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Abstract

On a complex variety X, two different approaches to K-theory are available: the
algebraic K-theory of the variety, and the topological K-theory of the underlying
topological space XC. In this context, the algebraic variant known as Hermitian
K-theory corresponds to topological KO-theory. Our aim is to compare the two
approaches.

We start by constructing a comparison map from certain Hermitian K-groups
of X to the KO-groups of XC. It is clear what this map must be on groups in
degree zero, but the definitions of relative and higher groups differ widely in
the algebraic and the topological setting. This difficulty can be overcome by
viewing relative and higher groups as subgroups of degree zero groups of certain
auxiliary spaces.

Once the definition of our comparison map is in place, we prove a number
of fundamental properties, in particular compatibility with pushforwards along
closed embeddings. We also show how we can use it to compare an exact
sequence relating usual algebraic K-theory to Hermitian K-theory with a portion
of the Bott sequence in topology. This finally allows us to deduce that the
map is an isomorphism on smooth cellular varieties. We conclude with some
details concerning projective spaces, for which independent computations of the
algebraic and the topological groups exist.
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0 Introduction

K-theory is an approach to the classification problem of vector bundles on a
given space that has been studied intensely in both algebraic geometry and
topology. In the latter context, the K-groups of complex and real vector bundles
give rise to generalised cohomology theories, known as topological K- and KO-
theory, respectively. These theories are well-understood. For example, the K-
groups of a topological space are 2-periodic, and both groups are known in many
examples. In algebraic geometry the picture is more complicated. In particular,
the cohomology theory associated to the K-theory of algebraic vector bundles
on a variety, usually referred to as “higher algebraic K-theory”, is not periodic,
and hardly any higher groups Ki are known.

Closely related to K-theory are the Grothendieck-Witt and Witt groups
of a space, which, rather than classifying plain vector bundles, classify vector
bundles equipped with non-degenerate symmetric bilinear forms. As we will see,
the Grothendieck-Witt group of complex vector bundles on a topological space
is nothing but its KO-group. In algebraic geometry, Grothendieck-Witt groups
lead to “Hermitian K-theory”. The Witt group of a space can be defined as a
quotient of its Grothendieck-Witt group by its K-group. Witt groups appear as
certain Hermitian K-groups in negative degrees.

Recently, Paul Balmer introduced “shifted” versions of Witt groups, Wi,
for i ∈ Z4 [4, 5]. Interestingly, not only does each of these give rise to
a shifted Hermitian K-theory, but also the shifted Witt groups form a 4-
periodic cohomology theory on smooth varieties in themselves. Denoting
the corresponding Grothendieck-Witt groups by GWi, the picture could be
tentatively summarised by the left half of the following diagram, in which the
dotted arrows indicate the direction of the boundary maps in the corresponding
long exact cohomological sequences. More precise information can be found in
[16], [17] and [15], for example.

... // K3
// K2

// K1
// K0

// 0 K0 // K1
uu

... higher Hermitian K-theory // GW0 // W1

��

KO0 // KO1

||

... higher Hermitian K-theory // GW1 // W2

��

��

KO2 // KO3

||

yy

... higher Hermitian K-theory // GW2 // W3

��

KO4 // KO5

||

... higher Hermitian K-theory // GW3 // W0 KO6 // KO7

_ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _

_ _ _ _ _ _�
�
�
�
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�
�
�
�
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�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _

For a complex variety X we can simultaneously consider algebraic K-theory
and the topological K-theory of its underlying topological space XC, displayed
in the right half of the diagram. In this essay, we construct a comparison map
w from the algebraic groups inside the dotted box on the left to the groups on
the right. Our main result, Theorem 3.1, says that for smooth cellular varieties
this map is an isomorphism. Though this was already known for the plain K-
groups K0 and K0, the result seems to be new for Grothendieck-Witt groups
and KO-theory.
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1 Construction of a comparison map

1.1 Basic definitions

K-groups. We start by recalling some basic definitions. The isomorphism
classes of vector bundles on a fixed space form an abelian monoid under the
operation of direct sum. The standard way of turning such a monoid into
a group is the following construction: the Grothendieck group of an abelian
monoid (M,⊕) is the free abelian group on the elements of M modulo the
relation [x] + [y] = [x ⊕ y]. So the obvious candidate for the K-group of a
space is the Grothendieck group of the abelian monoid of vector bundles over
it. Indeed, in the case of a paracompact Hausdorff space X, for example, this
is exactly what K0X is. In general, the K-group is only a quotient of this
Grothendieck group:

Definition 1.1 ([1, § 2]). Let A be an exact category. Its K-group KA is
the Grothendieck group of isomorphism classes of objects of A modulo the
equivalence relation generated by the following identification: for any exact
sequence E � F � G in A, we have [F ] = [E] + [G] in KA.

For a general topological space X, we obtain K0X by taking A to be the
category of continuous complex vector bundles VectCX over X. Note that
when X is paracompact and Hausdorff, VectCX is split exact, so the relation
in the definition becomes vacuous. Thus, two vector bundles E and F on X
define the same class in K0X if and only if they are stably isomorphic, i.e. if
E ⊕ Cn ∼= F ⊕ Cn for some trivial bundle Cn.

For an algebraic variety, we take A to be the category of algebraic vector
bundles (or equivalently of locally free sheaves of finite rank) VectX on X. The
corresponding K-groups will be denoted by K0X. In general, VectX is not split
exact, so much more information is lost by passing to K0X.

Grothendieck-Witt groups. The definition of Grothendieck-Witt groups
requires some more preliminaries. In general, they can be defined for any
exact category with duality, i.e. any exact category A equipped with an exact
functor ∨: A → Aop (mapping objects and morphisms to their “duals”) and a
natural isomorphism η : id→ ∨∨ satisfying (ηE)∨◦ ηE∨ = idE∨ (the “double-dual
identification”). A symmetric space over such a category is an object E of A
equipped with a symmetric isomorphism ε : E → E∨, where symmetric means
that ε∨◦ ηE = ε. Two such spaces (E, ε) and (F, φ) are considered isometric if
there exists an isomorphism i from E to F compatible with the symmetric forms
in the sense that i∨◦ φ ◦ i = ε. The isometry classes form an abelian monoid
under the operation of orthogonal sum: (E, ε) ⊥ (F, φ) := (E ⊕ F, ε⊕ φ).

For example, the usual duality on vector bundles makes both of the categories
above into exact categories with duality. Here, a symmetric space corresponds
to a vector bundle E with a non-degenerate symmetric bilinear form E⊗E → C,
and the notions of isometry and orthogonal sum are the usual ones.

Returning to the general context, from any object E of A we can construct a
symmetric space H(E) := (E ⊕ E∨,

�
0 id
η 0

�
), the hyperbolic space over E. These

spaces are the simplest examples of the more general class of metabolic spaces:
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a symmetric space (M,µ) is metabolic if it has a subobject j : L � M , called
Lagrangian of M , such that

L //
j

// M
j∨◦µ

// // L∨

is exact.

Definition 1.2 ([12, 2.9]). For an exact category A with duality, the
Grothendieck-Witt group GWA is the Grothendieck group of isometry classes
of symmetric spaces modulo the equivalence relation generated by the following
identification: for any metabolic space (M,µ) with Lagrangian L, we have
[M,µ] = [H(L)] in GWA.

If the category A is split exact, then for any metabolic space (M,µ) as
above we can find another metabolic space (M ′, µ′) such that the orthogonal
sum (M,µ) ⊥ (M ′, µ′) is isometric to (H(L), µ) ⊥ (M ′, µ′), so the relation on
the Grothendieck group is trivial [12, Corollary 2.12]. In fact, if A moreover
contains 1

2 , then (M,µ) is itself isometric to H(L).
Of course, if X is an algebraic variety, GW0X is the Grothendieck-Witt

group of VectX equipped with the usual duality and double-dual identification,
and if X is a topological space, we consider GW(VectCX). If X is paracompact
and Hausdorff, this is in fact equal to the K-group of real vector bundles on X,
KO0X. As both VectCX and VectRX are split exact in this case, this is saying
that the Grothendieck group of isometry classes of complex vector bundles with
a non-degenerate symmetric bilinear form is isomorphic to the Grothendieck
group of real vector bundles. In fact, this is already true on the level of monoids:

Lemma 1.3. For a paracompact Hausdorff space X, the abelian monoid of
isomorphism classes of continuous real vector bundles is isomorphic to the
monoid of isometry classes of continuous complex vector bundles equipped with
non-degenerate symmetric bilinear forms.

Proof. On any real vector bundle E over a paracompact Hausdorff space, we
may choose some inner product σ. Then the C-bilinear extension σC determines
a non-degenerate symmetric bilinear form on the complex vector bundle E⊕iE.
The inner product σ on E is unique up to isometry: Given any inner product
δ on E∨, there exists a unique positive definite symmetric g : E → E∨ defining
an isometry between (E, σ) and (E∨, δ). This can be checked locally. So if
σ′ is another inner product on E, the symmetric spaces (E, σ) and (E, σ′) are
isometric because they are both isometric to (E∨, δ). An isometry between
(E, σ) and (E, σ′) extends C-linearly to an isometry between (E ⊕ iE, σC) and
(E ⊕ iE, σ′C). So we obtain a well-defined map by sending E to (E ⊕ iE, σC).

Conversely, any complex vector space V with a non-degenerate symmetric
bilinear form φ can be decomposed as V = W ⊕ iW such that the real part
of φ, <(φ) : W ⊗W → R, is positive definite on W and negative definite on
iW . Given a complex vector bundle F with such a form, it is in fact possible
to choose fibre-wise decompositions in such a way that the positive definite
subspaces form a real subbundle E ⊂ F , see for example [2, Chapter V, § 2]. As
is also shown there, this subbundle is uniquely determined up to isomorphism:
if F = E′ ⊕ iE′ is another such decomposition, then E cannot intersect iE′,
whence the composition E → F → F

iE′
∼= E′ is an isomorphism. So we obtain

another well-defined map by sending (F, φ) to E.
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The two mappings described are clearly morphisms of monoids, and they
are mutually inverse.

We will use the identification of KO0X with GW(VectCX) implicitly in all
that follows.

Suppose now that X is an algebraic variety over C. Its underlying
topological space XC (i.e. its set of closed points equipped with the complex
topology) is a paracompact Hausdorff space. Moreover, the forgetful functor
VectX → VectC(XC) sending a vector bundle over X to the underlying contin-
uous complex vector bundle on XC is exact and preserves duality, so it induces
comparison maps

w : K0X → K0(XC)

w : GW0X → KO0(XC)

Witt-groups. For any exact category A with duality, there is a forgetful map

F : GWA → KA,

sending [E, ε] to [E]. In the other direction, we have already seen how to
associate a hyperbolic space H(E) to any object E of A. This induces a map

H : KA → GWA.

Definition 1.4 ([12, 2.11]). The Witt group WA of an exact category A is the
quotient of GWA by the image of H.

Under the identification of KO0X with GW(VectCX), F corresponds to the
complexification map

c : KO0X → K0X,

sending [E] to [E ⊗ C], and H corresponds to the realification map

ρ : K0X → KO0X,

sending the class of a complex vector bundle to the class of its underlying real
vector bundle. Thus, the two versions of w above induce a third version,

w : W0X → KO
K

0
(XC),

where KO
K

0
(XC) denotes the quotient of KO0(XC) by the image of K0(XC) under

realification.

Twisted groups. The usual duality on VectX is not the only possible one.
For example, if L is a line bundle on X, then E 7→ E∨⊗ L defines an alternative
duality. Note that (E∨⊗ L)∨⊗ L is canonically isomorphic to E, so we have a
natural double-dual identification ηL.

Definition 1.5. For an algebraic variety X with a line bundle L, the
Grothendieck-Witt group of X with coefficients in L is

GW0(X;L) := GW(VectX, ∨⊗ L, ηL).
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Likewise, for a topological space X with a complex line bundle L,

KO0(X;L) := GW(VectCX,
∨⊗ L, ηL).

All maps discussed above extend to this twisted context.

1.2 Algebraic K-groups with support

Given an algebraic variety X with a closed subvariety Z, the K-groups of X
and of the complement of Z fit into an exact sequence

KZ
0 X → K0X → K0(X − Z).

The group on the left is the “K-group of X with support on Z”. Similarly, we
have notions of (Grothendieck-)Witt groups with support, GW0

ZX and W0
ZX.

In order to define these, one usually passes from a category of vector bundles
to some category of complexes of these: Given any exact category A, the
bounded chain complexes over A form an exact category with weak equivalences
(ChbA, quis), where the exact sequences are those which are degreewise exact
in A, and the class of weak equivalences is the class quis of quasi-isomorphisms
[14, Definition 2.8 and Example 2.9]. Moreover, a duality on A induces a duality
on ChbA. The definitions of K and GW can be extended to this context such
that the inclusion A ↪→ ChbA in degree zero induces isomorphisms

i0 : KA
∼=−→ K(ChbA, quis)

i0 : GW(A,∨, η)
∼=−→ GW(ChbA,∨, η, quis)

(1)

[14, Theorem 2.16; 13, Proposition 6.4]. Thus, for a variety X, the groups K0X
and GW(X;L) can be expressed in terms of the category Chb(VectX), and
groups with support can be defined by using the full subcategory ChbZ(VectX) of
bounded chain complexes with homology supported on the closed subvariety Z.

We include here the complete definitions of the K- and Grothendieck-Witt
groups of an exact category with weak equivalences as a convenient reference
for the following section, cf. [13, 2.4].

Definition 1.6. Let (C, ω) be an exact category with weak equivalences.
K(C, ω) is the Grothendieck group of isomorphism classes of C modulo the
equivalence relation generated by the following identifications:

• For any exact sequence E � F � G in C, we have [F ] = [E] + [G].

• For any weak equivalence E '→ F in ω, we have [E] = [F ].

For an exact category with weak equivalences and a duality (C,∨, η, ω), the
Grothendieck-Witt group GW(C,∨, η, ω) is the Grothendieck group of isometry
classes of symmetric spaces over (C,∨, η, ω) modulo the following identifications:

• For any symmetric space (F, φ) over C and any weak equivalence g : E '→ F
in ω, we have [F, φ] = [E, g∨◦ φ ◦ g].

6



• Suppose a symmetric space (F, φ) fits into a commutative diagram

E

'γ∨◦η
��

// // F

'φ

��

// // G

'γ

��

G∨ // // F∨ // // E∨

such that the rows are exact, the second row is the dual of the first, and γ
is a weak equivalence. Then [F, φ] = [E ⊕G,

�
0 γ
γ∨η 0

�
] in GW(C,∨, η, ω).

1.3 Relative topological K-groups

In topological K-theory, the existence of relative groups K(X,A) of a pair of
spaces (X,A) is a natural outcome of the general machinery that extends K-
groups to a cohomology theory. The key fact we need for the moment is that
when X retracts onto A we have short exact sequences:

K0(X,A) � K0X � K0A

KO0(X,A;L) � KO0(X;L) � KO0(A;L|A)
(2)

In general, we only have exactness in the middle, and higher and lower K-groups
to the left and to the right. We will come back to this in Section 1.5.

In order to extend the map w above to a relative context, it would be
convenient to have a description of (relative) topological K- and KO-groups
in terms of complexes. At least for K0, several similar such descriptions
exist in the literature, e.g. in [22] and [29]. The approach taken here differs
slightly from these in that no “geometric” notion of homotopy is used in
defining relations on the complexes. Instead, the constructions employed in
the algebraic context are carried over verbatim. Indeed, for any space X which
is paracompact and Hausdorff, K0X is simply K(VectCX) ∼= K(Chb(VectCX)),
and KO0X is GW(VectCX) ∼= GW(Chb(VectCX)). Unfortunately, for relative
groups corresponding identities are less obvious. The result given here may in
itself be rather unsatisfactory, but it serves our purpose.

For any topological pair (X,A), let Chb(X,A) denote the category
ChbX−A(VectCX) of bounded chain complexes of continuous complex vector
bundles over X that are acyclic over A.

Proposition 1.7. For any paracompact Hausdorff space X with a closed
subspace A, there exist natural maps

u : K(Chb(X,A))→ K0(X,A) and

u : GW(Chb(X,A))→ KO0(X,A),

inverse to the isomorphisms i0 in (1) for empty A.

The proof will take up the remainder of this section. We follow the
strategy employed in [29]. In fact, in the case of K-theory, hardly any
alterations to the proofs given there are necessary. To fix notation, let X
and Y be paracompact Hausdorff spaces which intersect in a common closed
subspace A. Our intermediate aim is to show that the excision isomorphism
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K0(X,A) ∼= K0(X ∪A Y, Y ) has an analogue for K(Chb(X,A)), and likewise for
KO-theory. We need a series of lemmas.

Lemma 1.8 (Extension of complexes). For any complex E• in Chb(X,A), there
exists a complex ÜE• in Chb(X ∪A Y, Y ) such that ÜE•|X is quasi-isomorphic to
E• and contains E• as a direct summand.

Proof. cf. [29, Appendix, proof of Lemma A.2]

Lemma 1.9 (Extension of quasi-isomorphisms). For complexes E• and F• in
Chb(X ∪A Y, Y ), any quasi-isomorphism f : E•|X → F•|X extends to a quasi-
isomorphism E• → F•.

Proof. cf. [29, loc. cit.]: As E• and F• are acyclic over A, f |A is homotopic to
0. So fi|A = di+1hi + hi−1di for some continuous functions hi : Ei|A → Fi+1|A
defined on A. As Y is paracompact and Hausdorff, these can be extended to
functions ehi : Ei|Y → Fi+1|Y . An extension ef of f is then obtained by definingef to be di+1

ehi + ehi−1di on Y and f on X.

Given a short exact sequence of complexes of vector bundles on X, we know
that the maps split in each degree. However, in general it is not clear whether
the sequence also splits as a sequence of complexes. The next lemma gives
a sufficient condition for the existence of such a splitting in the category of
chain complexes ChbA over any split exact category A. Call a monomorphism
(epimorphism) admissible if it appears as the first (respectively second) map in
a short exact sequence. Then the lemma can be stated as follows:

Lemma 1.10 (Splittings). Let A be a split exact category and ChbA the exact
category of bounded chain complexes over A, such that the admissible morphisms
in ChbA are those which are degreewise split. If E• and F• in ChbA are acyclic,
then any admissible monomorphism (epimorphism) f : E• → F• splits as a map
of complexes: there is a morphism of complexes s : E• ← F• such that s ◦ f = id
(f ◦ s = id).

Proof. As E• and F• are acyclic and A is split exact, we can write

En = E′
n+1 ⊕ E′

n

Fn = F ′
n+1 ⊕ F ′

n

such that all differentials have the form ( 0 1
0 0 ). It then follows from the

commutativity of

En
fn //

��

Fn

��

En−1

fn−1
// Fn−1

that each fn has the form

E′
n+1 ⊕ E′

n

�
f ′n+1 g

′
n

0 f ′n

�
// F ′
n+1 ⊕ F ′

n
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for some g′n. Now, if each fn is a split monomorphism with splitting
�
s′n+1 t′n
u′n+1 v

′
n

�
,

then s′n+1 is a splitting of f ′n+1 and sn :=
�
s′n+1 t

′
n

0 s′n

�
defines the desired splitting

of f that commutes with the differentials. The case of a split epimorphism works
analogously.

Proposition 1.11. The restriction map E• 7→ E•|X induces an isomorphism

K(Chb(X ∪A Y, Y ), quis)
∼=−→ K(Chb(X,A), quis).

Proof. Define a map i in the other direction by mapping the class of a complex
E• in Chb(X,A) to the class of an extension ÜE• as described in Lemma 1.8.
This map is well-defined:

• If ÜE• and Ē• are two different extensions of E•, they are quasi-isomorphic
over X and hence also over X ∪A Y , by Lemma 1.9.

• Likewise, if E• ' F• then ÜE• ' ÜF•. (Note that the notions of quasi-
isomorphism and chain homotopy equivalence coincide due to split
exactness of VectC(·), so ' is an equivalence relation.)

• Given a short exact sequence E•
j

� F•
p
� G• on X, choose ÜE•, ÜF• andÜG• in the following way:

Start with any ÜE•. According to Lemma 1.8, we can write ÜE•|X as
E• ⊕ Ee•, for some acyclic complex Ee• on X. Now, add a copy of Ee• to F•.
Extend the monomorphism j as the identity, and extend the epimorphism
p as zero. Then repeat this process for G•: write ÜG•|X = G• ⊕Ge•, add a
copy of Ge• to F•, and extend the morphisms to obtain

ÜE•|X = E• ⊕ Ee•

�
j 0
0 1
0 0

�
� F• ⊕ Ee• ⊕Ge•

�
p 0 0
0 0 1

�
� G• ⊕Ge• = ÜG•|X .

The sequence is still exact. Moreover, all complexes involved are acyclic
over A. So by Lemma 1.10 the sequence splits over A, i.e.

(F• ⊕ Ee• ⊕Ge•) |A ∼= ÜE•|A ⊕ ÜG•|A.

The right-hand side extends to Y by construction, so we may take ÜF• to
be F• ⊕ Ee• ⊕Ge• on X and ÜE• ⊕ ÜG• on Y . With this choice,

ÜE• � ÜF• � ÜG•

is an exact sequence on X ∪A Y .

Proposition 1.12. Let L be a complex line bundle on X ∪A Y . The restriction
map (E•, φ) 7→ (E•|X , φ|X) induces an isomorphism

GW(Chb(X ∪A Y, Y ), quis,∨⊗L, ηL)
∼=−→ GW(Chb(X,A), quis,∨⊗L|X , ηL).
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Proof. To define an inverse i of the restriction, send [E•, φ] to [ÜE•, eφ], where ÜE•
is defined as above and eφ is constructed as follows:

Using the same notation as in the previous proof, extend φ to ÜE•|X by
defining it to be zero on Ee•.

eE•|X=E•⊕Ee
•

�
φ 0
0 0

�
// (E∨

•⊗L|X)⊕(Ee
•
∨⊗L|X)

( 1 0 )'
��

E•

' ( 1
0 )

OO

φ

'
// E∨

•⊗L|X

As Y ⊂ X ∪A Y is closed, ÜE• is acyclic not only on Y but also on some
open neighbourhood O of Y in X ∪A Y . Choose a continuous function
ρ : X ∪A Y → [0, 1] such that ρ = 1 on X ∪A Y −O and ρ = 0 on Y . Define

eφ := ρ2 ·
�
φ 0
0 0

�
.

(The product is well-defined on all of X ∪A Y .) Then eφ = (eφ∨⊗ idL) ◦ ηL andeφ is a quasi-isomorphism as eφ agrees with φ everywhere where ÜE• has non-zero
homology.

Suppose for the moment that i is thus well-defined. Then i is indeed inverse
to the restriction r: The composition r ◦ i is the identity on GW(Chb(X,A))
because, for any symmetric space (E•, φ) on X with E• acyclic over A, both
(E•, φ) and (ÜE•|X , eφ|X) are isometric to (E•, ρ|2X · φ):

E•
φ

// E∨
•⊗L|X

(·ρ)|∨X⊗idL|X =(·ρ)|X'
��

E•

' ·ρ|X

OO

ρ|2X ·φ
// E∨

•⊗L|X

eE•|X eφ|X
// eE•|∨X⊗L|X

( 1 0 )'
��

E•

' ( 1
0 )

OO

ρ|2X ·φ
// E∨

•⊗L|X

Likewise, the composition i ◦ r is the identity on GW(Chb(X ∪A Y, Y )) as, for
any symmetric space (E•, φ) on X ∪A Y with E• acyclic over Y , both (E•, φ)
and (Ẽ•|X ,gφ|X) are isometric to (E•, ρ2 · φ):

E•
φ

// E∨
•⊗L

·ρ'
��

E•

' ·ρ

OO

ρ2·φ
// E∨

•⊗L

Ẽ•|X
Ýφ|X

// Ẽ•|X
∨
⊗L

(̃ 1 0 )⊗idL'
��

E•

' g( 1
0 )

OO

ρ2·φ
// E∨

•⊗L

Here, g( 1
0 ) denotes an arbitrary extension of the morphism ( 1

0 ), and (̃ 1 0 ) denotes
its dual.

It remains to check that i is well-defined, i.e. that the class of (fE•, eφ) is
independent of the choices made and that i preserves the relations stated in
Definition 1.6.
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• Suppose that σ : X ∪A Y → [0, 1] is another function with the same
properties as ρ, and that [ÜE•, ρ2

�
φ 0
0 0

�
] and [Ē•, σ2

�
φ 0
0 0

�
] are two different

choices for i[E•, φ]. Then (Ē•, σ2
�
φ 0
0 0

�
) is isometric to (ÜE•, σ2

�
φ 0
0 0

�
):

Ē•

σ2
�
φ 0
0 0

�
// Ē∨

•⊗L

(̃ 1 0
0 0 )

∨
⊗idL'

��eE•
(̃ 1 0
0 0 ) '

OO

σ2
�
φ 0
0 0

�
// eE∨

•⊗L

So it suffices to check that [ÜE, ρ2
�
φ 0
0 0

�
] = [ÜE, σ2

�
φ 0
0 0

�
]. This is true

because both representatives are isometric to (ÜE, ρ2σ2
�
φ 0
0 0

�
).

• Suppose we have a quasi-isomorphism g : E•
'−→ F• on X, so that for any

non-degenerate symmetric form ψ on F• we identify [E•, (g∨⊗ idL|X )ψg]
with [F•, ψ] in GW(Chb(X,A)). Then, for any choice of ÜE• and ÜF•, both
complexes are acyclic over the same open neighbourhood O of Y . Let eg
be the morphism ρ

�
g 0
0 0

�
: ÜE• → ÜF•. This eg defines an isometry between�ÜF•, ρ2

�
ψ 0
0 0

��
and

�ÜE•, ρ4
�

(g∨⊗idL)ψg 0
0 0

��
. As the latter is isometric to�ÜE•, ρ2

�
(g∨⊗idL)ψg 0

0 0

��
, we can identify

hfE•, ˜(g∨⊗ idL)ψg
i

with [fF•, eψ] in

GW(Chb(X ∪A Y, Y )).

• Finally, suppose we have the following row-exact commutative diagram of
complexes on X:

E•

(γ∨⊗idL)◦ηL'
��

//
j

// F•

ψ=(ψ∨⊗idL)◦ηL'
��

p
// // G•

γ'
��

G∨
•⊗L|X //

p∨⊗idL

// F∨
•⊗L|X

j∨⊗idL

// // E∨
•⊗L|X

Construct ÜF• as in the proof of Proposition 1.11, such that

eE•|X //

�
j 0
0 1
0 0

�
// eF•|X

�
p 0 0
0 0 1

�
// // eG•|X

is split exact over A and extends to X ∪A Y . There is an open
neighbourhood O of Y in X ∪A Y over which all three complexes ÜE•,ÜF• and ÜG• are acyclic. Using this neighbourhood to define ρ as before,
γ may be extended as ρ2

�
γ 0
0 0

�
: ÜG• → ÜE∨

• ⊗ L, and likewise for ψ. This
yields an extension of the whole diagram to X ∪A Y .
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We can now prove Proposition 1.7. The isomorphism i constructed in
Proposition 1.11 can be used to connect the relative group K(Chb(X,A)) defined
in terms of complexes with the classical relative group K0(X,A):

K(Chb(X,A))

∼=i

��

K(Chb(X ∪A X,X))

u′

��
�
�
�

// K(Chb(X ∪A X))

i−1
0

∼=
��

// // K(ChbX)

i−1
0

∼=
��

K0(X ∪A X,X)

∼=excision

��

// // K0(X ∪A X) // // K0X

K0(X,A)

As X is a retract of X∪AX, the lower row of K0-groups is a short exact sequence
(cf. (2)). The row above it may not be exact, but at least the composition of
the two maps must be zero. So we obtain the factorization u′ of i−1

0 indicated
by the broken arrow. The map u promised in Proposition 1.7 is the vertical
composition.

The same construction works for KO-groups, using Proposition 1.12: for
KO0(X,A;L), consider X ∪A X with the line bundle r∗L, where r is the
canonical retraction X ∪A X → X .

Lemma 1.13 (Naturality of u). The map u is natural with respect to continuous
maps of pairs f : (X,A)→ (X ′, A′).

Proof. For notational convenience, we concentrate on the version of u defined on
K-groups. The proof for GW-/KO-groups is identical up to obvious notational
alterations. First, note that f(A) ⊂ A′ implies that f−1(X ′ −A′) ⊂ X −A, so
the pullback f∗ : K(Chb(X,A))← K(Chb(X ′, A′)) is well-defined. As f induces
a map f ∪ f : X ∪A X → X ′ ∪A′ X ′, we can check naturality step by step:

K(Chb(X,A))

��

oo
f∗

K(Chb(X′,A′))

��

K(Chb(X∪AX,X))

��
�
�
�

oo
(f∪f)∗

K(Chb(X′∪A′X′,X′))

��
�
�
�

K0(X∪AX,X)

��

oo
(f∪f)∗

K0(X′∪A′X′,X′)

��

K0(X,A) oo
f∗

K0(X′,A′)

12



Commutativity of the top and bottom squares follows from the fact that f and
f ∪ f commute with the restrictions. The central square is the left face of the
following cube:

K(Chb(X∪AX,X)) //

��
�
�
�
�
�
�
� dd

(f∪f)∗

HH
HH

HH
HH

H K(Chb(X∪AX))

∼=
��

dd
(f∪f)∗

HH
HH

HH
HH

H

K(Chb(X′∪A′X′,X′)) //

��
�
�
�
�
�
�
� K(Chb(X′∪A′X′))

∼=

��

K0(X∪AX,X) // //
dd

(f∪f)∗

HHHHHHHHH K0(X∪AX)
dd

(f∪f)∗

HHHHHHHHH

K0(X′∪A′X′,X′) // // K0(X′∪A′X′)

All other faces of this cube commute, and the lower horizontal maps are
injections, so the left face commutes as well.

The tensor product of (complexes of) vector bundles induces multiplications
on K-, KO- and GW-groups (cf. Sections 1.5 and 1.6). These multiplicative
structures are clearly respected by the isomorphisms i0 of (1), so they are
also respected by u = i−1

0 on non-relative groups. It follows that u respects
multiplication in general:

Lemma 1.14. The map u respects multiplication, i.e. we have commutative
diagrams

K(ChbX)⊗K(Chb(X,A))

u⊗u
��

multiplication
// K(Chb(X,A))

u

��

K0X ⊗K0(X,A) // K0(X,A)

and similarly for GW-/KO-groups.

Proof. Again, we concentrate on the case of K-groups. To check that u′ respects
multiplication, take x ∈ K(Chb(X ∪A X)) and y ∈ K(Chb(X ∪A X,X)), and
consider

K(Chb(X∪AX,X))

u′

��
�
�
�

j∗
// K(Chb(X∪AX))

∼=i−1
0

��

// // ...

K0(X∪AX,X) //
j∗

// K0(X∪AX) // // ...

We have

j∗u′(x · y) = i−1
0 j∗(x · y) = i−1

0 (x · j∗(y))
= i−1

0 (x) · i−1
0 (j∗y) = i−1

0 (x) · j∗(u′(y))
= j∗(i−1

0 (x) · u′(y)),

so by injectivity of the lower j∗, we have u′(x ·y) = i−1
0 (x) ·u′(y). The result for

u follows as the map i and the excision isomorphism appearing in the definition
of u are both multiplicative.
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1.4 Extending the map to relative groups

We are now in a position to extend the definition of w : K0X → K0(XC) to
relative groups. More precisely, for a topological space X with subspace Z, let
K0
ZX denote K0(X,X − Z). Then, for any complex variety X with a closed

subvariety Z, we will construct w : KZ
0 X → K0

ZC
(XC).

The only remaining technical difficulty is that, in order to use the results
of the preceding section, we have to approximate the open set XC − ZC
by some closed subset A of XC. For this, we use the notion of regular
neighbourhoods. Recall that any compact complex variety may be triangulated
[19]. So given any such variety X with a closed subvariety Z, we can view XC as
a (finite) simplicial complex with ZC as a subcomplex. It follows from standard
results in piecewise-linear topology that ZC has a regular neighbourhood N
which is essentially unique: given any two triangulations of (XC, ZC) and
any two regular neighbourhoods N1 and N2 arising from these, there exists a
homeomorphism h : XC → XC carrying N1 to N2 and restricting to the identity
on ZC [31, Theorem 3.8]. This homeomorphism is homotopic to the identity
as a map of pairs (XC, XC − ZC)→ (XC, XC − ZC). In particular, if j1 and j2
denote the inclusions of (XC, XC − N̊1) and (XC, XC − N̊2) into (XC, XC − ZC),
respectively, j2 ◦ h is homotopic to j1. So we have a commutative triangle:

K0(XC, XC − N̊1)

K0
ZC

(XC)

j∗1mm

j∗2
qqK0(XC, XC − N̊2)

h∗

OO

(3)

Moreover, for any regular neighbourhood N of ZC in XC, the inclusion of
XC − N̊ into XC − ZC is a homotopy equivalence, implying that the pullback
K0(XC, XC − N̊)←−

j∗
K0
ZC

(XC) is an isomorphism.

This allows us to define w in the following manner: First, as in the non-
relative case, we forget all algebraic structure.

KZ
0 X = K(ChbZ(VectX))

forget−−−→ K(ChbZC
(VectCXC))

Next, we choose a regular neighbourhood N of ZC in XC and approximate the
open set XC − ZC by the closed subset XC − N̊ of XC.

K(ChbZC
(VectCXC)) = K(Chb(XC, XC − ZC))

forget−−−→ K(Chb(XC, XC − N̊))

The map here simply forgets acyclicity on N̊ −ZC. Now we can apply the map
u of the preceding section and compose with the inverse of j∗.

K(Chb(XC, XC − N̊)) u−→ K0(XC, XC − N̊)
(j∗)−1

−−−−→ K0
ZC

(XC)

By naturality of u (Lemma 1.13) and diagram (3), this definition is independent
of the choice of N .

In general, for any complex variety X, we can find an open immersion into
a compact variety X̄ [20,21]. Then the complement of X in X̄ is also compact,
so we can view XC as a finite simplicial complex with a subcomplex S removed.
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Any closed subvariety Z ofX can be written as Z̄∩X, where Z̄ is the closure of Z
in X̄. So we can define regular neighbourhoods of ZC in XC to be intersections
N := N̄ ∩ XC, where N̄ is a regular neighbourhood of Z̄C in X̄C. All maps
considered above restrict to this context. In particular, w can be defined in the
same way as before.

Definition 1.15. Given a complex variety X with a closed subvariety Z,
w : KZ

0 X → K0
ZC

(XC) is the composition

KZ
0 X

forget−−−→ K(Chb(XC, XC − N̊)) u−→ K0(XC, XC − N̊)
(j∗)−1

−−−−→ K0
ZC

(XC),

where N is any regular neighbourhood of ZC in XC.

Naturality. A morphism of varieties f : X → X ′ satisfying f−1(Z ′) ⊂ Z for
closed subvarieties Z ⊂ X and Z ′ ⊂ X ′ induces pullbacks

KZ
0 X

f∗←−KZ′

0 X ′

K0
ZC

(XC)
f∗←−K0

Z′C
(X ′

C)

It is immediate from Lemma 1.13 that w commutes with these whenever regular
neighbourhoods N of ZC and N ′ of Z ′C can be chosen in such a way that f maps
XC − N̊ to X ′

C − N̊ ′. In particular, taking Z = X, we have a commutative
diagram

K0X oo
f∗

w

��

KZ′

0 X ′

w

��

K0(XC) oo
f∗

K0
Z′C

(X ′
C)

for any morphism f and any closed subvariety Z ′ of X ′. We record two simple
cases in which we may also restrict the support of the K-groups of X.

Lemma 1.16. The map w commutes with the pullbacks along a closed
embedding i : X ↪→ X ′: for any closed subvariety Z of X and any closed
subvariety Z ′ of X ′ satisfying i−1(Z ′) ⊂ Z, we have a commutative diagram

KZ
0 X oo i∗

w

��

KZ′

0 X ′

w

��

K0
ZC

(XC) oo i∗ K0
Z′C

(X ′
C)

Proof. First, choose a regular neighbourhood N of ZC in XC. As i is
closed, i(XC − N̊) is closed in X ′

C. Moreover, i(XC − N̊) does not intersect
Z ′C as i−1(Z ′) ⊂ Z. This allows us to choose a regular neighbourhood
N ′ ⊂ X ′

C − i(XC − N̊). Then i(XC − N̊) ⊂ X ′
C − N̊ ′.
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Lemma 1.17. The map w commutes with the pullbacks of a projection
πX : X × Y � X in the sense that, for any closed subvariety Z of X, we have
a commutative diagram

KZ×Y
0 (X × Y ) oo

π∗X

w

��

KZ
0 X

w

��

K0
ZC×YC

(XC × YC) oo
π∗X K0

ZC
(XC)

Proof. If N is a regular neighbourhood of ZC in XC, then N × Y is a regular
neighbourhood of ZC×YC in XC×YC, and πX(XC × YC − N̊ × YC) = XC − N̊ .

All considerations of this section generalise to Grothendieck-Witt groups
without any problems. Altogether, for a complex variety X with a closed
subvariety Z and a line bundle L, we have maps

KZ
0 X →K0

ZC
(XC)

GW0
Z(X;L)→KO0

ZC
(XC;L)

W0
Z(X;L)→KO

K

0

ZC
(XC;L)

all of which we will call w.

1.5 Representable topological K-theory

Complex K-theory. Topological K-theory can be constructed as a “gener-
alised cohomology theory” by a standard method. The starting point is that
complex vector bundles over a space are classified by homotopy classes of maps
into the classifying space BU of the infinite unitary group U. In fact, for a
CW complex X, the usual definition of K0X is

K0X := [X,BU×Z] .

This agrees with our earlier definition when X is a finite-dimensional CW com-
plex (e.g. [30, p. 204]). To turn this into a cohomology theory on CW complexes,
one considers the iterated loop spaces Ωi(BU). Bott periodicity implies that
the twofold loop space Ω2(BU×Z) is again equivalent to BU×Z, so we obtain
a 2-periodic spectrum, with all even terms equivalent to BU×Z, and odd terms
equivalent to Ω(BU×Z) = U. The associated 2-periodic generalised cohomology
theory is known as representable topological K-theory. Once the theory for
CW complexes is established, it can easily be generalised to arbitrary spaces by
considering CW approximations. See [30] for a detailed exposition of spectra
and generalised cohomology theories.

The upshot is that we have essentially two different K-groups for a space,
the usual group K0X and a higher group K1X; that we moreover have relative
groups Ki(X,A) for pairs of spaces (X,A); and that all of these fit into a 6-term
exact sequence

K0(X,A) // K0X // K0A

��

K1A

OO

K1Xoo K1(X,A)oo

(4)
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As before, we will let Ki
ZX denote the group Ki(X,X − Z).

It is sometimes convenient to consider the “reduced” group ÜKiX, defined as
the kernel of the restriction map KiX → Ki(point). For example, using this
notation we have

Ki(X,A) = ÜKi(X/A)

for any CW pair (X,A). Also, in negative degrees −i it is possible to give a
slightly more explicit description of the groups K−iX using suspensions of X,
since the suspension functor is the left adjoint of the loop functor:

K−iX = ÜK0(Si(X t point)),

the reduced group of the ith suspension of the union of X with a disjoint base
point.

We will make extensive use of the fact that K-theory is multiplicative, i.e.
that we have internal and external products

· : Ki
ZX ⊗KjX → Ki+j

Z X

× : Ki
ZX ⊗KjY → Ki+j

Z×Y (X × Y )

(In degree zero, these products are induced by the tensor product of vector
bundles.) In particular, if we let K∗X denote the total K-group

L
i∈Z KiX,

K∗X becomes a module over K∗(point).
This last group, K∗(point), is relatively simple. K0(point) is isomorphic

to Z, with the class of the trivial line bundle as a generator. K−2(point) is of
course also isomorphic to Z; under the isomorphism of K−2(point) with ÜK0(S2),
its generator g corresponds to O(−1) − C, the Hopf bundle minus the trivial
line bundle. All the other even groups are generated by powers of g, whereas
the odd K-groups of a point are all zero. So we have

K∗(point) = Z[g, g−1] (5)

with g of degree −2.
More generally, K1X vanishes for any CW complex which has cells only in

even dimensions, and, in that case, K0X is the free abelian group on these cells.
For example, we have K1(CPn) = 0 and K0(CPn) = Zn+1.

KO-theory. For KO-theory, we may proceed similarly. Here, we have
KO0X = [X,BO×Z], where BO is the classifying space of the infinite orthogonal
group. However, in this case the multiplicative cohomology theory we obtain is
8-periodic. The KO-groups of a point are already more complicated than in the
complex case.

i 0 −1 −2 −3 −4 −5 −6 −7
KOi(point) Z Z2 Z2 0 Z 0 0 0

The ring structure can be given as

KO∗(point) = Z[η, α, λ, λ−1] (6)

with η, α and λ of degrees −1, −4 and −8, respectively, subject to the relations
2η = 0, η3 = 0 and α2 = 4λ [23].
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KO-groups twisted by line bundles. Twisted groups KOi(X;L) are less
common in the literature, so we include here a brief discussion of their behaviour.
In Definition 1.5, we introduced KO0(X;L) as a Grothendieck-Witt group of
vector bundles with a “twisted symmetric form”, GW(VectCX,

∨⊗ L, ηL). The
key fact is that this group can alternatively be expressed as the usual reduced
group gKO2(ThXL) of the Thom space of L over X [25, 3.8]. This allows a
straightforward generalisation to relative groups and higher degrees:

Definition 1.18. For a CW complex X with a subcomplex A and a complex
line bundle L,

KOi(X;L) := gKOi+2(ThXL)

KOi(X,A;L) := KOi+2(ThXL,ThA(L|A))

Equivalently, if we choose any metric on L and write DXL and SXL for
the associated disk and sphere bundle, respectively, KOi(X,A;L) is equal to
KOi+2(DXL, SXL ∪DA(L|A)). Of course, for an arbitrary pair (X,A) with a
line bundle L on X, we consider a CW approximation f : (X ′, A′)→ (X,A) and
the line bundle f∗L.

Basic properties of the twisted groups such as the existence of a long
exact cohomology sequence follow directly from the corresponding properties
of the usual groups. However, multiplication needs a little care: the usual
product on the KO-groups of Thom spaces does not immediately give a sensible
multiplicative structure on twisted groups, for example, the products have wrong
degrees. The quickest way of arriving at a multiplicative structure suitable for
our purpose seems to be the following. We first consider non-relative groups
in degree zero, interpreted as Grothendieck-Witt groups as above. As in the
untwisted case, the tensor product induces a multiplication, e.g. a cross product

×twist : KO0(X;L)⊗KO0(Y ;M)→ KO0(X × Y ;π∗XL ⊗ π∗YM).

We can extend this to a product

×twist : KO0(X,A;L)⊗KO0(Y ;M)→ KO0(X × Y,A× Y ;π∗XL ⊗ π∗YM)

by using the identification of KO0(X,A;L) with a direct summand of the non-
relative group KO0(X ∪A X; r∗L) as in Section 1.3. To obtain an extension to
arbitrary degrees, we introduce here the technique that will later also allow us
to extend the map w:

Let en ∈ KOn(Sn) be the element corresponding to 1 ∈ KO0(point) ∼= Z
under the suspension isomorphism KO0(point) ∼= gKOn(Sn). It is a general
property of multiplicative generalised cohomology theories that we have iso-
morphisms

KOi(X,A)⊕KOi−n(X,A)→ KOi(X × Sn, A× Sn)
(x, y) 7→ π∗Xx+ y × en

This generalises directly to twisted groups:
Taking KOi(X,A;L)⊕KOi−n(X,A;L) on the left, we have

KOi+2(DXL × Sn, (SXL ∪DA(L|A))× Sn)
=KOi+2(DX×Sn(π∗XL), SX×Sn(π∗XL) ∪DA×Sn((π∗XL)|A×Sn))
def= KOi(X × Sn, A× Sn;π∗XL)
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on the right. In particular, cross product with en induces injections

KO−n(X,A;L)→ KO0(X × Sn, A× Sn;π∗XL).

Analogous injections exist for the KO-groups of Sn ×X. We extend the
definition of multiplication by forcing it to be compatible with these. Ex-
plicitly, given x in KO−i(X,A;L) and y in KO−j(Y ;M), we define x×twist y
to be the unique element in KO−i−j(X × Y,A× Y ;π∗XL ⊗ π∗YM) satisfying
ei × (x×twist y)× ej = (ei × x)×twist (y × ej). Periodicity makes this into a
multiplicative structure on twisted KO-groups of arbitrary degrees. We will
write × for ×twist from now on.

1.6 Shifted (Grothendieck-)Witt groups

The groups that we would like to compare the higher topological KO-groups
of a variety with are its “shifted” (Grothendieck-)Witt groups. Recall from
Section 1.2 that the usual Grothendieck-Witt group of an exact category A
with a duality can alternatively be seen as the Grothendieck-Witt group of the
category of bounded chain complexes ChbA. Then a symmetric space is a chain
complex E• together with a symmetric map φ : E• → E∨

• . The idea of shifted
groups is to consider maps

E• → E∨
• [i]

with an adapted notion of symmetry instead, where [i] denotes an i-fold shift of
the chain complex to the left.

This idea was made precise by Paul Balmer in [4] and [5], where he develops
a general theory of Witt groups of triangulated categories (D,∨, η) equipped
with an adequate duality functor ∨ and a double-dual identification η. Once we
have some notion of the “usual” Witt group of such a category, we may equally
well consider shifted groups

WiD := W(D, ∨[i], (−1)
i(i+1)

2 η).

So elements of WiD are represented by objects E of D with isomorphisms
φ : E → E∨[i] such that φ∨ = (−1)

i(i+1)
2 · φ∨[i] ◦ η. The mysterious sign comes

in because there are two different kinds of dualities on triangulated categories,
+-dualities and −-dualities, and the sign of the duality is not preserved under
odd shifts. For even shifts everything is fine. In fact, shifting twice induces an
isomorphism WiD ∼= Wi+4D.

Starting from the category ChbA of bounded chain complexes over an exact
category A, we can easily obtain a triangulated category by inverting all quasi-
isomorphisms, i.e. we consider the bounded derived category DbA of A. A
duality on A induces a duality on DbA, so we can consider the “derived Witt
groups” Wi(DbA). For i = 0, the inclusion A ⊂ DbA induces an isomorphism
with WA, but for other values of i ∈ Z4 we obtain something new. For example,
W2(DbA) is the Witt group of skew-symmetric spaces over A.

Naturally enough, for a complex variety X with a line bundle L, the shifted
Witt groups Wi(X;L) are defined as the derived groups of (VectX, ∨⊗ L, ηL).
The remarkable property of these shifted groups is that, when X is smooth,
they fit into a long exact localization sequence

· · · →Wi
ZX →WiX →Wi(X − Z)→Wi+1

Z X → . . . (7)
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for any closed subvariety Z of X. As the Witt groups are 4-periodic, this
sequence may be thought of as a long exact polygon with 12 vertices.

All the definitions work equally well for Grothendieck-Witt groups [11].
However, we do not obtain as nice a localization sequence. Rather, for every
i ∈ Z4, we have an exact sequence

GWi
Z X → GWiX → GWi(X − Z)→Wi+1

Z X →Wi+1X → . . . (8)

i.e. the localization sequences for Grothendieck-Witt groups merge into the
localization sequence of Witt groups after just three terms. The reason behind
this behaviour is that Grothendieck-Witt and Witt groups are special cases of
Hermitian K-groups, and the sequences above are only portions of localization
sequences of Hermitian K-theory; we could extend them to the left using higher
Hermitian K-groups [15, 16, 17]. The situation is summarised by the picture
in the introduction. However, higher Hermitian K-groups are much more
mysterious. Unlike the Grothendieck-Witt and Witt groups, they do not have
a description in purely algebraic terms.
Example 1.19. For a non-trivial example of a shifted symmetric space, consider
the complex

. . . −→ 0 −→ O(−1) ·z0−→ O −→ 0 −→ . . .

on the complex projective line P1, where the only non-zero map is given by
multiplication with z0 in coordinates [z0 : z1]. If we arrange O to be in degree
zero, multiplication by z1 induces a symmetric quasi-isomorphism with the dual
complex shifted one to the left:

. . . // 0 // O(−1)
·z0 //

·z1
��
�
�
�

O

·(−z1)
��
�
�
�

// 0 // . . .

. . . // 0 // O
·(−z0)

// O(1) // 0 // . . .

It turns out that this symmetric space represents a generator of GW1(P1) ∼= Z
(e.g. [10, proof of Theorem 1.5]). We will denote its negative by ε.

As in KO-theory, the tensor product of vector bundles induces a multiplication
on GW- and W-groups [8; 10, p. 8]. This is usually given in the form

· : GWi
Z(X;L)⊗GWj(X;M)→ GWi+j

Z (X;L ⊗M).

To simplify the notation and some of the calculations in what follows, we
construct from this a cross product on Grothendieck-Witt groups analogous
to the cross product we have on topological cohomology theories, i.e.

× : GWi
Z(X;L)⊗GWj(Y ;M)→ GWi+j

Z×Y (X × Y ;L ×M)

(x, y) 7→ π∗X(x) · π∗Y (y)

Here, L×M denotes the line bundle π∗XL⊗π∗YM on the product. The properties
of this cross product can be derived from those of the ordinary product in the
usual way. In particular, it is associative and commutative [10, p. 8]. (Note
that over C, the symmetric space 〈−1〉 = (C,− id) over a point is isometric
to 〈1〉 = (C, id) via multiplication by i, so the commutativity is not graded or
twisted in any way.) The usual product can be completely recovered from the
cross product using a diagonal map.
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1.7 Extending the map to lower degrees

We would now like to extend our definition of w0 := w from GW0
Z(X;L) to

KO0
ZC

(XC;L) to maps

wi : GWi
Z(X;L)→ KO2i

ZC
(XC;L)

for all i ∈ Z. For the moment, we will restrict ourselves to negative i, but
in Section 2.4 we will see that the maps obtained respect the periodicity
isomorphisms of Grothendieck-Witt groups and of KO-theory, yielding an
extension of w to all degrees.

Our starting point is the following observation: Let ε be the generator of
GW1(P1) described in Example 1.19. Multiplication with this element induces
isomorphisms

GWi
Z(X;L)⊕GWi−1

Z (X;L)
∼=−→ GWi

Z×P1(X × P1;π∗XL)
(x, y) 7→ π∗Xx+ y × ε

(These isomorphisms follow directly from the versions without supports de-
scribed in [10, Theorem 1.5].) Likewise, as we have already seen in Section 1.5,
multiplication with the element e ∈ KO2(S2) corresponding to 1 ∈ KO0(point)
under twofold suspension yields isomorphisms

KOj
Z(X;L)⊕KOj−2

Z (X;L)
∼=−→ KOj

Z×S2(X × S2;π∗XL)

(x, y) 7→ π∗Xx+ y × e

This means that we can define w−i for i ∈ N inductively:

Definition 1.20. For x ∈ GW−i−1
Z (X;L), the image w−i−1(x) is the unique

element of KO−2i−2
ZC

(XC;L) satisfying

w−i−1(x)× e = w−i(x× ε)

in KO−2i
Z×S2(X × S2;π∗XL).

2 Properties of the comparison map

We begin with two basic properties that can be deduced from those of w0 by
simple calculations.

2.1 Naturality

Let a pair of varieties (X,Z) denote a complex varietyX with a closed subvariety
Z, and let a morphism of pairs be a morphism

X
f−→ X ′

satisfying f−1(Z ′) ⊂ Z. (Note that this convention differs from the usual notion
of a morphism of pairs in topology.) As we have seen, such a morphism induces
pullbacks of the form

KZ
0 X

f∗←− KZ′

0 X ′.

21



The considerations at the end of Section 1.4 imply the following naturality
property of w.

Proposition 2.1. The maps w−i commute with the pullbacks of

• arbitrary morphisms X → (X ′, Z ′), where we write X for the pair (X,X),

• closed embeddings (X,Z) ↪→ (X ′, Z ′), and

• projections (X × Y, Z × Y ) � (X,Z).

Proof. If f : (X,Z)→ (X ′, Z ′) falls into the list above, so does the morphism
f × id : (X × P1, Z × P1)→ (X ′ × P1, Z ′ × P1). Assume by induction that w−i
satisfies the proposition for some i. Then so does w−i−1:

f∗w−i−1(x)× e = (f × id)∗(w−i−1(x)× e)
= w−i((f × id)∗(x× ε)) by naturality of w−i
= w−i(f∗x× ε)
= w−i(f∗x)× e

So f∗w−i−1(x) = w−i−1(f∗x).

2.2 Multiplication

Proposition 2.2. The maps w−i respect multiplication, i.e. we have commu-
tative diagrams

GW−i
Z (X;L)⊗GW−j(Y ;M)

w−i⊗w−j

��

×
// GW−i−j

Z×Y (X × Y ;L ×M)

w−i−j

��

KO−2i
ZC

(XC;L)⊗KO−2j(YC;M)
×

// KO−2i−2j
ZC×YC

(XC × YC;L ×M)

Proof. It follows from Lemma 1.14 that w0 respects the usual multiplication in
degree zero. As w0 is natural with respect to projections, it also commutes with
the cross product. Now take x ∈ GW−i

Z (X;L) and y ∈ GW−j(Y ;M). Then

w−i(x)× w−j(y)× ei+j = w−i(x)× ei × w−j(y)× ej

(No signs occur as all classes are of even degree.)

= w0(x× εi)× w0(y × εj)
= w0(x× εi × y × εj)

(as w0 respects multiplication)

= w0(x× y × εi+j)
= w−i−j(x× y)× ei+j .

So w−i(x)× w−j(y) = w−i−j(x× y).
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2.3 Realification and complexification

Just as the usual Witt group W0, the shifted groups Wi can be written as
quotients

K0X
Hi //GWiX //WiX //0 ,

where Hi is the “ith hyperbolic map”, sending the class of a complex E• to the
class of the symmetric i-space

�
E• ⊕ E∨

• [i],
�

0 id

(− id)
i(i+1)

2 0

��
. In general, Hi is

not injective. However, using the forgetful maps F : GWi−1X → K0X, we can
extend the sequences one term to the left, so that we have exact sequences

GWi−1X
F //K0X

Hi //GWiX //WiX //0 (9)

(cf. [11]). A sort of analogue in topological K-theory is the “Bott sequence”
[23], by which we mean the following long exact sequence:

. . .→ KO2i−1X → KO2i−2X → K0X → KO2iX → KO2i−1X → K1X

→ KO2i+1X → KO2iX → K0X → KO2i+2X → KO2i+1X → K1X → . . .
(10)

Here, the maps into Kd (for d = 0, 1) are the composites of complexification
and multiplication with an appropriate power of g ∈ K−2(point), the maps
starting from Kd are the composites of multiplication with some power of g and
realification, and the maps between the KO-groups are given by multiplication
with η ∈ KO−1(point).

We have already seen that, in degree zero, H and F correspond to
realification and complexification. The aim of this section is to show that,
more generally, the corresponding parts of the above two exact sequences form
a commutative diagram

GWi−1X

��

F // K0X

��

Hi // GWiX

��

// WiX

��

// 0

KO2i−2(XC) // K0(XC) // KO2i(XC) // KO
K

2i
(XC) // 0

(11)

This is shown in Propositions 2.4 and 2.5 below. As a first step towards their
proofs, we compare the multiplicative behaviour of the maps involved. F and
c are both multiplicative, but for ρ we only have ρ(c(x) · y) = x · ρ(y). A
corresponding equation holds for Hi:

Lemma 2.3. For x ∈ GWkX and y ∈ K0X we have Hi(Fx · y) = x ·Hi−k(y).

Proof. It suffices to show this on the level of chain complexes. So let F•
be a chain complex representing y, and let (E•, φ) be a chain complex with
a symmetric form φ : E• → E∨

• [k] representing x. The idea of the proof
is that, for i and k equal to zero, the left-hand side of the equation is
represented by [(E• ⊗ F•)⊕ (E∨

• ⊗ F∨
• ), ( 0 1

1 0 )], the right-hand side is represented
by

�
(E• ⊗ F•)⊕ (E• ⊗ F∨

• ),
�

0 φ
φ 0

��
, and that these two representatives are

isometric via
�

1 0
0 φ

�
.
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However, there is some work involved in taking care of arbitrary shifts. The
problem is that these do not commute with the tensor product, i.e. we do not
have E•[i] ⊗ F•[j] = (E• ⊗ F•)[i + j] in general. Of course, the complexes are
equal in each degree, but the differentials differ by signs. We do, however, have
natural isomorphisms

lj : E•[j]⊗ F• → (E• ⊗ F•)[j] and rj : E• ⊗ F•[j]→ (E• ⊗ F•)[j].

Using these, the form on the product of a symmetric i-space (E•, α) with a
symmetric j-space (F•, β) may be written as (−1)ij times the composition

E• ⊗ F•
id⊗β−→ (E• ⊗ F∨

• [j]) rj

−→ (E• ⊗ F∨
• )[j]

(α⊗id)[j]−→ (E∨
• [i]⊗ F∨

• )[j]
li[j]−→ (E∨

• ⊗ F∨
• )[i][j] ∼= (E• ⊗ F•)∨[i+ j]

– cf. [8], especially Example 1.4 and Theorem 2.9. We will use the following
identities (cf. Lemmas 1.3 and 1.12 of the same paper):

• (lj)∨[j] = lj

• (rj)∨[j] = rj

• ri[j] ◦ lj = (−1)ij · lj [i] ◦ ri

Given these, the calculation runs as follows: On the one hand we have

Hi (F (E•) · F•) =
h
(E• ⊗ F•)⊕ (E∨

• ⊗ F∨
• )[i],

�
0 id

(− id)
i(i+1)

2 0

�i
,

whereas on the other hand we have

E• ·Hi−k(F•) =
h
(E•, φ) ·

�
F• ⊕ F∨

• [i− k],
�

0 id

(− id)
(i−k)(i−k+1)

2 0

��i
=
h
E•⊗(F•⊕F∨

• [i−k]), (−1)k(i−k)·lk[i−k]◦(φ⊗id)[i−k]◦ri−k◦
�

id⊗
�

0 id

(− id)
(i−k)(i−k+1)

2 0

��i
=
h
(E• ⊗ F•)⊕ (E• ⊗ F∨

• [i− k]),
�

0 ψ

(−1)
(i−k)(i−k+1)

2 ·ψ 0

�i
,

where
ψ := (−1)k(i−k) · lk[i− k] ◦ (φ⊗ id)[i− k] ◦ ri−k.

We claim that these two representatives are isometric via g :=
�

id 0
0 ψ

�
, i.e. that

g∨[i]
�

0 id

(− id)
i(i+1)

2 0

�
g =

�
id 0
0 ψ∨[i]

�� 0 id

(− id)
i(i+1)

2 0

��
id 0
0 ψ

�
=
�

0 ψ

(−1)
i(i+1)

2 ψ∨[i] 0

�
is equal to

�
0 ψ

(−1)
(i−k)(i−k+1)

2 ·ψ 0

�
.

We check the bottom left entry. As φ is a symmetric k-form,

φ∨= φ∨[k][−k] = (−1)
k(k+1)

2 φ[−k].

Using this and the first two of the three identities above, we see that

ψ∨[i] = (−1)k(i−k) · (ri−k)∨[i] ◦ (φ∨⊗ id)[k] ◦ (lk)∨[k]

= (−1)k(i−k)+
k(k+1)

2 · ri−k[k] ◦ (φ[−k]⊗ id)[k] ◦ lk.
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The composition of maps involved here is the left path of the following diagram.

E•⊗F•
lk

vvmmmmmmmmmm
ri−k

))SSSSSSSSSSSSS

(E•[−k]⊗F•)[k]

(φ[−k]⊗id)[k]

��

ri−k[k]

((QQQQQQQQQQ (E•⊗F•[−i+k])[i−k]
lk[i−k]

uukkkkkkkkkkkk

(φ⊗id)[i−k]

��

(E•[−k]⊗F•[−i+k])[i]

��

(E∨
•⊗F•)[k]

ri−k[k]

''OOOOOOOOOO
(E∨

• [k]⊗F•[−i+k])[i−k]
lk[i−k]

vvlllllllllll

(E∨
•⊗F•[−i+k])[i]

The tilted square at the is top (−1)k(i−k)-commutative by the third of the three
identities above, and the other two squares commute by naturality of r and l,
respectively. So ψ∨[i] can alternatively be written in terms of the right path of
the diagram:

ψ∨[i] = (−1)k(i−k)+
k(k+1)

2 · (−1)k(i−k) · lk[i− k] ◦ (φ⊗ id)[i− k] ◦ ri−k

= (−1)k(i−k)+
k(k+1)

2 · ψ

The sign here multiplied by (−1)
i(i+1)

2 is in fact equal to (−1)
(i−k)(i−k+1)

2 . This
finishes the proof.

Proposition 2.4. Let g ∈ K−2(point) ∼= ÜK0(S2) be the generator corresponding
to the reduced Hopf bundle O(−1)− C (cf. (5)). We have commutative diagrams

K0X

w

��

H−i
// GW−iX

w

��

K0(XC)
×gi

// K−2i(XC)
ρ

// KO−2i(XC)

Proof. We have already seen this for i = 0. Now we proceed by induction.
Assume the proposition holds for some i− 1. We can fit the ith square for X
into the (i− 1)th square for X × P1:

K0(X×P1)

w

��

H−i+1
//

¬

GW−i+1(X×P1)

w

��

­

K0X

×(h−1)
ddIIIIIIIIII

w

��

H−i
// GW−iX

×ε

77ooooooooooo

w

��

®

K0(XC)

×(h−1)
zzuuuuuuuuu

×gi

// K−2i(XC)
ρ

//

¯

KO−2i(XC)
''

×e

''OOOOOOOOOOO

K0(XC×S2)
×gi−1

// K−2i+2(XC×S2)
ρ

// KO−2i+2(XC×S2)
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Here, h and 1 denote the elements of K0(P1) and K0(S2) given by the Hopf
bundle and the trivial line bundle, respectively. By the induction hypothesis,
the outer square commutes. Also, ­ commutes as w maps the Hopf bundle to
the Hopf bundle, and ® commutes by the very definition of w in lower degrees.

To see that ¬ commutes, recall from Example 1.19 that Fε = (h− 1).
Therefore, for any x ∈ K0X, we can use Lemma 2.3 to check that

H−i+1(x× (h− 1)) = H−i+1(x× Fε) = H−i(x)× ε.

For ¯, we use that, in general, ρ(x) × y = ρ(x × c(y)). Moreover, the class
c(e) ∈ ÜK0(S2) corresponds to 1 ∈ K0(point) under twofold suspension, whence
the inverse of this twofold suspension isomorphism is given by cross product
with c(e), ÜKjX

×c(e)

∼= // ÜKj+2(S2X),

for any space X. In particular, by definition of g,

(h− 1) = g × c(e) ∈ K0(S2).

So

ρ(x× gi)× e = ρ(x× gi × c(e))
= ρ(x× gi−1 × (h− 1))

= ρ(x× (h− 1)× gi−1).

As the multiplication ×e is injective, it follows that the inner square must also
commute.

Proposition 2.5. The forgetful map GW−iX → K0X corresponds to complex-
ification, i.e. with notation as before, we have commutative diagrams

GW−iX

w

��

F // K0X

w

��

KO−2i(XC) c // K−2i(XC)
×gi

// K0(XC)

Proof. The proof is completely analogous to the preceding one. The statement
is clear for i = 0, and for the induction step we study the same kind of diagram:

GW−i+1(X×P1)

w

��

F //

¬

K0(X×P1)

w

��

®

GW−iX

×ε
ggOOOOOOOOOOO

w

��

F // K0X

w

��

×(h−1)

::uuuuuuuuuu

­

KO−2i(XC)

×e
wwppppppppppp

c // K−2i(XC)
×g−i

//

¯

K0(XC)
$$

×(h−1)

$$IIIIIIIII

KO−2i+2(XC×S2)
c // K−2i+2(XC×S2)

×g−i+1
// K0(XC×S2)
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Again, the outer square commutes by the induction hypothesis, and ­ and ®
commute for the same reasons as before. Square ¬ commutes as the forgetful
map F respects multiplication, so F (x × ε) = F (x) × F (ε) = F (x) × (h − 1).
Commutativity of ¯ is again due to the fact that (h− 1) = g × c(e):

c(x)× g−i × (h− 1) = c(x)× g−i+1 × c(e)
= c(x)× c(e)× g−i+1

= c(x× e)× g−i+1

Lastly, note that cross product with (h− 1) ∈ K0(S2) is injective: The element
is invertible, so if X is any space and σ is the projection X × S2 � S2, cup
product with σ∗(h− 1) is an isomorphism. Hence we have

K0X��

π∗

��

×(h−1)
// K0(X×S2)

K0(X×S2)

∼=
∪σ∗(h−1)

88qqqqqqqqqq

2.4 Periodicity

Proposition 2.6. The map w : GWiX → KO2i(XC) respects the periodicity
isomorphisms GWiX ∼= GWi−4X and KOj(XC) ∼= KOj−8(XC).

Proof. The periodicity isomorphism for Grothendieck-Witt groups is induced
by shifting complexes two to the right: if (E•, φ) is an i-space, E•[−2] carries
a natural symmetric (i− 4)-form. Alternatively, the periodicity isomorphism
can be interpreted as cross product with Λ := [C[−2], id] ∈ GW−4(point), where
C[−2] denotes the complex consisting of the trivial line bundle concentrated in
degree −2.

In topology, recall that KO∗(point) = Z[η, α, λ, λ−1], with η, α and λ of
degrees −1, −4 and −8, respectively, subject to the relations 2η = 0, η3 = 0
and α2 = 4λ. The periodicity isomorphism is given by multiplication with λ.
Note that the last relation fixes the sign of this element.

Of course, we would now like to show that w maps Λ to λ. Using the results
of the previous section, we have a row-exact commutative diagram

GW−5(point)

��

// K0(point)

��

H−4
// GW−4(point)

��

// // W−4(point)

��

KO−10(point) // K0(point)
ρ(·×g4)

// KO−8(point) // // KO
K

−8
(point)

GW−5(point) and KO−10(point) are both isomorphic to Z2. The K-groups of
a point are Z in degree zero, so each of the two horizontal maps on the far left
must be zero. Calculating the other groups, we obtain

Z·1 //
H−4

//

∼=·1
��

Z·Λ // //

·a
��

Z2

·ā
��

Z·1 //
ρ(·×g4)

// Z·λ // // Z2
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So H−4(1) = ±2Λ, ρ(g4) = ±2λ, and w maps Λ to ±λ. It remains to show that
all signs are positive.

For Λ we have H−4(1) = H−4(F (Λ)) = 2Λ. To calculate ρ(g4), consider the
following part of the Bott sequence (10) of a point:

KO−4(point)
c(·)×g−2

// K0(point)
ρ(·×g)

// // KO−2(point) // KO−3(point)

Z·α Z·1 Z2 0

We see that c(α) = ±2g2. Therefore, 8λ = 2α2 = ρ(c(α2)) = ρ(4g4). So
ρ(g4) = 2λ, and w maps Λ to λ.

2.5 Thom isomorphisms

In algebraic K-theory, groups supported in a subvariety can often be expressed
as the groups of the support itself. This is true in particular when Z is a smooth
closed subvariety of a smooth complex variety X. We then have a “dévissage
isomorphism” K0Z → KZ

0 X (e.g. [14, 1.20 and 1.23]). On the level of vector
bundles and complexes, this is given by pushing forward a vector bundle on
Z to X and then taking a free resolution. For Grothendieck-Witt groups, the
situation is slightly more complicated, as shifts and twists have to be taken into
account. We will state the precise form of the corresponding isomorphisms in
the next section, where we will show that our map w is compatible with these.
As a first step towards this goal, we consider here the special case that X is a
vector bundle and Z is its base space.

Proposition 2.7. Let p : E → Z be a vector bundle over a smooth complex
variety Z. Then w commutes with the Thom isomorphisms

K0Z → KZ
0 E K0(ZC)→ K0

ZC
(EC)

GWi(Z;L)→ GWi
Z(E ;L′) KO2i(ZC;L)→ KO2i

ZC
(EC;L′)

Wi(Z;L)→Wi
Z(E ;L′) KO

K

2i
(ZC;L)→ KO

K

2i

ZC
(EC;L′)

Here, L is an arbitrary line bundle on Z, and L′ := p∗L ⊗ p∗det E∨.

In each case, the isomorphism is the composite of the pullback by p with
multiplication by an element in the cohomology of E supported on Z, called
“Thom class” of E . The pullback by p is an isomorphism by homotopy
invariance, and it commutes with w as it is inverse to the pullback along a
closed embedding. So if suffices to concentrate on the second step.

We begin by looking at a Thom class for K0. Given any vector bundle
p : E → Z with a section s : OZ → E , we can form the Koszul complex K•(s),

0→
rk Ê

E∨→
rk E−1^

E∨→ · · · →
2̂

E∨→ E∨ s∨→ OZ → 0,

with OZ in degree zero. The support S of K•(s) is the zero-set of s. Moreover,
if s is a regular section, K•(s) is a resolution of the pushforward of OS to Z (cf.
Fulton [18, App. B]). In particular, if we consider the pullback p∗E of E to itself,
the canonical section yields a complex K•E defining an element in KZ

0 E . As
K•E is a resolution of the pushforward of OZ to E , this element is the image of
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1 ∈ K0Z under the dévissage isomorphism K0Z → KZ
0 E . In fact, if we identify

K0Z with K0E via p∗, the dévissage isomorphism becomes multiplication by
K•E . So K•E represents a Thom class for E .

In topology, given an even-dimensional complex vector bundle E over a space
Z, any element θ ∈ K0

ZE that restricts to a generator of K0
{z}(Ez) for each fibre

Ez is a Thom class inducing an isomorphism K0E → K0
ZE (eg. [24, § 12]). The

first part of Proposition 2.7 now follows from the following observation.

Proposition 2.8. The map w sends the class of the Koszul complex of an
algebraic vector bundle to a Thom class of the underlying complex continuous
bundle.

Proof. Let E be a vector bundle of rank r. We have to show that the restriction
of w(K•E) ∈ K0

ZC
(EC) to any fibre is a generator of K0

{0} Cr = ÜK0(S2r) ∼= Z. The
inclusion ix : Ex ↪→ E of the fibre over some point x ∈ Z is a closed embedding,
so w commutes with its pullback and the following square is commutative.

K
{0}
0 Ar

w

��

KZ
0 E

i∗x

oo

w

��

K0
{0}Cr K0

ZC
(EC)

i∗x

oo

So we only have to check that the Koszul complex of the trivial complex vector
bundle of rank r is a generator of K0

{0} Cr. This is done in [22, § 2.6, p. 99]. In
fact, both of the groups on the left of the above diagram are equal to Z, generated
by the Koszul complex, and w : K{0}

0 Ar → K0
{0}Cr is an isomorphism.

We proceed in the same way for Grothendieck-Witt groups. For any vector
bundle p : E → Z of rank r, the Koszul complexK•E is canonically isomorphic to
(K•E∨⊗ det p∗E∨)[r], so we obtain a “symmetric Koszul space” (K•E , κE). This
defines an element in each of the groups GWr

Z(E ; det p∗E∨) and Wr
Z(E ; det p∗E∨),

inducing maps

GWi(E ;L)→ GWi+r
Z (E ;L ⊗ det p∗E∨)

Wi(E ;L)→Wi+r
Z (E ;L ⊗ det p∗E∨)

Nenashev shows in [9, Theorem 2.5] that the map on Witt groups is
an isomorphism. As we already know that multiplication with K•E is an
isomorphism on K-groups, we can deduce that the map on Grothendieck-Witt
groups is also an isomorphism from the exact sequence (9) in Section 2.3 and
Lemma 2.3.

In order to carry Proposition 2.8 over to Grothendieck-Witt groups, we begin
by computing the GW-groups of a fibre supported in a point explicitly.

Lemma 2.9. Let r denote the trivial bundle of rank r over Ar, and let (K•(r), κ)
be its symmetric Koszul space. Then

GWi
{0}Ar =

8>><
>>:

Z · (K•(r), κ) if i ≡ r (mod 4)
0 if i ≡ r + 1
Z ·Hi (K•(r)) if i ≡ r + 2
Z2 ·Hi (K•(r)) if i ≡ r + 3
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Proof. We have already seen that

K{0}
0 Ar = Z ·K•(r).

The Witt groups are computed in [6, Theorem 8.2]:

Wi
{0}Ar =

¨
Z2 · (K•(r), κ) if i ≡ r (mod 4)
0 otherwise

The idea is now to use the exact sequence (9):

GWi−1
{0}Ar F // K{0}

0 Ar Hi // GWi
{0}Ar // // Wi

{0}Ar

First, taking i = r, we see that (K•(r), κ) must represent a non-zero class
in GWr

{0}Ar. Taking i = r + 1, it follows that F : GWr
{0}Ar → K{0}

0 Ar is a
surjection and GWr+1

{0} Ar is zero. For i = r + 2, the sequence now reduces to an
isomorphism between K0 and GWr+2. So indeed GWr+2

{0} Ar is Z ·Hr+2 (K•(r)).
To get any further, we need to calculate F (Hr+2(K•(r))). Note that K•(r)

and K•(r)∨ are isomorphic except for a shift by r, so they only differ by the sign
(−1)r in K{0}

0 Ar. This allows us to compute FHj(K•(r)) for any j explicitly:

FHj(K•(r)) = K•(r) +K•(r)∨[j] = K•(r) + (−1)r+jK•(r)

=

¨
2 ·K•(r) if r + j is even
0 if r + j is odd

In particular, it follows that F : GWr+2
{0} Ar → K{0}

0 Ar in the sequence with
i = r + 3 is multiplication by 2. So GWr+3

{0} Ar is Z2 ·Hr+3(K•(r)). Finally, for
i = r again, F is zero, yielding a short exact sequence

Z ·K•(r) //
Hr // GWr

{0}Ar // // Z2 · (K•(r), κ) .

This leaves two possibilities for GWr: Z · (K•(r), κ) and Z ·Hr(K•(r))⊕ Z2.
However, Hr(K•(r)) = HrF (K•(r), κ) = 2 · (K•(r), κ), which would be impos-
sible in the latter case. So GWr

{0}Ar = Z · (K•(r), κ), as claimed.

Proposition 2.10. The map w sends the class of the symmetric Koszul space
of an algebraic vector bundle to a Thom class of the underlying real continuous
bundle.

Proof. Again, let E be a vector bundle of rank r. This time we have to show that
the restriction of w(K•E , κE) ∈ KO2r

ZC
(EC; det(p∗E∨)) to any fibre is a generator

of KO2r
{0} Cr = gKO2r(S2r) ∼= Z. As before, w commutes with this restriction:

GWr
{0}Ar

w

��

GWr
Z(E;det(p∗E∨))

i∗x

oo

w

��

KO2r
{0}Cr KO2r

ZC
(EC;det(p∗E∨))

i∗x

oo
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As the restriction of (K•E , κE) is the generator (K•(r), κ) of GWr
{0} Ar, it

suffices to show that w defines an isomorphism GWr
{0} → KO2r

{0}Cr.
To see this, note that it follows from the previous lemma that the forgetful

map F : GWr
{0}Ar → K{0}

0 Ar is an isomorphism. If we look at the Bott sequence
(10) for (Cr,Cr − {0}), we see that the corresponding map from KO2r

{0}Cr to
K0
{0}Cr is also an isomorphism:

KO2r+1
{0} Cr // KO2r

{0}Cr // K0
{0}Cr // KO2r+2

{0} Cr

The group on the far left is isomorphic to gKO2r+1(S2r) = KO1(point) and the
group on the far right is isomorphic to gKO2r+2(S2r) = KO2(point), both of
which are trivial.

So it follows from Proposition 2.5 and the fact that w is an isomorphism on
K{0}

0 Ar that it is also an isomorphism on GWr
{0}Ar.

2.6 Pushforwards

Proposition 2.11. Let X be a smooth variety, and let Z ⊂ X be a smooth
closed subvariety of codimension c, with normal bundle N . Given a line bundle
L on X, let L′ denote the line bundle L|Z⊗detN on Z. Then w commutes with
the isomorphisms given by pushing forward along the closed embedding Z ↪→ X:

K0Z → KZ
0 X K0(ZC)→ K0

ZC
(XC)

GWi(Z;L′)→ GWi+c
Z (X;L) KO2i(ZC;L′)→ KO2i+2c

ZC
(XC;L)

Wi(Z;L′)→Wi+c
Z (X;L) KO

K

2i
(ZC;L′)→ KO

K

2i+2c

ZC
(XC;L)

Proof. All of the isomorphisms are well-known. In the case of Witt groups,
Nenashev gives a possible construction of such an isomorphism in [9]. Inspection
shows that this same construction also works in the other cases, and that w is
compatible with each of the steps involved.

In slightly more detail, Nenashev considers the composition

Wi(Z;L′)
∼=

Thom
// Wi+c

Z (N ; p∗(L|Z))
∼=
d

// Wi+c
Z (X;L).

The first map is the Thom isomorphism of the preceding section. The second
isomorphism, d, is (the inverse of) the so-called deformation to the normal
bundle, as described in [9, Section 3]. Briefly, it is obtained as follows: From
the smooth pair (X,Z), one constructs a smooth variety D commonly known
as deformation space, containing Z × A1 as a closed subspace and fibred over
A1 such that

• the fibre over 1 is isomorphic to X, and the inclusion i1 maps Z ⊂ X to
Z × 1 ⊂ Z × A1, whereas

• the fibre over 0 is isomorphic to N , and the inclusion i0 maps Z ⊂ N to
Z × 0 ⊂ Z × A1.

Moreover, for any line bundle L on X, there exists a line bundle eL on D
restricting to L over X and to p∗L|Z over N . Thus, we can consider the
pullbacks

Wi
Z(N ; p∗(L|Z)) Wi

Z×A1(D; eL)
i∗0oo

i∗1 // Wi
Z(X;L) .
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It turns out that both pullbacks are isomorphisms on the Witt groups, so d can
be defined as the inverse of i∗0 followed by i∗1.

We claim that this approach also works in the other cases: Regarding Witt
groups as a cohomology theory on smooth pairs, the key properties needed to
prove that the pullbacks are isomorphisms are homotopy invariance, Mayer-
Vietoris and Nisnevich excision. All of these properties are satisfied by (higher)
algebraic K-theory, see for example [7]. For Grothendieck-Witt groups, we may
deduce the fact that i0 and i1 induce isomorphisms from sequence (9). Moreover,
generalised cohomology theories in topology always satisfy homotopy invariance,
Mayer-Vietoris and Nisnevich excision, so the same construction works for the
K- and KO-groups of a smooth complex variety. Then, as w is natural with
respect to closed embeddings, it commutes with d.

3 Application to smooth cellular varieties

3.1 The main theorem

We have now assembled all the tools we need to show that, in the special case
of smooth cellular complex varieties, all versions of w are isomorphisms. So
fix one such variety X. By definition, X has a filtration by closed subvarieties
∅ = Z0 ⊂ Z1 ⊂ Z2 · · · ⊂ ZN = X such that each Zk+1 can be written as the
disjoint union of Zk and an open cell Ck isomorphic to Ank for some nk.
In general, the subvarieties Zk will not be smooth. Their complements
Xk := X − Zk, however, are always smooth as they are open in X. So we
obtain a filtration X = X0 ⊃ X1 ⊃ X2 · · · ⊃ XN = ∅ of X by smooth open
subvarieties Xk, each of which is a disjoint union of an open subvariety Xk+1

and a closed cell Ck.

Theorem 3.1. For a smooth cellular complex variety X, all versions of w are
isomorphisms:

K0X
∼=−→ K0(XC)

GWiX
∼=−→ KO2i(XC)

WiX
∼=−→ KO

K

2i
(XC) ∼= KO2i−1(XC)

This remains true for twisted groups.

Proof. If X is a single cell, the pullback along the projection to a point induces
isomorphisms on all the groups above. As a map from K0(point) to K0(point)
and as a map from Wi(point) to KO

K

2i
(point), w is an isomorphism. Hence

it is also an isomorphism on the Grothendieck-Witt groups of a point (cf.
diagram (11)). So w is an isomorphism on single cells.

More generally, the relative groups of any space supported on a closed cell
are isomorphic to the corresponding groups of the cell itself via the pushforward
along the closed embedding of that cell. The map w commutes with this
pushforward by Proposition 2.11, so it is an isomorphism on all groups supported
on a single closed cell.

Now we can induct on the number of cells using the filtration Xk described
above: Given that we have isomorphisms on Xk+1, we have to show that we
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also have isomorphisms on Xk. For K-theory, this follows by applying the snake
lemma to the following commutative diagram:

K
Ck
0 (Xk) //

∼=
��

K0Xk
//

w

��

K0Xk+1

∼= by induction

��

// 0

0 // K0
Ck

(Xk) // K0Xk
// K0Xk+1

// 0

Here, the first line is exact because Ck and Xk are smooth. Exactness of the
bottom line comes from the fact that the K1-groups of a CW complex with only
even-dimensional cells are always zero. For the same reason, the Bott sequence
(10) of such a complex falls apart into seven-term exact sequences ending in

... // K0 // KO2i
η

// KO2i−1 //0 .

Consequently, multiplication by η induces isomorphisms KO
K

2i ∼=→ KO2i−1. We
can therefore rewrite parts of the long exact sequence of KO-groups of the pair
(Xk, Xk+1) as

... // KO2i
Ck

(Xk) // KO2iXk
// KO2iXk+1

∂′ // KO
K

2i+2

Ck
(Xk) // KO

K

2i+2
Xk

// KO
K

2i+2
Xk+1

// ...

These sequences can be compared to the localization sequences of the
Grothendieck-Witt groups of Ck+1 ⊂ Xk (cf. (8) in Section 1.6):

GWi
Ck

(Xk) //

∼=

��

GWiXk
//

w

��

GWiXk+1
∂ //

∼=

��

?

Wi+1
Ck

(Xk) //

∼=
��

Wi+1Xk
//

w

��

Wi+1Xk+1

∼=
��

KO2i
Ck

(Xk) // KO2iXk
// KO2iXk+1

∂′ // KO
K

2i+2

Ck
(Xk) // KO

K

2i+2
Xk

// KO
K

2i+2
Xk+1

Commutativity of these diagrams is clear everywhere except for the squares
with the boundary maps. In general, the question whether the two boundary
maps ∂ and ∂′ are compatible is non-trivial; their definitions have very little in
common. However, in this particular case commutativity follows from rather
simple considerations: Wi+1

Ck
(Xk) is isomorphic to some Witt group of a point,

so it is either 0 or Z2. If it is 0, the diagram commutes trivially. If it is Z2,
there are again two possibilities:

If ∂′ is zero, we have an injection KO
K

2i+2

Ck
(Xk) � KO

K

2i+2
Xk. This implies

that Wi+1
Ck

(Xk)→Wi+1Xk is also an injection, whence ∂ must also be zero. So
again the square commutes trivially.

If ∂′ is non-zero, then KO2iXk → KO2iXk+1 cannot be surjective. Hence
GWiXk → GWiXk+1 cannot be surjective either, so ∂ must also be non-zero.
It follows that w ◦ ∂ and ∂′ ◦ w are two surjections onto Z2 such that ∂′ ◦ w
vanishes on the kernel of w ◦ ∂. So both maps factor as GWiXk+1 � GWiXk+1

ker ∂

followed by an isomorphism of GWiXk+1
ker ∂ with Z2. As there can only be one such

isomorphism, w ◦ ∂ and ∂′ ◦ w must agree.
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Given commutativity, the five lemma implies that we have surjections
GWiXk � KO2iXk and injections WiXk � KO

K

2i
Xk, for all i. Combining these

with the isomorphisms on K-groups which we established at the beginning, we
obtain diagrams of the form

GWiXk
//

����

K0Xk
//

∼=
��

GWi+1Xk
// //

����

Wi+1Xk
//

��

��

0

KO2iXk
// K0Xk

// KO2i+2Xk
// // KO

K

2i+2
Xk

// 0

Applying the five lemma twice for different i or otherwise, it follows that, in
fact, all of the vertical maps are isomorphisms.

3.2 An example: projective spaces

Finally, we would like to demonstrate that our theorem is non-vacuous by
considering the complex projective spaces CPn. The Picard-group of CPn is
isomorphic to Z, generated by the hyperplane bundle O(1). This gives infinitely
many groups GWi(CPn;O(l)) and Wi(CPn;O(l)), one for each l ∈ Z. However,
in general, given a variety X with line bundles L and M, the tensor product
with L induces isomorphisms

GWi(X;M) ∼= GWi(X;M⊗L⊗L)

Wi(X;M) ∼= Wi(X;M⊗L⊗L)

So we need only consider values of l modulo 2, i.e. only untwisted groups and
groups with coefficients in O(1).

Our theorem says that we can compute all of these groups purely topo-
logically. One of the main computational tools in topological K-theory is the
Atiyah-Hirzebruch spectral sequence, which relates the K- or KO-groups of a
space to its singular cohomology. Applying this sequence to a CW complex X
which has cells only in even dimensions, we see that

• KO0X = KO4X = Ze ⊕ 2-torsion, where e is the number of cells of X of
even complex dimension,

• KO2X = KO6X = Zo ⊕ 2-torsion, where o is the number of cells of X of
odd complex dimension, and

• KO2i+1X = 2-torsion of KO2iX. [28, 2.1 and 2.2]

This gives the free parts of the usual groups KOi(CPn) straightaway. The
complete computations of KOi(CPn) were first published in a 1967 paper by
Fujii [26], in which he also determines most of the multiplicative structure. It
is not difficult to deduce the values of the twisted groups KOi(CPn;O(1)) from
these results: the Thom space Th(OCPn(1)) is homeomorphic to CPn+1, so

KOi(CPn;O(1)) = gKOi+2(Th(O(1)))

= gKOi+2(CPn+1).

We summarise the additive structure in a table.

34



i KOi(CPn) KOi(CPn;O(1))

n even n ≡ 1 n ≡ 3 (mod 4) n odd n ≡ 0 n ≡ 2 (mod 4)

0 Zs+1 Zs+1 ⊕ Z2 Zs+1 Zt Zt+1 Zt+1

1 0 Z2 0 0 0 0

2 Zs Zs+1 Zs+1 Zt Zt Zt ⊕ Z2

3 0 0 0 0 0 Z2

4 Zs+1 Zs+1 Zs+1 ⊕ Z2 Zt Zt+1 Zt+1

5 0 0 Z2 0 0 0

6 Zs ⊕ Z2 Zs+1 ⊕ Z2 Zs+1 ⊕ Z2 Zt Zt ⊕ Z2 Zt

7 Z2 Z2 Z2 0 Z2 0

The KO-groups of CPn. Here, s = bn
2 c and t = dn

2 e.

In the classical theory of Witt groups, Arason showed in 1980 that the Witt
group W0(Pn) of a projective space Pn over a field k agrees with the Witt
group of the field [3], so for CPn we have W0(CPn) = Z2. Higher Witt and
Grothendieck-Witt groups have only been computed recently by Walter [10].
Under our identifications, his result agrees with the one displayed above.
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(German).

[4] Paul Balmer, Triangular Witt groups. I. The 12-term localization exact sequence, K-
Theory 19 (2000), no. 4, 311–363.

[5] , Triangular Witt groups. II. From usual to derived, Math. Z. 236 (2001), no. 2,
351–382.

[6] Paul Balmer and Stefan Gille, Koszul complexes and symmetric forms over the punctured
affine space, Proc. London Math. Soc. (3) 91 (2005), no. 2, 273–299.

[7] I. Panin, Oriented cohomology theories of algebraic varieties, K-Theory 30 (2003), no. 3,
265–314. Special issue in honor of Hyman Bass on his seventieth birthday. Part III.

[8] Stefan Gille and Alexander Nenashev, Pairings in triangular Witt theory, J. Algebra 261
(2003), no. 2, 292–309.

[9] Alexander Nenashev, Gysin maps in Balmer-Witt theory, J. Pure Appl. Algebra 211
(2007), no. 1, 203–221.

[10] Charles Walter, Grothendieck-Witt groups of projective bundles (2003), available at http:
//www.math.uiuc.edu/K-theory/0644/. Preprint.

[11] , Grothendieck-Witt groups of triangulated categories (2003), available at http:

//www.math.uiuc.edu/K-theory/0643/. Preprint.

[12] Marco Schlichting, Hermitian K-theory of exact categories (2008), available at http:

//www.math.lsu.edu/~mschlich/research.html. Accepted for publication in Journal of
K-theory.

[13] , The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes (2008),
available at http://www.math.lsu.edu/~mschlich/research.html. Preprint.

[14] , Higher algebraic K-theory (2007), available at http://www.math.lsu.edu/

~mschlich/research/sedano.pdf. Notes.

[15] , Hermitian K-theory, derived equivalences and Karoubi’s fundamental theorem
(2007), available at http://www.math.lsu.edu/~mschlich/research/draftGWsch2.pdf.
Draft.

35

http://www.math.uiuc.edu/K-theory/0644/
http://www.math.uiuc.edu/K-theory/0644/
http://www.math.uiuc.edu/K-theory/0643/
http://www.math.uiuc.edu/K-theory/0643/
http://www.math.lsu.edu/~mschlich/research.html
http://www.math.lsu.edu/~mschlich/research.html
http://www.math.lsu.edu/~mschlich/research.html
http://www.math.lsu.edu/~mschlich/research/sedano.pdf
http://www.math.lsu.edu/~mschlich/research/sedano.pdf
http://www.math.lsu.edu/~mschlich/research/draftGWsch2.pdf


[16] Jens Hornbostel and Marco Schlichting, Localization in Hermitian K-theory of rings, J.
London Math. Soc. (2) 70 (2004), no. 1, 77–124.

[17] Jens Hornbostel, A1-representability of Hermitian K-theory and Witt groups, Topology
44 (2005), no. 3, 661–687.

[18] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-
Verlag, Berlin, 1998.

[19] Heisuke Hironaka, Triangulations of algebraic sets, Algebraic geometry (Proc. Sympos.
Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974), Amer. Math. Soc.,
Providence, R.I., 1975, pp. 165–185.

[20] Masayoshi Nagata, Imbedding of an abstract variety in a complete variety, J. Math.
Kyoto Univ. 2 (1962), 1–10.

[21] W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), no. 1,
95–111.

[22] M. F. Atiyah, K-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New
York-Amsterdam, 1967.

[23] Raoul Bott, Lectures on K(X), Mathematics Lecture Note Series, W. A. Benjamin, Inc.,
New York-Amsterdam, 1969.

[24] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl.
1, 3–38.

[25] M. F. Atiyah and E. Rees, Vector bundles on projective 3-space, Invent. Math. 35 (1976),
131–153.

[26] Michikazu Fujii, K0-groups of projective spaces, Osaka J. Math. 4 (1967), 141–149. MR
0219060 (36 #2143)

[27] Akira Kono and Shin-ichiro Hara, KO-theory of complex Grassmannians, J. Math. Kyoto
Univ. 31 (1991), no. 3, 827–833.

[28] S. G. Hoggar, On KO theory of Grassmannians, Quart. J. Math. Oxford Ser. (2) 20
(1969), 447–463.

[29] Graeme Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. (1968), no. 34,
129–151.

[30] J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathe-
matics, University of Chicago Press, Chicago, IL, 1995. Reprint of the 1974 original.

[31] Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear
topology, Springer Study Edition, Springer-Verlag, Berlin, 1982. Reprint.

36


	Introduction
	Construction of a comparison map
	Basic definitions
	Algebraic K-groups with support
	Relative topological K-groups
	Extending the map to relative groups
	Representable topological K-theory
	Shifted (Grothendieck-)Witt groups
	Extending the map to lower degrees

	Properties of the comparison map
	Naturality
	Multiplication
	Realification and complexification
	Periodicity
	Thom isomorphisms
	Pushforwards

	Application to smooth cellular varieties
	The main theorem
	An example: projective spaces


