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Belmans  

 

Planning models have been used for many years to optimize generation 
investments in electric power systems. More recently, these models 
have been extended in order to treat demand-side management on an 
equal footing. This paper stresses the importance of integrating short-
term demand response to time-varying prices into those investment 
models. Three different methodologies are suggested to integrate short-
term responsiveness into a long-term model assuming that consumer 
response can be modelled using price-elastic demand and that 
generators behave competitively. First, numerical results show that 
considering operational constraints in an investment model results in 
less inflexible base load capacity and more mid-range capacity that has 
higher ramp rates. Then, own-price and cross-price elasticities are 
included in order to incorporate consumers’ willingness to adjust the 
demand profile in response to price changes. Whereas own-price 
elasticities account for immediate response to price signals, cross-price 
elasticities account for shifting loads to other periods. As energy 
efficiency programs sponsored by governments or utilities also influence 
the load profile, the interaction of energy efficiency expenditures and 
demand response is also modelled. In particular, reduced 
responsiveness to prices can be a side effect when 
consumers have become more energy efficient. 
Comparison of model results for a single year 
optimization with and without demand response shows 
the peak reduction and valley filling effects of response to 
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real-time prices for an illustrative example with a large amount of wind 
power injections. Additionally, increasing demand elasticity increases 
the optimal amount of installed wind power capacity. This suggests that 
demand-side management can result in environmental benefits not only 
through reducing energy use, but also by facilitating integration of 
renewable energy. 
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Abstract 
Planning models have been used for many years to optimize generation investments in 

electric power systems. More recently, these models have been extended in order to 

treat demand-side management on an equal footing. This paper stresses the 

importance of integrating short-term demand response to time-varying prices into 

those investment models. Three different methodologies are suggested to integrate 

short-term responsiveness into a long-term model assuming that consumer response 

can be modelled using price-elastic demand and that generators behave competitively. 

First, numerical results show that considering operational constraints in an investment 

model results in less inflexible base load capacity and more mid-range capacity that 

has higher ramp rates. Then, own-price and cross-price elasticities are included in 

order to incorporate consumers’ willingness to adjust the demand profile in response 

to price changes. Whereas own-price elasticities account for immediate response to 

price signals, cross-price elasticities account for shifting loads to other periods. As 

energy efficiency programs sponsored by governments or utilities also influence the 

load profile, the interaction of energy efficiency expenditures and demand response is 

also modelled. In particular, reduced responsiveness to prices can be a side effect 

when consumers have become more energy efficient. Comparison of model results for 

a single year optimization with and without demand response shows the peak 

reduction and valley filling effects of response to real-time prices for an illustrative 

example with a large amount of wind power injections. Additionally, increasing 

demand elasticity increases the optimal amount of installed wind power capacity. This 

suggests that demand-side management can result in environmental benefits not only 

through reducing energy use, but also by facilitating integration of renewable energy. 
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Demand response, generation investment, electricity resource planning models 
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1. INTRODUCTION 
 

Large-scale deployment of renewable energy sources has been promoted by the 

European Commission in an effort to improve the sustainability of the electric power 

industry [1]. Most new renewable generation has been in the form of wind power. 

Large-scale wind power development impacts both short-term operation of the 

electricity system, as well as long-term investment planning. In operations, the 

integration of wind power significantly increases the variability of the generation 

output. Fluctuations in the amount of wind power fed into the grid require 

compensating changes in the output of other, flexible generators in the system. 

Flexibility can also be provided by international interconnections and energy storage. 

In case of insufficient flexibility, wind power curtailment, also referred to as wasted 

wind [2], can help to instantaneously balance generation and demand when over-

generation is a problem. As flexibility of conventional generation technologies is 

restricted by technical constraints, such as ramp rates and minimum run levels, long-

term investment planning should consider the increasing need for flexibility of 

generation units. Furthermore, occasional high demand situations with very little wind 

power injections require back-up capacity [3]. System reliability requirements and the 

joint distribution of load, wind output, and thermal unit forced outages determine the 

extent to which new wind development contributes to the ability of the system to 

serve peak loads. This concept is often referred to as the capacity credit of wind [4]. 

Generally, wind’s capacity credit is significantly less than its average output, and 

depends on the extent of wind penetration into the market. 

 

The above mentioned sources of flexibility are offered by the supply-side of the 

power system. However, integration of smart grid technologies in the electric power 

system [5], for example though smart meters, creates opportunities to more efficiently 

balance supply and demand. Smart meters resolve one of the demand-side market 

failures mentioned in [6] as without such meters, there is a lack of real-time billing. 

This prevents consumers from seeing and responding to real-time prices, resulting in 

perfectly inelastic demand in short-term. Consequently, traditional planning models 

suggest the optimal generation or transmission investment decisions for given 

projected load levels, neglecting the potential for short-term demand elasticity to trim 

peak loads and manage renewable energy fluctuations [7].  

 

With the advent of smart meters that allow consumers to respond to real-time system 

conditions, investment planning models need to be enhanced in two ways in order to 

identifying the net benefit maximizing mix of generation, transmission, and demand-

side investments. The first enhancement is representation of price-elastic demand. 

This representation should include cross-price elasticities, since the response to a 

higher price in one hour can both reduce demand by forgoing consumption without 

consumption recovery in the hour in question, as well as shift load to other times, also 

referred to as the substitution effect [8]. The second enhancement is the inclusion of 

dynamic operating constraints, especially ramp rate limitations, in order to 

appropriately value the flexibility contributed (or not) by alternative resources in the 

face of increased penetration of renewables.  

 

This paper proposes such a generalization, and is organized as follows. First, in 

Section 2 we review how investment decisions are represented in long-term planning 

models available. Then in Section 3, a linear programming (LP) based long-term 

investment planning model is developed that represents system flexibility through the 
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inclusion of chronologic dispatch constraints. Three methods are suggested to 

integrate short-term demand response into the planning model, assuming real-time 

varying rates that reflect the instantaneous marginal cost of generating electricity. The 

model accounts for both own- and cross-price elasticities. Hourly demand functions 

are defined with these characteristics. The model is also extended to account for 

investments in energy efficiency, whose effect can be viewed as a shifting of inverse 

demand curves to the left across a number of hours. Such investments can decrease 

the amount of demand response as well, if the slopes of those curves also steepen. 

This represents a negative interaction between the two types of demand-side 

measures. Results of an example application are presented in Section 4, followed by 

conclusions in Section 5. 

 

2. Literature review 
 

In this section, several long-term resource planning modelling approaches are 

reviewed. These models support decision making with a relevant time horizon of 

more than 20 years [9]. Optimization models, as described in [7] and [10], have been 

used for several decades. They offer solutions relevant in a regulated market or central 

planning context. Equilibrium models, as well as long-term market simulation 

models, typically used to represent market participants’ (agents’) strategic behaviour, 

show a similar market outcome under the assumption of perfect competition and 

perfectly inelastic demand [11]. Therefore, optimization models are often used as a 

benchmark of market prices or investment levels that could be expected if everybody 

behaved rationally and as price takers (perfect competition). 

 

Long-term planning models support cost-minimizing investment decision making 

given long-term demand growth projections. These models are often referred to as 

Generation Expansion Planning (GEP) models. The LP formulation of this cost 

minimization problem was first presented in [12] and [13]. By minimizing the present 

worth of investment and operational costs, the optimal timing, location and type of 

newly commissioned plants is defined [14]. The basic model formulation has been 

extended in the past two decades by including variables and constraints that account 

for the following features: optimal plant scheduling, system security and reliability 

requirements (e.g., installed reserve margins [15]), and regulatory constraints such as 

emissions targets or caps [16]. Different resource attributes such as must-run capacity, 

operating reserve capabilities [7], and requirements for periodic maintenance [17] can 

also be added. An example of a commercial model of this type is the Integrated 

Planning Model.
3
 

 

LP models have been successful because of their ability to model large and complex 

problems, but simplifying several assumptions was required. In order to improve the 

representation of several operational and investment related aspects of utility 

planning, alternative model structures have been proposed [18]. Alternative 

techniques for solving non-linear generation expansion models are suggested in [19]. 

Mixed integer programming is especially relevant when binary variables are 

associated with relevant investment projects or non-linear operational elements, such 

as minimum run levels and minimum up- and downtimes. In contrast, LP models 

assume that capacity and other variables can be varied continuously. Multi-criteria 

programming has been used in order to introduce additional objectives, such as 

                                                
3 Developed by ICF, Inc. and widely used in the U.S.; see www.icfi.com. 
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environmental impacts [20]. An overview of models including stochastic elements for 

demand or supply variables is given in [21]. Probabilistic production costing models, 

which account for the effect upon expected generation costs and customer outages or 

random plant forced outages, have been incorporated into the LP approach by 

decomposition methods [22], [23]. This approach is used by the commercial Electric 

Generation Expansion Analysis System (EGEAS).
4
 By adding uncertainties (standard 

deviations) and correlations of different cost categories, optimal risk-cost portfolios 

can also be found [24]. This last technique has been widely applied within the 

financial sector, focussing on the benefits of diversification.  

 

Dynamic programming (DP) is another useful programming methodology for electric 

utility planning, in spite of the scalability problems associated with these methods. It 

is a multi-stage optimization methodology that focuses on both the medium- and the 

long-term impact of decisions. Its advantage is that DP recognizes the binary nature of 

investment decisions and allows for many decision stages. Previously installed 

capacities and their possible decommissioning are integrated with capacity additions 

to derive a dynamic resource plan instead of a static, single year optimization used in 

many LP applications [25]. DP is used in commercial generation expansion packages, 

such as PROVIEW/PROSCREEN
5
 and the Wien Automatic System Planning 

Package (WASP).
6
 

 

In general, the above mentioned planning models present an investment plan based on 

a sophisticated supply-side analysis while demand-side options, such as energy 

efficiency programs or demand response, are remarkably simplified or even entirely 

neglected. The demand profile is typically described by a load duration curve, which 

is constructed by sorting the load in order of increasing hourly values, or by using 

three to six discreet load steps [16]. This representation loses information about the 

critical low load and high load situations, as well as chronologic hourly variability, 

which is crucial for assessing system flexibility in the face of varying demand and 

renewable production. 

 

The chronological sequence of hourly load levels impacts interperiod operating 

constraints, which have, for many years, been assumed to be unimportant in the 

context of investment decision making. This assumption is, however, no longer 

tenable when there is large penetration of intermittent energy sources into the power 

system and the amount of required operating reserves and flexibility increases. In 

these cases, the rampability of existing and newly commissioned thermal generation 

types has to be explicitly taken into account in order to properly value their worth. 

Special attention is paid to ramp rates in [26] and [27]. 

 

In the 1970’s, the energy crisis triggered public awareness of energy conservation, 

and utilities recognized that demand-side options could be seen as an alternative for 

satisfying customers’ demand. The challenge in the 1980’s for the electric utilities 

was to integrate the concept of influencing the electricity demand into traditional 

supply planning models [28]. As a result, the paradigm of Integrated Resource 

                                                
4 Developed by MIT under Electric Power Research Institute (EPRI) sponsorship [22], [23]. 
5
 Developed by the New Energy Associates (NEA). See discussions of the model in [79] and [80], and 

[81] for an application. 
6
 Developed by the Tennessee Valley Authority (TVA) and Oak Ridge National Laboratory (ORNL) of 

the United States of America [82]. 
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Planning (IRP) was developed.
7
 Resource planning models to implement IRP were 

developed. These models intended to treat demand-side management (DSM) 

programs on equal footing with generation options [17]. DSM programs modify the 

timing and the amount of electricity demand through non-price mechanisms. Six 

different types of load shape objectives are identified and discussed in [28] and [29]: 

peak clipping, valley filling, load shifting, strategic conservation (also known as 

energy efficiency), strategic load growth and flexible load shaping. Each of those 

results in load shape changes, meaning that the electricity demand curve is shifted.  

 

The most widely pursued type of DSM program, energy efficiency, focuses on energy 

[MWh] reductions. Energy efficiency refers to permanent changes to electricity usage 

through installation of, or replacement with, more efficient end-user devices (e.g., 

driven by subsidies for efficient air conditioning and lighting equipment [30]) or more 

effective operation of existing devices that reduce the quantity of energy needed to 

perform a desired function or service. Energy efficiency can be driven by consumers 

actively managing their energy costs, or result from DSM subsidies from utilities, or 

government regulations concerning equipment or building efficiency. In the former 

case, it can be considered as long-term demand response, because consumers respond 

to prices by adjusting their capital stock. In the case of utility subsidies or government 

rules, it is regulatory based. A wide variety of energy efficiency programs have been 

developed to subsidize and incent consumer investment in more efficient energy using 

equipment and buildings. The Demand Conservation Incentive [31] and the white 

certificates [32] are both examples of mechanisms supporting consumers to avoid 

electricity consumption.
8
 

 

Most of these programs are economically justified by reductions of generation 

variable or investment costs, for instance as quantified by the California Standard 

Practice for benefit-cost analysis of DSM [33]. Strategic conservation and load 

management programs are sometimes included in IRP models as an alternative for 

minimizing costs [29]. However, cost-based paradigms underlying IRP models 

overlook how DSM can alter the value that consumers receive from consuming 

energy services [34]. Also, the interactions of energy efficiency investments with the 

ability of demand to respond to real-time prices were neglected by these models [8]. 

Furthermore, the cost-minimization objective is inappropriate for evaluating the net 

benefits of programs that influence demand by varying prices. Instead, the effects on 

consumer value and surplus (the difference between the value of energy services and 

expenditures) need to be considered in addition to resource costs [35]. 

 

                                                
7
 The fundamental differences between traditional planning and integrated resource planning are 

described in [55]. 
8
The other types of DSM programs, which are not considered in this paper, are defined as follows. 

Strategic load growth attempts to increase energy [MWh] demands in order to provide value to 

consumers. In contrast, three basic forms of load management focus on instantaneous demand 

adjustments [MW] or load shapes. First, peak clipping (such as active controls of air conditions or 

water heaters) emphasize instantaneous demand reductions, allowing the system operators to deal with 

critical system situations. Peak clipping is considered by utilities as a means to reduce peaking capacity 

or capacity purchases. Second, valley filling involves building off-peak loads during hours with 

marginal cost below the average price of electricity. Third, load shifting encompasses moving loads 

from peak to off-peak periods. This last form of load management is often facilitated by thermal 

storage applications for space cooling and heating applications. The final type of DSM program, 

flexible load shaping focuses on reliability. Programs allowing interruptible or curtailable load are 

considered as sources of flexibility in the planning horizon of power supplier. 
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In contrast to traditional DSM and energy efficiency programs, demand response has 

the objective of integrating consumers into the spot electricity market, allowing them 

to interact with supply and express directly their willingness to pay for electricity over 

time and (in the case of locational pricing) space. At the same time that IRP was 

growing in influence, researchers at MIT developed the theory of dynamic or spot 

pricing [36]. Ironically, the developers originally anticipated that it would be most 

valuable for incenting consumers to modify the timing and amount of loads in 

response to system conditions; in actuality, it has instead provided the intellectual 

foundation for locational marginal pricing-based markets for coordinating power 

generation, where demand response has not yet played an important role. Caramanis 

[36] illustrates the different elements that compose a spot price. He distinguishes three 

tariff structures, depending on the frequency of metering and communication.  

 

However, interest in demand response has grown considerably in the last decade. 

Several tariff options have been promoted, including time-of-use pricing (ToU), 

critical peak pricing (CPP), peak time rebate (PTR), as well as full real-time pricing. 

Prices or incentives can be based upon real-time wholesale prices, local congestion, or 

predetermined prices that are triggered by critical system situations. Examples of 

program options for implementing demand-response are interruptible load service, 

demand bidding, emergency demand response programs, capacity market programs, 

and Ancillary Services Market Programs [37], [38]. Changes in electric usage by end 

users in response to tariff changes is sometimes generally referred to as demand 

response, but for our purposes we define demand response more narrowly as response 

to real-time prices that are linked to spot bulk power prices. 

 

Although demand response has heretofore not had a large impact on electricity 

markets, a number of researchers have analyzed its potential impact on market 

efficiency. A few early IRP models included long-run response to changes in average 

price levels [39], without examining in detail the impacts of hourly varying prices 

upon hourly loads. Another model considered the time lag or response gap until the 

next invoice period, resulting in consumers making medium-term adjustments in their 

consumption [40]. More recently, long run efficiency gains from implementing 

demand response along with real-time tariff structures are calculated in [41]. The 

impact of short-term demand response on the long-term optimal mix of generation 

technologies is also discussed in [42] and [43]. The latter uses the supply function 

equilibrium approach to model oligopolistic competition as well as a more traditional 

net benefit maximizing approach to modelling competitive markets. Both papers 

disregard short-term operational constraints and interperiod constraints.  

 

This review of the literature reveals that there have been no long-run planning models 

that simultaneously integrate energy efficiency programs, demand response to hourly 

varying prices, and generation variable and investment costs, while considering the 

dynamic operating constraints whose importance is increasing in the face of increased 

renewable penetration. In the next section, we propose such a model.  
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3. Model description 
 

3.1 Notation 
Sets  Indices 
I Generation technologies  i 

J Periods (hours) j 

 

Parameters 
A

+
, B

+
  Positive balancing linearization parameters 

A
-
, B

-
 Negative balancing linearization parameters 

BAL
+

j Positive balancing requirement [MW] 

BAL
-
j Negative balancing requirement [MW] 

CC  Cost of wind power curtailment [€/MWh] 

DEMj Initial demand level in hour j [MWh] 

EFF  Pump and turbine efficiency [%] 

FCi Fixed investment cost for generation technology i [k€/MW/yr] 

MRi  Must-run parameter for generation technology i [%] 

PMi  Periodic maintenance parameter for generation technology i [%] 

PUMP_CAP Maximum amount of energy pumped up or generated from the storage 

reservoir [MWh] 

RR_Ci Ramp rate on committed capacity for generation technology i [%] 

RR_NCi Ramp rate on non-committed capacity for generation technology i [%] 

STO_CAP  Maximum amount of energy stored [MWh] 

T_CAP Transmission capacity [MW] 

VCi  Variable generation cost for generation technology i, including both 

fuel and non-fuel components [€/MWh] 

WPj  Wind generated power output in hour j per MW installed [%]
9
 

 

Non-negative decision variables 
capi  Installed capacity of generation technology i [MW] 

exportj Amount of energy exported during hour j [MWh] 

flex
+

i,j Upward output flexibility from generation technology i in hour j [MW] 

flex
-
i,j Downward output flexibility from generation technology i in hour j 

[MW] 

gi,j  Electric energy generation from generation technology i in hour j 

[MWh] 

spumpj  Amount of energy pumped up in the storage reservoir in hour j [MWh] 

storedj  Amount of energy in the storage reservoir at the end of hour j [MWh] 

sgj  Amount of energy generated from the storage reservoir in hour j [MWh] 

wcap  Level of installed wind power capacity [MW] 

wcurtj  Wind power curtailment in hour j [MWh] 

windj Amount of wind power injected in hour j [MWh] 

 

 

 

 

                                                
9
 The wind generated power output profile is a fixed time series. Consequently, stochasticity or 

uncertainty about the output profile is not included. In order to account for variability, a representative 

time series is used in the model. 
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3.2 Basic LP generation planning model with operational flexibility 

constraints 
 

This section presents a single node, LP resource planning model in which demand is 

fixed. In later sections, we elaborate it to include demand response. It is a static, 

single-year optimization based on [26]. Future technological, economic, and policy 

uncertainties with different possible future scenarios are not accounted for in this 

model
10

. In order to deal with those uncertainties related to the planning timescale, 

this model could be embedded into a stochastic (multiple scenario-based) planning 

model. A theoretical discussion of two stage and multistage programs is given in [44]. 

A multiple scenario-based electricity transmission planning model is used in [45] in 

order to accommodate renewables integration.  

 

The static, single-year optimization structure is similar to the classic LP models in 

[10], except that we include chronological operating constraints that account for the 

need for operational flexibility. Annualized system costs are minimized, 

distinguishing between installed capacity (capi) and hourly electricity generation (gi,j) 

with fixed (FCi) and variable (VCi) costs. A cost of wind power curtailment (CC) is 

added for each MW of the reduced wind power output during a full hour. The model 

defines the optimal installed capacity of different generation technologies as well as 

the hourly energy generation per type of technology.  

 

As a single stage, static optimization model is used, the impact of an existing 

generation fleet with previously installed capacities are neglected. There is no 

particular obstacle to including the existing fleet.  Pre-existing plants could be 

considered simply by including their fixed capacity in the models. The model can 

easily be extended with a positive lower bound for a particular technology type. 

Furthermore, decommissioning of installed capacities in the existing fleet can be 

added. Making this model dynamic, starting from an existing generation fleet and 

taking decommissioning of older generation plants into account would be a valuable 

extension to this model. It could help illustrating how a transition toward more 

renewables 

 

Lumpiness of generation capacity investments is neglected. However the model is 

readily generalized to include linearized dc transmission constraints, lumpiness, 

operating reserves, and other complications present in other LP generation models. 

Those aspects are simplified in order to focus on the issues of modelling demand 

response together with operational flexibility. 

 

The model can be viewed either as a simulation of a perfectly competitive market in 

which all market parties are price-takers, or as a planning model for a vertically 

integrated utility. Equivalence of both market formulations is argued in [46]. The full 

model is presented below. 

 

 

 

                                                
10

 Presently, these structural uncertainties are not accounted for, but they will be dealt with in further 

research. It would be interesting to consider whether there are important interactions between those 

uncertainties, demand-response, and generation technology choice; considerations of construction lead 

times and option value [83] would then become important. 
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The cost objective function (Eq. (1)) is minimized subject to the system energy 

balance constraint (Eq. (2)), the capacity constraint and operational constraints (Eq. 

(3)-(20)). Wind power is modelled as a generation unit with an hourly profile [%] 

time series, multiplied by the installed capacity, expressed in [MW]. This way of 

integrating wind power incorporates hourly variability but assumes that future wind 

output is perfectly predictable. The state of the art in assessment of short-term wind 

forecast error on system operation is discussed in [47]  

 

In reality, the wind output in a given future hour j’ is not known when making 

dispatch and commitment decisions in an earlier hour j < j’. This simplification likely 

understates the value of flexible generation. No optimization-based planning model in 

the literature includes such planning uncertainty. This paper is an improvement on 

existing planning models that exclude chronological constraints on output. However, 

this aspect of uncertainty is still a subject for future research. 

 

The installed wind power capacity can be exogenously defined in response to a 

regulatory mandate. Alternatively, the amount of wind power capacity can be made 

endogenous by attributing a fixed investment and variable generation cost to wind 

power. Wind power capacity is then included as a decision variable. The latter way of 

integrating wind power is used in this model. 

 

An alternative methodology to incorporate wind power is called the load modifier 

which reduces the net demand profile [48]; however, that would not allow wind 

capacity to be treated as a variable.  



EPRG No   1113 

10 

 

Wind power curtailment is proposed in order to reduce the hourly injections into the 

system when the system is in an over-generation situation. This amount of discarded 

energy (curtj) will become substantial for increasing wind power generation [49]. 

Wind power curtailment is economically optimal when system marginal costs or 

prices are negative, and allows increasing power generation from a technology with 

low variable costs but limited flexibility. How wind curtailment is modelled depends 

on the particular market context. One context would involve a cost minimizing 

generator with some wind generation who operates in a perfectly competitive market. 

This market party faces an opportunity cost when his wind power output is reduced if 

wind subsidies are paid per MWh of wind production. In that case, this opportunity 

cost (CC) should be based on the feed-in tariff or the green certificate price in the 

region of curtailment.
11

 Use of CC in the planning model simulates the outcome of the 

competitive market that is subject to such subsidies. On the other hand, assuming a 

central planning setting, total costs for the society are minimized, and such subsidies 

would be viewed as income transfers from consumers to generators and so CC would 

be set to zero. In this paper, we assume a perfect competition market setting. 

Adopting hourly time intervals and assuming that wind power curtailment applies for 

at least one hour, the cost of curtailing power CC is expressed in [€/MWh]. 

 

Turning from the objective function to the constraints, Eq. (2) shows that total energy 

generated from conventional and wind power facilities meets demand in j (with 

system losses regarded as demand). For each technology type i, the generated energy 

in hour j is restricted by the installed capacity (Eq. (3)). The available capacity is 

downscaled by technology specific periodic maintenance parameter (PMi). An energy 

storage facility (e.g., pumped hydro) is included in order to improve system 

flexibility. The dispatch of this unit helps to balance generation and demand bearing 

in mind its efficiency and the need to satisfy the stored energy balance Eq. (6) where 

the amount of energy stored at the end of hour j equals the previous hour’s storage (j-

1) plus the net energy injected into the reservoir (pumpage minus generation) during 

hour (j). Energy storage results in energy losses during pumping (charging), as well as 

generation (discharging). Consequently, the net efficiency of the entire storage cycle 

from pumping to turbining equals EFF
2
. The amount of energy stored is restricted by 

the total storage capacity, which here is fixed (Eq. (7)) but could in general be a 

decision variable. Also the amount of energy pumped up or generated from the energy 

storage reservoir is restricted by a maximum turbine capacity, respectively given by 

Eq. (8) and (9). Again, the turbine capacity could be integrated as a decision variable. 

 

In general, power systems are connected to neighbouring control areas. Those 

transmission interconnections create cross-border trade opportunities which improve 

system flexibility. Importing or exporting power during critical system situations 

impacts the operation and optimal mix of generation capacity in the exporting as well 

as in the importing region. Note that relaying on neighbouring systems for flexibility 

is limited because demand and wind power injections in neighbouring regions are 

highly correlated with those in the system being modelled. A positive variable 

(exportj) is added to Eq. (3), allowing the export of excess power during high wind 

situations. The amount of power exported is restricted only by thermal limits of the 

                                                
11

 Negative prices can already be seen in high wind regions. On the German spot market (European 

Energy Exchange: EEX), negative prices up to -119 €/MWh occur on the day-ahead market. Similar 

negative price occur on the Danish real time market. 
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conductor, indicated by the available transmission capacity in Eq. (10), We assume 

that no price would be paid for nor received from those exports. 

 

In this model, only export of excess power is permitted. Importing power during 

moments of high demand could easily be integrated by also adding a positive variable 

(importj) to Eq. (3), again restricted by the transmission capacity. This variable would 

also have to be included into the objective function linked with a price of imports. 

This practice is similar to the creation of a new generation technology at a limited 

(only variable) cost with a restricted total capacity. Comparable to total storage 

capacity, transmission capacity could also be included as a decision variable. 

 

Operational constraints such as periodic maintenance [17] and must-run levels are 

included into the model. A technology specific periodic maintenance parameter (PMi) 

is introduced to downscale the available capacity. The parameter PMi can also be 

chosen in order to account for expected forced outages. It is well known that treating 

forced outages in this way decreases expected generation costs relative to true 

operating costs under random outages.  

 

A full stochastic model with random plant outages is, in theory possible.  Due to 

Jensen’s inequality (the expected value of a convex function is more than the function 

evaluated at the expected input value, where the inputs are available capacity), 

expected production costs are still underestimated by this derating approach. 

However, it is more accurate than ignoring outages entirely [50]. It is possible that 

demand-response will become more valuable if outages were considered in a 

stochastic manner, as there would be a (small) probability of very extreme conditions 

with many plants unavailable.  

 

Papers have been published on generation expansion planning under random outages, 

but they use non-chronologic convolution methods that cannot consider ramp rate 

limitations or pumped hydro storage units [22]. An alternative would be to consider 

many more days in the operating subproblems, with different configurations of 

outages (as in [51]), which would greatly increase the problem size. 

 

Less flexible generation technologies will not be operated below certain output levels. 

Therefore a technology specific must-run (MRi) level is integrated as in Eq. (4). This 

constraint is typically not imposed for peaking generation technologies such as 

combustion turbines. Other unit-commitment constraints, such as start-up costs, 

minimum up and down times and minimum output levels are not considered in this 

model as these constraints require the use of integer variables. A linear programming 

approximation of start-up constraints and partial load levels is given in [52], and could 

be incorporated into this model. 

 

The constraints above (Eq. (3) and (4)), determined by the parameters PMi and MRi, 

have no inter-period characteristic. Inclusion of ramp rate limits for conventional 

generation units can have a more complicated impact on the optimal mix when 

combined with a chronologic representation of hourly load and wind power 

production. Because the need for flexible thermal generation to make up for wind 

variability is of increasing economic importance, this aspect should be included in 

planning models.  
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In this model, ramp rates limits represent the output flexibility of generation. 

Operating a base load plant efficiently requires a higher yearly energy output per 

installed capacity. A deviation from the optimal point of operation harms efficiency, 

and frequent cycling can increase maintenance costs and reduce the lifetime of these 

units. Consequently lower ramp rates are assigned to base load technologies. Less 

stringent ramp limits are also assumed for mid and peak load generation units.  

 

Ramp rates typically express flexibility as a percentage of the total installed capacity 

of a specific generation technology. In order to reduce the generation output 

flexibility when a plant is operated at lower output levels, a distinction is made 

between committed and non-committed capacity. A lower flexibility in terms of 

percentage is attributed to non-committed than committed capacity. Non-committed 

capacity is approximated by the amount of capacity that is not used for generation. 

This is respectively indicated by the parameters RR_NCi and RR_Ci. Only for high 

peak load capacity is 100% flexibility assumed for upward as well as downward 

ramping. 

 

The following restrictions are introduced into the model. Upward (flex
+

i,j) and 

downward (flex
-
i,j) flexibility of each generation technology are calculated in Eq. (11) 

and Eq. (13) for each hour. The former is restricted by the total amount of non-

committed capacity Eq. (12), meaning that the generation output can never ramp-up 

more in one hour than the non-committed capacity in the previous hour. This 

constraint is needed when the positive balancing requirement Eq. (19) is introduced. 

Correspondingly, the latter is restricted by the output level or committed capacity in 

the previous hour (Eq. (14)). This constraint is needed when the negative balancing 

requirement Eq. (20) is introduced. 

 

For every hour, constraints (15)-(16) are introduced into the model to restrict the 

generation fluctuations of each technology type. These generation fluctuations 

constraints do not require the inclusion of Eq. (12) and (14), given that gi,j is a non-

negative decision variable, restricted by the available capacity in Eq. (3). 
 

The balancing requirement constraint is also important for a system with large-scale 

integration of wind power. This way of increasing ancillary service requirements in 

proportion to day-ahead wind schedules is inspired by [53]. Additional wind power 

injections require additional balancing power for both positive and negative 

regulation. Levels of balancing power are assumed to increase linearly with increasing 

hourly wind power injection [54]. These balancing power requirements have to be 

fulfilled by the aggregated upward or downward flexibility of conventional generation 

units (Eq. (19)-(20)). 

 

3.3 Representing short-term demand response 
 

In this subsection, we illustrate how a demand response function can be constructed; 

then in Section 3.4, we integrate it into the above planning model. Short-term demand 

elasticity must be contrasted with medium and long-term demand. Given long-term 

demand elasticity, consumers adjust their capital stock (equipment such as 

refrigerators, washing machine, lights, etc.) in response to shifts in electricity price 

levels. This last aspect is integrated as lagged consumption terms in [31]. Given 

medium-term demand elasticity, consumers respond to prices reflected on monthly 
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bills [40], by changing their behaviour. Medium and long-term response is not 

accounted for in this paper, but will be dealt with in future work.  

 

Given short-term demand elasticity, a distinction is made between residential, 

commercial and industrial customer classes in [31]. The characteristics of installed 

metering and communication infrastructure are one way that different classes are 

distinguished. At one extreme, 5-minute spot prices require advanced, real-time 

communication between the consumer and the utility. At the other extreme, use of 

day-ahead forecasts of 24-hour spot prices only requires a daily price update [55]. The 

involved metering and communication costs, as well as political and social aspects, 

mean that different consumers prefer different price or tariff structures. A single 

hourly demand function is used in this model, assumed to represent the demand 

response aggregated over different customer categories; sensitivity analyses could 

explore the impact of alternative assumptions concerning the extent of participation of 

different classes. The impact of varying the share of customers under real-time pricing 

is explored in [41].  

 

In order to represent short-term demand response and include cross-elasticity price 

effects in one hour upon demand in others, elastic demand functions have to be 

calibrated for each hour. We express quantity demanded as a function of the bulk 

energy portion of the electricity price (that is, fixed customer charges, such as for 

billing, transmission and distribution, are excluded).
12

 This is done by defining a 

reference price and quantity demanded for each hour, and then using elasticity 

assumptions to fit a demand curve through that price-quantity pair. The reference 

quantity demanded is based on a demand forecast. Then the reference price is 

obtained by applying the LP resource planning model to the reference demand, 

assuming fixed short-term demand levels. The model defines the optimal generation 

technology mix as well as the hourly generation output of each technology category 

subject to operational constraints. The reference price is assumed to be the same in all 

hours (no real-time pricing). This uniform price (P0) is the quantity weighted average 

of the hourly (marginal) energy prices Poj over the entire time horizon without 

demand response (Eq. (21)). It is assumed in this reference case that consumers do not 

yet face the hourly energy price as they are still assumed to be under a uniform 

pricing structure.  

 

#> 	 ∑ ?@A
BCDAA
∑ BCDAA   (21) 

 

A similar methodology could be applied in order to calculate weighted average prices 

for a double tariff structure, distinguishing between specific blocks such as peak and 

off-peak, as shown in [31]. 

 

The reference price-quantity pair composed of the weighted average (uniform) price 

and the fixed demand level {P0, DEMj} is considered to be the anchor point of the 

linear demand function (Figure 1). The slope of the function is determined by the 

                                                
12

 This is a common assumption in bulk power market models. The user therefore needs to be careful 

when using price elasticity values from the literature to calibrate such models, because those express 

percent changes in quantity demanded as a function of percent changes in retail prices. If instead 

expressed as a function of percent changes in bulk prices, the elasticities would be smaller (since bulk 

power prices are smaller than retail prices, so a given percentage change in retail prices would be a 

larger percentage of bulk prices). 
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price elasticity assumptions with own-price elasticities (εj,j) and cross-price elasticities 

(εj,k) being exogenously provided, based upon values from the literature. The addition 

of price elasticities results in a short-term demand response function Dj (Eq. (22)) 

which expresses quantity demanded (dj) as function of relative deviations of hourly 

prices from the reference level; the simplified form in the right side of (22) is used. 

Inverting Dj results in the inverse demand function Pj (Eq. (23)), with parameters Ek 

and Fj,k. The inverse demand function is used in the generation planning model. 

Figure 1 shows the portion of that function that relates price to demand in its own 

period. 

 

EF: �� 	 ���� �∑ H�,I 
 BCDA
?@ 
 J�I � #>KI  ≡ /� � ∑ L�,I 
 �II   (22) 

Pj: �� 	 �� � ∑ ��,I 
 �II  (23) 

 

With parameters: 

<�,I 	 H�I 
 BCDA
?@   (24) 

/� 	 ���� � ∑ <�,I 
 #>I   (25) 

 

The elastic linear demand function is constructed separately for each hour. At least 

some of the consumers are assumed to be participants in tariff systems in which they 

face real-time or spot prices; the assumed elasticities reflect the extent of participation 

of consumers in that tariff. (Smaller elasticities would correspond to less 

participation.) A real-time price higher than the weighted average electricity price (P0j 

> P0) results in decreased consumption of electricity. Correspondingly, real-time 

prices lower than the reference weighted average electricity price result in increased 

levels of electricity consumption. 

 

 

Figure 1: Construction of a short-term elastic demand function 

 

It is suggested in [36] that this hourly energy price can be seen as a function of two 

components when abstracting from network constraints. The first one is the marginal 

operating cost determined primarily by the incremental fuel cost of the most 

expensive unit currently loaded in the system. The second component is called the 

energy balance ‘quality of supply’ premium. This premium is zero at times of surplus 

generation capacity. When all generators are in use at full capacity, which is termed a 

‘scarcity condition’, the premium can be positive. The hourly energy price 

corresponds to the dual variable, or shadow price (λj) associated with market clearing 

requirement. With constraining capacity, the hourly energy price can rise above the 

DEMj

Po

Poj

Dj

Demand

Price
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marginal cost of the last unit operation in a given hour. For those hours j, a positive 

balance quality of supply premium (µi,j) can be found, corresponding to the dual 

variable of the capacity constraint of the respective technology i. This premium is 

equal to the difference between the marginal cost of the last unit in operation and the 

energy price (λj) in that given hour j.  

 

Dual variables are alternatively termed multipliers representing the marginal price on 

changes to the corresponding constraint. This is the case for both the elastic demand 

function (Dj) and the inelastic demand, corresponding to initial demand levels (DEMj) 

in Figure 2, illustrating the different spot price components. This graph shows that in 

case of deficient generation capacity, the spot price increases above the marginal fuel 

costs. Consumers under real-time pricing, with elastic demand function (Dj), face 

increasing electricity prices and adjust their level of consumption. On the other hand, 

if demand is perfectly inelastic (vertical demand function), insufficient capacity 

would mean that instantaneous levels of consumption would have to be reduced by 

means of rationing. This practice refers to enforcing rotating black-outs in order to 

balance supply and demand. The amount of rationing (R) is also shown in Figure 2.
13

 

In both cases, it is said that the market is cleared at the demand-side of the system. 

However in the first case consumers define autonomously their welfare maximizing 

level of consumption. In the second case, system operator intervention is required, 

resulting in imposed outage costs on all users. This might not be the optimal outcome 

when outage costs differ from marginal consumer willingness to pay electricity. 

 

 

Figure 2: Rationing and spot pricing of electricity 

 

3.4 Methodologies to include short-term demand response into a 

resource planning model 
 

Resource planning models with fixed demand profiles pursue the reduction of system 

costs. When short-term demand response is integrated into the model, minimization of 

generation costs does not yield sensible results, because that would disregard the 

benefits consumers receive from electricity consumption. By definition, an 

equilibrium solution must be found between generation supply and demand. In 

                                                
13 Rationing is not considered in our model of Section 3.2, although it could be. Generally, in a long 

run planning model, rationing would be cost-minimizing for the number of hours per year determined 

approximately by VOLL/FCpeaker, where VOLL is the value of lost load (in €/MWh) [6] and FCpeaker is 

the capital cost of a peaking power plant (in €/MW/yr). A specific component for rationing linked to 

rotating blackouts was included to total system costs in [36]. 

R

λi

Dj

Demand

Price

µi,j

DEMj
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abstract, we might characterise this equilibrium using supply (Sj) and demand (Pj) 

price functions (in €/MWh) that depend on Q (in MWh) as follows: 

 MFJNK 	 OFJNK  (26) 

 

With: 

 MFJPK 	k�KQ      (27)    
OFJPK 	m-MQ  (28)    
 

The demand price function is Eq. (22); the supply price function is instead an implicit 

function that is calculated by the LP. Three different methodologies to integrate short-

term demand inelasticity into an LP resource planning model are presented below. 

These three methodologies yield the same solution under restrictive conditions, which 

is demonstrated below. For clarity of presentation, we show how demand response is 

included in a greatly simplified version of the LP model of Section 3.2 (Eq. (29)-(31)

), omitting operational constraints, the storage unit, export of energy using 

transmission interconnection and wind power curtailment. Furthermore, initial 

demand levels in hour j (DEMj) are replaced by demand levels (dj) as a decision 

variable in Eq. (30). 

 ��� ���� 	 ∑ ��� 
 ���� �� ∑ ��� 
 ��,��,�    (29) 

 

subject to: 

 ∑ ��,�� 	 ��   ��  ! (30) 

��,� " ����  ��  $, �  ! (31) 

 

The same three approaches are straightforwardly applied in the same manner to the 

full model of Section 3.2 in our case study of Section 4. 

 

3.4.1 Complementarity programming model 
 

A first way to model short-term demand response in a planning model is by using a 

complementarity program model structure, representing the competitive equilibrium 

solution. The competitive equilibrium represents a situation in which energy suppliers 

and consumers are each maximizing their individual profits and consumer surplus, 

respectively, subject to market prices, and the market clears (supply equals demand). 

Under certain conditions concerning price elasticities, this can be shown to be 

equivalent to maximization of market surplus (or ‘social welfare’), equal to the sum of 

producer profits and consumer surplus [55]. The complementarity model solves a 

system of conditions including each market player’s first-order optimality conditions 

or Karush–Kuhn–Tucker (KKT) conditions, plus the market clearing condition, one 

per period j [56]. As this model minimizes the cost of meeting a particular quantity 

demanded (during representative period) and accounts for demand response to prices, 

it should be viewed as a planning model. 

 

Assuming integrable supply and demand functions, total consumer surplus (value 

received from consumption U minus expenditures) and profit (revenue minus costs C) 

are given below. Correspondingly, the equilibrium solution is defined in the following 
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general way for consumers maximizing their welfare U(Q) and generators 

simultaneously maximizing profits.
14

 

 

������(� +���3�� 	  WJNK � #N 	 Σ� X #�JYK�YZA> �ΣjλjQj (32) 

#��2�� 	  #N � [JNK 	 #N � Σ� X +�JYK�YZA> 	 ∑ λ�N�� � Σ� X +�JYK�YZA>  (33) 

 

Note that the price equals λj, in this simplified model representation. In this 

formulation, the price in period j is a function only of Qj, neglecting cross-price 

impacts. In a more general formulation, the price in period j considers both own-price 

and cross-price elasticities. In that case, the price in period j is a function of Qk with k 

equal to j, accounting for own-price elasticities and k not equal to j, accounting for 

cross-price elasticities. 

 

The total costs C(Q) for the simplified model are given in Eq. (29). The KKT 

conditions of the profit maximizing generator (Eq. (33)) for decision variable gi,j and 

capi are respectively given by Eq. (34) and (35). The KKT conditions of the surplus 

maximizing consumer (Eq. (32)) is given by Eq. (36). 

 

The capacity constraint of this simplified resource planning model is included as Eq. 

(37), with the dual variable of this constraint given by µi,j. The market clearing 

condition is given by Eq. (38). The dual variable associated with the market clearing 

condition (λj), is equal to the hourly (marginal) energy price in each period. Whenever 

the generation capacity of technology i during hour j is binding, the marginal cost of 

generation capacity µi,j can be positive. The KKT condition for consumer demand, 

given by decision variable dj, corresponds to inverse demand function Pj, representing 

consumer response. Eq. (34) indicates that the hourly (marginal) energy price λj is 

equal to the sum of variable generation cost and the marginal capacity cost if a plant is 

generating power. This can be interfaced with the inverse demand function by 

supposing pj = λj in (32), if demand is strictly positive. 

 0≤ ��� � ]� � ^�� _ ��,� % 0  ��  !, ��  $ (34) 

0≤ ��� � ∑ ^��� _ ���� % 0  ��  $ (35) 

0≤ � �� � ∑ 2�I 
 �II � �� _ �� % 0  ��  ! (36) 

0≤ ���� � ��,� _ ^�,� % 0  ��  !, ��  $ (37) 

 

with market clearing condition: 

 0 	 ∑ ��,�� � ��, λj free  ��  !  (38) 

 

with: 

λj = dual variable or price associated with market clearing  

µi,j = dual variable of the capacity constraint 

 

This Linear Complementarity Program (LCP) uses the perpendicular operator “_” in 

order to indicate that at least one of the adjacent inequalities must be satisfied as an 

equality. This operator is defined as follows. A complementarity condition between a 

non-negative variable x and a non-negative function f(x) can be expressed as: 

                                                
14

 Given perfect competition or a central planning approach, social welfare is maximized. The 

generation side is assumed to maximize profit given prices. 
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 1 % 0;  2J1K % 0;  1 
 2J1K 	 0.  (39) 

 

Using the “_” operator, Eq. (39) can be more compactly written as:  

 0≤ 1 _ 2J1K % 0  (40) 

 

This model is a general representation of a linear complementarity problem, more 

specifically a Mixed LCP (MCP). The term “mixed” refers to the existence of both 

non-negative (gi,j, capi, dj and µi,j) and free (λj) variables, associated with inequality 

and equality conditions, respectively [57]. As the number of all conditions gathered 

with the market clearing condition (Eq. (34)-(38)) equals the number of variables, it is 

called a “square problem” [56]. 

 

The sum of the capacity prices over different hours represents the cumulative value of 

additional generation capacity. This value provides a long-term signal for the optimal 

capacity, being a decision variable in the model. In equilibrium, the value of 

additional generation capacity is equal to the cost of installing additional capacity, Eq. 

(35). No installed reserve margin constraint has been included into this model. A 

reserve margin (RM) is a constraint, requiring that the sum of installed capacity 

should be greater than or equal to (1+R) times the peak demand level (PEAK). A 

reserve margin requirement could be integrated as Eq. (41), as suggested in [16]. This 

constraint deals with the uncertainty about peak demand levels and therefore 

improves the security of supply.  
 ∑ ���� % J1 ��K 
 #(�a_3����   J41K 

 

Such a condition results in an additional shadow price that represents the value of 

capacity for meeting that condition, and can make the gross margin (revenue minus 

variable cost) positive even if a generator never produces at capacity. The same 

accounts for the periodic maintenance requirement (PM), in which the generation 

output cannot exceed (1-PM) times the total installed capacity. This constraint is also 

suggested in [7] in the context of forced outages and results in an additional shadow 

price. The inclusion of the dual of the capacity constraint in Eq. (34) shows that price 

spikes appear at times of scarcity when no excess generation capacity is available. 

This practice of allowing prices to rise above marginal cost, also called “scarcity 

pricing”, ensures that system energy balance is met by sending a signal to consumers 

that power is expensive and demand should be reduced. 

 

The LCP methodology is used in [42] without inclusion of short-term operational 

constraints for thermal generation units. Adding the operational constraints (Eq. (5)-

(20)) results in extra dual variables, as well as the new primal variables related to 

output flexibility (flex
+

i,j, flex
-
i,j), the energy storage unit (spumpj, storedj, sgj), 

transmission interconnection usage (exportj) and wind power injections (wcap, wcurtj, 

windj). Including those constraints can impact the marginal cost (price) of electricity if 

any of the operational constraints are binding. 

 

Including short-term demand response into a resource planning model using a 

complementarity formulation has the disadvantage that no 0-1 binary variables can be 

introduced. Such variables are required when including unit commitment related 

constraints, such as minimum run levels or minimum up and down times. This also 
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means that complementarity models cannot represent discrete investments in new 

generation plants. 

 

3.4.2 Quadratic program 
 

A second formulation to integrate short-term demand response in a planning model is 

Quadratic Programming (QP). QP was applied in [58] to the problem of spatial price 

equilibrium calculation with linear supply and demand functions. In this context, the 

problem must be seen as a market equilibrium problem among producers and 

consumers, each maximizing their total surplus. 

 

It is argued in [59] that continuous QP models (without binary variables) are a subset 

of LCP models because the KKT conditions for a quadratic program create a LCP or 

mixed LCP problem. However, the reverse is not true; not all LCPs can be formulated 

as QPs. If a LCP problem can be formulated as a QP, then standard QP or nonlinear 

programming software can be used to solve the problem, whereas LCP problems need 

specialised complementarity solvers.  

 

The ability to reformulate a LCP, such as (34)-(38), as a QP is valid under restrictive 

conditions, as is proven below. By definition, a fundamental LCP must find vectors w 

and z satisfying the following conditions:  

 � 	 Y �� 
 c   (42) c ′ 
 � 	 0;  c % 0;  d % 0  (43) 

 

The variable w is a slack variable, typically added to a constraint in order to write an 

inequality as an equation. The slack variable is positive when the constraint 0 " � 
c � Y is non-binding, meaning that this constraint does not restrict the solution. Eq. 

(43) can be written more compact, by using the perpendicular operator, corresponding 

to the formulation in Eq. (39) and (40).  

 0≤ c _ d % 0  (44) 

 

In order to prove the relationship between a QP and a fundamental LCP, a general QP 

is defined (Eq. (45)-(47)):  

 

��1 eJ1K 	 �f 
 1 � *
g 
 1f 
 N 
 1  (45) 

 

subject to: / 
 1 " L  (46) 1 % 0  (47) 

 

for which KKT conditions are derived. 

� 	 �� � *
g 
 JN � NfK 
 1 � /f 
 ]  (48) 

h 	 L � / 
 1  (49) 0≤ � _  1 % 0   (50) 0≤ h _  ] % 0   (51) 

 

Let: 
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� 	 i�hj , Y 	 i��L j , � 	 k*g 
 JN � NfK /f
�/ 0 l  

 

By defining matrices w, q and M, it is clear that the KKT conditions of the QP (Eq. 

(48)-(51)) are equivalent to the fundamental LCP formulation (Eq. (42)-(44)). The 

definition of matrix M indicates that the equivalence is only valid when Q is 

symmetric and positive semi-definite:  

 *
g 
 JN � NfK 	 N �2 N 	 Nf  (52) 

 

Correspondingly, the LCP with integrated short-term demand response can be 

reformulated as a QP if demand and/or supply functions are linear and the coefficient 

matrix is symmetric. An increase in the price of electricity must result in a reduction 

of electricity consumption, and analogously for supply considerations. This 

assumption is referred to as the integrability condition [60]. If the demand function is 

not symmetric, the integrability condition is not satisfied and the social welfare 

function cannot be constructed [61]. The QP is a representation of the equilibrium 

problem in Eq. (26), in the form of a welfare maximization problem. 

 ��1 '(32��(JNK 	 WJNK � mJNK  (53) 

 

This results in the simplified resource planning model with demand response: 

 ��1 '(32��( 	 

n∑ o�� 
 (� � *
g 
 �� 
 ∑ 2�,I 
 �II p� q � r∑ ���� 
 ��� �� ∑ ��,� 
 ����,� s (54) 

 

subject to: ∑ ��,�� � �� 	 0 ��  ! (55) 

��,� " ����  ��  $, �  ! (56) 

 

According to the integrability condition, the coefficient matrix F, introduced in Eq. 

(23) with parameter fj,k, must be symmetric to use the QP approach.  

 

On the one hand, the QP has the advantage that adding more constraints does not 

require introducing more dual variables into the model. Additionally, formulating this 

problem as a QP is motivated by the wide availability of nonlinear optimization 

software. On the other hand, when the demand system does not satisfy the symmetry 

condition, an equivalent QP cannot be formulated, and the model should be solved as 

a complementarity problem. Alternatively, a symmetric matrix could be constructed 

as a close approximation of the actual matrix and used in the QP optimization. 

 

3.4.3 Piecewise integration 

 

Linear demand functions can be used together with a LP supply model to calculate a 

market equilibrium by reformulating the problem as an LCP or QP, as described in 

the previous subsections. However, it might be difficult to add consumer benefits to 

models with more computational complexities such as non-linear constraints or 

objective functions or binary variables. Therefore an alternative computational 
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procedure is suggested in this subsection in order to find an equilibrium solution for a 

given supply and price elastic demand function.  

 

Non-zero, cross-price elasticities can be added, assuming dominance of own-price 

elasticities. ‘Dominance’ means that own-price elasticities are larger than the sum of 

cross-price elasticities. The methodology is based on the procedure in [62] and 

convergence is mathematically proven in [61].
15

 It is known as the ‘PIES algorithm’ 

because it was used to solve the Project Independence Evaluation System [63], the 

first comprehensive energy-economic model used by the US government. Project 

Independence was initiated by U.S. President Nixon in 1973, in response to the OPEC 

oil embargo. 

 

Starting from the cost minimization objective function, a piecewise approximation of 

the welfare function is created that accounts for the marginal effects of changes in 

quantity upon market welfare. The optimal hourly demand levels dj are chosen such 

that market surplus (the integral of the demand function, minus the generation and 

investment costs) is maximized. An iterative procedure solves the LP until the 

algorithm converges to the equilibrium solution. This equilibrium solution is the same 

as the one obtained by the LCP and QP approaches, with own-price elasticities higher 

than the aggregated cross-price elasticities, using a symmetric matrix as a close 

approximation of the actual matrix. 

 

In order to find an appropriate solution to this problem, perturbations y
+

j,n and y
-
j,n are 

introduced, defined as the difference between initial demand level DEMj for each hour 

and a new demand level dj. These continuous, positive variables y
+

j,n and y
-
j,n allow 

building a partition of the interval around the anchor point with the initial demand 

level DEMj. Given set N (n= 1,…,m-1,m) y
+

j,n constructs m steps in the demand 

function approximation on the right-hand side of initial demand level DEMj and y
-
j,n 

constructs m steps at the left-hand side of initial demand level DEMj (Figure 3). 

Variables y
+

j,n and y
-
j,n are constrained by U

+
j,n and U

-
j,n respectively (Eq. (57) and 

(58)), being the maximum step size on the right- and left-hand side. The step size can 

arbitrarily be chosen. It does not have to be the same on the left and on the right of 

DEMj, neither does it have to be the same for each step m. 

 0 " t4�,u " 04�,u  (57) 

0 " t)�,u " 0)�,u  (58) 

 

For each step around the initial demand levels, the inverse demand function Pj gives 

the resulting approximation to the price level P
+

j,n and P
-
j,n.  

                                                
15

 The computational procedure can also be found in a world oil market model [84] and in [85]. The 

formulation is summarized in this paper. For a detailed description of the procedure, the reader is 

referred to the appendix of [62]. More information on the convergence of the PIES algorithm can be 

found in [61]. 
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Figure 3: Partitioning for piecewise integration 

 

#4�,u 	 MF6���� � ∑ 0�,u 4vuw* 7  (59) 

#)�,u 	 MF6���� � ∑ 0�,u )vuw* 7  (60) 

 

Then, the integral calculating consumer value of consumption is approximated by a 

piecewise summation of the one-dimensional integrals. 

 

X MFJYK �YBCDA4xA> y X MFJYK �YBCDA> � ∑ oz#4�,u 
 t4�,u{ �vuw* z#)�,u 
 t)�,u{p 
  (61) 

 

With: 

t� y ∑ zt4�,u � t)�,u{vuw*   (62) 

 

Eq. (61) indicates that increasing the demand level, when y
+

j,n is greater than zero, 

increases the welfare. Correspondingly, decreasing demand levels, when y
-
j,n is greater 

than zero, results in a decreasing consumer welfare. The resulting approximations to 

the changes in consumer value (integral of the demand curve) are illustrated by the 

gray rectangles in Figure 3. This equation is added to the objective function in order 

to maximize total welfare. Since the integral on the right-hand side of (61) is a 

constant, it can be omitted. The system energy balance requirement is then changed as 

well, shown in Eq. (63) and (65). Given that the left-hand side of Eq. (63) is concave, 

the pieces of the piecewise linear approximation will come into the solution in the 

correct order and (approximately) find the welfare maximizing equilibrium. The 

performed perturbation does not influence the formulation of operational constraints. 

The resulting model is: 

 

��1 ∑ ∑ oz#4�,u 
 t4�,u{ �vuw* z#)�,u 
 t)�,u{p� � ∑ ���� 
 ��� �� ∑ ��,� 
 ����,�
  (63) 

 

subject to  ��,� " ����   ��  $, ��  ! (64) 

∑ ��,�� � ∑ zt4�,u � t)�,u{I 	 ���� ��  ! (65) 

m steps

DEM0jDEM0j 

-U
-
j1

1 2 m...

Pj2

Pj1

Pj-1

Pj-2

P0

- +

DEM0j

+U
+
j1

- +



EPRG No   1113 

23 

 

A solution to this model will yield optimal values for decision variables y
+

j,n and y
-
j,n, 

the integrated demand level, and this will be an approximate solution to the welfare 

maximization problem. The adjusted demand levels are recalculated by Eq. (66)  

 

�� 	 ���� � ∑ zt4�,u � t)�,u{vuw*  ��  ! (66) 

 

Concavity of the demand curve integral ensures that it cannot be welfare maximizing 

to simultaneously increase and decrease the initial demand levels. Consequently, the 

positive and negative perturbation variables y
+

j,n and y
-
j,n, respectively, will not be 

simultaneously be different from zero in an optimal solution. The following constraint 

is automatically satisfied by the optimal solution and does not need to be explicitly 

put into the model: 

 t4�,u 
 t)�,u 	 0 ��  !, ��  5 (67) 

 

Furthermore, if y
+

j,n is positive, it can be equal to or less than the maximum step size 

U
+

j,n. If the perturbation variable equals the step size, the welfare maximizing 

equilibrium solution might not yet be found. If the perturbation variable is less than 

the step size, the optimal number of steps n* has been found, given convexity of Eq. 

(63). The dual variable of the system energy balance constraint λj is an estimate of the 

(marginal) energy price. The quality of the estimate depends on the degree of 

dominance of own-price elasticities in the inverse demand function Pj [61], as well as 

the width of the steps in the approximation.  

 

In case of zero cross-price elasticities, λj equals the energy price, subject to an 

approximation error. In case of non-zero cross-price elasticities, an iterative procedure 

is suggested by [62], which is guaranteed to converge to the solution with equilibrium 

supply and demand quantities, as well as the market price, if the dominance condition 

of own-price elasticities is satisfied.  

 

If K and M in Eq. (27) and (28) are j*j real matrices, with invertible K, and D the 

diagonal of the j*j matrix M. The global convergence condition is given as follows 

[61]: 

 

|$ � �)*/g<�)*/g|  } 1  (68) 
 

The flow of this procedure is schematically represented in Figure 4, and the steps are 

summarized below. 

 

1. Assume initial demand levels DEMj: 

These demand levels are typically given for the model without inclusion of demand 

elasticity. 

 

2. Calculate specific price levels P
+

j,n and P
-
j,n for each step: 

Given the most recent estimated demand levels, price levels are calculated for 

different steps around that demand using the inverse demand function as in Eq. (59) 

and (60) for use in the supply LP model. If desired, the step size could be changed, 

e.g., reduced with each iteration. The inverse demand function approximation does 

not take into account cross-price elasticities. Only own-price elasticities are included. 
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3. Solve supply LP for optimal values y
+

j,n, y
-
j,-n and marginal price estimate λj: 

Based on the integration approximation described above, optimal values for the 

perturbation decision values are defined. If the dual variable of the system energy 

balance constraint λj equals Pj,n for the optimal number of steps n, [62] suggests that 

the equilibrium solution is found. If not, use λj to calculate new demand levels using 

the actual inverse demand function with inclusion of cross-price elasticities. Then 

replace the initially chosen demand levels with the new demand levels and return to 

step 2. 

 

4. Define the equilibrium solution: 

By using Eq. (66), the optimal demand levels can be calculated given y
+

j,n , y
-
j,n. 

 

 

Figure 4: Flowchart iterative procedure 

 

This algorithm can approximate a nonintegrable problem by a sequence of integrable 

problems. When applying the piecewise linearization approximation method, the QP 

or mixed complementarity problem can be solved by reformulating it as a linear 

problem, for which very efficient optimization software is available. This method has 

been applied in large-scale applications, exhibiting excellent computational 

characteristics [64]. Additionally, 0-1 binary variables for unit commitment or new 

plants can be included, in contrast to the complementarity method.  
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3.5 Impact of energy efficiency programs 
 

In Section 3.4, short-term demand response has been integrated into the generation 

planning model in the form of elastic demand functions, allowing customers to 

change their consumption behaviour in response to real-time price signals. Extensive 

investment in energy efficiency can impact the energy demand function as well.  

 

In this paper, long-term demand response is neglected, assuming that energy 

efficiency is fully driven by regulatory programs, implying utility and governmental 

spending. Pursuing energy efficiency reduces hourly electricity consumption. 

Additionally, extensive regulatory energy efficiency programs can also impact the 

responsiveness of demand. On the one hand, positive overlaps can be seen, e.g., when 

consumers become more conscious of their energy consumption or buy appliances 

offering more demand response flexibility [65]. On the other hand, energy efficiency 

and demand response might also have counteracting effects. Responsiveness of a 

consumer’s load profile can be reduced, as switching off more energy efficient 

appliances in response to higher spot prices will result in smaller load reductions. 

Another potential conflict arises when customers participating in demand response 

programs are paid on the basis of the amount of load reduced when called upon. If 

reductions are measured from their average consumption level, they face an incentive 

to increase their baseline levels and a disincentive to become more energy efficient 

[66], [67]. 

 

Therefore, it is desirable to extend the elastic linear demand functions used in the 

models in order to account for interactions with energy efficiency programs. In this 

section, the elastic demand function is simplified to account only for own-price 

elasticities,
16

 neglecting cross-price elasticities. Our starting point is to view the 

linear, hourly demand function Dj (Eq. (22)) as a Taylor series approximation with the 

second and higher order terms being dropped. The general form of the Taylor series 

approximation is given: 

 

 EF6��7 	 ∑ BA~6?@,A7
u!

∞uw> 6�� � #>,�7u  (69) 

 

The Taylor series representation is now extended by having a nonzero second-order 

terms that account for utility or government expenditures energy efficiency (EE), as a 

percentage related to current expenditures. The current energy efficiency expenditure 

equals 100% and is referred to as EE0. The new demand function can be 

approximated by Eq. (69). 

 
 EF6��, ��7 	  ��6#>,� , ��>7 � 

���6#>,� , ��>7��� 6�� � #>,�7 � ���6#>,� , ��>7��� J�� � ��>K � 

�g��6#>,� , ��>7
���g

6�� � #>,�7g2 � �g��6#>,� , ��>7���g
J�� � ��>Kg2 � 

�g��6#>,� , ��>7������
6�� � #>,�7 
 J�� � ��>K2  

  (70) 

                                                
16

 The inclusion of cross-price elasticities in demand functions that account for interactions with energy 

efficiency will be the subject of future work. 
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Disregarding cross elasticities with respect to prices at other times, the first derivative 

with respect to price and energy efficiency expenditure is negative. The second own 

derivatives of the demand function can introduce scale effects, but are assumed to be 

equal to zero. The last term, the cross second partial, is used to account for 

interactions. Based on this logic, we replace the following derivatives with the price 

elasticity of demand H�, efficiency elasticity of demand �� , and the cross-price-

efficiency elasticity of demand ��: 
 
�BA6?@,A,CC@7

��A 	 H� BCDA
?@,A   (71) 

�BA6?@,A,CC@7
�CC 	 �� BCDA

CC@   (72) 

��BA6?@,A,CC@7
��A�CC 	 �� BCDA

?@,�
BCDA
CC@   (73) 

 

The efficiency elasticity of demand ��  shows the impact of energy efficiency 

expenditures. Said differently, this parameter indicates to what extent those 

expenditures affect electricity demand. The cross-price-efficiency elasticity of 

demand �� indicates to what extent increased energy efficiency expenditures affect the 

short-term responsiveness (elasticity) of demand. 

 

We assume zero second own derivatives of the demand function and efficiency 

expenditures (EE) included as a parameter instead of a decision variable. This results 

in the following final form of the demand function, including interactions with 

efficiency:  

 

 EF6��7 	  ��6#>,�, ��>7 � 

H� ����#> 6�� � #>,�7 � �� ������> J�� � ��>K � 

�� ����#>
������>

6�� � #>,�7 
 J�� � ��>K2   
  (74) 

 

Finally, Eq. (74) can be simplified as a short-term demand response function or an 

inverse demand function, corresponding to Eq. (22) and (23) respectively. 

Consequently, Eq. (74) can be implemented in any of the three solution methods 

outlined in section 3.4. 

 

4. Case Study and Results 
 

4.1 Data and assumptions 
 

In this paper, four generation technologies are taken into account, i.e., base, mid, 

peak, and high peak load, each having different costs. Ordering the technologies in 

terms of decreasing capital cost and increasing operating cost, the first two 

technologies are nuclear and coal units, respectively, whereas peak and high peak load 

technologies correspond to Combined Cycle Gas Turbines (CCGT) and oil- or gas-

fired open cycle gas turbines.  
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Table 1: Generation technology type costs 

  Base Mid Peak High Peak 

Cost category      

Investment  [k€/MW/yr] 155 65 25 15 

Fixed O&M [k€/MW/yr] 65 35 15 10 

Fuel  [€/MWh] 10 20 35 65 

Variable O&M [€/MWh] 5 10 10 10 

 

Their assumed costs are inspired by data from the International Energy Agency [68]. 

Although these values are low by today’s standards, the relative cost levels for 

different technologies and cost categories are representative and serve to illustrate the 

methodology. 

 

The described model uses historical wind power and demand data on an hourly 

demand step.
17

 The operational cost minimization is done for a 4 week period, 

corresponding to 672 consecutive hourly load and wind power levels. Annualized 

fixed conventional generation costs (Table 1) are scaled considering these 672 hours. 

For this period wind generated power output (WPj) is on average 30%, between 0.5% 

and 94% as minimum and maximum output levels, respectively. Average demand 

levels are 5200 MW, fluctuating between a minimum of 3050 MW and a maximum of 

7600 MW. The amount of wind power capacity installed (wcap) is a decision 

variable, depending on the investment costs. Annualized investment costs range from 

40 k€/MW/yr up to 100 k€/MW/yr. In correspondence with conventional generation 

costs, wind power investment costs are scaled considering the 672 hour period. 

 

For this illustrative example, a cost of 100 €/MWh for wind power curtailment is 

included, inspired by negative prices observed in the German and Danish energy 

market. A 250 MW pump/turbine capacity is assumed as well as a 250 MW 

transmission interconnection. In an interconnected market, however, the export price 

would be determined by the simultaneous interplay of supply and demand in all 

markets. Future work will extend this to a transmission constrained model of multiple 

markets. For the purpose of illustration, however, this interconnection is only used to 

export energy at the price of 0 €/MWh. This means that no wind power curtailment 

occurs unless the interconnector is fully used. Different ramp rates, levels of 

transmission interconnection and pump/turbine capacities are used to illustrate the 

impact of these parameters on the model results. The sensitivity analysis also 

compares model results for different interconnector capacities. 

 

For each optimization it is assumed that total energy storage capacity corresponds to 5 

hours pumping up water at nominal capacity. 90% efficiency is considered whenever 

the storage unit is used to pump or generate.
18

 Periodic maintenance (PM) is set to 

90% and a must-run requirement of 10% of the total installed capacity is included for 

base and mid load generation technologies. Although this is a low requirement on a 

per unit basis, it is nevertheless realistic when the total installed capacity represents 

several units. In that case, with some units being decommitted, the 10% must-run 

                                                
17

 Hourly data for electricity demand and a wind power profile are published on the website of the 

Danish system operator, Energinet: www.energinet.dk. 
18 The efficiency of the total cycle of energy storage is 81%. 
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requirement for total capacity would correspond to a higher per unit requirement for 

the committed capacity. 

 

Ramp rates are introduced as a percentage of the total installed capacity of a 

technology (Table 2). Ramp rates are included in [69], allowing coal units to 

completely ramp up or down in four hours. Reducing the ramping time is allowed by 

considering a ramping penalty as the cost of shortening the service life of the turbine 

rotor. Full ramp up or down times of 3 hours are used in [27] for coal and nuclear 

facilities and 2 hours for gas and petroleum fired combined cycle generators. 

Additionally, a distinction can be made between plant equipment vendors, who are 

typically more optimistic about ramp rates, and what plant operators actually do. 

Some plant operators report ramp rates being 2.5 up to 5 times lower than those 

suggested by the plant vendors [70].  

 

Furthermore, actual ramp rates depend on plant loading and reportedly have as little 

as 60% of the full ramping capacity when a plant is operated at lower output levels 

[70]. Note that the model works on an aggregated technology level, rather than on a 

power plant basis. Hence, the introduced ramp rates should not be directly compared 

to ramp rates of individual power plants, which might be higher, but should be viewed 

as feasible variations in the output of a collection of plants of the same technology. 

This reasoning is supported by considering the impact of start-ups. Start-up costs, 

minimum run and minimum on/off times might make plant operators averse to 

starting up all individual units for generating during only a few or even one single 

hour. Consequently, the aggregated generation output flexibility could be considered 

to be lower than implied by individual ramp rates. The ramp rates used (Table 2), are 

inspired by a literature review ([27],[69],[70]) and discussions with experts.
19

 

Balancing power requirement data, accounting for the uncertainty in the wind and 

demand profile, are summarized in Table 3, and are based on [71] and [54]. 
 

Average and maximum balancing power requirements are suggested in [71] for 

positive as well as negative regulation and illustrated in Figure 5. For positive 

regulation, a balancing power requirement (BAL
+

j) equal to 9% of the wind power 

capacity should be kept available on average, corresponding to 20% wind power 

injections of the installed wind power capacity. During high wind situations, the 

positive balancing power requirement increases up to 19% of wind power capacity 

(wcap) (Eq. (17)). For negative regulation, a balancing power requirement (BAL
-
j) of 

8% of the wind power capacity should be kept available on average. During high 

wind situations, the negative balancing power requirement increases up to 15% of 

wind power capacity (Eq. (18)). 

 

Table 2: Technology specific ramp rates 

Technology Ramp rate committed capacity 

[%/hour] (RAMP_Ci) 

Ramp rate non-committed 

capacity [%/hour] (RAMP_NCi) 

High peak load 100 100 

Peak load 80 80*60% 

Mid load 50 50*60% 

Base load 16.7 16.7*60% 

 

                                                
19

 The authors are grateful for suggestions by and discussions with Daniel Kirschen (The University of 

Manchester) and Yann Rebours (EDF). 



EPRG No   1113 

29 

 

Figure 5: Balancing power requirement as a function of hourly wind power injections 

 

Table 3: Balancing power requirements 

 Average [%] Maximum [%] 

Positive regulation 9 8 

Negative regulation 19 15 

Linearization A [%] B [%] 

Positive regulation (_POS) 12.5 6.5 

Negative regulation (_NEG) 8.75 6.25 

 

In this analysis, own-price elasticities of demand of -5% and -10% are tested (the low 

and high elasticity cases in the figures). These are complemented by positive cross-

price elasticities. These numbers are comparable to data in [72] and the overview 

given in [73], after rescaling for transmission and distribution charges. We also 

consider a range of cross elasticities, with magnitudes of 0%, 0.5% or 1% in each of 

the previous and subsequent 4 hours to ensure symmetry. For each scenario, own-

price elasticity is assumed to dominate, meaning that own-price elasticities are larger 

than the sum of cross-price elasticities of the previous and subsequent 4 hours. This 

assumption is in correspondence with empirical data, suggesting that cross-price 

elasticities are typically larger than own price-elasticities [74]. Above mentioned 

hourly cross-price elasticities result in an aggregate cross-price elasticity of 0%, 4% 

and 8% respectively, inspired by [75]. Cross-price elasticity allows consumers to shift 

a part of their consumption behaviour in time. As symmetry conditions must be 

satisfied for the QP model, the corresponding coefficient matrix is made symmetric. 

Thus, there are cross elasticities for the four previous hours of the same magnitude; 

this represents a situation in which consumers have foreknowledge of hourly prices 

and reschedule their loads earlier as well as later to avoid high prices. 

 

As mentioned above, utility or governmental expenditures for energy efficiency (EE) 

are indicated as a percentage related to current expenditures. The current level of 

expenditures (EE0) equals 100%. In this paper, a constant as well as a 50% increased 

level of expenditures is assumed, linked to a 2.5% and 5% efficiency elasticity 

parameter γj. Evidence concerning the impact of energy efficiency expenditures on 

consumption can be found in [76] and [77]. In order to account for interactions 

between demand response and energy efficiency, a 0% and 0.5% cross-price-

efficiency elasticity of demand δj has been assumed. This parameter is also referred to 

as the mixed derivative parameter in Eq. (70). 
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4.2 Reference scenario 
 

First, the optimal generation technology mix is calculated for a reference scenario 

(Table 4). This scenario does not account for real-time demand response, assuming 

that demand is fixed. As the market is entirely cleared by supply-side measures with 

no DSM or demand response, more generation investments have to be made than in 

the demand response scenarios.  

 

As an example of the demand and wind assumptions, initial load and wind power 

generation levels are shown for a representative week in the upper graph of Figure 6. 

The wind power generation profile is multiplied by the optimal installed wind power 

capacity, expressed in MW. The optimal capacity levels are shown in Table 4 for 

different levels of wind investment costs. The lowest cost assumption (40 k€/MW/yr) 

incents the most optimal installed wind capacity, indicated as “low wind cost” 

(dashed line) for each of the graphs in Figure 6. A much higher investment cost (100 

k€/MW/yr), shown as “high wind cost” (full line) for each of the graphs in Figure 6, 

reduces optimal wind capacity by almost half. Those are two illustrations of the four 

scenarios in Table 4. The results for the other two scenarios are in between the full 

and the dashed line, but are left out of the figure for clarity reasons. The bottom graph 

in Figure 6 shows the corresponding real-time electricity price, without allowing 

consumers to respond to that price. 

 

By subtracting wind power generation from initial load levels, a net demand profile is 

found (the middle graph in Figure 6). Wind power curtailment is allowed in order to 

eliminate excess injections during high wind periods, e.g., around hour 75 in the high 

wind scenario when price plunges to the curtailment cost of -100 €/MWh. The 

optimal generation technology mix is given in Table 4, both with and without ramp 

rates of the different technologies taken into account. In the scenario that disregards 

ramp rate limits, additional wind capacity serves mainly to displace base load 

capacity. This corresponds to the findings in [42]. Including ramp rates and thus 

decreasing generation flexibility results in further reductions of base load generation 

capacity. Thus, as we hypothesized, accounting for generator flexibility affects long 

run investment decisions. Base load technologies are not even part of the optimal mix 

after including ramp limits under the lowest cost wind power scenario. Compensating 

for the loss of base load capacity, the amount of mid load technologies increases as it 

offers more flexibility than base load generation technologies.
20

 This greater 

flexibility is required to accommodate the high variability of net demand after 

subtracting wind power. Finally, the total installed generation capacity increases for 

lower wind power investment costs, as wind has a relatively low average capacity 

factor. The total installed conventional generation capacity as well as the optimal 

wind power capacity is comparable with or without taking into account ramp rates. 

 

 

 

                                                
20

 If carbon emissions were capped, however, the story would become more complex, because it would 

not be possible to simply replace low emission nuclear capacity with high emission coal capacity; it is 

likely that the natural gas technologies would increase their capacity as much or more than the coal 

technologies in those cases. 
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Table 4: Optimal generation technology capacity in the reference scenarios [MW] 

Wind Cost Scenario Base Mid Peak High Peak Wind Total 

No ramp rate limits 

40 k€/MW/yr 1,414 2,359 2,067 1,225 5,889 12,954 

60 k€/MW/yr 1,726 2,179 1,967 1,230 5,424 12,527 

80 k€/MW/yr 2,046 2,034 1,831 1,236 4,874 12,021 

100 k€/MW/yr 3,046 1,577 1,565 1,092 3,233 10,511 

With ramp limits 

40 k€/MW/yr 0 3,797 2,042 1,225 5,897 12,962 

60 k€/MW/yr 901 3,058 1,916 1,231 5,391 12,496 

80 k€/MW/yr 1,728 2,420 1,786 1,221 4,776 11,931 

100 k€/MW/yr 2,969 1,678 1,581 1,067 3,125 10,421 

 

Figure 6: Load, wind generation, and prices assuming no demand response under alternative 

wind cost assumptions 

 

4.3 Impact of demand elasticity 
 

The present analysis focuses on the long run implications of demand-response under 

conditions in which all capacity is variable (static, single period optimization). This 

may impact the estimated benefits of demand-response relative to what they would be 

if a large fraction of capacity is predetermined as an existing generation fleet. The 

long run optimal mix is nevertheless useful as a benchmark.  

 

By integrating demand elasticity, consumers are able to adjust their consumption in 

response to real-time price signals. The three approaches for including short-term 
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demand response into a resource planning model have been tested and gave the same 

results, tested for a 168 hour period given -10% own-price elasticity with a fixed wind 

power capacity. The QP and LCP model only require one optimization instead of 

several optimization iterations when the piecewise integration is used. As additional 

constraints can more easily be added to the QP then to the LCP model, the results, 

presented in this paper, have been calculated by using the QP model. However, the 

limitation of the QP is that it requires symmetric elasticity assumptions, which we 

have made. 

 

With demand responsive consumers, lower and higher net demand levels result in 

lower and higher electricity prices, respectively, in a particular hour. The MWh 

weighted average of the corresponding price levels for the above reference case is 

calculated and shown as the flat tariff in Figure 7. Demand responsive consumers 

benefit from increasing their electricity consumption during low price hours, e.g., 

between hour 20 and 32, and from decreasing their consumption during high price 

hours, e.g., between hour 42 and 45. Demand levels are increased during low demand 

hours, a phenomenon referred to as valley filling. Similarly, demands are reduced 

during peaks in response to high prices, which is called peak shaving. 

 

The effect of including own- and cross-price elasticities is illustrated in Figure 8 for 

an example two day period. Given the initial flat tariff in Figure 7, the net demand/no 

response profile is shown in the bottom graph. During peak demand moments, e.g., 

hour 43, price spikes can be seen. Price-responsive consumers react to real-time prices 

rising above the flat tariff, by reducing initial demand levels. On the other hand, 

during moments with high wind power injections, e.g., hour 25 until 30, negative 

prices are observed. Correspondingly, demand levels are significantly increased as a 

matter of integrating excess wind power generation.  

 

As a result of own-price elasticities, demand increases during nighttimes with low 

price periods, as indicated by the full line. Additionally, the complex effects of cross-

price elasticity (dashed line) become apparent. Sometimes, consumer demand 

response is weakened with the dashed line lying between the no response and own 

elasticity only scenarios. At other times, cross elasticities increase the aggregate 

response, with the net load being pushed further from the no response case than with 

own elasticities only; consumer demand response is strengthened. The former 

situation would occur when the price in hour j as well as in the subsequent hours is 

above the weighted average price. Own-price elasticity effects counteract cross-price 

elasticity effects. The latter situation would occur when the price in hour j is lower 

than the weighted average price and the price in the subsequent hours j+1 until j+4 is 

higher than the weighted average price; consumer demand response is strengthened in 

hour j. 

 

Peak demand reductions shown in Figure 8 are consistent with values found in 

literature. Based on [72], a potential for peak reduction from demand response up to 

16% can be expected. Higher peak demand reductions would occur in regions with 

hot summers, high saturation of air conditioning systems and deficient capacity, 

resulting in high price signals. These numbers refer to the reduction potential for 

aggregate peak demand. Actual peak demand reductions between 8.5% and 18.5% are 

documented in [78], given different customer characteristics.  
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The three variables that affect energy reduction the most are air conditioning 

ownership, college education, and annual income. People with more education or 

income show a higher percent impact. During off-peak periods, minor demand 

increases between 0 and 4% were observed. 

 

A sensitivity analysis of the effect of demand elasticity upon installed capacity is 

summarized in Table 5. As ramp limits have been included in these runs, a 

comparison with Table 4 shows the impact of including demand response. Firstly, 

most remarkable is the 50% reduction of the installed high peak generation capacity. 

Demand response often clears the market during peak periods, significantly reducing 

peak demands and the need for such capacity. With an own-price elasticity of -10% 

without the cross-price effect, the installed high peak capacity falls to as low as 312 

MW. In contrast, without demand response, more than 1,000 MW was required for 

the lowest installed wind power capacity.  

 

Secondly, for the least installed wind capacity case, the optimal base load capacity is 

increased by about 3 to 8%. This corresponds to an absolute increase of about 80 to 

240 MW. The variability of the net demand profile is reduced, as well as the need for 

system flexibility. Thirdly, higher price elasticities yield a much higher optimal 

installed wind power capacity. The optimal installed wind power capacity can 

increase by more than 3% for higher investment costs (100 k€/MW/yr) and by up to 

more than 17% for the low investment cost scenario (40 k€/MW/yr). This illustrates 

the contribution of demand response to the integration of intermittent renewable 

energy generation. 

 

 

Figure 7: Price comparison: -10% own/+2% cross-price elasticity (wind investment cost: 40 

k€/MW/yr) 
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Figure 8: Net demand response comparison: -10% own/+2% cross-price elasticity (wind 

investment cost: 40 k€/MW/yr)  

 

Table 5: Price elasticity sensitivity analysis 

Scenario Base Mid Peak High Peak Wind Total 

- Own-price elasticity -5% / cross-price elasticity 0% 

40 k€/MW/yr 0 3,668 1,668 560 6,381 12,276 

60 k€/MW/yr 469 3,357 1,604 529 5,853 11,812 

80 k€/MW/yr 1,557 2,498 1,490 483 5,182 11,210 

100 k€/MW/yr 3,097 1,565 1,267 335 3,176 9,441 

- Own-price elasticity -5% / cross-price elasticity 1% 

40 k€/MW/yr 0 3,760 1,741 567 6,112 12,180 

60 k€/MW/yr 605 3,303 1,664 533 5,637 11,743 

80 k€/MW/yr 1,533 2,548 1,571 485 5,085 11,223 

100 k€/MW/yr 3,054 1,594 1,350 355 3,171 9,524 

- Own-price elasticity -10% / cross-price elasticity 0% 

40 k€/MW/yr 0 3,535 1,357 565 6,951 12,408 

60 k€/MW/yr 0 3,719 1,314 529 6,336 11,898 

80 k€/MW/yr 1,433 2,547 1,233 463 5,490 11,166 

100 k€/MW/yr 3,207 1,475 972 312 3,246 9,212 

- Own-price elasticity -10% / cross-price elasticity 1% 

40 k€/MW/yr 0 3,625 1,502 549 6,581 12,258 

60 k€/MW/yr 233 3,558 1,453 509 6,047 11,800 

80 k€/MW/yr 1,476 2,544 1,357 465 5,320 11,163 

100 k€/MW/yr 3,151 1,523 1,108 316 3,204 9,302 

- Own-price elasticity -10% / cross-price elasticity 2% 

40 k€/MW/yr 0 3,717 1,506 531 6,356 12,110 

60 k€/MW/yr 141 3,705 1,458 500 5,950 11,754 

80 k€/MW/yr 1,425 2,636 1,349 458 5,280 11,148 

100 k€/MW/yr 3,142 1,531 1,113 325 3,179 9,290 

 

Finally, for a given level of own-price elasticity, an increased cross-price elasticity 

reduces the above mentioned effects because now a price increase in a given hour 

results not only in a load decrease in that hour, but some compensating load increases 

in earlier and later hours, given symmetry of cross-price effects. When several 

consecutive hours have similar prices, this means that the net effect of higher prices in 
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those hours is less than if only own-elasticities are under consideration. A reduced net 

effect of price fluctuations results in reduced demand flexibility. Correspondingly, 

increasing the cross-price elasticity reduces the optimal installed wind power 

capacity, compared to the scenario without cross-price elasticities.  

 

The impact of demand elasticity on the weighted average bulk electricity price is 

shown in Table 6. These results exclude transmission and distribution charges. The 

reference price level corresponds to the no response scenario. Consumers facing real-

time electricity prices are encouraged to consume more during low price hours and 

less during high price hours. Consequently the weighted average price decreases 1.5 

to 3.5 €/MWh. 

 

Table 6: Weighted average electricity price impact [€/MWh] 

Scenario 

40 k€  

/MW/yr 

60 k€  

/MW/yr 

80 k€  

/MW/yr 

100 k€  

/MW/yr  

No response 36.87 39.18 41.27 43.01 

Own -5 34.80 37.67 40.17 42.14 

Own -5%/cross +1%+1%+1%+1% 35.32 37.95 40.32 42.23 

Own -10 33.38 36.73 39.62 41.74 

Own -10%/cross +1%+1%+1%+1% 34.14 37.20 39.88 41.91 

Own -10%/cross +2%+2%+2%+2% 34.41 37.31 39.93 41.91 

 

4.4 Impact of energy efficiency 
 

Increased demand-side elasticity influences the optimal generation technology mix, as 

well as the weighted average electricity price. Table 7 shows the optimal generation 

technology mix for different levels of efficiency elasticity of demand, gamma (γj). In 

this analysis, a 10% own-price elasticity of demand is assumed with zero cross-price 

elasticities, and the budget spent on energy efficiency programs is assumed to be 

increased by 50%. The cost of the energy efficiency DSM program is not analyzed, 

nor how this cost can be recovered. The welfare implications of such programs are 

analyzed in [34]. The emphasis here is upon the analysis of their interactions with 

demand response. 

 

Considering first just the first-order effect of efficiency expenditures on loads, we 

assume a 5% elasticity for the effect of efficiency expenditures upon demand. Then if 

the budget for energy efficiency is increased by 50%, this elasticity causes a reduction 

in demand of 2.5% on average for each wind case, corresponding to a reduction of 

100 up to 150 MW. As a result, fewer conventional and renewable energy generation 

capacity additions are needed (a reduction of precisely 2.5%). The total installed 

capacity is reduced from 12,408 MW to 12,111 MW in the low wind investment cost 

scenario. 

 

We now turn to the interaction of energy efficiency expenditures and demand 

response. The mixed derivative parameter δj is a measure of their conflicting 

interaction. That parameter reduces the responsiveness of demand when more is spent 

on energy efficiency. Because this impact of efficiency expenditures upon price 

elasticities has only been discussed qualitatively in the literature [65], we arbitrarily 

assume a value of δj of 0.5% to illustrate the potential impact of this interaction. In 

that case, when energy efficiency expenditures are increased 50%, the optimal amount 

of wind capacity is reduced even further. Comparing Table 5 with Table 7 shows that 
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the optimal wind power capacity is reduced from 6,951 MW without energy 

efficiency expenditures to 6,812 MW with expenditures as a result of reduced demand 

(given 40 k€/MW investment cost and -10% own-price elasticity). When including a 

positive value δj of 0.5%, reduced short-term demand responsiveness results in an 

even lower optimal installed wind power capacity of 6,154 MW. This result shows 

that considering the interaction between energy efficiency and demand elasticity can 

significantly affect optimal generation mixes. 

 

Figure 9 shows the load impact of demand response combined with energy efficiency 

expenditures, compared with the original, no response load profile. The original load 

profile is indicated by the bold full line. With an own-price elasticity of -10%, 

assumed in Figure 9, peak demand is reduced around hours 9 and 43, and some valley 

filing occurs circa hour 27. Additionally, if energy efficiency expenditures are 

increased by 50% (efficiency elasticity 5%), demand levels are slightly reduced (by 

about 300 MW or 2.5% on average). This is indicated by the dashed line just below 

the thin full line. If an overlap is assumed between the effects of demand response and 

energy efficiency (efficiency-price elasticity 0.5%), the responsiveness of demand is 

reduced. Consequently, peak load reduction and valley filling are noticeably less 

pronounced than without this counteracting effect. 

 

Table 7: Effect of an energy efficiency impact: budget increase of 50% / -10% own-price 

elasticity 

Scenario Base Mid Peak High Peak Wind Total 

- Efficiency elasticity 2.5% / efficiency-price elasticity 0% 

40 k€/MW 0 3,486 1,333 559 6,882 12,260 

60 k€/MW 0 3,668 1,291 523 6,272 11,755 

80 k€/MW 1,409 2,518 1,212 458 5,433 11,029 

100 k€/MW 3,171 1,453 952 309 3,208 9,091 

- Efficiency elasticity 2,5% / efficiency-price elasticity 0,5% 

40 k€/MW 0 3,560 1,583 552 6,546 12,242 

60 k€/MW 268 3,460 1,520 523 5,987 11,759 

80 k€/MW 1,471 2,492 1,412 481 5,267 11,124 

100 k€/MW 3,114 1,488 1,188 330 3,186 9,306 

- Efficiency elasticity 5% / efficiency-price elasticity 0% 

40 k€/MW 0 3,437 1,309 553 6,812 12,111 

60 k€/MW 0 3,618 1,273 511 6,209 11,611 

80 k€/MW 1,383 2,490 1,190 453 5,375 10,891 

100 k€/MW 3,134 1,430 932 305 3,170 8,971 

- Efficiency elasticity 5% / efficiency-price elasticity 0,5% 

40 k€/MW 0 3,596 1,891 654 6,154 12,295 

60 k€/MW 469 3,266 1,829 628 5,673 11,865 

80 k€/MW 1,469 2,475 1,701 614 5,067 11,325 

100 k€/MW 3,008 1,524 1,467 507 3,128 9,635 
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Figure 9: Comparison of demand response impacts under alternative elasticity assumptions 

 

5. Conclusions 
 

For many years, generation investment decision making has been supported by LP-

based planning models. In this paper, these models have been extended to incorporate 

two considerations that are increasingly important as markets are restructured and 

increased amounts of intermittent renewable energy are provided. These 

considerations are operational constraints that limit the flexibility of thermal 

generation facilities to respond to demand and renewable energy fluctuations, and the 

‘smart grid’ technology of short-term demand response to spot electricity prices.  

 

The integration of demand response creates opportunities to more efficiently balance 

supply and demand. This paper has illustrated methods for integrating real-time price 

responsiveness into electric energy models. Elastic demand functions are constructed 

based on historic hourly demand levels and assumed levels of elasticities. These 

include own-price elasticity as well as cross-price elasticities with respect to prices in 

other hours in order to capture load shifting effects. Investment models, commonly 

LP-based cost minimizations, are expanded to account for consumer demand 

response. Three numerical approaches to accomplish this supply-demand integration 

are presented. In addition, the interactions of energy efficiency investments and 

demand responsiveness are also modelled by including those investments as first- and 

second-order terms in the demand function. 

 

The integration of demand response decreases system peaks, decreasing the required 

investment in peaking generation capacity. Additionally, demand response creates 

valley filling effects, lessening over-generation problems during the night or high 

wind generation periods. Demand response also increases system flexibility, 

facilitating the integration of intermittent wind power generation. Simulations show 

that for higher demand elasticity, it is optimal to install a higher amount of wind 

power capacity. 

 

Furthermore, price responsive consumers increase consumption during low price 

hours and decrease consumption during high price hours. As a consequence, the 
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weighted average electricity price is reduced. However, the inclusion of cross-price 

elasticities reduces these effects as consumption during high price periods is shifted to 

other hours instead of being indefinitely postponed. 

 

Then, the impact of energy efficiency is analyzed. Increased emphasis on energy 

efficiency reduces demand levels and therefore the total required installed generation 

capacity. This effect is reduced when the negative interaction of energy efficiency 

investments and responsiveness of demand is included. If this interaction is 

significant, the optimal amount of installed wind power capacity is reduced. 

 

Demand-side aspects and the respective sensitivities within a long-term investment 

planning context are dealt with in this paper. Uncertainties on the planning timescale, 

such as future technological, economic, and policy uncertainties will need to be the 

subject of future research. Interactions between those uncertainties, demand-response, 

and generation technology choice would also be interesting to consider. Additionally, 

uncertainty with respect to generation plant availability and random outages is not 

emphasized in this paper, although it could be addressed in future research. Finally, 

making this model dynamic, starting from an existing generation fleet and taking 

decommissioning of older generation plants into account would be a valuable 

extension to this model. It could help illustrating how a transition toward more 

renewables and simultaneously a more responsive demand-side would occur.  
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