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Abstract: We start our analysis by deriving a master equation that describes the

motion of a field with arbitrary spin s on a 3-brane embedded in a non-rotating,

uncharged (4 + n)-dimensional black hole background. By numerical analysis, we

derive exact results for the greybody factors and emission rates for scalars, fermions

and gauge bosons emitted directly on the brane, for all energy regimes and for an

arbitrary number n of extra dimensions. The relative emissivities on the brane for

different types of particles are computed and their dependence on the dimensionality

of spacetime is demonstrated — we therefore conclude that both the amount and

the type of radiation emitted can be used for the determination of n if the Hawking

radiation from these black holes is observed. The emission of scalar modes in the

bulk from the same black holes is also studied and the relative bulk-to-brane energy

emissivity is accurately computed. We demonstrate that this quantity varies consid-

erably with n but always remains smaller than unity — this provides firm support

to earlier arguments made by Emparan, Horowitz and Myers.

Keywords: Beyond Standard Model, Black Holes, Large Extra Dimensions.

http://arXiv.org/abs/hep-ph/0309054v2
http://jhep.sissa.it/stdsearch?keywords=Beyond_Standard_Model+Black_Holes+Large_Extra_Dimensions


Contents

1. Introduction 1

2. Basic Formulae and Assumptions 4

3. Greybody factors for Emission on the Brane 6

3.1 Analytic calculation 9

3.2 Numerical calculation 9

4. Numerical Results for Brane Emission 11

4.1 Spin 0 fields 12

4.2 Spin 1/2 fields 14

4.3 Spin 1 fields 16

4.4 Relative Emissivities for different species 18

5. Emission in the Bulk 20

5.1 Greybody Factors and Emission Rates 21

5.2 Bulk-to-Brane Relative Emissivities 25

6. Conclusions 27

1. Introduction

Motivated by the desire to explain the hierarchy problem — that is, the sixteen

orders of magnitude difference between the electroweak energy scale and the Planck

scale — models that postulate the existence of extra dimensions have been revived

and extensively studied during the last few years after the work by Arkani-Hamed,

Dimopoulos and Dvali (ADD) [1] and Randall and Sundrum (RS) [2] (for some early

works, see [3]). In the standard version of those works the Standard Model fields

are localized on a 3-brane, which plays the role of our 4-dimensional world, while

gravity can propagate both on the brane and in the bulk — the spacetime transverse

to the brane. In theories with large extra dimensions the traditional Planck scale,

MP l ∼ 1018 GeV, is only an effective energy scale derived from the fundamental

higher-dimensional one, M∗, through the following relation [1]

M2
P l ∼ Mn+2

∗
Rn . (1.1)
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The above relation involves the volume of the extra dimensions, V ∼ Rn, under the

assumption that R is the common size of all n extra compact dimensions. Therefore,

if the volume of the internal space is large (i.e. if R ≫ ℓP l, where ℓP l = 10−33 cm is

the Planck length) then M∗ can be substantially lower than MP l.

In the regime r ≪ R, the extra dimensions ‘open up’ and gravity becomes strong.

Hence, Newton’s law for the gravitational interactions in this regime is modified, with

the gravitational potential assuming a 1/rn+1 dependence on the radial separation

between two massive particles. Experiments which measure the gravitational inverse-

square law at short scales can provide limits on the size of the extra dimensions, or

equivalently on the value of the fundamental scale M∗; for n = 2 such measurements

give M∗ > 3.5 TeV [4] (the n = 1 case has already been excluded by astronomical

data). Since gravitons can propagate both in the bulk and on the brane, massive

Kaluza-Klein (KK) graviton states can modify both the cross sections of Standard

Model particle interactions and astrophysical or cosmological processes. The absence

of signatures of production of either real or virtual KK gravitons at colliders puts a

relatively weak lower limit on M∗ — from 1.45 TeV (for n = 2) to 0.6 TeV (n = 6) [5].

Much more stringent constraints arise if one considers astrophysical or cosmological

processes; ignoring the systematic errors, these constraints exclude by far even the

n = 3 case, while allowing models with M∗ ∼ 1 TeV and n ≥ 4 [6].

If extra dimensions with R ≫ ℓP l exist, then black holes with a horizon radius

rH smaller than the size of the extra dimensions R are virtually higher-dimensional

objects centered on the brane and extending along the extra dimensions. It has

been shown that these small black holes have modified properties, i.e. they are

larger and colder compared to a 4-dimensional black hole with exactly the same

mass MBH [7]. One striking consequence of the theories with large extra dimensions

is that the lowering of the fundamental gravity scale allows for the production of

such miniature black holes during high energetic scattering processes with centre-of-

mass energy
√

s ≫ M∗ [8–14]. Arguments based on Thorne’s hoop conjecture [15]

predict the creation of a black hole in the case where any two partons of the colliding

particles pass within the horizon radius corresponding to their centre-of-mass energy.

The black holes created will have a mass equal to a fraction of
√

s varying from 0.84

down to 0.58 depending on the details of the scattering process and the number of

extra dimensions [16]. Provided that the mass of the black hole is larger than a

few times the fundamental Planck mass, these objects could still be treated semi-

classically. Miniature black holes may be created in the atmosphere of the earth

(during scattering processes of cosmic rays) and at future particle colliders, if the

fundamental energy scale is low enough. Several aspects of these processes have been

studied in Refs. [17–22].

Once produced, these miniature black holes are expected to decay almost instan-

taneously (typical lifetimes are ∼ 10−26 s). According to Refs. [9, 13], the produced

black holes will go through a number of phases before completely evaporating. These
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are:

• The balding phase : the black hole emits mainly gravitational radiation and

sheds the ‘hair’ inherited from the original particles, and the asymmetry due

to the violent production process.

• The spin-down phase : the typically non-zero impact parameter of the collid-

ing partons leads to black holes with some angular momentum about an axis

perpendicular to the plane. During this phase, the black hole loses its angu-

lar momentum through the emission of Hawking radiation [23] and, possibly,

through superradiance.

• The Schwarzschild phase : a spherically-symmetric black hole loses energy due

to the emission of Hawking radiation. This results in the gradual decrease of

its mass and the increase of its temperature.

• The Planck phase : the mass and/or the Hawking temperature approach the

Planck scale — a theory of quantum gravity is necessary to study this phase

in detail.

As in the 4-dimensional case [24], it is reasonable to expect that the Schwarz-

schild phase in the life of a small higher-dimensional black hole will be the longer one,

and will account for the greatest proportion of the mass loss through the emission of

Hawking radiation. Throughout this paper, we will focus on the emission of energy,

in both brane-localized and bulk modes, from a non-rotating, uncharged (4 + n)-

dimensional black hole. Initially we will consider the emission of particle modes on

the brane, which is the most phenomenologically interesting effect since it involves

Standard Model particles. We will start by deriving a master equation describing the

motion of a field with arbitrary spin s in the spherically-symmetric black hole back-

ground induced on the brane — this will help resolve ambiguities present in similar

equations which have previously appeared in the literature. We will then produce

exact numerical results for the greybody factors and emission rates for each type of

particle and for an arbitrary number n of extra dimensions, and compare them with

those derived from earlier analytic studies of the Schwarzschild phase [25,26]. We will

show that the full analytic results derived in [26] closely follow the exact results in

the low- and intermediate-energy regimes while the power expansion employed in [25]

can accurately describe only a very limited low-energy regime, especially in the case

of scalar fields. The major aim of this study is to demonstrate the dependence of

the above quantities on the dimensionality of spacetime in all energy regimes. This

might serve as a tool for ‘reading’ the number of extra dimensions existing in nature

if the spectrum of Hawking radiation emitted by these small black holes is detected.

In the framework of the same analysis, we will also derive the relative emissivities for
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scalars, fermions and gauge bosons and demonstrate how these change as the num-

ber of extra dimensions projected onto the brane varies — a potentially additional

signature to be used in the determination of n.

In Ref. [27], it was argued that the majority of energy during the emission of

Hawking radiation from a higher-dimensional black hole is emitted into modes on

the brane (i.e. Standard Model fermions and gauge bosons, zero-mode gravitons and

scalar fields). This argument was based on their result that a single zero-mode brane

particle carries as much energy as the whole Kaluza-Klein (KK) tower of massive

excitations propagating in the bulk — the abundance of brane modes compared to

bulk modes then leads to the aforementioned conclusion. In this paper, we also study

the emission of bulk scalar modes from a (4+n)-dimensional black hole, and compare

the total bulk and brane emissivities in an attempt to confirm or disprove the above

argument. Our analysis improves the heuristic arguments made in [27] and for the

first time provides exact and detailed results concerning the relative bulk and brane

emissivities in all energy regimes and for various values of n.

We start our analysis in section 2 by presenting the basic formulae and as-

sumptions for the gravitational background and emission rates from small higher-

dimensional black holes. In section 3, we present a master equation describing the

motion of scalars, fermions and gauge bosons in the 4-dimensional induced back-

ground — the basic steps of this calculation are given in the Appendix; in the same

section, we also define the corresponding greybody factor and emission rates and

discuss analytic and numerical methods for computing these quantities. Exact nu-

merical results for emission on the brane (for scalars, fermions and gauge bosons) are

presented in section 4, as well as a discussion of the relative emissivities and their

dependence on n. The emission of bulk scalar modes is thoroughly studied in section

5, and our results for the relative bulk-to-brane emissivities are also presented in this

section. Our conclusions are summarized in section 6.

2. Basic Formulae and Assumptions

Let us start with the form of the gravitational background around a non-rotating,

uncharged (4 + n)-dimensional Schwarzschild black hole. The line-element is given

by [28]

ds2 = −h(r) dt2 + h(r)−1 dr2 + r2 dΩ2
2+n , (2.1)

where

h(r) = 1 −
(

rH

r

)n+1

, (2.2)

and with the angular part given by

dΩ2
2+n = dθ2

n+1 + sin2 θn+1

(

dθ2
n + sin2 θn

(

... + sin2 θ2 (dθ2
1 + sin2 θ1 dϕ2) ...

)

)

.(2.3)
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In the above, 0 < ϕ < 2π and 0 < θi < π, for i = 1, ..., n + 1. By using an

analogous approach to the usual 4-dimensional Schwarzschild calculation, i.e. by

applying Gauss’ law in the (4 + n)-dimensional spacetime, we obtain the following

horizon radius

rH =
1√
πM∗

(

MBH

M∗

)

1
n+1





8Γ
(

n+3
2

)

n + 2





1
n+1

, (2.4)

where MBH is the mass of the black hole. The black holes being considered in

this work are assumed to have horizon radii satisfying the relation ℓP l ≪ rH ≪ R.

The former inequality guarantees that no quantum corrections are important in our

calculations, while the latter is necessary for these black holes to be considered as

higher-dimensional objects. The tension of the brane on which the black hole is

centered is assumed to be much smaller than the black hole mass and thus it can be

ignored in our analysis.

A black hole of a particular horizon radius rH is characterized by a Hawking

temperature related by the expression

TBH =
(n + 1)

4π rH

. (2.5)

The above temperature gives rise to almost blackbody radiation. The flux spectrum,

i.e. the number of particles emitted per unit time, is given by [23]

dN (s)(ω)

dt
=
∑

ℓ

σ
(s)
ℓ (ω)

1

exp (ω/TBH) ± 1

dn+3k

(2π)n+3
, (2.6)

while the power spectrum, i.e. the energy emitted per unit time, is

dE(s)(ω)

dt
=
∑

ℓ

σ
(s)
ℓ (ω)

ω

exp (ω/TBH) ± 1

dn+3k

(2π)n+3
. (2.7)

In the above, s is the spin of the degree of freedom being considered and ℓ is the

angular momentum quantum number. The spin statistics factor in the denominator

is −1 for bosons and +1 for fermions. For massless particles, |k| = ω and the phase-

space integral reduces to an integral over ω. The term in front, σ
(s)
ℓ (ω), is the so-

called ‘greybody’ factor 1 which encodes valuable information for the structure of the

spacetime around the black hole (which emits the Hawking radiation) including the

dimensionality of spacetime. This quantity can be determined by solving the equation

of motion of a particular degree of freedom in the aforementioned background and

computing the corresponding absorption coefficient A(s)
ℓ . Then, we may write [29]

σ
(s)
ℓ (ω) =

2nπ(n+1)/2 Γ[(n + 1)/2]

n! ωn+2

(2ℓ + n + 1) (ℓ + n)!

ℓ!
|A(s)

ℓ |2 . (2.8)

1The quantity σ
(s)
ℓ

(ω) is alternatively called the absorption cross section. It is also common in

the literature to refer to the absorption probability |A(s)
ℓ

|2, related to σ
(s)
ℓ

(ω) through Eq. (2.8), as

the greybody factor.
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As the decay progresses, the black hole mass decreases and the Hawking temperature

rises. It is usually assumed that a quasi-stationary approach to the decay is valid —

that is, the black hole has time to come into equilibrium at each new temperature

before the next particle is emitted. We will make this assumption also here.

We would like finally to stress that Eqs. (2.6) and (2.7) refer to individual

degrees of freedom and not to elementary particles, like electrons or quarks, which

contain more than one polarization. Combining the necessary degrees of freedom

and their corresponding flux or power spectra, the number of elementary particles

produced, and the energy they carry, can be easily computed. For more information

on this, we refer the reader to Ref. [30] where a Black Hole Event Generator has

been constructed. This simulates both the production and decay of small black holes

at hadronic colliders and, by using the results for the greybody factors derived here,

provides estimates for the number and spectra of the different types of elementary

particles produced.

3. Greybody factors for Emission on the Brane

The greybody factors modify the spectrum of emitted particles from that of a perfect

thermal blackbody even in four dimensions [23]. For a 4-dimensional Schwarzschild

black hole, geometric arguments show that, in the high-energy regime, Σl |Aℓ|2 ∝
(ωrH)2 which means that the greybody factor at high energies is independent of

ω and the spectrum is exactly like that of a blackbody for every particle species

[24,31,32]. The low-energy behaviour, on the other hand, is strongly spin-dependent.

A common feature for fields with spin s = 0, 1
2

and 1 is that the greybody factors

reduce the low-energy emission rate significantly below the geometrical optics value

[24, 33]. The result is that both the power and flux spectra peak at higher energies

than those for a blackbody at the same temperature. The spin dependence of the

greybody factors means that they are necessary to determine the relative emissivities

of different particle types from a black hole (at present these are only available in

the literature for the 4D case [24, 32]).

The procedure for calculating greybody factors needs to be generalised to in-

clude emission from small higher-dimensional black holes with rH < R which emit

radiation either in the bulk or on the brane. Analytical studies [25, 26] have shown

that the greybody factors in that case have a strong dependence on the number of

extra dimensions. The dependence on both energy and the number of dimensions

means that the exact form of the greybody factors should be taken into account in

any attempt to determine the number of extra dimensions by studying the energy

spectrum of particles emitted from a higher-dimensional black hole. In this section,

as well as in section 4, we will focus on the emission of brane-localised modes leaving

the study of bulk emission and of relative bulk-to-brane emissivity for section 5.
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The brane-localised modes propagate in a 4-dimensional black hole background

which is the projection of the higher-dimensional one, given in Eq. (2.1), onto the

brane. The induced metric tensor follows by fixing the values of the extra angular

coordinates, θi = π/2 for i ≥ 2, and it is found to have the form

ds2 = −h(r) dt2 + h(r)−1dr2 + r2 (dθ2 + sin2 θ dϕ2) . (3.1)

The greybody factors are determined from the amplitudes of in-going and out-

going waves at infinity so the essential requirement is to solve the equation of motion

of a particle propagating in the above background. For this purpose, we have derived

in the Appendix a generalised master equation for a particle with arbitrary spin s,

similar to the one derived by Teukolsky [34]. For s = 1
2

and 1, the equation of motion

has been derived by using the Newman-Penrose method [35, 36], while for s = 0 the

corresponding equation follows by the evaluation of the double covariant derivative

gµνDµDν acting on the scalar field. The derived master equation is separable in each

case and, by using the factorization

Ψs = e−iωt eimϕ Rs(r) Sm
s,l(θ) , (3.2)

we obtain the radial equation

∆−s d

dr

(

∆s+1 dRs

dr

)

+

(

ω2r2

h
+ 2iωsr − isωr2h′

h
+ s(∆′′ − 2) − λsl

)

Rs(r) = 0,

(3.3)

where ∆ = hr2. The corresponding angular equation has the form

1

sin θ

d

dθ

(

sin θ
dSm

s,l

dθ

)

+

(

−2ms cot θ

sin θ
− m2

sin2 θ
+ s − s2 cot2 θ + λsl

)

Sm
s,l(θ) = 0 ,

(3.4)

where Y m
s,l = eimϕ Sm

s,l(θ) are known as the spin-weighted spherical harmonics and λsl

is a separation constant which is found to have the value λsl = l(l + 1) − s(s + 1)

[37]. For s = 0, Eq. (3.3) reduces as expected to Eq. (41) of Ref. [25] which

was used for the analytical study of the emission of brane-localised scalar modes

from a spherically-symmetric higher-dimensional black hole. Under the redefinition

Rs = ∆−sPs, Eq. (3.3) assumes a form similar to that of Eq. (11) of Ref. [26] which

was used for the study of brane-localised fermion and gauge boson emission. The

two equations differ due to an extra term in the expression of the latter one, which

although vanishing for s = 1
2

and 1 (thus leading to the correct results for the grey-

body factors for fermion and gauge boson fields) gives a non-vanishing contribution

for all other values of s. Therefore, the generalized equation derived by Cvetic and

Larsen [38] can not be considered as a master equation valid for all types of fields. A

similar equation was derived in Ref. [39] but due to a typographical error the mul-

tiplicative factor s in front of the ∆′′-term is missing, thus leading to an apparently
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different radial equation for all values of s. Therefore, before addressing the question

of the derivation of the exact forms of the greybody factors in the brane background,

the derivation of a consistent master equation was imperative. This task was indeed

performed, with some of the steps of the calculation presented in the Appendix, and

has led to the aforementioned Eqs. (3.3) and (3.4).

For the derivation of the greybody factors associated with the emission of fields

from the projected black hole, we need to know the asymptotic solutions of (3.3)

both as r → rH and as r → ∞. In the former case, the solution is of the form

R(h)
s = A

(h)
in ∆−s e−iωr∗ + A

(h)
out e

iωr∗ , (3.5)

where
dr∗

dr
=

1

h(r)
. (3.6)

We impose the boundary condition that there is no out-going solution near the

horizon of the black hole, and therefore set A
(h)
out = 0. The solution at infinity is of

the form

R(∞)
s = A

(∞)
in

e−iωr

r
+ A

(∞)
out

eiωr

r2s+1
, (3.7)

and comprises both in-going and out-going modes.

The greybody factor σℓ(ω) for the emission of brane-localised modes is related

to the energy absorption coefficient Aℓ through the simplified relation

σ̂
(s)
ℓ (ω) =

π

ω2
(2ℓ + 1) |Â(s)

ℓ |2 , (3.8)

where henceforth quantities with a ‘hat’ will denote quantities associated with the

emission of brane-localised modes. The above relation follows from Eq. (2.8) by

setting n = 0 since the emission of brane-localised modes is a 4-dimensional process.

In the same way, the power spectrum of the Hawking radiation emitted on the brane

can be computed by the 4-dimensional expression

dÊ(s)(ω)

dt
=
∑

ℓ

σ̂
(s)
ℓ (ω)

ω

exp (ω/TBH) ± 1

d3k

(2π)3
. (3.9)

Note, however, that the absorption coefficient Âℓ still depends on the number of

extra dimensions since the projected metric tensor (3.1) carries a signature of the

dimensionality of the bulk spacetime through the expression of the metric function

h(r). The absorption coefficient itself is defined as

|Â(s)
ℓ |2 = 1 − F (∞)

out

F (∞)
in

=
F (h)

in

F (∞)
in

, (3.10)

in terms of the energy fluxes evaluated either at infinity or at the horizon. The two

definitions are related by simple energy conservation and lead to the same results.

Both of them may be used for the determination of the absorption coefficient, de-

pending on the type of particle emitted and the method of the study, numerical or

analytic, which is followed.
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3.1 Analytic calculation

The greybody factors have been determined analytically for the 4-dimensional case

in Refs. [24, 32] both for a rotating and non-rotating black hole. In the (4 + n)-

dimensional case, Refs. [25, 26] have provided analytic expressions for the grey-

body factors for the emission of scalars, fermions and gauge bosons from a higher-

dimensional Schwarzschild-like black hole emitting radiation both in the bulk and on

the brane, and for an arbitrary number of extra dimensions n. Ref. [39] presented

analytic results for the greybody factors for the emission of brane-localized modes

from a Kerr-like black hole in the particular case of n = 1. All the above results were

derived in the low-energy approximation where the procedure used is as follows:

• Find an analytic solution in the near-horizon regime and expand as in-going

and out-going waves so that the A(h) coefficients can be extracted.

• Apply the boundary condition on the horizon so that the wave is purely out-

going.

• Find an analytic solution in the far-field regime and again expand as in-going

and out-going waves.

• Match the two solutions in the intermediate regime.

• Extract Aℓ and expand in powers of (ωrH).

The solution obtained by following the above approximate method is a power

series in ωrH, which is only valid for low energies and expected to significantly

deviate from the exact result as the energy of the emitted particle increases (this was

pointed out in [24, 33] for the 4-dimensional case). In [26], the full analytic result

for the absorption coefficient (before the final expansion was made) was used for the

evaluation of the emission rates for all particle species. The range of validity of these

results, although improved compared to the power series, was still limited since the

assumption of small ωrH was still made during the matching of the two solutions in

the intermediate regime. As the equations of motion for all types of particles are too

cumbersome to solve analytically for any value of ωrH, it becomes clear that only an

exact numerical analysis can yield the full results for greybody factors and emission

rates.

3.2 Numerical calculation

There are various numerical issues which arise while trying to do the full calculation of

the absorption coefficient; the complexity of these problems strongly depends on the

spin s of the emitted particle. The usual numerical procedure starts by applying the

required horizon boundary condition (a vanishing out-going wave) to Rs(r). Then,
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the solution is integrated out to ‘infinity’ and the asymptotic coefficient A
(∞)
in is

extracted in terms of which Aℓ can be calculated.

By looking at the asymptotic solution at infinity, Eq. (3.7), one can see that,

for the scalar case, the in-going and out-going waves are of comparable magnitude.

Therefore it is relatively easy to extract the coefficients at infinity and thus determine

the greybody factor. However for fields with non-vanishing spin, i.e. fermions, vector

bosons and gravitons, this is not an easy task. First of all, different components carry

a different part of the emitted field: the upper component Ψ+s consists mainly of the

in-going wave with the out-going one being greatly suppressed, while for the lower

component Ψ−s the situation is reversed (for a field with spin s 6= 0, only the upper

and lower components are radiative). Distinguishing between the two parts of the

solution, in-going and out-going, is not an easy task no matter which component we

look at, and it becomes more difficult as the magnitude of the spin increases. In

addition, the choice of either positive or negative s to extract the greybody factor,

i.e. using either the upper or the lower component, affects the numerical issues.

If s is negative, then the horizon boundary condition is easy to apply because

components of the in-going solution on the horizon will be exponentially suppressed

[see Eq. (3.5) above]. However, negative s also means that at infinity the out-going

solution is enhanced by r−2s with respect to the in-going one [see Eq. (3.7)], which

makes accurate determination of A
(∞)
in very difficult. Hence the negative s approach

is not used in this work.

On the other hand if s is positive, it is easy to accurately extract A
(∞)
in because

the out-going solution at infinity is suppressed by a factor of r−2s. However, close

to the horizon the out-going solution is exponentially smaller than the in-going one.

This means that the solution for Rs(r) can be easily contaminated by components of

the out-going solution. This problem becomes worse for larger s and first becomes

significant for s = 1.

For n = 0, various methods (see e.g. [40]) have been used to solve the numerical

problems which arise in the gauge boson case. The approach of Bardeen in [40] is

also applicable for n = 1, but no analogous method was found for higher numbers

of extra dimensions. Here, an alternative transformation of the radial equation was

used instead. Writing y = r/rH and R1 = y F (y) e−iωr∗, the wave equation becomes

(hy2)
d2F

dy2
+ 2y (h − iωrHy)

dF

dy
− l(l + 1)F = 0. (3.11)

Since on the horizon y = 1 and h = 0, the boundary conditions become F (1) = 1

and
dF

dy

∣

∣

∣

∣

∣

y=1

=
il(l + 1)

2ωrH
. (3.12)

For fermions, no such transformation was necessary and so the radial equation

of Eq. (3.3) was used. However the application of the boundary condition at the
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horizon is made slightly easier by the transformation Ps = ∆sRs, which means that

the asymptotic solution at the horizon becomes

P (h)
s = A

(h)
in e−iωr∗ + A

(h)
out ∆s eiωr∗ . (3.13)

Since we require A
(h)
out = 0, suitable boundary conditions to apply, when solving the

differential equation for Ps, are that, as r → rH ,

Ps = 1 , (3.14)

while using Eq. (3.6), we also obtain

dPs

dr
= −iω

dr∗
dr

= − iω

h(r)
. (3.15)

The above boundary conditions ensure that |A(h)
in |2 = 1. The asymptotic form for Ps

at infinity now looks like

P (∞)
s = A

(∞)
in

e−iωr

r1−2s
+ A

(∞)
out

eiωr

r
(3.16)

since ∆ → r2 as r → ∞.

There are various considerations which must be taken into account in order to

obtain results to the required accuracy (at least three significant figures). Firstly,

although the horizon boundary condition can not be applied exactly at rH (due

to singularities in the boundary condition and the differential equation) the error

introduced by applying the condition at r = rc (where rc − rH ≪ rH) must be

small. This can be checked by studying changes in the greybody factors for order of

magnitude changes in rc−rH . Similarly it must be checked that the value of r used as

an approximation for ‘infinity’ does not introduce errors which will affect the accuracy

of the result. Care must also be taken that the numerical integration procedure is

sufficiently accurate out to large values of r so that significant integration errors

are avoided. Finally, for each energy being considered, enough angular momentum

modes must be included in the summation so that only higher modes which do not

contribute significantly are neglected. For the higher values of ωrH considered in

this work this means that the contributions from in excess of ten angular momentum

modes are required.

4. Numerical Results for Brane Emission

In this section, we proceed to present our results for the greybody factors and emis-

sion rates for brane-localised scalar, fermion and gauge boson fields, as obtained

by numerically solving the corresponding equations of motions. The definition of

the absorption coefficient Aℓ is different for each type of field due to their different

asymptotic behaviour in the far-field regime and also due to more fundamental dif-

ferences between fields with zero and non-zero spin. We will, therefore, consider each

case separately:
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4.1 Spin 0 fields

The numerical integration of Eq. (3.3) for s = 0 yields the solution for the radial

function R0(r) which smoothly interpolates between the asymptotic solutions (3.13)

and (3.16) in the near-horizon and far-field regimes respectively. The absorption

coefficient is easily defined in terms of the in-going and out-going energy fluxes at

infinity, or equivalently by the corresponding wave amplitudes in the same asymptotic

regime, given by A
(∞)
in and A

(∞)
out respectively. We may thus write Eq. (3.10) in the

form [25]

|Â(0)
ℓ |2 = 1 − |R̂(0)

ℓ |2 = 1 −
∣

∣

∣

∣

∣

A
(∞)
out

A
(∞)
in

∣

∣

∣

∣

∣

2

, (4.1)

where R̂ℓ is the corresponding reflection coefficient.

The plot presented in Figure 1 shows, for different values of n, the greybody

factors for the emission of scalar fields on the brane (note that, throughout our

numerical analyses, the horizon radius rH is an arbitrary input parameter which

remains fixed). The greybody factor is derived by using Eq. (3.8), which is valid for

the emission of brane-localised modes, and summing over the angular momentum

number ℓ (for completeness, the plots include values of n ruled out on astrophysical

grounds, i.e. n = 1, 2). For n = 0 and ωrH → 0, the greybody factor assumes a

non-zero value which is equal to 4πr2
H — that is, the greybody factor for scalar fields

with a very low energy is given exactly by the area of the black hole horizon. As

the energy increases, the factor soon starts oscillating around the geometrical optics

limit σg = 27πr2
H/4 which corresponds to the spectrum of a black-body with an

absorbing area of radius rc = 3
√

3 rH/2 [31,32]. If extra dimensions are present, the

greybody factor starts from the same asymptotic low-energy value, for any value of

0

2

4

6

8
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0 0.2 0.4 0.6 0.8 1.0 1.2

σ(0
)
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s(

ω
) 

[π
r2 H

]

ω rH

n=0

n=1

n=6

Figure 1: Greybody factors for scalar emission on the brane from a (4 + n)D black hole.
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n, and it again starts oscillating around a limiting high-energy value, which is always

lower than the 4-dimensional one. This is because the effective radius rc depends on

the dimensionality of the bulk spacetime through the metric tensor of the projected

spacetime (3.1) in which the particle moves. For arbitrary n, it adopts the value [27]

rc =
(

n + 3

2

)1/n+1
√

n + 3

n + 1
rH . (4.2)

The above quantity keeps decreasing as n increases causing the asymptotic greybody

factor, σg = πr2
c , to become more and more suppressed as the number of extra

dimensions projected onto the brane gets larger.

The power series expression of the greybody factor determined in [25] matches

the exact solution only in a very limited low-energy regime. In the limit ωrH → 0,

the asymptotic value 4πr2
H is recovered as expected; however, as the energy increases

the exact solution rapidly deviates from the behaviour dictated by the dominant

term in the ωrH expansion. This was first demonstrated in [26], where the full

analytic result for the greybody factor was determined. The behaviour depicted

in Figure 3 of Ref. [26] is much closer to the exact one, shown here in Figure 1,

and successfully reproduces the qualitative features including the suppression of the

greybody factor as the dimensionality of the bulk spacetime increases. Nevertheless,

as previously stated, even that result breaks down in the high-energy regime leaving

the exact numerical solution produced here as the only reliable source of information

concerning the form of the greybody factor throughout the energy regime.

Proceeding to compute the energy emission rate for scalar fields on the brane,

by using Eq. (3.9), we find that the suppression of the greybody factor with n does

10-6

10-5

10-4

10-3

10-2

10-1

0 0.5 1.0 1.5 2.0

d2 E
(0

) /d
td

ω 
 [r

-1 H
 ]

ω rH

n=0

n=1

n=2

n=4

n=6

Figure 2: Energy emission rates for scalar fields on the brane from a (4 +n)D black hole.
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not necessarily lead to the suppression of the emission rate itself. The behaviour of

the differential energy emission rate in time unit dt and energy interval dω is given in

Figure 2. The increase in the temperature of the black hole, and thus in its emissivity

power, as n increases overcomes the decrease in the value of the greybody factor and

leads to a substantial enhancement of the energy emission rate. As it becomes clear

from Figure 2, the increase in the number of dimensions projected onto the brane

causes the enhancement of the peak value of the emission curve by many orders of

magnitude, when compared to the 4-dimensional case. In addition, it leads to a

Wien’s type of displacement of the peak, i.e. to the shift of the peak towards higher

values of the energy parameter ωrH, reflecting the increase in the temperature of the

radiating body.

In order to be able to clearly perceive the amount of enhancement of the emission

rate of the black hole as the number of extra dimensions projected onto the brane

increases, we compute the total flux and power emissivities, for various values of

n, by integrating Eqs. (2.6) and (2.7) over all energies. The results obtained are

displayed in Table 1. The relevant emissivities for different values of n have been

normalized in terms of those for n = 0. From the entries of the table, we may easily

see that both the flux of particles produced and the amount of energy radiated per

unit time by the black hole on the brane are substantially enhanced, by orders of

magnitude, as the number of extra dimensions increases.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Flux 1.0 4.75 13.0 27.4 49.3 79.9 121 172

Power 1.0 8.94 36.0 99.8 222 429 749 1220

Table 1 : Flux and Power Emissivities for Scalar Fields on the brane

4.2 Spin 1/2 fields

Unlike the case of scalar fields, the study of the emission of fields with non-vanishing

spin involves, in principle, the study of fields with more than one component. Equa-

tion (3.3) depends on the helicity number s which, upon taking different values, leads

to the radial equation for different components of the field. As mentioned in section

3.2, the upper and lower components carry mainly the in-going and out-going parts,

respectively, of the field. Although knowledge of both components is necessary in

order to construct the complete solution for the emitted field, the determination of

either is more than adequate to compute the absorption coefficient Âj, where j is

the total angular momentum number. For example, if the in-going wave is known
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in the case of the emission of fields with spin s = 1/2, Eq. (3.10) may be directly

writen as [26] [38]

|Â(1/2)
j |2 =

∣

∣

∣

∣

∣

A
(h)
in

A
(∞)
in

∣

∣

∣

∣

∣

2

. (4.3)

The above follows by defining the incoming flux of a fermionic field as the radial

component of the conserved current, Jµ =
√

2σµ
AB ΨA Ψ̄B, integrated over a two-

dimensional sphere and evaluated both at the horizon and infinity.

The greybody factor is again related to the aforementioned absorption probabil-

ity through Eq. (3.8) with ℓ being replaced by j. By numerically solving the radial

equation Eq. (3.3) and computing Â(1/2)
j , we obtain the behaviour of the greybody

factor, in terms of the energy parameter ωrH and number of extra dimensions n,

depicted in Figure 3. At low energies the greybody factor assumes, as in the case

of scalar fields, a non-zero asymptotic value; this depends on the dimensionality of

spacetime and increases with increasing n. The enhancement of σ
(1/2)
abs (ω) with n in

the low-energy regime persists up to intermediate values of ωrH , after which the situ-

ation is reversed: as n takes on larger values, the greybody factor becomes more and

more suppressed. The complete analytic results derived in [26] successfully describe

both the low-energy behaviour and the existence of the ‘turning point’; however, as

expected, they fail to give accurate information for the high-energy regime. Figure 3

shows that at high energies the greybody factors for fermion fields oscillate around

the same asymptotic values [determined by the effective radius (4.2)] as for scalar

fields.

The energy emission rate for fermion fields on the brane, for various values of n,

is shown in Figure 4. As n increases, it is found to be significantly enhanced, both

0
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Figure 3: Greybody factors for fermion emission on the brane from a (4+n)D black hole.
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Figure 4: Energy emission rates for fermions on the brane from a (4 + n)D black hole.

at low and high energies, mainly due to the increase in the temperature of the black

hole. The emission curves exhibit the same features as for the emission of scalar

fields, i.e. increase of the height of the peak by orders of magnitude and shift of the

peak towards higher energies. Some quantitative results regarding the enhancement

of both the flux and power spectra for the emission of fermions, as n increases, are

given in Table 2. Once again, the enhancement in both spectra with n is indeed

substantial, and even more important compared to the one for scalar emission.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Flux 1.0 9.05 27.6 58.2 103 163 240 335

Power 1.0 14.2 59.5 162 352 664 1140 1830

Table 2 : Flux and Power Emissivities for Fermions on the brane

4.3 Spin 1 fields

In the case of the emission of gauge boson fields, the incoming flux can be computed

by the (tr)-component of the energy-momentum tensor, T µν = 2σµ
AA′σν

BB′ΨAB Ψ̄A′B′

,

integrated again over a two-dimensional sphere and evaluated at the horizon and

infinity. By making use of the solution for the in-going wave, the following expression

for the absorption probability, Eq. (3.10), is obtained [26] [38]:

|Â(1)
j |2 =

1

r2
H

∣

∣

∣

∣

∣

A
(h)
in

A
(∞)
in

∣

∣

∣

∣

∣

2

. (4.4)
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Figure 5: Greybody factors for gauge boson emission on the brane from a (4 + n)D black

hole.
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Figure 6: Energy emission rates for gauge fields on the brane from a (4 + n)D black hole.

The exact results for the greybody factors and energy emission rates for gauge

boson fields are given in Figures 5 and 6 respectively. A distinct feature of the grey-

body factor for gauge fields, already known from the 4-dimensional case, is that it

vanishes when ωrH → 0. The same behaviour is observed for every value of the num-

ber of extra dimensions. This result leads to the suppression of the energy emission

rate, in the low-energy regime, compared to the ones for scalar and fermion fields.

Up to intermediate energies the greybody factors exhibit the same enhancement with

increasing n as in the case of fermion fields, and as it was analytically shown in [26].
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A similar asymptotic behaviour, as in the previous cases, is observed in the high-

energy regime with each greybody factor assuming, after oscillation, the geometrical

optics value which decreases with increasing n. This result establishes the existence

of a universal behaviour of all types of particles emitted by the black hole at high

energies. This behaviour is independent of the particle spin but strongly dependent

on the number of extra dimensions projected onto the brane.

We may finally obtain, as in the previous cases, the total flux and power emis-

sivities for the emission of gauge fields on the brane, in terms of the number of extra

dimensions n. The exact results obtained by numerically integrating over all energies

are given in Table 3. As anticipated, the same pattern of enhancement with n is also

observed for the emission of gauge bosons. It is worth noting that the enhancement

observed in this case is the largest amongst all types of particles — this result points

to the dominance of the emission of gauge bosons over other types of particles in

models with large values of n, as we will shortly see.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Flux 1.0 19.2 80.6 204 403 689 1070 1560

Power 1.0 27.1 144 441 1020 2000 3530 5740

Table 3 : Flux and Power Emissivities for Gauge Fields on the brane

4.4 Relative Emissivities for different species

It would be interesting to investigate how the relative numbers of scalars, fermions

and gauge bosons, emitted by the black hole on the brane, change as the number of

extra dimensions projected onto the brane varies. In other words, we would like to

know what type of particles the black hole prefers to emit, for different values of n,

and what part of the total energy each particular type of particle carries away during

emission.

Comparing the energy emission rates (computed in the previous sub-sections),

for different types of particles and for fixed n, can give us the qualitative behaviour.

Figures 7(a) and 7(b) show, with a linear scale, the above quantities for n = 0 and

n = 6 respectively — note that these two figures summarize very clearly the effects

discussed in the previous sub-sections, i.e. the orders-of-magnitude enhancement

of the emission rates and the Wien’s displacement of the peak to the right, as n

increases. Figure 7(a) reveals that, in the absence of any extra dimensions, most of

the energy of the black hole emitted on the brane is in the form of scalar particles;

the next most important are the fermion fields, and less significant are the gauge
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Figure 7: (a) : Energy emission rates for the emission of scalars, fermions and gauge

bosons on the brane for n = 0. (b) : The same, but for n = 6.

bosons. As n increases, the emission rates for all species are enhanced but not at the

same rate. Figure 7(b) clearly shows that, for a large number of extra dimensions,

the most effective ‘channel’ during the emission of brane localized modes is that of

gauge bosons; the scalar and fermion fields follow second and third respectively. The

change in the flux spectra, i.e. in the number of particles produced by the black hole

on the brane, for each species is similar as n increases.

In order to quantify the above behaviour, we computed the relative emissivities

for scalars, fermions and gauge bosons emitted on the brane by integrating the flux

(2.6) and energy (2.7) emission spectra, for different types of particles, over all ener-

gies. The relative emissivities obtained in this way are shown in Tables 4 and 5 (they

are normalized to the scalar values). Note that the ratios for n ≥ 1 are available for

the first time in the literature as a result of this numerical work, while the n = 0

s = 0 s = 1
2

s = 1

n = 0 1.0 0.37 0.11

n = 1 1.0 0.70 0.45

n = 2 1.0 0.77 0.69

n = 3 1.0 0.78 0.83

n = 4 1.0 0.76 0.91

n = 5 1.0 0.74 0.96

n = 6 1.0 0.73 0.99

n = 7 1.0 0.71 1.01

Blackbody 1.0 0.75 1.0

s = 0 s = 1
2

s = 1

n = 0 1.0 0.55 0.23

n = 1 1.0 0.87 0.69

n = 2 1.0 0.91 0.91

n = 3 1.0 0.89 1.00

n = 4 1.0 0.87 1.04

n = 5 1.0 0.85 1.06

n = 6 1.0 0.84 1.06

n = 7 1.0 0.82 1.07

Blackbody 1.0 0.87 1.0

Table 4: Flux emission ratios Table 5: Power emission ratios
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results would appear to be the most accurate ones available. The entries in these

tables reflect the qualitative behaviour discussed above for some extreme values of

the number of extra dimensions. For n = 0, the scalar fields are indeed the type of

particles which are most commonly produced and the ones which carry away most

of the energy of the black hole emitted on the brane; the fermion and gauge fields

carry approximately 1/2 and 1/4, respectively, of the energy emitted in the form

of the scalar fields, and their fluxes are only 1/3 and 1/10 of the scalar flux. For

intermediate values of n, the fermion and gauge boson emissivities have been con-

siderably enhanced compared to the scalar one and have become of approximately

the same magnitude — e.g. for n = 2 the amount of energy spent by the black hole

for the emission of fermions and gauge bosons is exactly the same, although the net

number of gauge bosons is still sub-dominant. For large values of n, the situation is

reversed: the gauge bosons dominate both flux and power spectra, with the emission

of fermions being the least effective ‘channel’ both in terms of number of particles

produced and energy emitted. We remind the reader that the above results refer to

the emission of individual scalar, fermionic or bosonic degrees of freedom and not to

elementary particles.

We may thus conclude that not only the magnitude but also the type of flux and

power spectra produced by a small, higher-dimensional black hole strongly depends

on the number of extra dimensions projected onto the brane. Therefore, upon de-

tecting the Hawking radiation from such objects, the above distinctive feature could

serve as an alternative way to determine the number of extra dimensions that exist

in nature.

5. Emission in the Bulk

An extremely important question regarding the emission of particles by a higher-

dimensional black hole is how much of this energy is radiated onto the brane and

how much is lost in the bulk. In the former case, the emitted particles are zero-mode

gravitons and scalar fields as well as Standard Model fermions and gauge bosons,

while in the latter case all emitted energy is in the form of massive Kaluza-Klein

gravitons and, possibly, scalar fields. In [27], it was shown that the whole tower of

KK excitations of a given particle carries approximately the same amount of energy

as the massless zero-mode particle emitted on the brane. Combining this result with

the fact that many more types of particles live on the brane than in the bulk, it was

concluded that most of the energy of the black hole goes into brane modes. The

results obtained in [27] were only approximate since the dependence of the greybody

factor on the energy of the emitted particle was ignored and the (low-energy valid)

geometric expression for the area of the horizon was used instead.

In order to provide an accurate answer to the question of how much energy is

emitted into the bulk compared to on the brane, it is imperative that the dependence
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of the greybody factor on both the energy and number of extra dimensions is taken

into account (for a similar but incomplete — since the dependence on the energy

was again ignored — argument in this direction, see [41]). In this section, we first

thoroughly investigate the emission of scalar modes in the bulk and produce exact

numerical results for the behaviour of greybody factors and energy emission rates in

terms of the energy and number of extra dimensions. Subsequently, we address the

above question and provide a definite answer by computing, for different values of n,

the total bulk-to-brane relative emissivities.

5.1 Greybody Factors and Emission Rates

In this section, we turn to the investigation of the emission of bulk modes from a

higher-dimensional black hole. This analysis is relevant for gravitons and scalar fields,

and requires knowledge of the solutions of the corresponding equations of motion in

the bulk. Here, we will focus on the case of scalar fields for which the bulk equation

is known — the emission of bulk scalar modes was previously studied analytically,

in the low-energy regime, in [25].

A scalar field propagating in the background of a higher-dimensional, non-

rotating, Schwarzschild-like black hole, whose line-element is given by Eq. (2.1),

satisfies the following equation of motion [25]

h(r)

rn+2

d

dr

[

h(r) rn+2 dR

dr

]

+
[

ω2 − h(r)

r2
ℓ (ℓ + n + 1)

]

R = 0 . (5.1)

As in the case of the emission of particles on the brane, the determination of the

greybody factor for emission in the bulk demands solving the above equation over

the whole radial domain. The exact solution for the radial function must interpolate

between the near-horizon and far-field asymptotic solutions, given by

R(h) = A
(h)
in e−iωr∗ + A

(h)
out e

iωr∗ , (5.2)

and

R(∞) = A
(∞)
in

e−iωr

√
rn+2

+ A
(∞)
out

eiωr

√
rn+2

, (5.3)

respectively. We impose again the boundary condition that no out-going solution

should exist near the horizon of the black hole, and therefore we set A
(h)
out = 0. The

solution at infinity comprises, as usual, both in-going and out-going modes.

The expression for the absorption probability |Ãℓ|2 may then be derived either

by using Eq. (4.1) or by calculating directly the ratio |A(h)
in /A

(∞)
in | — note that,

henceforth, quantities with a tilde denote bulk quantities (as opposed to brane quan-

tities which carry a hat). The corresponding greybody factor σ̃ℓ(ω) may then be

determined by using the relation (2.8). The dimensionality of the greybody factor

changes as the number of extra dimensions n varies; therefore, in order to be able
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to compare its values for different n, we normalize its expression to the area of the

horizon of the (4+n)-dimensional black hole. Thus, we rewrite Eq. (2.8) in the form

σ̃ℓ(ω) =
2n

π
Γ
[n + 3

2

]2 ÃH

(ωrH)n+2
Ñℓ |Ãℓ|2 , (5.4)

where Ñℓ is the multiplicity of states corresponding to the same partial wave ℓ, given

for a (4 + n)-dimensional spacetime by

Ñℓ =
(2ℓ + n + 1) (ℓ + n)!

ℓ! (n + 1)!
, (5.5)

and ÃH is the horizon area in the bulk defined as

ÃH = rn+2
H

∫ 2π

0
dϕ

n+1
∏

k=1

∫ π

0
sink θn+1 d sin θn+1

= rn+2
H (2π)

n+1
∏

k=1

√
π

Γ[(k + 1)/2]

Γ[(k + 2)/2]

= rn+2
H (2π) π(n+1)/2 Γ

[n + 3

2

]

−1
. (5.6)

Equation (5.4) allows us to compute the low-energy limit of the greybody factor

once the corresponding expression of the absorption coefficient is determined. Ana-

lytic results for Ãℓ were derived in [25] by solving Eq. (5.1) in the two asymptotic

regimes, the near-horizon and far-field, and matching them in an intermediate zone.

It was found that the low-energy expression of the absorption coefficient, for ℓ = 0,

has the form

|Ã0|2 =
(

ωrH

2

)n+2 4π

Γ[(n + 3)/2]2
+ ... , (5.7)

where the dots denote higher-order terms in the power-expansion in ωrH . These

terms, as well as the corresponding expressions of Ãℓ for higher partial waves, vanish

quickly in the limit ωrH → 0, leaving the above term as the dominant one. Sub-

stituting into Eq. (5.4), we easily see that, in the low-energy regime, the greybody

factor is given by the area ÃH of the horizon of the black hole. This behaviour is

similar to the 4-dimensional case; however, note that, in this case, the area of the

horizon changes as n varies.

In the high-energy regime, we anticipate recovering the equivalent of the (4+n)-

dimensional geometrical optics limit. In four dimensions, the low-energy limit for

the greybody factor, 4πr2
H , goes over to the geometrical optics value πr2

c at high

energy. This has led to the näıve generalization that, in an arbitrary number of

dimensions, the high-energy expression for the greybody factor will be approximately

Ωn+2 rn+2
c /4, where Ωn+2 is the volume element of the (n + 2)-dimensional sphere.

We will shortly see that this is in fact an over-estimate of the value of the greybody
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factor in the high-energy regime. As in four dimensions, we will assume that, for

large values of the energy of the scattered particle, the greybody factor becomes

equal to the area of an absorptive body of radius rc which is projected on a plane

parallel to the one of the orbit of the moving particle [31]. According to Ref. [27], the

value of the effective radius rc remains the same both for bulk and brane particles

and it is given by Eq. (4.2). The area of the absorptive body depends strongly on the

dimensionality of spacetime and its calculation demands setting one of the azimuthal

angles equal to π/2. A careful calculation reveals that the ‘projected’ area is given

by

Ãp =
2π

(n + 2)

πn/2

Γ[(n + 2)/2]
rn+2
c =

1

n + 2
Ωn+1 rn+2

c . (5.8)

The above relation reduces to the usual 4-dimensional result Ãp = πr2
c , for n =

0, while it leads to values reduced by 50%, compared to the näıve expression

Ωn+2 rn+2
c /4, for higher values of n. Assuming that the greybody factor at high

energies becomes equal to the absorptive area Ãp of radius rc, we may explicitly

write:

σ̃ℓ(ω) =
1

n + 2

Ωn+1

Ωn+2

(

rc

rH

)n+2

ÃH

=
1√

π (n + 2)

Γ[(n + 3)/2]

Γ[(n + 2)/2]

(

n + 3

2

)(n+2)/(n+1) (n + 3

n + 1

)(n+2)/2

ÃH . (5.9)

In the above, we have used the same normalization, in terms of the area of the

(4 + n)-dimensional horizon, as in the low-energy regime.

Turning now to the numerical analysis, we may find the expressions of the grey-

body factors, for various values of n and for all energy regimes, by using Eq. (5.4)

and the exact numerical results for the absorption coefficients. Their behaviour is

shown in Figure 8. As it was anticipated after the above discussion, the normalized

greybody factors, in the low-energy regime, tend to unity for all values of n, as each

one of them adopts the value of the area of the black hole horizon to which it has

been normalized. As in the case of the emission of scalar fields on the brane, the grey-

body factors are suppressed in the low-energy regime, as n increases, while they start

oscillating at intermediate energies and finally adopt their asymptotic high-energy

limit. A simple numerical analysis shows that the näıve expression Ωn+2 rn+2
c /4 fails

to describe the high-energy asymptotic limits for all values of n larger than zero. On

the other hand, the expression (5.9) gives asymptotic values which are much closer

to the ones depicted in Figure 8, but these values still deviate from the exact ones

as n increases. A more sophisticated analysis is thus necessary in order to determine

the exact high-energy limit for emission in the bulk which might lead either to the

reconsideration of the absorptive-area argument for n ≥ 1, or to the introduction of

a correcting term that suppresses the asymptotic value (5.9) as n increases.
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Figure 8: Greybody factors for scalar emission in the bulk from a (4 + n)D black hole.
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Figure 9: Energy emission rates for scalar fields in the bulk from a (4 + n)D black hole.

In general, the suppression of the greybody factor for bulk emission at low en-

ergies is milder than the one for brane emission. This, however, does not lead to

higher emission rates for the bulk modes compared to those for brane modes: the

integration over the phase-space in Eq. (2.7) involves powers of (ωrH) which cause

an increasingly suppressive effect, in the low-energy regime, as n increases. Never-

theless, the increase in the temperature of the black hole, which is again given by

TBH = (n+1)/4πrH, eventually overcomes the decrease in the value of the greybody

factor and causes the enhancement of the emission rate with n at high energies.
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The behaviour of the differential energy emission rates as a function of the energy

parameter ωrH and for some indicative numbers of extra dimensions is depicted in

Figure 9. After the aforementioned suppression at the low-energy regime as n in-

creases, the energy emission rates soon become enhanced, with the peak of the curve

becoming higher and corresponding to larger values of ωrH . It is worth noting that

the full analytic results, which may be derived from the analysis of Ref. [25], success-

fully describe the low-energy behaviour of both the greybody factors and the energy

emission rates for the emission of scalar fields in the bulk.

5.2 Bulk-to-Brane Relative Emissivities

In this section, we perform an analysis aiming at providing an answer to the question

of the relative bulk-to-brane emissivity. We evaluate the differential energy emission

rates in the bulk and on the brane, and compare the two quantities for different

numbers of extra dimensions.

Equation (2.7) for energy emission in the bulk may be alternatively written, in

terms of the absorption coefficient, as

dẼ(ω)

dt
=
∑

ℓ

Ñℓ |Ãℓ|2
ω

exp (ω/TBH) − 1

dω

2π
. (5.10)

The above must be compared with the corresponding expression for the emission of

brane-localized modes given by

dÊ(ω)

dt
=
∑

ℓ

N̂ℓ |Âℓ|2
ω

exp (ω/TBH) − 1

dω

2π
, (5.11)

where N̂ℓ = 2ℓ + 1. Since both bulk and brane modes ‘feel’ the same temperature,

the relative bulk-to-brane ratio of the two energy emission rates will be simply given

by the expression
dẼ/dt

dÊ/dt
=

∑

ℓ Ñℓ |Ãℓ|2
∑

ℓ N̂ℓ |Âℓ|2
, (5.12)

and will depend on the scaling of the multiplicities of states and the absorption

coefficients 2 with n. As is clear from Eq. (5.5), the multiplicity of bulk modes Ñℓ

increases quickly for increasing n, while N̂ℓ remains the same. However, it turns

out that the enhancement of the absorption probability |Âℓ|2 for brane emission, as

n increases, is in total considerably greater than the one for bulk emission. This

leads to the dominance of the emission of brane-localized modes over bulk modes,

which as we will see becomes stronger for intermediate values of n. The behaviour

of this ratio is depicted in Figure 10. We observe that, in the low-energy regime, the

2Note that the absorption coefficients related to the greybody factors through Eq. (2.8), with

a multiplicative coefficient that depends both on ωrH and n, might have a completely different

behaviour from the greybody factors themselves.
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Figure 10: Bulk-to-Brane energy emission rates for scalar fields from a (4 + n)D black

hole.

ratio is suppressed, for large values of n, by many orders of magnitude, compared

to the value of unity for n = 0. In the high-energy regime on the other hand, the

suppression becomes smaller and the ratio seems to approach unity. A more careful

examination reveals that, in fact, the bulk modes dominate over the brane modes in

a limited high-energy regime that becomes broader as n increases.

A definite conclusion regarding the relative amount of energy which is emitted

in the two ‘channels’ — bulk and brane — can only be drawn if the corresponding

total energy emissivities can be computed. By integrating the areas under the bulk

and brane energy emission rate curves, for fixed value of n, and taking their ratio we

were able to determine the relative energy emission rates. The results obtained, for

values of n from 1 to 7, are given in Table 6.

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Bulk/Brane 1.0 0.40 0.24 0.22 0.24 0.33 0.52 0.93

Table 6: Relative Bulk-to-Brane Energy Emission Rates for Scalar Fields

From the entries of the above Table, it becomes clear that the emission of brane-

localized scalar modes is indeed dominant, in terms of the energy emitted, for all

values of n greater than zero and up to 7. As n increases, the ratio of bulk to

brane emission gradually becomes smaller, and becomes particularly suppressed for

intermediate values of the number of extra dimensions, i.e. n = 2, 3, 4 and 5; in these

cases, the total energy emitted in the bulk varies between 1/3 and 1/4 approximately
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of that emitted on the brane. As n increases further, the high-energy dominance of

the bulk modes, mentioned above, gives a boost to the value of the bulk-to-brane

ratio thus causing its increase — nevertheless, the energy ratio never exceeds unity.

This means that most of the energy of the higher-dimensional black hole, in the

‘scalar’ channel, is emitted directly on the brane, in the form of zero-mode scalar

fields instead of modes in the bulk.

The above analysis provides exact, accurate results for the energy emission rates

for brane and bulk scalar modes and gives considerable support to earlier, more

heuristic, arguments [27], according to which a (4 + n)-dimensional black hole emits

mainly brane modes. A complete confirmation demands performing a similar analysis

for the emission of gravitons and the results will be reported elsewhere.

6. Conclusions

The revival of the idea of the existence of extra space-like dimensions in nature has led

to the formulation of theories that allow for a significantly lower energy scale at which

gravity becomes strong. This has opened the way for the proposal of the creation

of miniature higher-dimensional black holes during collisions of energetic particles in

the earth’s atmosphere or at ground-based particle colliders. These black holes have

a temperature that depends on details of the higher-dimensional background, such as

the horizon radius and the number of spatial dimensions, and, upon implementation

of quantum effects, emit Hawking radiation. In this paper, we have studied in an

exact way the emission of Hawking radiation both on the brane and in the bulk from

non-rotating, uncharged (4+n)-dimensional black holes, and searched for distinctive

features in the radiation spectra which would allow us to determine the number of

extra dimensions that exist in nature. At the same time, we provided answers to

questions that had remained open from previous analyses in the literature.

Focusing initially on the emission of brane-localized modes, we have derived

a master equation describing the motion of a field with arbitrary spin s in the

spherically-symmetric black hole background induced on the brane. We then pro-

vided exact, numerical results for the greybody factors and emission rates for scalars,

fermions and gauge bosons. These results are valid in all energy regimes, and agree

with the full analytic results derived in [26] at low- and intermediate-energy scales.

The greybody factors interpolate between the low- and high-energy asymptotic limits

in a way that depends both on their spin and the dimensionality of spacetime: while

they adopt the same asymptotic values (which decrease as n increases) for all particle

species in the high-energy regime, in the low-energy limit the greybody factors are

enhanced as n increases for s = 1 and 1
2
, and suppressed for s = 0. Therefore, their

implementation in the calculation of the emission rates is imperative if one wants to

derive accurate results for these quantities. By doing that, the energy emission rates

obtained reveal a substantial enhancement as the number of extra dimensions pro-
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jected onto the brane increases. The enhancement amounts to orders of magnitude,

for large values of n and for all particle species, although the increase in the rate

depends strongly on the spin of the particle studied. The computed total relative

emissivities reveal that scalar fields, which are the dominant form of particles emitted

by the black hole for n = 0, are outnumbered by the gauge bosons for large values of

n, with the fermions being the least effective channel during the emission. Therefore,

both the amount and the type of the emitted radiation by a higher-dimensional black

hole directly on the brane may possibly lead to the determination of the number of

extra dimensions.

The emission of particle modes on the brane is the most phenomenologically

interesting effect since it involves Standard Model particles that can be easily detected

during experiments. Nevertheless, a small higher-dimensional black hole emits also

bulk modes and inevitably a proportion of the total energy is lost into the bulk.

In the second part of this paper, we investigated the details of the emission of bulk

scalar modes with the final aim being to provide an accurate estimate for the relative

bulk-to-brane energy emissivity. The corresponding greybody factors depend again

on the dimensionality of spacetime and so do the energy emission rates that exhibit a

similar, although less substantial, enhancement as n increases. Comparing the total

bulk and brane emission rates for scalars, integrated over the whole energy regime,

we conclude that most of the energy of the black hole is emitted in the form of brane

modes for all values of n. The total emissivity in the bulk reduces to less than 1/4

of that on the brane for n = 2, 3, 4, while it becomes substantial for the extreme

value of n = 7, without however exceeding the brane value. The accurate results,

produced here for the first time in the literature, clarify the situation concerning the

relative amounts of energy emitted in the bulk and on the brane, and provide firm

support to the heuristic arguments made in Ref. [27].

We should note at this point that no results were presented in this paper con-

cerning the emission of gravitons either on the brane or in the bulk. The derivation

of a consistent equation, that can describe the motion of gravitons on the induced

black hole background on the brane, is still under investigation. Nevertheless, we

expect that, as in the case of the emission of fields with spin s = 0, 1 and 1
2
, the

graviton emission becomes enhanced as the dimensionality of spacetime increases,

and that it remains subdominant compared to that of the other species at least for

small values of n. In the near future, we hope to be able to present complete results

for the emission rates for gravitons on the brane, and for the relative bulk-to-brane

graviton emissivity.

A final comment needs to be made here concerning the validity of the results

derived in this work. As pointed out in the text, the horizon of the black hole and

its mass, or equivalently the energy needed for the production of the miniature black

hole, is an input parameter of the analysis. Our results are applicable for all values

of rH which are smaller than the size of the extra dimensions R, no matter how small
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or large R is (as long as it remains considerably larger than ℓP l to avoid quantum

corrections). Our analysis therefore remains valid for all theories postulating the

existence of flat extra dimensions and a fundamental scale of gravity even a few

orders of magnitude lower than MP l. If the emission of Hawking radiation from these

black holes is successfully detected, either at next-generation colliders or in the more

distant future, the distinctive features discussed here may help in the determination

of the number of extra dimensions that exist in nature.
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Appendix

In this Appendix, we provide a few steps in the Newman-Penrose formalism for the

derivation of the master equation describing the motion of a particle with spin s in

the background of a higher-dimensional, non-rotating, neutral black hole projected

onto a 3-brane. The corresponding 4-dimensional metric tensor is given in Eq. (3.1).

We first need to choose a tetrad basis of null vectors (ℓµ, nµ, mµ, m̄µ), where ℓ and n

are real vectors and m and m̄ are a pair of complex conjugate vectors. They satisfy

the relations: l · n = 1, m · m̄ = −1, with all other products being zero. Such a

tetrad basis is given by:

ℓµ =
(1

h
, 1, 0, 0

)

, nµ =
(1

2
, −h

2
, 0, 0

)

,

mµ =
(

0, 0, 1,
i

sin θ

) 1√
2r

, m̄µ =
(

0, 0, 1,
−i

sin θ

) 1√
2r

. (1)

The λabc coefficients, which are used to construct the spin coefficients, are de-

fined as: λabc = (eb)i,j

[

(ea)
i(ec)

j − (ea)
j(ec)

i
]

, where ea stands for each one of the

null vectors and (i, j) denote the components of each vector. Their non-vanishing

components are found to be:

λ122 = −h′

2
, λ134 =

1

r
, λ234 = − h

2r
, λ334 =

cos θ√
2r sin θ

. (2)

The above components must be supplemented by those that follow from the symme-

try λabc = −λcba and the complex conjugates obtained by replacing an index 3 by 4

(or vice versa) or interchanging 3 and 4 (when they are both present).
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We may now compute the spin coefficients defined by γabc = (λabc+λcab−λbca)/2.

Particular components, or combinations, of the spin coefficients can be directly used

in the field equations [35, 36]. They are found to have the values:

κ = σ = λ = ν = τ = π = ǫ = 0 ,

ρ = −1

r
, µ = − h

2r
, γ =

h′

4
, α = −β = − cot θ

2
√

2r
. (3)

In what follows, we will also employ the Newman-Penrose operators:

D̂ =
1

h

∂

∂t
+

∂

∂r
, ∆̂ =

1

2

∂

∂t
− h

2

∂

∂r
, δ̂ =

1√
2r

( ∂

∂θ
+

i

sin θ

∂

∂ϕ

)

, (4)

and make use of the following field factorization:

Ψs(t, r, θ, ϕ) = e−iωt eimϕ Rs(r) Sm
s,ℓ(θ) , (5)

where Y m
s,ℓ = eimϕ Sm

s,ℓ(θ) are the spin-weighted spherical harmonics [37]. We will now

consider each type of field separately:

I. Gauge Bosons (s = 1)

In the Newman-Penrose formalism, there are only three ‘degrees of freedom’ for

a gauge field, namely Φ0 = F13, Φ1 = (F12 + F43)/2 and Φ2 = F42, in terms of which

the different components of the Yang-Mills equation for a massless gauge field are

written as:

(D̂ − 2ρ) Φ1 − (δ̂∗ − 2α) Φ0 = 0 , (6)

δ̂ Φ1 − (∆̂ + µ − 2γ) Φ0 = 0 , (7)

(D̂ − ρ) Φ2 − δ̂∗ Φ1 = 0 , (8)

(δ̂ + 2β) Φ2 − (∆̂ + 2µ) Φ1 = 0 , (9)

where δ̂∗ stands for the complex conjugate of δ̂. Rearranging Eqs. (6)-(7), one can see

that Φ1 decouples leaving behind an equation involving only Φ0. Using the explicit

forms of the operators and spin coefficients, as well as the factorized ansatz (5), this

can be separated into an angular equation,

1

sin θ

d

dθ

(

sin θ
dSm

1,ℓ

dθ

)

+
[

−2m cot θ

sin θ
− m2

sin2 θ
+ 1 − cot2 θ + λ1ℓ

]

Sm
1,ℓ(θ) = 0 , (10)

with eigenvalue λsℓ = ℓ (ℓ + 1) − s (s + 1), and a radial equation:

1

∆

d

dr

(

∆2 dR1

dr

)

+
[

ω2r2

h
+ 2iωr − iωr2h′

h
+ (∆′′ − 2) − λ1ℓ

]

R1(r) = 0 , (11)
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where we have defined ∆ = hr2.

II. Fermion Fields (s = 1/2)

For a massless two-component spinor field, the Dirac equation can be written as:

(δ̂∗ − α) χ0 = (D̂ − ρ) χ1 , (12)

(∆̂ + µ − γ) χ0 = (δ̂ + β) χ1 . (13)

Performing a similar rearrangement as in the case of bosons, we find that χ1 is

decoupled and that the equation for χ0 reduces to the following set of angular,

1

sin θ

d

dθ

(

sin θ
dSm

1/2,ℓ

dθ

)

+
[

−m cot θ

sin θ
− m2

sin2 θ
+

1

2
− 1

4
cot2 θ+λ 1

2
ℓ

]

Sm
1/2,ℓ(θ) = 0 , (14)

and radial,

1√
∆

d

dr

(

∆3/2 dR1/2

dr

)

+
[

ω2r2

h
+ iωr− iωr2h′

2h
+

1

2
(∆′′ − 2)−λ 1

2
ℓ

]

R1/2(r) = 0 , (15)

equations, with the same definitions for ∆ and λsℓ as before.

III. Scalar Fields (s = 0)

For completeness, we add here the equation of motion for a scalar field prop-

agating in the same background. This equation can be determined quite easily by

evaluating the double covariant derivative gµνDµDν acting on the scalar field. It

finally leads to the pair of equations

1

sin θ

d

dθ

(

sin θ
dSm

0,ℓ

dθ

)

+
[

− m2

sin2 θ
+ λ0ℓ

]

Sm
0,ℓ = 0 , (16)

d

dr

(

∆
dR0

dr

)

+
(ω2r2

h
− λ0ℓ

)

R0(r) = 0 , (17)

where Y m
0,ℓ = eimϕ Sm

0,ℓ(θ) are the usual spherical harmonics Y m
ℓ (θ, ϕ) and λ0ℓ =

ℓ(ℓ + 1). The above equations were used in [25] for the analytic determination of

the greybody factors for the emission of scalar particles on the brane by a higher-

dimensional black hole.

IV. Master Equation for a field with arbitrary spin s

Combining all the above equations derived for bosons, fermions and scalar fields,

we may now rewrite them in the form of a master equation valid for all types of fields.

The radial equation then takes the form:

∆−s d

dr

(

∆s+1 dRs

dr

)

+
(

ω2r2

h
+2is ω r− isω r2h′

h
+s (∆′′−2)−λsℓ

)

Rs(r) = 0 , (18)
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while, the angular equation reads

1

sin θ

d

dθ

(

sin θ
dSm

s,ℓ

dθ

)

+
[

−2ms cot θ

sin θ
− m2

sin2 θ
+ s − s2 cot2 θ + λsℓ

]

Sm
s,ℓ = 0 . (19)

The latter equation is identical to the one derived by Teukolsky [34] in the case of a

non-rotating, spherically-symmetric black hole. The radial one differs by the extra

factor s (∆′′ − 2) due to the fact that for our metric tensor this combination is not

zero, contrary to what happens in the case of the 4-dimensional Schwarzschild, or

Kerr, metric. The ∆′′- term can be removed if we make the redefinition Rs = ∆−s Ps.

Then, we obtain:

∆s d

dr

(

∆1−s dPs

dr

)

+
(

ω2r2

h
+ 2is ω r − isω r2h′

h
− Λ

)

Ps(r) = 0 , (20)

where now Λ = λsℓ + 2s = ℓ (ℓ + 1) − s (s − 1). The above form of the radial

equation was used in [26] to determine in an analytic way the greybody factors and

emission rates for the emission of fermions and gauge bosons on the brane by a

higher-dimensional, spherically-symmetric black hole.
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