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Tidal interactions between planets and stars

A.J. Barker, Selwyn College

Since the first discovery of an extrasolar planet around a solar-type star, observers

have detected over 500 planets outside the solar system. Many of these planets have

Jovian masses and orbit their host stars in orbits of only a few days, the so-called

“Hot Jupiters”. At such close proximity to their parent stars, strong tidal interactions

between the two bodies are expected to cause significant secular spin-orbit evolution.

This thesis tackles two problems regarding the tidal evolution of short-period extrasolar

planets.

In the first part, we adopt a simple model of the orbit-averaged effects of tidal

friction, to study the tidal evolution of planets on inclined orbits. We also analyse the

effects of stellar magnetic braking. We then discuss the implications of our results for

the importance of Rossiter-Mclaughlin effect observations.

In the second part, we study the mechanisms of tidal dissipation in solar-type stars.

In particular, internal gravity waves are launched at the interface of the convection and

radiation zones of such a star, by the tidal forcing of a short-period planet. The fate of

these waves as they approach the centre of the star is studied, primarily using numerical

simulations, in both two and three dimensions. We find that the waves undergo

instability and break above a critical amplitude. A model for the tidal dissipation

that results from this process is presented, and its validity is verified by numerical

integrations of the linear tidal response, in an extensive set of stellar models. The

dissipation is efficient, and varies by less than an order of magnitude between all solar-

type stars, throughout their main-sequence lifetimes, for a given planetary orbit. The

implications of this mechanism for the survival of short-period extrasolar planets is

discussed, and we propose a possible explanation for the survival of all of the extrasolar

planets currently observed in short-period orbits around F, G and K stars.

We then perform a stability analysis of a standing internal gravity wave near the

centre of a solar-type star, to understand the early stages of the wave breaking process

in more detail, and to determine whether the waves are subject to weaker parametric

instabilities, below the critical amplitude required for wave breaking. We discuss the

relevance of our results to our explanation for the survival of short-period planets
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presented in the second part of this thesis.

Finally, we propose an alternative mechanism of tidal dissipation, involving the

gradual radiative damping of the waves. Based on a simple estimate, it appears that

this occurs even for low mass planets. However, it is in conflict with current observa-

tions since it would threaten the survival of all planets in orbits shorter than 2 days.

We discuss some hydrodynamic instabilities and magnetic stresses which may prevent

this process.
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This thesis describes work done between October 2007 and December 2010 in the
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in collaboration with others, except as specified in the text and acknowledgements.
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Chapter 1

Introduction

It has now been more than a decade since the discovery of the first extrasolar planet

orbiting a solar-type star (Mayor & Queloz 1995). The detection of this first Jovian-

like planet 51 Peg b, and its 4 day orbit, certainly came as a surprise to the astrophysics

community. To put this discovery in context, the closest planet in our solar system,

Mercury, completes a single orbit of the Sun in 88 days, and so 51 Peg b is more than

seven times closer to its host star than Mercury is to the Sun (and 100 times closer

than Jupiter).

The discovery of 51 Peg b rapidly spurred further research into the detection,

formation and evolution of planetary systems, making this one of the most exciting

fields in astrophysics today. Since 1995, more than 500 planets have been detected

around stars other than the Sun, and this total is increasing on an almost weekly

basis1. This data set shows that the existence of planets in extraordinarily tight orbits

(< 0.1 AU), such as 51 Peg b, is rather common. Indeed, from the current statistics,

nearly a third of planets orbit within 0.1 AU of their host stars, making an explanation

of the existence and properties of such planets an important goal of planet formation

and evolution studies.

For such close-in planets, the stellar insolation that they receive could lead to the

surface temperature of these worlds attaining values as high as 1500 K, which together

with their roughly Jovian-masses, has led to them being dubbed “Hot Jupiters” (HJs).

It is the purpose of this thesis to describe and understand some of the surprising

1see http://exoplanet.eu/ or http://www.exoplanet.hanno-rein.de/ for the latest updates
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properties of these HJs, and their evolutionary history.

1.1 Observations of short-period extrasolar planets

We should perhaps not be surprised that the first planets detected be close-in and of

Jovian mass, if we consider the observational biases of the currently favoured detection

techniques. 51 Peg b, as with over 400 of the planets detected so far, was discovered

using the radial velocity (RV) method (Mayor & Queloz 1995). This involves measuring

the Doppler shift of stellar spectral lines, which are slightly blue-shifted and red-

shifted by the orbital motion of the star around the centre of mass of the star-planet

system, throughout the orbit. The RV method gives a measurement of the line-of-sight

orbital velocity of the star (the velocity semi-amplitude K). In addition, the period

of the Doppler shift fluctuations gives the orbital period (P ), and the shape of the RV

curve allows a determination of the eccentricity (e) of the orbit. These data allow a

determination of Mp sin Ip, which is a lower bound on the mass of the planet (Mp),

where Ip is the angle of inclination of the orbital plane to the plane of the sky. The

velocity semi-amplitude for a Keplerian orbit of eccentricity e is given by (Papaloizou

& Terquem 2006)

K =

(
2πG

P

) 1
3 Mp

(Mp +M?)
2
3

1√
1− e2

, (1.1.1)

where M? is the stellar mass. We see that a close-in, massive planet produces a larger

velocity semi-amplitude, which is easier to detect above stellar jitter. It must be noted

that most RV surveys concentrate on late-type, relatively chromospherically inactive

stars which tend to be slow rotators, since stellar activity can cause significant jitter

in RV data, which hinders the detection of planets.

In the last decade, the RV method has been supplemented by an additional tech-

nique for the detection of extrasolar planets, which when combined with RV spec-

troscopy, can provide much more information about a system. This is transit pho-

tometry, which involves looking for a reduction in stellar flux caused by the passage

of a planet across the stellar disc in the plane of the sky (Charbonneau et al. 2000;

Charbonneau et al. 2007). A Jupiter-mass planet on a short-period orbit can cause a
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fractional dimming of the starlight by as much as 1% (see Fig. 1.1), and this can be

readily observed. This technique gives us unprecedented access to the physical prop-

erties of the planet, such as a direct estimate of its mass and radius. These are both

important for determining the interior structure of these planets, thereby constraining

theoretical models (e.g. Fortney et al. 2007).

Another advantage to combining RV and photometric transit data is the possibility

of detecting the Rossiter-McLaughlin (RM) effect (Rossiter 1924; McLaughlin 1924).

The RM effect is a spectral distortion of the RV data that results from the planet

occulting a spot on the rotating surface of the star as it transits the stellar disc. High-

precision RV data during a transit allow a determination of the angle (λ) between the

sky-projected angular momentum vectors of the planetary orbit (h) and stellar spin

(Ω), through the RM effect. This measured value λ is not necessarily the same as

the inclination i (which is also called the stellar obliquity, given by i = arccos(Ω̂ · ĥ))

which is the angle between the equatorial plane of the star and orbital plane of the

planet, since λ is just a sky-projection of this angle. These angles are related by

cos i = cos I? cos Ip + sin I? sin Ip cosλ, where Ip and I? are the angles of inclination of

the planetary orbital plane and stellar equatorial plane, to the plane of the sky. For a

transit, the orbit must be close to edge-on, so Ip ≈ 90◦, giving cos i ' sin I? cosλ. In

this case, λ gives a lower bound on the angle between these two vectors.

The RM effect has now been used to measure the degree of spin-orbit alignment

in more than 30 systems (Triaud et al. 2010), and this number is expected to increase

significantly over the next few years. The first systems were all consistent with λ

being zero, with the exception of XO-3 b (Hébrard et al. 2008). We discuss a model

for the survival and remnant misalignment of this planet in §2.6. In the past year,

the misalignment of XO-3 b has been confirmed by Winn et al. (2009), and significant

misalignments have been found in several additional systems: HD 80606 b (Moutou

et al. 2009) WASP-14 b (Johnson et al. 2009), and possible retrograde orbital motion

has been identified for HAT-P-7 b (Winn et al. 2009; Narita et al. 2009) and WASP-2

b, WASP-15 b, and WASP-17 b (Triaud et al. 2010), amongst others.
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Figure 1.1: Left: Transit lightcurve for HD 209458, as a function of transit phase (defined
to be zero when the planet passes the centre of the stellar disc). Right: Close-up of RV
data throughout a transit for the same system, showing the RM effect as an “anomalous”
spectral distortion. As expected for a prograde orbit, we first see a net red-shift, followed
by a net blue-shift. The RM effect allows a determination of the sky-projected spin-orbit
misalignment (λ) in a transiting system, which is found to be λ = −4◦.4 ± 1◦.4 for HD
209458. This figure was taken from Winn et al. (2005).
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Figure 1.2: Angles involved in the calculation of the inclination i, from the sky-projected
spin-orbit misalignment angle λ, given that Ω is inclined to the line-of-sight by I? degrees,
and h is inclined to the line-of-sight by Ip degrees. λ is detectable through the RM effect, Ip
can be determined for a transit (and is ≈ 90◦). For transiting planets λ gives a lower bound
on the true spin-orbit misalignment i.

13



1.2 Formation and early migration of giant planets

Observations of the solar system show that the orbits of the planets all approximately

lie within a common plane, whose normal is oriented only 6◦ from the solar rotation

axis (Beck & Giles 2005). This observed coplanarity is what originally inspired Kant

(1755)2 and Laplace (1796) to propose that the Sun and its planets condensed from a

spinning, flattened nebula, which is the so-called Nebular Hypothesis.

Since the time of Kant and Laplace our theories have complicated considerably

(see Papaloizou & Terquem 2006 for a comprehensive review), but the main idea of

the Nebular Hypothesis has remained unchanged. It is now generally believed that

planets form out of the discs of gas and dust observed around young T-Tauri stars.

These stars and their circumstellar discs are thought to have themselves formed from

the collapse of molecular cloud material with appreciably nonzero angular momentum,

in which centrifugal forces hinder collapse perpendicular to the rotation axis, resulting

in the formation of a gaseous disc. These protoplanetary discs around T-Tauri stars

last for up to 10 Myr, after which the discs appear to dissipate (Beckwith 1996).

Planet formation theory must therefore explain the formation of the planets in the

solar system, and their extrasolar analogues, within this window of opportunity.

There are two competing theories for the formation of giant planets. The first

involves the coagulation and accumulation of small particles of ice and rock to form

a solid core (Safronov 1969), which rapidly accretes gas from the protoplanetary disc.

This is the core-accretion scenario (Pollack et al. 1996). The second relies on the

gravitational instability of the gaseous disc (see Durisen et al. 2007, for a recent review)

to produce the giant planet directly.

Both of these formation scenarios necessitate the formation of planets such as 51

Peg b in colder regions of the disc, much further out (with semi-major axes of several

AU), before a migratory process that brings the planet in towards the star and to its

present location (Lin et al. 1996). Planetary migration in gaseous protoplanetary discs

had already been predicted prior to the 1980’s (Goldreich & Tremaine 1979; Lin &

Papaloizou 1979), and is thought to be driven by the dynamical interaction between

2The Nebular Hypothesis was first proposed in 1734 by Emanuel Swedenborg (Swedenborg 1734),
though Immanuel Kant developed the theory further in 1755.
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the planet and its gaseous protoplanetary disc. This migration occurs because the

planet produces inward and outward propagating spiral density waves in the disc,

which both interact gravitationally with the planet. These waves carry negative and

positive angular momentum fluxes respectively, and a corresponding tidal torque acts

on the orbit of the planet. This is referred to as type I migration, and is relevant for

terrestrial planets and giant planet cores. When the mass of the planet grows, the

density perturbation becomes non-linear and the planetary wake turns into a shock

in its vicinity. This results in the formation of a gap in the disc, with the subsequent

inward migration of the planet occurring on the disc viscous timescale. Research into

both of these migration regimes is still underway, and there remain many unsolved

problems (see Papaloizou et al. 2007 for a recent review), though a combination of

both processes during the early stages of planet formation could potentially produce

a population of HJs.

The formation of systems of giant planets can be thought of as occurring in two

oversimplified stages (Jurić & Tremaine 2008).

• During stage 1 the cores of the giant planets are formed, they accrete gas and

undergo migration, driven by the dynamical interaction between the planets

and the gaseous protoplanetary disc. This stage lasts a few Myr until the gas

dissipates, by which time a population of gas giants may exist. If these form

sufficiently closely packed then stage 2 follows.

• Stage 2 lasts from when the disc has dissipated and continues until the present,

and primarily involves gravitational interactions and collisions between the plan-

ets. Recent studies into stage 2 (Jurić & Tremaine 2008; Chatterjee et al. 2008;

Ford & Rasio 2008) have shown that this is a chaotic era, in which planet-planet

scatterings force the ejection of all but a few (∼ 2− 3) planets from the system,

in a period of large-scale dynamical instability lasting . 108yr.

Planet-planet scatterings can excite the eccentricities of the planets to levels re-

quired to explain observations. They tend also to excite the inclinations of the planets

with respect to the initial symmetry plane of the system, though this has been found

to be less efficient than the excitation of eccentricity. This could potentially lead to

observable consequences via the RM effect.
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It is possible for HJs orbiting a host star which has a distant and inclined stellar

companion, or massive inclined outer planetary companion, to undergo another type

of migration. This is Kozai migration (Wu & Murray 2003). The presence of such

an outer companion to an exoplanet host star could cause Kozai oscillations, which

produce periods of extreme eccentricity in the planet orbit, if various conditions are

satisfied (e.g. see section 1.2 of Fabrycky & Tremaine 2007). The subsequent tidal

dissipation that occurs during the periods of small pericentre distance leads to grad-

ual inward migration of the planet. It has even been proposed that a combination of

planet-planet scattering, tidal circularisation and the Kozai mechanism in outer plan-

ets, can produce HJs around single stars (Nagasawa et al. 2008). HJs produced from

these processes generally have their orbital angular momentum vector misaligned with

respect to the stellar spin axis by large angles – occasionally larger than 90◦ (Fabrycky

& Tremaine 2007; Nagasawa et al. 2008).

Misaligned orbits are not predicted from stage 1 alone, so if λ is measured to be

appreciably nonzero in enough systems, then it could be seen as evidence for planet-

planet scattering or Kozai migration. This is because gas-disc migration does not

seem able to excite orbital inclination (Lubow & Ogilvie 2001; Cresswell et al. 2007).

Alternatively, if observed planets are all found with λ consistent with zero, this could

rule out planet-planet scattering or Kozai migration as being of any importance.

One important consideration is that at such close proximity to their parent stars,

strong tidal interactions between the star and planet are expected to cause significant

long-term spin-orbit evolution, including changes to the value of λ (actually the true

spin-orbit misalignment angle i) over time. If tides can change λ since the time of

formation, then we may have difficulty in distinguishing migration caused by planet-

planet scattering and Kozai oscillations, from gas-disc migration. The tidal evolution

of such inclined orbits must therefore be considered an important goal in planetary

evolution studies. In Part I, we study the effects of tidal friction on such inclined

orbits.
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1.3 Introduction to tidal friction

It has been known since the time of Newton that the gravitational interaction between

the Earth and the Moon produces a tide in the seas. An early analysis of the nature

of this tidal interaction was introduced by Darwin (1880)3. In his model, the Earth is

treated as a homogeneous spherical fluid body, which continually adjusts to maintain a

state of quasi-hydrostatic equilibrium in the time-varying gravitational potential of the

Moon. Darwin calculated that viscosity would introduce a phase lag in the response of

the Earth to the forcing potential of the Moon. This leads to a misalignment between

the tidal bulge and the line connecting the centres of the Earth and Moon, resulting

in the action of torques on the rotation of the Earth and on the orbit of the Moon.

This concept is referred to as the equilibrium tide model (see Fig. 1.3). Significant

spin-orbit evolution can occur over secular timescales through these tides, as can be

inferred from Lunar Laser Ranging observations (Chapront et al. 2002), which show

that the Moon is receding from the Earth at a current rate of 3.8 cm per year as the

Earth spins down at a rate of 23µs per year.
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Figure 1.3: Illustration of the tidal torque on an asynchronously rotating primary. When
the primary rotates faster than the orbital motion (Ω > n), its mass distribution is shifted
by an angle α from the line joining the centres of the two components, due to dissipation of
energy. Since the forces applied to the two tidal bulges are not equal, a torque is exerted on
the star, which tends to synchronise its rotation with the orbital motion (Ω → n). A similar
picture emerges when Ω < n; see §1.4 for a derivation of the torque in this case.

The tidal interaction between two orbiting bodies acts to continually change the

orbital and rotational system parameters, and continually dissipates mechanical en-

ergy. Ultimately – in the absence of angular momentum loss from the system – either

3who also had happened to have a somewhat influential father...
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an equilibrium state is asymptotically approached, or the two bodies spiral towards

each other at an accelerating rate, and eventually collide. The equilibrium state is

characterised by coplanarity (the equatorial planes of the bodies coincide with the

orbital plane), circularity and corotation (rotational frequencies of each body match

the orbital frequency) (Hut 1980).

Tidal forces are also thought to be important elsewhere in the solar system (see

Goldreich & Soter 1966 for an old review and Peale 1999 for a more modern one), and

are responsible for producing the spectacular vulcanism on Jupiter’s moon Io. There

also exist close-binary stars whose orbits appear to have been circularised, which shows

that tidal friction is not only important for planets and their satellites in our solar

system (e.g. Meibom & Mathieu 2005). In addition, a close-in planet with an orbital

period shorter than the stellar spin period is subject to tidally induced inspiral into

the star (the opposite evolution to that of the Earth-Moon system). The problem

tackled in Part II is to explain the survival of the observed short-period planets, by

understanding the efficiency of this process.

1.4 Simple calculation of the tidal torque

In this section we derive the torque on an asynchronously rotating star with a com-

panion planet on a coplanar, circular orbit following the approach of Zahn (2008),

for illustrative purposes. In the equilibrium tide model we assume that the star is in

hydrostatic equilibrium, and that in the absence of dissipation its shape would adjust

instantaneously to the time-dependent perturbing potential of its orbiting companion.

We further assume that the star rotates slower than the planet revolves around the

star, i.e., Ω < n. Fig. 1.3 sketches the system under consideration, except that it

shows the case Ω > n, appropriate for the Earth-Moon system.

The relative height of the tidal bulge is given approximately by the ratio of the

differential force exerted on the bulges (ftide) to the surface gravity of the body (fbind)

δR1

R1

≈ ftide

fbind

≈ Gm2m1R1/r
3

Gm2
1/R

2
1

≈ m2

m1

(
R1

r

)3

. (1.4.1)

In these expressions, r is the star-planet separation and R1 is the stellar radius. If we
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further assume that the star has a constant density, then its tidal bulges would have a

mass δm1 ≈ δR1

R1
m1. This is not strictly correct for a realistic stellar model, due to the

strong central condensation of the star (which can be taken into account by defining

a Love number k < 1; it is also not exact for a homogeneous body), but it suffices for

the present purpose.

When Ω 6= n, dissipation of energy stored in the tide by any process will introduce

a slight lag of the tidal bulges relative to the lines joining the centres of the star and

the planet. The star therefore experiences a torque which acts to synchronise the spin

of the star with the orbit. Due to conservation of total angular momentum, this is

equal in magnitude and opposite in sign to the torque which acts on the orbit of the

planet. In the weak friction approximation this lag is represented by a lag angle α� 1,

which is assumed to be proportional to the tidal frequency ω̂ = 2(n − Ω). The tidal

frequency is the Doppler shifted forcing frequency that is seen in the frame rotating

with the star (with angular velocity Ω), and is twice the orbital angular frequency (n)

because the dominant tide is quadrupolar, i.e., has two high tides and two low tides

(see e.g. Murray & Dermott 1999). A common non-dimensional parametrisation of

the lag angle is

α =
ω̂

tdiss

R3
1

Gm1

, (1.4.2)

where we have introduced the dynamical timescale (R3
1/Gm1)

1/2 to make α dimension-

less. This gives a tidal torque acting to synchronise the star with the orbital motion

of magnitude

Γ ≈ δm1ftideR1 sinα ≈ ω̂

tdiss

m2
2

m1

R2
1

(
R1

r

)6

, (1.4.3)

when α � 1. This expression is only valid if the dissipation is relatively inefficient,

with large tdiss (and therefore Q′ � 1, which we define in the next section). A torque

of equal magnitude, but of opposite sign, acts on the orbit of the planet, which results

in a transfer of angular momentum from the planetary orbit to the stellar spin. The

consequences of this torque are that the star spins up as the planet falls into the star,

until either the star is spun up to rotate with the angular frequency of the orbit, or

the planet has plunged into the star.
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1.5 Tidal quality factors and empirical estimates

The efficiency of tidal dissipation in a body is often parametrised by a dimensionless

quality factor Q, which reflects the fact the body undergoes a forced oscillation and

dissipates a small fraction of the associated energy during each oscillation period. This

is analogous to the quality factor in a forced, damped harmonic oscillator (Murray &

Dermott 1999; Feynman 1963), and is defined by

Q = 2πE0

(∮
−Ė dt

)−1

,

where E0 is the maximum energy stored in an oscillation and the integral represents

the energy dissipated over one cycle. This is related to the time-lag τ in the response

of the body to tidal forcing of frequency ω̂ by Q−1 = ω̂τ . We further find it convenient

to define Q′ = 3Q
2k

, where k is the Love number of the body, since this combination

always appears together in the evolutionary equations. The factor k < 1 if the body

is centrally condensed, as is the case for stars and giant planets. Q′ reduces to Q for

a homogeneous fluid body, where k = 3
2
.

Typically assumed values of Q′ ∼ 106 for stars are roughly consistent with ob-

servational data regarding the circularisation periods of binary stars (Ogilvie & Lin

2007, hereafter OL07). This value can explain the observed circularity of the orbits of

close binary stars with orbital periods shorter than the circularisation period (which

increases with system age), if tidal friction is responsible for the circularisation. In ad-

dition, the magnitude of Q′ for HJs is often assumed to be similar to that for Jupiter,

which has been inferred to be in the range 2 × 105 − 8 × 106 (Yoder & Peale 1981),

since k ≈ 0.38 for Jupiter (Gavrilov & Zharkov 1977). This estimate is based on

a model of the tidal origin of the Laplace resonance among the Galilean satellites;

however, it has been argued that even if the origin of the resonance is primordial, the

average Q′ cannot be far from these bounds (Peale & Lee 2002). This estimate also

appears consistent with Jackson et al. (2008), who found that one can reproduce the

outer planet (with semi-major axes wider than 0.2 AU) eccentricity distribution from

integrating the tidal evolution equations backwards in time for the observed close-in

planets (with semi-major axes smaller than 0.2 AU) quite well if Q ∼ 105.5 for stars
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and Q ∼ 106.5 for HJs. However, the resulting stellar Q′ is difficult to reconcile with

the existence of the planets on the tightest orbits, such as WASP-12 b (Hebb et al.

2009) and OGLE-TR-56 b (Sasselov 2003), since it would imply that the inspiral time

for these planets would be much less than the age of the system. That several planets

have been found with similarly short periods makes this seem unlikely on probabilistic

grounds. Additionally, Jackson et al. (2008) assume that Q′ is the same for all exo-

planet host stars. This may be a major oversimplification, which we discuss in Part II

of this thesis.

In the model of § 1.4, the reciprocal of the tidal quality factor of the star is given

by

1

Q′ ∝
1

tdiss

(
R3

1

Gm1

)
|ω̂|. (1.5.1)

If the dissipation of the equilibrium tide is solely due to an effective viscosity associated

with turbulent convection, then tdiss can be calculated by integrating the turbulent

viscosity (νt) over convective regions of the star. In the mixing length prescription,

this turbulent viscosity is defined to be νt = vl, where v is the eddy velocity and l

is the mixing length. When the tidal period is shorter than the convective turnover

time, i.e.,

2π

ω̂
≡ Ptide < tconv ≡

l

v
, (1.5.2)

the turbulent viscosity should be reduced by some factor, over which there is uncer-

tainty (see e.g. Zahn 1966; Goldreich & Nicholson 1977; Goodman & Oh 1997; Penev

et al. 2007). Zahn reduces the turbulent viscosity by the following prescription with

p = 1:

νt =
1

3
vl [1 +B (|ω̂| tconv)

p ]−1 , (1.5.3)

where B is a constant numerical factor. This prescription gives tdiss ∝ |ω̂|. If

this reduction is correct, then modelling the effects of tidal friction by a frequency-

independent Q′ would be reasonable. If on the other hand, νt is assumed to be in-

dependent of ω̂, then tdiss is frequency-independent. This is the constant time-lag
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approach (Alexander 1973; Hut 1981), which is justified if the dissipative process acts

instantaneously, i.e., the convective turnover time, which is the relaxation time of the

turbulent stress, is zero (Ivanov & Papaloizou 2004). In Part I we outline a derivation

of the constant lag-time model of tidal friction, in a model which is valid for arbitrary

eccentricity and stellar and planetary obliquity.

1.6 Mechanisms of tidal dissipation

The problem of theoretically determining the efficiency of tidal dissipation, and there-

fore quantifying the evolution of a system, amounts to calculating Q′ factors for each

body. Q′ is in principle a function of the tidal forcing frequency and (in nonlinear

cases) the amplitude of the tidal disturbance, and is a result of complex dissipative

processes in each body (Zahn 2008). For solid bodies such as the Earth, Q′ is thought

to be approximately constant over a wide range of frequency (Munk & MacDonald

1960), which together with computational simplicity, has led to most studies of tidal

evolution for solar system bodies assuming a frequency-independent Q′. This assump-

tion for gaseous stars and giant planets is questionable, and the nature of the response

of such a body to tidal forcing remains under investigation.

The tidal disturbance can generally be decomposed into two parts: an equilibrium

tide, and a dynamical tide. The equilibrium tide is the quasi-hydrostatic ellipsoidal

tidal bulge. In the frame corotating with the fluid, the time-dependence of the equi-

librium tide, or its associated velocity field, is dissipated through its interaction with

turbulent convection. However, the damping rate is uncertain, particularly when the

convective time exceeds the tidal period, as we discussed in the previous section. The

dynamical tide consists of internal waves that are excited by low-frequency tidal forc-

ing, and has received much recent interest with regard to its possible contribution to

Q′ (Witte & Savonije 2002; Ogilvie & Lin 2004, hereafter OL04; Wu 2005; Papaloizou

& Ivanov 2005; Ivanov & Papaloizou 2007; OL07; Goodman & Lackner 2009). This is

because if these waves have short wavelength, then they are more easily damped than

the large-scale equilibrium tide by radiative diffusion (Zahn 1975; Zahn 1977), convec-

tive viscosity (Terquem et al. 1998; hereafter T98), or nonlinear breaking (Goodman

& Dickson 1998; hereafter GD98). For rotating fluid bodies, calculations of the exci-
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tation and dissipation of internal waves have indicated that Q′ varies in a complicated

way with the tidal frequency (Savonije et al. 1995a; Savonije & Papaloizou 1997a;

Papaloizou & Savonije 1997a; OL04; OL07) – for an illustration see Fig. 1.4.

Figure 1.4: Q′ as a function of the ratio of tidal frequency to spin frequency ω̂/Ω. These
results refer to tidal forcing by the l = m = 2 spherical harmonic in a model of the Sun with
a spin period of 3 days. Left: Q′ from the viscous dissipation of inertial waves in the CZ.
Right: Q′ from the excitation of internal inertia-gravity waves in the RZ. The dashed lines
show the effect of omitting the Coriolis force, which has been found to be of great importance
when |ω̂| < 2|Ω|. The efficiency of tidal dissipation depends in a highly erratic way on the
tidal forcing frequency. This figure was taken from OL07.

The tidal frequency is typically much lower than the dynamical frequency of the

body, so the relevant internal waves must be approximately incompressible, restored

not by pressure, but by buoyancy or rotation. OL04 found that the dissipation of

tidally excited inertial waves, whose restoring force is the Coriolis force, can contribute

significantly to the dissipation rate in a giant planet, whose interior is mostly convective

(see also Wu 2005 and Ivanov & Papaloizou 2007). These waves can also contribute

to the dissipation rate in convection zones (CZs) of stars (OL07). They are excited by

tidal forcing of frequency ω̂, if this is less than the Coriolis frequency (2Ω), and this

is true for many astrophysically relevant circumstances. However, these waves are not

excited if the tidal frequency exceeds the Coriolis frequency, so this process is then not

effective at dissipating the tide, and contributing to Q′.

In slowly rotating stars (with Ω < n), such as those that host most of the short-

period planets, the waves are primarily excited by tidal forcing in radiative regions,

and are restored by buoyancy. These are commonly referred to as internal gravity
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waves (IGWs). IGWs are damped by radiative diffusion, but this is only efficient if

their frequencies are sufficiently low compared with the damping rate, which occurs if

they have a short radial wavelength. However, in solar-type stars, the waves excited by

planets with several-day orbital periods or less, are of sufficiently large wavelength that

radiative diffusion is negligible in their attenuation (see § 7.1; GD98). It is therefore

appropriate to ask whether there are any other mechanisms that can contribute to their

dissipation (and to the stellar Q′), which would have implications for the survival of

these short-period planets.

One such mechanism was proposed by GD98, and involves nonlinear effects be-

coming important near the centre of a solar-type star with a radiative core, where

these waves become geometrically concentrated, and may attain large amplitudes. If

nonlinear effects result in the absorption of the waves that propagate towards the

centre, then this would be a relatively efficient mechanism of tidal dissipation, which

could dominate over convective damping of the equilibrium tide. It is important to

understand whether this process actually occurs, and if indeed it does, how efficient

it is at affecting the orbits of the short-period planets. In Part II we study this mech-

anism in detail. We perform the first simulations of IGWs approaching the centre of

a solar-type star, in both two and three dimensions, with the aim of studying how

the reflection of waves from the centre is modified by nonlinearities as the amplitude

is increased. We find that the waves break near the centre if they attain sufficient

amplitude, and that this has important implications for the survival of short-period

extrasolar planets.

We now summarise several mechanisms for dissipating energy stored in tidal oscil-

lations in gaseous bodies, which have been found to be of considerable importance.

• Dissipation of the equilibrium tide by the turbulent viscosity of convective eddies

in the convective envelopes of solar-type stars and the convective interiors of giant

planets.

• The excitation and subsequent dissipation by turbulent viscosity of inertial waves

in convective regions. These are excited when tidal frequencies are smaller than

twice the spin frequency (|ω̂| < 2|Ω|).

• The excitation of internal inertia-gravity waves – essentially IGWs modified
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through Coriolis accelerations by rotation – in radiation zones (RZs) of stars

and radiative envelopes of highly irradiated giant planets. These are dissipated

by radiative diffusion, which is particularly strong near the surface of a giant

planet or star. In addition, nonlinear effects may be important near the centre

of a solar-type star, which could result in wave breaking and additional dissipa-

tion. This latter process is studied in detail in Part II.

1.7 Effects of tidal interactions on short-period plan-

ets

Following the discovery of 51 Peg b, it was realised that tidal interactions between a HJ

and its host star could result in significant spin-orbit evolution over secular timescales

(Rasio et al. 1996; Marcy et al. 1997). Rasio et al. (1996) showed that 51 Peg b is

subject to orbital decay due to tides dissipated in the star, but has an inspiral time

slightly longer than the main-sequence lifetime of the star in their model (though note

that this timescale depends on the tidal quality factors of the star and planet). It

is also expected that tides dissipated in the planet will synchronise the rotation of

the planet with the orbital motion in a few Myr. In addition, Rasio et al. (1996)

suggested that tidal dissipation in the planet may explain the negligible eccentricities

of the shortest-period planets, and indeed observed planets with orbital periods shorter

than 6 days primarily have circular orbits. This is illustrated in Fig. 1.5.

Dobbs-Dixon et al. (2004) proposed an explanation for the coexistence of both

circular and eccentric orbits for the planets in the period range 7-21 days as the result

of the variation in spin-down rates of young stars. Planets with orbits within this

range are expected to be moderately affected by tides, whereas planets with orbital

periods longer than 21 days are expected to be only negligibly affected, due to the

strong dependence of the tidal force on separation. Recently Pont (2009) discussed

empirical evidence for tidal spin-up of exoplanet host stars, and found indications of

such a process occurring in the present sample of transiting planets. These works

highlight the importance of stellar spin evolution on tidal evolution.
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Figure 1.5: Orbital period-eccentricity distribution for the currently observed extrasolar
planets. Orbits with P . 6 days have a smaller spread in e than those with larger orbital
periods. This could be a result of circularisation due to dissipation of tides raised in the
planet. This figure was taken from exoplanet.hanno-rein.de.

Jackson et al. (2008) found from considering coupled evolution of the eccentricity

and semi-major axis that simple timescale considerations of circularisation may not

accurately represent the true evolution. In addition, they found that it is inaccurate

to neglect the combined effects of both the stellar and planetary tides. In Part I we

study the accuracy of simple timescale estimates for tidal evolution, when coupled

evolution of the orbital and rotational elements is considered, in a more general model

of the long-term effects of tidal friction than Jackson et al. (2008) consider. We include

stellar spin-down, and study its effects in a simplified system. In particular, we study

the tidal evolution of inclination, since this has not been done in previous work.

1.8 Outline of this thesis

In Part I we study the tidal evolution of inclined orbits, using a variant of the simple

“constant time-lag” model of tidal friction. We study the inclusion of stellar rotational

spin-down and the accuracy of simple timescale estimates of tidal evolution. These
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results have important consequences for the interpretation of observations of spin-orbit

alignment angles using the RM effect, which will be discussed.

In Part II, we turn to the larger problem of understanding the mechanisms of

tidal dissipation in solar-type stars. It is of particular interest to study the efficiency

of tidal dissipation in these stars, since many have been found to harbour close-in

planets, whose survival is determined by the stellar Q′. This is because a planet with

an orbital period shorter than the stellar spin period is subject to tidally induced

orbital decay, with an inspiral time that depends linearly on the stellar Q′. We study

and extend a nonlinear model of tidal dissipation, initially proposed by GD98. In

this model IGWs are excited at the interface of the convection and radiation zones of

a solar-type star, which then propagate to the centre, where they can break if their

amplitude is sufficiently large. We model the dynamics of the central regions of the

star to study this process, primarily through the use of direct numerical simulations, in

both two and three dimensions. Particular emphasis is made on analysing the resulting

ingoing wave absorption which takes place near the centre. We then perform a detailed

stability analysis of an IGW near the centre of a solar-type star to understand the

breaking process in more detail, and to determine the existence and properties of any

instabilities that onset for lower amplitude waves than were observed to break in the

simulations. We also outline an additional mechanism of tidal dissipation involving

the gradual attenuation of the waves by radiative diffusion, and discuss whether it

is likely to operate in reality. The implications of these processes for the survival of

short-period planets around solar-type stars is discussed throughout. This work allows

us to propose a possible explanation for the survival of all short-period planets around

F, G and K stars.
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Part I

Constant lag time model of tidal

friction
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Chapter 2

Tidal evolution of Hot Jupiters on

inclined orbits

In this chapter, we use a simple model of the orbit-averaged effects of tidal friction

to study the evolution of close-in planets on inclined orbits, due to tides. We first

analyse the effects of the inclusion of stellar rotational spin-down due to magnetic

braking (hereafter MB). A phase-plane analysis of a simplified system of equations,

including the MB torque is performed. We find that the inclusion of MB can lead

to qualitatively different spin-orbit evolution; its neglect can result in a very different

system history. We then present the results of numerical integrations of the tidal

evolution equations, where we find that it is essential to consider coupled evolution of

the orbital and rotational elements, including dissipation in both the star and planet,

to accurately model the evolution. The main result of these integrations is that for

typical HJs, tidal friction aligns the stellar spin with the orbit on a similar time as it

causes the orbit to decay. This tells us that if a planet is observed to be aligned, then

it probably formed coplanar. This reinforces the importance of Rossiter-McLaughlin

effect observations in determining the degree of spin-orbit alignment in transiting

systems. Finally, we apply these results to the first observed system with a spin-orbit

misalignment, XO-3, and constrain the efficiency of tidal dissipation (i.e. the modified

tidal quality factors Q′) in both the star and the planet in this system.
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2.1 Model of tidal friction adopted

In light of the uncertainties in Q′, and the difficulty in calculating the spin-orbit

evolution when Q′ is a complicated function of ω̂, we adopt a simplified model, based

on a frequency-independent lag time (with one modification discussed below). We

adopt the model of Eggleton et al. (1998), which is based on the equilibrium tide

model of Hut (1981). In this formulation, we calculate the evolution of the specific

angular momentum of the planetary orbit

h = r× ṙ = na2
√

1− e2 ĥ, (2.1.1)

together with its eccentricity vector e, and the stellar and planetary spin vectors Ω1

and Ω2. The eccentricity vector has the magnitude of the eccentricity, and points in

the direction of pericentre, and is defined by

e =
ṙ× h

Gm12

− r̂, (2.1.2)

where m12 = m1 +m2 is the sum of the stellar and planetary masses.

The evolutionary equations are derived by starting with the equation of relative

motion of a planet of mass m2 and its host star of mass m1

d2r

dt2
= −Gm12

r3
r + f , (2.1.3)

where r is the separation and f represents a perturbing acceleration. The solution of

the unperturbed equation (with f = 0) is the ellipse

|r| = a(1− e2)

1 + e cos f
, (2.1.4)

where f is the angle referred to pericentre (the true anomaly). This is the Newtonian

two-body problem (Murray & Dermott, 1999). Both h and e are conserved for an

unperturbed Keplerian orbit; therefore under weak external perturbations their com-

ponents vary slowly compared with the orbital period. This allows averaging of the

effects of the tidal perturbation over a Keplerian orbit, resulting in a set of secular

evolution equations for the rotational and orbital elements.
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In Eggleton & Kiseleva-Eggleton (2001), f contains many contributions: the effects

of general relativity, perturbing accelerations due to other planets and tidal and spin

distortions of the star and planet, as well as tidal friction. In this chapter we solely

consider the perturbing effects of tidal friction (see Appendix A.1 for the inclusion of

the additional contributions) and set f = ftf = f1
tf + f2

tf , where

f1,2
tf = −3τ1,2k1,2n

2

(
m2,1

m1,2

)(
R1,2

a

)5 (a
r

)8

[3(r̂ · ṙ)r̂ + (r̂× ṙ− r Ω1,2)× r̂] . (2.1.5)

Here n =
√

Gm12

a3 is the orbital mean motion, k1,2 are the second-order potential

Love numbers for the star and planet respectively (which is twice the apsidal motion

constant), and τ1,2 is the effective tidal lag time for each body. This form of the

dissipative force of tidal friction is that derived under the assumption of a constant

lag time in the equilibrium tide model (Eggleton et al., 1998). In this model, we

assume that the body quasi-hydrostatically adjusts to the perturbing potential of its

companion, but delayed by some small lag time (τ1 for the star, τ2 for the planet)

that is proportional to the dissipation. Thus for each body, Q = 1
ω̂τ

is assumed to be

inversely proportional to the tidal frequency ω̂, so that the lag time τ is independent

of tidal frequency, thus the same for all components of the tide.

In the resulting equations we have chosen to parametrise the efficiency of tidal

dissipation in each body by redefining Q = 1
nτ

, and adopt a constant Q which does

not change during the evolution, i.e., we assume effectively that the lag time scales

with the orbital period (then Eq. 2.1.5 matches Eq. 4 in Mardling & Lin 2002, where

this assumption was not made explicit). We also introduce the definition Q′ = 3Q
2k

.

This allows us to discuss “Q′ values” for particular bodies, which do not change as

the orbital and rotational elements vary. For the purposes of this work we define

Q′ = 3
2knτ

. This is equivalent to assuming that the relevant tidal frequency ω̂ = n.

Note that this may not give identical numerical factors in the resulting equations to

other formulations of tidal friction (e.g. Goldreich & Soter 1966; Zahn 1977; Hut 1981),

but we feel that this is the best way to study the general effects of tidal friction, given

the uncertainties in the value of Q′, and its dependence on ω̂, for realistic giant planets

and stars.
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The planet’s specific orbital angular momentum h changes at a rate

dh

dt
= r× (f1

tf + f2
tf), (2.1.6)

with a corresponding rate of angular momentum transfer between the orbit and spin

of each body given by

J̇1,2 = I1,2Ω̇1,2 = −µr× f1,2
tf , (2.1.7)

since total angular momentum is conserved, and where µ = m1m2

m12
is the reduced mass

of the system. The eccentricity vector evolves as

de

dt
=

[2(ftf · ṙ)r− (r · ṙ)ftf − (ftf · r)ṙ]
Gm12

. (2.1.8)

Eqs. 2.1.6 and 2.1.8 are time-averaged over the orbit, and the resulting differential

equations are given below. Numerical integration of these equations gives the secular

evolution of the orbital elements. Note that we have written these equations so that

they are regular at e = 0, unlike those in Eggleton & Kiseleva-Eggleton (2001) and

Mardling & Lin (2002). To do this we have eliminated reference to ê, which is undefined

for a circular orbit, whereas e is perfectly well defined and equal to zero. The resulting

equations read

dh

dt
= − 1

tf1

[
Ω1 · e

2n
f5(e

2)he− Ω1

2n
f3(e

2)h+

(
f4(e

2)− Ω1 · h
2n

1

h
f2(e

2)

)
h

]
− 1

tf2

[
Ω2 · e

2n
f5(e

2)he− Ω2

2n
f3(e

2)h+

(
f4(e

2)− Ω2 · h
2n

1

h
f2(e

2)

)
h

]
=

(
dh

dt

)
1

+

(
dh

dt

)
2

(2.1.9)

h
de

dt
= − 1

tf1

[
Ω1 · e

2n
f2(e

2)h + 9

(
f1(e

2)h− 11

18

Ω1 · h
n

f2(e
2)

)
e

]
− 1

tf2

[
Ω2 · e

2n
f2(e

2)h + 9

(
f1(e

2)h− 11

18

Ω2 · h
n

f2(e
2)

)
e

]
(2.1.10)

dΩ1

dt
= − µ

I1

(
dh

dt

)
1

+ ω̇mb (2.1.11)

=
µ

I1tf1

[
Ω1 · e

2n
f5(e

2)he− Ω1

2n
f3(e

2)h+

(
f4(e

2)− Ω1 · h
2n

1

h
f2(e

2)

)
h

]
+ ω̇mb

dΩ2

dt
= − µ

I2

(
dh

dt

)
2

(2.1.12)
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=
µ

I2tf2

[
Ω2 · e

2n
f5(e

2)he− Ω2

2n
f3(e

2)h+

(
f4(e

2)− Ω2 · h
2n

1

h
f2(e

2)

)
h

]
We also need to define an inverse tidal friction timescale t−1

f for each body (here

for body 1, change 1 → 2 to get the corresponding expression for body 2), and the

functions of the eccentricity (first derived in a similar form by Hut 1981).

1

tf1

=

(
9n

2Q′
1

)(
m2

m1

)(
R1

a

)5

=
√
Gm12

(
9

2Q′
1

)(
m2

m1

)
R5

1 a
− 13

2 (2.1.13)

f1(e
2) =

1 + 15
4
e2 + 15

8
e4 + 5

64
e6

(1− e2)
13
2

(2.1.14)

f2(e
2) =

1 + 3
2
e2 + 1

8
e4

(1− e2)5
(2.1.15)

f3(e
2) =

1 + 9
2
e2 + 5

8
e4

(1− e2)5
(2.1.16)

f4(e
2) =

1 + 15
2
e2 + 45

8
e4 + 5

16
e6

(1− e2)
13
2

(2.1.17)

f5(e
2) =

3 + 1
2
e2

(1− e2)5
(2.1.18)

f6(e
2) =

1 + 31
2
e2 + 255

8
e4 + 185

16
e6 + 25

64
e8

(1− e2)8
(2.1.19)

In the absence of MB (ω̇mb = 0) the total angular momentum is conserved (dL
dt

= 0).

With the inclusion of MB (see §2.2), the total angular momentum of the system

decreases at a rate

dL

dt
=

d

dt
(µh + I1Ω1 + I2Ω2) = I1ω̇mb = −αmbI1Ω

2
1Ω1. (2.1.20)

Tidal dissipation and MB result in a loss of energy from the system. The total rate

of energy dissipated can be expressed as follows:

Ėtot =
1

2

Gm1m2

a

ȧ

a
+ I1Ω1Ω̇1 + I2Ω2Ω̇2 (2.1.21)

= −H1 −H2 − αmbI1Ω
4
1, (2.1.22)

where the final term in the last expression is the energy dissipated by MB and

H1 =
µh

ntf1

[
1
2

(
Ω2

1f3(e2) +
(Ω1 · h)2

h2
f2(e2)− (Ω1 · e)2f5(e2)

)
− 2n

(Ω1 · h)
h

f4(e2) + n2f6(e2)
]
,
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H2 =
µh

ntf2

[
1
2

(
Ω2

2f3(e2) +
(Ω2 · h)2

h2
f2(e2)− (Ω2 · e)2f5(e2)

)
− 2n

(Ω2 · h)
h

f4(e2) + n2f6(e2)
]
,

are the tidal heating rates in the star and planet, respectively. It has been proposed

that H2 can result in planetary inflation, if the energy is deposited deep in the interior

of the planet (e.g. Bodenheimer et al. 2001). Note that these expressions approach

zero as e→ 0, Ω1,2 · e → 0 and Ω1,2 · ĥ → n, i.e. tidal dissipation continues until the

orbit becomes circular, and the spin of each body becomes coplanar and synchronous

with the orbit.

This formulation is beneficial because it can treat arbitrary orbital eccentricities

and stellar and planetary obliquities, unlike other models which are only valid to a

given order in the eccentricity, or for small (or zero) orbital inclinations (Goldreich

& Soter 1966; Hut 1981). Using the secular evolution equations allows us to perform

integrations quickly that represent dynamical evolution over billions of years. The full

set of equations are written in a form which is straightforward to numerically integrate.

2.2 Magnetic braking

Observations of solar-type stars have shown that the mean stellar rotational velocity

decreases with time, following the relation Ω ∝ t−1/2 (Skumanich, 1972). This is

the empirical Skumanich relation, and can be interpreted as telling us that solar-

type stars have been undergoing continuous spin-down since they first started on the

main sequence. MB by a magnetised outflowing wind has long been recognised as

an important mechanism for the removal of angular momentum from rotating stars

(Weber & Davis, 1967), and such a mechanism seems able to explain most of the

observed stellar spin-down (Barnes, 2003).

The surface layers of solar-type stars are convectively unstable, and turbulent mo-

tion and rotation can generate magnetic fields via a dynamo action, which heats the

corona and produces a magnetically controlled stellar wind. Magnetic stresses impart

angular momentum to the stellar wind, which forces the plasma to corotate with the

star up to the Alfvén radius (rA), which is where the kinetic and magnetic energy den-

sity of the outflowing plasma balance. This enhances the angular momentum loss via

the stellar wind considerably over a non-magnetic case (by a factor (rA/R�)2 ∼ 100,
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for the Sun). This mechanism is referred to as MB, and can be attributed to Schatz-

man (1962), though the first formulations of such a steady, magnetised, thermally

driven outflow in the ideal-MHD limit were due to Weber & Davis (1967) and Mestel

(1968).

The simplest models of MB, such as Weber & Davis (1967), involve a thermally-

driven wind flowing out on magnetic field lines, which are essentially radial close

to the star (split monopole). Magnetic stresses impart angular momentum to the

outflowing gas, but the field weakens with the inverse square of distance from the star

(see Fig. 2.1). This model gives an angular momentum loss rate of

dJ

dt
=

8π

3µ0

(
B0R

2
1

)2 Ω

vA(rA)
, (2.2.1)

where J = IΩ is the spin angular momentum of the star, B0 is the magnetic field at

the surface of the star, R1 is the radius of the star and vA(rA) is the Alfvén speed

evaluated at the Alfvén radius (given by B(rA)√
µ0ρ(rA)

). If we assume that the open-field

magnetic flux scales linearly with the rotation rate, i.e. 4πB0R
2
1 ∝ Ω, then we recover

the commonly-used relation

dΩ

dt
∝ −Ω3. (2.2.2)

Integration of this equation leads asymptotically to the Skumanich relation (Collier

Cameron, 2002).

Although the Skumanich law is well established for stars with rotational velocities

in the range 1 − 30 km s−1, it overestimates the spin-down rates of stars younger

than 108 yrs, and thus cannot explain the presence of fast rotators in the Pleiades

(Ivanova & Taam, 2003). As a resolution to this problem it has been suggested that

the angular momentum loss rate for high rotation rates could be reduced, as a result of

the saturation of the stellar dynamo (MacGregor & Brenner, 1991), or alternatively due

to a reduction in the number of open field lines in a complex magnetic field topology

(Taam & Spruit, 1989). These and similar approaches lead to modified models of the

MB torque for fast rotators, and several such models have been proposed (e.g. Ivanova

& Taam 2003; Holzwarth & Jardine 2005). Nevertheless, Barnes (2003) find that

the Skumanich relation is remarkably accurate at modelling the spin-down of Sun-like
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Co−rotating frame

Field line / streamline

rA

Figure 2.1: Sketch of the magnetic field lines and direction of flow of outflowing plasma
in the equatorial plane of a stellar wind. Charged stellar wind particles flow out these on
magnetic field lines, which are essentially radial close to the star. Magnetic stresses enforce
corotation of the outflowing plasma up until rA, which enhances the angular momentum loss
rate over a non-magnetic case by ∼ (rA/R�)2.

stars that are not rapid rotators, so to a first approximation, a MB torque based on

the empirical Skumanich law is best for our purposes.

In this chapter, we include the effects of MB in the equations written down in §2.1

in the tidal evolution equations, through the inclusion of the Verbunt & Zwaan (1981)

braking torque, with the particular coefficients of Dobbs-Dixon et al. (2004),

ω̇mb = −αmb Ω2
1 Ω1, (2.2.3)

where αmb = 1.5× 10−14γ yrs. γ is a correction factor for an F-star, which takes the

value 0.1 for an F star, but is unity for a G or K star. We can also define a MB

timescale τmb ≡ Ω1

ω̇mb
= 1

αmb

1
Ω2

1
, which is approximately 1010 yrs for the Sun.
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2.3 Analysis of the effects of MB on tidal evolution

in a simplified system

2.3.1 Circular, coplanar orbit with MB

We first study the effects of MB on a simplified system of a circular, coplanar orbit

under the influence of only the tide that is raised on the star by the planet, and

MB. We have neglected the tide in the planet here since the moment of inertia of

the planet is much smaller than that of star and the orbit (i.e. I2 � I1 ∼ m2a
2), so

to a first aproximation we can neglect the effects of planetary spin; in any case the

planetary spin is expected to synchronize rapidly with the orbit. The following set of

dimensionless equations can be derived from the full set of equations in §2.1:

dΩ̃

dt̃
= ñ4

(
1− Ω̃

ñ

)
− A Ω̃3, (2.3.1)

dñ

dt̃
= 3 ñ

16
3

(
1− Ω̃

ñ

)
, (2.3.2)

where we have normalised the stellar spin frequency Ω1 and orbital mean motion n to

the orbital frequency at the stellar surface, together with a factor C
3
4 . C is the ratio

of the orbital angular momentum of a mass m2 in an orbit with semi-major axis equal

to the stellar radius R1, to the spin angular momentum of an equally rapidly rotating

star of radius R1, mass m1 and dimensionless radius of gyration rg1. C is important

for classifying the stability of the equilibrium curve Ω̃ = ñ in the absence of MB, and

it can be shown from energy and angular momentum considerations (see Appendix

A.2), that this equilibrium is stable if ñ ≤ 3−
3
4 . This is equivalent to the statement

that no more than a quarter of the total angular momentum can be in the form of

spin angular momentum for stability (Hut, 1980). We have thus defined the following

dimensionless quantities:

Ω̃ = Ω1

(
R3

1

Gm12

) 1
2

C− 3
4 , (2.3.3)

ñ = n

(
R3

1

Gm12

) 1
2

C− 3
4 , (2.3.4)
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C =
µR2

1

I1
=

µ

r2
g1 m1

, (2.3.5)

t̃ =

(
Gm12

R3
1

) 1
2
(

9

2Q′
1

)(
m2

m1

)
C

13
4 t, (2.3.6)

A = αmb

(
Gm12

R3
1

) 1
2
(

2Q′
1

9

)(
m1

m2

)
C− 7

4 . (2.3.7)

There is only one parameter (A) that completely characterises the solution in the

(ñ, Ω̃)-plane, and its value may be estimated as

A ' 100 γ

(
Q′

1

106

)
, (2.3.8)

for a Jupiter-mass planet orbiting a Sun-like star undergoing MB (with standard αmb

and with Q′ = 106). The size of this term shows that in general MB dominates the

stellar spin evolution. Note that in the absence of MB (A = 0), Eqs. 2.3.1 and 2.3.2 do

not contain reference to the masses of the star and planet or to the tidal Q′ of the star.

The parameter A, together with the initial conditions (ñ0, Ω̃0), completely determines

the evolution.

We plot some solutions on the (ñ, Ω̃)-plane in Fig. 2.2 by integrating Eqs. 2.3.1

and 2.3.2 for various initial conditions. Fig. 2.2 shows two phase portrait plots, which

show the general qualitative behaviour of the solutions to Eqs. 2.3.1 and 2.3.2, for

a given value of the parameter A. The arrows on each curve show the direction of

time evolution from the initial state. For prograde orbits we restrict ourselves to

studying the region, 0 ≤ ñ ≤ 10, 0 ≤ Ω̃ ≤ 10, in the (ñ, Ω̃)-plane. This is because

Ω1 =
√
Gm12/R3

1 corresponds to stellar breakup velocity and n ≥
√
Gm12/R3

1 means

that the planet would be orbiting at, or beneath, the stellar surface. For a HJ with

a mass of MJ orbiting a star of mass M�, C ∼ 0.01, so ñ ' 10 corresponds to an

orbital semi-major axis of a ' 0.01 AU, and ñ ' 0.1 corresponds to a ' 0.2 AU, so

these plots represent the full range of orbits of the HJs. The top panel of Fig. 2.2 is

for A = 100, which corresponds to canonical MB for a G/K star (γ = 1) and Q′
1 of

106.

In the absence of MB (A = 0) we recover the standard tidal evolution equations for

a coplanar, circular orbit. These have been well studied in the literature (e.g. Coun-

selman 1973; Hut 1981). These equations have an equilibrium of coplanarity and
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Figure 2.2: (ñ, Ω̃)-plane with A = 100 for a HJ orbiting a Sun-like star. The diagonal
dashed line in each plot corresponds to corotation (Ω̃ = ñ). Top: MB spins the star down so
that the planet finds itself inside corotation, where the sign of the tidal torque changes, and
planet is subject to tidally induced orbital decay. For an initially high ñ outside corotation
tidal friction efficiently transfers angular momentum from spin to orbit, which pushes the
planet outwards. Bottom: Solutions with the same initial conditions are plotted with and
without MB for a HJ around a solar-type star, with dot-dashed lines having A = 0 and
solid lines have A = 100. The dot-dashed lines are also curves of constant total angular
momentum. This shows that the inclusion of MB is extremely important in determining
the secular evolution of the system, and its absence results in a very different evolutionary
history unless Ω̃ � ñ in the initial state.
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corotation, i.e. i = 0 and Ω̃ = ñ, where the orbital inclination (or stellar obliquity) i is

defined by cos i = Ω̂1 · ĥ and i ≥ 0. The system will approach this equilibrium if both

the spin angular momentum is less than a quarter of the total angular momentum, and

the total angular momentum exceeds some critical value (Greenberg 1974; Hut 1980).

With no braking, orbits initially outside corotation (Ω̃ > ñ) are not subject to tidally

induced orbital decay, and asymptotically approach a stable equilibrium Ω̃ = ñ, with

ñ ≤ 3−
3
4 . Orbits initially inside corotation can evolve in two different ways, depending

on the stability of the equilibrium state on the solution’s closest approach to Ω̃ = ñ.

If dΩ̃
dt̃
> dñ

dt̃
> 0 near corotation, then ñ ≤ 3−

3
4 , and the equilibrium state is locally

stable (though no such curves are plotted in Fig. 2.2, since they occur only in the far

bottom left of the plot, near the origin). This is when the corotation radius moves

inwards faster than the orbit shrinks due to tidal friction, which can result in a final

stable equilibrium state for the system if the corotation radius “catches up” with the

planet. On the other hand, orbits inside corotation for which this condition is not

satisfied are subject to tidally induced orbital decay, since tidally induced angular

momentum exchange enhances the difference between Ω̃ and ñ, which leads to further

orbital evolution, and the spiralling in of the planet. This evolution can be seen from

the dot-dashed lines in the bottom panel of Fig. 2.2.

Including MB (A 6= 0) means that Ω̃ = ñ is no longer an equilibrium state, and

the total angular momentum of the system is not conserved. For an orbit initially not

subject to spiralling into the star via tidal transfer of angular momentum from orbit

to spin (Ω̃ ≥ ñ) we see from the top panel in Fig. 2.2, that MB will spin the star down

so that the planet finds itself inside the corotation radius of the star. Passing through

corotation changes the sign of the tidal torque and causes the planet to spiral into the

star. Note that, if we ignore the age of the system, any bound orbit will eventually

decay in a finite time since the system has no stable equilibrium. The effect of MB

is to increase the minimum semi-major axis at which the orbit is not subject tidally

induced orbital decay over the nuclear lifetime of the star.

This means that an initially rapidly rotating G-type star hosting a close-in Jupiter

mass companion will lose significant spin angular momentum through MB (over a time

∼ τmb). During this stage of spin-down the spin frequency of the star may temporarily
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Figure 2.3: (ñ, Ω̃)-plane showing the effects of reducing the stellar mass fraction partic-
ipating in angular momentum exchange (by a factor ε? = 10−2) with the orbit, while the
braking rate is unchanged, with A = 100. This has been proposed to apply to F stars like τ
Boo.

equal the orbital frequency of its close-in planet, but the rate of angular momentum

loss through MB will exceed the tidal rate of transfer of angular momentum from

orbit to spin. The stellar spin continues to drop well below synchronism until the

efficiency of transfer of tidal angular momentum from orbit to spin can compensate or

overcompensate for the braking. If dΩ̃
dt̃
> dñ

dt̃
> 0 inside corotation, then tides will act

to spin up the star, though the timescale for this to cause significant spin-up may be

much longer than the stellar lifetime, and this only occurs if the orbit has sufficient

angular momentum to noticeably spin up the star. Otherwise, the planet continues to

spiral inwards once it moves inside corotation, and Ω̃ ' const.

So far we have considered the whole star to participate in tidal angular momentum

exchange with the orbit. For an F-star (like τ Boo), it has been proposed that only

the outer convective envelope (of mass fraction ε?) participates in angular momentum

exchange with the orbit (Marcy et al. 1997; Dobbs-Dixon et al. 2004; Donati et al.

2008). If the core and envelope of such a star can decouple, then tides would only have

to spin up the outer layers of the star, which would reduce the spin-up time by ε?. In
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this case the system could remain in a state with Ω̃ ' ñ just inside corotation, with

the resulting torque on the orbit small. This may explain the spin-orbit synchronism

of stars such as τ Boo, as noted by Dobbs-Dixon et al. (2004). Fig. 2.3 shows the

phase plane for a simplified system in which the moment of inertia of the star acted

on by tides is reduced by a factor ε? = 10−2, but the braking rate is unchanged, i.e.,

we multiply the first term on the right-hand side of Eq. 2.3.1 by ε−1
? . Note that this

may be too simple a model to describe such core-envelope decoupling, and we have

ignored associated changes to the braking rate.

2.3.2 Extending the analysis to eccentric coplanar orbits

We can extend the simplified system in §2.3.1 to arbitrary eccentricity. If the orbit is

eccentric but still coplanar, then we have three coupled nonlinear ODEs:

de

dt̃
= 9e ñ

13
3

[
11

18

Ω̃1

ñ
f2(e

2)− f1(e
2)

]
(2.3.9)

dΩ̃

dt̃
= ñ4

[
f4(e

2)− Ω̃

2ñ

(
f3(e

2) + f6(e
2)
)]
− A Ω̃3 (2.3.10)

dñ

dt̃
= 3ñ

16
3

[
f4(e

2)− Ω̃

2̃n

(
f3(e

2) + f6(e
2)
)]

(2.3.11)

The polynomials in e2 are as before, and we have used the dimensionless quantities

defined in §2.3.1.

The solutions to these equations in the absence of MB have been studied in Hut

(1981), so we move on to analyse the effects of MB. Fig. 2.4 we plot the phase plane

for A = 100 with e = 0.2 initially (top), and A = 10 with e = 0.6 initially (bottom)

to represent cases of moderate and highly eccentric orbits. A smaller value of A is

chosen in order to show the effects of tides more clearly, since reducing A is equivalent

to reducing Q′. Tidal effects become more important for smaller ñ as e is increased

since this reduces the pericentre distance rp = a(1 − e). This is shown in Fig. 2.4.

The evolution is otherwise similar to that for a circular orbit. Eq. 2.3.9 exhibits the

eccentricity instability, where e is excited if Ω̃ ≥ 18
11

f1(e2)
f2(e2)

ñ. The evolution of e is not

plotted, and will in general be different for different curves, but is found to decay once

Ω̃ < 18
11

f1(e2)
f2(e2)

ñ.
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Figure 2.4: Top: (ñ, Ω̃)-plane with A = 100 and e = 0.2 initially, where the dashed line
corresponds to Ω̃ = ñ. This is qualitatively similar to Fig. 2.2, showing that moderate
eccentricity does not affect the evolution significantly. This is partly due to the decay of the
eccentricity after the star has spun down so that Ω̃ ≤ 18

11
f1(e2)
f2(e2)

ñ. Bottom: (ñ, Ω̃)-plane with
A = 10 and e = 0.6 initially. This differs from the top panel since the eccentricity remains
appreciably nonzero until after corotation is passed (eccentricity evolution not shown). Finite
eccentricity increases the slope of dñ

dt̃
over the circular case, since tidal friction becomes much

more important with decreasing pericentre distance. In addition, the eccentricity is excited
when Ω̃ ≥ 18

11
f1(e2)
f2(e2)

ñ.
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2.3.3 Extending the analysis to inclined circular orbits

We can extend the simplified system of equations analysed in §2.3.1 to arbitrary incli-

nation (i) of the orbital plane with respect to the equatorial plane of star:

dΩ̃

dt̃
= ñ4

[
cos i− Ω̃

2ñ

(
1 + cos2 i

)]
− A Ω̃3, (2.3.12)

dñ

dt̃
= 3 ñ

16
3

[
1− Ω̃

ñ
cos i

]
, (2.3.13)

di

dt̃
= −ñ4Ω̃−1 sin i

[
1− Ω̃

2ñ

(
cos i− ñ

1
3 Ω̃
)]

, (2.3.14)

For small inclination, Eq. 2.3.14 reproduces Eq. 13 from Hut (1981), with the exception

that we have used a constant Q′
1 rather than a constant time-lag in the equations (i.e.,

replace time lag τ by 1
2

3
2k1nQ′

1
, and note that k1 is twice the apsidal motion constant

of the star).

From Eq. 2.3.13 the orbit begins to decay if

Ω̃ cos i < ñ, (2.3.15)

which is always satisfied for a retrograde orbit (i ≥ 90◦). This is just a generalisation

of the corotation condition Ω̃ = ñ, to a non-coplanar orbit. The inclination grows if

Ω̃ > Ω̃crit = 2ñ
(
cos i− ñ

1
3 Ω̃
)−1

, (2.3.16)

where we have assumed the quantity in brackets is positive, i.e., cos i > ñ
1
3 Ω̃. This

agrees with the condition from Hut (1981) when i ∼ 0. For sufficiently close-in orbits

that tidal friction is important, MB will rapidly spin down the star such that this

condition is not satisfied, so we can safely conclude that the inclination is not likely to

grow appreciably by tidal friction. When this condition is not satisfied, the inclination

decays to zero, on a timescale τi (defined in the next section). Note that i = 180◦ is

an unstable equilibrium value of the inclination.

In the absence of MB we recover the evolution considered by Greenberg (1974), so

we move on to concentrate on the inclusion of MB. The top panel in Fig. 2.5 plots

the (ñ, Ω̃)-plane for A = 10 for an initial inclination of i = 90◦. The evolution of i
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is not plotted (and will in general be different for each curve), but is found to decay

once the stellar spin decays sufficiently that Eq. 2.3.16 is not satisfied. The bottom

panel in Fig. 2.5 shows the effect of increasing the inclination in steps to illustrate

the behaviour as i is increased, on various curves with otherwise the same initial

conditions, with A = 10. The orbit begins to decay for smaller ñ, and decays at a

faster rate as i is increased. This peaks for a perfectly retrograde orbit (i = 180◦),

with anti-parallel spin and orbit, where the rates of change of spin and orbital angular

frequencies are maximum. Fig. 2.5 shows that the orbit generally begins to decay

outside corotation, once Ω̃ cos i < ñ. This has implications for the tidal evolution of

close-in planets on inclined orbits, in that if this condition is satisfied, the planet will

be undergoing tidally induced orbital decay – though the inspiral time may be longer

than the expected stellar lifetime, depending on the value of Q′
1.

In this section we have seen that MB can only be reasonably neglected for a coplanar

orbit when Ω � n. For an inclined orbit, this condition must be generalised to

Ω cos i� n – obvious from Eq. 2.3.13. Neglecting ω̇mb for stars for which this condition

is not satisfied can result in a qualitatively different evolution, as already seen in the

bottom panel of Fig. 2.2 for a coplanar orbit.

2.4 Tidal evolution timescales

It is common practice to interpret the effects of tidal evolution in terms of simple

timescale estimates. The idea behind these is that if the rate of change of a quantity X

is exponential, then Ẋ/X will be a constant, so we can define a timescale τX = X/Ẋ.

If Ẋ/X 6= const, then these may not accurately represent the evolution. Here we

reproduce the timescales that can be derived from the equations in §2.1.

A tidal inspiral time can be calculated from the equation for ȧ, by considering

only the effects of the tide raised on the star by the planet (not unreasonable since

I2 � I1 ∼ m2a
2). Here ȧ/a ∼ a−13/2 6= const, so a more accurate estimate of the

inspiral time for a circular coplanar orbit is

τa ≡ − 2

13

a

ȧ
(2.4.1)

45



0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

ñ
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Figure 2.5: Top: (ñ, Ω̃)-plane for an orbit with an initial i = 90◦, with A = 10, where
the dashed line corresponds to Ω̃ = ñ. This is similar to Fig. 2.2, except that the orbit
decays once Ω̃ cos i < ñ, which can occur above the dashed line, in contrast with the circular
case. The evolution of i is not plotted, and is in general different for each curve, but is
found to decay once the stellar spin drops below that given by Eq. 2.3.16. Bottom: various
initial inclinations, with A = 10, where the dashed line corresponds to Ω̃ = ñ. The bottom
trajectory has i = 0, and the inclination is increased in steps towards the top curve, which
has i = 180◦, to illustrate the behaviour. Note that orbits with larger initial i decay for
smaller ñ, once Ω̃ cos i < ñ is satisfied.
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' 12 Myr

(
Q′

1

106

)(
m1

M�

) 8
3
(
MJ

m2

)(
R�

R1

)5(
P

1d

) 13
3
(

1− P

P?

)−1

, (2.4.2)

Here P and P? are the orbital and stellar spin periods, respectively. We have already

seen in §2.3 that it is unreasonable to assume that Ω is fixed unless Ω � n, due to

MB.

If the orbit is inside corotation, angular momentum will be transferred from the

orbit to the spin of the star, giving a tidal spin-up time of

τΩ1 ≡ −Ω1

Ω̇1

' 13τa
2 α

, (2.4.3)

where α = µh
IΩ

is the ratio of orbital to spin angular momentum. For the HJ problem,

τΩ1 ≥ τa since α = O(1), though this neglects the spin-down effects of MB. The

planetary spin Ω2 will tend to synchronise much faster, since the moment of inertia of

the planet is much less than that of the orbit (by ∼ 105), and will not be considered

further, i.e., we assume Ω2 = n.

A circularisation time can be derived from the equation for ė, and is given for a

coplanar orbit by

τe ≡ −e
ė

(2.4.4)

' 17 Myr

(
Q′

1

106

)(
m1

M�

) 8
3
(
MJ

m2

)(
R�

R1

)5(
P

1d

) 13
3

×
[(
f1(e

2)− 11

18

P

P?

f2(e
2)

)
+ β

(
f1(e

2)− 11

18
f2(e

2)

)]−1

, (2.4.5)

where we have included both the stellar and planetary tides, as these have been shown

to both contribute to the tidal evolution of e (Jackson et al., 2008). Note that ė/e ∼

const only if P ∼ const and e� 1, where f1,2(e
2) ' 1. The factor

β =
Q′

2

Q′
1

(
m1

m2

)2(
R2

R1

)5

∼ 10
Q′

2

Q′
1

, (2.4.6)

for the HJ problem.

If the orbital and stellar equatorial planes are misaligned, then dissipation of the
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tide raised on the star by the planet would align them on a timescale

τi ≡ − i
di
dt

(2.4.7)

' 70 Myr

(
Q′

1

106

)(
m1

M�

)(
MJ

m2

)2(
R�

R1

)3(
P

1d

)4

×
(

Ω1

Ω0

)[
1− P

2P?

(
1− 1

α

)]−1

, (2.4.8)

where we have assumed that the orbit is circular and made the small i approximation.

We take Ω0 = 5.8× 10−6s−1, which corresponds to a spin period of ∼ 12.5 d.

The validity of these timescales to accurately represent the tidal evolution of the

orbital and rotational elements is an important subject of study, since these timescales

are commonly applied to observed systems. In a recent paper, Jackson et al. (2008)

found that it is essential to consider the coupled evolution of e and a in order to

accurately model the tidal evolution, and that both the stellar and planetary tides must

be considered. They showed that the actual change of e over time can be quite different

from simple circularisation timescale considerations, due to the coupled evolution of

a. In the following we will consider the validity of the spin-orbit alignment timescale

to accurately model tidal evolution of i.

2.5 Numerical integrations of the full equations for

an inclined orbit

We perform direct numerical integrations of the equations in §2.1 with a 4th/5th order

Runge-Kutta scheme with adaptive stepsize control, using a scheme with Cash-Karp

coefficients similar to that described in Press et al. (1992). Our principal aim is to

study inclination evolution and to determine the accuracy of the spin-orbit alignment

timescale τi for close-in planets.

We choose a “standard” system of a HJ in orbit around an FGK star. We have

m1 = M�,m2 = MJ , R1 = R�, R2 = RJ , and we modify1 a, i, e. We choose the

initial ratio Ω1/n = 10, and include MB in all simulations, setting γ = 1 unless stated

1We take Ω1 · e = 0, though this need not be assumed. We find negligible difference between
integrations for which Ω1 · e = 0 and Ω1 · e 6= 0
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otherwise. We also take Q′
1 = Q′

2 = 106, and Ω2/n = 1. The dimensionless radii of

gyration are chosen to be r2
g1 = 0.076 and r2

g2 = 0.261, which are values appropriate

for polytropic stellar and planetary models with respective indices 3 and 1.

2.5.1 Inclusion of MB and the importance of coupled evolu-

tion of a and i

For a prograde orbit (i < 90◦) initially outside corotation, MB rapidly spins the star

down sufficiently to ensure that inclination is not excited through tidal friction (so

that Eq. 2.3.16 is not satisfied), and the inclination begins to decay. Subsequent spin-

down moves the orbit-projected corotation radius beyond the orbit of the planet (so

that Ω cos i < n), and the resulting tidal inspiral accelerates as the difference between

Ω cos i and n is enhanced. The associated reduction in a increases the rate of stellar

spin-orbit alignment. Thus the inclusion of ω̇mb increases the rate of alignment, and

reduces τi from the simple estimate, which ignores MB and coupled a and i evolution.

The effect of MB on a retrograde orbit (i ≥ 90◦) is qualitatively different. A

retrograde orbit is always subject to tidally induced inspiral since Ω cos i < n for all

i ≥ 90◦. MB acts to reduce Ω, thereby reducing the difference |Ω cos i−n|, making the

tidal torque smaller. This acts to increase the timescale for alignment of the stellar

spin and orbit, though the effect is found to be small.

The most important effect of including MB is simply that of reducing the stellar

spin sufficiently so that Ω cos i < n, where the semi-major axis can then decay through

tidal friction. As a subsequently decreases, the tidal torque increases, resulting in a

faster tidal evolution. MB can only be neglected if |Ω cos i| � n. If the orbit is already

highly inclined, such as i ≥ 90◦, then the inclusion of MB is not so important, since

Ω cos i < n regardless of the spin rate.

For an orbit initially at a = 0.05 AU, the simple estimate of the stellar spin-orbit

alignment timescale gives τi ' 2× 1010 yrs. Fig. 2.6 shows the evolution of i and a for

various initial inclinations for an orbit at a = 0.05 AU and a = 0.08 AU respectively.

The outer orbit a changes only slightly over 10 Gyr, and i evolves as expected from

the simple estimate of τi ' 3×1011 yrs. The inner orbit, on the other hand, is subject

to tidally induced orbital decay, with an inspiral time of 1− 3 Gyr, and this reduction

49



10
5

10
6

10
7

10
8

10
9

10
100

0.01

0.02

0.03

0.04

0.05

0.06

t/yr

a/
A

U

 

 

(a) a evolution for a = 0.05 AU
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(b) cos i evolution for a = 0.05 AU
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(c) a evolution a = 0.08 AU
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(d) cos i evolution a = 0.08 AU

Figure 2.6: Tidal evolution for a circular, inclined orbit at a = 0.05 AU and a = 0.08 AU,
with various initial inclinations: i = 6◦, 26◦, 45◦, 90◦, 180◦. (a) and (c) show their respective
semi-major axis evolutions (with the highest inclination orbit decaying first – the bottom
curve – and the lowest inclination orbit decaying last – the top curve), and (b) and (d)
show the respective inclination evolution for these systems. The outer orbit a changes only
slightly over 10 Gyr, and i evolves as expected from simple estimates of τi. The inner orbit,
on the other hand, is tidally shrunk, and this reduction in a means that the true evolution
is much faster than the simple timescale estimates predict. This highlights the importance
of considering coupled evolution of a and i.
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in a increases the rate of inclination evolution. This highlights the importance of

considering coupled evolution of a and i, especially for large initial inclinations, where

inspiral occurs for higher stellar spin rates. The difference between the simple estimate

of τi and the true timescale can be up to an order of magnitude different for orbits

whose a changes appreciably.

2.5.2 Inclined and eccentric orbits

Jackson et al. (2008) highlighted the importance of coupled a and e evolution for a

coplanar orbit. We will now consider how e might affect i evolution for a non-coplanar

orbit, which is the subject of this section.

A nonzero eccentricity reduces the pericentre distance rp = a(1−e), which increases

the tidal torque over a circular orbit, since the tidal torque ∼ r−6. Although the planet

spends less time near pericentre, the torque there is much greater, so dominates the

orbit-averaged torque. We therefore expect the stellar spin-orbit alignment time to

be reduced as we increase e. In addition, we expect that an orbit at large e would

more strongly affect the rate of alignment over a circular orbit, than one at large i

would over a coplanar orbit, because e reduces rp, whereas i only changes the difference

(Ω cos i − n). The tidal torque ∼ r−6(Ω cos i − n), which depends more strongly on

r than Ω. This behaviour can be seen in Figs. 2.6(d) and 2.7(b) which shows that

the ratios of stellar spin-orbit alignment times for an orbit with small i and large i is

∼ O(1), whereas the ratios of stellar spin-orbit alignment times for an orbit with small

e and large e can be up to several orders of magnitude.

From Fig. 2.7 we can compare the simple estimate of τi ' 3.0 × 1011 yrs for

an orbit at a = 0.08 AU, with the coupled evolution of the orbital and rotational

elements from integration of the full equations. We see that the simple estimate gives

a misleadingly long stellar spin-orbit alignment time compared with that obtained from

integrating the full equations in cases where e is initially non-negligible – as a result of

the strong functions of the eccentricity in this model of tidal friction. This confirms the

conclusion of Jackson et al. (2008), in that it is essential to consider coupled evolution

of a and e in order to determine an accurate system history. We also find that the

associated changes in semi-major axis strongly affect stellar spin-orbit alignment. A
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Figure 2.7: Top: Semi-major axis evolution for an inclined orbit with initial i = 45◦ at
a = 0.08 AU for various initial e, with e = 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8. Middle and bottom:
Inclination and eccentricity evolution for the same systems. Solutions with the smallest initial
e have the smallest change in a and i. Solutions with the largest initial e undergo much more
rapid tidal evolution (note that for e = 0.8, e decays to less than 0.7 within 105 yrs) – curves
can be distinguished by noting that the curves corresponding to the fastest evolution have
the largest initial e. Increasing the eccentricity can be seen to reduce the inspiral time by up
to several orders of magnitude over the circular case. In contrast, increasing the inclination
in Fig. 2.6 only reduces the inspiral time by a factor ∼ O(1) over a coplanar orbit. Also note
that τe < τi for all integrations.
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marginally better estimate for τi can be made by replacing the orbital period with the

orbital period around periastron (equivalent to replacing a by rp), though this is still

inadequate since it neglects evolution of a.

2.5.3 Discussion

For typical HJs, we find that the stellar spin-orbit alignment time is comparable to

the inspiral time, i.e. τi ∼ τa. This means that if we observe a planet, then its survival

implies that tides are unlikely to have aligned its orbit. For planets on an accelerating

inspiral into the star, the rate of inclination evolution will have been much lower in

the past. Therefore if we observe a planet well inside corotation (Ω cos i < n), with a

roughly coplanar orbit, we can assume that it must have started off similarly coplanar

– unless we are lucky enough to be observing a planet on its final rapid inspiral into the

star after it has undergone most of the evolution, where it is now in a very short-period

orbit, close to being consumed.

We expect τi ∼ τa when α � 1 – which is true for close-in terrestrial planets –

since Ω can be considered fixed, with the inclination changing only due to changes in

h. For typical values of α = O(1) for HJs, the inclination changes due to rotations of

both Ω and h, so the timescales are not exactly the same, but would be expected to

be of the same order of magnitude.

Hut (1981) showed by considering only the tide in the star, that the stellar spin-

orbit alignment timescale is longer than the circularisation timescale (τi > τe) unless

α > 6. This was based on exponential decay estimates for small e and i, but nev-

ertheless holds for the systems integrated in this work, as can be seen from Fig. 2.7.

This makes intuitive sense, since α = O(1) means that spin angular momentum is im-

portant, and circularisation involves only a property of the orbit, whereas alignment

involves both the spin and the orbit. For typical HJs α < 6; we therefore expect

τe < τi, especially when the eccentricity damping effect of the tide in the planet is

taken into account, which further enhances this inequality. The tide in the planet is

completely negligible in changing the stellar obliquity since I2 � I1 ∼ m2a
2.

This means that if an orbit is initially inclined and eccentric as a result of planet-

planet scattering or Kozai migration into a short-period orbit, we would expect the
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orbit to become circular before it aligns with the spin of the star. We should therefore

observe fewer eccentric orbits than inclined orbits, if those systems start with a uniform

distribution in e, i–space. This also means that if we observe a close-in planet on a

circular orbit with non-zero i, we cannot rule out a non-negligible eccentricity in the

past.

2.6 Application to an observed system: an expla-

nation for the misaligned spin and orbit of XO-

3 b

The first system observed with a spin-orbit misalignment was XO-3 (Hébrard et al.

2008; Winn et al. 2009), which has a sky-projected spin-orbit misalignment angle of

λ = 37.3◦ ± 3.7◦ (after being revised down from λ ' 70◦). This system has a very

massive m2 = 12.5MJ planet on a moderately eccentric e = 0.29, P = 3.2 d orbit

around an F-type star of mass m1 = 1.3M�. Its age is estimated to be τ? ' (2.4−3.1)

Gyr. Note that even if the star is rotating near breakup velocity (P? ∼ 1 d), the planet

is still subject to tidal inspiral, since P? > P cos i (where we henceforth assume i = λ,

which may slightly underestimate i). If we assume that the angle of inclination of the

stellar equator to the plane of the sky is ∼ 90◦, then P? = 3.3 d ∼ P , i.e., Ω ∼ n.

Hébrard et al. (2008) quote a stellar spin-orbit alignment timescale of ∼ 1012 yr

for this system, but we find that this is in error by ∼ 105. We believe that the reason

for this discrepancy is that their estimate was based on assuming that the spin-orbit

alignment time for XO-3 b is the same as for HD17156 b (Narita et al. 2008; Cochran

et al. 2008), which is a less massive planet on a much wider orbit. We find τi ∼ 30

Myr (using the expression in §2.4) assuming Q′
1 = 106 to align the whole star with

the orbit. Circularisation time of τe ∼ 10 Myr and the inspiral time is estimated to be

τa ∼ 16 Myr from simple estimates.

Integrations for this system are given in Fig. 2.8 for a variety of stellar and planetary

Q′ values. These integrations again highlight the importance of considering coupled

evolution of the orbital and rotational elements, since timescales for tidal evolution can

be quite different from the simple estimates. Indeed, the actual spin-orbit alignment
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Figure 2.8: Tidal evolution of XO-3 b taking current values for the orbital properties of the
system, except that i = 90◦. MB is included with γ = 0.1, and Ω1/n = 2 initially (results do
not depend strongly on this choice). From the top and middle plots we require Q′

1 ≥ 1010

for the planet to survive for several Gyr, and maintain its high inclination. From the bottom
plot we see that if Q′

1 ≥ 1010, we require Q′
2 ≥ 108 to maintain the current eccentricity for

a few Gyr. Tidal dissipation in both the planet and star must therefore be weak to explain
the current configuration of the system.

55



time from integrating the full set of equations is about an order of magnitude smaller

than that from the simple decay estimate, due to the semi-major axis evolution. We

choose an initial i = 90◦ to make the evolution clearer (this is not unreasonable since

λ, in any case, gives a lower bound on i, and the results do not depend strongly on

the non-zero value of i).

For the cases considered, the system can only survive and remain with its current

inclination for ∼ 3 Gyr if Q′
1 ≥ 1010. An explanation for the survival and remnant

orbital inclination of XO-3 b could therefore be the inefficiency of tidal dissipation in

the host star. The host star is an F-star of mass m1 = 1.3± 0.2M�, so it will contain

a small convective core and a very thin outer convection zone (OCZ) separated by a

RZ. Dissipation in the convective core will only weakly affect the tide, and dissipation

in the RZ will also be weak (Zahn, 2008). This is because internal inertia-gravity

waves excited at the interface between convective and radiative regions cannot reach

the photosphere, where they can damp efficiently, as supposed for high-mass stars.

In addition, nonlinear effects due to geometrical concentration of the waves near the

centre of the star (studied in detail in Part II) cannot occur because the waves will

reflect from the outer boundary of the inner convection zone well before they become

nonlinear.

We expect that most dissipation occurs in the OCZ of the star. A calculation of

Q′ for the dissipation of the equilibrium tide and inertial modes, in the thin OCZ,

using a stellar model2 appropriate for this star (note that the metallicity of the star

is subsolar, with Z ∼ 0.01), was performed (see OL04 for details of the numerical

method). It must be noted that these calculations involve uncertainties regarding the

effective viscosity of turbulent convection, though the general trends in the results

below (and those discussed in §5.7) are likely to be quite robust. The results for the

m = 0, 1, 2 components of the tide are plotted in Fig. 2.9. In Appendix A.3, we

show that a combination of the m = 0, 1, 2 components of the tide are relevant for

spin-orbit alignment and inspiral for an inclined orbit, and so we must calculate Q′

for all components of the l = 2 (quadrupolar) tide. The relevant tidal frequencies,

assuming Ω ∼ n currently, would be those of integer ω̂/Ω. However, since the angle

of inclination of the stellar equatorial plane to the plane of the sky has not been

2for which we use EZ Web at http://shayol.bartol.udel.edu/∼rhdt/ezweb/
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Figure 2.9: Q′ as a function of the ratio of tidal frequency to spin frequency ω̂/Ω, from
dissipation of the l = 2, m = 0, 1, 2 components respectively, of the equilibrium tide and
dissipation of inertial modes in the OCZ of an F-type star (see OL07 for details of this
calculation). This used a stellar model appropriate for XO-3 to model the convection zone.
The dashed lines represent the effect of omitting the Coriolis force, and therefore inhibiting
inertial waves. The prominent features in each figure (which occur for ω̂/Ω = −1 and −1/6
for m = 1 and ω̂/Ω = −1/3 for m = 2) are Rossby wave resonances, which probably occur
for tidal frequencies not relevant for the XO-3 system. For most tidal frequencies Q′ ≥ 1010,
which could explain the survival and remnant orbital inclination of XO-3 b.
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determined, the relevant tidal frequencies cannot be calculated with any certainty.

Nevertheless, Q′ ≥ 1010 for most tidal frequencies for the host star XO-3. This can

explain the survival and remnant inclination of XO-3 b, since both τa and τi would be

longer than the age of the system.

In addition, the remnant eccentricity could be maintained due to weak damping of

the tide in the star for the same reasons. However, we must also explain the inefficient

damping of the tide in the planet, if indeed the reason for the eccentricity is that

τe > τ?. The planet in this system is massive, and may be a low-mass brown dwarf.

If it formed without a core, then the dissipation of inertial modes may be reduced if

they are able to form global modes, as found in OL04.

2.7 Conclusions

In this chapter we have investigated the long-term tidal evolution of HJs in a simple

model of tidal friction. We have studied the effects of MB on tidal evolution in a

simplified system, and then performed numerical integrations for a variety of HJ sys-

tems, with particular emphasis on inclination evolution. We now summarise the main

results of this work.

MB moves the corotation radius of the star outwards such that any close-in planets

will eventually orbit inside corotation (Ω cos i < n), and be subject to orbital decay due

to tides. MB is found to be important for the tidal evolution of HJs unless Ω cos i� n,

in which case the orbit is already well inside the orbit-projected corotation radius. MB

is particularly important when it comes to interpreting the tidal evolution of observed

systems from formation to the present day, since the star may have been rotating

much more rapidly in the past. Nevertheless, it is probably not a bad approximation

to neglect MB for calculating the future tidal evolution of most observed HJs, if the

star has already spun down so that Ω � n.

Combining our results with Jackson et al. (2008), we find that coupled evolution

of the orbital and rotational elements is essential to accurately model tidal evolution.

This is especially true for highly eccentric orbits.

We find that the timescale for stellar spin-orbit alignment is comparable to the

inspiral time for HJs, therefore the orbits of most close-in planets have probably not
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aligned with the spin of the star. Observed inclinations are likely to be a relic of

the migration process. This means that RM observations of transiting planets can

potentially distinguish between migration caused by planet-planet scattering or Kozai

oscillations combined with tidal dissipation in the star, and that produced by tidal

interaction with the gas disc. If the majority of candidates are found with λ ∼ 0, this

strongly disfavours planet-planet scattering or Kozai migration, since they are expected

to produce significantly inclined orbits, and we have found that tides are unlikely to

have aligned orbits without causing inspiral. Alternatively, if systems are found with

significantly nonzero λ, then some planet-planet scattering or Kozai migration could

have occurred to produce these orbital inclinations.

The population of planets whose spin-orbit alignments have been observed with the

RM effect can be statistically analysed to give a distribution of i for HJs (Fabrycky

& Winn, 2009). Collecting all RM observations together, this indicates the surprising

result that most HJs appear to be misaligned, possessing a wide variety of spin-orbit

angles (Triaud et al., 2010). This distribution of i appears consistent with that pre-

dicted by the process of Kozai cycles with tidal friction (Fabrycky & Tremaine, 2007)

(see §1.2). Together with our result that the spin-orbit angle is not likely to change

appreciably over the lifetime of the system due to tides, if future observations can

confirm this i distribution, then it would indicate that Kozai migration may indeed be

an important formation mechanism of HJs. However, it is unlikely to work in all cases.

These observations do appear to disfavour disk migration as the sole mechanism for

producing HJs.

For most HJs, tides tend to circularise the planet’s orbit before spin-orbit alignment

or inspiral occurs. Therefore, if we observe a planet on an inclined, circular orbit, we

cannot rule out a non-negligible eccentricity in the past. This means that we should

observe fewer eccentric orbits than inclined orbits if those systems start with a uniform

distribution of points in (e, i)-space, due to tidal friction. This should be considered

when comparing the observed (e, i) distribution with those predicted from theoretical

work on Kozai migration or planet-planet scattering, before we can further constrain

these theories (Fabrycky & Tremaine 2007; Jurić & Tremaine 2008).

The misaligned spin and orbit of the XO-3 system could potentially be explained
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in terms of inefficient tidal dissipation inside the host star. The required stellar Q′
1 &

1010 required for the survival and remnant misalignment is predicted from theoretical

calculations of tidal dissipation in the OCZ of an F-star. In addition, the remnant

eccentricity poses constraints on the planetary Q′
2 & 108, in the absence of perturbing

forces that could excite the eccentricity.

In this part of the thesis we have adopted a simple model of the effects of tidal

friction and examined some of its consequences. In Part II we turn to studying in

detail the mechanisms of tidal dissipation in solar-type stars, to try to understand the

importance of tides in the evolution of short-period planets and their host stars.
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Part II

Internal gravity waves and tidal

dissipation in solar-type stars
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Chapter 3

Internal wave breaking near the

centre of a solar-type star:

Boussinesq-type model and 2D

simulations

We study the fate of IGWs approaching the centre of an initially non-rotating solar-

type star, primarily using two-dimensional numerical simulations based on a cylindrical

model. A train of IGWs is excited by tidal forcing at the interface between the

convection and radiation zones of such a star. We derive a Boussinesq-type model

of the central regions and obtain a nonlinear wave solution. We then use spectral

methods to integrate the system of equations numerically, with the aim of studying at

what amplitude the wave is subject to instabilities. These instabilities lead to wave

breaking whenever the amplitude exceeds a critical value. Below this critical value,

the wave reflects perfectly from the centre of the star. Wave breaking leads to mean

flow acceleration, which corresponds to a spin up of the central region of the star, and

the formation of a critical layer, which acts as an absorbing barrier for subsequent

ingoing waves. As these waves continue to be absorbed near the critical layer, the

star is spun up from the inside out. This has implications for the fate of short-period

planets orbiting solar-type stars, which will be discussed in Chapter 5.
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3.1 Introduction

IGWs are thought to account for the efficient tidal dissipation inferred from the cir-

cularisation of early-type binary stars (Zahn 1975; Zahn 1977; Zahn 2008; Savonije

& Papaloizou 1983; Papaloizou & Savonije 1985; Savonije et al. 1995b; Savonije &

Papaloizou 1997b; Papaloizou & Savonije 1997b), which are massive enough to have

a convective core and an exterior radiative envelope. In these stars, IGWs are ex-

cited near the boundary between these two regions, where the buoyancy frequency

(or Brunt-Väisälä frequency, see § 3.2) matches the tidal forcing frequency. These

propagate outwards into the stably stratified RZ, towards the surface, where they are

fully or partially damped by radiative diffusion. In this picture, these stars are tidally

synchronized from the outside in, since angular momentum is deposited in the regions

of the star where these waves damp. Goldreich & Nicholson (1989) propose that a

corotation resonance (or critical layer, which we define in the next section) forms near

the surface, which absorbs outward propagating waves. This is analogous to the pic-

ture that we will describe later in this chapter, except that our model has the star

spinning up from the inside out.

The above model only works for stars with an exterior RZ, which is unlike that

of the Sun and other stars of solar type, which have radiative cores and convective

envelopes. It is of particular interest to study the efficiency of tidal dissipation in

these stars, since many have been found to harbour close-in planets, whose survival is

determined by the stellar Q′. This is because a planet with an orbital period shorter

than the stellar spin period is subject to tidally induced orbital decay, with an inspiral

rate that depends linearly on dissipation in the star. In these stars, a train of IGWs

are again excited at the interface between the convective and radiative regions, but

here it propagates towards the stellar centre. If they can coherently reflect from the

centre, global standing modes can form in the RZ. In this case, tidal dissipation is

efficient only when the tidal frequency matches that of a global standing mode (which

are commonly referred to as g-modes; Terquem et al. 1998; Savonije & Witte 2002).

When this occurs, the dissipation can be very large, leading to rapid evolution of the

system out of resonance. This would not contribute appreciably to the time-averaged

Q′ because the transition through resonance is relatively fast, unless the system gets
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locked into resonance by evolutionary processes, such as stellar evolution or MB (Witte

& Savonije 1999; Witte & Savonije 2001). On the other hand, if these waves do not

reflect coherently from the centre, and are either strongly dissipated there, or are

reflected with a perturbed phase, then efficient dissipation is possible over a broad

range of tidal frequencies (GD98; OL07). The extent of nonlinearity in the waves

near the centre is likely to be the factor that determines whether these waves reflect

coherently, and this is controlled by the amplitude and frequency of the tidal forcing,

as well as the properties of the stellar centre.

In this chapter we study the problem of IGWs approaching the centre of a solar-

type star, primarily using two-dimensional numerical simulations. We first derive

a Boussinesq-type system of equations appropriate for the stellar centre, which are

ideal for integrating numerically using spectral methods. An exact solution for tidally

forced waves in 2D is derived, and some of its properties are discussed. Our numerical

set-up is described and results are presented for both linear and nonlinear forcing

amplitudes, including an analysis of the reflection coefficient and a study of the growth

of different azimuthal wavenumbers in the disturbance. The simulations in this chapter

are extended to three dimensions in Chapter 4. This is followed by a discussion of

the results, especially their relevance to Q′ for solar-type stars, and to the survival of

close-in giant planets in orbit around such stars, in Chapter 5. We study the stability

of the nonlinear wave derived in this chapter in Chapter 6. Finally, in Chapter 7 we

present and discuss an alternative mechanism of tidal dissipation involving the gradual

radiative damping of the waves being able to produce a critical layer.

3.2 Internal gravity waves: elementary properties,

wave breaking and critical layers

IGWs are a family of dispersive waves that are ubiquitous in nature. They propagate

in any fluid with a stable density stratification, due to the restoring force of buoy-

ancy. Their influence can be observed in the oceans and atmosphere of the Earth on

a range of spatial and temporal scales, from the visual undulations of striated cloud

structures, to the complex interplay between these waves and shearing flows, which
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produces the large-scale Quasi-Biennial Oscillation in the equatorial stratosphere. It is

widely recognised that IGWs play a prominent role in the transport of energy and an-

gular momentum in geophysical and astrophysical flows (McIntyre 2000; Bühler 2009).

IGWs are thought to be important in stably stratified RZs of stars. When excited by

turbulent convection, they were at one stage put forward as potential explanations for

maintaining the solid body rotation of the radiative interior of the Sun (Schatzman

1993; Zahn et al. 1997). However, it was pointed out that the “antidiffusive” nature

of IGWs tends to enhance local shear rather than reduce it (Gough & McIntyre 1998).

IGWs are still thought to produce angular velocity variations in the RZ (Rogers &

Glatzmaier 2006). They have also been invoked to explain the Li depletion problem

in F-stars (Garcia Lopez & Spruit 1991), affecting solar neutrino production (Press

1981), and possibly having an effect on the solar cycle (Kumar et al. 1999).

Observations of oscillations on the solar surface are able to provide information

about the interior properties of the Sun (Christensen-Dalsgaard 2002). IGWs in the

radiative interior of the Sun can form global standing modes, commonly referred to as

g-modes, if their frequency matches that of a free mode of oscillation. These are known

to have their amplitude largest close to the centre (see § 3.5 & 5.2) and would therefore

seem ideal probes of the deep interior. Unfortunately for observers, the standing

g-modes are effectively trapped in the radiative interior, where the stratification is

stable, and are evanescent in the CZ, and so are unlikely to be visible at the solar

surface. Nevertheless, modes of sufficiently low degree, with high enough amplitude,

may have already been observed at the surface by Garćıa et al. (2007), though it must

be noted that thus far there is no undisputed evidence for observations of g-modes

(Appourchaux et al. 2010).

The frequencies of the largely incompressible internal waves lie in ranges controlled

by the buoyancy frequency (or Brunt-Väisälä frequency) N , and the Coriolis frequency

2Ω. The square of the buoyancy frequency in a spherically symmetric star is defined

by

N2(r) = −1

ρ

dp

dr

(
1

Γ1

d ln p

dr
− d ln ρ

dr

)
, (3.2.1)

where ρ, p are the density and pressure, and Γ1 =
(

∂ ln p
∂ ln ρ

)
s
, is the first adiabatic
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exponent (derivative taken at constant specific entropy s and constant chemical com-

position). The local dispersion relation for linear noncompressive internal waves in a

fluid body rotating with angular velocity Ω is

ω2 = N2 sin2 α+ 4Ω2 cos2 β, (3.2.2)

where α is the angle between the wavevector k and the gravitational acceleration g,

and β is the angle between k and Ω. The frequency of these waves is independent

of wavelength (in the absence of viscosity or thermal conduction), and only depends

on the direction of the wavevector. This is different from waves whose restoring force

is due to compressibility, which have frequency inversely proportional to wavelength.

When N = 0, Eq. 3.2.3 describes inertial waves, which have frequencies in the range

(0, 2Ω). If the body is non-rotating (Ω = 0), then these waves are IGWs, and possess

frequencies in the range (0, N). In the presence of nonzero Ω and N , these waves are

intermediate between inertial waves and IGWs and are referred to as inertia-gravity

waves. For waves in a spherical star, at a given latitude there is a minimum frequency

for inertia-gravity wave propagation. Near the equator, waves can propagate with

arbitrarily low frequency. From here on we neglect the bulk rotation, and assume that

Ω = 0, i.e., we consider only IGWs. The local dispersion relation for IGWs can be

rewritten

ω2 = N2 k2
h

k2
r + k2

h

, (3.2.3)

where kh and kr are the horizontal and radial wavenumbers.

The phase and group velocities of these waves can be calculated from Eq. 3.2.3 to

give

cp =
ω

|k|
k

|k|
=

Nkh

(k2
r + k2

h)
3
2

(krer + kheh) (3.2.4)

≈ Nkh

k3
r

(krer + kheh) , (3.2.5)

cg = ∇kω = − Nkr

(k2
r + k2

h)
3
2

(kher − kreh) (3.2.6)

≈ −N
k2

r

(kher − kreh) , (3.2.7)
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in the tidally relevant limit that the radial wavelength of the waves is much shorter

than the horizontal wavelength, i.e., kh � kr (which is true except near a turning

point, or within the last few wavelengths from the centre of a star). In this limit,

cg ·er = −N kh

k2
r

= −cp ·er, i.e., the radial wave pattern moves in the opposite direction

to the radial energy flux. Since ω is independent of |k|, cg · k = 0, meaning that the

energy in IGWs propagates along surfaces of constant phase.

For waves on a non-zero horizontal background shear flow U, Eq. 3.2.3 still applies

if the Richardson number Ri = N2

|∂U/∂r|2 � 1, if we replace ω by the Doppler shifted

frequency ω̂, and similarly for the phase and group velocity of the waves,

ω̂ = ω − k ·U, ĉp = cp −U, ĉg = cg −U. (3.2.8)

We now have the possibility of the wave frequency being Doppler shifted upwards to

N , in which case ĉg · er reverses, giving total internal reflection.

The other extreme, ω̂ → 0, occurs when the horizontal velocity in the shear matches

the horizontal phase velocity. This occurs at a so-called “critical layer”, which is

defined as the layer in which the wavelength of the waves would be Doppler shifted to

zero, if they were ever to reach it. Note though, that ĉg · er → 0 as ω̂ → 0, so in linear

theory the waves never reach the critical layer in a finite time. Early work on IGWs

in a background shear, including a study of critical layers, can be found in Booker

& Bretherton (1967) and Hazel (1967). They find that an IGW propagating through

a critical layer is attenuated by a factor ∼ exp
(
−2π(Ri− 1/4)1/2

)
. If Ri � 1/4,

the wave is fully absorbed, and irreversibly transfers its energy to the mean flow.

However, it must be noted that at the critical layer, linear theory predicts that the

wave steepness

s =
max(u · eh)

ĉp · eh

, (3.2.9)

where u is the velocity perturbation, of these waves goes to infinity, as the Doppler

shifted horizontal phase speed ĉp · eh goes to zero, i.e., the waves become strongly

nonlinear at the critical layer (which McIntyre 2000, refers to as linear theory predicting

its own breakdown). Since wave breaking is expected to occur whenever s > 1, the

waves are likely to break before they reach the critical layer. Nonlinear effects have
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been studied in early simulations by Winters & D’Asaro (1994), who find that the

of initial wave energy on encountering a critical layer, roughly one third reflects, one

third results in mean flow acceleration, and the remainder cascades to small scales

where it is dissipated. This implies that wave absorption by the mean flow need not

be complete, in contrast with the prediction from linear theory. This is discussed

further in § 3.9.2, in relation to the results of our simulations.

Wave breaking is defined as any wave-induced process that leads to the rapid

and irreversible deformation of “otherwise wavy” material contours (McIntyre 2000),

and it leads to the production of turbulence and irreversible energy dissipation. The

breaking process results from the growth of an instability upon a basic state composed

of a wave with s > 1. The susceptibility of a wave to breaking can be enhanced by

resonant triad interactions, in which a primary wave resonantly interacts with a pair

of low-amplitude secondary waves. This process transfers energy to the secondary

waves, whose steepness can then grow beyond the critical value required for breaking

to occur, even though the primary steepness may not be sufficient for breaking on its

own (Staquet & Sommeria 2002). Previous work has shown that the process leading

to the wave steepening is two-dimensional, but that breaking is a three-dimensional

process (Klostermeyer 1991; Winters & D’Asaro 1994). Nevertheless, the mechanisms

responsible for breaking and the final outcome of the breaking process are likely to be

similar in 2D.

Here we are interested in studying what happens when IGWs excited by tidal

forcing approach the centre of a star with an inner RZ, i.e. G-type stars such as

the Sun, which do not possess a convective core. We are primarily concerned with

the efficiency of tidal dissipation for solar-type stars, resulting from breaking of these

waves near the centre. Throughout the rest of this chapter we restrict our problem to

2D, and postpone study of any 3D effects until Chapter 4. We now describe our basic

problem in more detail.
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3.3 Basic description of the problem

3.3.1 Tidal potential

Consider a star and a planet in a mutual Keplerian orbit (though we make no assump-

tions about the relative masses at this stage). The tidal potential experienced by the

star can be written as a sum of rigidly rotating spherical harmonics (e.g. OL04). For

the simplest case of a planet on a circular orbit, that is coplanar with the equatorial

plane of the star, we can consider a two-dimensional restriction of the problem to this

plane. This allows us to write the time-dependent part of the quadrupolar (l = 2)

tidal potential in the equatorial plane of the star as

Ψ(r, φ, t) = −3

4

Gmp

a3
r2 cos(2φ− ω̂t), (3.3.1)

in spherical polar coordinates (r, θ, φ) with origin at the centre of the star, in the plane

θ = π/2. Here mp is the planet mass, a is the orbital semi-major axis, and n > 0 is

the mean motion. The relevant tidal frequency is ω̂ = 2n − 2Ω, for a star rotating

with angular velocity Ω. From here on we assume that the star is non-rotating, i.e.,

we assume that Ω = 0, which is a reasonable assumption if the star is spinning much

slower than the orbit. This is appropriate if a short-period planet orbits a solar-type

star, that has been spun down by MB for the duration that it has spent on the main-

sequence, to rotate with a spin period of several tens of days.

We consider a restriction of the full three-dimensional problem, in which the tidal

potential is composed of many different spherical harmonic components for an orbit of

arbitrary eccentricity and inclination, to instead consider a simplified two dimensional

model of a star, forced by this single component of the tide. In Chapter 4 we will

carry out fully three-dimensional simulations of this problem, which find that the two

dimensional approximation is indeed reasonable.
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Figure 3.1: Buoyancy frequency N normalised to dynamical frequency ωdyn versus radius,
based on Model S of the current Sun. Also plotted is the frequency 2π/0.5day ∼ 0.1ωdyn,
corresponding with the tidal frequency for a one-day orbit. Note that ω̂ � N throughout
the bulk of the RZ. Only near the centre and at the CZ/RZ interface, does ω̂ ∼ N .

3.3.2 Central regions of a star

The buoyancy frequency is real and comparable with the dynamical frequency of the

star

ωdyn =

(
Gm?

R3
?

) 1
2

, (3.3.2)

throughout the bulk of the RZ, where m? and R? are the stellar mass and radius,

respectively. In Fig. 3.1 we plot N normalised to ωdyn in the RZ for Model S of the

current Sun, which is a high-resolution standard solar model developed for helioseis-

mology (Christensen-Dalsgaard et al. 1996). For our problem, the tidal frequencies of

interest ω̂ � N , which implies kr � 2π/r, except near the centre. IGWs are excited

at the top of the RZ by a combination of tidal forcing in that region, together with

the pressure of inertial waves acting at the interface if |ω̂| < 2Ω (OL07). It is within

this transition region that N increases linearly with distance into the RZ, so there is

a point at which N ∼ ω̂, and IGWs are efficiently excited. These propagate towards

the centre with radial wavelengths λr ∼ 10−3 − 10−2R�, for typical tidal frequencies.
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Expanding the standard equations of stellar structure about r = 0, we obtain the

density stratification ρ ≈ ρ0 + ρ2r
2. For sufficiently small r, g is linear in r, and

N ≈ Cr, where C is a constant that varies with stellar model, and main-sequence age.

For the current Sun, C ≡ C� ≈ 8.0 × 10−11m−1s−1. This is valid throughout only

the inner . 3% of the Sun. However, even considering the largest radial wavelength

produced by a HJ, this region contains multiple wavelengths.

3.4 Derivation of a Boussinesq-type system of equa-

tions

The ideal compressible fluid equations in 2D plane polar (r, φ) coordinates are

Dur −
u2

φ

r
= −1

ρ
∂rp− ∂rΦ, (3.4.1)

Duφ +
uruφ

r
= − 1

ρr
∂φp−

1

r
∂φΦ, (3.4.2)

Dρ+ ρ

[
1

r
∂r(rur) +

1

r
∂φuφ

]
= 0, (3.4.3)

Dp− γp

ρ
Dρ = 0, (3.4.4)

∇2Φ = 4πGρ, (3.4.5)

D = ∂t + ur∂r +
uφ

r
∂φ. (3.4.6)

The basic state is static and circularly symmetric. Near the centre, we pose the

expansion

ρ = ρ0 + ρ2r
2 + ρ4r

4 +O(r6), (3.4.7)

and similarly for p and Φ. The coefficients are related by the condition for the back-

ground to be in hydrostatic equilibrium, together with Poisson’s equation, giving

p2 = −ρ0Φ2, p4 = −ρ0Φ4 +
p2ρ2

2ρ0

, (3.4.8)

Φ2 = πGρ0, Φ4 =
πGρ2

4
, (3.4.9)

and so on for the coefficients of higher-order terms.
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We are interested in a region where r/R? = O(ε), where ε� 1, so let r = εx. Now

introduce a slow time τ = εt, then the solution including the basic state, and a slow

nonlinear density perturbation, has the form

ρ = ρ0 + ε2ρ2x
2 + ε4ρ4x

4 + ...︸ ︷︷ ︸
basic state

+ ε2ρ′2(x, φ, τ) + ...︸ ︷︷ ︸
nonlinear perturbation

, (3.4.10)

p = p0 + ε2p2x
2 + ε4p4x

4 + ...︸ ︷︷ ︸
basic state

+ ε4p′4(x, φ, τ) + ...︸ ︷︷ ︸
nonlinear perturbation

, (3.4.11)

Φ = Φ0 + ε2Φ2x
2 + ε4Φ4x

4 + ...︸ ︷︷ ︸
basic state

+ ε4Φ′
4(x, φ, τ) + ...︸ ︷︷ ︸

nonlinear perturbation

, (3.4.12)

ur = ε2ur2(x, φ, τ) + ...︸ ︷︷ ︸
nonlinear perturbation

, (3.4.13)

uφ = ε2uφ2(x, φ, τ) + ...︸ ︷︷ ︸
nonlinear perturbation

, (3.4.14)

In the Boussinesq approximation, the fractional pressure perturbation is small com-

pared with the fractional density perturbation because this is a low-frequency dis-

turbance, with ω � ωdyn, for which acoustic effects are negligible. For such short-

wavelength perturbations, the gravitational perturbation is also small (Christensen-

Dalsgaard 2002). These two points explain the absence of terms in the above solutions

proportional to ε2 for p and Φ in the nonlinear perturbation. This corresponds to

looking for small density constrasts and weak material accelerations compared with

gravity.

Substituting these expansions into the basic equations, and subtracting terms that

arise only in the basic state, we obtain at leading order

D1ur2 −
u2

φ2

x
= − 1

ρ0

∂xp
′
4 +

2xp2ρ
′
2

ρ2
0

− ∂xΦ
′
4, (3.4.15)

D1uφ2 +
ur2uφ2

x
= − 1

ρ0x
∂φp

′
4 −

1

x
∂φΦ

′
4, (3.4.16)

ρ0

[
1

x
∂x(xur2) +

1

x
∂φuφ2

]
= 0, (3.4.17)

2xp2ur2 −
γp0

ρ0

(D1ρ
′
2 + 2xρ2ur2) = 0, (3.4.18)

∇2Φ′
4 = 4πGρ′2, (3.4.19)

D1 = ∂τ + ur2∂x +
uφ2

x
∂φ. (3.4.20)
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We can rewrite these equations in a more natural notation, removing the asymp-

totic scalings to find

Dur −
u2

φ

r
= −∂rq + rb, (3.4.21)

Duφ +
uruφ

r
= − 1

ρr
∂φq, (3.4.22)

1

r
∂r(rur) +

1

r
∂φuφ = 0, (3.4.23)

Db+ C2rur = 0, (3.4.24)

D = ∂t + ur∂r +
uφ

r
∂φ, (3.4.25)

where

b =
2p2

ρ2
0

ρ′2, (3.4.26)

q =
1

ρ0

p′4 + Φ′
4, (3.4.27)

are a buoyancy variable and a modified pressure variable, and

C2 = 4Φ2

(
p2

γp0

− ρ2

ρ0

)
, (3.4.28)

is related to the buoyancy frequency N by N = Cr, with C2 > 0 for a stable strati-

fication. Note that Poisson’s equation is no longer required, since we have separated

out the gravitational potential perturbation in this approximation.

We can write these equations in the vector-invariant form (which can be used in

two or three dimensions)

Du = −∇q + rb, (3.4.29)

Db+ C2r · u = 0, (3.4.30)

∇ · u = 0, (3.4.31)

D = ∂t + u · ∇. (3.4.32)

These equations are similar to the standard Boussinesq system for a slab of fluid in

Cartesian geometry (see e.g. Bühler 2009, Ch. 6) with a uniform stratification, with

the exception that our problem is in cylindrical geometry, with g and N proportional
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to r. Note also that the buoyancy variable defined here is related, but not identical,

to that of the standard Boussinesq approximation used in atmospheric sciences and

oceanography (see e.g. Bühler 2009). The buoyancy variable is proportional to the

density and entropy perturbation.

An energy equation for our system can be derived by contracting Eq. 3.4.29 with

u:

∂t

(
1

2
|u|2 +

b2

2C2

)
+∇ ·

[(
1

2
|u|2 +

b2

2C2
+ q

)
u

]
= 0. (3.4.33)

Thus E = 1
2
ρ0|u|2 + ρ0

b2

2C2 is the energy density per unit volume, and

FE = ρ0

(
1
2
|u|2 + b2

2C2 + q
)

u is the energy flux density.

If the fluid is at rest, with b = 0, then the stratification surfaces are circles (spheres

in 3D), and C2 measures the strength of the stable stratification. If we disturb the fluid

from rest, then a positive (negative) buoyancy is associated with an inward (outward)

radial displacement of particles, resulting in an outward (inward) acceleration of the

fluid due to buoyancy, to restore the system to equilibrium. From the energy equation

Eq. 3.4.33, the state b = 0 is seen to be that of minimum gravitational potential energy,

since the available potential energy density ρ0
b2

2C2 is minimised. This makes sense, since

this corresponds to having a background state with no wave-like disturbance.

3.5 Linear theory of IGWs approaching the stellar

centre

3.5.1 Linear solution steady in a frame rotating with the pat-

tern speed of forcing

If the RZ is forced from above then this will excite waves which propagate to the centre

of the star. If the incoming wave has frequency ω and azimuthal wavenumber m, then

we can assume that the response is steady in a frame rotating with the angular pattern

speed Ωp = ω/m, in the absence of instabilities. The dependence on φ and t is then
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only through the combination

ξ = m(φ− Ωpt). (3.5.1)

We can choose Ωp/C as a unit of length, and Ω−1
p as a unit of time1, to allow us to

write the equations in the dimensionless form

Dur −
u2

φ

r
= −∂rq + rb, (3.5.2)

Duφ +
uruφ

r
= −m

ρr
∂ξq, (3.5.3)

1

r
∂r(rur) +

m

r
∂ξuφ, (3.5.4)

Db+ rur = 0, (3.5.5)

D = ur∂r +m
(uφ

r
− 1
)
∂ξ. (3.5.6)

The energy equation (Eq. 3.4.33) allows us to infer that the radial energy flux

FE
r = ρ0

∫ 2π

0

[
1

2

(
|u|2 + b2

)
+ q

]
rurdξ, (3.5.7)

is independent of r for disturbances steady in this frame of reference, since the solutions

are periodic in ξ with period 2π.

The radial angular momentum flux is

FL
r =

m

ω
FE

r . (3.5.8)

We can obtain a solution to these equations by linearization, assuming that the

solution is proportional to eiξ, obtaining (where real parts are assumed to be taken)

−imur = −∂rq + rb, (3.5.9)

−imuφ = −imq
r
, (3.5.10)

1

r
∂r(rur) +

im

r
uφ = 0, (3.5.11)

−imb+ rur = 0. (3.5.12)

The incompressibility constraint allows expression of the velocity in terms of the

1Note that these units are only used in this section, §4.2, §7.2, and in Appendix A.4.
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streamfunction ψ(r, φ), defined by

u = ∇× (ψez) =

(
1

r
∂φψ

)
er + (−∂rψ) eφ, (3.5.13)

so we can write

ur = Re

[
im

r
ψ

]
, (3.5.14)

uφ = Re [−∂rψ] . (3.5.15)

This enables us to reduce the system to Bessel’s equation of order m,

Lmψ = ∂r(r∂rψ) + r

(
1− m2

r2

)
ψ = 0 (3.5.16)

with solution regular at the origin ψ ∝ Jm(r). This represents a wave that approaches

from infinity, reflects perfectly from the centre and goes out to infinity. Pure ingoing

and outgoing wave solutions are described by Jm(r) ± iYm(r), with the appropriate

sign explained below.

3.5.2 Properties of the (non-)linear solution

The general solution can be written in the form of a sum of ingoing and outgoing

waves, with complex amplitudes Ain and Aout, as follows:

ψin(r, ξ) = [Jm(r) + iYm(r)]eiξ, (3.5.17)

ψout(r, ξ) = [Jm(r)− iYm(r)]eiξ, (3.5.18)

ψ(r, ξ) = Ainψin(r, ξ) + Aoutψout(r, ξ). (3.5.19)

We can check that ψin corresponds to an ingoing wave by calculating its phase and

group velocities. A simple calculation shows that the radial phase velocity is directed

outward if we adopt the convention that ω = mΩp > 0, and the group velocity is

directed inward. This highlights one of the peculiarities of IGWs – that the phase and

group velocities are oppositely directed, as discussed in § 3.2. For these linear waves,

we have

FE
r = ρ0πmrIm[ψ∂rψ

∗] = 2mρ0

(
|Aout|2 − |Ain|2

)
. (3.5.20)
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The solution for a wave that perfectly reflects from the centre is

ψ(r, ξ) = 2AinJm(r)eiξ, (3.5.21)

and has FE
r = 0, since Ain = Aout.

If we take the curl of Eq. 3.4.29, we obtain

∂t(∇× u) = ∇× (rb)−∇× (u · ∇u), (3.5.22)

which has eliminated the modified pressure perturbation q. The z-component of this

equation, expressed in terms of the streamfunction, is

∂t(−∇2ψ) = −∂φb+ J(ψ,−∇2ψ), (3.5.23)

and the buoyancy equation is

∂tb = −∂φψ + J(ψ, b). (3.5.24)

The nonlinear terms take the form of Jacobians,

J(A,B) =
1

r

∂(A,B)

∂(r, φ)
= (∂rA)(

1

r
∂φB)− (

1

r
∂φA)(∂rB). (3.5.25)

For the solution above, we have

J(ψ,−∇2ψ) = J(ψ, b) = 0, (3.5.26)

which expresses the surprising result that the solutions derived are exact nonlinear

solutions of the system. This follows from the fact that −∇2ψ = b = ψ for these

waves. This arises because although the nonlinear terms u ·∇u 6= 0, they are balanced

by the modified pressure term in the equations of motion. We also have u · ∇b = 0.

This is distinct from, but analogous to, the result that a single propagating plane

IGW in a uniform stratification is a nonlinear solution of the standard Boussinesq

system (Drazin 1977; Klostermeyer 1982). This is a consequence of the fact that

k · u = 0 for these waves, which implies that the advective operator u · ∇ annihilates

any disturbance belonging to the same plane wave. A useful consequence of this is that
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a stability analysis can be performed on finite-amplitude propagating IGWs, allowing

detailed understanding of the initial stages of the breaking process for these waves

(Drazin 1977; Klostermeyer 1982; Klostermeyer 1991). Such studies have shown that

a single propagating IGW solution is always unstable whatever its amplitude, since

it undergoes resonant triad interactions. One important difference in our problem

is that the nonlinearity is spatially localized to the innermost wavelengths, whereas

the nonlinearity is present everywhere in the plane IGW problem. We postpone a

detailed study of the stability of our nonlinear standing wave until Chapter 6. However,

we expect waves of sufficiently large amplitude to be unstable if they overturn the

stratification.

The amplitude required to overturn the stratification can be derived using Eq. 3.5.21.

The entropy (or more precisely, a quantity proportional to the entropy) is s = b +

(1/2)r2, in these units. Overturning the stratification means that the entropy profile,

perturbed by a wave with buoyancy perturbation b, must satisfy ∂rs < 0, which im-

plies (1/r)∂rb < −1. Since b = ψ for these nonlinear waves, this can be expressed in

terms of the streamfunction as (1/r)∂rψ < −1. Reintroducing dimensional variables,

and substituting for uφ, modifies this criterion to (uφ/r) > Ωp, i.e., overturning occurs

if the angular velocity in the wave exceeds the angular pattern speed. Equivalently,

wave breaking occurs if

max(uφ) &
ω2

4C
, (3.5.27)

whose largest value occurs where the amplitude of ∂rJ2(r) is largest, which is one

wavelength from the centre.

3.6 Numerical methods

We solve the system of equations 3.4.29-3.4.32 using a Cartesian spectral code, SNOOPY

(Lesur & Longaretti 2005; Lesur & Longaretti 2007). It is advantageous to use a Carte-

sian code over one in the more natural (for the problem) cylindrical geometry, because

of the absence of a coordinate singularity at the origin, near to which is the region

of the flow that we are most interested in. We also avoid the timestep issues close
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to the centre that would be present in a time-explicit cylindrical code. These arise

from the Courant–Friedrichs–Lewy (CFL) condition, because the grid spacing becomes

very small near the origin. In addition, using a Boussinesq-type model has the ma-

jor advantage, over a fully compressible calculation, that it does not resolve sound

waves. Since the ratio of the sound speed to a typical IGW radial group velocity is

cs/cg,r ∼ 104 � 1, fully compressible simulations would spend most of their time re-

solving sound waves, and are therefore impractical for use on this problem. We found

that this was the case from preliminary low-resolution calculations using ZEUS-2D

(Stone & Norman 1992), which nevertheless confirm our main results, and which are

described in Appendix A.5, for completeness.

This code is a 3D Eulerian spectral Fourier code based on FFTW libraries, which

was written by G. Lesur, for studying hydrodynamic and magnetohydrodynamic tur-

bulence in accretion discs in the shearing box. The code has been parallelized using

both the MPI protocol and OPEN-MP. The algorithm is a pseudo-spectral method

which will now be briefly described. Spatial derivatives are computed in Fourier space,

which means that they are extremely accurate down to the grid scale, which is one

of the principle advantages of spectral methods (Boyd 2001). However, the nonlinear

terms, and those in which the coefficients have spatial dependence, are computed in

real space, since a real space product is a convolution in Fourier space. This proce-

dure is more efficient than a direct convolution product since the FFT computation

time scales as N logN , where N is the number of grid cells, whereas a convolution in

Fourier space scales as N2. The only drawback with this procedure is that the finite

resolution generates a numerical artifact commonly known as the aliasing effect, which

is the apparition of non-physical waves near the Nyquist frequency. This effect can

be handled through a de-aliasing procedure, in which the non-linear terms (and those

with spatially variable coefficients) are computed with a resolution 3/2 higher than

the effective resolution used in the source terms (Peyret 2002). This is implemented

by setting components of the solution with wavenumbers larger than 2/3 times the

maximum wavenumber to zero during every timestep, using a de-aliasing mask. Time

evolution is computed using a 3rd-order Runge-Kutta scheme.

Since this is a Fourier spectral code, the problem must be periodic in space. We
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solve our non-periodic problem using this code by setting up a region near the outer

boundary, in which the fluid variables are smoothed to zero as we approach the bound-

ary, using a parabolic smoothing function. We find it is quite acceptable to do this over

a region about 1/10 of the total box size. For this value there is negligible interaction

between neighbouring boxes. This approach is one that may be useful in many appli-

cations which would benefit from the use of spectral methods, but have non-Cartesian

geometry and/or non-periodic boundary conditions. The obvious drawback of such

an approach is the slight increase in computational cost, since the smoothing region

is additional to the flow in the region of interest. Interior to this we have a thin ring

in which we implement a forcing term in the radial momentum equation of the form

fr cos(2φ − ωt). This is designed to excite IGWs with m = 2, but is not designed to

accurately describe the excitation of IGWs at the top of the RZ, since we are only

interested in the dynamics of the central region. Our forcing is non-potential, which

reflects the fact that the tidal forcing of waves is indirect (e.g. see Chapter 5; OL04).

A potential force would be absorbed in this model by a hydrostatic adjustment of q.

Note that for uniform rotation Ω = Ωez, 2Ω× u = ∇(2Ωψ), so the resulting Coriolis

force is also a potential force, and would have no effect.

We solve the equations

Du = −∇q + rb+ ν∇2u +

{
0, 0 ≤ r < rforce,

f , rforce ≤ r < rsmooth,
(3.6.1)

Db+ C2r · u = 0, (3.6.2)

∇ · u = 0, (3.6.3)

D = ∂t + u · ∇, (3.6.4)

where f = −fr cos(2φ − ωt) er. We use a parabolic smoothing function d(r) =(
r−rsmooth

rbox−rsmooth

)2

, to instantaneously smooth ur, uφ and b to zero as we approach the outer

boundary. We do this by multiplying the variables in the region rsmooth ≤ r < rbox by

d(r) during every timestep. We also solve a Poisson equation for the modified pressure

during each timestep.

Our choice of units for length and time are arbitrary. We study a region −1.5 <

x < 1.5, −1.5 < y < 1.5 and set rforce = 0.85 rbox, rsmooth = 0.9 rbox, with rbox = 1.5.
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We choose a typical IGW radial wavelength of λr = 0.1, so that we are resolving

∼ 12 wavelengths within the box. The radial wavelength of these waves is not strictly

constant, but its variation for large r is small, and can be reasonably approximated by

a constant value in that region. We choose a forcing frequency ω = 1. These choices

are arbitrary, and are made to ensure that we are resolving a sufficient number of

wavelengths within the box.

Explicit viscosity is added to Eq. 3.4.29, since the code has no intrinsic dissipation.

This is necessary for stability – to ensure that we have no unphysical growth of energy

at small scales. The value of the viscosity is chosen such that it dissipates disturbances

on the grid scale, and a value of ν = 2 × 10−6, is chosen for all simulations. Viscous

terms are implemented in a time-implicit manner. We do not include thermal diffusion

in the buoyancy equation since this was found to be unnecessary for stability (however,

thermal diffusion is considered in §7.3).

The velocity components are normalised with respect to a typical radial phase

velocity of the wave ωλr/2π,

ur,φ = ũr,φ

(
ωλr

2π

)
, (3.6.5)

in which ũφ is equivalent to the wave steepness s, and is a measure of the nonlinearity

in the wave. This condition for overturning the stratification in Eq. 3.5.27, is then

ũφ >
1

2
. (3.6.6)

Since we have chosen to specify the radial wavelength λr and frequency ω of the

waves that we wish to study, we have already constrained the stratification

C =
πω

λr

. (3.6.7)

There is now only one further parameter, fr to fully specify the problem. We set

fr = f̃r

(
ωλr

2π

)
ω (3.6.8)

and vary the normalised amplitude f̃r, to model the effects of different tidal forcing

amplitudes. From preliminary investigation, it is found to be appropriate to choose
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values between 10−2 and 103, since these result in central amplitudes that range from

ũr � 1 to ũr = O(1) (higher central amplitudes are not observed, as is described in

the results, owing to wave breaking above a critical amplitude). This represents a

vast range of amplitudes of tidal forcing, from cases in which the secondary body is a

low-mass planet to a solar-mass binary companion, in a close orbit.

Our background is a hydrostatic equilibrium with no wave, with b = 0 in the

initial state. We use a resolution of 512 × 512 for most simulations, though higher

resolution runs have been performed using 1024× 1024 and 1536× 1536. We confirm

that the results are not dependent on the numerical method (and that our system

Eqs. 3.4.29-3.4.32 correctly describes the relevant physics) by reproducing the basic

results using ZEUS-2D. We describe our implementation of the problem in this code in

Appendix A.5. ZEUS reproduces the same basic results as the SNOOPY code, which

indicates that the effects of nonzero compressibility are unimportant. In light of this,

we only discuss the SNOOPY results below.

3.7 Numerical results

We use the set-up described in § 3.6 for a set of simulations with a variety of forcing

amplitudes f̃r. The typical radial group velocity and wave crossing time are, respec-

tively,

cg,r =
Cλ2

r

2π2
, (3.7.1)

tc =
rbox

cg,r

. (3.7.2)

For the initial conditions described in the previous section, tc ∼ 90. We define a

“wave” to be a non-axisymmetric oscillatory flow represented by a single azimuthal

wavenumber m 6= 0, whereas a “mean flow” is an axisymmetric azimuthal flow with

m = 0.

We perform several different quantitative analyses of the results. We separate the

amplitudes of the waves into an ingoing wave (IW) and an outgoing wave (OW), and

calculate a reflection coefficient, using the method described in Appendix A.4. The

reflection coefficient R is defined as the ratio of the absolute amplitudes of the OWs
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(Aout) and IWs (Ain) for a given radial ring,

R =

∣∣∣∣Aout

Ain

∣∣∣∣ , (3.7.3)

and measures the amplitude decay for a wave travelling from r to the centre and back

to r. We can relate it to the phase change on reflection (∆φ) by

∆φ = i

[
lnR− ln

(
Aout

Ain

)]
(3.7.4)

For perfect standing waves, Ain = Aout, and R = 1. If the IW is entirely absorbed

at the centre, then R = 0. Thus, R is a measure of how much the wave has been

attenuated on reflection from the centre.

We also Fourier analyse the solution, to study the temporal evolution of different

azimuthal wavenumbers in the flow. This is done by selecting a ring of cells in the

grid at a particular radius, which is chosen to be at r = 0.1, since this is probably

close enough to the centre to detect the effects of nonlinear wave couplings, if they

occur. Since this is a Cartesian grid, we do this by selecting all cells within a particular

radial ring to within a tolerance width comparable with the size of a grid cell. We

then compute the Discrete Fourier Transform of the velocity components, and from

this calculate the power spectral density,

Pm =
1

N

∣∣∣∣∣
N−1∑
k=0

ur,k exp

(
−imk

(
2π

N

))∣∣∣∣∣
2

(3.7.5)

and similarly for uφ, where N is the number of grid points in the ring – which depends

on r and the resolution, though 102 < N < 103, for all adopted resolutions at r = 0.1.

From this we can determine which components of the solution grow or decay as a result

of viscous damping, instabilities or nonlinear wave-wave interactions. Note that this

is only a rough approximation to the azimuthal power spectral density because the

points are irregularly spaced around the ring, yet we have assigned an even weighting

to each point. Nevertheless, this is justified in practice because this method works well

when tested on low-amplitude solutions that are well described by the standing wave

in § 3.5, for which we know that the solution is an m = 2 wave for both ur and uφ.

Note also that Pm = P−m since u is real, so we cannot distinguish between waves with
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wavenumbers m and −m, without also observing the time-dependence of the flow.

The main result that will be discussed in more detail below is that we find that

there exists a critical wave amplitude beyond which wave breaking occurs near the

centre. Below this amplitude, the waves reflect coherently from the centre, and a

steady state is reached in the reference frame rotating with Ωp, consisting of an m = 2

standing wave solution. This is the outcome inferred from linear theory (see §3.5),

and we will discuss these cases first, followed by those in which nonlinear effects start

to become important. We refer to the former as “low-amplitude” cases, and the latter

as “high-amplitude” cases.

3.8 Low-amplitude forcing: coherent reflection

When the simulations are started, transients are excited by the forcing at many dif-

ferent frequencies (and radial wavelengths), centred around ω = 1 in frequency space.

As more inward propagating waves are excited by the forcing, an IW train propagates

toward the centre. At this stage in the time evolution, the solution is composed of

many different frequencies, so our decomposition of the solution into a single IW and

OW does not work well. As transients escape the region and are damped, the primary

response of the fluid is in the form of waves with frequency ω = 1 and azimuthal

wavenumber m = 2.

As the waves approach the centre and reflect, an OW is produced. As this process

continues, the amplitude of the OW matches that of the IW near the centre. For

these low-amplitude cases, the phase change on reflection is negligible. This means

that we have coherent reflection from the centre, which allows standing waves to be

produced. These waves are stationary in a frame rotating with Ωp, as expected from

linear theory. We confirm that our simulations produce the correct standing wave

solution, by plotting an example of a comparison between the simulation and the

wave solution in Fig. 3.2. We plot the velocity components in two dimensions for an

example simulation in which standing waves have formed, with max(ũφ) ∼ 0.3, in

Fig. 3.3.

After a few wave crossing times, the reflection coefficient increases to values ap-

proaching unity throughout the grid, though its value decreases with radius, shown in
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Figure 3.2: Radial velocity along the x-axis for a simulation with forcing amplitude in-
sufficient to cause breaking. The amplitude of this wave is largest within the innermost
wavelength. Also plotted is the corresponding analytic standing wave Eq. 3.5.21, converted
into a radial velocity using Eq. 3.5.14. This illustrates that our simulations accurately de-
scribe the waves for the case in which the waves reflect coherently from the centre.

Fig. 3.4 for a low-amplitude case, with max(ũφ) ∼ 0.3. In this figure we also plot the

results of our IW/OW decomposition in a small-amplitude simulation with a resolu-

tion 1536 × 1536. Our reconstructed solutions match the data well except very close

to the centre, thus showing that our decomposition works well for these cases.

The decay in R with radius is a result of the nonzero viscosity, which results in

a decay of wave amplitude with time (and therefore distance from where they are

excited). The OW has been damped for longer, which results in the amplitude of the

OW being smaller than that of the IW. A simple estimate of the amplitude decay due

to viscosity with propagation from radius r and then reflected back to r again gives

ur

ur,0

∝ exp

(
−2

∫ r

0

νk2

cg,r

dr

)
≈ exp

(
−16π3ν

ωλ3
r

r

)
, (3.8.1)

since k ∼ kr, except near the centre, and cg,r ' ωλr/2π, throughout the box. This

roughly matches the amplitude decay between Ain and Aout at r = 1.2, implying that

the decay in amplitude is indeed due to viscous damping of the waves. In addition,

our inviscid exact solution is not exact in the presence of viscosity (see Chapter 7), so
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Figure 3.3: 2D plot of the radial (top) and azimuthal (bottom) velocity in the equatorial
plane of the star for small-amplitude waves. This is at a time t = 36tc, once standing waves
have formed, in a simulation with max(ũφ) ∼ 0.3, in which we have coherent reflection from
the centre. In the outer part of the grid, the solution is smoothed to zero to satisfy periodic
boundary conditions.
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Figure 3.4: Radial velocity along the y-axis (bottom left) and azimuthal velocity along the
line y = x (bottom right) in a small-amplitude simulation, after standing waves have been
set up at t = 36tc, with max(ũφ) ∼ 0.3 (solid blue lines). Also plotted is the reconstructed
solution using Ain and Aout obtained using the method described in Appendix A.4 (dashed
red lines). These are well matched everywhere except near the centre, showing that our
decomposition works well for these cases. In the top left we plot |Ain| (solid blue line) and
|Aout| (dashed red line) versus radius, together with a linear fit to each curve. The waves
damp as they propagate due to viscosity. In the top right we plot R versus radius.
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nonlinear terms do not vanish for this wave, though their effects are found to be small.

We verified that this amplitude decay was due to viscosity by running a low-amplitude

simulation with ν = 0, in which case Ain and Aout no longer decay with radius, once

standing waves have formed.

We find that the wave reflects coherently from the centre when ũφ . 0.5. Long-term

simulations (t ∼ several hundred tc) do not show the development of any instabilities

that act on waves with ũφ . 0.5, though there is a slow growth of m = 0 components

of ũφ in the solution, as can be seen in Fig. 3.5. In this figure, we plot Pm for the

first few even wavenumbers in the flow from an example low-amplitude simulation.

Negligible growth in odd m-values is observed, which is consistent with the symmetry

of the basic wave, and the quadratic nonlinearities of the Boussinesq-type system. The

growth in m = 0 is a result of viscosity, which acts to damp the waves and transfer

angular momentum from m = 2 to the mean flow. This can distinguished from a

process resulting from nonlinear interactions, because it is found to depend on ν. To

conclude, no instability is observed for waves with ũφ . 0.5.

3.9 High-amplitude forcing: wave breaking and crit-

ical layer formation

If we increase the value of f̃r, then the above picture changes considerably when a

critical wave amplitude is exceeded. Once ũφ > ũφ,crit ≈ 0.5, wave breaking occurs

near the centre within several wave periods (a few 2π/ω), and the outcome of the

simulations is very different from the small-amplitude case. This occurs when the

wave overturns the stratification – see Eqs. 3.5.27 and 3.6.6. In Fig. 3.6 we plot the

2D velocity components after wave breaking has occurred, in a simulation with f̃r = 15.

For highly nonlinear forcing, for example with f̃r > 20, the waves break as they

reach the centre with sufficient amplitude before there has been any significant reflec-

tion. For f̃r ∼ 10, the amplitude of the IW alone is insufficient to cause breaking, and

we must wait for reflection at the centre to produce an OW of comparable amplitude

before ũφ > ũφ,crit. Once this critical value is exceeded, the waves break. This is an

irreversible deformation of the otherwise wavy material contours.
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Figure 3.5: Temporal evolution of the power spectral density Pm at r = 0.1, in the lowest
four azimuthal wavenumbers m in the solution for ur (top) and uφ (bottom), in a low-
amplitude simulation with ũφ ∼ 0.3 near the centre, for grid resolution 512 × 512. The
solution is in the form of m = 2 waves, and reaches a steady state in the frame rotating
with Ωp. Growth of m = 0 is nonzero as a result of viscous damping of the waves. No wave
breaking occurs because ũφ < 0.5 in the solution. The m = 6 components are most likely
due to errors in the Fourier analysis.
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Figure 3.6: Radial velocity (top) and azimuthal velocity (bottom) in a high-amplitude
simulation with f̃r = 15 at t = 7tc, after wave breaking has occurred, from a simulation with
a resolution 1536× 1536.
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Figure 3.7: The top panel shows the radial velocity along y = x for the same case as
Fig. 3.6. The bottom panel shows the angular velocity of the fluid normalised to the angular
pattern speed of the forcing Ωp along the x-axis, at the same time in the simulation. This
shows that the central regions after wave breaking are spun up to slightly exceed Ωp. The
critical layer occurs where uφ/(rΩp) = 1.
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Once breaking occurs, we observe consequent mean flow acceleration (i.e. growth of

m = 0 components of uφ), as the angular momentum of the waves is deposited locally

where the wave breaks. This acts to spin up (if Ωp > 0) the central regions, which at

this stage contain a sufficiently small fraction of the angular momentum of the star

that their spin can be readily affected by these waves. Once this process has begun, the

central regions spin up to ∼ Ωp (which corresponds with the orbital angular frequency

of the planet), and a critical layer is formed, at which the Doppler shifted frequency

of the waves goes to zero. At this location, the azimuthal phase velocity of the waves

would equal that of the local rotation of the fluid, if they were ever to reach it intact.

In reality, as subsequent IWs approach the critical layer, nonlinearities dominate, and

the waves undergo breaking before they reach it – though see the discussion in § 3.9.2.

We plot the angular velocity of the fluid normalised to Ωp in the bottom panel of

Fig. 3.7.

As IWs approach the critical layer, their radial wavelength decreases, and they

slow down, i.e. ĉg,r → 0 as ω̂ → 0. This causes a buildup of wave energy just above

the critical layer, in which nonlinearities become important. In this thin region, the

quadratic nonlinearities produce higher wavenumber disturbances with even m-values

– see § 3.9.1. These are produced by the self-nonlinearity of the primary IW (m = 2)

as it approaches the critical layer – these self-nonlinearities vanish in the absence of a

mean flow. Daughter waves are damped faster than the primary wave because they

have lower frequencies and therefore shorter radial wavelengths, which is a result of

the theorem proved by Hasselmann (1967). Thus the IW is irreversibly deformed, and

transfers its angular momentum to either the mean flow or to daughter waves that

are then more easily dissipated by viscosity. The angular momentum carried by these

waves must be given to the mean flow when they are dissipated. This process acts to

spin up the fluid just above the critical layer to ∼ Ωp. As subsequent IWs are absorbed

by the critical layer, the spatial extent of the mean flow expands outwards, i.e. the star

is spun up from the inside out. We envisage that this process will continue until the

mean flow encompasses the bulk of the RZ, or the planet plunges into the star – this

is discussed further in Chapter 5. Long-term simulations, lasting for several hundred

tc, show that this appears to be the case.
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This picture is analogous to Goldreich & Nicholson (1989), who propose that early-

type stars in close binaries would spin down (if Ω > n, or spin up if Ω < n) from the

outside in, once a critical layer has formed near the surface as a result of strong

radiative damping of the waves. In our problem, an instability of the primary wave,

which occurs once the wave overturns the stratification, causes wave breaking. This

results in angular momentum deposition and spin-up (for the case in which Ω < n,

spin-down if Ω > n) of the central regions, which causes the formation of a critical

layer near the centre of a solar-type star. The rate of expansion of the spatial extent of

this region depends on the forcing amplitude; for larger amplitudes it expands faster.

The critical layer moves outwards when the dissipation of subsequent IWs deposits

sufficient angular momentum to spin up the fluid to ∼ Ωp. In this picture, there is a

front of synchronisation which gradually moves outwards.

3.9.1 Growth of different azimuthal wavenumbers in the flow

We now discuss the results of a spectral analysis of the simulation data, to study the

growth of the mean flow (m = 0), and daughter waves produced by breaking (other

|m| 6= 2 wavenumbers). We plot Pm for the first few even wavenumbers for a set of

examples in Figs. 3.8 and 3.9. Negligible growth in odd m-values is observed, which

is consistent with the symmetry of the basic wave and the quadratic nonlinearities

(though it is possible in principle for the wave to be unstable to odd-m perturbations).

At the beginning of the simulations m = 2 dominates until the primary wave

breaks and transfers angular momentum to the mean flow. When subsequent waves

approach the critical layer, the primary IW transfers angular momentum to higher

m-value disturbances – this can be seen from Fig. 3.8 prior to t ∼ 100, after which

the ring r = 0.1 is enveloped by the mean flow. After this, m = 0 dominates uφ. On

the other hand, ur is then primarily in the form of |m| = 2 disturbances, which from

examination of simulation output, counter-rotate with the forcing, and have angular

pattern speed −Ωp. The excitation of these waves could explain the counter-intuitive

effect of the most central regions spinning slightly faster than Ωp, since they carry

negative angular momentum. These waves appear to reflect from both the m = 2

critical layer (though note that these waves do not see this as a critical layer) and

93



0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

t

P
m

 

 

|m|=0
|m|=2
|m|=4
|m|=6

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

10
2

10
4

t

P
m

 

 

|m|=0
|m|=2
|m|=4
|m|=6

Figure 3.8: Temporal evolution of the power spectral density Pm at r = 0.1, in the lowest
four even azimuthal wavenumbers m in the solution for ur (left) and uφ (right), in a simula-
tion with f̃r = 15 and resolution 1536×1536. The solution is primarily in the form of m = 2
waves, until growth of even-m disturbances occurs as the wave breaks. Note that m = 0
grows strongest for uφ, i.e., angular momentum is transferred from the primary waves to the
mean flow. Once r = 0.1 is located inside the rotating region, ur is primarily composed of
|m| = 2.
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the centre. As these waves approach the m = 2 critical layer, since they are counter-

propagating waves, their frequency is Doppler shifted upwards towards N , and they

undergo total internal reflection. These waves appear to reflect back and forth from

the critical layer and the centre.

We also note the appearance of oscillations in the energy in m = 6 in the solution.

This is most likely due to errors in the Fourier analysis, because we are not sampling

the solution with evenly spaced points. Oscillations in m = 4 could be due to nonlin-

earitesthe resulting from the presence of viscosity, since they are also present to some

degree in the low-amplitude simulations. The amplitude of these oscillations is much

smaller than that of the m = 2 or m = 0 waves, so should not affect any conclusions

drawn from these results.

We experimented with the forcing amplitude to study cases in which the waves

were of insufficient amplitude to cause breaking, and ran the simulation for ∼ 100tc.

We find that, although breaking does not occur, a critical layer can eventually form

through the gradual spin-up of the central regions by viscous damping of the primary

waves. The results of our spectral analysis of the results of such a simulation are

plotted in Fig. 3.9. We clearly see evidence for viscous damping in producing growth

of energy in m = 0. This can be distinguished from the sudden growth at t ≈ 2200

which results once a critical layer forms within the first wavelength. We discuss this

mechanism further in Chapter 7.

3.9.2 Discussion of wave reflection from the critical layer

Once the critical layer has formed, we find that a large fraction of the IW angular

momentum is absorbed near the centre. First, we confirmed this naively, by watching

animations of the time dependence of the velocity components. For both components,

the wave pattern moves outwards, which corresponds to inward propagating IGWs, so

at least a significant fraction of the solution is in the form of IWs. This is quantified by

performing our IW/OW decomposition. The results of this for a typical simulation are

plotted in Fig. 3.10, where f̃r = 15. The time has been chosen after the critical layer

has formed, and the mean flow has been accelerated near the centre. The IW/OW

wave decomposition does not work well near the centre, as we might expect, since
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Figure 3.9: Temporal evolution of the power spectral density Pm at r = 0.1, in the lowest
four even azimuthal wavenumbers m in the solution for ur (top) and uφ (bottom), in a
simulation with f̃r = 2.5 and resolution 512 × 512. Until t = 2200, viscous damping acts
on the waves and transfers angular momentum to the mean flow. A critical layer forms at
t ≈ 2200, resulting in a jump in the growth of m = 0, and a drop of energy in |m| = 2.
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here the disturbance is primarily the mean flow (m = 0), though there are also other

components. Several wavelengths from the critical layer, in the region 0.3 < r < 1.2,

the reconstructed solution matches the simulation output quite well. The matching is

much noisier than in Fig. 3.4, since the solution contains contributions from m 6= 2

wavenumbers and ω 6= 1 frequencies, in addition to m = 2, ω = 1 waves.

Fig. 3.10 shows that the amplitude of the IW decays as it propagates towards the

centre. There is significant absorption of wave angular momentum near the critical

layer, as the IW propagates through the mean shear. This results in |Aout| � |Ain|,

though the reflection is nonzero, so |Aout| 6= 0. This leads toR� 1, in the region where

the decomposition works well, which implies that most of the angular momentum in

IWs is absorbed near the centre – also note that the energy flux ratio ∝ R2 � 1. In

addition, the phase of the OW is perturbed with respect to the IW, which inhibits the

formation of standing waves. R oscillates with radius, mainly because the solution

is composed of some ω 6= 1 and m 6= 2 components, which are not filtered by our

IW/OW decomposition.

When a single propagating wave approaches a critical layer, the outcome has pre-

viously been found to depend on the ratio of the strength of nonlinear wave-wave

couplings to linear viscous and radiative damping. Nonlinear wave-wave couplings

occur over a timescale (Booker & Bretherton 1967)

tNL = O
(
k
− 2

3
h |∂rUh|−

1
3U

− 2
3

r

)
, (3.9.1)

and linear viscous and radiative damping occur over a timescale

tL = O
(
k
− 2

3
h χ−

1
3 |∂rUh|−

2
3

)
. (3.9.2)

The ratio of these terms define the parameter (Maslowe 1986; Koop 1981)

λ ≡ tNL

tL
∼
(
χ|∂rUh|
U2

r

)1/3

. (3.9.3)

where kh is the horizontal wavenumber, ∂rUh is the typical shear in the mean flow, Ur

is a typical radial velocity in the wave, and χ is a diffusivity – which for the centre

of a star is likely to be primarily radiative diffusion rather than viscosity, so χ will be
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Figure 3.10: Radial velocity along the line y = x (bottom left) and azimuthal velocity along
the x-axis (bottom right) in a large-amplitude simulation after wave breaking, at t = 7tc,
with f̃r = 15. These are plotted (blue solid lines) together with the reconstructed solution
using Ain and Aout obtained from the method described in Appendix A.4 (red dashes lines)
– these are quite well matched for r ∈ [0.3, 1.2]. The top left panel shows Ain (top line) and
Aout (bottom line) versus radius. There is significant absorption of IWs near the critical
layer at r ∼ 0.1, resulting in |Aout| � |Ain|. The top right panel shows R versus radius.
R� 1 in the region where the decomposition works well.
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primarily the thermal conductivity κ.

Nonlinearity acts to promote energy transfer away from the critical layer through

the generation of daughter waves, and linear damping acts to suppress this resonant

wave production. If λ � 1, then the time required for nonlinear effects to become

important is long compared with that for linear damping to become important. In

this limit, there is negligible wave reflection, and nearly all incoming wave energy is

absorbed by the critical layer, as predicted by Hazel (1967). In the opposite limit,

when λ � 1, nonlinear effects become manifest prior to the time when they become

suppressed by linear damping. In this case, the flow can be extremely complicated, and

nonlinearity in the critical layer region can lead to wave reflection, with ampltiudes

O
(
exp

(
−π(Ri− 1/4)1/2

))
or less (Breeding 1971). In this limit, nonlinear wave-wave

couplings lead to the generation of many smaller-scale daughter waves, some of which

propagate away from the critical layer, carrying a fraction of the wave energy (Fritts

1979). Experiments of internal waves approaching a critical layer have been performed

by Koop (1981) and Koop & McGee (1986), in which λ = O(1). For this value, the

effects of both nonlinearity and linear damping become manifest at approximately the

same time. Their laboratory experiments show that wave reflection, in the form of

daughter waves produced by nonlinear couplings, that propagate away from the critical

layer, is suppressed by viscosity for this value of λ.

Relating these results to our simulations, we find typical values of the parameter

λ ∼ 10−1 near the critical layer, due to the explicit viscosity (ν = 2×10−6) added in the

code, since |∂rUh| ∼ O(101) and Ur = ũr ∼ 0.1. In this limit nonlinearities are likely

to become important before viscous diffusion. Since this is the limit in which we would

be expected to find wave reflection, if any occurs at all, and we find little reflection

of waves from the critical layer, it is likely that most of the IWs are absorbed near to

the centre, and not reflected. In any case, the reflected waves will not have the same

frequency and horizontal wavenumber as the primary wave. Instead, reflected waves

will be in the form of disturbances with smaller frequencies, and therefore shorter radial

wavelengths, as well as higherm-values, as a result of wave-wave coupling (Hasselmann

1967). Such disturbances will be more easily dissipated by radiative diffusion, since

the rate of energy dissipation ∼ m3/ω4.
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We conclude that if wave breaking and critical layer formation occurs, it is probably

reasonable to assume that the IWs are entirely absorbed in the RZ, primarily near to

the critical layer. This is inferred from our simulations, as can be seen in the example

in Fig. 3.10, in which |Aout| � |Ain|. The result of this is that if wave breaking and

critical layer formation occurs, it is not possible for global standing modes to develop

in the RZ. It would then be appropriate to calculate the tidal dissipation rate using

the method of GD98. This is discussed in Chapter 5.

3.10 Conclusions

In this chapter, we have presented a study of the fate of IGWs approaching the centre

of a solar-type star, primarily using two-dimensional numerical simulations. A train

of IGWs is excited which propagates towards the centre. These waves break if they

reach the centre with steepness sufficient to overturn the stratification, which in 2D

corresponds to ũφ & 0.5. Once this occurs, nonlinear effects cause the subsequent

formation of a critical layer, as the waves transfer their angular momentum to the

mean flow, bringing the central regions of the star into corotation with the tidal forcing.

This acts as an absorbing barrier for subsequent IWs, which continue to be absorbed

near the critical layer, resulting in an expansion of the spatial extent of the mean flow.

By decomposing the numerical solutions into an IW and OW, we find that if critical

layer formation occurs, most of the angular momentum of the IW is absorbed near the

centre, and is not reflected. This has very important implications for tidal dissipation

in solar-type stars. These issues will be discussed in detail in Chapter 5. If critical

layer formation, by wave breaking, does not occur, the wave is approximately perfectly

reflected from the centre, and global standing modes can be set up in the RZ.

The general picture of this process is that the star spins up (or down) from the

inside out, until either the planet has plunged into the star, or the RZ of the star has

spun up (or down) to match that of the evolving orbit. This is discussed further in

Chapter 5. In Chapter 6 we study the stability of the nonlinear gravity wave derived

in § 3.5 to understand the instability that leads to wave breaking in more detail, and

to determine what instabilities may set in for waves with insufficient amplitudes to

overturn the stratification. In the next chapter, we extend these simulations to three
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dimensions.
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Chapter 4

Internal wave breaking near the

centre of a solar-type star: 3D

simulations

In the previous chapter, we derived a Boussinesq-type system of equations that is rele-

vant for describing the dynamics of IGWs approaching the centre of a solar-type star.

We then performed numerical simulations, solving these equations in two dimensional

cylindrical geometry. In this chapter, we extend these simulations to three-dimensional

spherical geometry, and confirm that the most important results of the previous chap-

ter are not affected by this extension.

4.1 Tidal potential

The tidal potential experienced by a star hosting a short-period planet can be written

in standard spherical polar coordinates (r, θ, φ) as a sum of rigidly rotating spherical

harmonics

Re
[
Ψl,mr

lY m
l (θ, φ)e−iωt

]
, (4.1.1)

in a non-rotating (but non-inertial) reference frame centred on the star, where Y m
l is

a spherical harmonic (normalised such that the integral of |Y m
l |2 over solid angles is

unity) and Ψl,m is an amplitude. Here ω is the frequency in that frame, related to the
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tidal frequency by ω̂ = ω −mΩ, where Ω is the spin angular frequency of the star. In

this paper we consider the waves excited by planets on circular, coplanar orbits, as in

Chapter 3. In this case the dominant component of the tidal potential is quadrupolar

(l = 2), with m = 2, and takes the form

Ψ(r, θ, φ, t) = −
√

6π

5

Gmp

a3
r2Y 2

2 (θ, φ− ω̂

2
t), (4.1.2)

where mp is the planetary mass and a is its orbital semi-major axis. Since most short-

period planets orbit faster than their stars spin, as a result of stellar magnetic braking,

we take the star to be (initially) non-rotating, so that ω̂ = ω = 2n, where n is the

orbital angular frequency of the planet.

4.2 Linear theory

In this section we derive a linear wave solution, starting from the Boussinesq-type

system Eqs. 3.4.29–3.4.32, that was derived in 2D but is equally valid in 3D. Using the

non-dimensionalisation of §3.5, we can then linearise about hydrostatic equilibrium in

3D spherical geometry, seeking solutions steady in the frame rotating at the angular

rate Ωp, proportional to eimξ, where ξ = φ − Ωpt is the azimuthal coordinate in this

frame. This leads to the following equations:

−imur = −∂rq + rb, (4.2.1)

−imuθ = −1

r
∂θq, (4.2.2)

−imuφ = − im

r sin θ
q, (4.2.3)

−imb = −rur, (4.2.4)

1

r2
∂r(r

2ur) +
1

r sin θ
∂θ(sin θuθ) +

im

r sin θ
uφ = 0. (4.2.5)

To obtain the linear solution, we expand scalar quantities (i.e. q and b) in spherical

harmonics Y m
l (θ, ξ), since the problem is separable in both angular coordinates. In

Eqs. 4.2.1–4.2.5 we have already included the ξ-dependence of these functions (eimξ).
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We thus take

q = q̂(r)Y m
l (θ, 0), (4.2.6)

so that the total functions are expanded onto Y m
l (θ, ξ), and similarly for b and ur,

where from now on we drop the hats on the radial functions. The remaining velocity

components are expanded onto angular functions as appropriate to satisfy Eqs. 4.2.1–

4.2.5. The relation

q =
im

l(l + 1)
∂r(r

2ur), (4.2.7)

follows from incompressibility and the result[
1

sin θ
∂θ sin θ∂θY

m
l +

1

sin2 θ
∂2

φY
m
l

]
= −l(l + 1)Y m

l . (4.2.8)

This enables us to derive the linear differential equation

∂2
r (r

2ur)−
l(l + 1)

m2
(m2 − r2)ur = 0, (4.2.9)

whose solutions can be written in terms of Bessel functions of half-integer order (alter-

natively these can be written as spherical Bessel functions, or they can be reduced to

elementary functions). The corresponding (total) linear solution for a standing wave

in 3D can be written (where real parts are assumed to be taken)

ur(r, θ, ξ) = Br−
3
2Jl+ 1

2
(kr)Y m

l (θ, ξ), (4.2.10)

uθ(r, θ, ξ) =
B

l(l + 1)

1

r
∂r

[
r

1
2Jl+ 1

2
(kr)

]
∂θY

m
l (θ, ξ), (4.2.11)

uφ(r, θ, ξ) =
imB

l(l + 1)

1

r
∂r

[
r

1
2Jl+ 1

2
(kr)

] 1

sin θ
Y m

l (θ, ξ), (4.2.12)

b(r, θ, ξ) = −iB
m
r−

1
2Jl+ 1

2
(kr)Y m

l (θ, ξ), (4.2.13)

where B ∈ C is an amplitude, and

k =
1

m

√
l(l + 1). (4.2.14)
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IW and OW solutions can be obtained by replacing the Bessel function of the first

kind by equivalent Hankel functions of the first (Jν + iYν) and second kinds (Jν− iYν),

respectively. Note also that

1

r
∂r

[
r

1
2

(
Jl+ 1

2
(kr)± iYl+ 1

2
(kr)

)]
= r−

3
2

[
(1 + l)

(
Jl+ 1

2
(kr)± iYl+ 1

2
(kr)

)
−kr

(
J(l+1)+ 1

2
(kr)± iY(l+1)+ 1

2
(kr)

)]
. (4.2.15)

Starting from Eq. 3.4.33, we can calculate a conserved energy flux. Integrating this

equation over ξ from 0 to 2π, eliminates the terms containing derivatives in t and φ

due to periodicity in ξ, as a result of the fundamental theorem of calculus. This allows

the definition of a conserved quantity proportional to the energy flux,

F =

∫ π

0

∫ 2π

0

r2 sin θur(E + q)dξdθ. (4.2.16)

For linear waves, terms involving products are small, so E � q, to this order. This

leaves

F = πr2

∫ π

0

Re [urq
∗] sin θdθ. (4.2.17)

Whether this is positive or negative depends on whether the wave is ingoing or out-

going.

Substituting the linear solution Eq. 4.2.10 into Eq. 4.2.17 provides a simple expres-

sion for the flux of a single l,m wave:

F =
m

πl(l + 1)
(|Aout|2 − |Ain|2), (4.2.18)

with corresponding energy flux FE
r = ρ0F , and angular momentum flux FL

r = ρ0m
ω
F .

This follows from the orthonormality of spherical harmonics and the Wronskian of the

Hankel functions∫ 2π

0

∫ π

0

Y m
l (θ, ξ)[Y m′

l′ (θ, ξ)]∗ sin θdθdξ = δl′

l δ
m′

m , (4.2.19)

W [Jν(kr) + iYν(kr), Jν(kr)− iYν(kr)] =
4

iπr
. (4.2.20)
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In particular, the l = m = 2 wave has the components

ur(r, θ, ξ) = Br−
3
2J 5

2
(kr)Y 2

2 (θ, ξ), (4.2.21)

uθ(r, θ, ξ) =
B

l(l + 1)

1

r
∂r

[
r

1
2J 5

2
(kr)

]
∂θY

2
2 (θ, ξ), (4.2.22)

uφ(r, θ, ξ) =
imB

l(l + 1)

1

r
∂r

[
r

1
2J 5

2
(kr)

] 1

sin θ
Y 2

2 (θ, ξ), (4.2.23)

b(r, θ, ξ) = −iB
m
r−

1
2J 5

2
(kr)Y 2

2 (θ, ξ), (4.2.24)

where k =
√

6/2.

4.2.1 Criterion for overturning isentropes

A condition in 3D for isentropic overturning can be derived from considering when

the radial gradient of the entropy s = b + 1
2
r2 becomes negative. This occurs when

|1
r
∂r(rur)| > |m|. To correlate our notation with the appendix of OL07, we define the

dimensionless nonlinearity parameter A, such that overturning occurs if |A| > 1. This

is defined such that the radial velocity is the real part of

ur = 40Ar−4

[
1√
6

(
1− 1

2
r2

)
sin kr − 1

2
r cos kr

]
sin2 θeimξ, (4.2.25)

in the dimensionless units that we have been using in this section (this is equivalent

to Eq. 4.2.21).

Overturning is achieved at the centre when the radial velocity in the wave takes

a maximum value ur = 1.27 at its innermost peak at r = 2.04. This value is used to

compare it to the magnitude of the radial velocity achieved in numerical simulations at

the onset of wave breaking. In these dimensionless units, we similarly require uφ & 0.99

or b & 0.38. If we instead normalise the dimensional fluid velocity with the constant

(asymptotic) radial group velocity, then we obtain a different non-dimensionalisation1,

that we previously used in Chapter 3. In those units, the criterion is modified to

ũφ & 0.49. Note that there is not such a simple interpretation of the criterion on uφ

as in 2D, though the value is quantitatively very similar. From the results of the 2D

simulations in the previous chapter, we expect the waves to undergo instability and

1In the figures below, we also use this nondimensionalisation. This is identical to Chapter 3, and
gives values exactly 1/2 of those in the units of this section.
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break within several wave periods after these criteria begin to be satisfied.

4.2.2 Weakly nonlinear theory

The linear solution written down in Eqs. 4.2.10–4.2.13 is not a nonlinear solution,

unlike the equivalent in 2D. This can be shown by computing the nonlinear terms in

the full Boussinesq-type system using the linear solution, in Mathematica, for example.

We find that u · ∇b 6= 0, in general, and similarly for the nonlinear terms in the

momentum equation. This means that the reflection of the waves from the centre

could be different than in 2D, since nonlinearities do not vanish for this wave. In this

section we perform a weakly nonlinear analysis to determine the dominant nonlinear

effects for small amplitudes. Since these nonlinearities do not vanish, this highlights

the importance of numerical simulations for these waves approaching the centre. We

describe the results of such simulations in § 4.4.

We propose a weakly nonlinear solution of the form

ur(r, θ, ξ) =
ε

2
{ur1(r, θ)e

iξ + u∗r1(r, θ)e
−iξ}

+ε2{ur20(r, θ) +
1

2

(
ur22(r, θ)e

2iξ + u∗r22(r, θ)e
−2iξ
)
} (4.2.26)

+ε3ur3(r, θ, ξ) +O(ε4),

and similarly for the other variables, where ε � 1. Here we write ur1(r, θ)e
iξ =

ur(r, θ, ξ) from Eq. 4.2.21, for the l = m = 2 wave above, and similarly for other

variables. We substitute these expansions into the Boussinesq-type system and equate

powers of ε. At each order we also equate coefficients of einξ. At leading order only

one mode is present, and we obtain the previously derived linear solution. The incom-

ing wave generates harmonics through the quadratic nonlinearities. These additional

waves (other than m = 0) will escape to infinity and carry away a portion of the energy

flux. After some algebra the solution at O(ε2) can be computed to give

ur22(r, θ, ξ) = A22r
− 3

2

[
J9/2

(√
5/6kr

)
+ iY9/2

(√
5/6kr

)]
Y 4

4 (θ, ξ), (4.2.27)

which is an l = m = 4 wave with complex amplitude A22, which has been computed

using Mathematica and given in terms of A.
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For the wave described by Eq. 4.2.27, F can be computed. The ratio of the energy

flux in the outgoing l = m = 4 wave to the ingoing l = m = 2 wave can be shown

to be approximately 1.2× 10−5|A|2, so the reflection coefficient for reflection from the

centre, for a weakly nonlinear l = m = 2 wave, is

|R|2 ≈ 1− 1.2× 10−5|A|2. (4.2.28)

This means that a weakly nonlinear primary wave (with |A| � 1), will reflect approx-

imately perfectly from the centre, with a reflection coefficient that is close to unity.

However, a small fraction of the IW energy flux is transferred to waves with higher

l and m-values, reinforcing the fact that Eqs. 4.2.10–4.2.13 is not an exact solution,

contrary to the analogous solution in 2D.

4.3 Numerical set-up

We solve the Boussinesq-type system in three dimensions using the Cartesian pseu-

dospectral code SNOOPY, as in Chapter 3. However, we modify the forcing and

damping to take into account the z-direction, and instead of forcing an m = 2 wave

in the equatorial plane, we now have

f = −frRe
[
Y 2

2 (θ, φ− ω

2
t)
]
er,

= −fr
1

4

√
15

2π

1

r2

{(
x2 − y2

)
cosωt− 2xy sinωt

}
er, (4.3.1)

in Cartesian coordinates (with r2 = x2 + y2 + z2), which is applied in the region

0.85rbox ≤ r ≤ 0.9rbox. We study a region x, y, z ∈ [−rbox, rbox], where rbox = 1.5, in

arbitrary units (not the same as § 4.2). For r > 0.9rbox the solution is damped to zero

by using a parabolic smoothing function.

We primarily use a resolution of 2563, for which the simulations were possible to

run on a single Intel Core i7 machine, utilising all 8 cores, with a typical run time of

several weeks to resolve a hundred wave crossing times. We set ω = 1, λr = 0.15, ν =

4 × 10−6, κ = 0. An otherwise identical setup is used as in Chapter 3, except using

spherical geometry instead of cylindrical geometry. A typical IGW wavelength of
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λr = 0.15 is chosen, which is slightly larger than that for most of the 2D calculations.

This increases the number of grid points within a wavelength of the primary wave,

partially offsetting the reduction in resolution that results from using a smaller number

of grid points per dimension than in 2D. Choosing larger wavelengths than this is found

to result in unwanted effects from the proximity of the forcing region, which modifies

the linear solution. We have confirmed that the linear solution is well reproduced with

this numerical setup.

4.4 Numerical results

In this section we describe the results of the numerical simulations. We find that

f̃r ≡ fr2π/(ω
2λr) & 0.2 is required for breaking, so a variety of simulations are per-

formed with forcing amplitudes either side of this value. The basic results of these

simulations are that the wave reflects approximately perfectly from the centre of the

star if the amplitude of the wave is smaller than a certain critical value, which is found

to correspond with that required for isentropic overturning. Above this value, wave

breaking and critical layer formation occur. This picture is identical to that in 2D.

4.4.1 Low-amplitude simulations

For a low-amplitude simulation, with max(ũr) below the critical value for isentropic

overturning (using f̃r = 0.1), we plot the variation in amplitudes of the IWs and

OWs, and also the reconstructed solutions in Fig 4.1. We analyse the results using

the method described in Appendix A.4, choosing a time once transients have been

sufficiently damped and standing waves have formed. The decay in radius is roughly

(though slightly smaller than) that which would be expected from viscous damping,

by the fractional amount

ur

ur,0

≈ exp

(
−2

∫ r

0

νk2

cg,r

dr

)
, (4.4.1)

where cg,r = Cλ2
r/(2π

2) is the (constant asymptotic) radial group velocity, for a wave

of the given wavelength. As in 2D, we have confirmed this explanation by running

simulations without viscosity, which are found to not exhibit this decay (though these
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simulations eventually become numerically unstable if ν = κ = 0). Using a smaller

viscosity is also found to reduce the wavelength-scale oscillations around the mean

slope. These result from the fact that the linear solution to the forced wave problem

is no longer exact in the presence of viscosity. We find that increasing the number of

grid points within each shell (by reducing the values of istep, jstep and kstep) slightly

reduces the vertical extent of these oscillations, because this averages out the errors

that result from the assumption that the inviscid linear solution is exact. However,

increasing the number of grid points within each shell has negligible effect on the mean

slope.
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Figure 4.1: In the top left panel we plot Ain (blue) and Aout (red) vs. r, from a low-
amplitude simulation in which the primary wave approximately perfectly reflects from the
centre, with R displayed in the top right panel. Below, are the velocity components and
the buoyancy variable (blue), plotted together with the reconstructed linear solution (red),
against radius. This is taken from a simulation with f̃r = 0.1 at t = 250, once standing
waves have formed. The amplitude decay with radius can be explained as due to viscous
damping.

The spatial structure of the solutions in three dimensions in the xy-plane is very

similar to that in two dimensions, as can be seen in Fig. 4.2 (which can be compared
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Figure 4.2: 2D plots of ũr (top) and ũφ (bottom) on the xy-plane for a simulation in which
the wave perfectly reflects from the centre, for which f̃r = 0.1. This can be qualitatively
compared with Fig. 3.3.
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with Fig. 3.3). In Fig. 4.3, we plot ũφ on the xz-plane. This shows that the magnitude

of the azimuthal velocity peaks at θ = π/2, due to the latitudinal form of Y 2
2 .

Figure 4.3: 2D plot of ũφ on the xz plane for a simulation in which the wave perfectly
reflects from the centre, for which f̃r = 0.1. ũφ is of largest magnitude in the equatorial
plane, where |Y 2

2 | peaks.

From the calculation in § 4.2.2, we expect the effects of nonlinearity to be much

weaker than the effects of viscosity for small-amplitude waves which do not cause

isentropic overturning. Since the effects of weak nonlinearity are very small, it is

difficult to quantitatively confirm the results in § 4.2.2, using, for example, an extension

of the method described in Appendix A.4 for multiple l and m values. Nevertheless, we

have qualitatively confirmed the result that the reflection is coherent and nearly perfect

(in that R ≈ 1) for amplitudes below that required for overturning the stratification.

As in 2D we do not observe any instabilities that act on the waves when they have

insufficient amplitude to overturn the stratification. In this case, the waves can form

global modes in the RZ.
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4.4.2 High-amplitude simulations

In high-amplitude simulations, in which the wave amplitude exceeds the overturning

criterion, the wave overturns the stratification during part of its cycle and a rapid

instability acts on the wave, which leads to wave breaking within 1− 3 wave periods.

This causes the rapid (within several wave periods) deposition of primary wave angular

momentum, which spins up the mean flow to Ωp and produces a critical layer. This

critical layer acts as an absorbing barrier for IWs, as is shown from Fig. 4.4, which

plots the variation in amplitude of the IW and OW, and also the reconstructed wave

solutions (which can be contrasted with Fig. 4.1). Once the critical layer has formed,

we find |Aout| � |Ain|. The central regions are not well described by the linear model,

as we would expect. However, the region outside of r ≈ 0.25 is well described by the

linear solution, with |Aout| � |Ain|. In this region, R � 1, so it is reasonable to

assume that the IWs are efficiently absorbed near the centre. This picture is identical

to that in 2D.

The picture in 3D in the xy-plane is very similar to that in 2D, as can be seen

in Fig. 4.5 (to compare with Fig. 3.6). However, one noticeable difference is that the

primary wave preferentially transfers its angular momentum at low latitudes, close to

the equatorial plane. This can be seen in Fig. 4.6, where we plot the angular frequency

of the flow normalised to Ωp once a critical layer has formed, in both the xy and xz

planes. This is a consequence of the latitudinal form of Y 2
2 , whose magnitude peaks

at θ = π/2, as is illustrated in Fig. 4.3. The critical layer absorption is observed

to continue as the wave forcing is ongoing, so this differential rotation is continually

reinforced by the absorption of l = m = 2 IWs. Since there are wave motions in the

region of fluid interior of the critical layer, parts of these regions spin slightly faster

than Ωp (this is not seen in Fig. 4.6 due to the adopted colour scale). This was also

observed in the 2D simulations.

4.5 Conclusions

In this chapter, we have demonstrated that the fate of IGWs approaching the centre of

a solar-type star is unaffected by the extension to three dimensions. We first derived
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Figure 4.4: In the top left panel we plot Ain and Aout vs. r in a high-amplitude simulation
in which the primary wave breaks (f̃r = 1) at t = 450, with R in the top right panel.
Below these are the velocity components and the buoyancy variable (blue), plotted together
with the reconstructed linear solution (red), against radius. The central regions are not well
described by the linear model, as expected.

114



Figure 4.5: 2D plot of ũr (top) and uφ (bottom) on xy-plane for a simulation in which
breaking occurs with f̃r = 1, at t = 450.
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Figure 4.6: 2D plot of the angular velocity uφ/R of the central regions in the xy (left) and
xz (right) planes, normalised to the angular pattern speed (i.e., orbital angular frequency),
in a large-amplitude simulation with f̃r = 1, at t = 450. Latitudinal differential rotation is
produced by absorption of ingoing l = m = 2 waves.
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a linear wave solution in 3D, and found that nonlinearities do not vanish for this

wave, unlike the 2D solution, which is exact. Nevertheless, these waves are found

to reflect approximately perfectly for moderate amplitudes, a result which we have

qualitatively confirmed in numerical simulations of moderate-amplitude tidal forcing.

In this case global modes may form in the RZ, and an appreciable contribution to

the tidal dissipation will only occur when the system enters a resonance with a global

mode of oscillation.

The general picture for high-amplitude forcing is that IGWs break within the

innermost wavelengths of a star, if they reach the centre with sufficient amplitude to

overturn the stratification. If this occurs, they form a critical layer, which we have

confirmed from the simulations, efficiently absorbs ingoing wave angular momentum.

This results in the star being spun up to the orbital angular frequency of the planet,

from the inside out. This could be very important to the survival of massive planets

in short-period orbits around solar-type stars, which we will discuss in the following

chapter.

One noticeable difference in 3D is that the absorption of l = m = 2 IWs results

in the formation of latitudinal differential rotation. This is perpetually reinforced by

critical layer absorption. Instabilities may act on this rotation profile, which could

homogenise the horizontal angular momentum distribution. These include shear in-

stabilities, which can be linear (Watson, 1981) or nonlinear instabilities, that set in

at a critical Reynolds number (Richard & Zahn, 1999). These have growth times

comparable to the tidal period, and could transfer angular momentum latitudinally.

There are also doubly diffusive instabilities (Goldreich & Schubert 1967; Knobloch &

Spruit 1982), or magnetic instabilities, such as the magnetorotational instability (Bal-

bus & Hawley, 1994). However, these mechanisms are unlikely to be able to prevent

the critical layer absorption, and thus prevent the tidal engulfment of a short-period

planet.

As in Chapter 3, our simulations do not show any instabilities to act on the waves

when they have insufficient amplitude to overturn the stratification. However, it may

be that weaker parametric instabilities operate for waves with lower amplitudes (sug-

gested by GD98). A detailed stability analysis of the 2D exact wave solution written
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down in Chapter 3 is presented in Chapter 6, and will shed some light on this matter.
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Chapter 5

Implications

In Chapters 3 and 4, we have studied a mechanism of critical layer formation due

to wave breaking at the centre of a solar-type star. If such a critical layer forms,

then ingoing wave angular momentum is efficiently absorbed at the centre. In this

chapter we examine the consequences of this process for the orbital evolution of a

close planetary companion. We determine the amplitude of the waves at the centre

required to cause wave breaking, in terms of the star and planet parameters. We also

calculate the tidal quality factors Q′
? that result, in a range of solar-type star models.

This involves a discussion of the launching region at the top of the RZ, for which we

present numerical calculations of the linearised adiabatic tidal response, together with

a semi-analytic approximation for the angular momentum flux transported in IGWs.

We discuss the relevance of this mechanism to the survival of short-period extrasolar

planets, such as WASP-18 b, WASP-12 b and OGLE-TR-56 b. These results allow us

to propose a possible explanation for the survival of all currently observed short-period

planets around F, G and K-type stars.

5.1 Introduction

The main motivation for our work is to study Q′
? for solar-type stars, and in particular

to connect this with the survival of close-in extrasolar planets. We have demonstrated

in Chapters 3 & 4 that if IGWs approach the centre of a solar-type star with sufficient

amplitude to break and form a critical layer, wave absorption is efficient, and global
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modes (of any frequency very similar to the orbital frequency) are prevented from being

set up in the RZ. The tidal torque can then be computed from assuming that the IWs

are entirely absorbed. In this case a calculation along the lines of GD98 for the ingoing

angular momentum flux of the waves excited at the top of the RZ is required. This

estimates the tidal torque, and thus the orbital evolution of the planetary companion.

In this section, we perform numerical integrations of the linearised tidal response

in an extensive set of stellar models of solar-type stars with masses in the range

0.5 ≤ m?/M� ≤ 1.1, throughout their main sequence lifetimes. We aim to determine

the tidal torque numerically, and compare it with a simple model of the launching

region at the top of the RZ, previously derived in GD98.

If the ingoing energy flux in IGWs is F , then converting to an angular momentum

flux, and assuming all wave angular momentum is deposited in the star, the torque is

Γ =
m

ω
F =

9

4

1

Q′
?

(
mp

m? +mp

)2
m?R

2
?

ω2
dyn

n4. (5.1.1)

Given a value of F , we can compute the tidal quality factor

Q′
? =

9

4

ω

mF

(
mp

m? +mp

)2
m?R

2
?

ω2
dyn

n4. (5.1.2)

In addition, if we are sufficiently far from resonance with a global mode, the amplitude

at the centre required for wave breaking is

A =

(
72
√

6F

5π

C5

ρcω8

) 1
2

. (5.1.3)

Note, however, that if we are close to a resonance, then A may be much larger than

this estimate would predict. In this chapter we will discuss calculations of F in models

of solar-type stars, and then discuss the implications of our results in Part II for the

survival of short-period extrasolar planets.
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5.2 Numerical computation of the linearised tidal

response throughout the star

In this section we solve the linearised equations governing the adiabatic tidal response

throughout the star, computing the excitation of both the equilibrium and dynam-

ical tides numerically. This allows us to determine the ingoing energy and angular

momentum fluxes in IGWs launched at the top of the RZ, and to check the valid-

ity of approximate semi-analytic formulae for these quantities, presented in the next

section. This is important because the orbital evolution of a planetary companion is

determined by the ingoing angular momentum flux absorbed at the critical layer.

We solve the following coupled ODEs for the radial and horizontal displacements:

dξr
dr

= −
[
2

r
+
N2

g
+
d ln ρ

dr

]
ξr +

[
l(l + 1)

r
− ω2rρ

Γ1p

]
ξh +

fr2ρ

Γ1p
, (5.2.1)

dξh
dr

=

[
1

r
− N2

rω2

d ln p

d ln ρ

]
ξr −

[
1

r
− N2

g

]
ξh −

fN2r

ω2g
. (5.2.2)

An outline of the derivation of these equations is presented in T98. Note that we are

ignoring the self-gravity of the entire tidal response, which is reasonable because most

of the mass of the star is concentrated near the centre. This assumption is certainly

valid for the dynamical tide, and is approximately valid for the equilibrium tide. In

these equations, we take the tidal potential in the frame rotating with Ωp to be equal

to Eq. 4.1.2 with φ = ξ and ω = 0, so that1

f = −
√

6π

5

mp

(m? +mp)
n2. (5.2.3)

This is the amplitude of the largest tide for a circular orbit. In this frame, the dis-

placement field is separated into radial and horizontal (non-radial) components

ξ = ξrY
m
l (θ, ξ)er + ξhr∇Y m

l (θ, ξ). (5.2.4)

We can further decompose the tidal response of a fluid body, which in this section

we take to mean a solar-type star, into an equilibrium and a dynamical tide, defined

1Note that we are defining spherical harmonics in a standard manner, normalised so that the
integral of |Y m

l |2 over solid angles is unity, unlike T98.
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such that the total displacement is the sum of these two displacements, i.e, that

ξ = ξd + ξe. The equilibrium tide is a quasi-hydrostatic bulge defined by

ξe
r = −Ψ

g
, and ∇ · ξe = 0, (5.2.5)

in stratified regions (Goldreich & Nicholson 1989), where Ψ is the tidal gravitational

potential experienced by the body and g is the gravitational acceleration. The total

displacement is not well described by Eqs. 5.2.5 in convective regions (GD98; T98;

OL04). This is because in a barotropic flow (with adiabatic stratification) vorticity is

conserved, so we must have ∇× ξ = 0, whereas ∇× ξe 6= 0, in general. The presence

of a convection zone (hereafter CZ) thus implies that a dynamical tide must exist. The

dynamical tide ξd is defined as the residual response that results from the equilibrium

tide not being the exact (linearised) solution to the problem, when the tidal frequency

is nonzero.

The equations governing the adiabatic equilibrium and dynamical tides are

0 = −1

ρ
∇δpe +

δρe

ρ2
∇p−∇Ψ, (5.2.6)

−ω2ξd = −1

ρ
∇δpd +

δρd

ρ2
∇p+ ω2ξe︸︷︷︸

Forcing

, (5.2.7)

from which it is clear that the dynamical tide is not forced directly by the tidal

potential, only by the inertial terms in the equation of motion.

We impose a free upper boundary, i.e., take the Lagrangian pressure perturbation

∆p = 0 at r = R?, so that the Eulerian pressure perturbation δp = −ξr dp
dr

. Since the

relation

ξh =
1

ω2r

(
δp

ρ
+ fr2

)
, (5.2.8)

follows from the non-radial equation of motion, this relates our variables at the surface

of the star. We take an IW BC at the inner boundary at r ≈ 0.02R?, where we match

ξr and ξh onto the analytic solution for an IW derived in §4.2,

ξr(r) = Aξr
− 3

2 (J 5
2
(kr) + iY 5

2
(kr)), (5.2.9)
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ξh(r) =
Aξ

6
r−

3
2

[
3(J 5

2
(kr) + iY 5

2
(kr))

−kr(J 7
2
(kr) + iY 7

2
(kr))

]
, (5.2.10)

where k = mC
ω

. We take Aξ to be a free parameter, so that these equations relate

the ratio of ξr and ξh. This solution is quite accurate when r/R? . 5% since ξe is

negligible in this region. This BC is meant to represent the IW absorption at a critical

layer.

We solve Eqs. 5.2.1–5.2.2 using data interpolated from a stellar model at points

required by a 4th/5th order adaptive step Runge-Kutta integrator, using a cubic spline

interpolation. In particular, the coefficients of ξr, ξh, in Eqs. 5.2.1–5.2.2 are singular

at the origin, so we first multiply these quantities by r before interpolating their values

to the locations required by the ODE integrator, using the stellar model parameters.

We then divide by r, after the interpolation. This is done to get the correct behaviour

for small r.

Our method of solution is a shooting method to an intermediate fitting point (Press

et al. 1992), which we take to be the CZ/RZ interface, where we enforce continuity

of the solution. The freely specifiable initial conditions for each ODE integration are

chosen to be ξr at the surface, and Aξ at the inner boundary. We use ξr = ξe
r as our

starting “freely specifiable” estimate at the surface, which is an accurate approximation

since |ξd
r | � |ξe

r | at r = R?.

The Eulerian pressure perturbation for the dynamical tide is

δpd = ρω2r
(
ξe
h + ξd

h

)
, (5.2.11)

from the horizontal component of Eq. 5.2.7. The radial energy flux at each radius is

F =
ωr2

2
Im
[
(δpd)∗ξd

r

]
, (5.2.12)

which follows from manipulating Eqs. 5.2.6 and 5.2.7 to derive an energy equation.

From Eq. 5.2.7, we derive the relation

∇ · Im
{
δpd(ξd)∗

}
= ρω2Im

{
(ξd)∗ · ξe

}
, (5.2.13)
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Figure 5.1: Typical values of the real parts of the radial (ωξr, in blue solid lines) and
horizontal (ωξh, in red dashed lines) velocity components, in m s−1. We use Model S of the
current Sun, and consider the tidal perturber to be a P = 1 d, mp = 1MJ , planet orbiting
the current Sun.

which can be integrated over solid angle to give

Im
{
∂r

(
r2δpd(ξd

r )
∗)} = ρr2ω2Im

{
(ξd

r )
∗ξe

r + l(l + 1)(ξd
h)
∗ξe

h

}
. (5.2.14)

This is telling us that the equilibrium tide does work to excite the dynamical tide. As

part of the validation of our numerical code, we have confirmed that this is accurately

satisfied from the numerical solutions computed with an ingoing BC. This should

adequately convince ourselves that the code is able to accurately compute the energy

flux in the dynamical tide.

5.2.1 Results

As an illustration, we present the results of our integrations for a fiducial case with

a P = 1 d, mp = 1MJ planet orbiting the current Sun (for which we use Model S,

described in Christensen-Dalsgaard et al. 1996) in Fig. 5.1. We plot the real parts

of ωξr (solid blue) and ωξh (dashed red) throughout the star, which represent typical
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Figure 5.2: Numerically computed F , normalised to the prediction from the analytic theory
in Eq. 5.2.24 (solid blue line) and Eq. 5.2.18 (red dashed line). Eq. 5.2.24 overestimates F
by less than 10%, and is thus a good approximation of the ingoing energy flux.

values of the radial and horizontal velocity components. The radial wavelength of the

waves decreases as the waves propagate deeper into the RZ, where N2 increases. The

large increase in the velocity amplitude near the centre is evident, as predicted from

the linear solutions in § 4.2. This can be compared with a similar calculation in T98,

displayed in their Fig. 1, which our code correctly reproduces for the given planetary

orbital period when a regularity condition in applied at the centre. The only difference

between our calculations and theirs is that we use an IW BC, whereas they allow the

waves to perfectly reflect from the centre.

In Fig. 5.2 we plot the ingoing energy flux, normalised to both the semi-analytic

prediction of GD98 (red dashed lines), and a revised expression derived in Appendix

A.6 (blue solid lines), which will be discussed in the next section. This illustrates that

the ingoing energy flux oscillates about its final asymptotic value, which it eventually

approaches deep in the RZ.
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5.2.2 Semi-analytical calculation of the ingoing energy flux

In this section we compare the numerically computed F with the semi-analytic estimate

of GD98, and present a slight refinement which is found to be appropriate for solar-type

stars.

In the launching region at the top of the RZ, there is a location at which N = 0 at

r = rb ≈ 0.71R�, near to which it follows from the dispersion relation that the radial

wavenumber of gravity waves vanishes. Near this turning point we can approximate

the solution in this region by assuming a functional form for N2. GD98 take N2 ∝

rb − r ≡ x, in which case the problem in the launching region reduces to the solution

of Airy’s differential equation for ξd
r :

d2ξd
r

dx2
− xξd

r ≈ 0, (5.2.15)

if we define κx = r − rb, where

κ =

(
l(l + 1)

ω2r2
b

dN2

dx

) 1
3

. (5.2.16)

The reciprocal Llaunch = κ−1 is the radial lengthscale of the launching region, and is

roughly equal to the first wavelength of the gravity waves launched. This approxima-

tion is valid only if 1
κ2r2 � 1, otherwise Eq. 5.2.15 must be forced on the right hand

side. In this model the wave is assumed to be excited in a thin shell of radial extent

Llaunch, at a radius r ∼ rb, within which N2 ∝ rb − r.

If the solution is an IW, then the relevant solution of Airy’s equation is

ξd
r (x) ∝ Bi(x)− iAi(x). (5.2.17)

The energy flux F in IWs excited at the interface (r = rb) in a non-rotating star, is

(see Appendix A.6 for a similar derivation)

F ≡ Fx =
3

2
3

8π

[
Γ

(
1

3

)]2

[l(l + 1)]−
4
3

[
ρbr

5
b

∣∣∣∣rb
dN2

dx

∣∣∣∣− 1
3
∣∣∣∣∂ξr∂x

∣∣∣∣2
]
ω

11
3 , (5.2.18)

where ω = 2n is the frequency of IGWs excited by a planet in a circular, nonsyn-
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chronous orbit, and

rb
dN2

dx
≈ −100ω2

dyn, (5.2.19)

for the current Sun. The quantity

∂ξr
∂x

≈ σc
Ψ

ω2
dyn

, (5.2.20)

and σc is a constant whose value depends primarily on the thickness of the convection

zone, and is equal to -1.2 for the current Sun. The values of these quantities depend

on the stellar model. To calculate σc, we numerically solve GD98 Eq. 3, which we

reproduce below, for the dynamical tide in the CZ using a linear shooting method,

with N2 = 0. We use the BCs that ξd
r = 0 at the top and bottom of the CZ. The

motivation behind these choices is that the surface is roughly an equipotential, and

we want to enforce continuity of the solution at the top of the RZ, where ξd
r ∼ 0 (from

the perspective of the solution in the CZ). The equation we solve is

Lξd
r (r) = f(r), (5.2.21)

with the linear differential operator acting on the dynamical tide

Lξd
r (r) =

d2

dr2

(
r2ξd

r

)
+

d

dr

(
d ln ρ

dr
r2ξd

r

)
+
l(l + 1)

ω2

(
N2 − ω2

)
ξd
r , (5.2.22)

and the forcing by the equilibrium tide given by

f(r) = l(l + 1)ξe
r −

d2

dr2

(
r2ξe

r

)
. (5.2.23)

We find that a slightly better approximation is to take N2 ∝
√
x over the launching

region2, since this is valid over ∼ 0.15R� from the interface, as we illustrate in Fig. 5.3.

The slope of the curve
√
x can be obtained through fitting to the profile of N2 in the

stellar model. This allows a slightly more accurate calculation of F based on the stellar

model than is obtained through direct application of Fx (where the gradient dN2/dx

is not uniquely defined). Nevertheless, the differences are only a factor of two at most.

2However, no simple physical arguments for such a profile have been found, which is perhaps to
be expected since stellar models contain complicated combinations of physics.
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Figure 5.3: N2 normalised to ω2
dyn (solid blue line), together with our local approximation

N2 ∝ (rb − r)1/2 (red dashed line). This approximation is reasonable over a region of size
∼ 0.15R�. We also plot an arbitrarily scaled profile of F , to compare its radial profile with
the profile of N2, for P = 1 d.
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In Appendix A.6 we calculate the solution in the launching region and the resulting F ,

for any power law profile of N2 with a positive exponent, using the framework of OL04.

Using our approximation, the radial extent of the launching region Llaunch ∼ 0.03R�.

For the case N2 ∝
√
x, we obtain, for a non-rotating background,

F ≡ F√x =

(
2
5

) 1
5 π

2
[
Γ
(

3
5

)]2 [l(l + 1)]−
7
5 ω

19
5

[
ρbr

5
b

∣∣∣∣√rb
dN2

d
√
x

∣∣∣∣− 2
5
∣∣∣∣∂ξr∂x

∣∣∣∣2
]
. (5.2.24)

This matches the numerically computed asymptotic value of F for the current Sun

quite well, to within 10% (see Fig. 5.2). The remaining discrepancy is due to the slight

variation in background density, and the magnitude of the equilibrium tide, over the

launching region. We note that the main change in the energy flux from modifying

the profile of N2 in the transition region is to change its frequency dependence.

To illustrate the refinement for short-period forcing, in the top panel of Fig. 5.4 we

compare the numerically computed dynamical tide in the launching region (black solid

lines) with Eq. 5.2.17 and Eq. A.6.16. It is clear that the Airy function approximation

(blue dashed lines), using Eq. 5.2.19 for the slope at the interface, does not correctly

represent the solution in first wavelength, whereas the solution derived in Appendix

A.6 (red dashed lines), with a best fit
√
rb

dN2

d
√

x
= 15ω2

dyn, matches the solution in this

region quite well. However, this discrepancy can be rectified by choosing a shallower

slope at the interface for the Airy function approximation, as can be seen in the

bottom panel, where both solutions match the numerically computed dynamical tide

quite well. In the bottom panel we have used a slope rb
dN2

dx
= 20ω2

dyn, for computing

the blue dashed line using Eq. 5.2.17.

As can be seen from Fig. 5.2, the numerically computed asymptotic value of F

differs from Fx by a factor . 2, even in the case of short-period forcing. We would

expect Fx to be correct to within a factor ∼ 2 even if the slope varies by an order of

magnitude, since it is only raised to the power −1
3
. However, our slight refinement

improves this estimate by ∼ 50% for P = 1 d.

We have performed numerical integrations for several different forcing frequencies

(planetary orbital periods), for which we find F ∝ P−8.06 for fixed stellar and planetary

properties (other than the orbital period). If we take into account the fact that ∂xξ
d
r ∼

Ψ ∼ P−2, and then consider a fixed tidal potential, we find that F ∝ ω4.06, which is
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Figure 5.4: Top: ξd
r from numerical integrations (black solid line), compared with the

Airy function approximation (blue dashed line) and the Bessel function approximation of
Appendix A.6 (red dashed line). Bottom: Same, but with dN2

dx reduced by a factor of 5 for
Airy function approximation (blue dashed line).
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Figure 5.5: Power law dependence of F on P , for fixed stellar and planetary properties
(other than the orbital period). This has slope −8.06.

slightly different from the power law dependence in Eq. 5.2.24. The discrepancy most

likely results from the variation in the background density, and the magnitude of the

equilibrium tide (which forces the dynamical tide), within this region.

For P . 2− 3 d, which is the relevant regime for which this process is potentially

important for the survival of close-in planets, as we discuss later, there is a few per-cent

variation in background parameters over a lengthscale Llaunch. This means that our

calculation of F√x differs from the numerically computed value of F , by an amount that

increases as P is made smaller to a maximum of 20% when P = 0.5 d. Nevertheless,

this discrepancy is small, and our semi-analytic estimate F√x is a good approximation

to F for all cases that we have modelled. This is used to provide an estimate of Q′
?,

and thus the tidal torque, in § 5.4.

5.2.3 Variation between different stellar models

Eq. 5.2.24, matches the numerically computed value to within a few per-cent for a

variety of solar-type stars. This is because it generally arises that N2 ∝ xα, with

α ∼ 0.5, when the launching region is a few percent of the stellar radius. This occurs
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for the waves excited by planets in short-period orbits. We have confirmed this by

computing F in a number of stellar models with masses in the range 0.5 ≤ m?/M� ≤

1.1, and ages that represent the range of main-sequence ages expected for these stars.

These were computed using ASTEC (Christensen-Dalsgaard 2008).

We collect all terms in Eq. 5.2.24, that depend on the properties of the launching

region, into a single parameter

G = ρbr
5
b

∣∣∣∣ dN2

d ln
√
x

∣∣∣∣− 2
5

σc. (5.2.25)

This parameter has been computed in each of the stellar models in our study. This

involved integrating Eq. 5.2.21 throughout the CZ in each of these models, where

N2 ∼ 0, using a linear shooting method, to determine σc. The result of this study

is that G ∼ G� ≈ 1.2 × 1048kg m2s2/3, to within a factor of 5 for all solar-type stars,

throughout their main-sequence lifetimes. This is true even taking into account the

evolution of the position of the CZ/RZ interface, and the resulting change in the

density of the star at the interface.

The main uncertainty in these models is the profile of N2 within the launching

region, especially since the slope within 0.02R� of the interface is not well constrained

by theory or observations. Helioseismic observations are not yet able to constrain

the stratification within this region, owing to the lack of observed g-modes (Ellis

1984; Appourchaux et al. 2010). In addition, the relevant physics included in the

stellar models is also uncertain, particularly as a result of changes to the compositional

gradient from convective overshoot. The inclusion of helium settling tends to make

the interface profile sharper, and the inclusion of turbulent diffusion, that results

from convective overshoot, and often parameterised using a simplified 1D model of

this process, tends to smooth out the profile near the interface (Jørgen Christensen-

Dalsgaard, private communication). However, these changes are small and occur only

within a region smaller than the launching region for P . 3 d. This means that

uncertainties in the observations, and the physics, at the interface, are unlikely to

significantly change G (and therefore F ) for P . 3 d, which are the planets whose

survival could be threatened by our mechanism (as we discuss below). In addition,∣∣∣dN2

d
√

x

∣∣∣ is only raised to the -2/5 power in our model.
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Figure 5.6: In the top panel we plot N2 in a 1.0M� star at t = 6.95 Gyr, with our fitted
solutions in the bottom panel. This model has a “bump” in the N2 profile, but this occurs
over a region smaller than Llaunch, and so does not reduce the accuracy of our analytic model
in the launching region (or the corresponding energy flux), shown in the bottom panel.
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For Model S, the compositional gradient (∇µ) is unimportant in the launching

region, and N2 primarily results from temperature gradients. As the star evolves, the

settling of elements heavier thanH, produces a compositional gradient at the top of the

RZ, which can produce “bumps” in the profile of N2. In Fig. 5.6 we plot an example of

the profile of N2 for a 1M� model (with Z = 0.02) at t = 6.95 Gyr, together with the

best fit solution in the launching region. For P . 3 d, Llaunch is generally much larger

than these “bumps”, so the wave launching process does not notice such departures

from a smooth stratification profile, and Eq. 5.2.24 remains a good approximation for

the energy flux. However, if the frequency is sufficiently low (P & 6 d), the radial

extent of the launching region can become comparable with the size of these “bumps”,

and the numerical solution can depart appreciably from our analytical model. Planets

in such orbits are very unlikely to be affected by stellar tides at such orbital distances,

so we do not consider such effects worthy of further consideration. To summarise, we

have confirmed that Eq. 5.2.24 is a good approximation for the energy flux for planets

on orbits of a few days throughout the range of solar-type stars in our study.

5.2.4 Are 1D linear hydrodynamic calculations reasonable?

The calculations done in § 5.2 are performed under the assumption of linearity. We

have demonstrated in Chapters 3 and 4, that this is not a valid assumption near the

centre of a star. A simple estimate of the nonlinearity in IGWs in the launching

region, for want of a better measure, compares the radial displacement to the radial

wavelength, for which ξd
r/λr ∼ 10−4, for a hot Jupiter orbiting the Sun on a one-day

orbit (this estimate can be obtained from Fig. 5.1). This value increases linearly with

the mass of the planet, but we are still in the linear regime even if we have a close-

binary perturber, which indicates that linearity is likely to be a good approximation

in the launching region (and throughout the RZ, except for the central regions).

However, it remains to be seen whether F for the 1D calculations is the same as

that in 2D or 3D numerical simulations of realistic tidal forcing in a model including

both a CZ and a RZ. Such simulations as Rogers et al. (2006) could be performed of

the whole star subject to tidal forcing. The turbulent convection in these simulations

will produce a spectrum of waves at the top of the CZ, in addition to those excited by
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tidal forcing. It may be that the interaction of these waves reduces the ingoing energy

flux. Alternatively, the profile of N2 in the transition region could be modified by

realistic modelling of convective overshoot, altering the strength of the stratification

within a few percent of a pressure scale height from the interface. This would affect

F if the overshoot region is comparable with the size of the launching region, though

probably not significantly, as we discussed in the previous section.

A toroidal magnetic field in the launching region could also affect the amplitudes of

these waves, and the value of F . Rogers & MacGregor (2010) find that when the IGW

frequency is approximately equal to the Alfvén frequency (ωA), strong wave reflection

occurs. This behaviour follows from the dispersion relation for IGWs in the presence

of a magnetic field (e.g. Kumar et al. 1999), and could have important consequences

for F , if the magnetic field is sufficiently strong. However, for ω ≈ ωA in the launching

region, we require Bφ = 2π
√
µ0ρbrb/P & 6 MG, when P = 1 d, which is close to being

ruled out on empirical grounds, from measurements of the solar oblateness (Friedland

& Gruzinov 2004). If ωA < ω, little attenuation of wave energy over the non-magnetic

case is found by Rogers & MacGregor (2010), so this seems unlikely to affect F in our

case.

In the innermost wavelength, a strong magnetic field would be able to reflect IGWs

before they reach the centre, if ω ≈ ωA in this region. This requires a toroidal field

of strength Bφ & 6 MG, or a poloidal (radial) field of strength Br & 28 MG. Since

it is unlikely that such fields could exist in the RZ (Friedland & Gruzinov, 2004), a

magnetic field will probably not affect the reflection of IGWs (excited by short-period

planets) in the RZ. It is therefore appropriate to ask whether the waves will break on

reaching the centre.

5.3 When does wave breaking occur?

In this section we estimate the orbital and stellar properties required to excite waves

that are sufficiently nonlinear near the centre for breaking to occur, using the linear

solution in Chapter 4. The nonlinearity parameter is defined so that for |A| > 1, the

wave overturns the stratification during part of its cycle. Assuming we are not close

to resonance with a global g-mode, we can estimate the amplitude near the centre,
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assuming standing waves have formed, by using Eq. 5.2.24, to give

|A| =
3

10

(
3
2

) 1
20 π

2
5

5
1
10 Γ(3

5
)

G 1
2

ω2
dyn

(
C5

ρc

) 1
2
(

mp

m? +mp

)
P

1
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≈ 0.4

(
G
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) 1
2
(
C

C�

) 5
2
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M�
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P

1 day

) 1
10

, (5.3.2)

for the current Sun, where G� ≈ 1× 1048kg m2s2/3, and C� ≈ 8× 10−11m−1s−1.

We can therefore write the following criterion for wave breaking:

(
G
G�

) 1
2
(
C

C�

) 5
2
(
mp

MJ

)(
M�

m?

)(
P

1 day

) 1
10

& 3.6. (5.3.3)

A Jupiter-mass planet in a one-day orbit around the current Sun would not raise tides

of sufficient amplitude near the centre for breaking to occur, and would presumably

survive, because it does not satisfy this criterion. Indeed, all of the HJs currently

observed around G or K type stars3 do not satisfy this criterion, so this could be an

important explanatation for their survival.

Note, however, that sufficiently long-period planets may be able to satisfy this

criterion around the current Sun, due to the (weak) period dependence of the nonlin-

earity. The waves excited by such planets would be of very low amplitude, but they

are also of very low frequency. This means that their wavelength is extremely short, so

the energy of these waves would be concentrated into an extremely small volume near

the centre of the star, if they were to reach it. However, radiative diffusion is certain

to damp these waves before they reach the centre, since they are of such short wave-

length. This process would, in any case, contribute negligibly to the orbital evolution

of such long-period planets.

The variation in |A| is primarily dependent on C, since |A| ∝ G 1
2C

5
2 . The strong

dependence on C means that as a star evolves the tide could become nonlinear at a

critical age, since C increases with evolution on the main-sequence. In Fig. 5.7 we plot

the variation in C versus main-sequence age, normalised to its value in the current Sun,

from a sequence of solar models that pass through Model S. The increase in C with

age is due both to the increasing central condensation, and the build-up of a gradient

in the hydrogen abundance (there is a small drop around 8 Gyr when hydrogen is

3Contained in the catalogue at http://exoplanet.eu/catalog.php
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Figure 5.7: Coefficient C in the expansion N ≈ Cr near the centre of the Sun normalised to
its current value versus main-sequence age, for a sequence of solar models that pass through
Model S of the current Sun. The stratification steepens as the star evolves.

nearly used up and the contribution from the composition gradient decreases, after

which the central density increases rapidly).

For a given age, C is larger in more massive stars, due to their greater central

condensation. In addition, stars with lower metallicity also have a greater central

condensation for a given age, and so have larger C values over stars with higher

metallicity. Over the range of stars considered in this study, C is found to take values

between 0.1 − 10 C�. This leads to a large variation in A values, for fixed orbital

parameters. As a result, C is critical in determining whether wave breaking occurs at

the centre. We have stated that a short-period Jupiter-mass planet does not satisfy

Eq. 5.3.3 around the current Sun. However, such a planet around a similar-age 1.0M�

star with a metallicity Z = 0.01, will cause wave breaking at the centre, since C is

larger by a factor of 3. Thus, there is a strong dependence of the breaking criterion

on the stellar model, primarily through the parameter C.
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5.4 Q′
? for solar-type stars

The main motivation for our work is to study Q′
? for solar-type stars, and to connect

this with the survival of close-in extrasolar planets. If a critical layer forms by wave

breaking (or radiative diffusion, as we discuss in Chapter 7), then we can assume that

the entire ingoing angular momentum flux is absorbed in the RZ. In that case, we use

Eq. 5.1.2, together with Eq. 5.2.24, to write

Q′
? =

9

32

(
3
2

) 2
5
[
Γ(−2

5
)
]2

5
4
5π

24
5

1

G
m?R

2
?ω

2
dynP

14
5 (5.4.1)

≈ 0.9× 105

[
P

1 day

] 14
5

. (5.4.2)

Note that the exact value depends on the stellar model adopted – in particular the

value of G, which is determined from the stellar properties in the launching region, and

the thickness of the convection zone. The given value applies to a stellar model of the

current Sun. However, we stated in §5.2.3 that G varies by only a factor of 5 throughout

the range of main-sequence stars in our study. Taken together with changes in stellar

mass and radius, our estimate of Q′
? varies by only a similar amount, thus Eq. 5.4.2 can

be considered quite robust, if critical layer absorption occurs near the centre. This is

approximately true for all stars within the mass range 0.5 ≤ m?/M� ≤ 1.1, throughout

their main-sequence lifetimes.

As the star evolves on the main-sequence, the position of the interface rb moves

inwards towards higher density material, which slightly increases F . This means that

Q′
? tends to decrease with main-sequence age, though by only a factor of 5 or so. The

dissipation that results from wave absorption at a critical layer thus becomes more

effective as the star evolves.

5.5 Orbital evolution of the planetary companion

Tidal dissipation of the quadrupolar tide raised in the star leads to evolution of the

semi-major axis at the rate

ȧ

a
= −9

2

mp

m?

(
R?

a

)5

n

[
sgn(2n− 2Ω)

Q′
?

]
. (5.5.1)
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The inspiral time for a planet into the current Sun is then

τa = − 10

107

a

ȧ
≈ 1.03 Myr

(
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) 8
3
(
R�

R?

)5(
P

1 day

) 107
15

, (5.5.2)

since ȧ/a ∝ a−107/10. Note that the strong frequency dependence of Q′
? means that

this mechanism could be very important for short-period systems. This predicts that

a planet spiralling into its star will undergo rapid acceleration as it migrates inwards.

This is a consequence not only of the reduction in semi-major axis, but also the

decrease in Q′
?, as the tidal frequency increases with the inspiral. It must be noted

that simple timescale estimates do not accurately reflect the evolution if the orbit is

eccentric, inclined, or if the stellar spin is not much slower than the orbit (see Chapter

2), but this estimate shows that this mechanism can be very efficient in contributing

to the tidal evolution of hot Jupiters on the tightest orbits. Indeed, τa . O(1) Gyr

for a Jupiter-mass planet in an orbit of less than about three days around the current

Sun, if a critical layer were to form near the centre.

We can crudely estimate the maximum orbital period of a planet that can be pulled

into the star by this process, by equating the moments of inertia of the RZ, to that of

the orbit µa2 = r2
gm?, giving

P ' 1.8 d

(
m?

M�

) 1
2
(

rb

0.7R�

)(
MJ

µ

) 1
2

, (5.5.3)

where µ = mpm?

mp+m?
is the reduced mass, and r2

g = 0.076 is the squared dimensionless

radius of gyration for a polytrope of index 3.

A Jupiter-mass planet on a ∼ 1 day orbit will spin up a substantial fraction of

the RZ on infall. If the ratio of the orbital moment of inertia to the spin moment of

inertia of the RZ & 1, then the above process alone will be unable to cause the planet

to spiral into the star. However, if this ratio is smaller than unity for such a short-

period planet, the whole of the RZ must be spun up to cause the planet to completely

spiral into the star. Once the entire RZ has spun up to the orbital frequency, this

process becomes ineffective, and the corresponding tidal torque will vanish. However,

the tidal torque is nonzero due to dissipation of the equilibrium tide by turbulent

convection, and so even if this process stops, it does not guarantee the survival of the
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planet. In addition, magnetohydrodynamic coupling between the CZ and RZ could

act to partially counteract the spin-up of the interior, if the CZ is spinning slower than

the orbit. Magnetic braking of the star through the interaction of its magnetic field

with a stellar wind acts to spin down the CZ, which would also gradually spin down

the RZ through these couplings. If the coupling between the CZ and RZ of the star

is efficient, then our mechanism would again become effective. In the case that the

coupling timescale balances the timescale for spin up of the RZ due to IGW absorption

at a critical layer, then the planet would migrate into the star on the magnetic braking

timescale. A detailed study of these effects is not currently possible, since there are

many uncertainties, but this is worthy of future consideration.

5.6 Long-term evolution of the RZ

As the planet migrates inwards due to the IGWs it excites being absorbed at a critical

layer, ω increases, since ṅ > 0. If we assume that the tidal frequency increases from

ω1 at a time t1 to ω2 > ω1 at a slightly later time t2, then since ω2 > ω1, the waves

excited at t2 no longer see the critical layer for ω1 waves. If the change in frequency

is sufficiently small, we would still expect significant attenuation by the shear as the

waves approach the critical layer for ω1 waves. This would transfer angular momentum

from the waves to the mean flow, and may spin up the region near the original critical

layer to the pattern speed for ω2 waves, hence producing a critical layer for these waves.

If this process occurs, then a weak radial differential rotation profile could be set up

in the RZ, with dΩ(r)
dr

> 0. Similarly, if the planet migrates outwards for the case of

a rapidly rotating star, then a profile with dΩ(r)
dr

< 0 could be set up (which would be

unstable). If the flow does not have time to adjust to the change in frequency of the

forcing, and cannot spin up sufficiently to produce a critical layer for ω2 waves, then

the dissipation rate may be reduced. However, it seems plausible that the change in

the orbit will be gradual enough so that IGWs reaching the centre will be significantly

attenuated. This is because their radial wavelengths get Doppler-shifted downwards

by the shear, making them more susceptible to radiative damping.

We have so far restricted our investigation to m = 2 waves. If the orbit of the

planet is eccentric or inclined with respect to the stellar equator, then IGWs with
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other m-values could be excited. If these break, then they could each have their own

critical layer. It would be interesting to study the effects of tidal forcing with several

different frequencies and m-values to see how this would affect the reflection of the

different waves. In addition, Rogers & Glatzmaier (2006) found that IGWs excited

by turbulent convection at the top of the RZ, which had 1 < m < 15 and typical

frequencies ω ∼ 20µHz, could reach the centre with sufficient amplitude to undergo

breaking and spin up the central regions. If this commonly occurs in solar-type stars,

then we might expect the core to be differentially rotating, even in the absence of

tidal forcing. For most m-values the resulting spin frequency of the central regions is

probably slower than that of the relevant pattern speed for tides raised by a close-in

planet, so we expect that this would minimally attenuate any tidally excited low-

m waves. Nevertheless, the interactions of multiple waves near the centre warrants

further study.

5.7 Tidal dissipation in F-stars

In this chapter we have discussed the implications of the formation of a critical layer

near the centre of a solar-type star, which can occur due to wave breaking. However,

many planets orbit F-type stars, which have convective cores and thinner OCZs. Our

calculation of Q′
? for XO-3 in Chapter 2 indicates that it would be worthwhile to study

the range of Q′
? expected for F-stars, and how these may differ from the solar-type

stars that we have considered so far in Part II of this thesis.

We have performed calculations of tidal dissipation in the OCZs of a variety of F-

stars between the masses of 1.2−1.6M�, using the numerical method of OL04/OL07,

and the stellar models of EZ-Evolution. These stars contain convective cores sur-

rounded by a RZ and an OCZ. Since these stars are not stably stratified near the

centre, the process of wave breaking and critical layer formation will not occur in such

stars, because IGWs reflect from the core before they become nonlinear. This removes

the possibility of the efficient mechanism of tidal dissipation that we have so far dis-

cussed, with damping of the dynamical tide in the RZ being due only to inefficient

radiative diffusion (which is discussed further in §7.1). For this reason, we expect that

tidal dissipation in the OCZ will dominate the dissipation.
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Figure 5.8: Q′
? as a function of the ratio of tidal frequency to spin frequency ω̂/Ω, from

dissipation of the l = m = 2 component (we find the behaviour of the m = 0 and 1
components is similar in magnitude) of the equilibrium tide, and dissipation of inertial modes,
in the OCZ of two F-type star models. The dashed lines represent the effect of omitting the
Coriolis force, and therefore inhibiting inertial waves. The top figure shows a high-mass
1.5M� F-star, with solar metallicity and an age of 0.7 Gyr, assumed to be spinning with
a period of 3 d. This has a very thin OCZ, and tidal dissipation is extremely weak. The
bottom figure shows a low-mass 1.2M� F-star, with solar metallicity and an age of 1.0 Gyr,
assumed to be spinning with a period of 3 d. Tidal dissipation is much stronger in this
star, though still smaller than that in Fig. 6 from OL07 for a 1.0M� G-star. Together with
Fig. 2.9 this shows that Q′

? can vary considerably between stars, even within the range of
F-stars.
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We consider the range of OCZ properties for F-stars, as the mass and metallicity

are varied. A selection of illustrative examples will now be presented, which represent

the range of properties expected for F-stars. Fig. 5.8 shows Q′
? as a function of tidal

frequency for two F-stars, with different OCZ properties. The top panel in Fig. 5.8

shows that tidal dissipation in more massive F-stars, with very thin OCZs, is found

to be extremely weak, with Q′
? & 1012 for most tidal frequencies. This implies that

tidal dissipation in such stars is probably negligible in contributing to the spin-orbit

evolution of HJ systems. The bottom panel in Fig. 5.8 shows that tidal dissipation in

lower mass F-stars with thicker convective envelopes, is similar to but slightly weaker

than that for solar-type stars (OL07), since Q′
? & 108 for most tidal frequencies (even

those in the range |ω̂| < 2|Ω|).

A model with 1.3M� star similar to XO-3, except that we choose supersolar metal-

licity (Z = 0.03), is found to have a similar OCZ to the 1.2M� model in the bottom

panel of Fig. 5.8, and has a very similar Q′
?. The metallicity of the star affects the

thickness of the OCZ, and therefore the efficiency of tidal dissipation.

From these examples, it is clear that assuming a single Q′
? applies for all stars is

incorrect. Even within the mass range of F-stars there is considerable variation (for a

given ω̂) in Q′
? ∼ 108 − 1012 in our calculations, primarily as a result of the variation

in the mass fraction contained in the OCZ. Lower mass stars, and those with higher

metallicity, tend to have thicker OCZs than higher mass, low-metallicity stars. In

addition, higher mass stars are more centrally condensed, so the mass fraction in their

outer regions will be lower. This results in low-mass, high-metallicity stars having

lower Q′
? then high-mass, low-metallicity stars. F-stars, in general, also have different

Q′
? than solar-type stars, with radiative cores.

5.8 An explanation for the survival of all (currently

observed) short-period planets

Our most important result is that this mechanism can potentially explain the survival

of all short-period extrasolar planets around solar-type stars4 with masses in the range

4Contained in the catalogue at http://www.exoplanet.hanno-rein.de/ or
http://exoplanet.eu/catalog.php
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0.5 ≤ m?/M� ≤ 1.1. From using the closest fit stellar model to each of these stars,

we find that no planet clearly satisfies Eq. 5.3.3 with a period P . 3 d (planets much

further out may satisfy the criterion, though this tidal effect is then unimportant). All

of these planets are insufficently massive (or orbit sufficiently young stars, with low

values of C/C�) that they are unlikely to cause wave breaking at the centre of their

hosts. The dominant mechanism of tidal dissipation in these stars is therefore likely

to be damping of the equilibrium tide by turbulent convection. This is likely to be

relatively inefficient for these periods, since the turbulent viscosity must be reduced

when the orbital period is shorter than the convective timescale, as we discussed in

§ 1.4 (see e.g. Zahn 1966; Goldreich & Nicholson 1977; Goodman & Oh 1997; Penev

et al. 2007). This could be an important explanation for the survival of these planets.

As an example, WASP-19 b (Hebb et al. 2010) is the latest candidate for the

shortest period massive transiting planet. This planet has mass mp = 1.15MJ , in an

orbit of P = 0.78 d, around a star of mass m? ≈ 0.95M�, and hence will contain

a radiative core. The stellar age is poorly constrained, but we find that the IGWs

excited by this planet will not have sufficient amplitude to cause wave breaking at the

centre of the star, for all reasonably-aged stellar models of a similar mass star. This

means that the planet will not be subject to accelerating tidal decay through critical

layer absorption, perhaps explaining its survival. Constraints on the tidal Q′
? for this

system would then give us information on alternative mechanisms of tidal dissipation,

such as the dissipation of the equilibrium tide by turbulent convection. The existence

of this planet on its observed orbit can be explained through the absence of wave

breaking at the centre of its star.

The results of this thesis also allow us to propose an explanation for the survival

of planets around F-type stars, with convective cores. This is because in these stars,

the mechanism outlined in Part II of this thesis will not work in such stars, regardless

of the mass of the planet. The reason for this is that IGWs do not propagate in

convective regions, and will reflect from the top of the convective core before they

reach the centre. Together with our results in § 5.7, this allows us to explain the

survival of planets such as WASP-18 b (Hellier et al. 2009), WASP-12 b (Hebb et al.

2009) and OGLE-TR-56 b (Sasselov 2003). Taking the current values for the stellar
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properties of the host stars in these systems, we find that they are each likely to have

a convective core, which will prevent IGWs from reaching the centre of each star. In

addition, these stars are slowly rotating, and so the relevant tidal frequencies are likely

to be outside the range of inertial waves (|ω̂| > 2|Ω|), which would imply that such

waves are not excited by tidal forcing. This means that the resulting Q′
? is due only to

damping of the equilibrium tide, which from Fig. 5.8 (in the limit in which |ω̂| � |Ω|)

is seen to be much larger than its value when inertial waves are excited. Therefore it

is likely that the relevant Q′
? & 1010 in these stars, which would imply that tidally-

induced inspiral will not occur within the age of these systems. Weak dissipation in

the star could therefore explain the survival of these planets, which all orbit F-stars.

Our mechanism can also explain why the most massive short-period planets (which

still have smaller or comparable moments of inertia in the orbit as the RZ of the

star), such as WASP-18 b (Hellier et al., 2009), WASP-14 b (Joshi et al., 2009) or

CoRoT-14 b, are exclusively found around F-stars, which have convective cores, and

in which critical layer formation induced by wave breaking at the centre is unable to

operate. Note, however, that very massive perturbers around solar-type stars may have

sufficient orbital angular momentum to be able to synchronise their stars and reach an

approximate tidal equilibrium state, neglecting stellar magnetic braking, which would

prevent orbital decay, even for planets in orbit around a solar-type star. This may be

an explanation for the synchronisation of close-binary stars (e.g. Mazeh 2008).

Our results make several predictions, which will be tested by ongoing and future

studies of transiting planets, such as WASP and Kepler. In particular, we make the

prediction that fewer massive planets in the range 3 . MJ . 20, in orbits with

P . 2− 3 d, that satisfy Eq. 5.3.3, will be found around solar-type stars.

5.9 Conclusion

In Part II of this thesis, a mechanism of tidal dissipation has been studied in which

tidally excited IGWs break at the centre of a solar-type star, and form a critical

layer. In this chapter, we considered the implications of this process for the survival

of short-period planets around solar-type stars. We computed numerically the lin-

earised adiabatic tidal response, in order to calculate the angular momentum flux of
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the waves launched at the CZ/RZ interface. A semi-analytic model of this quantity

was presented, and its validity was verified by numerical integrations.

We computed the tidal Q′
? that results from this process in an extensive set of

stellar models. We found that Eq. 5.4.2 is a quite robust estimate, which was found

to vary by no more than a factor of 5 throughout the range of G and K stars, within

the mass range 0.5− 1.1M�, at any stage in their main-sequence lifetime, for a given

planetary orbit. This results in a relatively rapid inspiral for planets on short-period

orbits, if a critical layer is produced.

One important result of this work is to highlight the importance of the internal

structure of the star on the magnitude of the tidal dissipation. We briefly discussed

the tidal dissipation expected in F-stars, which contain convective cores. There are

differences between the dissipation in G and F stars, due to differences in their internal

structure – most notably the presence of a radiative core in a G-type star, which

support IGWs, enabling more efficient dissipation if wave breaking (and critical layer

formation) occurs. Taken together with a result of OLO7, that the spin period of the

star also affects Q′
?, we can conclude that it is certainly incorrect to assume Q′

? is

identical for all stars.

We provided an explanation for the survival of all currently observed short-period

planets around F, G or K stars, as a result of weak tidal dissipation in the star. Around

G and K-type stars, planets can survive if their masses are insufficient to cause wave

breaking at the centre (and therefore to satisfy Eq. 5.3.3). The stars are also slowly

rotating, so it is likely that damping of the equilibrium tide by turbulent convection is

the dominant mechanism of tidal dissipation, which has previously been found to be

inefficient in the appropriate period range (e.g. Goldreich & Nicholson 1977; Goodman

& Oh 1997). Around F-stars, planets can survive because the process of wave breaking

will be prevented by reflection of the tidally excited IGWs from the convective core

before they become nonlinear, together with weak dissipation of the equilibrium tide

in the thin OCZ, as long as the stars are slowly rotating.

We predict that there will be very few massive planets (with masses . 20MJ)

orbiting G-stars (which satisfy Eq. 5.3.3) in orbits of less than 2 days, due to the rapid

inspiral that results from critical layer absorption near the centre. We also predict that
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the population of short-period HJs around G-stars will decrease with main sequence

age, as a result of the increasing central condensation of the star, making breaking

more likely. A corollary of these predictions is that there should be more massive

planets in short-period orbits observed around F-stars. This appears to be the case

from the current sample of extra-solar planets.
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Chapter 6

Stability analysis of a standing

internal gravity wave near the

centre of a solar-type star in 2D

In Chapters 3 and 4 we have presented the results of numerical simulations of IGWs

approaching the centre of a solar-type star, in both two and three dimensions. We

found that the waves break if they overturn the isentropes near the centre, but they

were not observed to undergo instability for smaller amplitudes. It has been proposed

that parametric instabilities could be important for smaller amplitude waves (e.g. Ku-

mar & Goodman 1996; GD98). Our simulations may not have the spatial resolution or

have a sufficiently long run time for these instabilities to be observed. In this chapter

we perform a stability analysis of our 2D exact wave solution. This work has two aims:

to determine any instabilities that set in for small amplitude waves, and to understand

the breaking process in more detail. Our results are compared with the stability of a

plane IGW in a uniform stratification, and with previous work by Kumar & Goodman

(1996) on a similar problem to our own. The astrophysical relevance of our results is

then discussed.
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6.1 Introduction

Many stability analyses of a plane IGW in Cartesian geometry with a uniform stratifi-

cation have been performed (e.g. McEwan & Robinson 1975; Meid 1976; Drazin 1977;

Klostermeyer 1982). These indicate that a monochromatic propagating plane IGW

is always unstable to parametric instabilities, whatever its amplitude, in the absence

of diffusion. In that problem such analyses were made possible for finite-amplitude

(in addition to infinitesimal amplitude) waves because the solution is exact. This is a

consequence of the fact that k · u = 0, implying that the advective operator u · ∇ an-

nihilates any disturbance belonging to the same plane wave. These stability analyses

allow a detailed understanding of the initial stages of the breaking process for these

waves (e.g. Drazin 1977; Klostermeyer 1982; Lombard & Riley 1996).

When a small perturbation is added to a basic plane wave, the resulting evolu-

tionary equations have periodic coefficients. This allows the possibility for parametric

instability to occur. The first study of this problem was by McEwan & Robinson

(1975), who considered perturbations with length scales much smaller than the pri-

mary IGW wavelength, in which case the problem can be reduced to the solution of

Mathieu’s equation. The motion of the fluid in the basic wave gives rise to unstable

modes, just as parametric oscillations of a pendulum are excited by periodic changes

of its length. The growth rates of these parametrically unstable modes increases (lin-

early) with the amplitude of the basic wave.

Subsequent analyses expanded the perturbation onto a Floquet basis, and relaxed

the small-scale assumption. These studies all find that in a dissipationless fluid, the

disturbances with the largest growth rates have the smallest spatial scales (e.g. Drazin

1977; Klostermeyer 1982). In viscous or radiative fluids, dissipative effects scale with

the inverse square of the length scale of a given mode. This means that the most

unstable wavelengths will no longer be those of the smallest spatial scale, but will be

those for which the competing effects of dissipation and (nonlinear) growth favour the

latter, and this will depend on the Reynolds number (also the Prandtl number when

radiative diffusion is included).

Lombard & Riley (1996) performed a detailed stability analysis of a plane IGW

which demonstrated that the instability that contributes to wave breaking is driven by
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a combination of wave shear and wave entropy gradients. They find that wave-wave

resonance interactions are the primary mode of instability for small amplitude waves,

with the picture being much more complicated near overturning amplitudes. However,

no difference in the type of instability is found for waves that do and do not overturn

the stratification for some wave phase.

In our problem we have obtained an exact 2D standing wave solution representing

IGWs near the centre of a solar-type star. This enables us to perform a stability

analysis of this wave for any amplitude. This is the subject of the present chapter. One

important difference between our problem and previous studies is that the nonlinearity

is spatially localised in the innermost wavelengths, whereas the nonlinearity is present

everywhere in the plane IGW problem.

In the centre of a star, viscous (molecular) damping is negligible, and the dominant

linear dissipation mechanism is radiative diffusion, which is too inefficient to prevent

the excitation of waves with scales not much smaller than the primary wavelength.

This is true for the waves excited by planets orbiting solar-type stars with several-

day periods. This means that parametrically excited modes with scales much shorter

than the primary wave could be excited. These will then be damped by diffusion but

not before they can draw energy the primary wave, and possibily contribute to wave

breaking.

We have already demonstrated through direct numerical simulations that a wave

with sufficient amplitude to overturn the stratification undergoes a rapid instability

(with a growth time on the order of a wave period) which leads to wave breaking. We

found that the wave overturns the stratification during part of its cycle if the angular

velocity in the wave exceeds the angular pattern speed of the forcing, i.e. uφ/r & Ωp.

In these 2D simulations, the wave reflects perfectly from the centre of the star if its

amplitude is insufficient to satisfy this criterion, and long-term integrations do not

show that any instabilities act on the waves. The picture in 3D is very similar. In

this chapter we perform a weakly nonlinear stability analysis of our 2D wave solution

using a Galerkin spectral method. This work has two main aims:

• to better understand the early stages of the breaking process for large amplitude

waves,
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• to determine what (if any) instabilities may set in for waves that are unable to

overturn the isentropes at any location in the wave.

The motivation for this study is that if the waves are subject to parametric insta-

bilities, whatever their amplitudes, the reflection of waves from the centre of the star

will not be perfect. This would stand in contrast to the prediction from linear theory,

and the results of our numerical simulations. The simulations performed thus far may

not have the spatial resolution or have long enough run time to be able to capture

small-scale parametric instabilities. If they indeed occur, and the tidally excited waves

are weakly nonlinearly damped by parametric instabilities, this could contribute to the

tidal dissipation, and have implications for the survival of short-period planets with

insufficient masses to cause breaking.

6.2 Internal gravity wave stability analysis

We start with the dimensionless Boussinesq-type system Eqs. 3.4.29–3.4.32, previously

derived in Chapter 3. We consider a circular region with r ∈ [0, rout], taking rout =

1, which is an impermeable outer boundary at constant entropy, i.e., ψ(1, φ, t) =

b(1, φ, t) = 0, to confine the modes. Our inner boundary condition is a regularity

condition1 at r = 0, which is implicitly enforced through our choice of basis functions

for the perturbation to the wave, as we describe below.

We use dimensionless units such that the unit of length [L] = rout, the unit of time

[T ] = Nout = C−1r−1
out, and take C = 1. We then express the velocity field in terms of

a (real) streamfunction ψ, defined by

ur =
1

r
∂φψ, (6.2.1)

uφ = −∂rψ, (6.2.2)

which automatically enforces the solenoidality constraint on the velocity. We consider

a stationary, stably stratified background containing a nonlinear wave (denoted by

1However, in the computation of the table of integrals described below, this is replaced by an inner
boundary at rin = 10−4, to avoid the coordinate singularity at the origin.
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subscript w), subject to a perturbation (denoted by primes). That is, we expand

b = bw + b′, (6.2.3)

ψ = ψw + ψ′. (6.2.4)

To eliminate the modified pressure variable q, we take the curl of the momentum

equation

∂t(∇× u) = ∇× rb−∇× (u · ∇u), (6.2.5)

which can be expanded to first order in the perturbed quantities. The z-component

of this linearised equation expressed in terms of the streamfunction, together with the

buoyancy equation, is

∂t(−∇2ψ′) + ∂φb
′ = J(ψw,−∇2ψ′) + J(ψ′,−∇2ψw) (6.2.6)

∂tb
′ + ∂φψ

′ = J(ψw, b
′) + J(ψ′, bw), (6.2.7)

which is two equations for two unknowns (ψ′, b′). The vorticity perturbation is ζ ′ =

−∇2ψ′. The nonlinearities in this system provide coupling between different waves.

We neglect the terms J(ψ′,−∇2ψ′) and J(ψ′, b′), which is consistent with our weakly

nonlinear approach.

6.2.1 Exact primary wave solution

In the frame in which the wave is steady and φ is the azimuthal coordinate, our primary

wave is

ψw = Re

[
4

k3
2,np

AJ2(k2,npr)e
2iφ

]
=

2

k3
2,np

[
AJ2(k2,npr)e

2iφ + A∗J2(k2,npr)e
−2iφ

]
, (6.2.8)

which is an m = 2 wave with np radial nodes (to be chosen later), where A ∈ C, in

general, and is time-independent in this frame. From here on, we take A ∈ R, without

loss of generality. Note that bw = k2,npψw and ∇2ψw = −k2
2,np

ψw. We define k2,np

such that J2(k2,np) = 0. This is equivalent to confining the primary wave in a circular
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region of unit radius with an impermeable outer boundary at constant entropy. We

plot this wave with np = 4 in Fig. 6.1. Note that we define np so that np = 2 when

there are no zeroes except at the boundaries, which is a nonstandard definition.
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Figure 6.1: Streamfunction of the primary wave ψw for np = 4, with an arbitrary amplitude
for illustration. Contours of constant ψw are the streamlines of the primary wave flow. The
flow goes clockwise around the red streamlines and anticlockwise around the blue streamlines.
Stagnation points are located at the radial nodes r where J2(k2,npr) = 0, at azimuthal
locations φ = (2n+1)

4 π for n ∈ Z.

This wave overturns the stratification when ∂rs < 0, where s = (1/2)r2 + bw. This

is equivalent to 1
r
∂rbw < −1. Note that overturning occurs only when A > 1, and is

more likely for waves with large n and small m values. The size of the convectively

unstable region can be illustrated for a given A and np, by calculating when

N2 = g∂rs = r(r + ∂rb) (6.2.9)

= r2 + Re

[
2A

k2,np

r
(
J1(k2,npr)− J3(k2,npr)e

2iφ
)]
< 0, (6.2.10)

(where we take cp = 1 for convenience). For illustration, we plot the 2D region that is

convectively unstable for several A values when np = 4 in Fig. 6.2. An approximate

size for the overturning region for small r when A > 1 is

rov ≈

√
6

k2
2,np

(
1− 1

A

)
, (6.2.11)
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at the most unstable wave phase. When A = 1 the overturning region is the point

r = 0, with the region expanding for larger A. If the instabilities that cause wave

breaking are convectively driven, we would expect them to be strongly localised within

the convectively unstable regions of the primary wave.
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Figure 6.2: Spatial exent of the region that is made convectively unstable by the primary
wave for A = 1.1 (top) and 10 (bottom), with np = 4. This regions expands from the point
r = 0 when A = 1 to encompass the innermost few wavelengths for larger A.

6.2.2 Infinitesimal perturbations

We consider linear pertubations to this finite-amplitude primary wave, which we ex-

pand as (dropping the primes from now on)

ψ =
∞∑

m=−∞

∞∑
n=2

ψm,n(t)Jm(km,nr)e
imφ, (6.2.12)

b =
∞∑

m=−∞

∞∑
n=2

bm,n(t)Jm(km,nr)e
imφ, (6.2.13)
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where km,n is chosen such that the solutions for each azimuthal wavenumber m, and

radial node number n ≥ 2, satisfy the outer boundary condition at r = 1, for which

Jm(km,n) = 0. (6.2.14)

This condition forces km,n ∈ R, for |m|, n ∈ Z+. The above expansion automatically

enforces a regularity condition on the perturbations at r = 0. Eqs. 6.2.12 and 6.2.13

define our Galerkin basis. This basis is adopted for two reasons: the linear solutions

(A = 0) take the same form, and it automatically ensures that the total energy of the

perturbations is conserved, since the energy flux through the boundaries is always zero

(because ur = b = 0 at r = 0, 1).

Note that our spectral-space amplitudes ψm,n(t), bm,n(t) ∈ C, so we must take the

real part at the end of the calculation to obtain physical quantities. For each m,

there is an infinite number of components with different values of n. In our spectral

representation of the solution, we truncate these infinite series at 1−M ≤ m ≤M−1,

where M is an odd number, and n = N . This truncation is chosen so that we have

an exactly equal number either side of m = 0 (and a similar number either side of the

primary wave m = 2) which ensures that our mathematical realisation of the problem

has the symmetry property that we discuss in § 6.5.3 below.

6.2.3 Derivation of the evolutionary equations

Evolutionary equations for the amplitudes ψm,n(t) and bm,n(t) can be derived by pro-

jection through integration onto the Galerkin basis. To do this we substitute the

above expansions into the weakly nonlinear system defined by Eqs. 6.2.6–6.2.7. An

important orthogonality relation is∫ 2π

0

∫ 1

0

rJm(km,n′r)Jm(km,nr)e
i(m−m′)φdrdφ = π [Jm+1(km,n)]2 δn,n′δm,m′ , (6.2.15)

where δ is the Kronecker delta. Note that this results in different normalisation factors

for each m and n wave. Also note that

−∇2
(
Jm(km,nr)e

imφ
)

= k2
m,nJm(km,nr)e

imφ. (6.2.16)
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6.2.4 Linear solutions (in the absence of the primary wave)

Consider J(. . . , . . . ) = 0, which is equivalent to having a hydrostatic background

with no primary wave flow. If we substitute the expansions Eq. 6.2.12–6.2.13 into

Eqs. 6.2.6–6.2.7, and then multiply by rJm′(km′n′r)e−im′φ, and finally integrate over

φ ∈ [0, 2π] and r ∈ [0, 1], we obtain

k2
m,nψ̇m,n + imbm,n = 0 (6.2.17)

ḃm,n + imψm,n = 0 (6.2.18)

for each m,n, after redefining m′ → m, and n′ → n after the integration. This system,

together with the boundary conditions, can be solved to give

ψm,n = Am,ne
−iωm,nt, (6.2.19)

which are oscillations if Am,n ∈ C, with frequency ωm,n = m/km,n in the inertial frame.

This is the dispersion relation for modes confined to a circular region of unit radius,

and is the frequency of a non-interacting wave which is able to exist in the container in

the absence of any primary wave flow, which can take any value in the range [0, 1] (if we

do not truncate the Galerkin basis at some finite values of N and M , then these modes

would be dense in this frequency interval), since the maximum buoyancy frequency

Nmax = 1. In the frame rotating with the pattern speed of the primary wave with

angular frequency ωp/2 = 1/k2,np , the Doppler-shifted frequency is ω̂m,n = ωm,n − ωp.

Note that km,n increases with both m and n, but ωm,n decreases with n and increases

with m. When substituting the above solution back into Eq. 6.2.12–6.2.13, we obtain

the linear solutions of the system, which are Bessel functions of a given order m with

n nodes in the radial direction. This motivated our choice of Galerkin basis.

6.2.5 Nonlinear terms

We obtain our weakly nonlinear system from Eqs. 6.2.6–6.2.7 through the same ap-

proach as in the previous section, to obtain for each m and n,

k2
m,nψ̇m,n + imbm,n =

1

π [Jm+1(km,n)]2

∫ 2π

0

∫ 1

0

{
rJm(km,nr)e

−imφ
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×
[
J(ψw,−∇2ψ) + J(ψ,−∇2ψw)

]}
drdφ, (6.2.20)

ḃm,n + imψm,n =
1

π [Jm+1(km,n)]2

∫ 2π

0

∫ 1

0

{
rJm(km,nr)e

−imφ

× [J(ψw, b) + J(ψ, bw)]

}
drdφ, (6.2.21)

where the Jacobians contain sums over n′ and m′. The sum over m′ is eliminated to a

pair of terms through the φ integration, using Eq. 6.2.15. A set of coupling integrals of

triple products of Bessel functions also results, for which there is a sum of such terms

over n′, i.e., an m,n wave is coupled through nonlinear terms to waves with m±2 and

(in principle) all node numbers n ∈ {2, . . . ,∞}. The system reduces to

k2
m,nψ̇m,n + imbm,n =

∞∑
n′=2

{
αm,n,n′

(
k2

m−2,n′ − k2
2,np

)
Ãψm−2,n′

+βm,n,n′

(
k2

m+2,n′ − k2
2,np

)
Ã∗ψm+2,n′

}
, (6.2.22)

ḃm,n + imψm,n =
∞∑

n′=2

{
αm,n,n′Ã

(
bm−2,n′ − k2,npψm−2,n′

)
+βm,n,n′Ã∗ (bm+2,n′ − k2,npψm+2,n′

)}
, (6.2.23)

where

Ã =
2

k3
2,np

A. (6.2.24)

The coupling coefficients are

αm,n,n′ =
2

[Jm+1(km,n)]2︸ ︷︷ ︸
normalisation

(
i(m− 2)I1

m,n,n′ − 2iI2
m,n,n′

)
, (6.2.25)

βm,n,n′ =
2

[Jm+1(km,n)]2︸ ︷︷ ︸
normalisation

(
i(m+ 2)I3

m,n,n′ + 2iI4
m,n,n′

)
, (6.2.26)

with the integrals

I1
m,n,n′ =

∫ 1

0

Jm(km,nr)
[
∂rJ2(k2,npr)

]
Jm−2(km−2,n′r)dr, (6.2.27)

I2
m,n,n′ =

∫ 1

0

Jm(km,nr)J2(k2,npr) [∂rJm−2(km−2,n′r)] dr, (6.2.28)
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I3
m,n,n′ =

∫ 1

0

Jm(km,nr)
[
∂rJ2(k2,npr)

]
Jm+2(km+2,n′r)dr, (6.2.29)

I4
m,n,n′ =

∫ 1

0

Jm(km,nr)J2(k2,npr) [∂rJm+2(km+2,n′r)] dr. (6.2.30)

Note that these are related by

I3
m,n,n′ = I1

m+2,n′,n , (6.2.31)

I4
m,n,n′ = I2

m+2,n′,n − I1
m+2,n′,n . (6.2.32)

For use in the derivation of the spectral space energy equation in a subsequent section,

we find it convenient to define

α̃m,n,n′ = −iπ [Jm+1(km,n)]2 αm,n,n′ , (6.2.33)

and similarly for β̃m,n,n′ . This is because we then have the relation

β̃m,n,n′ = α̃m+2,n′,n. (6.2.34)

6.2.6 Diffusive terms

In the presence of viscosity and radiative diffusion (or hyperdiffusion) Eqs. 6.2.6–6.2.7

become

∂t(−∇2ψ) + ∂φb = J(ψw,−∇2ψ) + J(ψ,−∇2ψw) + (−1)2+αν∇2+2αψ, (6.2.35)

∂tb+ ∂φψ = J(ψw, b) + J(ψ, bw) + (−1)1+ακ∇2αb, (6.2.36)

where α is chosen to give the standard diffusive operator (α = 1), or hyperdiffusion

(α = 2, 3). In this case we obtain the (linearised) system

k2
m,nψ̇m,n + imbm,n = −νk2+2α

m,n ψm,n, (6.2.37)

ḃm,n + imψm,n = −κk2α
m,nbm,n, (6.2.38)

instead of Eq. 6.2.17–6.2.18. The dispersion relation is then

(
ωm,n + iνk2α

m,n

) (
ωm,n + iκk2α

m,n

)
=

m2

k2
m,n

, (6.2.39)
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indicating that the frequencies of the allowed solutions are modified in the presence of

ν, κ. The growth rate expected in the presence of weak diffusion is therefore modified

to be Im [ω]− 1
2
(ν+κ)k2α

m,n, with Im [ω] being the appropriate inviscid growth rate. To

obtain growing modes, diffusion must be sufficiently weak so that it does not overcome

nonlinear growth. Hyperdiffusion with α = 3 is adopted since it better restricts the

dissipation to the highest wavenumbers. This enables numerical convergence in the

eigenvalue problem discussed below, but does not significantly perturb the growth rates

of the lower wavenumber eigenmodes with the values of ν, κ that we adopt. From here

on, we also take ν = κ.

With the inclusion of diffusive terms we require 1+2α additional boundary condi-

tions at each boundary. These are regularity conditions at the centre, and at the outer

boundary we can consider a variety of boundary conditions of the form ∇2nψ = 0

for n = 0, 1, . . . , α and ∇2nb = 0 for n = 0, 1, . . . , α − 1. These are automatically

satisfied by our Galerkin basis Eq. 6.2.12–6.2.13 and the definition of km,n. With these

boundary conditions (which force km,n to be real), the Galerkin basis is therefore ex-

act for the single-wave diffusive problem. Note that this is also true if hyperdiffusion

is adopted, due to property Eq. 6.2.16. In the numerical solution of the eigenvalue

problem in the following sections we include these diffusive terms to achieve numerical

convergence. This is necessary because in the absence of diffusion, the most unstable

modes are found to prefer the smallest spatial scales.

One important difference between this problem and that discussed in Chapter 7 is

that in that case the solution with viscous and radiative damping is no longer exact.

This makes sense physically because we are damping the wave, but the difference can

be mathematically explained as follows. In that problem we force a particular wave,

i.e., choose a wave with ω ∈ R. With diffusion km,n ∈ C, so that Jm(km,nr) ∈ C, in

general. Since the real part of this is taken before computing the nonlinear terms, the

property Eq. 6.2.16 no longer implies that the nonlinear terms vanish. In this section,

we are forcing km,n ∈ R through the boundary conditions, thus each component of

our Galerkin basis is exact with viscous and radiative damping, and the corresponding

solutions will have a nonzero decay rate as a result of these diffusive processes. This

further supports our choice of the Galerkin basis Eq. 6.2.12–6.2.13.
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6.3 Method of solution

Our weakly nonlinear system Eqs. 6.2.20–6.2.21 can be written in the form of a gen-

eralised eigenvalue problem of the form

AU = ωBU, (6.3.1)

where U is the column vector whose components are the quantities (ψm,n, bm,n) for

each m and n. A is the block tridiagonal matrix representing the system. This is done

by seeking normal mode solutions of the form ψm,n(t) ∝ e−iωt for each m and n, and

similarly for bm,n(t). B is the matrix that can be represented as

B = −i

 k2
m,n 0

0 1

 , (6.3.2)

for a single m and n. We solve this problem using standard generalised eigenvalue

solver routines, such as ZGGEV in the LAPACK libraries. This returns the eigen-

values {ω}, and the spectral space eigenfunctions {ψm,n, bm,n} corresponding to each

eigenvalue. The real space eigenfunctions can be reconstructed from these, using

Eqs. 6.2.12–6.2.13.

We choose N = 50 and M = 27. With our choice of α = 3 hyperdiffusion, it has

been found from preliminary investigation that 10−11 ≤ ν ≤ 10−14 is appropriate. This

hyperdiffusion is found to give the numerical junk eigenvalues, whose eigenfunctions

oscillate at the smallest scales, a large decay rate, and allows our growing modes to

be adequately converged for the values of A and np that we consider.

6.3.1 Numerical computation of table of integrals

The tables of integrals defined by Eqs. 6.2.27–6.2.30 for each value of m,n, n′ are

computed using a 4th/5th order adaptive step Runge-Kutta integrator. To enable

efficient computations, the Bessel functions are computed simultaneously with the

integrals. This is desirable because using built-in Mathematica or Matlab routines for

computing these functions is extremely slow when they are evaluated at every step.
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Note that Bessel’s equation

∂r(r∂rψ) + r

(
k2

m,n −
m2

r2

)
ψ = 0, (6.3.3)

can be rewritten as the coupled set of first order ODEs

dξ

dr
= r

(
m2

r2
− k2

m,n

)
ψ, (6.3.4)

dψ

dr
=

ξ

r
. (6.3.5)

We also need the derivatives of various Bessel functions, so we compute

d2ψ

dr2
=

(m2 − r2k2
m,n)ψ − ξ

r2
, (6.3.6)

for each r. To compute the integrals, we solve
dIi

m,n,n′

dr
for i ∈ {1, 2, 3, 4}. This involves

solving a system of 15 ODEs in total for each m,n, n′. Using our chosen resolution

of N = 50, M = 27, this involves the computation of M(N − 1)2 ∼ 105 integrals in

total. These are computed for a given number of radial nodes in the primary wave

in the range 2 ≤ np ≤ 12. We impose an inner boundary at rin = 10−4 to avoid

the coordinate singularity at the origin, and use initial conditions appropriate from

considering the asymptotic behaviour of the Bessel functions. For small N and M

values the numerical integrals have been checked to agree with those computed from

Mathematica, and for large N and M , several integrals containing the highest n and

m values were also checked. We use a relative error tolerance of 10−13, which has been

found to compute the most oscillatory integrals (corresponding to the highest n and

m value) accurately (compared with Mathematica) to within at least 6 decimal places.

6.4 Kinetic and potential energy equations

The kinetic and potential energies can be computed from either the real-space or

spectral-space eigenfunctions. This will enable a determination of the dominant source

of free energy driving the instability (e.g. Lombard & Riley 1996), and will also pro-

vide an independent calculation of the growth rate, which can be used to check our

numerical code. We derive an energy equation in spectral space, and compute the
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volume-integrated terms using the numerically computed eigenfunctions, without con-

verting to real space. This has been found to reduce numerical errors, resulting from

large numerical cancellations in the most oscillatory Bessel functions, when the energy

equations are instead computed in real space. In addition, it is simpler to construct

the hyperdiffusion terms in spectral space, so that they can be fully taken into account

in the energy budget.

We define K = 1
2
|u|2, P = 1

2
b2 and E = K + P , as the kinetic, potential and total

energy densities of the disturbance, respectively. We define a volume (strictly an area,

since we are in 2D) integral by

〈X〉 =

∫ 2π

0

∫ 1

0

Xrdrdφ. (6.4.1)

Note that

〈K〉 =
1

2

∞∑
m=−∞

∞∑
n=2

k2
m,n|ψm,n|2π [Jm+1(km,n)]2 , (6.4.2)

〈P 〉 =
1

2

∞∑
m=−∞

∞∑
n=2

|bm,n|2π [Jm+1(km,n)]2 , (6.4.3)

〈E〉 = 〈K〉+ 〈P 〉. (6.4.4)

Evolutionary equations for the volume-integrated energy can be obtained from Eq. 6.2.22

& 6.2.23. After some rearrangement, these can be written

˙〈K〉 = 〈Nsw〉+ 〈Fb〉+ 〈Fν〉, (6.4.5)

˙〈P 〉 = 〈Nbw〉 − 〈Fb〉+ 〈Fκ〉, (6.4.6)

˙〈E〉 = 〈Nsw〉+ 〈Nbw〉+ 〈Fν〉+ 〈Fκ〉, (6.4.7)

where

〈Nsw〉 = Re

{
∞∑

m=−∞

∞∑
n=2

∞∑
n′=2

iα̃m,n,n′
(
k2

m−2,n′ − k2
m,n′

)
Ãψ∗m,nψm−2,n′

}
, (6.4.8)

〈Nbw〉 = Re

{
∞∑

m=−∞

∞∑
n=2

∞∑
n′=2

iα̃m,n,n′Ãk2,np

(
b∗m,nψm−2,n′ + ψ∗m,nbm−2,n′

)}
, (6.4.9)

〈Fb〉 = Re

{
∞∑

m=−∞

∞∑
n=2

imψ∗m,nbm,nπ [Jm+1(km,n)]2
}
, (6.4.10)
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〈Fν〉 = Re

{
∞∑

m=−∞

∞∑
n=2

−νk2+2α
m,n |ψm,n|2π [Jm+1(km,n)]2

}
, (6.4.11)

〈Fκ〉 = Re

{
∞∑

m=−∞

∞∑
n=2

−κk2α
m,n|bm,n|2π [Jm+1(km,n)]2

}
. (6.4.12)

〈Nsw〉 represents the production of perturbation kinetic energy from the primary wave

shear. 〈Nbw〉 represents the production of perturbation potential energy from the

primary wave entropy gradients. Whichever of 〈Nsw〉 or 〈Nbw〉 is dominant tells us

whether this instability is driven by the wave shear or the wave entropy gradients.

〈Fb〉 is the buoyancy flux term, representing conversion between kinetic and potential

energies of the disturbance.

After truncation at |m| = M and n = n′ = N , each of these terms are computed

from the spectral space eigenfunctions, together with the numerically computed table

of integrals. The growth rate can then be computed from

Im[ω′] =
˙〈E〉

2〈E〉
=

˙〈K〉
2〈K〉

=
˙〈P 〉

2〈P 〉
. (6.4.13)

We have checked that each of these equations are accurately satisfied to within at

most a few percent for each of the unstable modes discussed in this chapter. This is

an excellent check of our analytical derivations and numerical calculations, and should

convince ourselves that our results are consistent.

6.5 Numerical tests

In this section we briefly mention several numerical tests which we have performed to

validate our numerical code. Following this section, in § 6.6 and 6.7 we discuss the

results of our stability analysis for waves with A < 1 and A > 1, respectively.

6.5.1 Linear

In the absence of nonlinear couplings (A = 0), we obtain a set of non-interacting

modes with eigenfreqencies ω ∈ {ωm,n}, where ωm,n = m/km,n (in the inertial frame),

as we predicted in § 6.2.4. In the absence of diffusion, these have zero growth rate,

i.e., Im[ω] = 0, for all eigenmodes. When hyperdiffusion is included, the eigenmodes
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each have a nonzero decay rate determined by the values of ν and κ, which is very

accurately (to more than 10 decimal places) computed from considering only the terms

〈Fν〉 and 〈Fκ〉 in the energy equation. The real-space eigenfunctions that result are

what is predicted from linear theory, in that they are Bessel functions of order m with

n nodes in the radial direction.

6.5.2 Weakly nonlinear

We followed a typical eigenmode as A is gradually increased from zero, and found

that for |A| � 1, the shift in the eigenfrequency Re[δω] ∝ A2, as we would expect for

modes not undergoing parametric resonance (e.g. Landau & Lifshitz 1969).

6.5.3 Symmetries

The real-space solutions can be represented in the form

Re

[∑
m

∑
n

cm,ne
i(mφ−ωt)

]
. (6.5.1)

This is symmetric under the transformations cm,n → c∗m.n, m → −m and ω → −ω∗.

This symmetry should exist for all primary wave amplitudes, and results from the fact

that only the sign of the pattern speed ω/m has meaning, and not the sign of the

wavenumber or frequency. This means that when the eigenvalues are plotted on the

complex frequency plane, they should be symmetric about Re [ω] = 0.

6.6 Results for waves with A < 1: parametric in-

stabilities

We examine the unstable modes that exist when 0 < A < 1, which is when the primary

wave does not overturn the stratification at any location in the wave. The instability is

a parametric instability, for which a simple model is briefly reviewed in Appendix A.7.

When A 6= 0, the fraction of eigenmodes that are growing is nonzero (above a critical

A set by the values of np and ν, which can be understood from Eq. A.7.7) and increases

with A, as nonlinear growth starts to dominate over the decay due to diffusion for a
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Figure 6.3: Distribution of unstable eigenvalues on the complex frequency plane forA = 0.1,
np = 4 and ν = 10−12, 10−13, 10−14.

larger number of modes. For small A, the eigenvalues of the unstable modes displayed

on the complex plane are distributed in two curves that are approximately equidistant

from the origin at each location. This is illustrated in Fig. 6.3, and is a result of the

symmetry described in § 6.5.3.

In the limit that A→ 0, the unstable modes can be identified as the parametrically

excited free-wave modes. These are a pair of free wave modes that exist when A = 0,

which undergo modifications to their complex frequencies at O(A) that reinforce each

other. As A is increased, the unstable modes consist of gradually more complicated

superpositions of free wave modes, until for A & O(1), the eigenfunctions become

localised in the convectively unstable regions. This will be studied in § 6.7. For A . 1,

the eigenfunctions exist because of their confinement by the boundaries, though they

interact quite strongly with the primary wave, and are generally not simply free wave

modes with a nonzero growth rate. However, we have verified that the modes consist

of a pair whose frequencies approximately add up to ωp in the inertial frame, with a

detuning |∆|/ωp . 10−2 for most pairs of modes.

The number of unstable modes that exist in this amplitude range depends quite

strongly on viscosity. This is illustrated in Fig. 6.3. The number is also found to

decrease as np is increased. These two behaviours are related by the fact the wave
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Figure 6.4: Distribution of unstable eigenvalues on the complex frequency plane for various
values of A, with np = 4 and ν = 10−14.

should undergo parametric instabilities, which have largest growth rates when the

resonant tuning is good, which is more likely to occur for perturbations with larger

wavenumbers. However, these large wavenumber components are strongly damped by

diffusion. Increasing np means that the “effective resolution” available to capture the

unstable modes decreases. This is the same as increasing ν, hence the same trends

exhibited in increasing np and ν.

The neat distribution of eigenvalues into two curves does not persist as A is in-

creased, as illustrated in Fig. 6.4. The frequencies (in the rotating frame) are primarily

smaller than the primary wave frequency in the inertial frame. However, a small num-

ber of modes exist for A & 0.3 which have frequencies larger than ωp. Nevertheless, in

each case the frequencies of the unstable modes are always smaller than the maximum

buoyancy frequency in the flow (which corresponds with 1/ωp ∼ 6 in the units of this

figure, for np = 4). This makes sense if these are gravity wave-like disturbances, which

are parametrically excited by the primary wave.

In Fig. 6.5, the growth rate for the most unstable mode is shown to scale approxi-

mately linearly with A for A ≤ 1. A slope of 1 in this figure is predicted for A� 1 if

the instability is due to a parametric resonance.

Our most important result of this section is illustrated in Fig. 6.6. This shows that
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Figure 6.5: Im[ω] vs. A for the most unstable mode with np = 4 and ν = 10−13, 10−14. The
solid red line has slope 1. This shows that the instability approximately scales linearly with
A for small A, indicating that the instability when A < 1 is due to a parametric resonance.

the growth rate scales inversely with the number of wavelengths within the domain

(note that this is after normalising by ωp). In this figure we plot the logarithm of

the growth rate versus log10 np for A = 0.5 and 0.8, respectively. The slope is always

approximately equal to −1 for low np. The tail-off at larger np is due to diffusion, and

arises because modes with smaller spatial scales parametrically excite modes with even

smaller spatial scales (as a result of the theorem proved by Hasselmann 1967), which

are then more easily damped by diffusion. As we would expect from this interpretation,

the value of np at which diffusion dominates moves to smaller np as ν is increased.

The inverse dependence on np that is present when diffusion is unimportant is a key

result. This suggests that although parametric instabilities exist for any amplitude in

the absence of diffusion, in a sufficiently large domain they become unimportant. We

discuss the relevance of this result in § 6.8.

6.6.1 Eigenfunctions

In the top panels of Figs. 6.7 & 6.8 we plot the real (blue solid lines) and imaginary

parts (red dashed lines) along φ = 0 of the spatial eigenfunctions of the most unstable

mode for A = 0.1 and 0.5, respectively. We have taken np = 4 and ν = 10−13. These
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Figure 6.6: log10Im[ω/ωp] vs. log10 np for the most unstable mode when A = 0.5 and 0.8
respectively, for ν = 10−13 and 10−14. The red line has a slope −1. The tail-off at larger np

is due to diffusion.
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Figure 6.7: Top: Real (blue solid lines) and imaginary (red dashed lines) parts along φ = 0
of the spatial eigenfunctions for the most unstable mode for A = 0.1, np = 4, ν = 10−13.
The eigenfrequency is ω/ωp = 0.378 + 0.001i. Bottom: Spectral space eigenfunction of the
same mode. The colour scale represents log10 |ψm,n/max{ψm,n}|, and similarly for bm,n.
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Figure 6.8: Top: Real (blue solid lines) and imaginary (red dashed lines) parts along φ = 0
of the spatial eigenfunctions for the most unstable mode with A = 1, np = 4, ν = 10−13.
The eigenfrequency is ω/ωp = 0.540 + 0.017i. Bottom: Spectral space eigenfunction of the
same mode. The colour scale represents log10 |ψm,n/max{ψm,n}|, and similarly for bm,n.
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modes exist throughout the box and are confined by the boundary. They become more

distorted from the free wave modes as A is increased towards unity (and in fact also

for A > 1, until the localised modes appear), especially in the innermost wavelengths

of the primary wave. Note that the amplitude of the eigenfunctions is arbitrary since

we are solving an eigenvalue problem. The bottoms panels of Figs. 6.7 & 6.8 show the

spectral space eigenfunctions of the same unstable modes. We have normalised ψm,n

and bm,n to their maximum absolute values and taken the base 10 logarithm of each

component to produce the figures. These show that growing modes for the chosen

values of A are not simply a pair of free wave modes which are excited by the primary

wave. They contain many n and m values localised around a particular n and m, and

are therefore interacting strongly with the primary wave. Multiple n and m values are

involved even when A = 0.1. For the value of ν adopted, these modes are well resolved,

as is shown from the amplitude decay of the spectral space eigenfuntion, which occurs

before the resolution limit is reached in n and m.

6.6.2 Energetics of the instabilities

When A < 1, the isentropes are never overturned by the primary wave, so a pure radial

convective instability is not possible. However, these instabilities could be driven

by the free energy resulting from the primary wave shear or entropy gradients, or

a combination of the two. In this section, we compute the spectral space energy

contributions outlined in § 6.4, for a sample of growing modes in this amplitude range.

We have confirmed that the growth rate is accurately computed from Eq. 6.4.13, to

within a few percent at most. In Table 6.1 we outline the contributions to the growth

rate from each term in Eqs. 6.4.5–6.4.7 for the most unstable mode for A = 0.1, 0.5

and 1 with np = 4 and ν = 10−13. The eigenfunctions for two of these are plotted in

Figs. 6.7 & 6.8. These examples are illustrative of every unstable mode that exists

when A < 1 (and also the non-localised modes that exist when A > 1).

Firstly, we note that the integrated kinetic and potential energy of the modes are

in approximate equipartition. A single wave can be shown to be in exact equipartition,

so we would expect 〈K〉 ≈ 〈P 〉 if these modes are parametrically excited gravity waves

with a single n and m. That they are in approximate equipartition and include many
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A = 0.1 A = 0.5 A = 1
Re [ω] 0.065 0.080 0.093
Im [ω] 1.86× 10−4 1.97× 10−3 3.00× 10−3

〈K〉 3.28× 10−2 3.82× 10−2 3.70× 10−2

〈P 〉 3.25× 10−2 3.87× 10−2 4.16× 10−2

〈Nsw〉 −3.20× 10−7 −3.98× 10−5 −9.55× 10−5

〈Nbw〉 3.57× 10−5 3.76× 10−4 6.62× 10−4

〈Fb〉 1.81× 10−5 2.04× 10−4 3.51× 10−4

〈Fν〉 −5.58× 10−6 −1.35× 10−5 −3.29× 10−5

〈Fκ〉 −5.55× 10−6 −2.01× 10−5 −6.03× 10−5

Table 6.1: Energy components of the most unstable mode for A = 0.1, 0.5 and 1, with
np = 4 and ν = 10−13. Note that ωp ≈ 0.17.

n and m components indicates that these modes are the larger A generalisations of

the parametrically excited free wave modes. The source of free energy driving these

modes is entirely the potential energy resulting from primary wave entropy gradients.

Somewhat surprisingly, the primary wave shear contribution is much smaller, and

actually stabilises the modes. This instability converts primary wave potential energy

to disturbance potential energy, and then converts approximately half of this input

energy to the disturbance kinetic energy through the buoyancy flux term. This process

results in approximate equipartition between 〈K〉 and 〈P 〉. Note that the entropy

gradients in the primary wave are insufficient to cause convective instability. These

modes are driven by weaker entropy gradients in radius and azimuth.

6.7 Results for waves with A > 1: the initial stages

of wave breaking

When A > 1, the primary wave overturns the stratification during part of its cycle. Our

simulations have shown that an instability breaks the wave within a few wave periods

once this first occurs. The initial stages of this breaking process are examined in this

section by choosing A > 1. To resolve convectively unstable modes with the adopted

values of N and M , we require the size of the overturning region to be sufficiently

large. Since overturning occurs only at the point r = 0 when A = 1, this necessitates

choosing values of A larger than unity to capture such instabilities. We are interested
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in instabilities which act to break the waves in an (effectively) unbounded domain (the

central regions of the RZ of a solar-type star), therefore the appropriate unstable mode

should not rely on the boundaries for confinement, and should be localised within the

innermost wavelength of the primary wave. This is because the presence of confining

boundaries is artificial, and is imposed to specify the problem. With this in mind, we

now discuss the results of our stability analysis for waves with A > 1.
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Figure 6.9: Distribution of unstable eigenvalues on the complex frequency plane for np = 4
and various A with ν = 10−13.

The eigenvalues of the unstable modes displayed on the complex plane are shown

in Fig. 6.9 for A = 5 and A = 8, both with np = 4 and ν = 10−13. The most

unstable modes are located on distinct branches, which stand above the continuation

of the modes that exist when A < 1. From studying their eigenfunctions, we find that

the modes on the branches are localised disturbances, unlike those below the main

branches. The modes on the branches could therefore represent the type of mode

that breaks the primary wave (this is discussed further in the next subsection). These

branches extend further from the origin the greater the value of A. In Fig. 6.10 we

plot the unstable modes for A = 5 for two values of np. This shows that the unstable

modes on the branches do not move around significantly as np is varied. They therefore

depend only weakly on the location of the outer boundary. Note, however, that the

growth rate becomes smaller as we go to larger np because of the increasing importance
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Figure 6.10: Distribution of unstable eigenvalues on the complex frequency plane for A =
10 and various np, with ν = 10−13.

of diffusion.

Note that the largest frequency of some growing modes is larger than the maximum

buoyancy frequency Nmax = 1 (which corresponds with 1/ωp ∼ 6 in the units of this

figure, for np = 4). The nonzero frequencies of the modes in this frame indicate that

they are oscillatory, and are non-steady. In addition, the growth rates of the most

unstable modes are sufficiently fast compared with the primary wave frequency that

the instability grows within several wave periods after onset.

The growth rate of the most unstable modes for a given np increases with A as

illustrated in Fig. 6.11 for np = 4, where curves for ν = 10−13 and 10−14 have been

plotted. There is an approximate square root dependence for A & 5. If the instability

is driven by convectively unstable entropy gradients, then we might expect

Im [ω′] .
√

max [−N2]

=

(
max

{
−r2 − Re

[
2A

k2,np

r
(
J1(k2,npr)− J3(k2,npr)

)
e2iφ

]})1/2

. (6.7.1)

Thus, for large A the growth rate should scale with the square root of the primary wave

amplitude. This behaviour is not observed when 1 . A . 5. In this range, the square

root dependence may not be exhibited partly because there is insufficient resolution to

accurately capture the modes that contribute to breaking since the overturning region
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Figure 6.11: Im[ω] vs. A for the most unstable mode for np = 4, ν = 10−13 and 10−14.
The instability grows within a primary wave period when A & 5, which is when the localised
modes begin to appear.

is small compared with the box size. We have noticed that the growth rate does not

significantly depend on ν (and therefore the resolution), for the most unstable modes,

except in the range 1 . A . 5, which supports this explanation.

The behaviour of the growth rate on np is illustrated in Fig. 6.12 for the most

unstable mode when A = 5, for two values of ν. For large np, the unstable modes

have sufficiently small spatial scales for diffusion to become important, so we expect a

tail-off at large np. The important point that can be taken from this figure is that the

(normalised) growth rate of the localised modes on the branches does not depend on

the number of wavelengths within the domain, for modes that are not strongly affected

by diffusion. This means that the instability can be important in a large domain, such

as the RZ of a solar-type star, which contains many primary wavelengths.

6.7.1 Eigenfunctions

In the top panel of Fig. 6.13 we plot the real (blue solid lines) and imaginary parts

(red dashed lines) along φ = 0 of the spatial eigenfunctions of the most unstable mode

for A = 5, np = 4 and ν = 10−13. The spectral-space eigenfunction of this mode is

plotted in the bottom panel. The mode is strongly nonlinearly interacting with the
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Figure 6.12: Im[ω] vs. np for the most unstable localised modes when A = 5 and ν = 10−13

and 10−14.

primary wave, as shown by the number of different n and m values that appreciably

contribute. The contribution to the eigenfunction is nonzero, but not maximal, near

|m| = M − 1, and is negligible at n = N , which indicates that this mode is only

just adequately resolved. The eigenfunction is spatially localised within the innermost

wavelengths of the primary wave. Each of the several most unstable modes in the

range 5 ≤ A ≤ 10 which lie on the branches in Fig. 6.9 are localised modes, and have

qualitatively different form to the type of modes that exist below the branches, which

are a continuation of the modes that exist when A < 1. As we go to larger A for the

same value of ν, the most unstable mode utilises an increasing number of n and m

values up to the resolution limit. This means that to adequately resolve the modes we

would have to either increase the resolution or the value of ν.

The components of the spatial eigenfunction of the most unstable mode when A =

5, np = 4 and ν = 10−13, is plotted in Fig. 6.14 on the (φ, r)-plane, to further illustrate

the spatial dependence of this mode. In Fig. 6.15 we plot the region of negative

N2 for the same primary wave. A comparison of these figures makes clear that the

eigenfunction is primarily localised within the regions made convectively unstable by

the primary wave entropy perturbation. This adds further evidence to the conjecture

that the instability is convective. We also find that any unstable mode on the branches
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Figure 6.13: Top: Real (blue solid lines) and imaginary (red dashed lines) parts along φ = 0
of the spatial eigenfunctions for the most unstable mode with A = 5, np = 4, ν = 10−13.
The eigenfrequency is ω/ωp = 9.68 + 0.302i. Bottom: Spectral space eigenfunction of the
same mode. The colour scale represents log10 |ψm,n/max{ψm,n}|, and similarly for bm,n.
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Figure 6.14: 2D Spatial eigenfunction of the most unstable mode for A = 10, np = 4 and
ν = 10−13, plotted on the (φ, r)-plane.

178



φ

r

log
10

Re[
√

N 2]

 

 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

−3.5

−3

−2.5

−2

−1.5

−1

Figure 6.15: Unstable region for A = 10, np = 4. This can be compared with Fig. 6.14.

of Fig. 6.9 that are excited when 5 ≤ A ≤ 10 are similarly localised and have a

qualitatively similar appearance to the eigenfunction plotted in Fig. 6.14.

6.7.2 Energetics of the instabilities

In this section, we compute the spectral space energy contributions outlined in § 6.4

for a representative sample of the localised growing modes that exist when A > 1.

We have confirmed that the growth rate is accurately computed from Eq. 6.4.13, to

within a few percent for the modes considered in this analysis. However, it must be

noted that the most unstable mode when A & 5 is typically not fully resolved with

our adopted resolution and ν, in that there is nonzero power in the highest n and m

values. This can lead to errors in the energy analysis typically of order 10 − 30%, so

we leave these modes out of this analysis, and only choose those that are adequately

resolved for Table 6.2. In this table, we outline the contributions to the growth rate

from each term in Eqs. 6.4.5–6.4.7 for several unstable modes that exist when A & 5,

each with np = 4 and ν = 10−13. The eigenfunction corresponding to the first of these

is plotted in Figs. 6.13 & 6.14.

As in the case of the modes that exist when A < 1, the instability is driven by the

free energy associated with primary wave entropy gradients, as is shown by the fact

that 〈Nbw〉 is the dominant contribution to the growth. This is indeed what would
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A = 5 A = 7
Re [ω] 1.67 2.40
Im [ω] 0.052 0.134
〈K〉 6.95× 10−2 3.37× 10−2

〈P 〉 1.73× 10−2 1.02× 10−2

〈Nsw〉 −5.50× 10−3 −1.57× 10−3

〈Nbw〉 2.05× 10−2 1.55× 10−2

〈Fb〉 1.82× 10−2 1.22× 10−2

〈Fν〉 −2.10× 10−3 −1.33× 10−3

〈Fκ〉 −0.517× 10−3 −0.80× 10−3

Table 6.2: Energy components of the most unstable mode for A = 5 and 7, with np = 4
and ν = 10−13. Note that ωp ≈ 0.17.

be expected of a convectively driven instability. In addition, the primary wave shear

is much weaker and tends to stabilise the modes. Unlike the modes that exist when

A < 1, we do not necessarily have 〈K〉 ≈ 〈P 〉, and examples have been found that

do and do not satisfy approximate equipartition, so these modes do not appear to be

gravity wave-like, unlike the parametrically excited modes that exist when A < 1.

The growth rates are always . Re
[√
−N2

]
, which is expected to be an upper

limit if the instability is convective. The negative contribution of shear, as well as

hyperdiffusion mean that the modes that we have calculated have somewhat smaller

growth rates that this simple estimate would predict. The route of energy transfer

that drives the instability is the same as for the parametric instabilities discussed in

the previous section.

6.8 Summary and discussion of results

In the previous two sections we have analysed the instabilities that exist when A < 1

and A > 1.

6.8.1 Wave breaking

When A > 1 we have identified a class of localised modes that are driven by con-

vectively unstable entropy gradients in the primary wave. These modes exist in the

absence of an outer boundary, and are very likely to have initialised the wave break-
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ing process in the simulations presented in Chapters 3 & 4. Subsequent stages in

the breaking process are not studied using this stability analysis because these would

involve nonlinear interactions between the perturbations to the wave, which we ne-

glected in our weakly nonlinear approach. The instability growth time is of the order

of a primary wave period, which is in agreement with the wave breaking times observed

in our simulations.

6.8.2 Parametric instabilities

When A < 1, there exist pairs of parametrically excited modes driven by (convectively

stable) primary wave entropy gradients, with wave shear playing a subordinate stabil-

ising role. These modes exist because of their confinement by the outer boundary. Our

most important result regarding these modes is the inverse dependence of the growth

rate on np. This can be explained by considering the relative time the primary wave

spends in the innermost regions, where its nonlinearity is strongest. The fraction of

the total wave propagation time spent in the innermost regions, where growing modes

are excited by the nonlinearity, scales with k−1
2,np

∝ n−1
p , so the growth rate should also

scale with n−1
p . Combining this with our observation that the growth rate increases

approximately linearly with wave amplitude, we can write

Im [ω] ∝ A

np

, (6.8.1)

for the modes excited when A < 1.

Our simulations in Chapters 3 & 4 did not show any instabilities acting on the

waves when A < 1. This can be neatly explained from Eq. 6.8.1 in the limit as

np → ∞, where the growth rate tends to zero. This limit is appropriate since the

waves have effectively no outer boundary in the simulations, because we damp the

waves before they reach the boundaries of the computational domain. The fact that

we observed no instabilities in the simulations is therefore consistent with this stability

analysis, and is not a consequence of limited run time or insufficient spatial resolution.
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6.8.3 Comparison with the plane IGW problem

This problem has some important differences with the case of a plane IGW in a uniform

stratification. For that problem, as we discussed in the introduction to this chapter,

parametric instabilities act for any A, and always result in instability in the absence

of diffusion. In addition, Lombard & Riley (1996) find that the presence or absence of

isentropic overturning does not seem to play a dominant role in, and is not the cause

of, the instability2. This is different from our problem, where we find that overturning

results in the presence of a different class of localised modes, that are excited in the

convectively unstable regions of the wave. However, we do find that the source of free

energy driving the instability is the same whether A < 1 or A > 1. It is true that

parametric instabilities exist for any A in our problem, like in the plane IGW problem,

but these become unimportant in a large domain because the nonlinearity is spatially

localised in the innermost wavelengths. This is different from the plane IGW problem,

in which the nonlinearity is important everywhere in the wave.

The importance of overturning in our case could be because the primary wave shear

does not drive the modes, and in fact typically acts to stabilise them. In the plane

IGW problem, instabilities for any A are driven by a combination of 〈Nsw〉 and 〈Nbw〉,

whereas in our problem instabilities are always driven solely by 〈Nbw〉. Shear therefore

does not play as important a role as for the instability of plane IGWs.

From the results of their stability analyses, Lombard & Riley (1996) and Sonmor &

Klaassen (1997) state that wave stability is a three-dimensional problem. This might

suggest that the picture we have outlined could differ in 3D. However, the simulations

performed in Chapter 4 show a strong similarity with the 2D results. Performing a

similar stability analysis in 3D would be somewhat involved, and would be restricted

to studying the stability of small amplitude waves, because the wave solution is not

exact in 3D. It would be possible to calculate higher order terms to the solution, which

would make it valid for larger A, and then perform a stability analysis of this wave.

Without performing such an analysis, it is difficult to quantify the importance of three-

dimensional effects on the wave stability. Nevertheless, the excellent correspondence

2However, it is possible that in their calculations they have insufficient resolution to be able to
resolve any localised convectively unstable modes. If they go to larger A, than the maximum they
consider of 1.1, and/or consider larger resolutions, such localised modes may start to appear.
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between the results of the simulations in 2D and 3D suggest that for our problem the

inclusion of a third dimension would be unimportant, with regards to wave stability.

6.8.4 Implications for tidal dissipation

In Chapter 5, we discussed the implications of the wave breaking process for tidal

dissipation in solar-type stars, and therefore to the survival of short-period planets.

What more can we say in light of the results of this chapter?

One result is that parametric instabilities exist for waves with A < 1. These

do not occur in an unbounded domain (the limit as np → ∞), but will be present

in the RZ of a solar-type star, since this does have an outer boundary, albeit many

wavelengths from the centre of the star. We can roughly fit Eq. 6.8.1 to the results of

our stability analysis, allowing us to give an upper bound to the expected growth rate

of the strongest instability of a tidally excited gravity wave with A < 1. We write

Im

[
ω

ωp

]
= K

A

np

, (6.8.2)

and calculate a value of K from the solutions to our eigenvalue problem, where we

typically find K ≈ 0.1. In the RZ of a solar-type star, tidally excited gravity waves

have 102 . np . 103, for orbital periods in the range 1 . P . 3 days. We can therefore

calculate an upper bound on the expected growth rate of a parametric instability in

a real star from taking A = 1 and np = 102, giving Im [ω/ωp] ≈ 10−3, so that the

resulting growth time,

tgrow =
1

Im [ω]
≈ 2.7 yrs. (6.8.3)

It is important to note that this estimate is likely to be an approximate lower bound on

tgrow, and will not be strongly affected by the inclusion of the rest of the RZ, because

the the amplitude of the waves, and therefore the nonlinearity, is much smaller away

from the centre. (In addition, note that our Boussinesq-type model is only valid where

N ∝ r, which is only true near the centre of the star.) These calculations constrain

the effects of nonlinear wave-wave interactions in the innermost regions, but do not

take into account the rest of the RZ.
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It is important to estimate the magnitude of the resulting tidal dissipation, so

that we can evaluate its role in the evolution of short-period planets. Instead of

considering the problem of continual forcing of the primary wave by the planet, we

consider initialising the primary wave and ask how long it takes to be attenuated (and

its energy dissipated), calling this timescale tnl (this is similar to the highly eccentric

binary problem discussed in Kumar & Goodman (1996), which we discuss in the next

section). The torque on the star due to the gradual attenuation of the wave due to the

combined action of these parametric instabilities at nonlinearly damping the wave, is

m

ω
F
(
1− e−α

)
, (6.8.4)

with the attenuation factor α = tgroup/tnl, and F being computed as outlined in

Chapter 5. We define the global group travel time tgroup = 2
∫ rb

0
(1/cg,r)dr ≈ 25 d, from

a numerical calculation for the waves excited by a planet in a one-day orbit around

the current Sun. The next question is: what is tnl? To calculate this accurately is a

very difficult problem, and involves many uncertainties, particularly those involving

the saturation process for these nonlinear couplings. However, we note that a lower

bound on tnl can be obtained by the growth rate of the fastest growing parametric

instability tgrow. This is because this will act as a bottleneck for the nonlinear cascade

of energy from the primary wave, and so will limit the maximum decay rate of the

primary wave. This is probably also true if we are continually forcing the wave. We

can then estimate

α .
tgroup

tgrow

≈ 0.025. (6.8.5)

This gives an upper bound on the torque resulting from the nonlinear damping of the

primary wave. Using Eq. 5.1.2, this can be used to give a lower bound on the tidal

quality factor resulting from nonlinear damping of the primary wave in the A < 1

regime,

Q′
? &

105

1− e−α
≈ α−1105 ≈ 5× 106, (6.8.6)

in the weak damping limit. The efficiency of this process is less than critical layer
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absorption by a factor α−1 � 1. Note that this gives a lower bound on Q′
?, because

tnl is likely to be somewhat larger than tgrow (e.g. Kumar & Goodman 1996 take

tnl = 10tgrow). The resulting Q′
? may therefore be one or several orders of magnitude

larger than this lower bound. Furthermore, it is interesting to note that this bound

may not be sensitive to the number of wavelengths in the RZ, and therefore to the

orbital period, because the dependences of tgroup and tgrow on np cancel at leading

order.

The parametric instabilities that exist when A < 1 are much slower than the rapid

instabilities that onset when A > 1. The nonlinear outcome of the A > 1 instabilities

is that the wave breaks and forms a critical layer, which then absorbs subsequent

ingoing waves, and results in astrophysically efficient tidal dissipation. The estimate

of this section indicates that the parametric instabilities that exist when A < 1 are

much less efficient at dissipating energy in the tide, by several orders of magnitude.

This important result supports the explanation outlined in Chapter 5 for the survival

of short-period planets around solar-type stars.

6.8.5 Comparison with Kumar & Goodman

We can qualitatively compare our results with previous work by Kumar & Goodman

(1996), who studied nonlinear damping of tidal oscillations in highly eccentric solar-

type binaries. They used a truncated Hamiltonian approach to study parametric

instabilities of tidally excited f and g-modes. In their model, stellar eigenmodes are

coupled together from terms that exist at third order in displacement in the expansion

of the Lagrangian density, i.e., they adopt a weakly nonlinear approach. They consider

the evolution of a mode that has been tidally excited, but is no longer subject to forcing,

due to nonlinear coupling with a large number of g-modes that are present in the RZ

of the star (and exist because they have already been excited by turbulent convection,

for example). Their result indicates that high order and high degree g-modes can be

parametrically excited by low order quadrupolar f and g-modes, and can draw energy

from the primary mode on a timescale that is much shorter than the radiative damping

time of the primary mode.

A direct comparison of our work with theirs is not possible for several reasons.
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Firstly, in their numerical work they mainly consider a primary f-mode coupling to

many g-modes in the RZ. The f-mode eigenfunction has its largest magnitude at the

surface and decays rapidly inwards, in contrast to the primary g-modes that we are

considering, so the coupling strengths are likely to be different. Secondly, we only

consider the nonlinear interactions in the central regions of the star, where they are

likely to be most important for g-modes, whereas they consider these interactions

throughout the whole star. Thirdly, our model is 2D, whereas their eigenfunctions

are valid in 3D for a spherically symmetric background. This last point, however, is

probably not going to be important.

One important point is that they neglect the possibility of wave breaking, which

would provide an upper limit to the amplitude of a given mode. This would prevent

modes with large amplitudes from coupling with the primary wave, and the nonlinear

outcome of the breaking (most notably critical layer formation) would significantly

modify the strength of tidal dissipation. Their results will therefore not be valid for

primary or daughter waves that satisfy a breaking criterion, since weakly nonlinear

theory is insufficient in this case. Indeed, the concept of parametric instability is no

longer valid if the daughters break and cannot form standing modes.

Keeping in mind the differences between our approach and theirs, we now directly

apply their results to our problem, and quantitatively compare the growth time of

parametric instabilities with those found in this chapter. The growth time in their

work

tgrow ≈ 4

(
Ep,0

1035J

)−1/2

, (6.8.7)

where Ep,0 is the initial energy in the primary wave. For the g-modes that we consider,

Ep,0 =

∫ ∫ ∫
Er2 sin θdrdθdφ = F

∫
(1/cg,r)dr = Ftgroup. (6.8.8)

This can be computed to give Ep,0 ≈ 2× 1029J for a Jupiter-mass planet on a one-day

orbit around the current Sun, which has A ≈ 0.3. This means that tgrow ≈ 3 yr when

A = 1, which happens to agree surprisingly well our calculation in the previous section,

given the differences in our approach. The total number of daughter modes which

simultaneously interact with the primary in their model is ∼ 1010
(

Ep,0

1035J

)5/4

∼ 102
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for our fiducial case. We also find that there are many growing modes for a given

set of parameters in our stability analysis, so these statements appear qualitatively

consistent. They find that collectively, these modes absorb most of the energy of the

primary wave after a time ∼ 10tgrow (this is equivalent to assuming α ∼ 10−3 in the

previous section). This predicts Q′
? ∼ 5×107 in their approach. We therefore conclude

that our results are broadly consistent with Kumar & Goodman (1996).

6.9 Conclusions

In this chapter we have performed a stability analysis of the 2D exact wave solution

derived in Chapter 3. The equations governing the evolution of the perturbations were

written down in spectral space using a Galerkin spectral method, and then solved as

an eigenvalue problem. This required the imposition of an artificial impermeable outer

boundary.

We have identified the modes that initiate the breaking process when the wave

overturns the stratification. This type of mode is strongly localised in the convectively

unstable regions of the primary wave, and is driven by unstable entropy gradients. Its

growth time is comparable with the primary wave period, which is consistent with the

breaking time observed in the simulations of Chapters 3 and 4.

We have also studied the instabilities which exist for waves with insufficient am-

plitudes to overturn the stratification. We find that these are parametric instabilities

driven by (convectively stable) entropy gradients in the primary wave. The growth

rate of these modes scales inversely with the number of wavelengths within the domain,

so they become less important for a real star than for the small container considered

here. It is estimated that their growth times in a real star would be of the order of

3 yr, which is much longer than the orbital period of a short-period planet, though

many such modes are excited. Rough estimates are made that provide a upper bound

on the magnitude of the resulting tidal dissipation, for which we find Q′
? & 107 from

this process. This is clearly much weaker than the dissipation resulting from critical

layer absorption, and so is unlikely to change the picture outlined in Chapter 5 for the

survival of short-period planets.

We discussed several differences between our problem and the stability of a plane
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IGW in a uniform stratification (e.g. Lombard & Riley 1996). We have confirmed

that when the wave is confined in a container with an outer boundary it is unstable

whatever its amplitude, in the absence of diffusion. However, the inverse dependence

of the growth rate on the number of wavelengths within the container is quite different,

and results from the finite time of nonlinear interaction being much shorter than the

group travel time across a large container.

We compared our results to Kumar & Goodman (1996), who studied the nonlinear

damping of tidally excited oscillations in highly eccentric binaries, and found some

agreement. They predict that many (∼ 102) modes collectively draw energy from the

primary wave, which we have qualitatively confirmed from our stability analysis. The

growth rates of parametric instabilities for the same problem in both of our approaches

when A < 1 are of the same order of magnitude. They therefore predict a similar lower

bound for Q′
? resulting from this process. This is promising, given the differences in our

approach. It would be interesting to extend their numerical calculations by studying

the parametric instabilities of g-modes including continual tidal forcing of the primary

wave and nonlinear couplings involving many daughter and granddaughter modes, as

well as taking into account the amplitude limiting effects of wave breaking. Weakly

nonlinear theories such as ours and theirs are likely to be valid when considering the

initial stages of the breaking process, and in studying whether any instabilities exist

for suboverturning waves, which were the topics of study in this chapter. However,

they should not be used to determine long-term behaviour for waves which overturn

the stratification (such as for the close binary problem whenever A > 1).

It would be worthwhile to confirm the results of this chapter using 2D numeri-

cal simulations with SNOOPY. An artificial impermeable outer boundary could be

implemented in the code, and the resulting instabilities then studied. Of particular

importance is to determine the rate at which energy is lost from the primary wave due

to the parametric instabilities for suboverturning waves that we studied in this chapter

(i.e., to numerically calculate tnl). This would enable a more accurate calculation of

the magnitude of Q′
? and would provide a useful independent check of our results. We

defer such calculations to future work.
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Chapter 7

Critical layer formation by

radiative diffusion

In Part II of this thesis, we have studied critical layer formation by wave breaking. This

occurs if the tidally excited IGWs have sufficient amplitude when they reach the centre

to overturn the stratification. This process only operates if the wave amplitudes exceed

a critical value. In this section we consider a mechanism which could operate even if the

waves are of too low amplitude to initiate breaking. This mechanism is critical layer

formation through radiative damping of the tidally forced primary waves. This process

could provide efficient tidal dissipation in solar-type stars perturbed by less massive

companions. However, this mechanism results in a very slow deposition of angular

momentum (∼ Myr), in comparison to the relatively rapid deposition which occurs

when the wave breaks (∼ few days). This means that this process may be prevented by

effects that resist the development of differential rotation, of which several are briefly

discussed.

7.1 Order-of-magnitude estimate

Near the centre of a star, radiative diffusion is the dominant linear dissipation mech-

anism. If the waves are gradually attenuated by radiative diffusion on their reflection

from the centre, over a sufficiently long time, they may be able to spin up the inner-

most regions of the star to the angular pattern speed of the tide Ωp, hence producing
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a critical layer. Radiative diffusion is much weaker near the centre than at the top of

the RZ, but the central regions are more easily spun up by this gradual deposition of

angular momentum, because of their small moment of inertia. We have already ob-

served this process occuring in our simulations in Fig. 3.9, albeit with viscosity and not

radiative diffusion acting on the waves. Later in this chapter we perform simulations

with radiative diffusion, and confirm that this effect is present in our simulations. In

this section we provide an order-of-magnitude estimate of the timescale for radiative

diffusion to spin up a region, of size of the order of the central wavelength of the

primary wave, to Ωp.

If the wave is attenuated as it propagates from a radius R, to the centre, and back

to R again, by a factor e−α/2, i.e., such that the outgoing energy flux is Fe−α, then

the torque on this region of the star is given by the angular momentum transferred to

the mean flow, and is

Γ =
m

ω
F (1− e−α). (7.1.1)

Here we assume that F is that given in Eq. 5.2.24, which is reasonable when the

response is non-resonant. The wave attenuation

α ≈ 2

∫ R

0

ηk2

cg,r

dr, (7.1.2)

where η is the thermal diffusivity and k is the wavenumber. We have k ∼ kr, except

within the innermost wavelength, and the radial group velocity cg,r ≈ ω
kr

. The thermal

diffusivity can be calculated from the properties of the appropriate stellar model from

η =
16σT 3

3κρ2cp
, (7.1.3)

where σ is the Stefan-Boltzmann constant, κ is the opacity, and cp is the specific heat

at constant pressure. This assumes N2 is due only to entropy gradients, rather than

a mixture of entropy and composition gradients, so the attenuation may be weaker

in practice. However, the stratification at the stellar centre is composed of these in

roughly equal parts, so this is unlikely to affect the attenuation significantly. We can

take η to be constant over the inner ∼ 5% of a star, to a first approximation, with a
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value ≈ 16.7m2s−1, in the case of the Sun. In addition, kr is roughly constant with

radius within this region, though formally diverges as r → 0. We can reasonably

estimate

α ≈ 2× 6
3
2η
C3

ω4
R ≈ 4× 10−4

(
R

R�

)(
P

1d

)4

, (7.1.4)

where R is the size of the region spun up by this process. This is because kr ∼
√

l(l+1)N

rω
,

if ω � N , and N = Cr. We also note that the tidal frequency ω = 2
(

2π
P

)
. This means

that the attenuation by radiative diffusion within the innermost few percent of the

star is small for waves excited by planets on one-day orbits. However, the wavelength

of the waves becomes shorter for longer period orbits, so their attenuation by radiative

diffusion is more efficient. Note that α & 1 only when P & 8 days, even when radiative

diffusion over the entire RZ is considered (in fact GD98, who made a more accurate

calculation by including the radial dependence of the wavenumber and diffusivity,

found that α & 1 for P & 11.6 days). This means that the waves excited by planets

on short-period orbits with P . 3 days, whose survival could be threatened by the

process of wave breaking, will not be significantly attenuated in traversing the RZ,

according to linear theory. It is therefore appropriate to ask whether they will break

on reaching the stellar centre.

To a first approximation, the central ∼ 3% of a star can be modelled as a uniform

density sphere, with the central density ρc. Its moment of inertia is I = 4
5
πR5ρc. Using

Eq. 7.1.1, we have the following differential equation describing the spin evolution of

the central regions:

I
dΩ

dt
=
m

ω
F (1− e−α). (7.1.5)

Assuming that the system evolves slowly, which is probably true until breaking occurs,

we can take F , ω, and α, to be constant in time as the central regions are spun up.

This allows a straightforward solution, giving the resulting timescale to spin up the

region of the central wavelength to Ωp, in the case of Jupiter orbiting the Sun with a
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one-day period (in which R ∼ 0.01R�), of

tSU =
4

5

πR5ρcΩ
2
p

F (1− e−α)
≈ 3 Myr. (7.1.6)

Note that this timescale strongly depends on the size of the region that is spun up.

When α� 1, which is valid for P . 10 days, tSU ∝ P 5/3.

In this estimate we have used Model S of the current Sun, so this value only applies

to our star. However, we have repeated this calculation using the same set of stellar

models discussed in Chapter 5, with masses in the range 0.5 ≤ m?/M� ≤ 1.1, and

find that tSU . 1 Gyr for each of these models, for Jupiter orbiting the star with a

one-day period.

This striking estimate indicates that all gas giants on short-period orbits around

G or K stars could eventually cause the formation of a critical layer near the centre

of the star, given sufficient time . O(1) Gyr. Once this has formed, we have found in

our simulations in Chapters 3 & 4 that it is reasonable to assume that the IW angular

momentum flux is entirely absorbed near the centre. Hence, our estimate of Q′
? in the

previous chapter could apply to all slowly rotating G and K stars.

Unlike the mechanism of nonlinear wave breaking, which has so far been the main

subject of this thesis, the formation of a critical layer by radiative diffusion requires

the progressive spin-up of the region of the central wavelength by a gradual deposition

of angular momentum. This angular momentum deposition is much slower than the

rapid deposition that results from wave breaking (spin-up time of several days), so this

process could be interrupted by mechanisms that resist the development of differential

rotation, such as hydrodynamic instabilities or magnetic stresses. We briefly consider

several such effects later in this chapter.

This section has only presented an order-of-magnitude estimate of the timescale

for this process. One question that must be answered is whether a more detailed

calculation will affect this process. In the next section, we study the effects of viscosity

and radiative diffusion on our nonlinear primary wave in 2D.
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7.2 IGWs subject to viscous and radiative damping

in 2D

In this section, we perform a 2D calculation to study the effects of viscosity and

radiative diffusion on the nonlinear wave derived in Chapter 3. Our aim is to check

whether a more detailed calculation of the wave damping is consistent with our simple

estimate of the previous section.

We are interested in the limit in which the wave reflects approximately perfectly

from the centre of the star, which is appropriate for low-amplitude waves. In this case,

global standing modes form in the RZ, which are damped over a long time by radiative

diffusion. We consider a circular region of radius rout, and analyse the effects of both

viscosity and radiative diffusion on a primary wave

ψw(r, ξ) = Re
[
AJ2(r)e

iξ
]
, (7.2.1)

by calculating the perturbed solutions

ψ = ψw + δψ, b = bw + δb. (7.2.2)

We start from the vorticity and buoyancy equations (in the dimensionless units of

§ 3.5)

∂t(−∇2ψ) + ∂φb = J(ψ,−∇2ψ) + F [ψ], (7.2.3)

∂tb+ ∂φψ = J(ψ, b) +G[b]. (7.2.4)

The functionals F [ψ] and G[b] represent the effects of viscosity and radiative diffusion,

respectively, and evaluate straightforwardly in Cartesian coordinates as

F [ψ] = (∇× ν∇2u) · ez = −ν∇4ψ, (7.2.5)

G[b] = κ∇2b. (7.2.6)

A forced wave equation can be derived by combining the vorticity and buoyancy equa-
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tions, to give

∂2
t (−∇2ψ)− ∂2

φψ = ∂tJ(ψ,−∇2ψ)− ∂φJ(ψ, b) + ∂tF [ψ]− ∂φG[b]. (7.2.7)

We neglect nonlinear coupling Jacobians, i.e., we consider the perturbation to be

produced only from viscous and radiative damping of the primary wave. This means

that we assume J(δψ,−∇2ψw) = J(ψw,−∇2δψ) = J(δψ, bw) = J(ψw, δb) = 0. These

nonlinearities would couple an m = 2 wave with m = 0 and m = 4 waves, though

to first order, δψ has the same azimuthal form as the primary m = 2 wave. Since

|δψ| is assumed small, we can neglect these couplings, to O(A). Other wavenumbers

grow due to these couplings at O(A2), competing with radiative and viscous damping

of the perturbed solution, which we also neglect, i.e., we assume F [δψ] = G[δb] =

0. Note that ∂2
t (−∇2ψw) − ∂2

φψw = ∂tJ(ψw,−∇2ψw) − ∂φJ(ψw, bw) = 0, since the

adiabatic primary wave solution is exact. We make the assumption of linearity, that

J(δψ,−∇2δψ) = J(δψ, δb) = 0. Substituting the perturbed solutions, under these

assumptions, gives

∂2
t (−∇2δψ)− ∂2

φδψ = ∂tF [ψw]− ∂φG[bw], (7.2.8)

which can be rewritten as (factoring out eiξ)

L̃mδψ = f(r), (7.2.9)

where the linear differential operator

L̃m ≡ m2

r
Lm ≡ m2

r

[
∂rr∂r − r(1− m2

r2
)

]
, (7.2.10)

and after simplification, we obtain the forcing

f(r)eiξ ≡ ∂tF [ψw]− ∂φG[bw], (7.2.11)

= 2iA(ν + κ)J2(r)e
iξ, (7.2.12)

which has its maximum near the centre, and oscillates with radius with an amplitude

decaying asymptotically like r−
1
2 . This can be obtained easily using the fact that
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∇2ψw = −ψw = −bw. It makes sense that this has the same symmetry in azimuth and

time as the primary wave. We also expect the forcing to have a similar form to the

primary wave, but to be out of phase by π/2, i.e., to cause decay in wave amplitude

at every location.

Note that radiative diffusion (κ) and viscosity (ν) have the same effects on the

primary wave. This is results from the fact that ψw = bw for these waves, and that

the φ and t dependence only comes through ξ (so the φ and t dependence is the same

except for a phase shift of π). The waves also satisfy equipartition of kinetic and

potential energies, when integrated over a multiple of half-wavelengths, as we will now

prove.

If we rewrite Bessel’s equation in the form

1

r
∂r(r∂rJm)− m2

r2
Jm = −Jm, (7.2.13)

multiply by rJm, and integrate over radius from r1 to r2, we obtain∫ r2

r1

[
(∂rJm)2 +

m2

r2
J2

m

]
rdr =

∫ r2

r1

J2
mdr + [rJm∂rJm]r2

r1
. (7.2.14)

Since 2P = J2
m and 2K = (∂rJm)2 + m2

r2 J
2
m, where K and P are the kinetic and po-

tential energies, respectively, this statement is telling us that equipartition holds if we

integrate over a range where Jm or ∂rJm are zero at the end points. Equipartition

therefore holds when the energies are integrated over integer multiples of half a wave-

length, which is r2 − r1 = n
2
λr for n ∈ Z, in the WKB limit. This equipartition of

kinetic and potential energies is only satisfied in an averaged sense, and not pointwise,

as we can see from Fig. 7.1.

In the form of Eq. 7.2.9, we can solve the problem by finding Green’s function,

which is the solution of

L̃mG(r, r′) = δ(r − r′). (7.2.15)

This can be found by imposing the two-point BCs

δψ(rin) = 0, (7.2.16)
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Figure 7.1: Kinetic (blue line) and potential (red line) energies in the primary wave as a
function of radius. K increases first, and then the remaining part of the first wavelength has
P > K. Equipartition holds in an averaged sense, but is not satisfied pointwise ∀r.

δψ(rout) ∝ Jm(rout)− iYm(rout), (7.2.17)

which correspond to the physical condition of regularity at the centre (rin = 0), and

an OW BC at r = rout. Note that we are assuming the solution is proportional to,

and not equal to, the given OW, otherwise we would be forcing the solution at the

outer boundary, and fixing the amplitude of the solution. Hence, we are looking for

waves with an outgoing energy/angular momentum flux. We are required to choose

rout to be much closer than infinity, since the wave would entirely damp if rout = ∞;

δψ would also increase to no longer satisfy the requirement that |δψ/ψw| � 1 for a

linear analysis. We choose rin = 0, and rout to be several wavelengths from the centre.

Two linearly independent solutions of the homogeneous (unforced) wave equation

are the standing wave and OW solutions, Jm and Jm − iYm, respectively. Green’s

function is then

G(r, r′) =

{
iπr
2
Jm(r) [Jm(r′)− iYm(r′)] , rin ≤ r ≤ r′,

iπr
2

[Jm(r)− iYm(r)] Jm(r′), r′ ≤ r ≤ rout.
(7.2.18)

The solution is the real part of

δψ(r, ξ) =

∫ rout

rin

G(r, r′)f(r′)dr′eiξ
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= [Jm(r)− iYm(r)] eiξ

∫ r

rin

iπr′

2
Jm(r′)f(r′)dr′ (7.2.19)

+Jm(r)eiξ

∫ rout

r

iπr′

2
[Jm(r′)− iYm(r′)] f(r′)dr′.

Note that as r → rout, the solution is an OW with amplitude δAout =
∫ rout

rin

iπr′

2
Jm(r′)f(r′)dr′,

and as r → rin, the solution is a standing wave with amplitude∫ rout

rin

iπr′

2
[Jm(r′)− iYm(r′)] f(r′)dr′. The relevant part for the angular momentum

transport is the part which is an OW, i.e., the first integral only. Note that the

OW decays asymptotically like r−
1
2 e−ir, so at infinity, this wave decays to zero.

Using Mathematica to compute the integrals, we obtain the closed-form solution

(for m = 2), which is the real part of

δψ(r, ξ) =
A

2
(ν + κ)eiξ

{
πroutJ2(r)

(
rout[J1(rout)]

2 − 4J1(rout)J2(rout) + rout[J2(rout)]
2
)

+iπrY2(r)
(
r[J1(r)]

2 − 4J1(r)J2(r) + r[J2(r)]
2
)

−i
√
πJ2(r)G

2,2
1,3

r, 1
2

1, 3
2
, 1

2

1, 3 , −1, 0, 1
2

 (7.2.20)

+i
√
πJ2(r)G

2,2
1,3

rout,
1

2

1, 3
2
, 1

2

1, 3 , −1, 0, 1
2

}.
Note that along ξ = nπ

2
, for n ∈ Z, Re[δψ] ∝ J2(r). The “G” functions above are

Meijer-G functions (e.g. Lozier et al. 2010), which result from the second integral.

They are written in Mathematica as, e.g.,

G2,2
1,3

rout,
1

2

1, 3
2
, 1

2

1, 3 , −1, 0, 1
2

 ≡ MeijerG[{{1, 3
2
}, {1

2
}}, {{1, 3}, {−1, 0,

1

2
}}, r, 1

2
].

Some care is needed to ensure that there are no large numerical cancellations when

dealing with the Meijer-G function. This has been found to occur when the difference

of the final two terms on top and bottom are integers (here, 1
2

and any of −1, 0, 1
2
),

particularly for large r & 20. This is likely to be a numerical instability from the

algorithm that evaluates these complicated functions in Mathematica.
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Figure 7.2: δψ along ξ = 0 for the perturbed solution, showing both the real (blue line)
and imaginary (red line) parts. These are oscillatory functions of radius, out of phase by
π/2. |Re[δψ]| is largest in the centre. Further out, the amplitudes of oscillation of the real
and imaginary parts are comparable.

7.2.1 Angular momentum flux

Since our aim is to determine whether our simple estimate of the spin-up due to

radiative diffusion is confirmed by this calculation, we turn to compute the torque on

the central regions. The perturbed angular momentum flux is

δFL
r =

(mρ0

ω

)
πmrIm [(∂rδψ)ψ∗w + δψ∗(∂rψw)] , (7.2.21)

which is proportional to ν + κ since δψ ∝ ν + κ, as expected. For the above solution

this evaluates (when m = 2) to

δFL
r (r) =

(ρ0

ω

)
2π2|A|2(κ+ ν)r

{
r2[J1(r)]

3Y2(r)− rJ2(r)[J1(r)]
2 (rY1(r) + 4Y2(r))

+r[J2(r)]
2J1(r) (4Y1(r) + rY2(r))− r[J2(r)]

3 (rY1(r) + 2Y2(r)) (7.2.22)

+2π−1/2[J2(r)]
2G2,1

2,4

r, 1
2

1 , 0

1
2
, 5

2
, 3

2
, 0

}.
The main contribution to this is from δAout(r), because this corresponds to the am-

plitude of the OW. In fact, it can be shown that δFL
r ≈ −m2δAout(r), which is easily

confirmed by plotting these functions. The radial flux at a particular radius does not
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(and should not) depend on the location of the outer boundary (which only comes into

the second integral).
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Figure 7.3: δFL
r for the perturbed solution. This is equivalent to the total torque on the

region inside a ring of radius r. This has approximately the same form as the first integral
δAout. Note that δFL

r ∼ r6 as r → 0, but δFL
r ∼ r as r →∞.

In Fig. 7.3 we plot the perturbed angular momentum flux. This is equivalent to the

torque on the region inside a ring of radius r. It makes physical sense for the torque to

increase with radius from the centre. This is because the OWs have travelled further,

and experienced more dissipation due to ν, κ, the larger the value of r.

The corresponding torque density per unit radius, defined such that the total torque

Γ ≡ δFL
r ≡

∫ rout

0

T (r)dr, (7.2.23)

which results from viscous and radiative damping of the primary wave, is

T (r) = ∂r(δF
L
r ). (7.2.24)

The torque density T is plotted in Fig. 7.4. The torque density oscillations have

roughly constant amplitude, outside of the innermost wavelength. This is what we

would expect from the a simple calculation in the WKB approximation. In this ap-

proximation, the OW can be expressed as (J2 − iY2)e
iξ ∼

√
2
πr
e−i(r+ξ− 5π

4
), for which

the torque scales linearly with radius. In fact, it is only for the innermost wavelength

that geometrical factors become important, where the solution is modified from that
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Figure 7.4: Torque density for the perturbed solution. This has roughly constant amplitude
as a function of radius, as expected from a simple calculation in the WKB approximation.
This is largest within the first wavelength, but not significantly, marking the only departure
from WKB.

expected from this approximation.

The torque in the order-of-magnitude estimate of § 7.1 scales linearly with radius

when α� 1, for which α ∼ R. More precisely, we can express

Γ = FL
r (1− e−α) ≈ FL

r α1R +O(R2), (7.2.25)

where α ≈ α1R = 16ηC3

ω4R in 2D, and FL
R is the angular momentum flux in IWs. In

dimensionless units we can express α = 2 m
ω2 (ν + κ)r, if we write η = (ν + κ)Ωp

C2 . We

then have

T

FL
r

≈ 4
(ν + κ)

ω2
r. (7.2.26)

This allows us to compare the magnitude of the torque with that from the calculation

of this section.

For the detailed calculation, we find that δAout(r) ≈ 2r outside of the first half-

wavelength. This means that

δFL
r ≈ 2rm2

(ρ0

ω

)
|A|2(ν + κ). (7.2.27)

200



If we normalise this with respect to the angular momentum flux in the ingoing part of

the primary standing wave solution, taking FL
r =

(
mρ0

ω

)
2m|Ain|2, with |Ain| = |A|/2

(to get the correct scaling for the IW), then

δFL
r

FL
r

≈ 4
(ν + κ)

ω2
r. (7.2.28)

This demonstrates that the torque has a similar magnitude and scaling with radius as

predicted from our simple estimate.

To summarise this section, we have performed a two-dimensional analysis, which

has confirmed that our simple order-of-magnitude calculation of the torque on the

central regions of the star due to radiative damping of the waves, has the correct

magnitude and scaling with radius. We have also found that the effects of viscosity

and radiative diffusion on the waves are the same, and would both be able, in principle,

to spin up the central regions.

The resulting torque density is (slightly) largest within the innermost wavelength,

and is oscillatory. Coupled with the fact that the moment of inertia of the central

regions ∼ r5, because the density is approximately uniform in the innermost wave-

lengths, this implies that the central wavelengths are the most likely to be spun up

by radiative diffusion (or viscosity). Note, that the torque is always positive, and only

acts to spin up (and not down) the central regions, as expected when Ω < n.

7.3 2D simulations

Motivated by the simulation presented in Fig. 3.9, in which viscosity acts to gradually

transfer angular momentum from the wave to the mean flow, eventually producing a

critical layer, we will now present similar simulations with radiative diffusion. We use

the two-dimensional set-up of Chapter 3, except with ν = 0, and choose various values

of κ, ranging from 10−4− 10−7. Neglecting viscosity is observed to result in numerical

instability if any wave breaking occurs, but here we only follow the evolution until

a critical layer forms by radiative diffusion. We use a forcing amplitude f̃r = 2.5,

which is insufficient to cause breaking, appropriate for considering the tidal evolution

of lower-mass tidal perturbers.
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We find that the waves are significantly attenuated on propagation to the centre,

from the launching region, if κ & 10−4. This situation is that appropriate for waves

excited by planets on orbits of around ten days, for which the attenuation α due to

radiative diffusion is close to unity. The waves are gradually damped as they propagate,

but in this case have deposited most of their angular momentum before they approach

the central regions, which they reach with low amplitude. The result is that the central

regions are negligibly spun up by the waves excited by planets on orbits of P & 8− 11

days, and therefore will not produce a critical layer. Regions farther out have larger

moment of inertia, and so are harder to spin up by this process.

In Fig. 7.5 we plot the temporal evolution of the dominant Fourier components,

m = 2 and m = 0, in the solution, in a simulation with κ = 10−5. For this simulation,

the attenuation by radiative difusion on propagation from the launching region is

small to moderate, and the waves still have reasonable amplitudes near the centre.

Over many wave crossing times, the gradual deposition of angular momentum results

in appreciable spin-up of the central regions. Thus radiative diffusion has the same

result as viscosity (see Fig. 3.9) acting on the waves, as predicted by our analysis in

the previous section. In this simulation, a critical layer is eventually formed within the

innermost wavelength. The resulting evolution would then be similar to that described

in Chapter 3, except that in these simulations numerical instabilities set in since we

neglect viscosity.

These simulations confirm the picture so far outlined in this chapter, that radiative

diffusion can be responsible for the production of a critical layer near the centre. This

outcome could occur for tidal perturbers with insufficient masses to be able to cause

wave breaking, if they have short enough orbital periods for the waves to reach the

centre with sufficient amplitude, i.e., for P . 8 days. Radiative diffusion preferentially

spins up the central regions because these have smaller moment of inertia than regions

farther out. Given the similarities between the two and three-dimensional problems,

as observed in Chapter 4, we expect that this picture would be the unchanged in 3D.
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Figure 7.5: Temporal evolution of the power spectral density Pm, for m = 0 and m = 2,
for a simulations with κ = 10−5. Together with Fig. 3.9, this shows that radiative diffusion
has the same effects on these waves as viscosity, and is able to gradually spin up the mean
flow, to eventually produce a critical layer.

7.4 Discussion

The process that we have outlined in this chapter could provide efficient tidal dissi-

pation in solar-type stars perturbed by less massive companions than wave breaking

would require. However, this mechanism results in a very slow deposition of angular

momentum (∼ Myr), in comparison to the relatively rapid deposition which occurs

when the wave breaks (∼ few days). This process is therefore more likely to be pre-

vented by effects that resist the development of differential rotation. In this section

we discuss several of these possible mechanisms.

7.4.1 Magnetic fields in the RZ

It is well known that large-scale magnetic fields have the ability to hold fluids in uni-

form rotation. In particular, in ideal MHD, Ferraro’s Law of Isorotation holds, which

states that an axisymmetric steadily rotating system has constant angular velocity

along each field line. Any shear in the component of the velocity transverse to the

magnetic field generates a transverse field, which grows until the Lorentz force acts
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back on the shear. This process generates Alfvén waves, leading to a torsional os-

cillation of the field with a period determined by the Alfvén travel time across the

disturbance (Mestel & Weiss 1987):

τA =
R

vA

=
R
√
µ0ρ

B0

, (7.4.1)

where vA is the Alfvén speed, R is the spatial scale of the shear (i.e., the region forced

into differential rotation by radiative diffusion or wave breaking), B0 is the background

magnetic field, ρ is the fluid density, and µ0 is the magnetic permeability.

Indeed, the presence of a magnetic field in the RZ of the Sun has been invoked

to explain why the differential rotation profile of the CZ has not been imposed on

the interior (Gough & McIntyre 1998). It is not currently possible to measure the

magnetic field beneath the solar surface, though calculations indicate that a poloidal

field of only 10−2 G (with global Alfvén travel time ∼ 106 years) would be sufficient

to bring the Sun’s RZ into uniform rotation. If such a field exists in the Sun, and in

other solar-type stars, then magnetic stresses could inhibit the gradual development of

differential rotation, and prevent the formation of a critical layer by radiative diffusion.

The Alfvén travel time across a region of radial extent R, is

τA ≈ 104yr

(
R

R�

)(
1G

B0

)(
ρ

ρc

) 1
2

, (7.4.2)

where we have used the central density of the star, to give an upper limit, for a given

field strength. Mestel & Weiss (1987) suppose that the strength of the field lies in the

range 10−2 G . Bp . 103 G, so the global τA could be several orders of magnitude

shorter than this estimate. In any case, this indicates that magnetic effects could be

very important, since this timescale is probably much shorter than Eq. 7.1.6.

If the central ∼ 1% of the star is rotating with angular speed Ωp, then the ratio of

the energy in the magnetic field to the energy in the shear is

B2
0/(2µ0)

(1/2)R2Ω2
p

≈ 8× 10−9

(
B0

1G

)(
0.01R�

R

)2(
P

1d

)2

. (7.4.3)

This tells us that unless we have a magnetic field much larger than the proposed upper

bound (which can probably be ruled out on empirical grounds; Friedland & Gruzinov
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2004), then we are in the weak-field limit of Spruit (1999), in which the differential

rotation winds up the poloidal field to produce a strong toroidal field. This toroidal

field may then be subject to instabilities, such as the Tayler instability (Tayler 1973),

which would set in on the Alfvén timescale to produce turbulence. However, the final

nonlinear outcome of such instabilities on angular momentum redistribution is unclear.

7.4.2 Goldreich-Schubert-Fricke instability

Throughout the RZ, η/ν � 1 (taking a value ∼ 106 just below the convection zone).

In this limit, a powerful hydrodynamic instability enabled by thermal diffusion results

if the specific angular momentum decreases outwards from the rotation axis. In both

of the mechanisms that we have outlined in this part of the thesis, a region in which

∂RR
2Ω(R) ≤ 0, (7.4.4)

is produced, where R is the cylindrical radius. This is unstable to the Goldreich-

Schubert-Fricke (GSF) instability (Goldreich & Schubert 1967; Fricke 1968; also see

Menou et al. 2004 for the inclusion of a weak magnetic field). The instability is

axisymmetric, and the maximum growth rate is comparable with the local rotation

period, which is approached for wavelengths λ . 2π (η/N)1/2, where thermal diffusion

can overcome the buoyant restoring force. In our simulations with thermal diffusion,

λ . 2π
(

κΩp

πC3R

)1/2

∼ 10−4, so we would not be able to resolve such instabilities. (In the

Sun, we expect λ . 10−7R� near the centre.) The nonlinear outcome of this instability

with regards to angular momentum redistribution and entropy mixing is unclear. In

addition, the presence of compositional gradients may be able to stabilise the flow

against such instabilities, so it is unclear how effective they will be at preventing the

gradual spin-up by radiative diffusion that we have presented in this chapter.

7.5 Conclusions

In this chapter we have identified a further process by which efficient dissipation of

IGWs could occur. If the waves are of too low amplitude to initiate breaking, but

reach the centre without significant attenutation on one passage of the RZ, then the
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weak deposition of angular momentum through radiative damping of the waves, can

spin up the region of the central wavelength over a timescale of millions of years, until

a critical layer is formed. The subsequent evolution of the system is that discussed in

previous chapters of Part II of this thesis. This process could provide efficient tidal

dissipation in solar-type stars perturbed by less massive companions. However, it

may be prevented by hydrodynamic instabilities or magnetic stresses, that resist the

development of differential rotation. Further work is required to study whether this

remains a viable mechanism of tidal dissipation, in a detailed study including these

effects.
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Chapter 8

Conclusion

In this thesis we have studied two problems regarding tidal interactions between short-

period extrasolar planets and their host stars.

In the first part, we adopted a simple model of tidal friction to understand the

secular spin-orbit evolution of HJs on inclined orbits, due to tides. We also analysed

the influence of stellar spin-down due to magnetic braking on the tidal evolution. We

found that simple timescale estimates can be misleading, and it is essential to consider

coupled evolution of the orbital and rotational elements, including dissipation in both

the star and planet, to accurately model the evolution.

The most important result of Part I is that the timescale for stellar spin-orbit align-

ment is comparable with the inspiral time for HJs. This result was obtained using the

constant lag time model, and is true if the ratio of the moments of inertia of the orbit

to that of the fraction of the star which tidally exchanges angular momentum with

orbit, is of order unity or smaller. This means that observed inclinations are likely

to be a relic of the migration process that produced these extraordinary planets, thus

highlighting the importance of RM effect observations of transiting planets, which can

determine the sky-projected angle between the stellar spin and the orbit. Since differ-

ent formation scenarios produce different distributions of this angle, these observations

have the potential to determine the formative histories of HJs. In particular, they can

distinguish between migration caused by planet-planet scattering or Kozai oscillations

combined with tidal dissipation in the star, and that produced by tidal interaction

with the gas disk.
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The population of planets whose spin-orbit alignments have been observed with the

RM effect can be statistically analysed to give a distribution of i for HJs (Fabrycky

& Winn 2009). Such work indicates the surprising result that most HJs appear to be

misaligned, possessing a wide variety of spin-orbit angles (Triaud et al. 2010). This

distribution of i appears consistent with that predicted by the process of Kozai cycles

with tidal friction (Fabrycky & Tremaine 2007). Together with our result that the

spin-orbit angle is not likely to change appreciably over the lifetime of the system due

to tides, if future observations can confirm this i distribution, this would be consistent

with the hypothesis that Kozai migration may indeed be a primary formation mech-

anism of HJs. However, it is unlikely to be able to account for all of these planets.

These observations do seem to reduce the importance of disk migration at producing

HJs.

In the second part of this thesis, we studied the mechanisms of tidal dissipation in

solar-type stars. In particular, IGWs are launched at the CZ/RZ interface of a such

a star, by the tidal forcing of a short-period planet. The fate of these waves as they

approach the centre of the star was studied, primarily using numerical simulations.

In Chapter 3 we first derived a Boussinesq-type model of the central regions of a

solar-type star, together with a wave solution, which is exact in 2D. We then integrated

this system of equations in 2D, using spectral methods, studying the instabilities of

the wave as the amplitude of forcing was varied. We found that the waves undergo

instability and break above a critical amplitude, below which the waves reflect perfectly

from the centre of the star. Wave breaking leads to the formation of a critical layer,

which absorbs subsequent ingoing waves. This process can spin the star up from the

inside out, as the planet is pulled into the star.

In chapter 4 we extended these simulations to 3D. The wave solution valid near the

centre is not exact in 3D, and nonlinearities, though small, do not vanish. Nevertheless,

we confirmed that this process in 3D gives the same general picture as that in 2D.

One exception, however, is that the deposition of angular momentum by the waves

results in latitudinal differential rotation, though this is unlikely to significantly affect

the critical layer absorption.

We studied the implications of the production of a critical layer by wave breaking,
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for tidal dissipation in solar-type stars, in Chapter 5. We calculated the tidal quality

factors Q′
? that result from this process, improving a model by Goodman & Dickson

(1998). The validity of this model was verified by numerical integrations of the lin-

earised tidal response, in an extensive set of solar-type stellar models. We found that,

for a given planetary orbit, the dissipation resulting from critical layer absorption is

very efficient, with

Q′
? ≈ 105

(
P

1 day

) 14
5

, (8.0.1)

which varies by less than an order of magnitude between all solar-type stars, in the

mass range 0.5 ≤ m?/M� ≤ 1.1, throughout their main-sequence lifetimes.

The critical amplitude required for wave breaking has been obtained, as a function

of the mass of the planet, and the strength of the stable stratification at the stellar

centre. This varies significantly between different stars, with breaking being more

likely in massive and more highly evolved stars, with stronger central condensations.

The implications of this mechanism for the survival of short-period extrasolar planets

has been discussed. In particular, if wave breaking occurs, a close-in planet will rapidly

spiral into its host star in only a few million years. However, this process only occurs

if the planet is sufficiently massive, or the star is sufficiently evolved. In fact, none of

the planets currently observed orbiting a solar-type star is likely to cause breaking at

the centre. This could be an important explanation for their survival.

We studied the tidal dissipation in F-type stars, which have masses in the range

1.1 . m?/M� . 1.8. This is in general weaker than in solar-type stars, due to

differences in their internal structure, most importantly the presence of a convective

core prevents the wave breaking mechanism that we have described in Part II of this

thesis. In addition, the convective envelopes of these stars are generally thinner than

in solar-type stars, so the dissipation of the equilibrium tide (and inertial waves if they

are excited) by turbulent convection is weaker. Contrary to common assumptions, Q′
?

is found to vary with the internal structure of the star, with tidal frequency, and for

solar-type stars, exhibits a dependence on the amplitude of the tide. It is therefore

inappropriate to consider Q′
? as a constant, uniform across all stars, except in making

qualitative statements about tidal evolution, or in constraining the magnitude of the
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dissipation (such as we did in Chapter 2).

The results of this thesis were combined to propose a possible explanation for the

survival of all of the extrasolar planets currently observed in short-period orbits around

F, G and K stars. We provided several predictions, which will be tested in ongoing

studies of transiting planets, such as WASP and Kepler. In particular, we predict

that fewer massive planets will be found around G-stars in periods of less than 2 days,

i.e., those massive enough to satisfy Eq. 5.3.3. We also predict that the fraction of

short-period HJs in orbits shorter than 2 days around G-stars will decrease with stellar

age.

Our simulations in Chapters 3 & 4 indicate that nonlinearities do not play an

important role in preventing the reflection of the waves from the centre, unless the

wave has sufficient amplitude to overturn the stratification. In Chapter 6 we performed

a stability analysis of our 2D standing internal gravity wave near the centre of a

solar-type star, to determine whether the waves are subject to weaker parametric

instabilities below the critical amplitude required for wave breaking. We found that

although the waves undergo parametric instabilities, driven by entropy gradients in

the primary wave, at any amplitude, because the nonlinearity is spatially localised

in the innermost wavelengths, the growth rate scales inversely with the number of

wavelengths contained within the radiation zone. This means that the growth rates of

these instabilities tend to be sufficiently small that they do not result in astrophysically

important tidal dissipation. These results support our explanation for the survival of

short-period planets that we have presented in this thesis. We also identified the

instabilities that contribute to the early stages of wave breaking, and found that they

are driven by the free energy associated with primary wave entropy gradients, and are

strongly localised within the convectively unstable regions.

Finally, in Chapter 7, we proposed an alternative mechanism of tidal dissipation.

This involves the formation of a critical layer by the gradual damping of the waves

by radiative diffusion. Based on an order-of-magnitude estimate, which we followed

up with analytical calculations and numerical simulations, we found that this process

could operate for lower-mass planets. However, this mechanism is in conflict with

current observations, since it would pose a threat to the survival of all short-period
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planets in orbits of less than 2 days. We discussed some hydrodynamic instabilities

and magnetic processes which may prevent this mechanism.

8.1 Future work

The subject of resonances has been avoided so far in this thesis. The probability of

the tidal frequency exactly matching some normal mode of the star at any one time

is tiny. However, evolution of the tidal frequency, due to changes in the stellar spin or

the orbit, or evolution of the stellar g-mode eigenfrequencies, can result in the system

passing through resonance. Simple estimates indicate that it is most likely for at least

one resonance to be passed in the lifetime of a system. It is not yet understood whether

this will result in the amplitude of the tide to grow sufficiently for wave breaking to

occur, when both radiative damping and the gradual evolution of the frequencies is

considered. I am currently performing some calculations to try to understand this

problem.

Part II of this thesis has studied a promising mechanism of tidal dissipation, which

may operate in stars with radiative cores. However, we have so far neglected the influ-

ence of magnetic fields and rotation. Future work is certainly required to understand

in more detail the effects of magnetic fields. In particular, a strong toroidal magnetic

field at the top of the RZ may be able to reduce the amplitude of the waves that are

launched. Large-scale magnetic fields may also be able to prevent the spin-up of the

interior by the process outlined in Chapter 7, though probably not the more rapid

spin-up due to wave breaking. In addition, they could affect the picture that we have

outlined for the long-term evolution of the RZ due to critical layer absorption. It is

also of interest to consider the effects on the wave amplitude by differential rotation

in the RZ.

Orbits with nonzero eccentricities, and inclinations with respect to the stellar equa-

tor, excite IGWs with different frequencies and azimuthal wavenumbers. In this thesis,

we only considered the waves excited by planets in circular, coplanar orbits, which have

m = 2. Future work is required to see whether the same process is efficient at circu-

larising the orbits of short-period planets, or of aligning the stellar spin with the orbit.

This could be studied in a straightforward extension of the simulations described in
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this thesis.

Another route for further work regards core-envelope coupling in stars, and how

this can be produced, and will affect, tidal evolution of HJs. It has been proposed by

Winn et al. (2010), that the current population of misaligned planets can be explained

as a result of inefficient tidal dissipation in their host stars. This is because most of

the misaligned planets orbit F-stars, and we found in Chapter 5 that tidal dissipation

in those stars is likely to be weaker than in solar-type stars. Such stars may thus

be less likely to realign with the orbit than G-stars, which have stronger dissipation.

However, it is uncertain whether core-envelope coupling can occur in such stars, and

this is certainly an area which requires further study, since it is not yet understood,

even for the Sun.

To conclude, tidal dissipation in stars requires much further work before we can say

that we fully understand its effects in the evolution of short-period planetary systems.

This thesis has presented a mechanism that is likely to be important in solar-type

stars, but much further work is required. Hopefully myself and others will be able to

continue to explore this avenue in the next few years.
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Part III

Appendices
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Appendix A

A.1 Additional secular perturbing accelerations

In Chapter 2.1, we ignored the contribution of any perturbing accelerations except

tidal friction. In this section we list the remaining terms from Eggleton & Kiseleva-

Eggleton (2001), which we have rewritten without reference to ê, so that they are

regular for a circular orbit. The resulting contributions to f are listed in Mardling &

Lin (2002). Here we write down the additional contributions to the secular evolution

of the system due to binary (outer body) perturbations (b), quadrupolar distortion

of the star due to their spins and tidal bulges (q1), and general relativistic apsidal

precession (GR):(
dh

dt

)
b

= −3Cbh

[
(1− e2)

h2
(n · h)(n× h)− 5(n · e)(n× e)

]
, (A.1.1)(

dh

dt

)
q1

= − α1

h(1− e2)2
(Ω1 · h) (Ω1 × h) , (A.1.2)

h

(
de

dt

)
b

= 3Cb(1− e2) [2(h× e)− (n · h)(n× e) + 5(n · e)(n× h)] , (A.1.3)

h

(
de

dt

)
q1

=
α1

(1− e2)2

[
1

2

(
3

h2
(Ω1 · h)2 − Ω2

1

)
+

15Gm2

a3
f2(e

2)(1− e2)2

]
(h× e)

+
α1

h2(1− e2)2
(Ω1 · h) (Ω1 · h× e)h, (A.1.4)

h

(
de

dt

)
GR

=
3Gm12n

ac2(1− e2)
(h× e) , (A.1.5)
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n is a unit vector normal to the binary (outer body) orbital plane, c is the speed of

light, and

α1,2 =
R2

1,2k1,2m2,1

2µna5
, (A.1.6)

Cb =
m3

(m12 +m3)

n2
out

n

1

4(1− e2)1/2(1− e2out)
3/2
. (A.1.7)

Similar terms for the quadrupolar distortion of the planet (q2) can be obtained by

including additional terms identical to Eqs. A.1.2 and A.1.4, with 1 → 2 (and m2 →

m1). These terms can be included on the right hand side of Eqs. 2.1.9–2.1.13. The

integrator used in Part I has been extended with these additional contributions, and

tested on the Kozai migration of HD-80606 b using the initial conditions of Wu &

Murray (2003). The quantity Cb gives the magnitude of the binary (outer body)

perturbation, and is related to the period of a Kozai oscillation (if one is induced),

which is on the order of (1/3Cb)(1− e2)−1/2.

A.2 Stability of the synchronous state without MB

Here the stability of the equilibrium state Ω̃ = ñ is analysed, in the absence of MB.

We need to consider the energy (E) and total angular momentum (L) of the system,

which we write in the dimensionless form

L̃ = ñ−
1
3 + Ω̃, (A.2.1)

Ẽ = −ñ
2
3 + Ω̃2, (A.2.2)

where

L̃ =
L

(Gm12R1)
1
2 µ

C
1
4 , (A.2.3)

Ẽ =
2R1E

Gm1m2

C− 1
2 , (A.2.4)

are dimensionless measures of the total angular momentum and total energy of the

system, respectively. L̃ and Ẽ represent the values that the total angular momentum

and total energy would take for a Keplerian orbit at radius R1, together with a factor

215



C involving the ratio of orbit to spin angular momentum at the stellar surface. These

definitions allow the equations to be written in a very simple form.

It is straightforward to see from Eqs. 2.3.1 & 2.3.2 that there exists a curve of

equilibrium points corresponding to spin-orbit synchronism (Ω̃ = ñ). This can also be

shown by minimising the energy at constant total angular momentum

∂Ẽ

∂ ñ

∣∣∣Ω̃=ñ

constL̃
= 0. (A.2.5)

The stability of the equilibrium curve as a function of ñ follows from

∂2Ẽ

∂ ñ2

∣∣∣Ω̃=ñ

constL̃
=

2

9
ñ−

4
3

[
ñ−

4
3 − 3

]
. (A.2.6)

A synchronous state is stable if ñ ≤ 3−
3
4 , which is equivalent to the criterion of Coun-

selman (1973) & Hut (1980), who proved that an equilibrium state reached through

tidal friction is stable if IΩ
µh

≤ 1
3
, i.e., no more than a quarter of the total angular

momentum is in the form of spin angular momentum.

A.3 Tidal potential valid for any stellar obliquity

In this section we expand the tidal potential into its separate Fourier components.

This is required to study which tidal frequencies are relevant for significantly inclined

orbits, such as that of XO-3 b. We consider two bodies in mutual Keplerian orbit

with semi-major axis a and mean motion n. Adopt a coordinate system with origin

at the centre of body 1, and let this represent the star, and body 2 the planet. The

tidal potential experienced at an arbitrary point P in body 1 is the nontrivial term of

lowest order in r,

Ψ =
Gm2

2R5

[
R2r2 − 3(R · r)2

]
, (A.3.1)

where position vector of the point P in body 1 is r, and the position vector of the

centre of mass of body 2 is R(t). Body 2 is treated as a point mass, of mass m2.

We consider an inclined, circular orbit. Without loss of generality, we consider body

2 to orbit in a plane inclined to the (x, y)-plane by an angle i, so that its Cartesian
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coordinates are

R = a (cosnt cos i, sinnt, cosnt sin i) , (A.3.2)

while the Cartesian coordinates of a point P are

r = r (sin θ cosφ, sin θ sinφ, cos θ) , (A.3.3)

where (r, θ, φ) are the usual spherical polar coordinates. Then

Ψ =
Gm2

2a3
r2 [1− 3 (cosnt cos i sin θ cosφ

+ sinnt sin θ sinφ+ cosnt sin i cos θ)2] . (A.3.4)

Let

P̃m
l (cos θ) =

[
(2l + 1)(l −m)!

2(l +m)!

] 1
2

Pm
l (cos θ), (A.3.5)

where 0 ≤ m ≤ l and l ∈ Z+, denote an associated Legendre polynomial normalised

such that∫ π

0

[
P̃m

l (cos θ)
]2

sin θdθ = 1. (A.3.6)

The tidal potential correct to arbitrary order in the stellar obliquity i can be expanded

as a series of rigidly rotating spherical harmonics of second degree,

Ψ =
Gm2

a3

[
8∑

j=1

Aj(i)r
2P̃

mj

2 (cos θ) cos(mjφ− ωjt)

]
, (A.3.7)

where the azimuthal order mj, frequency ωj, tidal (Doppler shifted) forcing frequency

ω̂j = ωj −mjΩ, and the obliquity dependent amplitude Aj(i) of each component are

m1 = 0, ω1 = 0, ω̂1 = 0, A1 =

√
1

10

(
1− 3

2
sin2 i

)
, (A.3.8)

m2 = 2, ω2 = 2n, ω̂2 = 2n− 2Ω, A2 = −
√

3

5
cos4 i

2
, (A.3.9)

m3 = 0, ω3 = 2n, ω̂3 = 2n, A3 = −3

2

√
1

10
sin2 i, (A.3.10)
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m4 = 1, ω4 = 0, ω̂4 = −Ω, A4 =

√
3

5
cos i sin i, (A.3.11)

m5 = 1, ω5 = 2n, ω̂5 = 2n− Ω, A5 =
1

2

√
3

5
sin i (cos i+ 1) , (A.3.12)

m6 = 1, ω6 = −2n, ω̂6 = −2n− Ω, A6 =
1

2

√
3

5
sin i (cos i− 1) , (A.3.13)

m7 = 2, ω7 = 0, ω̂7 = −2Ω, A7 =
1

2

√
3

5
sin2 i, (A.3.14)

m8 = 2, ω8 = −2n, ω̂8 = −2n− 2Ω, A8 = −
√

3

5
sin4 i

2
. (A.3.15)

There are eight components of the tide that contribute for arbitrary stellar obliquity.

For small inclination, the terms that are of first order in the obliquity are for m = 1

and are the j = 4 and j = 5 components above. For a coplanar orbit, only j = 1 and

j = 2 components above contribute, and these reduce to the first two components in

OL04.

For an orbit with significantly nonzero i, many components contribute to the tidal

force. Thus, for XO-3, for example, it is important to calculate the resulting Q′ for each

of the m = 0, m = 1 and m = 2 components of the tide. The relevant tidal frequencies

for this system cannot be calculated with any certainty, since the stellar spin period

has not been accurately determined. If we assume that the angle of inclination of the

stellar equatorial plane to the plane of the sky is ∼ 90◦, then we have Ω ∼ n currently.

The relevant tidal frequencies would then be ω̂ = 0,±Ω,±2Ω,±3Ω,±4Ω.

A.4 Ingoing/outgoing wave decomposition

Since we have an analytic solution to the Boussinesq-type problem (see §3.5 & §4.2),

we can deconstruct the numerical solution into a sum of IWs and OWs. Doing this

enables us to quantify the amount of angular momentum absorbed as these waves

approach and/or reflect from the centre. The approach we use in 3D is now described

(we use an analogous method in 2D).

At each location in the grid, i.e. every point with spatial coordinates (x, y, z),

we have four pieces of information, namely, ur, uθ, uφ and b. Thus, it is possible

to compute the (complex) IW and OW amplitudes Ain and Aout for the l = m = 2
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wave at a single point (note that this is not true in 2D, where we require two or more

points for this calculation, because we only have the variables ur, uφ and b). This is,

however, computationally expensive, since the routines for computing Bessel functions

are relatively slow (typically several hundred times slower than a square root). In

addition, this method would be subject to potentially significant round-off errors. A

more efficient method, which also (in principle) allows a simple extension to calculate

the amplitudes Alm
in and Alm

out, for several values of l and m, is described in this section.

We aim to fit the simulation output to a linear model, corresponding to an IW and

an OW. Hence, our problem is an overdetermined system of linear equations in terms

of the unknown wave amplitudes. Let us write our system as

yi =
4M∑
i=1

Aijxi, (A.4.1)

where y = (ur, uθ, uφ, b) is a vector of data variables at each grid point, of size 4N ,

where N = NxNyNz is the total number of grid points. M is the number of spherical

harmonics for which we compute the wave amplitudes, which is usually taken to be

one. x = (Ain, Aout) is a vector of size 4M < 4N , whose components are the (complex)

IW/OW amplitudes (for each l and m value), whose values are to be determined. The

matrix A contains the IW and OW radial functions and spherical harmonic functions,

evaluated at the selected grid points, and has size 4N × 4M . Its components at a

single point are

A =


Re[uin

r (r, θ, ξ)] Im[uin
r (r, θ, ξ)] Re[uout

r (r, θ, ξ)] Im[uout
r (r, θ, ξ)]

Re[uin
θ (r, θ, ξ)] Im[uin

θ (r, θ, ξ)] Re[uout
θ (r, θ, ξ)] Im[uout

θ (r, θ, ξ)]

Re[uin
φ (r, θ, ξ)] Im[uin

φ (r, θ, ξ)] Re[uout
φ (r, θ, ξ)] Im[uout

φ (r, θ, ξ)]

Re[bin(r, θ, ξ)] Im[bin(r, θ, ξ)] Re[bout(r, θ, ξ)] Im[bout(r, θ, ξ)]

 , (A.4.2)

where each component uses the solution from §4.2 for an IW/OW (before taking real

parts). Taking only a single point, this matrix is non-singular for all radii, and is

related to the Wronskian. M is the number of spherical harmonics for which we

compute the wave amplitudes, which is usually taken to be one.

We use a method of least squares to fit our model to the data (Press et al., 1992).

This finds the best fit between the linear model data and simulation data, and com-
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putes the solution for which the sum of the squared residuals is its least value. We

compute the coefficients x, which fit the model to minimise the least squares residuals,

i.e., find x̂ such that

||Ax̂− y||2 ≤ ||Ax− y||2, ∀x. (A.4.3)

This minimisation problem has a unique solution if the 4N columns of the matrix A

are linearly independent, which is true in our case, since W [Jν(kr)+ iYν(kr), Jν(kr)−

iYν(kr)] = 4
iπr

6= 0, ∀r. The solution is found by solving the normal equations

x̂ = (ATA)−1ATy. (A.4.4)

We take into account radial variations in the amplitudes by splitting up the region

inside the forcing region into a set of concentric spherical shells of thickness δr ∼ λr/2,

after removing an inner region of a few grid cells. This approach assumes the solution

is locally independent of r, hence we can ignore radial derivatives of the amplitudes

within each shell. This is not valid in regions where the solution varies rapidly. In

addition, we speed up computation by stepping over the grid points in each Cartesian

direction, by factors istep, jstep, kstep, chosen to take values between 1 and 10. We always

ensure that sufficient grid points are available in each shell to accurately compute the

amplitudes.

We checked our method with the analytic wave solutions using Mathematica, and

wrote a Matlab routine, which reads in SNOOPY/ZEUS output and solves the linear

least squares problem for the wave amplitudes. We also compute the reflection coef-

ficient R, which is defined in Eq. 3.7.3. For perfect standing waves, Ain = Aout, and

R = 1. If the IW is entirely absorbed at the centre, then R = 0.

The main disadvantage of our approach is that ω 6= 1, l 6= 2,m 6= 2 components also

contribute to the amplitudes. This problem can be ignored if we trust the computed

values of R only where the solution is well described by the linear solution, i.e., far

from the wave breaking and forcing regions. We therefore reconstruct ur, and plot it

along the x-axis, uθ along the line y = z, uφ along the line y = x, and b along the

line y = x. All components of the solution are not zero for all radii along these lines

when ξ = 0 (this requires shifting the phase of the linear model solution when the
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wave phase is nonzero in the simulation data). Comparing the reconstructed solution

with the simulation data allows us to check whether the deconstruction has worked.

A.5 ZEUS comparison

We confirm that the results are not dependent on the numerical method by reproduc-

ing the basic results using a stripped down version of ZEUS–2D1 (Stone & Norman,

1992). ZEUS solves the equations of ideal compressible hydrodynamics, using a simple

Eulerian method based on finite-differences, implemented using a covariant formalism,

enabling the use of non-cartesian orthogonal coordinate systems. For our problem we

solve the problem using cylindrical (r, φ) coordinates, which are the most natural to

use for our problem. However, the coordinate singularity at the origin requires that

we cut out a small region at the centre, on which we impose reflecting boundary con-

ditions. What may seem an advantage of this coordinate system, that is the higher

resolution at the centre, which is automatically present when we use a uniform grid in

r and φ, requires very short timesteps when the resolution is increased, as a result of

the CFL stability constraint. This becomes prohibitive as we increase the resolution

of the grid to above 100 × 150 in r, φ respectively, so only preliminary low resolution

runs were performed using this code. This is also because this code solves the com-

pressible equations, and therefore resolves sound waves. For our problem we require

a ratio of sound speed to radial group velocity of gravity waves χ = cs/cg,r ∼ 6× 103

(χ−1 is a measure of the importance of effects of compressibility), in order to repro-

duce an equivalent set-up to that used in the SNOOPY code above, so most of the

computational time is spent resolving sound waves. In the thesis we only analyse the

SNOOPY results, since they are at a much higher resolution, but here describe our

problem set-up in ZEUS, for completeness. We use a circularly symmetric parabolic

density stratification, ρ(r) = ρ0 − ρ2r
2, and calculate the pressure (p) profile from

hydrostatic equilibrium. We solve the equations

Dρ = −ρ∇ · u, (A.5.1)

1which has kindly been made freely available by J.Stone at
http://www.astro.princeton.edu/∼jstone/zeus.html
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Du = −1

ρ
∇p+ g +

{ 0, rinner ≤ r < rforce,

f , rforce ≤ r < rdamp,

d, rdamp ≤ r < rbox,

(A.5.2)

D

(
e

ρ

)
= −p

ρ
∇ · u, (A.5.3)

where e = (γ−1)p is the specific internal energy of the gas, f = −fr cos(2φ−ωt) er, and

d = −d(r)u. We choose γ = 5/3, as appropriate for a monatomic ideal gas. Radial

gravity has been implemented as a source term in the radial momentum equation:

g = −g1rer. Both the inner and outer boundaries have reflecting boundary conditions,

and we also implement a linear frictional damping in a region adjacent to the outer

boundary, to prevent the reflection of (most of) the outgoing wave energy. A parabolic

smoothing function d(r) =
(

r−rdamp

rbox−rdamp

)2

is used in the damping terms. We choose

rbox = 1.0, rdamp = 0.9, rforce = 0.85 and rinner = 0.01. In the code we specify

ρ0, ρ2, ω, λr & f̃r; the other relevant parameters are calculated from these. Choosing

ρ0 = 1.0, ρ2 = 0.1, ω = 1.0, λr = 0.1 and a suitable value for f̃r is sufficient to fully

specify the problem.

A minimum value of χ = 6285 is found from these initial conditions. Such a

high value is required for the wavelength of the gravity waves to be λr ' 0.1, which

allows ∼ 8 wavelengths to be resolved within the grid. This value is not much smaller

than that appropriate at the centre of a solar-type stars (χ ∼ 104 − 105). We set

up the initial conditions in such a way to minimise this value given the above input

parameters.

Calculations were performed in an inertial frame, though the results were inter-

preted in a frame rotating with the angular pattern speed of the tide, Ωp = ω/2. In

this rotating frame, the linear wave solution is steady, which allows the instability to

be easily recognised as departures from a steady state.

With this resolution, there are some numerical errors near the inner boundary.

This results from the fact that we only remove a small region near the centre, which is

comparable with the size of a grid cell. In addition, the code has no explicit viscosity

or thermal conduction, so we have less control over the scales of dissipation, than

in SNOOPY. Nevertheless, ZEUS reproduces the same basic results as the SNOOPY
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code, which indicates both that the effects of nonzero compressibility are not important

in this problem, and that our basic results are not dependent on the numerical method.

A.6 Analytic calculation of F in the launching re-

gion

In this section, we adopt the notation of OL04, to avoid reproducing the results in

that paper, since we are simply extending the results of their §4.4. In the launching

region, we want to match the solutions of the RZ and CZ. Near the boundary r = rb,

we assume N2 ∝ (rb − r)α, where α ∈ R+, for the moment left unspecified. The

characteristic radial extent of the transition region is of order εβ, where β ∈ R+, and

ε is the ratio of the spin frequency to the dynamical frequency, which is much smaller

than unity for slowly rotating bodies. We write

r = rb − εβx, (A.6.1)

where x is an inner variable, which is of order unity in the launching region. We can

write

N2 = εαβDxα +O(ε2αβ), (A.6.2)

where D = dN2

dxα > 0. If we pose the perturbation expansions

u′r ∼ ε3−β(1+α)ū′r(x, θ), (A.6.3)

u′θ ∼ εū′θ(x, θ), (A.6.4)

u′φ ∼ εū′φ(x, θ), (A.6.5)

ρ′ ∼ ε2−β ρ̄′(x, θ), (A.6.6)

p′ ∼ ε2p̄′(x, θ), (A.6.7)

Φ′ ∼ ε2Φ̌′(rb, θ) + ε2+βΦ̄′(x, θ), (A.6.8)

then we obtain the linearised system of equations 111-116 from OL04, except that we

replace x by xα in the buoyancy equation (Eq. 115). A linearised equation for the
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modified pressure (W̄ = p̄′

ρ0
−

p′
(e)

ρ2

ρ2
0

+ Φ̌′) in the launching region can now be derived,

for which

LW̄ +
r2

D
∂x

(
x−α∂xW̄

)
= 0, (A.6.9)

where all coefficients are evaluated at r = rb. This equation can be solved using the

separation of variables

W̄ =
∑

i

f (i)(z)wi(θ). (A.6.10)

The operator L contains only angular derivatives, and Lw̄i = λiw̄i, where λi = k2r2

N2 ,

and k is the WKB wavenumber of the waves. We thus obtain the equation

f (i)(z) + ∂z

(
z−α∂zf

(i)(z)
)

= 0, (A.6.11)

where we have defined z = κix, and the length scale

κ−1
i =

(
Dλi

r2

)− 1
2+α

. (A.6.12)

In the text this lengthscale is referred to as Llaunch. The solution of this equation can

be written down as a linear combination of Bessel functions of the first and second

kinds, of order α+1
α+2

:

f (i)(z) = aiz
α+1

2

{
Jα+1

α+2

(
2

2 + α
z

2+α
2

)
+ siiYα+1

α+2

(
2

2 + α
z

2+α
2

)}
, (A.6.13)

so that the complete solution in the transition region is

W̄ =
∑

i

aiz
α+1

2

{
Jα+1

α+2

(
2

2 + α
z

2+α
2

)
+ siiYα+1

α+2

(
2

2 + α
z

2+α
2

)}
wi(θ) (A.6.14)

This solution should match onto the WKB solution in the RZ when x� 1, constraining

β as a function of α. This arises from considering the asymptotic form of the phase at

large z, whose radial derivative should match the WKB wavenumber in the RZ. From

this we find β = 2/(2 + α).

If we from now on restrict ourselves to α = 1/2, then the corresponding complete
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solution in the transition region is the sum

W̄ =
∑

i

aiz
3
4

{
J 3

5

(
4

5
z

5
4

)
+ siiJ 3

5

(
4

5
z

5
4

)}
wi(θ). (A.6.15)

Similarly we can write the radial displacement as

ξ̄′r =
∑

i

bi
√
z

{
J 2

5

(
4

5
z

5
4

)
± itiJ 2

5

(
4

5
z

5
4

)}
wi(θ), (A.6.16)

for a superposition of wave solutions in this model.

Deep in the RZ, our solution should reduce to a wave with an inwardly directed

group velocity, for which si = ±1 (sign depending on that of the frequency). The

asymptotic forms of the radial part of this solution at large z is

z
3
4

{
J 3

5

(
4

5
z

5
4

)
± iJ 3

5

(
4

5
z

5
4

)}
∼ (−1)

9
20

√
5

2π
z

1
8 exp

{
∓i4

5
z

5
4

}
. (A.6.17)

Matching of W at r = rb requires the solution in the CZ to be continuous with the

solution in the transition region at z = 0. This determinines the amplitudes ai. The

inward energy flux in (inertia-)gravity waves is found from evaluating

F = π

∫ π

0

Re
[(ω
ω̂

)
p′∗u′r

]
r2 sin θdθ (A.6.18)

= ε
19
5

(
2
5

) 1
5 π2[

Γ
(

3
5

)]2ρ0ω(1)sgn(ω̂)

(
r2

D

) 2
5

×
∑

i

λ
3
5
i

|
∫ π

0
w∗

i

[
W̌ (rb, θ)− W̄ (p)

]
sin θdθ|2∫ π

0
|wi|2 sin θdθ

, (A.6.19)

which can be compared with OL04 Eq. 124. We find in general that F ∝ ω
8+3α
2+α . Thus

we see that the main change in the energy flux from modifying the profile of N2 in the

transition region is to change its frequency dependence. There are also O(1) changes

to the numerical factors.
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A.7 Toy model: parametric instability of primary

wave

Parametric instability is a type of resonant triad interaction in which the transfer

of energy from a parent (subscript p) mode, with amplitude Ap, destabilises a pair

of daughter (subscript d1, d2) modes (which exist when Ap = 0). These can then be

damped or subject to further nonlinear interactions (to produce granddaughter modes,

and so on). The frequencies of the modes must satisfy an approximate temporal

resonance condition ωp ≈ ωd1 + ωd2, for parametric resonance to occur.

The equations governing the temporal evolution of the mode amplitudes take the

form (e.g. Dziembowski 1982; Wu & Goldreich 2001)

Ȧp = γpAp − iωpAp + iωpσAd1Ad2, (A.7.1)

Ȧd1 = −γd1Ad1 − iωd1Ad1 + iωd1σApA
∗
d2, (A.7.2)

Ȧd2 = −γd2Ad2 − iωd2Ad2 + iωd2σA
∗
d1Ap. (A.7.3)

In these equations, γj is the linear growth/damping rate of mode j, and σ is the

nonlinear coupling strength for these three modes. Here Aj is the amplitude of mode

j, with the energy in that mode being proportional to |Aj|2.

The coupling coefficient σ is largest when ωd1 ≈ ωd2 ≡ ω, and therefore ωd1 ≈ ωp/2.

If the daughter modes have similar frequency, then we can assume that they have

similar spatial scales. Hence we can take their damping rates to be the same, i.e.,

γd1 = γd2 ≡ γ. To consider the initial stages of the breaking process we take Ap to be

approximately constant in time. In our problem the primary wave is maintained at a

constant amplitude due to forcing, and is not unstable. The evolutionary equations

reduce to

Ȧd1 = −γAd1 − iωAd1 + iωσApA
∗
d2, (A.7.4)

Ȧd2 = −γAd2 − iωAd2 + iωσA∗
d1Ap. (A.7.5)
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If we take Ad1 ∝ exp st, then the growth rate is

Re [s] = −γ
2

+
1

2
ωσ|Ap|. (A.7.6)

The growth rate is reduced if the detuning ∆ω = ωp − ωd1 − ωd2 6= 0, by changing the

second term to (1/2)
√
ωd1ωd2σ2|Ap|2 − (∆ω)2. From this model, we expect γ 6= 0 to

simply reduce the growth rate for a given mode. In addition the growth rate scales

linearly with the amplitude of the primary (parent) mode. The threshold amplitude

for instability in this simple model is

|Ap| ≥
γ

ωσ
, (A.7.7)

which depends on the coupling strength σ.

The spatial dependence of the interaction is contained in the coupling coefficient σ,

which contains an integral of the product of the three eigenfunctions. This toy model

of parametric instability is useful as a simple model to understand some of the results

of § 6.6. It is interesting to note that in this model, ω ≈ m/km,n ∼ n−1
p for A � 1,

since in this limit the daughter modes have frequencies comparable with the linear

mode frequencies. This results in a growth rate scaling inversely with np.

A.8 Acronyms and abbreviations

Several acronyms and abbreviations regularly used in this thesis are listed alphabeti-

cally below.

AU: Astronomical Unit

CZ: Convection Zone

HJ: Hot Jupiter

IGW: Internal Gravity Wave

IW: Ingoing Wave

MB: Magnetic Braking
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OCZ: Outer Convection Zone

OW: Outgoing Wave

RM: Rossiter-McLaughlin

RV: Radial Velocity

RZ: Radiation Zone
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