both designs have an equal mass, but beams with front-and-back faces present

collapse quasi-statically by indentation whereas beams with the back face absent

collapse by Brazier plastic buckling, recall Chapter 4. In all cases, the beam span

was kept fixed at 2L = 250 mm as used in the experimental study. All other details

of the finite element models were the same as those prescribed in Section 5.2.3,

except that the mid-span roller was given a constant velocity of 5 m/s instead of an

initial velocity. Numerical experimentation revealed that this modification had only

a minor effect on the simulated response.

The simulated quasi-static and 5 m/s responses are compared in Fig. 5.9. Beams

with front-and-back faces present are shown in part (a) with a corrugated core and

in part (b) with a Y-frame core. Likewise, beams with the back face absent are given

in parts (c) and (d) for the corrugated and Y-frame cores, respectively. In each plot,

results are shown for simply supported and clamped boundary conditions.

The results in Fig. 5.9 indicate that the peak load predicted at 5 m/s is (i) insensitive

to the choice of boundary conditions and (ii) exceeds the quasi-static value in all

cases. This increase is more important for the corrugated core than for the Y-frame
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Figure 5.9: FE predictions of the quasi-static and 5 m/s responses of simply sup-
ported and clamped sandwich beams. Beams with front-and-back faces are shown
with (a) a corrugated core and (b) a Y-frame core. Likewise, beams with the back
face absent are shown with (a) a corrugated core and (b) a Y-frame core. Beams with
front-and-back faces present collapse quasi-statically by indentation whereas those
with the back face absent fail quasi-statically by Brazier plastic buckling.

core, compare Fig. 5.9(a) and (b). Moreover, the increase in peak load is sensitive

to the allocation of face-sheet material; the increase is greater for sandwich beams

with the back face absent than for those with front-and-back faces present. This can

be attributed to the finite mass of the front face; recall that beams without a back

face have a thicker front face than beams with front-and-back faces present.

The FE simulations revealed a change in collapse mechanism: beams that failed

quasi-statically by Brazier plastic buckling collapsed by indentation at 5 m/s. To

demonstrate this, contours of equivalent plastic strain ǭpl are shown in Table 5.1

for simply supported sandwich beams with a Y-frame core. Predictions are shown
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for sandwich beams with and without a back face. For each beam, results obtained

quasi-statically are compared to those at 5 m/s. In all cases, the distribution of

equivalent plastic strain is plotted on a side view of the beam focusing on a portion

of length 0.35L from the beam mid-span. The results are shown for a value of

mid-span roller displacement just after the peak load.

The results in Table 5.1 indicate clearly that sandwich beams with front-and-back

faces collapse by indentation for both quasi-static loading and at 5 m/s. In both

cases, the distribution of equivalent plastic strain is localised underneath the mid-

span roller. In addition, the maximum equivalent plastic strain obtained quasi-

statically is similar to that predicted at 5 m/s. In contrast, the equivalent plastic

strain distribution obtained quasi-statically for a beam with the back face absent is

significantly different from that obtained at 5 m/s; for quasi-static loading, a diffuse

plastic hinge is formed at mid-span whereas at 5 m/s, the plastic strain is localised

underneath the mid-span roller. This indicate a change in collapse mechanism:

beams that collapse quasi-statically by Brazier plastic buckling fail by indentation

at 5 m/s.

Quasi-

static

5 m/s

Front-and-back faces

δ/L = 0.02

No back face

δ/L = 0.05

F,δ F,δ

F,δF,δ

εpl

εpl
εpl

εpl

Table 5.1: Equivalent plastic strain distribution for simply supported sandwich
beams with a Y-frame core. Beams with and without a back face are shown. Re-
sults are given for quasi-static loading and 5 m/s. All images are showing a side view
of the beam focusing on a portion of length 0.35L from the beam mid-span.
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5.5 Concluding remarks

The response of a sandwich hull to a ship collision was investigated in the laboratory

using a drop weight apparatus. Drop weight tests, with an impact velocity of 5 m/s,

were performed on stainless steel sandwich beams with a corrugated core and a Y-

frame core. The tests were conducted on simply supported and clamped sandwich

beams, with the prismatic axis of the core aligned with the longitudinal axis of the

beam. The experimental setup did not allow us to measure the dynamic peak load

accurately; the finite mass of the mid-span roller significantly increased the measured

peak load. This problem can be minimised by reducing the mass of the mid-span

roller and future work should consider using a polycarbonate roller instead of the

steel and aluminium rollers used in this study. Nevertheless, the measurements did

capture the post-peak force with adequate precision. For most beams tested, the

post-peak response measured at 5 m/s was slightly stronger than the one measured

quasi-statically.

Three-dimensional finite element models were developed to gain additional insight

into the experiments. The predicted post-peak forces were found to be in reasonable

agreement with the measurements for both simply supported and clamped beams.

The finite element method was also used to investigate whether the peak load and

collapse mechanism obtained quasi-statically are different at 5 m/s. A sandwich

beam, which collapses quasi-statically by indentation, was also found to fail by

indentation at 5 m/s. In contrast, a sandwich beam that fails quasi-statically by

Brazier plastic buckling was found to collapse by indentation at 5 m/s. Finally, the

peak loads predicted at 5 m/s were found to be (i) independent of the boundary

conditions and (ii) higher than those obtained for quasi-static loading. The finite

mass of the front face was identified as an important factor contributing to this

increase of the peak load.

5.A Finite element predictions with the projectile

and roller modelled as deformable parts

The impact between the projectile and the assembly of the load cell and mid-span

roller was not considered in the finite element simulations detailed above; only the

impact between the mid-span roller and the sandwich beam was modelled, see Sec-
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tion 5.2.3. The influence of this modelling assumption on the simulated responses

at 5 m/s is analysed in this appendix. This will be done by comparing the results

obtained previously to additional simulations in which the projectile and the assem-

bly of the mid-span roller and load cell are fully-meshed and modelled as separate

parts.

5.A.1 Simulations without the rubber pad

An additional finite element model was developed in which the projectile and the

assembly of the steel mid-span roller and load cell are modelled as two separate

parts as shown in Fig. 5.10. Note that the rubber pad, placed at the bottom of the

projectile in the experiments, was not modelled in the simulations.

Projectile with

Load cell and

mid-span roller

L = 125

x2

x1x3

vi = 5 m/s

Initial velocity

Figure 5.10: Finite element model with the projectile and the assembly of the load
cell and mid-span roller modelled as two separate deformable parts. The model is
shown for a simply supported sandwich beam with a corrugated core. All dimensions
in mm.

The projectile and the assembly of the mid-span roller and load cell had the same

dimensions as those used in the experiments, see Fig. 5.2(a). It is sufficient to
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Chapter 5. Drop weight tests on prismatic sandwich beams

model only one quarter of these two parts, applying symmetric boundary conditions

on x1 = 0 and x3 = 0 planes, see Fig. 5.10. The projectile was meshed with

linear hexahedral elements (C3D8R in Abaqus notation) whereas the assembly of

the mid-span roller and load cell was discretised using tetrahedral elements (C3D4 in

Abaqus notation). Both parts were modelled as isotropic elastic solids with material

properties representative of steel: a density ρ = 7900 kg/m3, a Young’s modulus

E = 210 GPa and a Poisson’s ratio ν = 0.3. The projectile was given an initial

downward velocity vi = 5 m/s and the interaction between all parts was defined as

a hard frictionless contact. Finally, the sandwich beam and the support roller were

modelled according to the prescription detailed previously in Section 5.2.3.

The response predicted by this additional finite element model is shown in Fig. 5.11

for a simply supported sandwich beam with a corrugated core. Two contact forces

are plotted:

(i) the contact force between the projectile and the assembly of the load cell and

mid-span roller is given in part (a) and

(ii) the contact force between the mid-span roller and the sandwich beam is shown

in part (b).

The latter is compared to the results of simulations shown previously where the
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Figure 5.11: Simulated 5 m/s response of a simply supported beam with a corrugated
core. The projectile and the mid-span roller are modelled as separate deformable parts
in the simulations. The contact forces between (a) the projectile and the mid-span
roller and (b) the mid-span roller and the beam are given. The simulations presented
in Section 5.4.1 where the projectile and mid-span roller were modelled as one rigid
body are included in part (b) for comparison.
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5.A Finite element predictions with the projectile and roller

projectile and mid-span roller were modelled as one rigid body. The results shown

in Fig. 5.11(b) indicate that the assumption of modelling the projectile and mid-

span roller as a single rigid body instead of two deformable entities has very little

influence on the simulated dynamic response.

The contact force between the projectile and the mid-span roller, see Fig. 5.11(a),

reveals that the two parts come in contact for a very short duration and then separate

in several occasions at the beginning of the simulation for δ/L < 0.1. This was not

observed in the experiments because of the additional damping introduced by the

rubber pad at the bottom of the projectile, see Fig. 5.5(a). The finite element model

was then modified to take into account the rubber pad in the simulations. This is

presented in the next section.

5.A.2 Simulations with the rubber pad

It was necessary to measure the compressive response of the rubber pad used in the

experiments to take it into account in the simulations. To do so, the projectile, with

the rubber pad, and the assembly of the mid-span roller and load cell were loaded

in compression using a screw-driven test machine. The quasi-static compressive

response measured at a strain-rate ǫ̇ = 10−3 s−1 is shown in Fig. 5.12(a), where

the contact pressure is plotted as a function of the compressive displacement. The

compressive displacement was measured using a laser extensometer whereas the

contact force was measured using the load cell of the testing machine. The contact

pressure was calculated by dividing the contact force by the contact area of the load

cell (127 mm2).

The loading and unloading compressive responses of the rubber pad are given in

Fig. 5.12(a); the rubber pad exhibit a pronounced hysteresis. For a compressive

displacement inferior to 1 mm, the response of the rubber pad is approximately

linear with a stiffness of 2.5 kN/mm. This stiffness is significantly softer than that

of the piezoelectric load cell which has a stiffness of 1050 kN/mm according to the

data sheet of the manufacturer.

The rubber pad used in the experiments was not modelled as a separate part in

the FE simulations. Instead, the “softened” contact option of Abaqus was used.

According to the documentation this contact option can be used to model a soft,

thin layer on one or both contact surfaces. The contact pressure versus penetra-

tion relationship was tabulated in Abaqus from the loading part of the measured
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Figure 5.12: (a) Measured quasi-static (ǫ̇ = 10−3 s−1) compressive response of
the rubber pad used in the drop weight experiments. (b) Comparison between the
measured and simulated 5 m/s responses of a simply supported beam with a corrugated
core. The measured response is reproduced from Fig. 5.5(a) whereas the simulations
are using the data shown in part (a) to model the contact between the projectile and
the mid-span roller.

compressive response of the rubber pad shown in Fig. 5.12(a). This change in the

contact option was the only modification done to the FE model detailed above in

Section 5.A.1.

The results predicted by the FE method using the softened contact option are pre-

sented in Fig. 5.12(b) for a simply supported beam with a corrugated core. Pre-

dictions of the contact force are given for (i) the contact between the projectile and

mid-span roller (where the rubber pad is) and (ii) the contact between the mid-span

roller and the beam. In addition, the measured response at 5 m/s, presented in

Fig. 5.5(a), is reproduced in Fig. 5.12(b) for comparison purposes. The peak load

of the simulated contact force, between the projectile and the mid-span roller, is in

satisfactory agreement with measured peak load. However, there is an important

discrepancy between the simulated and measured post-peak responses. This is due

to the fact that the simulations assume the contact response to be perfectly elas-

tic and does not take into account the pronounced hysteresis of the rubber pad as

observed in Fig. 5.12(a). Also, this analysis neglects the strain-rate sensitivity of

the rubber, which is likely to be stiffer at 5 m/s than under quasi-static loading.

Nevertheless, the simulations shown in Fig. 5.12(b) give a valuable insight into the

experiments; the results indicate that the peak load measured at 5 m/s is influenced

by (i) the mass of the mid-span roller and load cell and (ii) the damping of the

rubber pad.
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5.B Analytical prediction of the contact force

5.B Analytical prediction of the contact force

An analytical model is presented here to estimate the contact force between the

projectile and the assembly of the mid-span roller and load cell. The model is

illustrated in Fig. 5.13 and has the following elements:

1. a rigid projectile of mass M ,

2. a spring of stiffness k representing the rubber pad used in the experiments and

3. a second rigid body of mass m representing the assembly of the mid-span roller

and load cell.

MProjectile

kRubber pad

m

vi

Mid-span roller

and load cell

M

k

m

vf

Before impact After impact

vf

Figure 5.13: Analytical model to predict the contact force between the projectile
and the assembly of the mid-span roller and load cell.

The projectile has a given initial velocity vi before hitting the assembly of the mid-

span roller and load cell, which is at rest before the collision. After the collision, the

two bodies are assumed to adhere to each other and travel together with a common

velocity vf . Conservation of momentum provides that:

vf =
Mvi

M +m
. (5.2)

The change in kinetic energy is assumed to compress the spring by a displacement

u, which generates a force P = ku. Hence, conservation of energy dictates that:

Mv2i
2

=
P 2

2k
+

(M +m)v2f
2

. (5.3)

Substituting Eq. (5.2) in Eq. (5.3) and rearranging gives:

P =

√

kMmv2i
M +m

. (5.4)
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Chapter 5. Drop weight tests on prismatic sandwich beams

This equation provides an estimation of the force P generated during the collision of

the projectile and the assembly of the mid-span roller and load cell. It is insightful

to estimate the value of P for parameters used in the experimental study. First, the

stiffness of the rubber pad can be estimated to k = 2.5 kN/mm from the measured

compressive response shown previously in Fig. 5.12(a). Tests on simply supported

beams were done with a projectile of mass M = 2 kg and an impact velocity vi = 5

m/s. Finally, the assembly of the steel mid-span roller and load cell has a combined

mass m = 0.146 kg. Using these values, the contact force P = 2.9 kN which corre-

sponds to P/(σY bc) = 0.0119. Replacing the steel mid-span roller by an aluminium

roller reduces m to 0.064 kg, and for this new value of m the force P = 2 kN, which

corresponds to P/(σY bc) = 0.008. These values of P are significantly lower that

the measured peak loads, see Fig. 5.6, because the finite mass and stiffness of the

sandwich beam tested is not included in this analytical model. However, this simple

model is able to capture the strong influence of the mass m upon the contact force

P generated during the collision of the projectile and the assembly of the mid-span

roller and load cell.
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Chapter 6

Dynamic indentation of prismatic

sandwich panels

Summary

The dynamic indentation response of stainless steel sandwich panels with a corru-

gated core or a Y-frame core was simulated using the finite element method. The

effect of the loading velocity upon the indentation response is assessed by indenting

the panels with a constant velocity ranging from quasi-static loading to 100 m/s.

The influence of the indenter’s geometry is also addressed by considering two dif-

ferent indenters: a flat-bottomed indenter and a cylindrical roller. The predictions

indicated that the indentation load applied to the front face is equal to the load

transmitted to the back face for velocities below approximately 10 m/s. For such

low velocities, inertia stabilisation effects were found to increase the dynamic initial

peak load above its quasi-static value. This strengthening effect was more impor-

tant for the corrugated core than for the Y-frame core. For loading velocities greater

than 10 m/s, the indentation force applied to the front face exceeded the force trans-

mitted to the back face due to wave propagation effects. The dynamic indentation

response was found to be very sensitive to the size of the flat-bottomed indenter;

increasing its width increased the importance of both inertia stabilisation and wave

propagation effects. In contrast, increasing the roller diameter had a much smaller

effect of the dynamic indentation response. Finally, the simulations indicated that

material strain-rate sensitivity has only a minor effect on the dynamic indentation

response of both lab-scale and full-scale sandwich panels.
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Chapter 6. Dynamic indentation of prismatic sandwich panels

6.1 Introduction

The quasi-static three-point bending response of sandwich beams with a corrugated

core or a Y-frame core was investigated in Chapter 4 of this thesis and two collapse

mechanisms were identified: short beams were found to collapse by indentation

whereas long beams failed by Brazier plastic buckling. Beams that failed quasi-

statically by indentation were also found to collapse by indentation when they were

subjected to an impact at 5 m/s, recall Chapter 5. In contrast, beams that collapsed

quasi-statically by Brazier plastic buckling were found to fail by indentation at 5 m/s.

These findings obtained in the laboratory are in line with the results of full-scale

collision tests performed on the Y-frame sandwich hull; these experiments revealed

that the structure deforms by indentation, with the inner hull undergoing negligible

plastic deformation (Wevers and Vredeveldt, 1999). Hence, these lab-scale and full-

scale results indicate that the deformation of a sandwich structure during a ship

collision at 5 m/s is adequately represented by its indentation response. However,

little is known about the effect of the loading velocity upon the dynamic indentation

response of the structure; is the response at 1 m/s different from the one at 10 m/s?

The work of Tilbrook et al. (2007) can help to answer this question. The authors

investigated the dynamic compressive response of corrugated and Y-frame sandwich

cores at velocities ranging from 1-100 m/s. Two dynamic strengthening mechanisms

were identified: (i) inertia stabilisation of the core members against buckling and

(ii) wave propagation effects. The first mechanism was predominant at low crush-

ing velocities and the second one was active for high velocities. What will be the

importance of those dynamic strengthening effects when the loading conditions are

changed from uniform compression to localised indentation? In this study, the finite

element method is used to address this question for both sandwich panels with a

corrugated core or a Y-frame core.

The objective of this chapter is to analyse the sensitivity of the indentation response

to (i) the loading velocity, (ii) the shape of the indenter and (iii) the size of the

indenter. Velocities varying from quasi-static loading to 100 m/s are considered.

Ship collisions are likely to occur below 10 m/s, but the range from 10-100 m/s is

also examined for two reasons: (i) it is of interest for other industrial applications

such as automotive or rail transport and (ii) to allow comparison with the results of

Tilbrook et al. (2007) which covered velocities ranging from 1-100 m/s. Two shapes

of indenters are used in this study: a flat-bottomed indenter and a cylindrical roller.
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6.1 Introduction

For each indenter, two different sizes are considered. Note that if the size of the

indenter is infinitely large, the panel is loaded in uniform compression. As uniform

compression represents the limiting case in this study, the results of Tilbrook et al.

(2007) are reviewed below.

6.1.1 Review of the dynamic uniform compressive response

The dynamic compressive response of corrugated and Y-frame cores was studied

experimentally and numerically by Tilbrook et al. (2007). Their simulations were

repeated as part of this study and the key results are presented below. For a complete

discussion of the subject, the reader is referred to Tilbrook et al. (2007).

The boundary conditions used to simulate the dynamic uniform compressive re-

sponse are shown in Fig. 6.1(a). All degrees-of-freedom are constrained to zero on

the back face whereas the front face has a constant downward velocity V0 ranging

from 1 to 100 m/s. To simulate the quasi-static compressive response, the velocity

V0 was replaced by a prescribed downward displacement δ. A complete description

of the finite element model is given in Appendix 6.A.

The quasi-static and 10 m/s compressive responses are shown in Fig. 6.2(a) for the

corrugated core and in Fig. 6.2(b) for the Y-frame core. The nominal compressive

stress is plotted as a function of the nominal compressive strain δ/c, where the core

compression is δ and the core thickness is c = 22 mm. The nominal compressive

stress on the front face is defined as:

σf =
Ff

bL
, (6.1)

and that on the back face is:

σb =
Fb

bL
, (6.2)

where the width of the panel is b = 26.5 mm, the length of the panel (in the prismatic

direction x3) is L and the normal component of the front face and back face reaction

forces are Ff and Fb, respectively.

The quasi-static and dynamic compressive responses are both characterised by an

initial elastic regime up to a peak stress σpk, followed by a steeply softening response
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Figure 6.1: Finite element models used to simulate (a) uniform compression, (b)
indentation by a flat-bottomed indenter and (c) indentation by a cylindrical roller.
The models are shown for a sandwich panel with a Y-frame core. All dimensions are
in mm.
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Figure 6.2: Uniform compressive responses of sandwich panels with (a) a corrugated
core and (b) a Y-frame core. Results are given for quasi-static loading and for crush-
ing at 10 m/s. These simulations were re-executed based on previous work done by
Tilbrook et al. (2007).

due to buckling of the core members. Both core topologies have a quasi-static peak

stress σqs
pk ≈ 1 MPa which corresponds to the elastic buckling strength of the core

members. Increasing the loading velocity to 10 m/s, increases significantly the peak

stress, and this increase is more important for the corrugated core than for the

Y-frame core.

The effect of velocity on the dynamic compressive peak stress σd
pk is shown in Fig.

6.3(a), where the results are normalised by the quasi-static compressive peak stress

σqs
pk. Likewise, the dynamic average stress σd

av, normalised by the quasi-static average

stress σqs
av, is plotted in Fig. 6.3(b) as a function of velocity. The average stress, up

to a nominal core compression of 20%, is defined as:

σav =
∫

0.2

0

σd(δ/c) , (6.3)

and gives a measure of the core crushing resistance after the peak stress. The results

in Fig. 6.3 are given for both corrugated and Y-frame cores and for both stresses on

the front and back faces.

Two regimes can be identified in Fig. 6.3:

1. At low crushing velocities, V0 ≤ 10 m/s, the front and back face stresses are ap-

proximately equal and increase with increasing velocity. The dynamic stresses

are higher than their corresponding quasi-static values and this strengthening
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to δ/c = 0.2 for corrugated and Y-frame sandwich cores crushed at a constant velocity
V0. Those simulations were re-executed based on previous work done by Tilbrook et al.
(2007).

effect is mainly due to inertia stabilisation of the core members against elas-

tic buckling. In line with the results of Calladine and English (1984), inertia

effects are more important for the stretching-dominated corrugated core than

for the bending-dominated Y-frame core. In addition, inertia effects have a

greater influence on the peak stress (Fig. 6.3(a)) than on the average stress

(Fig. 6.3(b)).

2. For velocities greater than approximately 10 m/s, the peak stress on the back

face is roughly constant whereas the peak stress on the front face increases

with increasing velocity. This indicates that the peak stress is governed by

plastic wave propagation. Note that the normalised peak stress on the front

face is relatively insensitive to the core topology. In contrast, the normalised

peak stress transmitted to the back face is less for the Y-frame core than for

the corrugated core.

In this chapter, the dynamic indentation response will be simulated for a flat-

bottomed indenter of width 2a and a cylindrical roller of diameter D as shown

in Fig. 6.1(b) and (c), respectively. The results presented in this section for dy-

namic uniform compression represent the case of an infinitely large indenter with

a = L or D → ∞. What will be the influence of decreasing a and D on the results

shown in Fig. 6.3? This question will be addressed for both corrugated and Y-frame

cores.
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6.2 Finite element models

6.1.2 Scope of study

First, a description of the finite element models used to simulate the dynamic inden-

tation response is given in Section 6.2. Second, the dynamic indentation responses

and corresponding deformation modes are presented for selected loading velocities.

Finally, the effects of velocity, indenter size and material rate-sensitivity upon the

dynamic indentation response are considered in turn.

6.2 Finite element models

The commercial finite element code Abaqus (version 6.10) was used to simulate the

quasi-static and dynamic indentation responses of sandwich panels with a corrugated

core or a Y-frame core. The cross-sectional dimensions of each core are given in Fig.

6.4. Both cores have a relative density ρ̄ = 0.025 and are approximately 1:20 scale

models of the cores used in a ship hull. Both core topologies have a unit cell of

width b = 26.5 mm and a core thickness c = 22 mm. The core members and the

face-sheets have a thickness t = 0.3 mm. The core is assumed to be perfectly bonded

to the face-sheets to produce a sandwich panel of half-length L = 125 mm, see Fig.

6.1(b,c). Four noded linear shell elements with reduced integration (S4R in Abaqus

notation) were used to discretise the sandwich panels with an average mesh size of

0.5 mm. A convergence study indicated that further refinement of the mesh did not

improve significantly the results.
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Figure 6.4: Cross-sectional dimensions of the sandwich panels: (a) corrugated core
and (b) Y-frame core. All dimensions in mm.

The boundary conditions were applied as follows. All degrees-of-freedom were con-

133



Chapter 6. Dynamic indentation of prismatic sandwich panels

strained to zero on the back face of the panel, see Fig. 6.1(b,c). Symmetric boundary

conditions were applied underneath the indenter (x3 = 0) and at the right end of

the panel (x3 = L). Similarly, symmetric boundary conditions were also applied on

both sides of the panel unit cell, see Fig. 6.4.

The indentation response of the sandwich panels was simulated for two different

indenters:

1. A flat-bottomed indenter of width 2a, see Fig. 6.1(b). To simplify the analysis,

this loading condition was achieved by prescribing a constant velocity V0 over

a width a of the front face. Two values of width were considered, 2a = 12.5

and 50 mm corresponding to a/L ratios of 0.05 and 0.2, respectively.

2. A cylindrical roller of diameter D, as shown in Fig. 6.1(c). The roller was

modelled as a rigid body in the simulations and had a prescribed constant

velocity V0. Calculations were performed for two roller diameters, D = 9 and

66 mm corresponding to D/c ratios of 0.41 and 3, respectively.

The interaction between the roller and the front face, and between all potentially con-

tacting surfaces of the sandwich panel, was modelled as a hard frictionless contact.

Numerical experimentation revealed that the indentation response is insensitive to

the coefficient of friction used in the contact properties.

The dynamic indentation response was simulated for velocities V0 ranging from 1 to

100 m/s. Those simulations were performed using the explicit solver of Abaqus. On

the other hand, the implicit solver of Abaqus was used to predict the quasi-static

indentation response. For quasi-static simulations, the velocity V0 was replaced by

a prescribed displacement δ.

6.2.1 Geometric imperfections

A geometric imperfection was introduced in both core topologies. The shape of the

imperfection had the form of the first mode of elastic buckling and the amplitude was

set equal to the sheet thickness t = 0.3 mm. The elastic buckling calculations were

performed under uniform compression and the face-sheets were considered rigid,

such that the imperfection affected the core only and not the face-sheets. The same

geometric imperfection was used by Tilbrook et al. (2007) to simulate the dynamic

compressive responses of corrugated and Y-frame cores, and their predictions were

found to be in good agreement with experiments. In addition, Tilbrook et al. (2007)

134



6.3 Results

mentioned that the dynamic stress versus strain response is relatively imperfection-

insensitive, but the deformed shape varies with the choice of imperfection.

6.2.2 Material properties

The material properties were chosen to be representative of AISI 304 stainless steel.

The material was modelled as a rate-dependent J2-flow theory solid with a density

ρ = 7900 kg/m3, a Young’s modulus E = 210 GPa, a Poisson’s ratio ν = 0.3

and a quasi-static (10−3 s−1) yield strength σY = 210 MPa. The hardening plastic

behaviour, at strain-rates in the range 10−3 s−1 ≤ ǫ̇ ≤ 104 s−1, was tabulated in

Abaqus using the prescription described previously in Section 5.2.3 and employing

the data shown in Fig. 5.4(a).

6.3 Results

The results of the finite element predictions are presented as follows. First, the

dynamic indentation responses and the deformed meshes of both corrugated and Y-

frame sandwich panels are presented for selected velocities. Second, the influence of

the loading velocity and of the indenter geometry upon the initial peak load and the

average indentation load is examined. Third, the load transmitted to the back face

of the panel is analysed in details and finally, the influence of material strain-rate

sensitivity upon the dynamic indentation response is assessed.

6.3.1 Indentation responses

The responses of sandwich panels indented by (i) a flat-bottomed indenter of nor-

malised width a/L = 0.05 and (ii) a roller of normalised diameter D/c = 0.41 are

shown in Fig. 6.5 and 6.6, respectively. Results are given for both corrugated and

Y-frame cores. The responses are shown for selected velocities V0: the quasi-static

and 1 m/s responses are both shown in parts (a,b); the responses at 10 m/s are

shown in parts (c,d) and the responses at 100 m/s are given in parts (e,f). In each

plot, the indentation depth δ is normalised by the core thickness c = 22 mm whereas

the load F is normalised by σY bc, where the quasi-static yield strength is σY = 210

MPa and the width of the panel is b = 26.5 mm. Both the load applied to the front
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face and the load transmitted to the back face of the sandwich panel are plotted in

Fig. 6.5 and 6.6. The total back face force is the summation of the normal reaction

force for all nodes on the back face.

At low velocities, V0 ≤ 10 m/s, the forces on the front and back faces are approx-

imately equal over the entire deformation history, see Fig. 6.5(a-d) and 6.6(a-d).

The indentation response is characterised by an elastic regime up to an initial peak

load Fpk. Subsequently, the panel softens and then re-hardens due to longitudinal

stretching of the front face. The initial peak load is sensitive to the core topology;

sandwich panels with a corrugated core are at least 12% stronger than those with

a Y-frame core. The initial peak load is also sensitive to the loading velocity; Fpk

increases with increasing V0.

When the velocity is increased to 100 m/s, the force on the front face largely exceeds

the force transmitted to the back face over the entire deformation history, see Fig.

6.5(e,f) and 6.6(e,f). At such a high velocity, the core topology has a minimal

influence on the force applied to the front face, but it has a strong effect on the load

transmitted to the back face; the force on the back face is significantly higher for

the corrugated core than for the Y-frame core. Note that for panels indented by a

cylindrical roller, the force on the front face is particularly noisy at the beginning of

the response (δ/c < 0.1), see Fig. 6.6(e,f). This is due to the fact that the roller and

front face come in contact and then separate on a few occasions before a permanent

contact is established. The contact noise is significantly less important at lower

velocities; see for example the responses at 10 m/s in Fig. 6.6(c,d).

6.3.2 Deformed meshes

The deformed meshes, associated with the responses shown in Fig. 6.5 and 6.6, are

given in Table 6.1 for panels with a corrugated core and in Table 6.2 for panels

with a Y-frame core. In each table, the deformed meshes of panels indented by

a flat-bottomed indenter (a/L = 0.05) and a cylindrical roller (D/c = 0.41) are

shown at selected velocities. The deformed cross-section underneath the indenter is

shown along with a side view of the sandwich panel. For comparison purposes, the

deformed meshes obtained under uniform compression are also included. All images

are shown for δ/c = 0.35.
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Figure 6.5: Responses of sandwich panels indented by a flat-bottomed indenter of
normalised width a/L = 0.05. Results are shown at selected velocities: quasi-static
and 1 m/s for (a) corrugated core and (b) Y-frame core; 10 m/s for (c) corrugated
core and (d) Y-frame core and 100 m/s for (e) corrugated core and (f) Y-frame core.
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Figure 6.6: Responses of sandwich panels indented by a cylindrical roller of nor-
malised diameter D/c = 0.41. Results are shown at selected velocities: quasi-static
and 1 m/s for (a) corrugated core and (b) Y-frame core; 10 m/s for (c) corrugated
core and (d) Y-frame core and 100 m/s for (e) corrugated core and (f) Y-frame core.
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Table 6.1: Deformed meshes of sandwich panels with a corrugated core shown at selected velocities. The results are given for
uniform compression, indentation by a flat-bottomed indenter of normalised width a/L = 0.05 and indentation by a cylindrical roller
of normalised diameter D/c = 0.41. For indentation, the cross-section underneath the indenter is shown along with a side view of the
panel. All images are given for δ/c = 0.35.
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Table 6.2: Deformed meshes of sandwich panels with a Y-frame core shown at selected velocities. The results are given for uniform
compression, indentation by a flat-bottomed indenter of normalised width a/L = 0.05 and indentation by a cylindrical roller of
normalised diameter D/c = 0.41. For indentation, the cross-section underneath the indenter is shown along with a side view of the
panel. All images are given for δ/c = 0.35.
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6.3 Results

First, consider the influence of velocity on the deformation modes. The deformed

meshes at 1 and 10 m/s are very similar to those obtained quasi-statically. However,

the deformed meshes at 100 m/s are considerably different from the quasi-static

results; deformation is localised near the front face of the panel. This deformation

mode is indicative of plastic wave propagation effects and it is also consistent with

the indentation responses presented above; for V0 = 100 m/s, the force applied on

the front face exceeds the force transmitted to the back face, recall Fig. 6.5(e,f) and

6.6(e,f).

Second, consider the effect of the indenter geometry upon the deformation modes.

The deformed cross-sections of panels indented by a flat-bottomed indenter (a/L =

0.05) are very similar to those of panels indented by a cylindrical roller (D/c =

0.41). Furthermore, the deformed cross-sections obtained for localised indentation

(for both the flat-bottomed indenter and the cylindrical roller) are comparable to

those obtained for uniform compression. These observations hold true for both

corrugated and Y-frame core topologies.

6.3.3 Influence of velocity

The effect of velocity upon the initial peak load is shown in Fig. 6.7(a) for panels

indented by a flat-bottomed indenter with a/L = 0.05, and in Fig. 6.8(a) for panels

indented a cylindrical roller with D/c = 0.41. In both figures, the dynamic initial

peak load F d
pk is normalised by the quasi-static initial peak load F qs

pk . The results are

plotted for velocities ranging from 1 to 30 m/s only because it is difficult to evaluate

accurately the initial peak load at higher velocities, see for example the indentation

responses at 100 m/s in Fig. 6.6(e,f).

The average load is also plotted as a function of velocity in part (b) of Fig. 6.7 and

6.8. Similarly to the average stress definied in Eq. (6.3), the average load up to

δ/c = 0.2 is defined as:

Fav =
∫

0.2

0

Fd(δ/c) . (6.4)

The dynamic average load F d
av is normalised by the quasi-static average load F qs

av in

Fig. 6.7 and 6.8. In each plot, the results are given for both the corrugated core

and the Y-frame core and for both forces on the front face and on the back face.
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Figure 6.7: (a) The normalised initial peak load and (b) the normalised average load
up to δ/c = 0.2 for corrugated and Y-frame sandwich panels indented at a constant
velocity V0 by a flat-bottomed indenter of normalised width a/L = 0.05.
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Figure 6.8: (a) The normalised initial peak load and (b) the normalised average load
up to δ/c = 0.2 for corrugated and Y-frame sandwich panels indented at a constant
velocity V0 by a cylindrical roller of normalised diameter D/c = 0.41.

The normalised initial peak load and the normalised average load on the front and

back faces are approximately equal for velocities ranging from 1 to 10 m/s. Even

at such low velocities, the dynamic initial peak load is greater than its quasi-static

value, and increases slightly with increasing velocity due to inertia stabilisation

effects. Inertia effects are more important for the corrugated core than for the Y-

frame core, see Fig. 6.7(a). In addition, the normalised initial peak loads of panels

indented by a flat-bottomed indenter (Fig. 6.7(a)) display a greater sensitivity

to velocity than those indented by a cylindrical roller (Fig. 6.8(a)). In contrast,

inertia effects have no influence on the normalised average load; F d
av/F

qs
av is relatively

insensitive to velocity and to the choice of core topology for indentation velocities
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between 1 and 10 m/s.

The average force applied on the front face exceeds the force transmitted to the back

face when the velocity is greater than roughly 10 m/s, see Fig. 6.7(b) and 6.8(b),

and this is due to wave propagation effects. For velocities between 10 and 100 m/s,

the normalised average load on the front face increases with increasing velocity and

display a mild sensitivity to the core topology; F d
av/F

qs
av is slightly higher for the

corrugated core than for the Y-frame core. In contrast, the normalised average load

on the back face is highly sensitivity to the choice of core; the load transmitted to

the back face for the corrugated core significantly exceeds that for the Y-frame core.

In fact, the normalised average load transmitted to the back face for the Y-frame

core decreases with increasing velocity. To explain this result, the force distribution

on the back face will be analysed in Section 6.3.5.

6.3.4 Influence of indenter size

The effect of the indenter size on the normalised initial peak load and on the nor-

malised average load is shown in Fig. 6.9 for panels indented by a flat-bottomed

indenter and in Fig. 6.10 for panels indented by a cylindrical roller. In each figure,

the normalised initial peak loads are shown in parts (a) and (b) for the corrugated

core and the Y-frame core, respectively. Likewise, the normalised average loads

are given in part (c) for the corrugated core and in part (d) for the Y-frame core.

In each plot, the results are given for two values of indenter size and for uniform

compression.

It is clear from Fig. 6.9 and 6.10 that the dynamic uniform compression response is

more sensitive to velocity than the localised indentation response; values of F d
pk/F

qs
pk

and F d
av/F

qs
av for uniform compression always exceed those obtained for indentation.

The width of the flat-bottomed indenter has a strong influence on the normalised

initial peak load; increasing a/L from 0.05 to 0.20 increases F d
pk/F

qs
pk by a factor

of approximately two for both the corrugated core and the Y-frame core. In con-

trast, the roller diameter has only a mild effect on the normalised initial peak loads;

increasing D/c from 0.41 to 3 increases F d
pk/F

qs
pk by 45% at the most.

The normalised average loads are less sensitive to the size of the indenter than the

normalised initial peak loads. Note that the normalised average load applied to the

front face starts to exceed the normalised average load transmitted to the back face

at approximately 10 m/s in all cases considered. Hence, the velocity at which the
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force equilibrium between the front and back faces is lost appears to be relatively

insensitive to the geometry of the indenter.

6.3.5 Force distribution on the back face

In all simulations, the back face of the sandwich panel is fully-clamped against

translational and rotational displacements, see Fig. 6.1(b,c). It is anticipated that

the normal traction on the back face will be positive underneath the indenter, but

negative at the right end of the panel. Consequently, the total force transmitted to

the back face is the sum of positive and negative forces, and in this section their

relative proportions are analysed.

The distribution of the normal traction T on the back face, at an indentation depth

δ/c = 0.2, is plotted in Fig. 6.11 for sandwich panels indented by a cylindrical

roller with D/c = 0.41. Results are given for the corrugated core in part (a) and

for the Y-frame core in part (b). In each plot, the normal traction distributions are

shown for three selected values of velocity V0. As expected, the normal traction is in

general positive underneath the indenter (around x3 = 0), and negative at the right

end (around x3 = L). The transition between the positive and negative traction

occurs at a position xt
3
, which is sensitive to velocity; xt

3
decreases with increasing

V0. The transition xt
3
is also sensitive to the core topology; values of xt

3
are lower

for the corrugated core than for the Y-frame core.

(a) (b)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1

Corrugated core

x

L

3

  T  
σ  

Y

10 m/s
50 m/s

100 m/s

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 0.2 0.4 0.6 0.8 1

Y-frame core

10 m/s

50 m/s

100 m/s

  T  
σ  

Y

x

L

3

Figure 6.11: Distribution of the normal traction T on the back face at an indentation
depth δ/c = 0.2. Results are shown for a sandwich panel indented by a cylindrical
roller of normalised diameter D/c = 0.41: (a) corrugated core and (b) Y-frame core.
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The total force transmitted to the back face at δ/c = 0.2 is obtained by integrat-

ing the curves shown in Fig. 6.11. The total positive and negative traction forces

exerted on the back face are compared in Table 6.3. For the corrugated core, the

total positive and negative traction forces are both increasing with increasing ve-

locity. On the other hand, for the Y-frame core, the total positive traction force

is almost insensitive to velocity whereas the total negative traction force increases

with increasing velocity. Consequently, the total force on the back face decreases

with increasing velocity. This result explains why F d
av/F

qs
av for the back face is going

below unity at high velocities for the Y-frame core in Fig. 6.9(d) and 6.10(d).

Back face traction force ( )Y
F bcσ  (10

-3
) 

V0 (m/s) 
Corrugated core Y-frame core 

Positive Negative Total Positive Negative Total 

10 27.9 -17.2 10.7 17.8 -5.9 11.9 

50 34.8 -20.3 14.5 22.2 -14.0 8.2 

100 37.7 -24.7 13.0 19.3 -18.0 1.3 

Table 6.3: Positive and negative traction forces on the back face of a sandwich panel
indented by a cylindrical roller of normalised diameter D/c = 0.41. The forces are for
an indentation depth δ/c = 0.2, the values are integrated from the curves shown in
Fig. 6.11.

6.3.6 Influence of material strain-rate sensitivity

The compressive strain-rate experienced by the core members underneath the inden-

ter scales with ǫ̇ ≈ V0/c. Therefore, increasing the size of the structure reduces the

strain-rate that it experiences. Tilbrook et al. (2007) demonstrated that material

strain-rate sensitivity has a negligible effect upon the dynamic compressive response

of corrugated and Y-frame cores. Note that the cores analysed by Tilbrook et al.

(2007) had the same dimensions as those considered in this study. In this section,

the influence of material strain-rate sensitivity on the dynamic indentation response

will be evaluated by comparing the results of three FE models:

(i) A lab-scale sandwich panel of dimensions presented in Section 6.2 and modelled

with a rate-dependent solid. This is the FE model used in all simulations

presented above.

(ii) The same sandwich panel as model (i), but modelled as a rate-independent

solid. The uniaxial tensile response of the material was tabulated from the
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quasi-static response (10−3 s−1) plotted in Fig. 5.4(a).

(iii) A full-scale sandwich panel with the dimensions presented in Section 6.2 in-

creased by a factor of 20. The material was modelled as a rate-dependent

solid.

These three sandwich panels were indented by a cylindrical roller of normalised

diameter D/c = 0.41 and the results are shown in Fig. 6.12. The normalised peak

loads for the three models are given in Fig. 6.12(a) and (b) for the corrugated

core and the Y-frame core, respectively. Likewise, the normalised average loads up

to δ/c = 0.2 are shown in Fig. 6.12(c) for the corrugated core and Fig. 6.12(d)
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Figure 6.12: Influence of scale and material strain-rate sensitivity on the normalised
initial peak load for (a) the corrugated core and (b) the Y-frame core. Likewise, the
influence of scale and material strain-rate sensitivity on the normalised average load up
to δ/c = 0.2 is shown for (c) the corrugated core and (d) the Y-frame core. Results are
shown for panels indented by a cylindrical roller of normalised diameter D/c = 0.41.
The force on the front and back faces are given by solid and dashed lines, respectively.
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for the Y-frame core. Comparing the results of models (i) and (ii) indicate that

neglecting the material strain-rate sensitivity decreases the normalised average loads

by about 15%. As expected, the results for full-scale sandwich panels, model (iii),

show that the effect of material strain-rate sensitivity is less important when the

size of the panel is increased. Nevertheless, the normalised peak loads and the

normalised average loads for model (iii) are higher than those obtained for the strain-

rate independent simulations (model (ii)). The results presented in Fig. 6.12 confirm

that material strain-rate sensitivity has a small influence of the dynamic indentation

responses of corrugated and Y-frame sandwich panels. Consequently, the results

presented above for lab-scale specimens are adequate to represent the behaviour of

full-scale sandwich structures.

6.4 Concluding remarks

The finite element method was used to investigate the dynamic indentation response

of stainless steel sandwich panels with a corrugated core and a Y-frame core. The

panels were indented at a constant velocity ranging from quasi-static loading to 100

m/s, and two different indenters were considered; a flat-bottomed indenter and a

cylindrical roller.

The indentation force applied to the front face of the panel was equal to the force

transmitted to the back face for velocities below 10 m/s. Even for such low velocities,

inertia stabilisation effects were found to increase the dynamic initial peak load above

its quasi-static value, and this effect was more important for the corrugated core than

for the Y-frame core. At velocities greater than 10 m/s, the force applied to the

front face exceeded the force transmitted to the back face due to wave propagation

effects. The force applied to the front face was mildly sensitive to the core topology;

however, the force transmitted to the back face was significantly higher for panels

with a corrugated core than for those with a Y-frame core.

The ratio of the dynamic initial peak load divided by its quasi-static value was found

to be sensitive to the size of the indenter. Increasing the width of the flat-bottomed

indenter increased this ratio significantly whereas increasing the roller diameter had

a smaller effect on this quantity. Furthermore, a comparison of the deformed meshes

revealed that the deformation modes are sensitive to velocity, but relatively insen-

sitive to the indenter shape and size. Finally, the simulations demonstrated that
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material rate-sensitivity has only a mild effect on the dynamic indentation response

of lab-scale sandwich panels. Consequently, the results on lab-scale sandwich panels

are representative of full-scale panels.

6.A Finite element model for uniform compres-

sion

The dynamic uniform compressive responses of corrugated and Y-frame cores were

simulated using the commercial software Abaqus (version 6.10). The dimensions of

both cores were identical to those shown in Fig. 6.4, except that the Y-frame core

had a fillet, with a radius of 1.5 mm, between the Y-frame leg and the horizontal

flange, see Fig. 6.1(a). This local reinforcement was also present in the simulations

of Tilbrook et al. (2007); the authors found that it was necessary to obtain a good

agreement with their experimental results.

Both core topologies were meshed with four-noded plane strain quadrilateral ele-

ments (CPE4R in Abaqus notation). An average mesh size of t/8 = 0.0375 mm was

used in all calculations; additional mesh refinements did not improve significantly

the accuracy of the results. The geometric imperfection and the material proper-

ties were the same as those employed for the dynamic indentation simulations, see

Sections 6.2.1 and 6.2.2, respectively.

The front and back faces were modelled as rigid surfaces. All degrees-of-freedom

were constrained to zero on the back face whereas the front face had a constant

downward velocity V0, see Fig. 6.1(a). The crushing velocity V0 was varied from

1 to 100 m/s and the dynamic simulations were executed with the explicit solver

of Abaqus. For the quasi-static simulations, the constant velocity was replaced by

a prescribed displacement δ and the simulations were executed using the implicit

solver of Abaqus. A hard frictionless contact was defined between all surfaces of the

model.
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Chapter 7

Conclusions and future work

As mentioned in Section 1.3, the objectives of this thesis were: (i) to explore how a

surface treatment can improve the strength of a lattice material and (ii) to investigate

the collapse response of two competing prismatic sandwich cores employed in ship

hulls. The first objective was treated in Chapter 3 whereas the second objective

was addressed in Chapter 4 for quasi-static loading and in Chapters 5 and 6 for

dynamic loading. The conclusions reached in Chapters 3 to 6 are summarised below

in relation to those two objectives. This chapter ends with recommendations for

future work.

7.1 Compressive response of a carburised pyrami-

dal lattice

• The finite element method was used to simulate the quasi-static compressive

response of a pyramidal lattice made from (i) tubes and (ii) solid struts.

• First, the influence of strain hardening was investigated by comparing the

response of a lattice made from a perfectly plastic solid (Et = 0) to one made

from stainless steel (Et = 2 GPa). Strain hardening was found to increase the

peak compressive stress of lattices with a slenderness ratio l/d < 10. However,

strain hardening had no influence on the collapse mode of the lattice.

• Second, the effect of carburisation was examined. Carburisation is a surface

treatment that increases the yield strength of the material. The collapse mode
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of the pyramidal lattice was found to be sensitive to carburisation; the transi-

tion between plastic and elastic buckling occurred at a lower slenderness ratio

when the lattice was carburised. In addition, carburisation increased the peak

compressive stress of the lattice, except for those collapsing by elastic buckling.

• The pyramidal lattice made from carburised tubes was found to possess a

compressive strength superior to that of other metallic lattices made from

aluminium or titanium.

7.2 The influence of the back face on the bending

response of prismatic sandwich beams

• Sandwich beams with a corrugated core or a Y-frame core were manufactured

by brazing together stainless steel sheets. Their quasi-static three-point bend-

ing responses were measured under simply supported and clamped boundary

conditions. The role of the back face was assessed by comparing the response

of beams with (i) front-and-back faces present and (ii) front face present, but

the back face absent.

• The measured responses were in good agreement with finite element simula-

tions.

• Two collapse mechanisms were identified: short panels collapse by indentation

whereas long panels fail by Brazier plastic buckling. Panels without a back

face have a superior indentation strength than those with front-and-back faces

present. In contrast, the Brazier plastic buckling strength of panels with front-

and-back faces present exceeds that of panels without a back face.

• For both collapse mechanisms, concentrating the mass of the sandwich panel

in the core increased the three-point bending strength of the structure.

7.3 Drop weight tests on prismatic sandwich beams

• Simply supported and clamped sandwich beams with a corrugated core or

a Y-frame core were subjected to an impact at 5 m/s using a drop weight
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apparatus. The responses measured at 5 m/s were compared to their quasi-

static responses to assess the influence of the loading velocity.

• The peak load at 5 m/s could not be measured accurately due to an artifact

of the experimental setup. However, the post-peak response was captured

precisely and it was found to be slightly stronger at 5 m/s than for quasi-

static loading.

• The measured post-peak response was in reasonable agreement with three-

dimensional finite element predictions.

• Experiments and simulations have shown that a sandwich beam which col-

lapses quasi-statically by indentation also fails by indentation at 5 m/s. In con-

trast, predictions have shown that a sandwich beam which fails quasi-statically

by Brazier plastic buckling collapses by indentation at 5 m/s.

• For all sandwich beams considered, simulations indicated that the peak load

at 5 m/s exceeds its quasi-static value. The mass of the front face was found

to be an important factor contributing to this increase.

7.4 Dynamic indentation of prismatic sandwich

panels

• The finite element method was used to simulate the dynamic indentation re-

sponse of stainless steel sandwich panels with a corrugated core or a Y-frame

core. The indentation response was simulated for velocities ranging from quasi-

static loading to 100 m/s, and two different indenters were considered: a flat-

bottomed indenter and a cylindrical roller.

• The indentation force applied to the front face of the panel was approximately

equal to the force transmitted to the back face for velocities below 10 m/s.

Even for such low indentation velocities, the dynamic initial peak load was

found to be higher than its quasi-static value due to inertia stabilisation effects.

This strengthening effect was more important for the corrugated core than for

the Y-frame core.

• For indentation velocities greater than 10 m/s, the force applied on the front

face exceeded the force transmitted to the back face due to wave propagation
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effects. The force transmitted to the back face was higher for the corrugated

core than for the Y-frame core.

• Increasing the width of the flat-bottomed indenter was found to enhance both

inertia stabilisation and wave propagation effects. In contrast, increasing the

roller diameter had only a mild effect of the dynamic indentation response.

• Material strain-rate effects were found to have a small influence on the dynamic

indentation response of both lab-scale and full-scale sandwich panels.

7.5 Future work

7.5.1 Dynamic compressive response of a hollow pyramidal

lattice

The pyramidal lattice made from hollow tubes possesses a high quasi-static compres-

sive strength at low densities, recall Fig. 2.7(a). However, the dynamic compressive

response of the lattice has not been investigated yet, neither experimentally nor nu-

merically. The dynamic compressive response of a pyramidal lattice made from solid

struts has been measured by Lee et al. (2006) and similar tests should be repeated

on the hollow pyramidal lattice. In addition, finite element simulations should be

performed to capture the influence of geometry and crushing velocity upon the com-

pressive response of the hollow pyramidal lattice. A similar numerical investigation

was performed by McShane (2007) for the corrugated core.

7.5.2 Measured compressive response of a carburised pyra-

midal lattice

The finite element simulations shown in Chapter 3 demonstrated that carburisa-

tion can increase significantly the peak compressive strength of a pyramidal lattice.

Those simulations should be compared to experimental tests to evaluate their accu-

racy. In addition, the residual stress and the embrittlement caused by carburisation

were neglected in the simulations of Chapter 3. Experimental data is necessary to

determine if this hypothesis is adequate.
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7.5.3 Fracture of corrugated and Y-frame sandwich panels

The experiments performed in Chapters 4 and 5 allowed us to investigate the struc-

tural collapse of corrugated and Y-frame sandwich panels. However, none of the

specimens were tested up to material failure, i.e. fracture. The accreditation of

a new ship hull design is often based on the energy that the structure can absorb

before perforation. Thus, it is important for shipbuilders to (i) understand the key

factors governing the onset of fracture and (ii) predict accurately the fracture pro-

cess in large scale structures. Fracture of monolithic plates has been investigated by

several authors, see for example Stoughton (2000), Wisselink (2000) and Balden and

Nurick (2005), but future studies should extend this work to sandwich structures.

First, quasi-static three-point bending tests should be performed on corrugated and

Y-frame sandwich panels up to the onset of fracture. These test specimens should

be made from shipbuilding steel and assembled by a conventional welding route.

It is known that the toughness of a metallic plate scales with its thickness; hence,

the dimensions of the test panels should be similar to those of a full-scale ship

structure. Finally, it is also important that the boundary conditions applied to the

test specimens are representative of a full-scale sandwich hull structure.

Second, these experimental tests should be compared to finite element simulations.

The simulations will require the calibration of a fracture criterion such as Johnson-

Cook (Johnson and Cook, 1985) or Cockcroft-Latham (Cockcroft and Latham,

1968). Finite element predictions of fracture are usually sensitive to the mesh size

and to the type elements. Consequently, an additional challenge is to determine if

accurate fracture predictions can be obtained for large scale ship structures discre-

tised with a coarse mesh of shell elements.

Published work

Chapter 4 has been published in an international scientific journal and the refer-

ence is given below. Additional publications on Chapters 3, 5 and 6 are also in

preparation.

L. St-Pierre, N.A. Fleck, and V.S. Deshpande. Sandwich beams with corrugated

and Y-frame cores: does the back face contribute to the bending response? Journal

of Applied Mechanics, 79(1), 011002 (13 pages), 2012.
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Kagomé and tetragonal truss core panels. International Journal of Solids and

Structures, 40(25):6989–6998, 2003.

ISSC. Collision and grounding. In 16th International Ship and Offshore Structures

Congress, volume 2, Southampton, UK, 2006a.

ISSC. Dynamic response. In 16th International Ship and Offshore Structures

Congress, volume 1, Southampton, UK, 2006b.

ISSC. Quasi-static response. In 16th International Ship and Offshore Structures

Congress, volume 1, Southampton, UK, 2006c.

G.R. Johnson and W.H. Cook. Fracture characteristics of three metals subjected

to various strains, strain rates, temperatures and pressures. Engineering Fracture

Mechanics, 21(1):31 – 48, 1985.

N. Jones. On the collision protection of ships. Nuclear Engineering and Design, 38

(2):229–240, 1976.

161



Bibliography

N. Jones. A literature survey on the collision and grounding protection of ships.

Technical report, U.S. Coast Guard Headquarters, Washington, DC, USA, 1979.

N. Jones. Structural impact. Cambridge University Press, Cambridge, UK, 1989.

D. Karagiozova and N. Jones. Dynamic elastic-plastic buckling phenomena in a

rod due to axial impact. International Journal of Impact Engineering, 18(7-8):

919–947, 1996.

K. Kawaichi, T. Kuroiwa, and H. Sueoka. On the structural design of mid-deck

tanker. In International Conference on Technologies for Marine Environment

Preservation, page 213218, Tokyo, Japan, 1995.

A. Konter, J. Broekhuijsen, and A. Vredeveldt. A quantitative assessment of the

factors contributing to the accuracy of ship collision predictions with the finite

element method. In Third International Conference on Collision and Grounding

of Ships, Izu, Japan, 2004.

G.W. Kooistra and H.N.G. Wadley. Lattice truss structures from expanded metal

sheet. Materials and Design, 28(2):507–514, 2007.

G.W. Kooistra, V.S. Deshpande, and H.N.G. Wadley. Compressive behavior of

age hardenable tetrahedral lattice truss structures made from aluminium. Acta

Materialia, 52(14):4229–4237, 2004.

G.W. Kooistra, V.S. Deshpande, and H.N.G. Wadley. Hierarchical Corrugated Core

Sandwich Panel Concepts. Journal of Applied Mechanics, 74(2):259, 2007.

P. Kujala, M. Hänninen, T. Arola, and J. Ylitalo. Analysis of the marine traffic

safety in the gulf of finland. Reliability Engineering and System Safety, 94(8):

1349–1357, 2009.

S. Lee, F. Barthelat, J.W. Hutchinson, and H.D. Espinosa. Dynamic failure of

metallic pyramidal truss core materials Experiments and modeling. International

Journal of Plasticity, 22(11):2118–2145, 2006.

E. Lehmann and J. Peschmann. Energy absorption by the steel structure of ships

in the event of collisions. Marine Structures, 15(4-5):429–441, 2005.

Y. Liang, A.V. Spuskanyuk, S.E. Flores, D.R. Hayhurst, J.W. Hutchinson, R.M.

McMeeking, and A.G. Evans. The response of metallic sandwich panels to water

blast. Journal of Applied Mechanics, 74(1):81, 2007.

162



Bibliography

LR. Statistical analysis of classification society records for oil tanker grounding and

collisions. Technical Report 2078-3-0, Lloyd’s Register of Shipping, London, UK,

1991.

T.J. Lu, H.A. Stone, and M.F. Ashby. Heat transfer in open-cell metal foams. Acta

Materialia, 46(10):3619–3635, 1998.

T.J. Lu, L. Valdevit, and A.G. Evans. Active cooling by metallic sandwich structures

with periodic cores. Progress in Materials Science, 50(7):789–815, 2005.

H. Ludolphy. The unsinkable ship - development of the y-shape support web. In Sec-

ond International Conference on Collision and Grounding of Ships, Copenhagen,

Denmark, 2001.

S.P. Mai and N.A. Fleck. Reticulated tubes: effective elastic properties and actuation

response. Proceedings of the Royal Society A, 465(2103):685–708, 2009.

M. Matsumoto, K. Masai, and T. Wajima. New technologies for railway trains.

Hitachi Review, 48(3):134–138, 1999.

T.M. McCormack, R. Miller, O. Kesler, and L.J. Gibson. Failure of sandwich beams

with metallic foam cores. International Journal of Solids and Structures, 38(28-

29):4901–4920, 2001.

G.J. McShane. Underwater blast response of metallic sandwich structures. Phd

thesis, University of Cambridge, 2007.

G.J. McShane, D.D. Radford, V.S. Deshpande, and N.A. Fleck. The response of

clamped sandwich plates with lattice cores subjected to shock loading. European

Journal of Mechanics - A/Solids, 25(2):215–229, 2006.

G.J. McShane, V.S. Deshpande, and N.A. Fleck. The underwater blast resistance

of metallic sandwich beams with prismatic lattice cores. Journal of Applied Me-

chanics, 74(2):352, 2007.

M. Meo, R. Vignjevic, and G. Marengo. The response of honeycomb sandwich panels

under low-velocity impact loading. International Journal of Mechanical Sciences,

47(9):1301–1325, 2005.

G. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, and A.H. Heuer. Carbon

supersaturation due to paraequilibrium carburization: Stainless steels with greatly

improved mechanical properties. Acta Materialia, 54(6):1597–1606, 2006.

163



Bibliography

V.U. Minorsky. An analysis of ship collisions with reference to protection of nuclear

power plants. Journal of Ship Research, 3(2):1–4, 1959.

H. Naar, P. Kujalaa, B.C. Simonsen, and H. Ludolphy. Comparison of the crash-

worthiness of various bottom and side structures. Marine Structures, 15:443460,

2002.

T.G. Nieha, K. Higashi, and J. Wadsworth. Effect of cell morphology on the compres-

sive properties of open-cell aluminum foams. Materials Science and Engineering

A, 283(1-2):105–110, 2000.

O. Ozguc, P.K. Das, and N. Barltrop. A comparative study on the structural in-

tegrity of single and double side skin bulk carriers under collision damage. Marine

Structures, 18(7-8):511–547, 2005.

J.K. Paik. Innovative structural designs of tankers against ship collisions and ground-

ing: a recent state-of-the-art review. Marine Technology, 40(1):25–33, 2003.

J.H. Park, S.K. Ha, K.W. Kang, C.W. Kim, and H.S. Kim. Impact damage resistance

of sandwich structure subjected to low velocity impact. Journal of Materials

Processing Technology, 201(1-3):425–430, 2008.

A. Paul and U. Ramamurty. Strain rate sensitivity of a closed-cell aluminum foam.

Materials Science and Engineering A, 281(1-2):1–7, 2000.

C.B.W. Pedersen, V.S. Deshpande, and N.A. Fleck. Compressive response of the y-

shaped sandwich core. European Journal of Mechanics - A/Solids, 25(1):125–141,

2006.

P.T. Pedersen. Collision risk for fixed offshore structures close to high-density ship-

ping lanes. Journal of Engineering for the Maritime Environmental, 216(1):29–44,

2002.

P.T. Pedersen and S. Zhang. On impact mechanics in ship collisions. Marine Struc-

tures, 11(10):429–449, 1998.

P.T. Pedersen and S. Zhang. Absorbed energy in ship collision and grounding re-

vising minorsky’s empirical method. Journal of Ship Research, 44(2):140–154,

2000.

P.T. Pedersen, S. Valsgard, D. Olsen, and S. Spangenberg. Ship impacts: bow

collisions. International Journal of Impact Engineering, 13(2):163–187, 1993.

164



Bibliography

S.M. Pingle, N.A. Fleck, V.S. Deshpande, and H.N.G. Wadley. Collapse mechanism

maps for a hollow pyramidal lattice. Proceedings of the Royal Society A, 467

(2128):985–1011, 2011a.

S.M. Pingle, N.A. Fleck, V.S. Deshpande, and H.N.G. Wadley. Collapse mechanism

maps for the hollow pyramidal core of a sandwich panel under transverse shear.

International Journal of Solids and Structures, 48:3417–3430, 2011b.

F.J. Plantema. Sandwich construction; the bending and buckling of sandwich beams,

plates, and shells. Wiley, New York, USA, 1966.

X. Qiu, V.S. Deshpande, and N.A. Fleck. Finite element analysis of the dynamic

response of clamped sandwich beams subject to shock loading. European Journal

of Mechanics - A/Solids, 22(6):801–814, 2003.

D.T. Queheillalt and H.N.G. Wadley. Cellular metal lattices with hollow trusses.

Acta Materialia, 53(2):303–313, 2005a.

D.T. Queheillalt and H.N.G. Wadley. Pyramidal lattice truss structures with hollow

trusses. Materials Science and Engineering A, 397(1-2):132–137, 2005b.

D.T. Queheillalt and H.N.G. Wadley. Hollow pyramidal lattice truss structures.

International Journal of Materials Research, 4:389–400, 2011.

D.D. Radford, V.S. Deshpande, and N.A. Fleck. The use of metal foam projec-

tiles to simulate shock loading on a structure. International Journal of Impact

Engineering, 31(9):1152–1171, 2005.

D.D. Radford, N.A. Fleck, and V.S. Deshpande. The response of clamped sandwich

beams subjected to shock loading. International Journal of Impact Engineering,

32(6):968–987, 2006a.

D.D. Radford, G.J. McShane, V.S. Deshpande, and N.A. Fleck. The response of

clamped sandwich plates with metallic foam cores to simulated blast loading.

International Journal of Solids and Structures, 43(7-8):2243–2259, 2006b.

D.D. Radford, G.J. McShane, V.S. Deshpande, and N.A. Fleck. Dynamic compres-

sive response of stainless-steel square honeycombs. Journal of Applied Mechanics,

74(4):658, 2007.

H.J. Rathbun, Z. Wei, M.Y. He, F.W. Zok, A.G. Evans, D.J. Sypeck, and H.N.G.

Wadley. Measurement and simulation of the performance of a lightweight metallic

165



Bibliography

sandwich structure with a tetrahedral truss core. Journal of Applied Mechanics,

71(3):368–374, 2004.

H.J. Rathbun, F.W. Zok, and a.G. Evans. Strength optimization of metallic sand-

wich panels subject to bending. International Journal of Solids and Structures,

42(26):6643–6661, 2005.

H.J. Rathbun, D.D. Radford, Z. Xue, M.Y. He, J. Yang, V.S. Deshpande, N.A.

Fleck, J.W. Hutchinson, F.W. Zok, and A.G. Evans. Performance of metallic

honeycomb-core sandwich beams under shock loading. International Journal of

Solids and Structures, 43(6):1746–1763, 2006a.

H.J. Rathbun, F.W. Zok, S.A. Waltner, C. Mercer, A.G. Evans, D.T. Queheillalt,

and H.N.G. Wadley. Structural performance of metallic sandwich beams with

hollow truss cores. Acta Materialia, 54(20):5509–5518, 2006b.

V. Rubino, V.S. Deshpande, and N.A. Fleck. The collapse response of sandwich

beams with a Y-frame core subjected to distributed and local loading. Interna-

tional Journal of Mechanical Sciences, 50(2):233–246, 2008a.

V. Rubino, V.S. Deshpande, and N.A. Fleck. The dynamic response of end-clamped

sandwich beams with a Y-frame or corrugated core. International Journal of

Impact Engineering, 35(8):829–844, 2008b.

V. Rubino, V.S. Deshpande, and N.A. Fleck. The dynamic response of clamped

rectangular Y-frame and corrugated core sandwich plates. European Journal of

Mechanics - A/Solids, 28(1):14–24, 2009.

V. Rubino, V.S. Deshpande, and N.A. Fleck. The three-point bending of Y-frame

and corrugated core sandwich beams. International Journal of Mechanical Sci-

ences, 52(3):485–494, 2010.

B.P. Russell. The micromechanics of composite lattice materials. Phd thesis, Uni-

versity of Cambridge, 2009.

Y. Seki, M.S. Schneider, and M.A. Meyers. Structure and mechanical behavior of a

toucan beak. Acta Materialia, 53(20):5281–5296, 2005.

K.B. Shin, J.Y. Lee, and S.H. Cho. An experimental study of low-velocity impact

responses of sandwich panels for Korean low floor bus. Composite Structures, 84

(3):228–240, 2008.

166



Bibliography

F.M. Shuaeib and P.D. Soden. Indentation failure of composite sandwich beams.

Composites Science and Technology, 57(910):1249–1259, 1997.

B.C. Simonsen. Mechanics of ship grounding. Phd thesis, Technical University of

Denmark, 1997.

B.C. Simonsen and R. Törnqvist. Experimental and numerical modelling of ductile

crack propagation in large-scale shell structures. Marine Structures, 17(1):1–27,

2004.

S.K. Skinner and W.K. Reilly. The exxon valdez oil spill. Technical report, The

National Response Team, 1989.

P.D. Soden. Indentation of composite sandwich beams. Journal of Strain Analysis,

31(5):353–360, 1996.

C.A. Steeves and N.A. Fleck. Collapse mechanism of sandwich beams with composite

faces and a foam core, loaded in three-point bending. part i: analytical models

and minimum weight design. International Journal of Mechanical Sciences, 46(4):

561–583, 2004.

T.B. Stoughton. A general forming limit criterion for sheet metal forming. Interna-

tional Journal of Mechanical Sciences, 42(1):1–27, 2000.

M.G. Stout and P.S. Follansbee. Strain-rate sensitivity, strain-hardening, and yield

behaviour of 304l stainless steel. Journal of Engineering Materials and Technology,

108(4):344–353, 1986.

D.D. Symons, R.G. Hutchinson, and N.A. Fleck. Actuation of the Kagomé Double-
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