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GRAPHICAL ABSTRACT

« Deeper trough leads to enhanced
coffee-ring formation.

« Steeper banks promote coffee-ring
formation.

« Simple way to control final film shape
with substrate machining.

Trough shape affects the final film profile. The influence of the basin depth and the slope of the bank are
investigated. The sketch below is not to scale.
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For P-OLED display fabrication, it is important to control the final film shape, arising from drying of vola-
tile droplets containing polymer. Due to peripheral pinning and subsequent outward capillary flow, a
coffee-ring typically develops. This is inconvenient since a spatially uniform height, above the substrate,
is required to ensure uniform current across the device. Typically the droplets are deposited inside a
trough-like structure on the substrate. We present a thin-film lubrication model that tracks the drying
dynamics through to the final film shape. The governing equations are derived and solved numerically.
We investigate the effect of the trough’s depth and the slope of the walls. Increasing the depth or the
wall’s gradient increases coffee-ring formation. This is due to an increase in horizontal velocity, caused
by the substrate’s shape as well as delayed gelation of the polymer. The latter allows the outward capil-
lary flow to act for a longer time, before the height becomes fixed.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

species. This is due to the array of industrial and practical applica-
tions for which drying is an important step. There are several

There is significant interest in, and research into, the drying of applications for biological fluids [1], including pattern analysis of
volatile liquid droplets containing polymer, or other non-volatile dried blood, for crime scene investigation [2] and disease diagnos-
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tics [3], DNA microarrays [4-7] and herbicides/pesticides on leaves
[8]. In addition, micro/nano electronics can be manufactured
[9-14] using inkjet printing, as can polymer-organic light-emitting
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diode displays (P-OLEDs) [15]. The latter is the focus of this
research.

It has long been observed that a ring stain can form in the bot-
tom of a coffee mug. This is common, not only for coffee but for
many other systems in which a volatile liquid evaporates, leaving
behind a non-volatile solute. The mechanism for this behaviour
was identified by Deegan et al. [16-18] and is termed the
coffee-ring effect. The edge of the droplet can pin either due to
the presence of large particles, as in coffee, or due to surface rough-
ness or adsorption of the non-volatile material to the substrate.
The result is an outward capillary flow that acts to replenish
liquid material evaporated at the edge. This can transport the
non-volatile species outward, where it is deposited as a ring.

For many applications, a ring-like shape is undesirable. Instead,
it is desired that the coffee-ring effect is mitigated, to achieve a
spatially uniform film. Methods which have been shown to at least
reduce the extent of coffee-ring formation are in abundance. A sur-
factant can be introduced to initiate a Marangoni flow that coun-
teracts the capillary flow [8,19]. An electric field can be chosen to
tailor film shape, as shown by Wray et al. [20]. Changing the pH
[21,22] can introduce an attraction to the substrate for the
non-volatile species. The edge pinning can be prevented, with
the droplet edge oscillating due to electrowetting [23]. The use of
different particle shapes [22,24,25], can also prevent coffee-ring
formation. Nonetheless, the above methods are not ideal for P-OLED
applications, because of the introduction of extra components.

The prediction of film shape resulting from droplets containing
polymer, is a topic of significant research. For comprehensive
reviews, see Larson [26] or Routh [27]. The majority of literature
to-date has focused on droplets residing on a flat substrate.
These include several models based on thin-film lubrication theory
[1,20,28-31]. By contrast, work on non-uniform substrates
remains relatively untouched. Studies on soft or deformable sub-
strates exist, for example Lopes and Bonaccurso [32] who find that
depinning of water droplets occurs much later if the substrate is
soft. There are also some experimental investigations on polymer
film shape, such as Kajiya et al. [19] and Jung et al. [14]. The former
introduces a Marangoni flow by addition of a surfactant. The latter
considers the effect of initial polymer loading and droplet volume.
Both papers consider a perfectly rectangular trough. To our knowl-
edge the only theoretical investigation of film shape in typical
trough-like geometries, common in P-OLEDs, is that of Okuzono
et al. [33]. This again considers the limit of a perfectly rectangular
trough and provides a series of analytical expressions and numer-
ical predictions in a cartesian coordinate system. Two groups are
examined in the zero capillary number limit; the initial polymer
loading and the relative height of the bank to the initial height of
the film. With a smaller polymer loading or a larger relative bank
height, the coffee-ring effect is increased.

In this paper we aim to examine how the substrate geometry
can be tailored to influence the final polymer profile, deposited
by evaporating droplets. Whilst we predominantly examine the
effect of the trough depth and bank slope for non-rectangular
troughs, the model can be used to investigate any substrate shape.
Additionally, our model can deal with the influence of finite capil-
lary number, various polymer loadings and diffusion, the extent of
evaporation from gelled regions and non-uniform evaporation
profiles.

2. Mathematical model

2.1. Assumptions and simplifications

Consider a droplet containing a polymer with initial volume
fraction, ¢,. The liquid is volatile with volumetric evaporative flux

per unit area Ey, density p,, viscosity [i,, and air/liquid surface ten-
sion y,. The droplet resides in a trough, impregnated in an other-
wise flat, horizontal substrate. Fig. 1 shows a sketch of the
droplet. To describe the geometry, we define the height of the sub-
strate to be o(r). This is relative to a reference height, o = 0, at the
deepest extremity of the trough. The height of the droplet surface
above the substrate is termed, h(r). The absolute height of the dro-
plet surface is, therefore, h(r) + «(r). The centre of the trough is
typically a horizontal basin at oo = 0. Away from the basin, there
is an increase in o, when moving radially outwards; this region is
called the bank. At the edge of the trough, the substrate flattens
to a fixed height y,H, where x, is a measure for the trough depth.

The contact line is assumed to pin and remain pinned through-
out the drying process. It is assumed that this occurs at the location
where the bank meets the flat, trough exterior, at radius R.

The coordinate system is cylindrical, with horizontal position r,
vertical position z and azimuthal angle 0. The droplet is taken to be
axisymmetric, which enables the azimuthal velocity and differen-
tials in the azimuthal direction to be neglected (v, =0, 2 =0).

The governing equations are cast into non-dimensional form
using the scalings shown in Table 1. The original height of the dro-
plet above the top of the trough is taken as H. Henceforth, all
non-dimensional properties are denoted with an overscore.

Several dimensionless numbers can be estimated following
the scaling analysis. Typical parameter values are
H=10pum,R=125pum, p,=1084kgm=3, u,=1.8 x 10> Nsm2,
70=37x10?Nm!, E=2.0x10°m3 m2s!, the diffusivity
of polymer, Dy, is taken as 1.2 x 107> m? s-!, The liquid properties
are for methyl benzoate at standard temperature and pressure [34]
and the evaporation rate was determined by weighing the mass
loss from a petri dish containing methyl benzoate. The diffusion
coefficient is calculated for 100 nm rigid spheres in methyl
benzoate.
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Fig. 1. Sketch of a droplet in the trough geometry.
Table 1
Scaling terms used.
Property Scaling term
Substrate height, o H
Droplet height above substrate, h H
Vertical position, z H
Horizontal position, r R
Vertical velocity, v, Eo
Horizontal velocity, vy REy/H
Viscosity, u Lo
Surface tension, y Yo
Density, p Po
Pressure, p uoRon/H3
Time, t H/Eo
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The Bond number, Bo, represents the relative importance of
gravitational and surface tension effects on the droplet. Since it is
small, gravitational effects can be ignored. The Reynolds number,
Re, is the ratio of inertial to viscous forces. Since it is very small,
the inertial terms in the Navier-Stokes equations can be ignored.
Furthermore, we consider the case of thin droplets, such that
Re - ’;—22 < 1. In this regime, the lubrication approximation can be
applied. The small capillary number, Ca, implies that surface
tension effects dominate over viscous effects. The Péclet number,
Pé, relates the rate of convection to polymer diffusion. Typically
polymer diffusion is weak. In previous work [36] it has been shown
that weak diffusion can slightly reduce the extent of coffee-ring
formation. This subtlety is not the focus of this research. For this
reason the Péclet number is taken to be infinite such that polymer
diffusion is ignored.

With regard to the polymer, it is initially distributed homoge-
neously, with volume fraction ¢, at all locations. The polymer frac-
tion will increase as the volatile liquid evaporates. However, a
maximum polymer volume fraction, ¢,.,, will exist, due to the
onset of polymer gelation. As the polymer volume fraction
increases, the dispersion viscosity will increase. This is modelled
by the expression in Eq. (5), following Krieger and Dougherty [35].

) 5)

(nbmax

The constant, n, accounts for the rate of increase in viscosity with
volume fraction.

The surface tension of the liquid can also be influenced by the
increase in polymer volume fraction. If necessary, this can be
accounted for by using a surface tension correction function. For
inks that interest us, however, we find there to be minimal impact
and so the approximation that surface tension is not affected by
the presence of polymer is reasonable.

Due to evaporation of the volatile liquid and pinning of the con-
tact line, a gelled region forms at the edge with volume fraction,
dmax- The works of Tarasevich et al. [1] and Ozawa et al. [28], on flat
substrates, assumed that this gelation completely suppresses all
evaporation from this region. It is worth noting that we do not
observe wet films following completion of evaporation.
Therefore, whilst evaporation will be significantly hindered by
polymer gelation, it cannot be completely suppressed. Following
our previous works [36,37], we account for this by using an evap-
oration suppression factor, f,,. This adjusts the evaporation rate in
the gelled region as shown in Eq. (6). This subtlety is not the focus
of this paper, so f} is taken to be unity.

U= Ue&(P) = Ly {l

In the close-packed region : Ey(r) = (1 —f,)E(r),
where 0 < f,, <1 (6)

For the purposes of this paper, the evaporative flux distribution
is taken as spatially uniform (E = Ey # f(r)). If necessary, this
model could be extended to account for edge-enhanced evapora-
tion modes. Our previous work [36] showed that inclusion of the
spatially varying evaporation has only a small influence on the
final film profile.

2.2. Derivation methodology and governing equations

The governing equations for the change in droplet height and
polymer volume fraction with position and time have previously
been derived for flat substrates [1,20,28,30,31] and for perfectly
rectangular troughs in cartesian coordinates [33]. Here we extend
our work [36] to account for the trough geometry.

The change in droplet height and polymer volume fraction, with
position and time, both depend on the internal flow profile.
Specifically, for thin droplets in the lubrication regime, it is the
horizontal velocity, v,, that influences the dynamics. To find an
expression for the horizontal velocity, we start with the Navier-
Stokes equations. Using the lubrication approximation, one finds
that the pressure gradient in the vertical direction is negligible.
The horizontal velocity is then determined by

5 _
90 _ 1 dp (7)
02 g(¢) dr

Eq. (7) can be integrated twice (assuming ¢ # ¢(2)),
subject to zero-shear at the droplet surface
(% =0 at z=h+ &, for thin droplets) and no slip along the
substrate (7, =0 at z= ). The result is an expression for the
horizontal velocity as a function of the horizontal pressure
gradient, the vertical position and the height of the substrate and
the droplet, above the substrate.

s 7 —2(h+®)z+2ha + o2 dp
T 28(¢) dr

Since depthwise gradients are negligible it makes more sense to
use a vertically averaged radial velocity, 7.

a<z<h+a (8)

A B i h? dp
Uy == 0z = —s——-— 9
L. 32(9) dr ®)

The horizontal pressure gradient term is determined from the
Young-Laplace equation (p = —yx), which relates the surface pres-
sure, p, to the surface tension, y and the droplet’s mean curvature,
K. Using the lubrication approximation one obtains

! <az(ﬁ+5c)+la(ﬁ+&)> 10)
r

p= H0R4Eo or? or
Through differentiation of this and subsequent substitution into
Eq. (9), the vertically averaged horizontal velocity is

ﬁ — }_12 ﬂ+@+l ﬂ+@ ,l @4,% (]])
" Cag(e)|or3 " oB T r\orz  or r2\or ' or

where Ca = 3’;‘;% is the capillary number.

Eq. (11) differs from the flat substrate expression, because of the
inclusion of the & terms. The substrate geometry affects the hori-
zontal pressure gradient and therefore, the internal flow profile.

The governing partial differential equations for droplet height
and polymer volume fraction can be similarly found. Provided that
the substrate is not soft, so that & is independent of time, the gov-
erning equations do not differ compared with the flat substrate
case. The effect of the substrate geometry appears in the expres-
sion for the horizontal velocity, 7.

oh

10 ;-
5= ED-=o [thoy] (12)
06 GE(R) - 0p Pé 9 [0
a - Tor Wﬁ[rhﬁ} )



56 A.D. Eales et al./Journal of Colloid and Interface Science 458 (2015) 53-61

where E(7) is the dimensionless form of the evaporative flux distri-
bution, which in this work is taken as a constant.

2.3. Modeling the substrate geometry

In order to generate a numerical solution it is necessary to
assume a function for the substrate height. As can be seen in
Eq. (11), the horizontal velocity depends on the spatial derivatives
of this function. If there were a step change in either the substrate
height or the gradient of the substrate, numerical issues would
occur.

In practice, the centre of the trough is typically a horizontal
basin and the walls slope inward in a so-called ‘bank’. There are
two interesting parameters to study, the depth of the basin and
the extent of the bank. A measure for the latter could either be
the gradient of the bank or the distance that it protrudes into the
trough. Eq. (14) is used to provide a continuous function for the
substrate height, within the trough. The external substrate height
is fixed, as shown by Eq. (15)

() = 1, [tanh” (ftanh(l))]b for0<i<1 (14)

a(fy=y, forr=>=1 (15)

The parameter y, is a measure for the trough depth. For larger
%1, the trough is deeper. The extent of the bank is controlled by y,.
For larger y,, the bank is more confined to the periphery of the

trough and has steeper gradient. Figs. 2 and 3 show plots of
Eq. (14) for varying y, and y, respectively.

2.4. Boundary and initial conditions

The boundary conditions at the centreline are symmetry and
zero flux.
a(h+a)

5 =0 & rtho,=0 atr=0 (16)

0{  |eeaa- 1/3
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Fig. 2. Substrate profile a(r) as a function of the trough depth parameter, ;. In this
example y, is taken as y, = 6.
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Fig. 3. Substrate profile &(r) as a function of the bank extent parameter, y,. In this
example y, is taken as y, = 1/3.

At the edge of the droplet the height above the substrate is zero
and the horizontal velocity is zero, since the droplet remains
pinned.

h=0 & v,=0 atr=1 (17)

When the polymer volume fraction has increased, to the extent
that a gelled region forms, the partial differential Egs. (12) and (13)
can only be solved in the liquid region. This necessitates a change
to the outer boundary conditions. At the location of the liquid/gel
boundary, 7, we say

1—f.) [ FE(F)dF
& . :M at 7 =7 (18)
il rehe

h = he

where h¢ and 75r|?:Ff are the height and horizontal velocity at the
location of the liquid/gel boundary, respectively. The expression
for the horizontal velocity can be evaluated numerically and is zero
in the case that f, = 1.

Under certain conditions, the gelation can occur at the centre, as
well as the edge. When this occurs the inner boundary conditions
for partial differential Eqs. (12) and (13) also need to be changed. In
this eventuality, the height and horizontal velocity at the inner
gel/liquid boundary, 7y, are set using

1 Tif ZF(%\ A%
yy, T DA g
i Tiehir

where h;; and 15r}H“ are the height and horizontal velocity at the
inner gel/liquid boundary, respectively.

Once gelation has occurred, the polymer volume fraction
(¢ = ¢pmax) and the height are fixed and no longer evolve with time.

The initial shape of the droplet is taken to be a spherical cap.
There are two scenarios that one can consider. Either the initial
surface shape is fixed, as in Eq. (20) or the initial droplet volume
is fixed, as in Eq. (21).

h(

=l

E=0)+af) =(1+y) -7 for0<F<1 (20)

h(f,t=0)+a(r) =y +c(1-7) for0<7<1 (21)

where the constant c in Eq. (21) is determined for each y;, by ensur-
ing the initial droplet volume is matched to that for the flat sub-
strate case, y; = 0.

o Jo2mr(1- le)df_— Iy 2_7117(2{] — o(F))dr 22)
Jo 2mr(1 —72)dr

The initial conditions are shown for the fixed initial shape and
the fixed initial volume scenarios, in Figs. 4 and 5, respectively.

h+a x
16 1/2
————— 1/3
14
" 1/4
O E T (e — 0
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02 /7= * = ' ~——Substrate shapes
0.0 ‘ : o Y 7
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fig. 4. Sketch to show the initial conditions as a function of the basin depth, y,, for
the fixed initial shape scenario, following Eq. (20). The plots of the substrate height
use Egs. (14) and (15), with fixed y, = 6 and varying ;.
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Fig. 5. Sketch to show the initial condition as a function of the basin depth, y,, with
a fixed initial dimensionless volume of 7/2, following Eqs. (21) and (22). The plots
of the substrate height use Eqs. (14) and (15), with fixed y, = 6 and varying y;.

2.5. Numerical implementation

Following our previous paper [36], we use a mixed numerical
scheme. The change to the spatial derivatives of height is faster
than the change in height itself, provided the time-step is small
enough. This enables Eq. (12) to be linearised.

At each time-step, the discretised, finite difference scheme is
solved using Newton’s method. This provides an update to the
height and polymer volume fraction profiles.

2.6. Groups that we will consider

The polymer content, diffusion and the magnitude of the capil-
lary number can all contribute. For these, the interested reader
may wish to refer to our previous work [36]. In this paper, we
solely focus on the impact of the trough geometry on final film
shape. The two parameters that we examine are the trough depth
%, and the bank extent y,, as defined in Eq. (14).

3. Numerical results and discussion

It is not straightforward to develop a measure for how flat the
final film is. It might be required that the surface film shape,
(h + @), does not undulate. Alternatively, it could be the height
above the substrate h that needs to be spatially uniform. It depends
on the application.

Following previous work on flat substrates [36,37], the measure
for the extent of coffee-ring formation, CR, will be the ratio of the
maximum height of the peripheral ring h, (above the substrate),
to the final central height h.. If CR becomes smaller, the
coffee-ring effect is reduced.

(R = (23)

=

I
&3

The definitions of h, and h, are sketched in Fig. 6.

For P-OLED display applications it is more appropriate that the
film height across the region at the bottom of the trough (i.e. where
o ~ 0) is constant. An alternate form of CR would be required
however the trends seen and conclusions drawn in this report
would be unchanged.

3.1. Influence of the trough depth

The extent to which the trough depth influences the final shape
depends on the relative magnitudes of the initial central height
(14 y,) and the trough depth y,. For small y,, the trough is subtle
and so its effect is reduced. If y, is larger, it can have an appreciable
effect on the final shape.

06 1 Profile

0.5

04

03

0.2

0.1

0.0

0.0 0.2 0.4 0.6 08 10 12

Fig. 6. Sketch of the definitions of the maximum height of the peripheral ring, hj,
and the final central height, h. for the final h(F) profile.

Neither the fixed shape (Fig. 4) nor the fixed volume (Fig. 5) ini-
tial conditions are ideal for making direct comparisons. Either the
initial volumes or initial shapes vary as a function of the trough
depth. It should be noted however, that no matter which scenario
is chosen, there is no qualitative difference in the trends seen with
varying trough depth, when considering the measure CR. For this
reason, the results for the fixed volume initial condition are pro-
vided in Supplementary information. The final h(F) profile is shown
in Fig. 7 as a function of y,, for the fixed shape initial condition.
Similarly, the final h(F) + &(F) profile is shown in Fig. 8. The
solution for y, = 0 is equivalent to the result for a flat substrate.

For both h(F) and h(F) + a(F) profiles, an increased trough depth
results in a larger extent of deposition at the edge and less in the
centre.

Comparison of the profiles for the fixed volume initial condition
can never be completely fair because the initial droplet shapes and
the capillary numbers are different for each value of y,. Whilst
there is qualitative agreement with the trends seen in Figs. 7 and
8, only the fixed initial shape scenario will be considered in the
subsequent quantitative analysis.
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Fig. 7. The final h(r) profile as a function of the trough depth, y,. The results are
shown for Ca =107, f, =1, Pé — 00, ¢o/dmax = 04, %> = 6 and the fixed shape
initial condition.

Fig. 8. The final h(F) + +a(r) profile as a function of the trough depth, y,. The
results are shown for Ca =107, f, =1, Pé — 0o, ¢o/Pmax = 0.4, ¥, = 6 and the
fixed shape initial condition.
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To enable direct comparison of the profiles in Figs. 7 and 8,
rescaling would be required to ensure the total polymer quantity
were the same for each basin depth. However, any rescaling would
apply to both h, and h.. Therefore, the coffee-ring measure CR
would be unaffected by the rescaling. Since CR is the term of inter-
est, the plots in Figs. 7 and 8 are not rescaled.

The measure for the extent of coffee-ring formation in the final

h(r) profile is plotted in Fig. 9, as a function of the basin depth. An
analogous coffee-ring measure, CR*, is applied to the final

h(7) + a(r) profile and is superimposed.

There are two potential causes for the increase in coffee-ring
formation with trough depth. The first is due to the flow profile.
The horizontal velocity changes due to the spatial derivatives of
a. Eq. (24) shows the change to the horizontal velocity relative to
a flat substrate. This alters the quantity of polymer transported
to the edge.

The surface height above the substrate and the polymer volume
fraction both influence the magnitude of Av, and these vary with
time and position. Whilst the magnitude of the flow depends on
time, the sign does not because & is independent of time. To under-
stand the effect the substrate has on the flow profile, the sign of
Eq. (24) is important. If Av, > 0 the outward velocity is increased
and more polymer is transported outwards; the converse is true
for Av, < 0. The value of Az, is plotted as a function of y; in
Fig. 10, at fixed y, = 6.

In all scenarios, A7, is positive at all locations. The substrate
geometry leads to an increase in the outward velocity and so aids
coffee-ring formation. As x, becomes bigger, this behaviour
becomes more pronounced.

The second mechanism that could increase the coffee-ring
effect is due to delayed polymer gelation. This is demonstrated in
Fig. 11, which shows the rate of the liquid/gel front progression
as a function of y, for the fixed shape initial condition. The results
for the fixed initial volume scenario qualitatively agree but are not
reported for conciseness. With an increase in trough depth, it will
take longer for the polymer volume fraction to reach ¢,,,. This is
because as the trough becomes deeper, for a fixed initial shape
above the trough, the fluid depth above the substrate is increased.
The outward capillary flow has a longer period of time to cause the
ring formation, before the height becomes fixed by gelation.

When the trough depth is increased beyond y; =1/2, the
coffee-ring effect continues to become more prominent.
However, for y; > 1/2 this trend weakens slightly, as evidenced
in Fig. 9 by the very subtle decrease in gradient. The reason for this
is that gelation occurs at the centre, before evaporation is

h?  |Pa
[8r3 TF o @9

185 1 80(}

35 Coffee-ring measure

3.0 --"
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20 -

15
10

0.5

0.0 X1
0.0 0.2 04 06 08 1.0

Fig. 9. The coffee-ring measure CR for the final h(F) profile as a function of the
trough depth, y,. An analogous coffee-ring measure, CR*, is applied to the final
h(r) + a(¥) profile and the results are superimposed for comparison. The results are
shown for Ca =107, f, =1, Pé — oo, ¢o/¢max = 0.4, %, = 3 and the fixed shape
initial condition.
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Fig. 10. A plot of the analytical expression for A7, as a function of the trough depth,
%:- The plots are shown for Ca =107, g(¢) =1, h(F) = (1 + %;) — a(F) - > and
%, = 6. A positive A7, corresponds to an increase in the outward horizontal
velocity.
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Fig. 11. The progression of the liquid/gel front location, 7, as a function of time and
the trough depth, y,. The symbol x indicates the position of the original liquid/gel
front when the droplet starts to gel at the centre as well. The results are shown for
Ca=1072, f,=1, Pé — o0, ¢o/¢max = 0.4, x, =6 and the fixed shape initial
condition.

complete. The gelation still occurs at the edge, so the result is a
liquid domain shrinking from both inner and outer boundaries.
The double gelation fixes the height at the centre and accounts
for the reduction in the magnitude of the increase in CR. The
double gelation behaviour becomes more pronounced if the
evaporation suppression factor f,, or the polymer content ¢g/¢max
are reduced.

3.2. Influence of the bank extent

In this section the parameter y, is examined at fixed y,. Fig. 12
shows the final h(F) profile for various y, at fixed y, = 1/3 and
polymer content ¢q /¢« = 0.4.
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Fig. 12. The final h(7) profile as a function of the bank extent, y,. The results are
shown for Ca=107, f, =1, Pé — 0o, ¢o/dmax =04, ¥; =1/3 and the fixed
shape initial condition.
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With increasing y, the coffee-ring effect becomes more pro-
nounced. The peak position of the ring also shifts further towards
the periphery.

Fig. 13 shows the measure for coffee-ring formation for the final
h(F) profile, as a function of y,. An analogous coffee-ring measure is
applied to the final h(F) + &(F) profile and is superimposed.

For y, =1/3, the extent of coffee-ring formation in the
h(F) + a(F) profile reaches a maxima when y, ~ 1.1f y, is increased
further, CR* decreases. This is because the substrate height is sig-
nificantly smaller, so that the peak height in the h(F) + a(F) profile
is reduced. However, the h(F) + a(F) profiles still show a greater
extent of ring formation than for a flat substrate.

The reason for the enhanced coffee-ring effect in the h(F) profile
follows a similar argument to that given in the influence of trough
depth section. Fig. 14 shows Av, as a function of y, at fixed
%1 =1/3.

Again the positive values of A7, indicate an enhanced flow to
the edge and hence an additional coffee-ring effect compared to
a flat substrate. However, as shown in Fig. 14, the magnitude of
Av, is larger when the bank slope is gentle. This trend is in contrast
to the result for CR, shown in Fig. 13. It follows that, for the basin
depth considered (y; =1/3), the delayed gelation mechanism
must be more important than the change in horizontal velocity
caused by the substrate. As illustrated in Fig. 15, the progression
of the liquid/gel front is slower when the bank is steeper. The out-
ward capillary flow, therefore, has a longer period of time to cause
the ring formation, before the height becomes fixed by gelation.

For small values of y, < 1.5, A, can become large and negative
(as shown in Fig. 16). This occurs at the centre of the droplet for y,
just less than 1.5 and at all locations for y, close to zero. The
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Fig. 13. The coffee-ring measure CR for the final h(F) profile as a function of the
bank extent, y,. An analogous coffee-ring measure, CR*, is applied to the final
h(F) + a(F) profile and the results are superimposed for comparison. The results are
shown for Ca =107, f, =1, Pé — oo, ¢/¢max = 0.4 and y; = 1/3.
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Fig. 14. A plot of the analytical expression for Az, as a function of the bank
extent, y, for j, >2. The plots are shown for Ca= 1073, g(¢) =1,
h(F) = (1+x,) —(r) — 7 and y; = 1/3. A positive A7, corresponds to an increase
in the outward horizontal velocity.
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Fig. 15. The progression of the liquid/gel front location, 7, as a function of time and
the bank slope, y,. The symbol x indicates the position of the original liquid/gel
front when the droplet starts to gel at the centre as well. The results are shown for
Ca=1073, f, =1, Pé — 00, do/dmax = 0.4, %, =1/3 and the fixed shape initial
condition.

000 005 0.0 015 020 025 030 035 0.40
0.0E+00 = 7
r

-1.0E:09 “ 1"
-2.0E+09 '.\,'I X2
-3.0e:00 |4 !
-4.08:09 |} ! e 02

-5.0E+09 {; !

-6.0E+09 |, !
-7.0E+09 ;i
-8.0E+09 ',i
-9.0E+09 ;

-1.0E+10 2
AD,.

Fig. 16. A plot of the analytical expression for Av,, as a function of the bank
extent, y, for y,<1. The plots are shown for Ca=107 g(¢)=1,
h(r) = (1+ ;) —a(f) — 7 and x;, = 1/3. A negative A, corresponds to a decrease
in the outward horizontal velocity.

outward horizontal velocity is reduced and the coffee-ring forma-
tion becomes less extreme for both the h(F) profile and the
h(F) + a(T) profile, in the range 0 < y, < 1.5.

For lower values of y,, the height of the droplet surface above
the substrate decreases. It will thus take a shorter time for the
polymer volume fraction to reach the gelation point. The outward
capillary flow causing the coffee-ring effect has a shorter period of
time to act before the height becomes fixed. This mechanism can
also contribute to the reduction in CR.

It is to be noted that a trough with 0 < y, < 1.5 may not be
appropriate for printing in P-OLED applications.

3.3. A central raised trough basin

To demonstrate how the model can be used to investigate the
influence of the substrate on film shape, for arbitrary geometry,
we consider a raised central region in the trough basin such that

% forO<r<1
(25)

Fig. 17 shows the substrate geometry compared to a substrate
with a centrally flat trough basin, for y; =1/3 and y, = 6.

Fig. 18 shows the final h(7) and h(F) + a(F) profiles in both cases,
for y; =1/3 and y, = 6.

The introduction of a centrally raised region in the trough basin
causes a subtle change to the final h(F) profile. The centrally raised

aF) =y, - [tanh’](f : tanh(l))]ZZ +
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Fig. 17. Substrate profile a(r) for a trough with the centrally raised basin, defined in
Eq. (25) and the flat central basin, defined in Eq. (14). The profiles are shown for
%1 =1/3 and y, =6.
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Fig. 18. The final h(F) and h(F) + &(F) profiles for the substrate geometries
plotted in Fig. 17. The results are shown for Ca=107 f, =1, Pé — oo,
¢o/Pmax = 0.4, %, =1/3, ¥, = 6 and the fixed shape initial condition.

region contributes to a larger outward flow and consequently the
coffee-ring effect is slightly enhanced, when considering the
measure CR.

There is a significant change to the h(F) + &(F) profile when the
centrally raised region is introduced. The centrally raised region
reduces the coffee-ring effect, when considering an analogous
measure to CR for the h(F)+ a(F) profile. This is due to the
increased contribution of the substrate height at the centre.

The presence of a centrally raised region can also increase
the likelihood of gelation occurring in the centre, in addition to
the edge. When this occurs the height becomes fixed in the centre
but can continue to decrease at other locations. In this eventuality
the coffee-ring measure, CR, used previously might suggest an
improvement to film shape. However, the final profile could be
far from flat and so a more appropriate, situational dependent,
measure for the film shape would need to be adopted.

4. Conclusion

A volatile droplet, containing polymer and residing on a geo-
metrically patterned substrate was considered. This paper pre-
sented a theoretical investigation of how the substrates’
geometrical properties impact the final shape of the polymer film.
When a droplet is pinned, an area of enhanced deposition occurs,
typically at the edge. This is termed the coffee-ring and is a result
of an outward capillary flow that replenishes liquid material evap-
orated close to the edge.

The purpose of this paper was to identify substrate geometries
that reduce the extent of the coffee-ring effect. We have extended a
thin-film lubrication model [36] to account for a trough-like geom-
etry, typically used in P-OLED displays. Rather than investigating
the absolute height of the final film, we concentrate on the final
height above the substrate, pertinent for our application.
Literature devoted to considering this problem is very limited.

Okuzono et al. [33] exclusively considered rectangular troughs,
with a cartesian coordinate system. We have confirmed the film
shape trend with trough depth and elucidated the influence of
the walls’ slope, for non-rectangular troughs. Further, the mecha-
nism that leads to these trends has been determined.

We find that the substrate profile can alter the internal flow
within the droplet and hence change the resultant film shape.
Increasing the depth of the trough, increases the amount of mate-
rial deposited at the edge and reduces that remaining at the centre;
the coffee-ring effect is increased. The reason for this is two fold.
First, a greater film thickness takes a longer period of time to reach
the gelation concentration. The outward capillary flow therefore
acts for an extended period before the height gets fixed by the
gelation process. Second, the outward flow can be enhanced by
the incline of the trough. These two effects combine but typically
the former is the dominant effect. For the same reasons, the
coffee-ring effect becomes even more apparent if the slope of the
trough walls is increased.

In the future, this work could be extended to introduce
Marangoni flow [19], edge-enhanced evaporation profiles [16]
and a second liquid component [37]. Consideration of smaller
solids content should be possible, however, this situation is com-
plicated by gelation occurring at the centre in addition to the edge
[36,33]. The fundamental assumption of lubrication theory is not
valid for thick droplets, in deep troughs. By relaxing this assump-
tion, a complicated biaxial moving boundary problem would
result. As we have demonstrated, other substrate geometries can
be considered, for example, a substrate with a centrally raised
region in the trough basin. In principle, the substrate shape could
be optimised to achieve the desired film shape.
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