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Title:
Daylighting and solar shading performances of an innovative automated reflective louver system.
Abstract

Traditional windows, as the major source of daylight, have a common problem which is uneven distribution of
daylight in the room. Several innovative daylighting systems such as light shelves, fixed and movable reflective
louvers, reflective sills, prismatic glazing, light pipes etc. have been developed to address this problem. This
paper reports on a research programme that investigates retrofitted solutions to uneven distribution of
daylight in deep-plan office buildings. The work presented here follows initial investigations into the design
and applicability of an automated retrofitted panel thermal shutters which can also act as a sunshade and
daylighting system. The system has a patented function which allows each shutter/louver to be controlled and
placed separately from other louvers. This study evaluates the effectiveness of the system when acting as a
sunshade, light shelf, reflective louver, and reflective sill under clear, overcast, and sunny sky conditions.
According to the results, the system significantly improved daylight distribution and reduced the need for

artificial lighting by 60%.

Keywords

Reflective louver, light shelf, reflective sill, solar shading, daylight, retrofit, energy efficiency.
Nomenclature:

Average Daylight Factor (ADF): is the “ratio of total daylight flux incident on a reference area to total area of
reference area, expressed as a percentage of outdoor illuminance on a horizontal plane due to an
unobstructed hemisphere of sky of assumed or known luminance distribution” [1]. ADF can be calculated using

the following equation [2]:
ADF=TAw6O M/{A(1-R?3)}

T: the glass transmittance; Aw: the effective window area (excluding the frames); 9. the visible sky angle; R:
the average reflectance of the room, M: the maintenance factor; A: the total surface area of the room in m?

(floor + ceiling + walls including the windows).

Limiting depth of the room (L): the maximum room depth which is sufficiently daylit in a room with windows

on one wall only. L is calculated from the following equation [2]:

L/ L/Hw< 2/(1-Rb)

W: room width; H: window head height above floor level; Rb: the average reflectance of surfaces in the back of

the room.
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1 Introduction

The UK’s government has long-term objectives to reduce carbon emissions by 80% by 2050 [3,4]. The
construction industry is one of the major sectors which should contribute towards achieving these objectives.
The construction industry is accounted for 47% of the CO2 emission of the UK, 80% of which is generated from
the “In-Use” buildings [5]. The government has announced its ambition to make new homes and non-domestic

buildings carbon neutral in order by 2016 and 2019 [6,7].

Although important, such policies do not address the existing commercial buildings. With an annual
replacement rate of 1-1.5%, it is estimated that, by 2050, around 70% of the existing buildings will still be in
use, 40% of which have been built before 1985 [4]. Therefore, to achieve such challenging targets, it is vital to

improve the energy performance of the existing commercial buildings.

One of the major areas of improvement is the effective use of natural lighting. Lighting accounts for around 5%
of the total energy consumption in the UK and 10-30% of the energy consumption in buildings such as offices
[2]. Between 20% to 60% saving in lighting is achievable by improved use of daylight [8,9]. Appropriate lighting

controls are however required to achieve such savings [2,10].

There are no legal requirements for daylight levels in the UK [2]; however, according the Workplace (Health,
Safety and Welfare) Regulations, “Every workplace shall have suitable and sufficient lighting” and the lighting
“shall, so far as is reasonably practicable, be by natural light.” Moreover, “Dazzling lights and annoying glare
should be avoided” [11]. Building regulations also do not specify the minimum requirements for daylighting;
however, according to Part L of the Building Regulations, glazing area should not be much less than 20% of the

total floor area as this may result in poor natural lighting and increased use of artificial lighting [12].

Meanwhile, increasing pressure on building designers and owners to improve the thermal performance of
their buildings has resulted in the reduction of the total window areas and replacement of single glazed
windows with double and triple glazed Low-E units. Although such systems improve the thermal performance
of the building, they considerably reduce the transmitted visible light from the exterior to the interior.
Typically “Low E” systems transmit 50% of the light compared to 70% transmission through double glazed units

and 90% transmission through single glazing [10].

Daylight quality and distribution depends not only on the glazing type and area, but also on several other
factors including sky conditions, time, building locations, window proportions and orientations. Daylight is not
therefore a reliable source of lighting as its colour and intensity changes constantly [13,14]. For this reason, a

combination of daylight and electric lighting is required in the buildings.

Average Daylight Factor (ADF) is a concept which is commonly used in early stages of design to estimate the

required window area in order to achieve adequate daylight in a building [15,16]. In simple terms,

E
oe

ADF == 100%, where Ei is the average internal and Eo is the external illuminance [17,18]. According to

BS 6262-2:2005 and BS 8206-2:2008 if ADF is at least 5% and daylight distribution is satisfactory, artificial
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lighting is not normally required; and, if ADF is between 2% and 5% supplementary artificial lighting is usually

required. If ADF drops below 2% electric lighting is almost always required [2,16,19,20].

The use of electric lighting not only depends on the ADF but also on the even distribution of daylight.
Increasing ADF will not be effective on its own if daylight distribution in the building is poor [10]. In this
respect, an area with a 2% daylight factor and a uniformity of 40% will look more attractive than a space with a
daylight factor of 5% and a uniformity level of 10% [21]. A uniformity level of 30-50% [21] is recommended to

maximise benefiting from natural lighting.

Traditional windows, as the major source of daylight, have a common problem which is uneven distribution of
daylight in the room [13]. For this reason, if a room is daylit by windows in only one wall, the depth of the
room should be limited to the “limiting depth of the room” to receive sufficient daylight. However, this is not
always possible and therefore several innovative daylighting systems such as light shelves, fixed and movable
reflective louvers, reflective sills, prismatic glazing, light pipes etc. have been developed to address this

problem. These systems have been explained and tested in several documents [8,10,13,22-33].

Daylighting systems improve natural light distribution and reduce the excessive contrast and use of electric
lighting in buildings [10,13,22]. Many of these systems work optimally under sunny conditions [13,31] and may

cover one or some of the following functions [23]:

e solar shading

e glare protection; and

e daylight balancing

Each of these systems, however, has its own problems and limitations. For instance, light shelves do not in
general increase the light in deeper areas in the room [34] and they may require additional devices, such as
blinds, to control sunlight and glare [10]. Fixed louvers may considerably reduce the interior light

[10,20,22,23]; and, automated systems may cause distraction [10,34].

It is in this context that the author reports on a research programme that investigates retrofitted solutions to
this problem. The work presented below follows initial investigations into the design and applicability of an
automated retrofitted panel thermal shutters as a collaborative work between University College London and
SE Controls. The system has a patented pick & place function [35] which allows each shutter/louver to be
controlled and placed separately from other louvers. This function makes the system extremely flexible
resolving some of the abovementioned problems of daylighting systems. This study intends to evaluate the
effectiveness of the system when acting as a sunshade and light reflector (in three different modes of
reflective louver, light shelf, and reflective sill) under clear and overcast sky conditions. The thermal

performances of the system have been investigated and discussed in another paper [36].
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2 Methodology and equipment

The methodology of this study is to directly compare the results of computer simulations, physical tests carried
out on a one to one scaled model, and parallel measurements taken in an office located in the case study

building. The focus of this study is mainly on the relative and not absolute daylight measurements.

All physical tests were carried out for a minimum of three days under similar sky conditions and averages were
taken to minimise inaccuracies [23]. Also considering dynamic nature of the sky conditions, measurements

were taken every minute to increase the accuracy of the results.

HOBO U12/12 data loggers were used for internal and HOBO Pendant for external daylight measurements.
According to the manufacturer’s technical datasheets, the sensors are appropriate for relative daylight
measurements. A handheld meter (Precision Gold NO9AQ) was also used for the absolute daylight
measurements. The instrument is fully cosine corrected for the angular incidence of light. Pilot studies
revealed considerable deviations in the readings by the HOBO data loggers. All sensors were therefore
calibrated prior to starting the tests. Yet, 5% and 10% reading tolerances should be considered for the internal

and external sensors respectively.

3 Case study building and surrounding environment

The physical tests took place at SE Controls located in Fradley Park, Lichfield, UK. The building is situated on a
business park and is oriented 68 degrees east of due south with some external natural obstructions. The test
rooms were situated on the ground floor and the office was located on the first floor of the building. Figure 1
shows the building orientation, the position of the test windows and the sun path on the 22™ of June, March

and December.
Position of Figure 1

As shown in the panoramic view (Figure 2), apart from some distant rows of trees, the space in front of the
tested building was almost free from obstructions; however, some leafless trees and bushes (around 1800mm

tall and 6m away from the windows) were blocking some of the sky.

Position of Figure 2

3.1 Testrooms and measurement processes

The test and reference rooms were created by dividing a four meter window into two equal parts. Blackout
off-white curtains were used to stop the light from getting inside or outside the rooms. Electric lights and
heaters were also switched off for the duration of the test. The rooms were mirrored in terms of the position
of the curtains and window openings with some minor differences in the position of the ceiling lights. The
ceiling was made out of white ceiling tiles and the floor was covered with dark blue carpet. Figure 3 and Figure

4 show the position of the equipment in the test and the reference rooms.

Page 5 of 29



Position of Figure 3 & 4

Interior illuminance was measured for the work plane at 0.85m above the floor using HOBO U12/12 data
loggers. The data loggers were equally spaced and positioned at, in order, 0.6m, 1.8m, 3m and 4.2m from the
window. Four external data loggers (two attached to the building facade and two placed on the roof facing the
sky with an almost unobstructed horizon) were also positioned outside to measure and record the vertical
(combined ground and sky) and horizontal global illuminance. Two cameras (Cam 1 and Cam 2) were also
positioned at 1.2m (eye level of a seated person) 4.8m away from the window to take still images of the rooms
every minute. Cam 3 also constantly monitored and recorded the sky conditions. In addition, sky conditions

were manually recorded every half an hour.

Moreover, two sensors were attached to Cam 1 and Cam 2 to measure the vertical illuminance at the back of
the room. Sensors 6 and 7 also recorded the transmitted light through the windows. All internal sensors were

set to record the temperature as well as the illuminance.

Reactions of people in different times of the day to different sky conditions, positions of blinds, and the use of
electric lights were also monitored and recorded manually in an office located directly above the test and

reference rooms.

A 1:1 adjustable mock-up of the louver system was built and fixed in the test room to evaluate the
performance of the reflective louver system. The reflective louvers were made from 18mm softwood timber

board one face of which was covered with highly reflective aluminium tapes (Figure 5).

Position of Figure 5

4 Computer simulations

Hundreds of computer simulations were conducted in IES (VE) to investigate the most effective louver
configurations with regards to daylight distribution and blocking the sunlight to avoid glare (for sunny
conditions, while allowing maximum daylight in). The results of the simulations were the basis of the physical

tests explained in the following sections.

A 2.2x5m room with a 2m window and a suspended ceiling at 2.3m above the floor was modelled to reflect the
actual conditions of the test and reference rooms. The sill and head heights of the window were in order
900mm and 2100mm above the finished floor level. The simulations were conducted for the following
configurations on the Equinox (21% of March) for the clear and CIE standard overcast sky conditions and for the

300x20mm reflective louvers:

e Equally spaced louvers at 0°, +/-15°, -30°, and -45° degrees (tilted towards inside)

Page 6 of 29



e Horizontal and +/-15°, -30°, and -45° degrees tilted light-shelf (one louver at 1800mm above the

finished floor and the rest stacked at the bottom of the window)
e Louvers stacked at the bottom of the window (reflective sill)
e Bare window

Birmingham Airport, UK was considered as the location of case study building for the purpose of the

simulations.

4.1.1 Results of simulations

The results of IES simulations showed that the Average Daylight Factor in the room decreased for all louver
configurations regardless of the louvers’ positions and sky conditions. However, the system enhanced the light
distribution and decreased the contrast between the areas closer to the window and areas deeper in the

room.

The simulations also showed that equally spaced horizontal and -15 degrees tilted (towards inside) louvers
noticeably enhanced the light distribution for both clear and overcast sky conditions; however, tilted louvers
provided higher daylight levels at the back of the room. The results also revealed that, although -15 degrees
tilted light-shelf worked slightly better than the horizontal one in terms of daylight redistribution, it was not as
effective as the equally spaced louvers particularly under overcast sky conditions. The light
redirection/distribution properties of the system deteriorated for -30 and -45 degrees tilted louvers. Figure 6,
7, 8 and 9 show the results of the computer simulations for different louver configurations which enhanced

daylight distribution on the work plane at 0.85m above the floor.
Position of Figure 6, 7, 8 and 9

Several simulations were also conducted in IES Radiance for sunny sky conditions from 9am to 1:00pm during
which the sun would fall on the actual tested windows. This was to study the effectiveness of the system to act
as a sunshade and to identify the minimum louver angles (with 5-degree steps) at which the sunlight was
blocked while maximum daylight was let in. The simulations were conducted for the 26" of March (expected

start date of the physical tests) every half an hour for equally spaced louvers. Table 1 summarises the results.

Position of Table 1

5 Physical tests
Physical tests were carried out in the case study building for several months in order to achieve a target
minimum of three days of similar sky conditions for averaging purposes. The results of the physical tests are

explained below.
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5.1 Results of physical tests

As mentioned above, the system was principally tested in two main configurations of sunshade and light-
reflector. In sunny conditions, when direct sunlight fell on the windows (from 9am to 1pm), the system acted
as both sunshade and light reflector; and, for all other conditions (overcast sky and after 1pm) it acted as a
light reflector only. Figure 10 shows the louvers in light shelf and sunshade modes under cloudy and sunny sky

conditions.
Position of Figure 10

5.1.1 Sunny/Clear sky conditions

Figure 11 shows the results of the tests under sunny and clear (without direct sunlight) sky conditions. Sensors
A, B, C, D and E placed in the test room correspond to sensors 1, 2, 3, 4 and 5 which were positioned in the
reference room. The louvers were manually adjusted every half an hour to block the sun from 9am to 1pm
according to the results of IES Radiance simulations explained above. After 1pm, when direct sunlight was not
falling on the windows, the system was tested in various arrangements including stacked/retracted (reflective

sill), horizontal and -15 degrees tilted light-shelf (LS).
Position of Figure 11

According to the results, during morning, although the ADF reduced from around 7% to 1.5%, the system
considerably decreased the contrast and risk of glare in the test room. The results show that, in the worst case
scenario, the light intensity in the reference room has been around 18000lux for Sensor 1 (in the sun) and
300lux for Sensor 4 which means a ratio of 1:60. The light intensity in the test room in the worst case scenario

has been around 4000lux for Sensor A and 270lux for Sensor D meaning a ratio of 1:14.

The results show that the most effective arrangement has been the 5 degrees tilted louvers (11:30am-12pm)
which has increased the light by an average of 19.5% in the middle of the test room compared to the reference
room. During afternoon, none of the arrangements improved the situation and in fact they decreased the

available light by an average of 6% in the second half of the test room.

Figure 12 shows a comparison between the vertical illuminance at the back of the test and reference rooms.
The results show that the system has, in all cases, reduced the vertical illuminance at the back of the room.
The ratio between the vertical luminance in the reference to the test room has decreased from an average of

2.8 in the morning to 1.1 in the late afternoon.
Position of Figure 12

The results also indicate that the system has been rather effective in controlling solar heat gains during
morning when it acted as a sunshade. Although the only barrier between the test and reference rooms has
been the curtains, there has been a considerable temperature difference of around 1.5C° between the test
and the reference rooms in early hours of the morning for the areas outside the sun. The temperature

difference was obviously much higher (around 7C°) for the areas in the sun. The temperature difference would
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gradually decrease until they matched. Figure 13 shows the delayed rise of temperature in the test room

under sunny sky conditions for two days with similar sky condition.

Position of Figure 13

5.1.2 Overcast sky
For the overcast sky conditions, based on the results of IES simulations explained above, the reflective louver

system was tested in three different configurations as follows:

e -15 degrees tilted light-shelf

e -15 degree equally spaced louvers

e Horizontal equally spaced louvers

Figure 14 shows the results of the tests for the -15 degree tilted light-shelf.

Position of Figure 14

According to the results, the system has slightly improved the available light in the second half of the test
room. The available light has almost remained unchanged for areas closer to the window and improved by an

average of 12% at the back of the test room.

The results show that the system has been rather effective and has almost doubled the available light at the
second half of the room when the horizontal illuminance for Sensor 1 dropped below 200lux. However, for
such dull weather conditions, electric lights were required regardless of the system effectiveness. The 12%
average improvement, mentioned above, dropped to an average of 7% when the extreme conditions were

removed from the data.

Comparison between the vertical illuminance at the back of the test and reference rooms (Figure 15) reveals
that the system has reduced the vertical illuminance by around 7% at the back of the room regardless of the

external light levels.

Position of Figure 15

According to IES simulations, equally spaced tilted louvers were considerably effective in terms of daylight
distribution; however, this arrangement noticeably reduced the light levels for areas close to the window. This
was also confirmed by the physical tests (Figure 16). The results revealed that although daylight levels were
reduced by an average of 48% in areas close to the window, it increased by an average of 63% at the back of

the room. The 63% increase dropped to an average of 47% when the extreme conditions (under 20lux for

Sensor D) were removed from the data. The improvement in the daylight distribution was clearly evident when

comparing the test and reference rooms with naked eyes at different times of the day.
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Moreover, the vertical illuminance increased by an average of 25% and the average contrast between front
and the back of the room decreased to around one third. The latter is particularly important in reducing the

glare and use of artificial lighting [21].
Position of Figure 16

Equally spaced horizontal louvers were not as effective as the tilted louvers (Figure 17). In fact this
configuration deteriorated the situation by reducing daylight factor by an average of 64% (from 4.1% to 1.5%)
for the areas close to the window and keeping it almost unchanged for the rest of the room. One explanation
for this may be that the reflected light by the louvers was actually blocked by the next louver above stopping

the system to optimally act as a light reflector.

Position of Figure 17

6 Occupants’ behaviours and natural lighting

In addition to the computer simulations and physical tests, some parallel measurements were taken in an open
plan office located directly above the test rooms. This was particularly important to compare the results with

the actual conditions in the real world.

The reactions of occupants to different sky conditions, positions of vertical blinds and use of electric lights in
the office were continuously monitored and recorded manually. The available daylight levels on the working

plane in different parts of the office and the rooms were also recorded with a handheld light meter.

6.1.1 Results of the observations

The observations showed that people (who were sitting next to the windows) had different attitudes and
reactions towards the sunlight as some would completely block the sun by closing the blinds and others were
more tolerant allowing some sun rays into the building. However, the blinds were never fully open in sunny
conditions. Such different attitudes had a great influence on the available daylight at the back of the room and

the need for artificial lighting.

According to the results of the physical experiments, during early morning, when steeper louver angles (e.g. 45
degree) were required to block the low level sun, available daylight in the test room was considerably lower
than in the reference room. This said, compared with the above offices, available daylight was considerably
better particularly for deeper areas in the room. This was because during sunny mornings occupants would
almost completely shut the blinds to avoid direct sunlight and glare. This, in almost all cases, would result in
switching the electric lights on as the office would look extremely dark particularly for people seating away

from the windows.

Table 2 shows a comparison between the available daylight on the working plane at 0.85m above the floor in

the office and the test room for three days between 9:00am and 9:30am under sunny conditions.
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Position of Table 2

According to the results, in the best conditions, available daylight in the office has been around 8 times less
than in the test room. In the worst case scenario, available daylight in the office has been around 43 times less
than in the test room. The electric lights were therefore switched on particularly for people sitting away from

the windows.

The observations also revealed that people's reaction to direct sunlight and glare was almost immediate as
they would almost immediately close the blinds to avoid glare; however, they did not react as quickly when
the sky conditions changed to, for example, cloudy. Therefore, the blinds remained closed and electric lights
remained on despite the fact that adjusting the blinds would have removed the need for artificial lighting. Even
after delayed reactions, when people opened the blinds, electric lights remained on, in almost all cases, for the

rest of the day.

Other studies mention this as a potential issue in offices with manually controlled blinds [10,22,29,34,37].
According to Littlefair (1996), in offices with manual light switches, depending on the available daylight at the
beginning of the day, people switch the lights on and leave them on for the rest of the day [22]. Some studies
however indicate that occupancy patters and staff habitual actions are the key reasons for switching the lights
on rather than the external illuminance [38]. Regardless of the reasons, this situation can result in considerable
energy waste in buildings with manually controlled blinds and lights. An automated system combined with

automatic light switches could resolve this issue.

7 Discussions

This section intends to evaluate the potential savings in electric lighting when the reflective louver system acts
optimally under overcast, sunny and clear sky conditions. The tested system proved to be very effective as it
considerably decreased the contrast throughout the test room and increased the available daylight in deeper
areas of the room by an average of 47% and 19.5% under overcast and sunny sky conditions respectively.

However, these figures do not represent the potential savings in electric lighting.

The tested windows were double pane tinted glass in an aluminium glazing system. The initial tests on the
windows under overcast sky conditions revealed that they decreased the transmitted light to just under a third
(32.8%) compared to a typical double glazed unit which transmits around 70% of the light [10]. According to
CIBSE, depending on the sky condition, light transmissions under 32-38% is usually regarded as unsatisfactory
and tinted windows are not recommended for daylighting systems and should be avoided if possible[10]. A
correction factor of 2.13 (70/32.8= 2.13) was therefore applied to the light intensity readings to evaluate the

overall energy saving performances of the system for a typical double glazed window.

According to SLL Lighting Handbook published by CIBSE, the recommended maintained illuminance in “Open
plan office — mainly screen based work” is 300lux [34]. The following results are concluded assuming that a

light dimmer system is installed in the case study building to maintain the light intensity [39] to a minimum of
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300lux throughout the office. It is also assumed that there is a linear relationship between energy
consumptions and light levels [40]. For the purpose of the evaluations, the office was divided into four zones

of:

Zone 1: 0.6m away from the window (Sensors 1 and A)

Zone 2: 1.8m away from the window (Sensors 2 and B)

Zone 3: 3m away from the window (Sensors 3 and C); and

Zone 4: 4.2m away from the window (Sensors 4 and D)

Similar to actual conditions of the case study building, one set of fluorescent lights was considered for Zones

1&2 and another set for Zone 3&4.

According to the results of both physical tests and computer simulations, -15-degree equally spaced louver
was the optimum louver arrangement for the system under overcast sky conditions. For this arrangement the
louver system maintained the minimum 300lux requirement in Zone 1 however it increased lighting
requirement by around 5.6% in Zone 2. The electric lighting requirements reduced by around 5% and 8.6% in
Zone 3 and Zone 4 of the office respectively (Table 3). Therefore, it could be argued that the system reduced

the electric lighting requirements by an average of 8% in total.

Position of Table 3

For sunny conditions, similar to the reference room with bare windows, the system provided the minimum
300lux requirement for all zones during the morning (Table 4) meaning a 0% saving in electric lighting.
However, considerable savings are achievable when results are compared with the real conditions in offices

with manually controlled blinds.

Position of Table 4

According to the results of the observations explained above, during sunny conditions, occupants adjusted the
blinds to avoid glare. This in turn resulted in great variations in available daylight particularly at the back of the
office. As during sunny mornings, blind were almost in all cases closed until 1pm, electric lights were required
in the second half of the room. Results of the observations and measurements revealed that the average
available lights for areas close to and far from the windows were 494lux and 57lux respectively. Therefore,
electric lighting was required for the second half of the room to maintain the minimum 300lux requirement.
This is while the reflective louver system in sunshade mode provided the required 300lux in 97% of the times

for all zones meaning an average saving of 40.5% compared with manually controlled blinds.

Meanwhile, considering the existing controls for electric lights in the case study building (where all lights for
different zones were controlled together), electric lights were switched on even for the Zone 1&2 which were

receiving enough daylight. This situation resulted in 50% more energy waste in sunny conditions. Therefore, a
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maximum saving of 90.5% (40.5%+50%= 90.5%) in electric lighting is achievable if the automated reflective
louver system and electric lighting controls are installed in the office. Similar conditions apply when the system
acts as a reflective louver under overcast sky conditions meaning a saving of up to 58% (8%+50%=58%) when
compared with manually controlled blinds and light switches (Table 5). It is obvious that even more savings are
achievable considering the occupants’ behaviours which may leave the lights on for the entire day regardless

of sky conditions and available daylight levels in different times of the day [10,22,29,34,37].

For the clear sky (with no direct sunlight on the windows), as indicated by the results of the physical tests, due
to the adverse performance of the system, the louver system is assumed to be kept retracted which means 0%
saving in electric lighting while allowing the maximum view out. Table 5 summarises the possible savings in

electric lighting for different conditions with and without reflective louver system in the case study building.
Position of Table 5

The overall potential savings were also calculated for the duration of the study (11weeks). According to the
observations and recorded daylight levels by data loggers, there were 78 hours of sunny conditions during
mornings (when the system should act as a sunshade) representing 18.2% of the total testing period excluding
weekends. There was also 28 hours of clear sky conditions during afternoons (6.5% of total testing period)
leaving 75.3% cloudy conditions when the system should act as a reflective louver. Therefore, it could be
argued that around 60% ([(18.2 X 90.5)+(6.5 X 0)+(75.3 X 58)]%= 60.14%) saving in electric lighting could have
been achieved if the reflective louver system and lighting controls were installed in the office during this

period.

8 Conclusions

Auxiliary sidelighting systems such as light-shelves and reflective louvers, in general, reduced the average
daylight in the room [10,20,23,34]; however, they potentially decrease the need for artificial lighting by
improving daylight distribution in the building [10,13,22].

Similar to other daylighting systems, the tested device worked optimally under sunny conditions by decreasing
the contrast between the areas close to and far from the windows. Unlike some systems (e.g. fixed light-
shelves) which may cause low daylight levels under overcast sky conditions [41], the tested system proved to
be effective under overcast sky conditions as it significantly improved the available light at the back of the
room by an average of 47% when acting as reflective louver; however, it was not as effective under clear sky

conditions.

The effectiveness of automated daylighting systems in buildings becomes more evident when their
performance is compared with traditional manually controlled shading devices such as venetian blinds.
Automated systems can eliminate the extreme conditions and remove the delayed reaction of occupants to

sky conditions providing a much more robust and balanced daylight levels in the building. It should be born in
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mind that daylighting systems should be used in conjunction with electric lighting controls to achieve their

optimum performance [2,10]. Only then they can reduce the use of artificial lighting in buildings.

The tested system, offered an average saving of 60% in electric lighting when it was used in conjunction with
electric light controls. The performance of daylighting systems, however, depends on several issues including
the occupants’ behaviours, electric light zoning, window properties and orientations, building locations, and
climatic conditions of the country where they are used. Computer simulations and/or physical measurements

are therefore required for accurate evaluation of such systems in different conditions.

The benefit of some daylighting systems go beyond their light distribution properties. Similar to reflective
internal solar blinds [13,42], the tested system delayed the air temperature rise by blocking/reflecting the
sunlight which is considered as one of the most important factors in overheating in buildings [2,29,34,43,44].
Delayed temperature rise in addition to high daylight efficiency are particularly important when considering
natural and mechanical ventilations strategies to reduce the cooling loads. Such potential benefits of

daylighting systems need to be explored in more detail.

As a general issue, reflective louver systems may block the outside view by covering a large portion of the
windows. Moreover, although automated systems have a better daylighting performance [25], they may cause
distractions [10,34]. Careful design should therefore be considered to minimise such negative effects. In
addition, many auxiliary daylighting systems should be integrated in the design stage of the buildings in order
to achieve their best performance [13]. The tested device, however, proved to be an effective retrofitted

product which can considerably reduce the need for artificial lighting in buildings.

This research investigated the effectiveness of an innovative automated daylighting system when acting as a
sunshade, light shelf, reflective louver, and reflective sill. Further research is required on the following

subjects:

e An appropriate control strategy should be developed for the system not only to maximise daylight
distribution but also to minimise the operation frequency (to minimise distraction and energy

consumption) by finding optimum configurations in response to internal and external conditions.

e The overall energy performance of the system (combination of thermal, daylighting, and solar

shading) should also be studied in more detail.

e  This study was not in general concerned about the possible secondary glare caused by the system

when acting as a light reflector. More research is required in this respect.
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Location: Birmingham Airport

Latitude: 52.45 N North
Longitude: 1.73 W PN

Local Time Meridian: 0:00 W 350 10 .
Sun Paths Shown: .
— 22nd. June

—— 22nd. March/September
- - . 22nd. December
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West 270" 90 East
260

250" ' : 4 % 116

Figure 1: Sun path diagram and position of the tested windows in the case study building.

Figure 2: panoramic view of the landscape in front of the tested windows.
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Figure 3: Positions of the sensors and cameras in the test and reference rooms.

Figure 4: View of the rooms and positions of data loggers and cameras.
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Figure 5: 300mm louvers made from timber. One face of the louvers was covered with reflective aluminium tapes.
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Figure 7: Equally spaced horizontal (left) and -15 degrees tilted (right) louvers under clear sky.
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Figure 8: Equally spaced horizontal (left) and -15 degree tilted (right) louvers under overcast sky.
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Figure 9: -15-degree tilted light shelf. Left: Overcast sky; Right: Clear sky.
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Figure 11: Direct comparison between the results in the test and reference rooms under sunny and clear sky conditions.
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Figure 12: Vertical illuminance at the back of the test and reference rooms under clear sky conditions.
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Figure 16: Equally spaced -15 degree tilted louvers under overcast sky conditions.
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Figure 17: Equally spaced horizontal louvers under overcast sky conditions.
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9:00-10:00 am 45°

10:00-10:30 am 35°

10:30-11:00 am 25°

11:00-11:30 am 15°

11:30-12:00 pm 5°

12:00-12:30 pm 0°

12:30-1:00 pm -15°

After 1:00 pm No direct sunlight on the window

Table 1: Minimum angle of louvers to block the direct sunlight from 9am to 1:00pm.

Office 162 24 450 50 87 8
Test Room 4048 327 3400 390 3700 310
Table 2: Comparison between available daylight in the office and the test room in sunny conditions.
Time Sensorl Sensor2 Sensor3 Sensor4 SensorA SensorB SensorC Sensor D
9-10AM  1160.0  223.7 96.7 61.0 ‘ 602.0 ‘ 206.8 111.4 ‘ 82.9
10-11AM | 1359.1  264.3 117.8 | 735 706.9 245.9 135.0 101.7
11-12PM  1073.6  209.1 90.7 55.0 ‘ 557.3 ‘ 1915 102.8 ‘ 76.4
12-1PM 9983 198.0 86.6 49.8 522.4 182.2 97.9 72.7
1-2 PM 1556.9 298.3 131.9 79.4 ‘ 804.4 ‘ 277.6 152.1 ‘ 116.2
2-3PM 12952 2561 1126 69.6 678.7 236.7 127.8 97.5
3-4PM 1095.7  211.2 90.8 53.5 ‘ 565.1 ‘ 196.1 105.6 ‘ 78.1
4-5PM 805.1  153.2 64.3 34.3 413.7 141.9 77.6 57.8

Table 3: Average available daylight in different zones of test and reference rooms for a typical double glazed window
under overcast sky conditions (lux)

Time Sensorl Sensor2 Sensor3 Sensor4 SensorA SensorB SensorC  Sensor D
9-10 AM 15388.4 15730.5 2559.3 1335.3 3115.3 1095.9 605.5 474.1
10-11 AM | 27437.9 6858.3 1430.2 1058.1 6393.0 1609.9 739.3 546.1
11-12PM | 33673.5 1879.5 975.3 693.8 6329.8 1970.5 787.6 506.7
12-1PM 3399.5 1146.1 581.5 410.2 2888.9 1129.0 546.6 364.2

Table 4: Average available daylight in different zones of test and reference rooms for a typical double glazed window
under sunny conditions (lux)
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Sunny conditions 90.5% 40.5%
Overcast sky 58.0% 8.0%
Clear sky without direct sunlight 0.0% 0.0%

Table 5: Potential savings in the case study building for various conditions when electric light controls are used in

conjunction with the reflective louver system.
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Highlights:

Reflective louvers potentially reduce the need for artificial lighting by improving daylight distribution in the

building.

The tested system reduced the need for artificial lighting by 60%.

The tested device works optimally under sunny conditions.

The tested system is considerably effective under overcast sky conditions.

The tested system delayed the air temperature rise by blocking/reflecting the sunlight reducing the cooling

loads.
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