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Abstract

A very striking change in product selection over the last century has been the in-

creased degree of specialisation of durable goods. To analyse these changes this paper

introduces a new form of product differentiation called functional. It is shown that when

a homogeneous population demands multiple locations (rather than consumers being

heterogeneous) several standard results are reversed. A monopoly has an incentive to

offer excessively specialised goods and delay innovation. It is in a duopoly that product

characteristics will be efficient. Entry of a third firm will be more profitable in the

fringes. Furthermore entry results in too much variety. Finally, the paper presents a

novel argument in favour of bundling.
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Consumers use durable goods for various purposes under different conditions. For ex-

ample a pair of shoes can be used to walk in the street, run in the forest or hike in the

mountain under different weather conditions. A century ago most people would have used

the same pair of shoes for all activities, whereas an increased supply of specialised vari-

eties indicate that consumers to a larger extent use different shoes when walking, running,

cycling or hiking nowadays. Since it is annoying using a good that is not fit for purpose
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but costly to get several specialised varieties to match different conditions, the hypothesis

would be that the higher the real income of the consumer, the more specialised will his

consumption be, e.g. a special outfit for each activity he does. Thus an increase in the

real income should result in an increase in demand for functional differentiation even if

consumers are identical. The question is how the supply side will respond to this. Is it the

department store or the galleria that will take the lead? Will there be any distortions in

product selection? Why are mobile phones1 bundles of an increasing number of functionally

differentiated varieties, whereas shoes are not? What should the policy towards bundling

of functionally differentiated goods be?

Hitherto the literature on product differentiation has confined attention to single pur-

pose consumption, i.e. situations when the utility from a good for one particular consumer

is independent on circumstances. Functional differentiation, in contrast, is a response to the

multi-purpose nature of consumption of many durable goods. Existing models of product

differentiation are therefore not directly applicable. However, I show that one can construct

a general framework for the analysis of functional differentiation by introducing an annoy-

ance function which is sub additive in the number of varieties. This function is constructed

using building blocks from models of horizontal (Hotelling (1929)) and vertical differentia-

tion (Mussa and Rosen (1978)) which makes the analysis directly comparable with previous

work.

Functional differentiation differs from all other models of product differentiation in one

important respect: it cannot be generated with a characteristics model and heterogeneous

consumers.2 On the contrary, this paper shows that it does matter whether the demand for

differentiation is due to individuals having different needs to be met, or whether it is due to

consumers being different. The reason for this difference is that all other models are based

on the assumption of single-purpose consumption, including the love of variety approach.3

With single-purpose consumption there will be no functional overlap and therefore it will not

matter whether different consumers or the same consumer consumes the different varieties.

1Phone, text message, photograph and email are all examples of different varieties of a good that allows

information to be communicated. Which one is preferred depends on circumstances.

2In an important paper Anderson et.al. (1989) showed that all existing models used in empirical and

analytical work could be generated with a characteristics model and heterogeneous consumers, implying that

the source to the demand for heterogeneity would not matter.

3Spence (1976) and Dixit-Stiglitz (1977) modeled preferences for love of variety. For these preferences all

varieties are equally substitutable, whereas functionally differentiated goods are more or less substitutable

depending on their functional overlap.
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In particular, I show that two standard results are reversed. First, the incentive to

differentiate too much horizontally, arises in a monopoly rather than in a duopoly.4 Second,

socially efficient locations are chosen in a duopoly rather than in a monopoly.5

Dynamically this has interesting implications. Whereas a monopoly will offer too few

varieties unless it can bundle, a market with free entry will be characterised by too much

variety.6 Furthermore, the model predicts that entry will be more profitable in the fringes

and more profitable than bundling. An incumbent firm can therefore not credibly deter

entry by bundling. However, in the presence of barriers to entry the ability to bundle has

positive effects on welfare. In a monopoly it takes away all the distortions in product space,

leaving consumers’ surplus unchanged. In the case of a duopoly there is a positive effect

on welfare as well as consumers’ surplus. This is because bundling has implications for the

firm’s choice of product characteristics, and which combinations can be supported as a Nash

equilibrium as well as the number of varieties on offer.

This is a novel argument in favour of bundling. When there are high barriers to entry due

to for example research and development, there will be less distortions in product selection

over time if firms can bundle. Hence, by bundling their software Microsoft will have less

distorted incentives to optimse the characteristics of each individual software, and to add

new software at an efficient rate. This is an argument which complements the literature on

bundling following Adams and Yellen’s (1976). This literature has looked at various ways

in which bundling enables a firm to extract more surplus for given product characteristics

through leverage or price discrimination, or through strategic effects on price or quantity.7

For functionanally differentiated goods bundling implies that the number of varieties will

have optimal characteristics and be closer to the optimal number of varieties.

However, when there are no barriers to entry, bundling cannot be used as a credible

4The result with maximum differentiation occurs when the cost of transport is quadratic as was shown

by d’Aspremont, Gabszewicz and Thisse (1979). Whereas the result in this paper is more general and thus

applies both to the linear and the quadratic cases.

5For a heterogeneous population a monopoly would offer optimal locations. See Tirole (1989).

6This result is interesting since it differs from the conclusions in endogenous growth models based on

the love of variety approach. Innovation of horizontally differentiated goods (Judd (1985), Romer (1990),

Grossman and Helpman (1989,1991), Aghion and Howitt (1990)) results in too few varieties over time.

However, a shared feature of my model, Reinganum (1982) one-shot patent race model, and Grossman and

Helpman (1991)) is that the incentive to innovate is stronger for an entrant than the incumbent.

7Carbajo, de Meza and Seidmann (1990) look at the strategic effects on price and quantity, and find that

the welfare effects will depend on the nature of product market competition. Whinston (1990) explored a

justification for the leverage theory through its strategic implications.

3



commitment to deter entry, since it will be profitable to enter before it will be profitable

to bundle. This is because there is a replacement effect for incumbent firms, even if they

can bundle. This result can be compared with Klemperer and Padilla (1997), who showed

that when consumers prefer to concentrate their purchases at a single supplier their new

products may be introduced to foreclose competing firms from the market. The reason for

this difference is that increasing the product line in their model does not reduce the price that

can be charged for existing varieties, which it will in the case of functionally differentiated

goods. Choi (1996) and Choi and Stefandis (2001) showed how the leverage theory could

be understood through its impact on innovation in the case of complementary goods. In

this case there will be a negative effect on consumers’ surplus as well as welfare. Again an

example of the opposite result, which is because functionally differentiated goods are both

substitutes and complements, and bundling being used to enabling efficient characteristics

rather than to deter entry.

The results in my paper are more general than standard models of horizontal differ-

entiation based on Hotelling’s approach since they only require the utility function to be

sub-additive in the number of varieties. Hence, it does not matter whether the annoyance

is linear or convex in the distance. The most important implication from sub-additivity is

that it is not possible to extract all consumers’ surplus from a set of varieties, since the

consumer can choose to buy any subset. Hence, an equilibrium condition for the prices is

that they have to be compatible with the consumer buying all varieties. This gives rise to

a binding incentive compatibility constraint, not because of heterogeneous consumers, but

because of the option of buying a subset.8 The price that can be charged for a given variety

will therefore be more constrained the larger the functional overlap with other available

varieties.

The monopoly internalises the externality and therefore chooses maximum differenti-

ation if it differentiates. The firms competing in a duopoly, on the other hand, do not

internalise this externality on competitors price and as a result end up with optimal char-

acteristics. However, the binding incentive compatibility constraint gives rise to another

distortion in this case, which is that the duopoly will specialise too early. This is because

the price they can charge depends on their competitor’s equilibrium choice of product char-

8In the literature on quantity discrimination with high and low types, there will be different sized bundles

and therefore an opportunity to buy a subset of the high quantity bundle. In particular, when the possibility

to buy several small sized packages is allowed as in Alger (1999), who showed that this was necessary to get

an unambiguous result regarding quantity discounts.
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acteristics rather than the increase in surplus from moving from general to specific goods,

which is what determines what is socially optimal.

The outline of the paper is as follows. I present an analytical framework for multi-

purpose consumption and functional differentiation in Section 1. This is followed by a

derivation of the social optimum in Section 2. Section 3 presents a strategic game between

an incumbent monopoly and an entrant. This game is solved backwards in three stages: the

price in sub section 3.1, characteristics in sub section 3.2, and finally number of varieties in

sub section 3.3 Section 4 analyses bundling of functionally differentiated goods. Section 5

Addresses welfare issues. Section 6 discusses the results. There is an appendix with a

summary of payoffs and how to calculate total annoyance.

1 Preferences for Multi-purpose Consumption

Consider needs such as protecting and supporting ones feet in various activities like dancing,

cycling, hiking and walking under different conditions such as temperature, humidity and

surface. Let these needs be summarized as exogenously given states s ∈ [0, 1] with distribu-

tion function F (s) and continuous density f(s). 9 Durable goods have characteristics which

make them more suitable in some states and less suitable in other states. For example suede

soles are perfect for ballroom dancing, but are a disaster outdoors on a wet surface, whereas

rubber soles with good grip are ideal for hiking but would spoil the dancing experience.10

Let these characteristics be summarized by θi ∈ [0, 1] for variety i.

To use a good in a state that it is not perfectly suited for is annoying. The annoyance

experienced by a consumer is a function of the state and the characteristics a(z), where

zi =| s − θi |. The consumer is happy when the characteristic exactly matches the state,

a(0) = 0 and becomes increasingly annoyed the poorer the match, a′(z) > 0 at a constant

or increasing rate a′′(z) ≥ 0.11 If the consumer has n varieties, the consumer will use

variety θi in all states in which it causes the smallest annoyance among available choices,

i.e. θi = arg min{a(θj)}j∈n. Let Θn = (θ1, θ2, . . . θn) denote a set of n different varieties,

9Thus the analysis does not include situations where the distribution of states is endogenously determined.

10Hence, the ranking of two varieties depends on the state, and no variety is preferred to all other varieties

regardless of state.

11If the marginal annoyance increases with distance, e.g. the sunnier it is the more annoying it is on the

margin to wear a raincoat, the function is convex a′′(z) > 0. Note that the annoyance function is a more

general representation of the cost of transport in models of spatial differentiation, and therefore encapsulates

both the standard linear and quadratic cases.

5



where θi < θi+1. The average characteristics of two varieties is denoted θ̄i,j = θi+θj

2 . When

needed θnj will denote the j’th variety when there are n varieties in total.

A consumer who is equipped with n varieties with characteristics Θn, will experience a

total annoyance given by

A(Θn) =

[∫ θ̄1,2

0
a(z1)f(s)ds +

∫ θ̄2,3

θ̄1,2

a(z2)f(s)ds + · · ·+
∫ 1

θ̄n−1,n

a(zn)f(s)ds

]
.

This is a set function which is sub-additive in each variety.

Lemma 1 A(Θn) is sub-additive, i.e. A(θ1) + A(Θn \ θ1) > A(Θn).

Proof:

A(θ1) + A(Θn \ θ1)−A(Θn) =
∫ θ̄1,2

0
a(z2)f(s)ds +

∫ 1

θ̄1,2

a(z1)f(s)ds > 0. (1)

Q.E.D.

This is an important property which follows from the multi-purpose nature of consump-

tion. Since each variety could potentially be used in all states there will be a functional

overlap between each variety. When a consumer owns several varieties, each variety will

therefore be used less frequently but in states where it causes less annoyance. Hence, the

consumer’s utility from a set of goods depends on how well various states can be matched

given the set of available varieties and their characteristics, rather than the goods per se.12

Functionally differentiated goods are therefore both complements and substitutes. The

smaller the functional overlap the more complementary the varieties become, e.g. if a

consumer owns a pair of cycling shoes that cannot be used to walk in, the more the consumer

will value having a second pair of shoes for walking. Whereas when the functional over-lap

is large the varieties are close substitutes.

The substitutability furthermore implies that the marginal value of an additional variety

will be diminishing in the total number of varieties.

Lemma 2 The larger the number of varieties the smaller the marginal reduction in annoy-

ance from adding variety j, i.e. A(Θn \ θj)−A(Θn) ≤ A(Θn−1 \ θj)−A(Θn−1)∀n

Proof: Consider without loss of generality the marginal reduction in annoyance from adding

variety 1, when all available varieties are being used except 1, is given by

A(Θn \ θ1)−A(Θn) =
∫ θ̄1,2

0
[a(z2)− a(z1)]f(s)ds (2)

12This is conceptually in line with Lancaster’s (1966) characteristics approach to consumer demand.
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If θ1 is added to a subset Θn−1 ⊂ Θn instead, the reduction will be the same or larger

depending on whether the closest substitute θ2 ∈ Θn−1 or not.

A(Θn−1 \ θ1)−A(Θn−1) =


∫ θ̄1,2

0 [a(z2)− a(z1)]f(s)ds if θ2 ∈ Θn−1∫ θ̄1,3

0 [a(z3)− a(z1)]f(s)ds otherwise.
(3)

Q.E.D.

The marginal value of an additional pair of shoes depends on how close the nearest

varieties are. If a smaller subset contains the closest varieties the marginal reduction is the

same, whereas if it does not, the marginal reduction in annoyance will be higher.

If an individual were to get an infinite number of different varieties to match all possible

states, the individual would never be annoyed and gain maximum utility mV . However,

for a finite number of varieties durable goods will be multi-purpose in use. Assume that

a(1) ≤ V , i.e. the individual gets non-negative utility even for the worst possible match,

e.g. the individual is always better off using shoes whatever their characteristics to being

barefoot in all states. The utility can then be written

U(Θn) = m[V −A(Θn)], (4)

with the marginal change in utility from adding one variety equal to

U(Θn+1)− U(Θn) = m [A(Θn)−A(Θn+1)] . (5)

The parameter m captures how much the individual values the marginal reduction in an-

noyance.13 Hence, U(·) is a set function with the same properties as the annoyance function.

1.1 Example

The general properties of these preferences can be illustrated for a uniform distribution of

states, and linear annoyance. Consider Θ3 = {θ1, θ2, θ3}. The total annoyance from all

possible combinations of these three goods is:

A(θi) = a

[
1
2
− θi(1− θi)

]
, (6)

A(θi, θj) = a

[
1
2

+ θ2
i − θj(1− θj)−

(
θi + θj

2

)2
]

, (7)

A(Θ3) = a

1
2
− θ3 +

3∑
j=1

θ2
j −

1
4

[
(θ1 + θ2)2 + (θ2 + θ3)2

] . (8)

13This parameter is equivalent to the taste parameter in models of vertical differentiation. One interpre-

tation (see e.g. Tirole (1989)) is that it is the inverse of the marginal utility of income, such that it will be

higher the wealthier the consumer.
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These can be used to illustrate sub additivity,

U(θ1) + U(θ2)− U(θ1, θ2) = m

[
V + θ1 −

1
2
−
(

θ1 + θ2

2

)2
]

(9)

and

U(θ1, θ3) + U(θ2)− U(Θ3) = m

[
V − 1

2
+ θ2 −

θ2(θ2 + θ3)− θ1(θ3 − θ2)
2

]
, (10)

which are both positive since V > a. These expressions can furthermore be used to illustrate

the marginal value of adding variety two to a bundle of one and two goods respectively.

U(Θ3)− U(θ1, θ3) < U(Θ2)− U(θ1) (11)

subtracting U(θ2) from both sides this can be written

U(θ1, θ3) + U(θ2)− U(Θ3) > U(θ1) + U(θ2)− U(θ1, θ2)

Hence,

m

[
V − 1

2
+ θ2 −

θ2(θ2 + θ3)− θ1(θ3 − θ2)
2

]
> m

[
V + θ1 −

1
2
−
(

θ1 + θ2

2

)2
]

(12)

collecting terms

m

[
(θ2 − θ1 −

1
4

(
θ2
2 − θ2

1 + 2θ3(θ2 − θ1)
)]

(13)

which can be simplified further to

m(θ2 − θ1)
[
1− 1

4
(θ2 + θ1 + 2θ3)

]
≥ 0 (14)

which is strictly positive for θ1 < 1.

The expression is clearly decreasing in θ1 and θ3. For θ2 there are two effects. Taking

the derivative with respect to θ2 gives,

m

[
1− θ2 + θ3

2

]
≥ 0. (15)

Thus it is increasing in θ2 for θ2 < 1.

When two is added to a bundle with only variety one, it will be used in states for which

it is best suited as well as in states where three otherwise would have been used.

To conclude. Preferences for multi-purpose consumption brings together three strands

of the literature on product differentiation. The utility being a set function which is sub-

additive, captures the notion introduced by Lancaster (1966) that consumers value a set

of goods for the characteristics they jointly possess, rather than the goods per se. Fur-

thermore the notion that consumers use durable goods under different conditions implies
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that demand for different locations, i.e. horizontal differentiation, can arise even in a ho-

mogeneous population.14 Finally, a bundle of specialised goods versus a general purpose

good, is equivalent to choosing between a high quality good and a low quality good, where

a consumer with a higher income would be willing to pay more for the the higher quality

product as well as the improvement in quality as in Mussa and Rosen’s (1979) model with

vertically differentiated goods.

2 Social Optimum

Deriving the social optimum entails two steps: first a derivation of the optimal character-

istics for a given set of n varieties; second, a derivation of the number of varieties which

generates the highest surplus net of costs of producing n varieties.

Suppose that there is a constant marginal cost ct for producing any variety. Hence, all

locations cost the same and there are no economies of scale or scope, but we allow them to

vary over time. Furthermore, let there be a time index on mt to capture the notion that

peoples ability to pay for greater comfort (i.e. less annoyance) can vary over time.

Optimal characteristics solve

Θ∗
n = arg minA(Θn) (16)

since the utility is maximised for

max
θi∈Θn

U(Θn) = mt[V −A(Θn)] (17)

with first order conditions

−mtAθi
(Θn) = 0. (18)

When varieties are chosen optimally, the reduction in annoyance from adding an additional

variety will be decreasing in the number of varieties.

Lemma 3 The marginal reduction in annoyance from increasing the number of varieties

is strictly decreasing in number of varieties when characteristics are chosen optimally,

A(Θ∗
n−1)−A(Θ∗

n) > A(Θ∗
n)−A(Θ∗

n+1)

Proof: Adding variety i will reduce annoyance in states where it is used instead of variety

i− 1 and variety i + 1. Hence, the benefit is∫ θ∗i

θ̄∗i−1.i

[a(zi−1)− a(zi)] +
∫ θ̄∗i,i+1

θ∗i

[a(zi+1)− a(zi)]f(s)ds (19)

14Note that the annoyance function is a more general formulation which includes both the linear and the

quadratic cost of transportation case in Hotelling’s (1929) Linear city model.
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When n increases

θ∗i+1 − θ∗i−1

decreases, if a(·) and f(·) are continuous. This has two implications. First annoyance will

be reduced for a smaller number of states. Second, the varieties the new variety replaces

will be closer substitutes, e.g. | zk − zi | for k = i− 1, i + 1. Hence, the marginal benefit in

each state will also be smaller. Q.E.D.

To illustrate let us consider the case where the marginal annoyance is constant and

calculate the optimal characteristics for one, two and n characteristics.

In the case of one characteristic total annoyance can be written:

A(θ) = a

[∫ θ

0
(θ − s)f(s)ds +

∫ 1

θ
(s− θ)f(s)ds

]
. (20)

Integration by parts yields,

A(θ) = a

[∫ θ

0
F (s)ds + (1− θ)−

∫ 1

θ
F (s)ds

]
. (21)

The first order condition for a minimum is

a [2F (θ)− 1] = 0. (22)

The second order condition for a minimum is

a2f(θ) > 0. (23)

Hence optimal characteristics for one variety are such that

F (θ∗) =
1
2
. (24)

Total annoyance for two varieties can be written

A(θ1, θ2) = a

[∫ θ1

0
(θ1 − s)f(s)ds +

∫ θ̄1,2

θ1

(s− θ1)f(s)ds +
∫ θ2

θ̄1,2

(θ2 − s)f(s)ds +
∫ 1

θ2

(s− θ2)f(s)ds

]
.

(25)

Integration by parts yields

A(θ1, θ2) = a

[∫ θ1

0
F (s)ds−

∫ θ̄1,2

θ1

F (s)ds + (1− θ2) +
∫ θ2

θ̄1,2

F (s)ds−
∫ 1

θ2

F (s)ds

]
. (26)

The first order conditions for a minimum are

a
[
2F (θ1)− F (θ̄1,2)

]
= 0, (27)

a
[
2F (θ2)− F (θ̄1,2)− 1

]
= 0. (28)
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The second order conditions for a minimum are

a

[
2f(θ1)−

1
2
f(θ̄1,2)

]
> 0. (29)

and the determinant of the Hessian of second derivatives detH > 0. This condition is for

example satisfied for the uniform distribution.

Combining first order conditions

F (θ2)− F (θ1) =
1
2
. (30)

Hence, the frequency of different states determine the optimal characteristics.

Let Θn = {θ1, θ2, . . . , θn} denote a set with n varieties. Total annoyance can then be

written

A(Θn) = a

[∫ θ1

0
(θ1 − s)f(s)ds +

∫ θ̄1,2

θ1

(s− θ1)f(s)ds +
∫ θ2

θ̄1,2

(θ2 − s)f(s)ds+

∫ θ̄2,3

θ2

(s− θ2)f(s)ds + · · · +
∫ θn

θ̄n−1,n

(θn − s)f(s)ds +
∫ 1

θn

(s− θn)f(s)ds

]
.

Integration by parts yields

A(Θn) = a

[∫ θ1

0
F (s)ds−

∫ θ̄1,2

θ1

F (s)ds +
∫ θ2

θ̄1,2

F (s)ds−
∫ θ̄2,3

θ2

F (s)ds + · · ·

+ (1− θn) +
∫ θn

θ̄n−1,n

F (s)ds−
∫ 1

θn

F (s)ds

]
.

The first order conditions for a minimum are

a
[
2F (θ1)− F (θ̄1,2)

]
= 0, (31)

a
[
2F (θ2)− F (θ̄1,2)− F (θ̄2,3)

]
= 0, (32)

...

a
[
2F (θn)− F (θ̄n−1,n)− 1

]
= 0. (33)

Combining first order conditions one gets

a

[
2

n∑
i=1

(−1)i+1F (θi) + (−1)n

]
= 0 (34)

The solution to this system of equations is denoted Θ∗
n, and is unique if the second order

conditions for a minimum are satisfied. These are that the Hessian of second derivatives is

positive definite, i.e. that all sub matrices along the diagonal are positive.

a

[
2f(θ1)−

1
2
f(θ̄1,2)

]
> 0. (35)
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When some states are more frequent than other states, the optimal set of varieties will be

such that all varieties are used with the same frequency. For example a consumer who lives

in a hot climate and thus mainly experience hot weather will optimally be equipped with

varieties to cope with small variations in hot weather and use the warmest pair on the rare

occasions of cold weather.

For a uniform distribution optimal characteristics are such that zi ≤ 1/2n. Hence

A(Θ∗
n) = a1

2( 1
2n)22n = a 1

4n , since total annoyance is then made up from 2n triangles of

width and height 1/2n. The marginal value of an additional variety is thus

A(Θ∗
n)−A(Θ∗

n+1) = a

[
1
4n

− 1
4(n + 1)

]
= a

1
4n(n + 1)

(36)

which is clearly decreasing in n. Hence the marginal benefit from adding an additional

variety is

A(Θ∗
1)−A(Θ∗

2) = a
1
4
− a

1
8

= a
1
8

(37)

A(Θ∗
2)−A(Θ∗

3) = a
1
8
− a

1
12

= a
1
24

(38)

A(Θ∗
3)−A(Θ∗

4) = a
1
12

−A
1
16

= a
1
48

(39)

etc.

2.1 Optimal number of varieties

The optimal number of varieties solves

n∗ = arg max{U(Θ∗
n)− nc}. (40)

where the solution depends on mt/ct, i.e. the ratio between how much the individual values

a reduction in annoyance, to what it would cost to reduce it by producing an additional

variety. To see this note that one variety is better than no variety if

U(Θ∗
1)− ct > 0. (41)

Two varieties is better than one if

U(Θ∗
2)− 2ct ≥ U(Θ∗

1)− ct. (42)

Or more generally,

U(Θ∗
n)− nct ≥ U(Θ∗

n−1)− (n− 1)ct. (43)
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This implies that there exists critical values of m/c, which is when m/c equals the inverse

of the marginal change in annoyance from an additional variety. Let r = m/c, then

r∗1 =
1

V −A(Θ∗
1)

(44)

r∗2 =
1

A(Θ∗
1)−A(Θ∗

2)
(45)

r∗n =
1

A(Θ∗
n−1)−A(Θ∗

n)
. (46)

Since r∗n+1 > r∗n follows from the property that the marginal utility of an increase in the

degree of optimised specialisation decreases with the number of varieties, there will exist

an optimum. 15 The optimal degree of specialisation at time t is to produce n varieties for

rt ∈ {r∗n, r∗n+1}.
For the uniform distribution one gets

r∗n =
4n(n− 1)

a
. (47)

Hence, as real income rt goes up, consumers should optimally consume a larger number of

specialised varieties. However, is it the department store or the galleria that will lead and

move from general purpose varieties to specialised varieties?

3 Strategic product selection

What are the incentives to innovate in imperfectly competitive markets when durable goods

are multi-purpose? Does an incumbent monopolist have an incentive to innovate and offer

more specialised varieties at an optimal rate, and with optimal characteristics? Furthermore

does the possibility of selling a specialised variety to match states in which the currently

available varieties do poorly, open up opportunities for profitable entry? If, yes, what is the

optimal response of an incumbent monopolist to such entry?

All these issues can be covered in one model which is a game between an incumbent

monopolist and a potential entrant.

The players are:

• I - Incumbent

15The intuition behind this property is that the scope for improving the match in specific states will be

smaller the larger the number of varieties designed to cover that subset of states. Hence, the marginal utility

from serious hiking boots will be smaller the larger the number of varieties already selected to cater for

rough surfaces outdoors.
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• E - Entrant

The timing of decisions is:

1. E decides whether or not to enter

2. I observes E decision, and I and E choose number of varieties Xj ∈ {0, 1, 2}, j = I, E.16

3. I and E observe Xj , j = E, I and choose characteristics θ ∈ [0, 1] of each variety in

Xj , j = I, E.

4. I and E choose the price pj of each variety.

The objective of each firm is to maximise its profit

Πj(Xj , Xi) =
Xj∑
k=1

(pk − c)dk, (48)

given the strategy of the other player. The demand for each variety is dk = {0, 1}. Hence,

the size of the population is normalised to one since consumers are identical and the marginal

cost is assumed to be constant and independent of number of varieties produced by the same

firm.17

This game is solved using backward induction. Thus we start by determining the profit

maximising price.

3.1 Price

In this section it is shown how the equilibrium prices depend on the number of varieties

and their individual characteristics.

If there is only one variety available the consumer will buy it as long as

U(θ)− p ≥ 0. (49)

Hence, a monopoly can extract all surplus.

Now suppose that there are two varieties available. A consumer can choose to buy any

combination it chooses, i.e. neither, both, or just one of them. The equilibrium constraints

on prices are

U(θ1, θ2)− p1 − p2 ≥ 0, (50)

U(θ1, θ2)− p1 − p2 ≥ U(θ1)− p1, (51)

U(θ1, θ2)− p1 − p2 ≥ U(θ2)− p2. (52)

16XE = 0 is equivalent to E not entering.

17I.e. there are no economies of scale or scope.
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If all these constraints are satisfied the consumer will buy both varieties on offer. In this case

it will not be possible to extract all consumers’ surplus, since a consumer could always choose

to buy only one variety. Adding (51) and (52) gives 2U(θ1, θ2) − p1 − p2 ≥ U(θ1) + U(θ2).

If (50) binds this gives U(θ1, θ2) ≥ U(θ1) + U(θ2). This is a contradiction since U(·) is sub

additive. Hence, the equilibrium prices will be given by

pj = U(θ1, θ2)− U(θi), j 6= i. (53)

Similarly for three available varieties, consumers could choose to buy one, two or three,

which implies that there will be seven equilibrium constraints,

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ 0, (54)

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ U(θ1)− p1, (55)

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ U(θ2)− p2, (56)

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ U(θ3)− p3, (57)

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ U(θ1, θ2)− p1 − p2, (58)

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ U(θ2, θ3)− p2 − p3, (59)

U(θ1, θ2, θ3)− p1 − p2 − p3 ≥ U(θ1, θ3)− p1 − p3. (60)

The only constraints which can be binding without violating the others, are the last three

ones. To see this note that adding (55),(56) and (57) gives

3U(Θ3)− 2
3∑

j=1

pj ≥
3∑

j=1

U(θj). (61)

Adding (58),(59) and (60) gives

3U(Θ3)−
3∑

j=1

pj ≥ U(θ1, θ2) + U(θ1, θ3) + U(θ2, θ3). (62)

If (54) is binding, (61) becomes U(Θ3) ≥
∑3

i=1 U(θi) which from Lemma 1 can be seen

to be a contradiction. Similarly if (61) is binding, (62) becomes 3U(Θ3) +
∑3

j=1 U(θj) ≥
2 (U(θ1, θ2) + U(θ1, θ3) + U(θ2, θ3)). This can be rewritten as follows

3U(Θ3)−U(θ1, θ2)+U(θ1, θ3)+U(θ2, θ3) ≥ U(θ1, θ2)+U(θ1, θ3)+U(θ2, θ3)−
3∑

j=1

U(θj) (63)

On the left hand we have the sum of the marginal increment in utility from adding each

variety to a bundle of two, whereas on the right hand side we have the sum when each
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variety is added to a bundle of one. From Lemma 2 follows that the right hand side must

be strictly larger. Hence, we have arrived at a contradiction.

The results can be generalised to n varieties since they follow from general properties,

i.e. sub-additivity, of the annoyance function. Thus equilibrium prices for n varieties must

satisfy

pj = U(Θn)− U(Θn \ θj) = m [A(Θn \ θj)−A(Θn)] (64)

Hence, sub-additivity and free consumer choice imply that the larger the choice set available

to the consumer the less surplus will be extracted in equilibrium.

The equilibrium price is equivalent to the reduction in annoyance in the states where

the additional variety will be used in place of the existing ones that would otherwise have

been used. This can be illustrated in the case of linear annoyance

pj = ma

[∫ θ̄j−1,j+1

θj−1

(s− θj−1)f(s)ds +
∫ θj+1

θ̄j−1,j+1

(θj+1 − s)f(s)ds−
∫ θ̄j−1,j

θj−1

(s− θj−1)f(s)ds

−
∫ θj

θ̄j−1,j

(θj − s)f(s)ds−
∫ θ̄j,j+1

θj

(s− θj)f(s)ds−
∫ θj+1

θ̄j,j+1

(θj+1 − s)f(s)ds

]

= ma

[∫ θ̄j−1,j+1

θ̄j−1,j
(s− θj−1)f(s)ds +

∫ θ̄j,j+1

θ̄j−1,j+1

(θj+1 − s)f(s)ds

−
∫ θj

θ̄j−1,j

(θj − s)f(s)ds−
∫ θ̄j,j+1

θj

(s− θj)f(s)ds

]

Integration by parts yields

pj = ma

[∫ θ̄j,j+1

θj

F (s)ds−
∫ θj

θ̄j−1,j

F (s)ds−
∫ θ̄j−1,j+1

θ̄j−1,j

F (s)ds +
∫ θ̄j,j+1

θ̄j−1,j+1

F (s)ds

]

= ma2

[∫ θ̄j,j+1

θj

F (s)ds−
∫ θ̄j−1,j+1

θ̄j−1,j

F (s)ds

]

For variety 1

p1 = ma2
∫ θ̄1,2

θ1

F (s)ds (65)

whereas for variety n

pn = ma

[
θn − θn−1 − 2

∫ θn

θ̄n−1,n

F (s)ds

]
(66)

The equilibrium prices are a function of characteristics as well as number of available

varieties. Firms will therefore take this into account when they decide on number of varieties

and their characteristics.
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3.2 Characteristics

After having observed how many varieties the competitor has chosen to produce, firms

simultaneously decide on characteristics of these varieties. There are two classes of sub

games which will be considered in this section. First, the case with no entry, in which case

the incumbent is a monopoly. Second the case with entry in which case there is a duopoly.

3.2.1 Monopoly

First, consider the sub games with XE = 0. There are two possibilities here. The monopoly

will either have chosen to produce one or two varieties.

Proposition 1 If the monopoly offers only one variety it will have optimal characteristics,

whereas if it offers two, they will be too specialised.

Proof: For one variety the profit maximisation problem of the monopoly is

max
θ

Π(1, 0) = m[V −A(θ)]− c. (67)

F.o.c.

−mAθ(θ1) = 0 (68)

which is satisfied for the socially efficient choice θ∗.

For two varieties it becomes,

max
θ1,θ2

Π(2, 0) = p1 + p2 − 2c = m[A(θ1) + A(θ2)− 2A(θ1, θ2)]− 2c. (69)

F.o.c.

m[Aθ1(θ1)− 2Aθ1(θ1, θ2)] = 0 (70)

m[Aθ2(θ1)− 2Aθ2(θ1, θ2)] = 0 (71)

(72)

The second term is zero at θ∗1, θ
∗
2, whereas the first term reaches its minimum in between

these two values. Hence, the first order condition reveals that the profit is decreasing in θ1

whereas it is increasing in θ2 at θ∗1, θ
∗
2. Thus, θM

1 < θ1, and θM
2 > θ∗2. Q.E.D. This result

can be illustrated for linear annoyance,

Π(2, 0) = ma

[
2∑

i=1

(∫ θi

0
(θi − s)f(s)ds +

∫ 1

θi

(s− θi)f(s)ds

)
− (73)

2a

(∫ θ1

0
(θ1 − s)f(s)ds +

∫ θ̄12

θ1

(s− θ1) +
∫ θ2

θ̄12

(θ2 − s)f(s)ds +
∫ 1

θ2

(s− θ)f(s)ds

)]
− 2c(74)
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which can be simplified to

Π(2, 0) = ma

[∫ θ1

0
(θ2 − θ1)f(s)ds +

∫ θ̄12

θ1

(θ1 + θ2 − 2s)f(s)ds +
∫ θ2

θ̄12

(2s− θ1 − θ2)f(s)ds+(75)∫ 1

θ2

(θ2 − θ1)f(s)ds

]
− 2c. (76)

Integration by parts gives

Π(2, 0) = ma

[
θ2 − θ1 + 2

(∫ θ̄12

θ1

F (s)ds−
∫ θ2

θ̄12

F (s)ds

)]
− 2c (77)

Product characteristics maximise the profit if first order conditions are satisfied. These can

be written

F (θ̄12)− F (θ1) =
1
2
, (78)

F (θ2)− F (θ̄12) =
1
2
. (79)

Combining these gives

F (θ2)− F (θ1) = 1. (80)

Hence, the profit maxmising combination of characteristics is θ1 = 0 and θ2 = 1. Maximum

differentiation allows the monopoly to charge the highest price for each variety since it

minimises functional overlap. However, the monopoly may be better off not differentiating

at all if it is not possible to bundle.

Compare the price the monopoly can charge if it offers one variety with the prices it can

charge if it offers two. Can it charge more in total when it offers two varieties?

p1 + p2 − p∗ = m[A(θM
1 ) + A(θM

2 )− 2A(θM
1 , θM

2 )− V + A(θ∗)] (81)

This is positive if

A(θ∗)−A(θM
1 , θM

2 ) > V + A(θM
1 , θM

2 )−A(θM
1 )−A(θM

2 ). (82)

Hence, a necessary condition for differentiation in a monopoly is that the increase in social

surplus i.e. reduction in annoyance, the left hand side, is greater than the rent to the

consumer.

If this condition is satisfied there exists an rM ,

rM =
1

A(θM
1 ) + A(θM

2 )− 2A(θM
1 , θM

2 )− V + A(θ∗)
(83)
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such that the monopoly differentiates for r ≥ rM . However, since rM > r∗2 the monopoly

will innovate with a delay.

Note that rM > r2 if

A(θ∗)−A(0, 1)− [V + A(0, 1)−A(0)−A(1)] < A(θ∗)−A(θ∗1, θ
∗
2) (84)

which is equivalent to stating that the maximum increase in social surplus, the right hand

side, has to be greater than the increase in surplus for the monopoly minus the rent to the

consumer, which by definition is true.

However, there are instances when the necessary condition will not be satisfied.

Proposition 2 (A conservative monopoly) If all states are equally likely, the monopoly

has no incentive to offer more specialised durable goods.

Proof: With a uniform distribution of states there is no increase in social surplus when

the monopoly differentiates since the annoyance is unchanged A(0, 1) = A(1/2). Hence, the

monopoly will always be strictly worse off differentiating in this case. QED.

However, with a slight modification to the uniform distribution, the monopoly will

innovate but with a delay.

Suppose that the various states are distributed according to the following distribution

function s ∈ [0, 1]

F (s) =


s
1− h(1− 2z)

2z
if s ∈ [0, z)

1− h(1− 2s)
2

if s ∈ [z, 1− z]

1− (1− s)
1− h(1− 2z)

2z
if s ∈ (1− z, 1]

(85)

with density

f(x) =


1− h(1− 2z)

2z
if x ∈ [0, z)

h if x ∈ [z, 1− z]
1− h(1− 2z)

2z
if x ∈ (1− z, 1],

(86)

where h > 0 and z ∈ (h−1
2h , 1

2). This is a symmetric distribution which becomes the uniform

distribution for h = 1. For h < 1, it has two flat tails in the regions s < z and s > 1 − z

with higher density than the flat middle section. Hence, it represents a situation where the

consumer tends to be more frequently using the good in states with special needs rather

than states with average needs. For example if the individual lives in a country where its
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either seriously cold, or very hot, rather than constant drizzling rain. Whereas if h > 1 the

opposite applies.

For this class of distribution functions total annoyance becomes

A(θ1) =
∫ z

0
(θ1 − s)

1− h(1− 2z)
2z

ds +
∫ θ1

z
(θ1 − s)hds + (87)∫ 1−z

θ1

(s− θ1)hds +
∫ 1

1−z
(s− θ1)

1− h(1− 2z)
2z

ds (88)

=
1− h

2
[1− z] + h

[
θ2
1 − θ1 +

1
2

]
(89)

in the case of one variety and

A(θ1, θ2) =
∫ θ1

0
(θ1 − s)

1− h(1− 2z)
2z

ds +
∫ z

θ1

(s− θ1)
1− h(1− 2z)

2z
ds +

∫ θ̄1,2

z
(s− θ1)hds +∫ 1−z

θ̄1,2

(θ2 − s)hds +
∫ θ2

1−z
(θ2 − s)

1− h(1− 2z)
2z

ds +
∫ 1

θ2

(s− θ2)
1− h(1− 2z)

2z
ds

in the case of two.

If the tails of the distribution are thick and short enough, the monopolist will be able

to extract enough surplus but it will happen with a delay.

Proposition 3 Let z < 2
7 and h < 4−14z

5−14z then there exists an

rM =
1

a
[
(1− h)(1− 7

2z)− h
4

] (90)

such that a monopoly offers two specialised varieties for r > rM .

Proof: The monopoly will offer two specialised varieties if Π(1, 0) > Π(2, 0). For the

stepped distribution we have

A(
1
2
) = a

[
1
2
− h

4
− 1− h

2
z

]
(91)

A(0) = a

[
1
2
− 1− h

2
z

]
(92)

A(1) = a

[
1
2
− 1− h

2
z

]
(93)

A(0, 1) = a

[
h

4
+

1− h

2
z

]
(94)

A(0, 1/2) = a

[
4− h

16

]
(95)

(96)
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Monopoly profit with one good is

Π(1, 0) =
(

1
2

)
= m

(
V − a

[
1
2
− h

4
− 1− h

2
z

])
− c (97)

Monopoly profit with two varieties sold separately at prices p1 = m [A(1)−A(0, 1)], p2 =

m [A(0)−A(0, 1)] is

ΠM (0, 1) = 2ma

[
1
2
− h

4
− 2

1− h

2
z

]
− 2c. (98)

Π(2, 0)−Π(1, 0) = m

[
a

(
3
2
− 3

4
h− 5

2
(1− h)z

)
− V

]
− c ≥ 0 (99)

Two specialised varieties generates higher profit than one general purpose if

r >
1

a
[

3
2 −

3
4h− 5

2(1− h)z
]
− V

(100)

the denominator is positive if

h ≤
2
(
3− 2V

a

)
− 10z

3− 10z
(101)

z ≤ 3a− 2V

5a
(102)

Q.E.D.

Hence the distribution of states is crucial for whether the monopoly differentiates or

not.

3.2.2 Duopoly

Now suppose that entry occurred, i.e. XE ≥ 1, so that there are two competing firms in the

market.

If each firm will produce one variety, characteristics are chosen simultaneously by each

firm to maximise

max
θi

πi = m[A(θj)−A(θi, θj)]− c (103)

which gives first order conditions

−mAθi
(θi, θj) = 0, (104)

i.e. the socially efficient ones.

Thus there is no distortion in characteristics. Each firm tries to minimise annoyance

since this will maximise the consumers willingness to pay. The maximised payoff to each

firm j is therefore Πi(1, 1) = m[A(θ∗i )−A(θ∗1, θ
∗
2)]− c A firm makes non-negative profit if

r ≥ rE
2 =

1

a
[
A(θ∗j )−A(Θ∗

2)
] . (105)
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Proposition 4 With free entry there will be too much variety in equilibrium.

Proof: There will be too much variety if rE
2 < r∗2, i.e. if

1

a
[
A(θ∗2j)−A(Θ∗

2)
] <

1
a [A(θ∗11)−A(Θ∗

2)]
(106)

which simplifies to A(θ∗2j) > A(θ∗11). This is true by definition since θ∗11 minimises annoyance

for one variety. Q.E.D. However, it is not going to be optimal to enter with a third variety

before it is socially optimal to offer 2, i.e. r∗2 < rE
3 which is equivalent to

A(Θ∗
2) <

A(θ∗21) + A(Θ∗
3)

2
. (107)

This again is satisfied since annoyance is reduced at a decreasing rate when more varieties

are added.

Next consider the case where one of the firms offers two varieties.

Proposition 5 If one firm offers two varieties and the other firm only one, there is a

unique Nash equilibrium in characteristics in which one firm produces variety θ∗1 and θ∗3,

and the other firm θ∗2, making profits

Π∗(2, 1) = m [A(θ∗1, θ
∗
2) + A(θ∗2, θ

∗
3)− 2A(θ∗1, θ

∗
2, θ

∗
3)]− 2c, (108)

Π∗(1, 2) = m [A(θ∗1, θ
∗
3)−A(θ∗1, θ

∗
2, θ

∗
3)]− c. (109)

Proof: If one firm has chosen to produce two varieties and the other one only one, there

are two possibilities: the one who only sells one offers a ’general purpose’ i.e. variety θ2,

or does a very specialised one i.e. θ1. The proof involves showing that, the first is a Nash

equilibrium whereas the latter is not.

In the first case, for the firm offering one general purpose variety with characteristics θ∗2,

there is no profitable deviation for θ ∈ [θ∗1, θ
∗
3] since the profit is by definition maximised for

θ∗2. Could the firm increase profit by offering something more specialised such as θ′ < θ∗1?

Such a deviation would result in a profit

Πdev(1, 2) = m
[
A(θ∗1, θ

∗
3)−A(θ′, θ∗1, θ

∗
3)
]
− c. (110)

Since A(Θ3) is minimised for Θ∗
3, this profit is strictly less than the equilibrium profit.

Similarly for the firm offering two varieties. If it offers a one and a three, θ∗1 and θ∗3

maximise the profit by definition. The question is whether positioning to the left of the

22



general purpose variety would result in a higher profit, e.g. θ′ < θ∗1 < θ′′ < θ∗2. This would

result in strictly lower prices for θ∗,

p(θ′) = A(θ′′, θ∗2)−A(θ′, θ′′, θ∗2) < A(θ∗2, θ
∗
3)−A(Θ∗

3) (111)

p(θ′′) = A(θ′, θ∗2)−A(θ′, θ′′, θ∗2) < A(θ∗1, θ
∗
2)−A(Θ∗

3). (112)

Hence, the socially optimal characteristics do form a Nash equilibrium.

Can a situation where one firm offers one specialised variety and the other two specialised

varieties at the other end be a Nash equilibrium?

Optimal characteristics if the firms anticipate that the single variety firm will produce

variety one and the multi-product firm variety two and three would solve the following

problem.

max
θ2,θ3

p2 + p3 − 2c = ma

[
θ3 − θ2 + 2

(∫ θ̄2,3

θ2

F (s)ds−
∫ θ̄1,3

θ̄1,2

F (s)ds−
∫ θ3

θ̄2,3

F (s)ds

)]
− 2c

max
θ1

p1 − c = ma2
∫ θ̄1,2

θ1

F (s)ds− c

First order conditions in this case are:

ma [F (θ1,2)− 2F (θ1)] = 0 (113)

ma
[
−1 + 2F (θ̄2,3)− 2F (θ2) + F (θ̄1,2)

]
= 0 (114)

ma
[
1 + 2F (θ̄2,3)− 2F (θ3)− F (θ̄1,3)

]
= 0 (115)

Combining these conditions gives

1− F (θ3) + F (θ2)− F (θ1) =
F (θ̄1,3)

2
. (116)

The outcome is neither the socially optimal one nor the monopoly outcome for three vari-

eties. This is, however, not a Nash equilibrium. The single good firm will have an incentive

to deviate and offer a general purpose good instead.

This can be illustrated using the uniform distribution. In this case the solution is

θ1 =
1
12

, (117)

θ2 =
1
4
, (118)

θ3 =
11
12

. (119)

However, the single good firm would do better for these choices of characteristics to produce

a general purpose variety with characteristics θ = 7
12 instead of θ1 = 1

12 , since

Π(
7
12

,
1
4
,
11
12

) = ma2

[∫ 3
4

7
12

θdθ −
∫ 7

12

5
12

θdθ

]
− c =

ma

18
− c (120)
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which is clearly higher than

Π(
1
12

,
1
4
,
11
12

) = ma2
∫ 1

6

1
12

θdθ − c =
ma

48
. (121)

Q.E.D.

The reason why one firm offering two adjacent specialised varieties is not an equilibrium

is because this firm internalises the negative externality on the price and therefore has an

incentive to differentiate these varieties as much as possible. However, the more differenti-

ated they are, the more profitable it is for the competitor to offer a general purpose variety

rather than a specialised variety, which is why this will not be a Nash equilibrium.

A similar argument can be used for the case where both firms produce two varieties.

Again if they compete in product space by offering 1 and 3, and 2 and 4 respectively, there

will be no profitable deviation, and the socially efficient characteristics will form a Nash

equilibrium.

The results in this section are summarised in the matrix below.
XI , XE Incumbent Entrant

1,0 θ∗ -

2,0 θM
1 , θM -

1,1 θ∗1 θ∗2

1,2 θ∗2 θ∗1, θ∗3

2,1 θ∗1, θ∗3 θ∗2

2,2 θ∗1, θ∗3 θ∗2, θ∗4
The intuition for these results is that when firms are not choosing adjacent characteris-

tics they do not internalise the negative externality from their choices on adjacent varieties.

The price that they can charge will therefore be maximised for the socially optimal char-

acteristics, which minimises the annoyance A(Θn). The only instance where a firm chooses

adjacent varieties is when it is a monopoly producing two varieties. In this case product

characteristics will be distorted and result in too much differentiation.

3.3 Number of varieties

The final sub games to consider are those in which the firms decide how many varieties to

offer. In the sub game with no entry it was shown that the monopoly would delay or not

differentiate at all depending on the distribution of states. In the sub game with entry the

question is whether entry will be accommodated or not, i.e will the incumbent choose one

or two varieties?
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If an incumbent could credibly commit to offering two varieties this would deter entry.

However, due to the replacement effect, the incentive to differentiate will be stronger for an

entrant than an incumbent.

Lemma 4 An incumbent can deter entry by offering two varieties if

r < rD =
1

A(θ∗1, θ
∗
3)−A(Θ∗

3)
(122)

Proof: entry is deterred if, the entrant would get a negative payoff

Π(1, 2) = m [A(θ∗1, θ
∗
3)−A(Θ∗

3)]− c < 0. (123)

Q.E.D.

Lemma 5 Deterring entry is a credible strategy if

r > r̄ =
1

A(θ∗31, θ
∗
32) + A(θ∗32, θ

∗
33)− 2A(Θ∗

3)−A(θ∗22) + A(Θ∗
2)

(124)

Proof: Threatening to offer two varieties rather than one if entry occurs is only credible if

Π(2, 1) > Π(1, 1), i.e. if

m[A(θ∗31, θ
∗
32) + A(θ∗32, θ

∗
33)− 2A(Θ∗

3)− 2c > m[A(θ∗22)−A(Θ∗
2)]− c. (125)

Q.E.D.

Proposition 6 If the states are uniformly distributed and the inconvenience is linear it is

never credible to deter entry.

Proof:This is true since one variety is strictly better than two for all parameter values,

Π(1, 1)−Π(2, 1) = ma

[
3
16

− 1
6

]
+ c =

ma

48
+ c > 0. (126)

Q.E.D.

Hence, entry could potentially be deterred for r̄ < r < rD. However, entry will already

have happened at a point when it would be optimal to deter it.

Proposition 7 At the point when entry becomes profitable rE
2 , it is not credible to deter it.

Proof: This is true if r̄ > rE
2 , i.e. if

A(θ∗21) + A(θ∗22)− 2A(Θ∗
2) > A(θ∗31, θ

∗
32) + A(θ∗32, θ

∗
33)− 2A(Θ∗

3) (127)

which follows from Lemma 3. Q.E.D.

The model also gives a clear prediction as to where entry would happen if a third firm

were to enter
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Lemma 6 An entrant who positions himself in a fringe will get a higher profit than an

entrant who positions himself in between the existing firms in product space.

Proof: An entrant who positions himself as 3 in product space gets a higher profit since

m[A(θ∗1, θ
∗
2)−A(Θ∗

3)]− c > m[A(θ∗1, θ
∗
3)−A(Θ∗

3)]− c (128)

A(θ∗1, θ
∗
2)−A(θ∗1, θ

∗
3) = a

[
θ3 − θ2 + 2

(∫ θ2

θ̄1,2

F (s)ds−
∫ θ3

θ2

F (s)ds

)]
(129)

Q.E.D. Due to there being a replacement effect, the incentive to innovate will always be

stronger for an entrant than the incumbent.

Proposition 8 Let rE
2 < r ≤ r̄, then there is a unique sub game perfect equilibrium in which

E enters, and I and E chooses one variety each with socially efficient characteristics.

Proof: If r < r̄ entry will be accommodated. If r > rE
2 it will be profitable to enter.

Thus the Nash equilibrium conditions

Π∗(1, 1) ≥ max{Πx(0, 1),Πx(2, 1)}, (130)

are satisfied.

Q.E.D.

The reason why a monopoly could not credibly commit to offering two varieties to deter

entry is because of the effect on equilibrium prices from such a strategy. For functionally

differentiated goods there is a disincentive to differentiate because of the negative exter-

nality new varieties have on the general price level. With linear annoyance and a uniform

distribution of states, the effect on price is so dramatic that even though the monopoly

would be selling two varieties, the sum of the prices he could get for those, would be less

than the price he could charge for one variety. This is regardless of whether there would be

a competitor selling one variety or not.

4 Bundling

The results in the previous section were derived on the assumption that bundling was not

feasible. This section investigates what will happen when bundling is feasible, in the case

of monopoly and duopoly respectively. It turns out that the most important effect from

bundling is on product characteristics and the incentive to offer more specialised goods,

rather than its effect on price.
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Lemma 7 If a firm can bundle it will choose socially efficient characteristics regardless of

whether it is a monopoly or a duopoly.

Proof: The monopoly can charge pB(θ1, θ2) = U(θ1, θ2) for a bundle. First order conditions

to profit maximisation are therefore −mAθi
(Θ2) = 0, i.e. socially efficient.

The firm offering a bundle in a duopoly can charge pB(θj , θk) = m[A(θi)−A(θj , θk, θi)].

First order conditions are again the socially optimal ones −mAθj
(Θ3) = 0, since this is

what minimises the annoyance. Q.E.D.

Bundling internalises the negative externality on price, and therefore takes away the

incentive to distort product characteristics. This has two important implications. The first

is that the number of varieties will be closer to optimal.

Corollary 1 A firm who can bundle has a less distorted incentive to innovate and offer

more specialised varieties.

The second is that it makes it possible for a firm to offer two specialised varieties on one

side of the market, which is something that could not be supported as a Nash equilibrium

if sold separately due to the incentive to distort product characteristics as was shown in the

previous section.

Lemma 8 When the firm offering two varieties in an equilibrium with three varieties can

bundle, any combination of varieties is a Nash equilibrium in characteristics space.

Proof: From Proposition 5 follows that θ∗2 is a best response to θ∗1 and θ∗3. This is also true

if they are sold as a bundle, since the price that can be charged for variety 2 in equilibrium

solely depends on the characteristics of the other available varieties and not their price.

If firm one offers a bundle with two specialised varieties at the same end of the market

θ∗1, θ
∗
2, the question is whether the firm two who offers θ∗3 could do better by offering a

variety θ′ ∈ (θ1, θ2) instead. This would result in a price

p(θ′) = m[A(θ∗1, θ
∗
2)−A(θ∗1, θ

′, θ∗2)] (131)

which is strictly less than p(θ∗3) since A(Θ∗
3) is minimised for the optimal characteristics.

Q.E.D.

This result is vital, since it is only in the ’new’ equilibria that bundling results in a

higher price, for the firm who bundles as well as the firm who does not. Thus it is not

bundling per se that allows firms to extract more surplus in this case, but the fact that

bundling makes efficient bundles strategically feasible.
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Proposition 9 The firm can only extract more surplus if the bundle contains adjacent

varieties.

Proof: The prices that can be charged by the firm who offers a bundle are

pB(θ∗1, θ
∗
2) = m [A(θ∗3)−A(Θ∗

3)] (132)

pB(θ∗1, θ
∗
3) = m [A(θ∗2)−A(Θ∗

3)] (133)

Comparing these with the individual prices p(θi) = m[A(θ∗j , θ
∗
k)−A(Θ∗

3)] it can be verified

that pB(θ∗1, θ
∗
3) = p(θ∗1) + p(θ∗3) since

A(θ∗2)−A(θ∗1, θ
∗
2) = A(θ∗2, θ

∗
3)−A(Θ∗

3) (134)

and that pB(θ∗1, θ
∗
2) > p(θ∗1) + p(θ∗2) since

A(θ∗3)−A(θ∗2, θ
∗
3) > A(θ∗1, θ

∗
3)−A(Θ∗

3) (135)

which follows from Lemma 2. Q.E.D.

The difference in price between a bundle and the price that can be charged for each

good when sold separately is the difference between adding that variety to a bundle of one

and two goods respectively. If the closest variety in the smaller and the larger bundle is

the same the marginal value of adding variety one is the same, and there are no gains from

bundling. This will be the case if the varieties that are bundled are not adjacent. If they are

adjacent, the price for the bundle will be higher since the marginal value of adding variety

two to a small bundle will be higher than the value of adding it to a larger bundle. This is

because there will be closed substitutes in the larger bundle.

When firms can bundle there is thus a stronger incentive to offer more specialised vari-

eties in a duopoly. In particular bundling changes the prediction for the uniform case.

Lemma 9 If the firms can bundle in a duopoly, offering one variety ceases to strictly

dominate offering two when the states are uniformly distributed and annoyance is linear.

Proof: For a uniform distribution the firm can charge

pB(θ1, θ2) = a

[
13
36

− 1
12

]
= ma

5
18

(136)

if it offers a bundle. It is better to bundle if ΠB(2, 1)−Π∗(1, 1) > 0 i.e.

ma
5
18

− 2c−
[
ma

3
16

− c

]
= ma

13
(12)2

− c ≥ 0. (137)
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Q.E.D.

More generally the incumbent prefers to offer a bundle with θ∗1, θ
∗
2 if r > rB where

rB =
1

A(θ∗33)−A(Θ∗
3)−A(θ∗22) + A(Θ∗

2)
(138)

Whilst bundling implies a monopoly will specialise at an optimal rate, there will still be a

delay in the duopoly.

Proposition 10 If a monopoly can bundle it will innovate at an optimal rate. If a firm in

a duopoly can bundle it will innovate earlier but still with a delay.

Proof: Since the monopoly can extract all consumers’ surplus when bundling it will

specialise when U(θ∗1, θ
∗
2) ≥ U(θ∗), i.e. when it is socially optimal.

It will be optimal to offer three varieties in a duopoly when one firm can bundle at rB.

it will be delayed if rB > r∗3, i.e. if
1

A(θ∗33)−A(Θ∗
3)−A(θ∗22 + A(Θ∗

2)
>

1
A(Θ∗

3)−A(Θ∗
2)

(139)

This simplifies to

A(θ∗33 > A(θ∗22) (140)

which is true by definition, since annoyance for one variety is higher the more specialised

the variety, and θ∗33 > θ∗22 e.g. more specialised. Q.E.D.

Hence, bundling reduces the distortions in product selection in the monopoly and the

duopoly. Does it also help the incumbent to credibly deter entry?

Proposition 11 An incumbent monopolist will not deter entry even if it can bundle.

Proof: It is only credible to deter entry if r > rB. Since rE
2 < r∗2, it follows from the

proof of Proposition 10 that rB > rE
2 . Hence, entry cannot be credibly deterred, since by

the time it can credibly be deterred it will already have happened. Q.E.D.

Even though bundling makes entry deterrence more profitable, it is still not sufficient to

make up for the overall reduction in prices needed to support three varieties in equilibrium.

To conclude. If there are no barriers to entry, and there are no economies of scope,

functionally differentiated goods will not be bundled, since there is an incentive to enter

before it becomes profitable to differentiate through bundling. However, if there are bar-

riers to entry, the analysis shows that there is a strong incentive to bundle functionally

differentiated goods. This incentive would be further strengthened by economies of scope.

The added functions on mobile phones is an excellent example of a good satisfying both of

these criteria. There are clearly economies of scope, and due to high sunk costs of research

and development it is also an industry with high barriers to entry.
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5 Welfare

In the previous sections it was shown that:

• A monopolist who can not bundle will offer inefficient characteristics with a delay.

• A monopolist who can bundle will offer efficient characteristics with no delay.

• If there is a second firm, bundling enables one firm to offer efficient characteristics

with a delay.

• Specialisation due to entry will result in efficient characteristics with specialisation

happening too early, e.g. too much variety.

The question is what are the effects on consumers’ surplus. Consumers’ surplus is given by

S = U(Θn)−
n∑
i

pi (141)

Even though a monopoly who can bundle will maximise welfare since there will be no

distortions in product selection, the consumer is left with zero surplus. When there are

more than one firm three scenarios are of particular interest. First the one where there has

been entry and each firm produces one variety,

S(1, 1) = U(θ∗1) + U(θ∗2)− U(Θ∗
2) = m [V + A(Θ∗

2)−A(θ∗1)−A(θ∗2)] . (142)

Second a situation where one firm offers a bundle, and the other firm one specialised variety

SB(2, 1) = U(θ∗3) + U(θ∗1, θ
∗
2)− U(Θ∗

3) = m [V + A(Θ∗
3)−A(θ∗3)−A(θ∗1, θ

∗
2)] . (143)

Third a situation where three varieties are supplied due to entry of a third firm

S(1, 1, 1) = U(θ∗1, θ
∗
3) + U(θ∗1, θ

∗
2) + U(θ∗2, θ

∗
3)− 2U(Θ∗

3) (144)

= m [V + 2A(Θ∗
3)−A(θ∗1, θ

∗
3)−A(θ∗2, θ

∗
3)−A(θ∗1, θ

∗
2)] . (145)

Whereas social welfare as well as the firm’s incentive to specialise will depend on r, the

consumers’ surplus is independent on this factor. This is because more varieties will have a

negative impact on prices which benefit the consumers.

These can be calculated for our running example which gives,

S(1, 1) = m

[
V − a

1
2

]
(146)

S(2, 1) = m

[
V − a

4
9

]
(147)

S(1, 1, 1) = m

[
V − a

11
36

]
(148)
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Thus S(1, 1, 1) > S(2, 1) > S(1, 1).

Consumers prefer free entry. If there are barriers to entry, such that there is only two

firms in the market, bundling will have a positive effect on both welfare and consumers’

surplus. This is because this will give firms an incentive to offer a larger selection of varieties

at an earlier stage closer to optimum.

6 Discussion

This paper has shown that functional differentiation is distinct from other forms of product

differentiation. Already in the simplest possible case with homogeneous consumers and

constant returns to scale technology, several interesting results were derived. Hence, it is

a model which opens up a new field of exploration into the world of products that are

functionally differentiated. Apart from the fact that this is an important form of product

differentiation empirically, it has also been proved in this paper to be of theoretical interest.

The paper also makes a conceptual contribution to the literature on product innovation,

by adding a third class of successful innovations which encourages consumers to buy more

goods rather than switching suppliers.18 Functional differentiation is the introduction of

specialised goods that are less suitable for general purpose, but more suitable for specific

purposes, such as cycling shoes.19 For the devoted cyclist this is a quality improvement and

could therefore be treated as a combined horizontal and vertical improvement. However, the

element not captured in a standard model of product innovation is that the consumer is likely

to increase the overall consumption of shoes, rather than switching, since buying a pair of

shoes that can only be used under one specific set of conditions for which shoes are required

increases the total number of shoes needed to perform various functions. Thus there is an

element of complementarity between goods specialised to match specific conditions, which

arises as a result of the multi-purpose nature of consumption of several durable goods, such

as computers, cycles, clothes and shoes. In this case successful product innovations entail

identifying the various conditions under which the good will be used, and make varieties

that match those conditions. Such innovations have two effects. First an increase in total

18The nature of successful product innovations is an issue that brings industrial economists and business

strategists together (see Caves (1984)). Porter (1980) points out two ways for an innovation to be successful,

either by improving quality (see e.g. Fudenberg et.al.(1983) ) or to better match the taste of a market

segment. In both cases some consumers will switch from one supplier to the new one.

19There are plenty of other examples e.g. a palm. Consumers own more and more computers of different

sizes that match specific needs.
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demand for the good, and second a shift from general purpose to specific purpose goods.

If a consumer can afford two pairs of shoes, it is better to buy two specific purpose that

complement one another, than one general purpose and one specific purpose that partly

overlap in function.

This is a crucial difference from the love of variety approach that was initiated by Spence

(1976) and Dixit and Stiglitz (1977) to study optimal product diversity under monopolistic

competition. These preferences can be represented by the CES sub utility function20, in

which variety is valued per se and thus can be used to explain the increase in differentiation

of goods that perform the same function, e.g. light summer clothes. There is in this case

no reason to switch from one variety to two different new varieties, since all are equally

substitutable. Thus there is a demand for variety as a result of taste for variety rather than

a demand for variety to reduce the annoyance from using a variety under conditions for

which it is less well suited, e.g. sandals in rain.

Multi-purpose consumption explains the success of companies who are able to identify

the various ways in which a durable good could potentially be used, and manage to invent

a variety which makes it perfect under one of those specific conditions. The introduction of

such varieties lowers the profitability of existing goods, but increases the number of durable

goods an individual decides to own.

Since the demand for specialised goods depends on the income of the individual, the

model explains why the degree of specialisation and the over all consumption of durable

goods has been increasing in parallel with the increase in real income over the last century.

Furthermore, it highlights why the good old-fashioned department store may be too

conservative offering only multi-purpose varieties, whilst entry of independent suppliers

with new specialised varieties in a galleria will induce existing suppliers to change their

characteristics as well as result in an increase in the overall degree of specialisation. The

prices in the galleria will also be more competitive in equilibrium. These are factors which

can explain the success of gallerias at the expense of the department store.

The model also opens up for other interesting applications, such as the role of specialised

goods when consumers are heterogeneous. For example, what is the optimal design, size

range and pricing of baby clothes when consumers differ in terms of how much they are

willing to pay for a perfect fit during their baby’s first year? These are questions which are

of theoretical as well as practical importance.

20See e.g. Helpman and Krugman (1985) chapter 6.
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A Appendix

This appendix contains a summary of payoffs that are being used in the paper.

The payoff matrix for the three stage game is

0 1 2

0 0,0 0, Π∗(1, 0) 0, Π∗(2, 0)

1 Π∗(1, 0), 0 Π∗(1, 1),Π∗(1, 1) Π∗(1, 2),Π∗(2, 1)

2 Π∗(2, 0),0 Π∗(2, 1), Π∗(1, 2) Π∗(2, 2),Π∗(2, 2)
where

Π∗(0, X) = 0 (149)

Π∗(1, 0) = U(θ∗)− c (150)

Π∗(2, 0) = 2U(θM
1 , θM

2 )− U(θM
1 )− U(θM

2 )− 2c (151)

Π∗(1, 1) = U(θ∗21, θ
∗
22)− U(θ∗22)− c (152)

Π∗(1, 2) = U(Θ∗
3)− U(θ∗31, θ

∗
33)− c (153)

Π∗(2, 1) = 2U(Θ∗
3)− U(θ∗31, θ

∗
32)− U(θ∗32, θ

∗
33)− 2c (154)

Π∗(2, 2) = 2U(Θ∗
4)− U(θ∗42, θ

∗
43, θ

∗
44)− U(θ∗41, θ

∗
42, θ

∗
44)− 2c (155)

(156)

To calculate total annoyance for linear annoyance and a uniform distribution the fol-

lowing formulas can be used:

A(θ) =
1
2
− θ(1− θ) (157)

A(θ1, θ2) =
1
2

+ θ2
1 − θ2(1− θ2)−

(
θ1 + θ2

2

)2

(158)

A(θ1, θ2, θ3) =
1
2
− θ3 +

3∑
j=1

θ2
j −

1
4

[
(θ1 + θ2)2 + (θ2 + θ3)2

]
(159)

For the running example this gives,

A(θ∗11) = A(
1
2
) = a

1
4

(160)

A(θ∗21) = A(
1
4
) = a

5
16

(161)

A(θ∗31) = A(
1
6
) = a

13
36

(162)

A(θ∗21, θ
∗
22) = A(

1
4
,
3
4
) = a

1
8

(163)

A(θ∗31, θ
∗
32) = A(

1
6
,
1
2
) = a

1
6

(164)
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A(θ∗31, θ
∗
33) = A(

1
6
,
5
6
) = a

5
36

(165)

A(Θ∗
3) = A(

1
6
,
1
2
,
5
6
) = a

1
12

(166)

These can be used to calculate prices.

pB(θ1, θ3) = ma

[
1
4
− 1

12

]
= a

1
6

(167)

pB(θ1, θ2) = ma

[
13
36

− 1
12

]
= a

5
18

(168)

p(
1
4
) = ma

[
5
16

− 1
8

]
= a

3
16

(169)
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