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Freeze fracturing of elastic porous media

Ioanna Vlahou

Abstract

The physical motivation behind this thesis is the phenomenon of fracturing of rocks

and other porous media due to ice growth inside pre-existing faults and large pores.

My aim is to explain the basic physical processes taking place inside a freezing elastic

porous medium and develop a mathematical model to describe the growth of ice and

fracturing of ice-filled cavities.

There are two physical processes that can potentially cause high pressures inside

a cavity of a porous medium. The expansion of the water by 9% as it freezes causes

flow away from the freezing front and through the porous medium, resulting in a water

pressure rise inside the cavity. Flow of water towards freezing cavities can occur during

the later stages of freezing, when cavities are almost ice-filled, with a thin premelted

film separating the ice from the medium. The pressure rise in this case is due to the flux

of water into the cavities, which then freezes and increases the overall ice mass. The

special geometry of a spherical cavity is initially considered, as a means of comparing

how the different processes can contribute to pressure rise inside a cavity.

Having established that the expansion of water only contributes to the overall

pressure rise in limited situations, I focus attention on the premelting regime and develop

a model for the fracturing of a 3D penny-shaped cavity in a porous medium. Integral

equations for the pressure and temperature fields are found using Green’s functions,

and a boundary element method is used to solve the problem numerically. A similarity

solution for a warming environment is discussed, as well as a fully time-dependent

problem. I find that the fracture toughness of the medium, the size of pre-existing

faults and the undercooling of the environment are the parameters determining the

susceptibility of a medium to fracturing. I also explore the dependence of the growth

rates on the permeability and elasticity of the medium. Thin and fast-fracturing cracks

are found for many types of rocks. I consider how the growth rate can be limited by

the existence of pore ice, which decreases the permeability of a medium, and propose

an expression for the effective “frozen” permeability.

An important further application of the theory developed here is the growth of ice

lenses in saturated cohesive soils. I present results for typical soil parameters and find

good agreement between our theory and experimental observations of growth rates and

minimum undercoolings required for fracturing.
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Chapter 1

Introduction

1.1 The geophysical problem

Large pressures can develop inside water-saturated porous media at sub-zero tem-

peratures. These pressures can cause fracturing of pre-existing faults, degradation

of rocks and soils, and displacement of the ground surface, and occur due to the

solidification of the water inside the material. The results of such processes are of

interest to both geologists and engineers. Frost-induced deformation of material

can destroy building foundations, damage roads and statues as well as fracture

water supplies and gas and oil pipelines. The importance of freezing in the de-

velopment of landscapes is also widely recognized (Washburn, 1980). When soils

freeze, segregated ice lenses consisting of ice blocks devoid of soil particles form,

which cause upward movement of the ground above. While this process, called

1



1 Introduction

Figure 1.1: Circular patterned ground in Spitspergen (photo by B.Hallet). Circles are
1-2 metres in diameter.

frost heave, continues over the course of weeks, objects such as large stones close

to the surface are pushed upwards. In remote areas, the process can go on for

months or years without much human intervention, and result in larger objects on

the surface being organized in polygonal, circular or striped patterns, as seen in

Figure 1.2: Exposed ice core of an eroded pingo (Schutter, 2004).
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1.1 The geophysical problem

figure 1.1. The phenomenon is called patterned ground and is a result of a com-

bination of several processes, including particle self-organization and deformation

of the soil during freezing (Kessler & Werner, 2003).

Other impressive features created by frost heave are pingos. Pingos are

mounts with ice-filled cores, sometimes up to tens of metres high and hundreds of

metres in diameter. There are two main types of pingo: the closed-system or hy-

drostatic pingos, and the hydraulic or open-system ones. The former are usually

a result of a mass of water freezing inside a bounded space (e.g. with permafrost

surrounding it) and pushing on the ground due to the water expanding. They are

frequently found in locations of drained lakes which explains the existence of the

water reservoir in the first place. The open-system pingos differ in that, as the

name would suggest, they have an unlimited supply of water which flows towards

the freezing front where it solidifies. The growing ice core deforms the upper sur-

face and results in impressive features such as the one seen in figure 1.2. When

the temperatures remain above melting point for a prolonged period of time, the

Figure 1.3: Needle ice: millimetre thin ice emerging from the ground after freezing
(Hilton Pond Center, 2000).
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1 Introduction

ice can melt, resulting in collapse of the ground above.

When freezing occurs close to the surface, ice segregating immediately be-

neath the ground can be forced upwards through the pores, creating impressive

columnar structures such as the one seen in figure 1.3. This phenomenon can have

severe implications for agriculture, destroying vegetation, as well as engineering

and geomorphology (Lawler, 1988).

Figure 1.4: Large pothole in road (AA Ireland website, 2011).

The effect of freezing is also evident in cities rather than just nature. We

mentioned that buildings, stonework and pipelines suffer from freezing during the

cold months. Another phenomenon most of us are familiar with is potholes on

roads, which can be extremely hazardous to drivers and cyclists (see figure 1.4).

During periods of sub-freezing temperatures, a pre-existing fault in the road,

saturated with water, freezes over. More water is drawn from the surrounding

soil, causing the ice to grow and push the overlying layer upwards. At this stage,

the ice-rich soil is not tightly packed. When the temperatures rise above freezing

again, either at the end of the winter or a warm day, the ice melts. In cases where

the rehydration process is slow, this results in the soil consolidating, i.e. becoming

tightly packed and hence the ground surface collapsing, creating a pothole.

4



1.2 Frost heave

The examples above demonstrate the importance of frost weathering and

frost heave as geological phenomena that affect several aspects of our lives. The

scientific motivation for studying these problems is equally fascinating and will

be discussed in the following sections.

1.2 Frost heave

The geological features discussed above are all results of the pressures developed

in water-saturated material during the solidification of water at sub-zero temper-

atures. In soils, the term frost heave is used to describe the upwards displacement

of the ground surface, caused by the formation of particle-free ice blocks within

the soil. Thin water films exist between the ice and the soil grains (Wettlaufer &

Worster, 2006). This is an important feature of the processes discussed in this the-

sis and the physics behind this phenomenon is explained in chapter 2. Repelling

intermolecular forces act through these water films between the ice and the soil.

The balance between the resulting disjoining pressure and the other pressures

acting on the system (overburden, hydrodynamic) can be used to describe the

dynamics of deformation (Rempel et al., 2004; Style et al., 2011). As we will see,

the maximum disjoining pressure is linearly related to the undercooling of the

material, hence colder environments can produce larger forces. As more water

freezes, ice lenses are formed, consisting of blocks of ice devoid of soil particles.

The process by which the particles are rejected from the freezing front as it ad-

vances is described in Wettlaufer & Worster (2006) and is directly related to the

existence of thin water films between the ice and the particle.

A common scenario during frost heave is the freezing of a block of material

from above, resulting in a vertical temperature gradient. Ice lenses form perpen-

dicular to the temperature gradient and they are separated by layers of soil which

can be partially frozen. As ice lenses grow, they are pushed upwards, causing

displacement of the upper surface. The overall amount of frost heave corresponds

to the thickness and number of ice lenses, as can be seen in figure 1.5. If the

solidification rate is slow enough, a single ice lens can form. Rempel et al. (2004)

studied the rate of heaving at which single ice lenses grow, which is found to be

a function of the temperature at their boundary.

5



1 Introduction

1.2.1 Expansion resulting from solidification

As water freezes, it expands by about 9%. The volume change associated with

solidification causes water to be pushed away from the freezing front. In a re-

stricted environment, this can raise the pressure on the boundary as the water

cannot escape. This phenomenon led scientists to assume that it was the expan-

sion of water which developed high pressures in materials such as soils and caused

deformation of the upper surface. Taber (1929; 1930) was first to challenge this

idea, experimenting with freezing benzene in soils. Heave was observed, even

though benzene contracts upon freezing. This showed that it is not the expan-

sion of water that is responsible for heaving, a conclusion also supported by his

findings that deformation of the ground surface substantially exceeds the rela-

tive expansion of the solidifying water. In addition to this, he was the first to

observe flow of water towards the solidification front, rather than away from it

as expansion would suggest. He also considered that frost damage requires an

open system which allows for flow of unfrozen water towards the ice. This was

further supported by Mellor (1970), who found that substantial amounts of water

can remain unfrozen at −10◦ C, indicating the existence of continuous flow paths

allowing the transport of water towards solidification fronts. Taber’s work left

scientists with two important questions to answer: Why does water flow towards

the solidification front, i.e. from warmer to colder regions? And, what mechanism

allows unfrozen water to exist between ice and soil particles?

1.2.2 Past studies

While the existence of unfrozen water films between the ice and the soil particles

was established (first noted by Faraday, 1859; Tyndall, 1858; modelled by Gilpin,

1979), even at conditions where pressure melting isn’t possible (Telford & Turner,

1963), scientists struggled to understand the exact physical nature of these films.

Specifically, what couldn’t be explained was how the films exerted positive pres-

sure on the soil, causing heaving, while at the same time they attracted water

from warmer regions, indicating a negative pressure relative to the bulk of wa-

ter. This led some to suggest that water in thin films has different properties to

water in bulk. The water films found in freezing soils are of the order of tens

6



1.2 Frost heave

of nanometres, which made it difficult to gather experimental evidence on wa-

ter properties directly. Vignes-Adler (1977) suggested that the pressure tensor

in thin water films is anisotropic, with an additional pressure component, the

“extrastress”, which acts only across the film and is interpreted as the disjoining

pressure responsible for the deformation of the soil.

Figure 1.5: A photograph, taken from Taber (1930), showing a series of dark lenses
separated by lighter layers of partially frozen soil. The solidification process started from
the top and proceeded downwards, with the warmest lens being the lowest. The surface
is heaved by a distance equal to the combined thickness of the lenses. The scale bar at
the bottom is given in centimetres.

Also used to explain the flow of water from warm to cold regions was the

idea that water transport in freezing soils is similar in nature to that in drying

soils. Everett (1961) was the first to introduce the idea of the flow being driven

by surface tension at ice–water interfaces. The same idea pervades the work of

O’Neill & Miller (1985), Fowler (1989) and Fowler & Krantz (1994), who use

the analogy with capillary wetting of dry soils to determine an expression for the

pressure in the soil. This idea is consistent with the physics of the problem, as the

7



1 Introduction

curvature is larger in colder regions and hence the pressure is lower. A slightly

different explanation was suggested by Gilpin (1979) who simply assumed that

the water in the thin films at solid–liquid interfaces experiences an attractive force

by the solid boundary. This idea was used to develop a model for frost heave in

soils in Gilpin (1980), where the flow of water towards the solidification front

was attributed not to low pressure in the films but to gradients in the chemical

potential. Rempel et al. (2004) found a qualitatively similar expression for the

pressure but arrived at it through an integral force argument. In contrast, O’Neill

& Miller (1985) assumed uniform ice pressure, an idea challenged by Rempel

et al. who argued that ice can sustain large pressure gradients acting as an

elastic medium. Although they recognized the wetting analogy in determining the

volume fraction occupied by ice, they argued that it cannot be used to determine

the pressure directly and showed that the curvature and surface energy play no

role in driving the water flow. Instead, they claimed that it is the repelling forces

between the ice and the rock that create the premelted films, while pushing the

two substrates apart. The pressure in the water is lowered as a result of the forces

tending to widen the gap, and more water gets sucked in.

Experimental results supporting the treatment of the thin water films in the

same way as water in bulk (i.e. against assumptions of the films possessing an

anisotropic stress tensor or other “strange” properties) were produced by Raviv

& Klein (2002), who made direct measurements using atomic force microscopy

and showed that water behaves as a Newtonian fluid down to scales of about two

molecular diameters. Further experimental evidence supports Taber’s results,

with Mizusaki & Hiroi (1995) using helium in porous glass and Zhu et al. (2000)

solidifying argon in silica powder. Even though helium and argon contract upon

freezing, they both caused heave.

The concepts of flow of water towards the solidification front and the existence

of thin water films at sub-freezing temperatures are now well understood, and can

be used to model freezing in soils and rocks, as we will discuss in the next section.

The work in this thesis is based on the idea that disjoining forces between the ice

and the material give rise to thin premelted films, cause deformation of the soil

or rock and draw more water in from warmer regions.

8



1.3 Frost fracturing of rocks

1.3 Frost fracturing of rocks

When water in rocks freezes, large pressures develop which can cause consid-

erable damage to the rock. As discussed at the beginning of the introduction,

this phenomenon has important consequences as it affects buildings, statues and

pipelines, as well as contributing to landscape development.

It is natural to expect that frost fracturing is governed by similar mechanisms

to frost heave. The connection is made through the assumption that ice-filled

cavities in rocks play the role of ice lenses in soils. Similarly to soils, the early

assumption about the cause of frost weathering of rocks was the expansion of

water by 9% during solidification. This is the core of the volumetric-expansion

model applied to porous rocks, and it implies that no fracturing can take place

in a rock saturated with a fluid that contracts upon freezing. Many scientists

used this model to try to explain frost weathering. As noted by Walder & Hallet

(1985), several publications (see Embleton & King, 1975; Washburn, 1980; Tharp,

1983) considered volumetric expansion in sealed cracks the cause of damage to

rocks. Although this is physically consistent, as the pressure build-up from the

expansion would be considerable if the water had no means of escaping, it poses

the question of how a sealed crack can be filled with water in the first place. The

scenario would be relevant for a saturated rock being rapidly cooled from the

outside from all sides, but its applications are limited.

The volumetric-expansion model is dependent on the idea that water is forced

away from the solidification front and raises the pressure inside the medium, as the

space that can be occupied by water is limited. This requires the medium to be

completely (or, at least, considerably) saturated with water. If a large proportion

of the pores were empty, the water would simply fill them and the pressure would

be relaxed. Defining the saturation level as the percentage of the rock pores

filled with water, and remembering that freezing water expands by about 9%, we

see that a minimum saturation level of 91% would be required for fracturing to

occur. This value hasn’t been verified experimentally. For example, McGreevy

& Whalley (1985) reported fracturing even for rocks only about 80% saturated

but attributed the inaccuracy to heterogeneities in water concentration, which

would make the accurate calculation of moisture levels difficult. Murton et al.

9



1 Introduction

(2006) found that the saturation levels did not exceed 65% when the fracturing in

their experiments began. Furthermore, the volumetric-expansion model predicts

fracturing in bursts, and only during the freezing cycle, which isn’t supported by

experimental evidence (Murton et al., 2006). As we saw in the previous section,

the expansion of the water was shown to be unimportant by Taber (1929; 1930)

during the freezing of soils. Taber (1950) extended his ideas to rocks, pointing

our that several parameters, including pore space, particle size, permeability,

availability of water and resistance to deformation, determined the extent of frost

action in rocks.

The inability to support predictions of the volumetric-expansion model ex-

perimentally, coupled with advances in frost heave studies, where a deeper un-

derstanding of the governing processes was established and the idea of the water

expansion causing fracturing was abandoned, led to the need for a new theory of

frost fracturing. The migration of unfrozen water towards the solidifying centres

of rocks was noted by Fukuda (1983), and strengthened the idea that parallels

can be drawn with frost heave theory. More recent studies (Walder & Hallet,

1985; Murton et al., 2006) have used the concept of ice-filled cavities acting as ice

lenses. Disjoining (intermolecular) forces between the ice and the rock lower the

pressure in unfrozen water films adjacent to the ice surface, which draws water

in from the surrounding saturated medium. These disjoining forces cause the ice-

filled cracks to grow. The difference between the process in soils and rocks lies in

the way each medium deforms under the forces exerted by the ice: soil particles

can be rejected from the solidification front if the freezing is slow enough. The

cohesion of the rock means that the same is not possible. Instead, the pressure

exerted on the rock deforms it elastically and can cause fracturing of the cavity if

the stress at the tip is above a critical value. While in soils the pressure exerted

by the ice is balanced by the overburden pressure, in rocks it is instead balanced

by the elastic pressure of the medium. It is the relative magnitude of these two

pressures that determines whether the cavity expands and the ice continues to

grow.

The ideas discussed above were used by Walder & Hallet (1985) to develop

a model for the fracture of a water-saturated rock during freezing. They recog-

nized the importance of the flow of water towards the solidification front as well

as the existence of thin films separating the ice and the rock. They discussed

10



1.3 Frost fracturing of rocks

how these films exert an “attractive force” on the pore water (hence the flow

towards the ice front) and a disjoining pressure that pushes the ice and the rock

apart. They showed that the fastest growth rate occurs at temperatures in the

range −4 to −15◦C as, in colder systems, the transport of water is limited ow-

ing to the large amount of pore ice reducing the permeability of the rock. For

temperatures closer to 0◦C, the maximum disjoining pressure (linearly related to

the undercooling) is not large enough to cause the stress at the tip of the crack

to exceed the “stress–corrosion” limit, the value above which Walder & Hallet

predict fracturing. A similar fracture model was used by Murton et al. (2006)

for their numerical simulations, coupled with a more complicated mass and heat

transfer model.

While significant advances in the study of frost fracturing have been made,

there is still a need for a more complete model. Matsuoka & Murton (2008)

recently noted that the migration of water towards the freezing interface is now

recognized as an important feature of frost cracking, and attributed it to flow

induced by temperature gradients due to the suction developing in the unfrozen

water in capillaries. As we saw, Rempel et al. (2004) have shown that the water

flow is due to the disjoining pressure caused by intermolecular forces acting in

the thin premelted film separating the ice and the rock. While their work was

applied to soils, the same principles hold for freezing rocks. This idea will be

further explored in this thesis and the pressure balance across the premelted films

will form the basis of our work. The liquid pressure field can be related to the time

evolution of the cavity, meaning that the propagation rate can then be directly

determined through the pressure balance. In contrast, the two (different) growth

laws for the fracturing of a crack used by Walder & Hallet (1985) and Murton

et al. (2006) are based on empirical data, and they are required to close the system

as subcritical fracturing is predicted for a range of tip stresses. Murton et al.

discussed the limitations of the empirical growth law and recognized the need for a

more fundamental model of fracturing. Our aim is to develop a model coupling the

linear elastic behaviour of the medium with the water transport equations through

the balance of pressures across the premelted film, using fracture mechanics to

determine the behaviour of the crack tip. This will provide a theoretical model

for the fracturing of a crack due to freezing based on fundamental physical ideas,

without the need for empirical observations.
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1 Introduction

While the work presented in this thesis is predominantly applied to rocks,

which exhibit approximately elastic behaviour under stress, recent work indicates

that similar arguments can be used to model the growth of ice lenses in soils and

colloidal suspensions, which also demonstrate cohesive properties when water-

saturated. Recently, Style et al. (2011) developed a theory for ice lens growth

which, unlike Rempel et al. (2004), does not require a frozen fringe and uses

linear elasticity and fracture mechanics to describe the “crack-like” behaviour

of ice lenses. This new approach is similar to ours and demonstrates how the

work presented here can be used to describe the freezing of an extensive range of

materials.

Developing a model that can predict the deformation and fracturing of ma-

terial under freezing, incorporating all the important physical effects, is also vital

when it comes to understanding experimental data or field observations. Much

experimental work has focused on the analysis of the parameters which determine

the susceptibility of materials to frost degradation, but the lack of a rigorous model

has made it difficult for findings to be explained accurately. For example, a lot of

field observations were initially limited to studying temperature cycles and freez-

ing rates, which were believed to be the important parameters determining the

existence and amount of frost damage (for relevant studies see McGreevy, 1981).

As relevant findings were discussed in the context of the volumetric-expansion

model, fast freezing rates were thought to be necessary for damage to occur (Bat-

tle, 1960), since they would cause rapid freezing from the outside, effectively

“sealing” the material, but these conclusions have not had much experimental

support (McGreevy, 1981). Water content was also considered to be important

(Mellor, 1970) due to the volumetric-expansion model requiring high levels of

saturation to predict a pressure rise. Since the need for flow towards the solidifi-

cation front was not captured by the volumetric-expansion model, the structure

of the rock was not believed to be a defining feature of frost damage, and hence

was frequently ignored during experimental work.

In the model developed in this thesis, we will show that it is the maximum

value of undercooling rather than the rate of freezing which determines the max-

imum pressures applied on the medium. We hence mainly consider situations of

constant background undercooling, although a warming environment is discussed

in chapter 5. We also know that the saturation of the material is an important

12
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factor, since water needs to flow towards the freezing interfaces in order for the

pressure to increase. Material properties such as permeability and porosity also

contribute to the flow of water, hence they need to be taken into account when

studying the susceptibility of materials to frost damage. Finally, the ability of

the medium to withstand pressures without failing is described by fracture me-

chanics through the fracture toughness parameter, which we will show to be just

as important as the undercooling in determining the susceptibility of a material.

Similarly to Walder & Hallet (1985), we will find that linear elasticity predicts

cracks with small aspect ratios, usually around 10−3. This means that, for a

real medium like a clay pot, we do not expect to see a distribution of short, fat,

ice-filled cracks, but rather a few thin, long ones, causing it to fracture from one

end to the other. Of course, if complete fracturing has occurred (for example

in a column of material like the one in figure 1.5), the ice can keep growing in

thickness if the temperature remains low.

1.4 Structure of the thesis

The aim of the thesis is to develop a complete model for rock fracturing during

freezing, coupling linear elasticity and fracture mechanics with fluid dynamics.

We begin by discussing some background theory, including the dynamics of pre-

melted films, in chapter 2. Chapter 3 uses a simple geometry for freezing inside

a spherical cavity in a porous, elastic medium, and studies the balance of the

different processes contributing to the pressure rise inside the cavity. We will

find that there is a limited number of scenarios where expansion is important,

with the main pressure contribution coming instead from premelting. In chapter

4, we develop the equations describing ice growth inside a penny-shaped crack.

A simple analytic solution is developed which reveals some important physical

balances and can be used to compare different numerical schemes. However, the

growth rate cannot be determined when the supply of water is the only process

limiting the fracturing. This indicates that the toughness of the material, i.e. its

ability to withstand pressure without fracturing, needs to be taken into account.

The full problem, which includes the fracture mechanics describing the toughness

of the material, is addressed in chapter 5, and a similarity solution is found for a
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special case of the environment warming according to a power law in time. While

restricting the boundary conditions in this way limits the applicability of the re-

sults, the qualitative ideas we develop are extremely useful as we gain a deeper

understanding of the dependence of fracturing on the different parameters of the

problem. The full time-dependent problem is solved numerically in chapter 6 and

the growth rate characteristics of a crack are analysed. The initial stage of ice

build-up is also discussed, and the conditions required for a pre-existing fault to

fracture are determined. Chapter 7 involves further analysis of the penny-shaped

model, and a comparison with existing numerical data from other models. The

susceptibility of different materials to frost-induced degradation is analysed. The

model is also extended to include the effect of pore ice on the permeability of

the medium, which can be important at low temperatures as it limits the water

supply. Finally, we show how the model is suitable to describe ice lens formation

in clays and soils.

14



Chapter 2

Background theory

The aim of this chapter is to introduce the main background ideas which govern

the work presented in this thesis. The thermodynamics of the problem are dis-

cussed, and the equations which govern the freezing temperature and the heat

release during solidification are derived. We also present the physics of the pre-

melted films between rock and ice, which give us the pressure balance across them,

as well as the equations for Darcy flow through the porous medium, which will

be used to determine the liquid pressure field.

2.1 Thermodynamics

Classical thermodynamics can be used to describe the process of solidification,

i.e. the change of state from liquid to solid. The melting/freezing point is defined
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2 Background theory

as the temperature at which the liquid and the solid phases can coexist. This

temperature, Tm, is measured at a certain reference pressure pm as it is affected

by changes in pressure.

We first define some quantities that will be used to derive some basic equations

relevant to the work in later chapters. The specific enthalpy H describes the

energy of the system

H = U + pV, (2.1)

where U is the specific internal energy, p the pressure and V = ρ−1 the specific

volume. Changes in the specific enthalpy H arise either from a change in the

specific entropy S of the system or a change in pressure

dH = TdS + V dp. (2.2)

The specific energy available by the system for useful work is described by the

specific Gibbs free energy

G = H − ST (2.3)

hence a change in G can be expressed as

dG = dH − SdT − TdS = V dp − SdT. (2.4)

At a phase boundary in equilibrium, G is the same in the two phases, Gs = Gl.

Hence, applying this at the reference state (Tm, pm), equation (2.3) gives

Hl − Hs = (Sl − Ss)Tm ≡ L (2.5)

where L is the latent heat required to convert a unit mass of a solid into liquid

at the melting temperature Tm.

The specific Gibbs free energy of the liquid, Gl, is equal to that of the solid,

Gs, when the two phases coexist. Any change of temperature and pressure that

preserves the phase coexistence, will have

dGl = dGs. (2.6)

By considering small departures from a reference state (Tm, pm) to a state that

has (T, ps) in the solid state and (T, pl) at the liquid state (since the temperature
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2.1 Thermodynamics

is continuous across the boundary), and using equation (2.4) we find

Vs(ps − pm) − Ss(T − Tm) = Vl(pl − pm) − Sl(T − Tm). (2.7)

Re-arranging the expression above for Sl−Ss and using the definition of the latent

heat L, we can re-write it as

ρsL
Tm − T

Tm

= (ps − pl) + (pl − pm)

(

1 − ρs

ρl

)

, (2.8)

which is known as the Gibbs-Duhem equation (Reif, 1965). The densities of the

solid and liquid state are ρs and ρl respectively. This equation describes the effect

that a difference of pressures across the liquid–solid interface (first term on right-

hand-side of equation) or a change from the reference pressure pm (second term

of right-hand-side of equation) have on the freezing temperature of a substance.

Next, we look at how each of the two terms can cause a change in the freezing

temperature.

2.1.1 Pressure melting

Across a planar interface the liquid and solid pressures are equal, pl = ps = p,

say. In that case, equation (2.8) can be differentiated to show that

dp

dT
= − ρsρlL

Tm ∆ρ
, (2.9)

where ∆ρ = ρl − ρs. This is known as the Clausius-Clapeyron equation and

describes the effect of pressure on the melting temperature of a substance. Liquids

that are denser in the solid state, i.e. contract upon freezing, solidify at a higher

temperature under pressure because the pressure helps to hold the molecules

together. However, water is special in that it expands when it freezes (ρl > ρs).

An increased pressure, trying to compress it, causes it to remain in the liquid

state. Similarly, increased pressure on ice causes melting by lowering the freezing

temperature. This phenomenon is called pressure melting.
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2.1.2 Curvature melting

A phase boundary with curvature κ = ∇.n, where n is the normal pointing into

the liquid, experiences a difference in the pressure of the solid and liquid phase

on either side of it, caused by the surface tension

ps − pl = κγ, (2.10)

where γ is the surface energy per unit area. If we take the reference pressure to

be that in the liquid state in (2.8), i.e. pl = pm, we find

ρsL
Tm − T

Tm

= κγ, (2.11)

which describes the effect of curvature on the melting temperature of a solid–

liquid interface, known as the Gibbs-Thompson effect. While we will see that this

is negligible in comparison to the effect of premelting (see section 2.1.3), it will

play an important role in some cases described in chapters 5 and 6.

2.1.3 Premelting dynamics

The definition of the melting temperature Tm implies that at temperatures T <

Tm, the bulk of a mass of substance remains in the solid state. The process

of melting begins at the surface and here we will discuss how that can occur

at T < Tm. We have already discussed the Gibbs-Thompson effect, where the

freezing temperature is depressed on a curved surface and films of melt can exist

on the surface at temperatures below the melting point Tm.

Similar effects can be observed on the boundaries of solids due to intermolec-

ular interactions with the bounding material. The term interfacial premelting

describes the existence of these microscopic films of melt on the surfaces of sub-

stances which are frozen in bulk, at temperatures below the melting temperature

of the substance. These films can occur either at the vapour interface (surface

melting), against a foreign substrate (interfacial melting) or at the interface be-

tween two crystallites of the same substance (grain-boundary melting) as de-

scribed in Wettlaufer & Worster (2006). Interfacial premelting can be induced
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2.1 Thermodynamics

by a variety of intermolecular forces. Here, we will consider the case of van der

Waals forces as a specific example and concentrate on interfacial melting, where

the solid is bounded by a foreign substrate, since this is the type of situation that

we will be dealing with later.

ps

pl

pR

pTwater

ice

rock

Figure 2.1: Water fills the gap between ice and rock. The disjoining pressure pT plus
the water pressure pl balance the solid pressure ps = pR.

When a solid and a foreign substrate are separated by a thin film of melt of

thickness h, non-retarded van der Waals forces between molecules give rise to a

pressure between them of the form (see de Gennes, 1985)

pT =
A

6πh3
. (2.12)

The effective Hamaker constant A depends on the dielectric properties of all three

materials involved and can have either sign. A negative sign leads to an attraction

force and rupturing of any intervening liquid film. We are interested in the cases

where A, as defined in equation (2.12), is positive and hence the pressure between

the solid and the substrate is disjoining. This pressure together with the liquid

pressure pl have to balance the solid pressure ps

pR = ps = pl + pT , (2.13)

as shown in figure 2.1.

The thickness of the premelted film increases with temperature and becomes

macroscopically thick for T ≥ Tm. In the van der Waals frame we are working

in, an expression describing this dependence can be found using equation (2.8).

We ignore pressure melting by setting ρs = ρl, in order to focus attention on the

role of disjoining forces. Using this together with equations (2.12) and (2.13), we
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2 Background theory

then find that the equilibrium thickness of the premelted liquid film is given by

h =

( ATm

6πρsL∆T

)1/3

. (2.14)

The Hamaker constant for rock–water–ice interfaces is in the region of A = 10−18−
10−21 J (Watanabe & Flury, 2008). For an undercooling of ∆T = 1 K, this results

in a premelted film of thickness of the order of 10 nm.

This variation in the film thickness gives rise to many interesting phenomena

where there is a temperature variation imposed. Examples include thermody-

namic buoyancy and thermal regelation where a foreign particle in ice that is

subjected to a uniform temperature gradient ∇T experiences a net force simi-

lar to a thermodynamic buoyancy force and moves up the temperature gradient

(Rempel, Wettlaufer & Worster, 2001). Materials confined within capillary tubes

premelt against the boundaries and when imposed to temperature gradients, they

can cause large deformation over a small region towards the cold end of the capil-

lary (Wettlaufer & Worster, 1995). Marangoni-like flows along thin films of water

on ice surfaces are caused by the thermomolecular disjoining pressure and have

been studied by Wettlaufer & Worster (2006).

2.1.4 Stefan condition

In a system with an unlimited supply of liquid, the freezing rate is simply deter-

mined by the temperature field, as temperature gradients determine the rate of

transport of heat away from the solidification front. During a change of phase,

energy called latent heat is released or absorbed by the object. When water so-

lidifies, moving molecules become incorporated in the solid lattice and lose their

entropy. This causes the release of latent heat of fusion which has to be trans-

ported away in order for the process to continue. This balance of heat is described

by the Stefan condition (e.g. Worster, 2000), which states that the rate of release

of latent heat per unit area is equal to the net heat flux away from the interface,

i.e.

ρsLVn = n.ql − n.qs, (2.15)
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Vn

qs

ql

n

t + δt
t

Liquid

Solid

Figure 2.2: Diagram explaining the balance of heat across the solidifying interface.
The latent heat released per unit area in time δt is ρsLδt while the heat transported
away is (n.ql − n.qs)δt.

where ks,l is the thermal conductivity of the corresponding material and qs,l =

−ks,l∇T , evaluated on the freezing boundary, is the local heat flux vector in the

solid and liquid phases respectively. The local rate of solidification is denoted by

Vn as seen in figure 2.2, and L is the latent heat per unit mass.

2.2 Darcy flow

As we saw in the introduction, a lot of discussion has been based around the flow

of water through the porous medium during frost heave or frost fracturing. While

expansion predicts flow of water away from the solidification front, experiments

have indicated that the flow is reversed, from the porous medium towards the ice

(see chapter 1 for more details). In either case, it is important to understand the

equations describing the flow through the rock or soil.

The flow through a porous medium is described by the equation derived by

Darcy, relating the flux per unit area to the pressure gradient. Only a fraction

of the total volume is free for water to flow through it, hence it makes sense to

use an averaged value of the velocity. We use the symbol u for the Darcy flux,

which has units of length per time, for consistency with the flow of water inside

a cavity, as we will see in chapter 3. The real velocity of the water through the

21



2 Background theory

pores can be related to the Darcy flux through the porosity φ of the medium

upore =
u

φ
. (2.16)

The Darcy equation for flow through the porous medium is

µu = −Π∇p, (2.17)

where p is the pressure, µ the viscosity and Π the permeability of the porous

medium. The mass continuity is the second equation describing the flow

∇.u = 0 (2.18)

and, used together with equation (2.17), gives a useful equation for the pressure

of the water

∇2p = 0. (2.19)

As we are interested in obtaining an expression for the liquid pressure inside the

premelted film, an important part of solving the problems presented in the next

chapters will be to derive a solution to Laplace’s equation (2.19) for the relevant

geometries.
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Chapter 3

The spherical cavity

As discussed in the introduction of this thesis, the physical mechanisms of frost

fracturing are not very well understood and no complete mathematical model

exists. In particular, while experiments (Taber, 1929; 1930; Mizusaki & Hiroi,

1995; Zhu et al., 2000) have shown that the expansion of the freezing liquid is not

a necessary condition for fracturing, several studies assumed that large pressures

develop owing to the increasing volume of ice. In reality, both expansion and

premelting can cause large pressures inside rocks. The aim of this chapter is to

create a simple model that incorporates both features and allows us to compare

the relative magnitude of their effects.

The two regimes are characterized by contrasting features. When expansion

dominates, water flows away from the freezing front and into the medium. In

contrast, when premelting is important, the flow reverses. We will attempt to
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reproduce these features. We shall find that the effect of expansion is negligible

in most cases. Therefore, when we want to restrict attention to the effect of

disjoining forces we ignore expansion by setting the density of the ice ρs equal to

the density of the water ρl. We concentrate on the physical mechanisms associated

with disjoining pressure, modelling it based on van der Waals forces, and show

that it has to balance the pressure difference between the ice and the water. The

results of this study give us a useful insight into the mechanisms that are involved

in the fracturing of rocks and how they contribute to the pressure fields within

rocks and ice-filled cavities within them.

3.1 Governing equations

As a means to illustrate and understand the different physical mechanisms in-

volved when ice forms inside a cavity of a porous, elastic rock, we start by con-

sidering the geometrically simple case of a spherical cavity of radius R(t), as

illustrated in Figure 3.1. We consider a system supercooled to some uniform tem-

perature T∞ < Tm, where Tm is the melting temperature of the ice measured at

pressure pm = p∞. We are interested in finding out how the radius of the solid

ice and the pressure in the cavity evolve with time and also how the different

parameters of the problem affect the solidification process.

Figure 3.1: Ice growing inside a water-saturated spherical cavity.

As the water-saturated rock is supercooled, ice starts forming inside the cav-

ity. We assume that the solidification begins from the centre of the supercooled
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3.1 Governing equations

cavity and that the solid ice grows as a sphere of radius a(t). As the water freezes

it expands, causing water to flow away from the solidification front, as shown in

figure 3.1. The water tries to escape the cavity through the porous medium in

which the flow is controlled by the permeability. Flow through the porous medium

requires a pressure gradient which can be substantial if the permeability of the

medium is low. This results in a pressure increase in the cavity, which depresses

the freezing temperature. This process describes how the flow through the porous

medium controls the rate of solidification. We assume the flow in the cavity is

slow, and the temperature field is quasi-steady (see Davis, 2001, pg. 26-29) so

that

∇2T = 0. (3.1)

The temperature is bounded at the origin and T → T∞ as r → ∞. The spherically

symmetric solution to this is

Ts = T I(t) and Tl = T∞ +
T I(t) − T∞

r
a(t), (3.2)

where Ts, Tl are the temperature fields in the solid ice and the liquid water

respectively, and T I is the temperature at the solidifying interface.

The interface temperature is given by the Gibbs-Duhem relation (2.8), which

describes the effect of pressure differences across the solid–liquid interface or de-

partures from the reference pressure pm on the freezing temperature. This can be

re-arranged to give an expression for the temperature at the freezing interface

T I(t) = Tm

[

1 − 1

ρsL
(ps(a, t) − pl(a, t)) − ∆ρ

ρsρlL
(pl(a, t) − pm)

]

, (3.3)

where ∆ρ = ρl − ρs is the density difference between the two phases. For water,

we have ∆ρ > 0. The conservation of heat during solidification is described by the

Stefan condition (see section 2.1.4). In the situation we are considering, taking

into account the solution for the temperature field given by equation (3.2), the

Stefan condition can be written in the form

ρsLȧa = kl(T
I − T∞). (3.4)

The flow of the water through the porous medium is described by the equations
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of Darcy flow and continuity (see section 2.2 for more details). The pressure field

pl then satisfies Laplace’s equation in the porous medium

∇2pl = 0 for r > R, (3.5)

while pl → p∞ = pm as r → ∞ and is continuous across the cavity boundary

r = R(t). The Darcy flux u in the porous medium can be found in terms of the

pressure field

µu = −Π∇pl, (3.6)

where µ the viscosity and Π the permeability of the porous medium. The flow

in the cavity is described by the Navier-Stokes equations but we expect it to

be slow enough that the pressure gradient is negligible compared to that in the

porous medium and hence we assume the cavity pressure to be constant. Since

the problem is spherically symmetric, we can write u = ue
r
. Mass conservation

inside a sphere of radius r > a can then be written as

mass flux out of sphere = −rate of change of mass in sphere, (3.7)

or,

4πρlr
2u =







− d

dt

[
4π

3
ρsa

3 +
4π

3
ρl(r

3 − a3)

]

a < r < R,

− d

dt

[
4π

3
ρsa

3 +
4π

3
ρl(R

3 − a3) + φ
4π

3
ρl(r

3 − R3)

]

r > R,

(3.8)

where φ > 0 is the porosity of the medium, i.e. the pore fraction. This gives an

expression for the liquid velocity (volume flux per unit area) at any point in the

cavity or the rock in terms of the radius of the solid ice:

u(r, t) =







∆ρ

ρl

a2ȧ

r2
a < r < R,

∆ρ

ρl

a2ȧ

r2
− (1 − φ)

R2Ṙ

r2
r > R,

(3.9)

In the pores, the water pressure is related to the flow velocity via Darcy’s equation
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(3.6). The water pressure in the cavity is assumed constant and can be found

from the value at the cavity boundary. This gives

pl(r, t) =







µ

Π

[
∆ρ

ρl

a2ȧ

R
− (1 − φ)RṘ

]

+ pm a < r < R.

µ

Π

[

∆ρ

ρl

a2ȧ

r
− (1 − φ)

R2Ṙ

r

]

+ pm r > R.

(3.10)

The second term, involving Ṙ, represents the opening of the cavity under pressure.

Water flows freely through the area previously occupied by the porous medium,

hence the water pressure is relaxed.

3.1.1 The premelting regime

When ice has almost filled the cavity, a thin premelted film of water exists between

the ice and the rock. The distance from the grains is small enough for intermolec-

ular forces between the two substrates to become important. These forces give

rise to a disjoining pressure pT , the magnitude of which depends on the thickness

h of the water film between the ice and the rock. Here, as in section 2.1.3, we use

non-retarded van der Waals forces to model this disjoining pressure, and write

pT =
A

6πh3
, (3.11)

where A is the Hamaker constant. The disjoining pressure contributes to the dif-

ference in the ice and water pressures across the freezing interface. The curvature

of the ice also has an effect on the pressure difference, as described in section 2.1.2.

The pressure balance across the solidifying interface can then be written as

pi − pl = pT + κγ, (3.12)

where pi is the ice pressure, κ is the curvature of the interface and γ is the ice–

water surface energy.

As shown in figure 3.2, the ice boundary is highly curved when it is close to

the grains, as the ice freezes into the pores of the medium. While the curvature
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grain

water

ice
Γ

A

Figure 3.2: A cross-section near the cavity-porous medium boundary. The ice is
expanding into the free space of the porous medium, while it is separated from the grains
by a thin film of premelted water. The ice boundary Γ is closed by the addition of the
smooth surface A.

κ will be a complicated function of position, we will see that it doesn’t affect the

disjoining forces applied on the rock. The net thermomolecular force on the rock,

arising from intermolecular interactions, can be computed as

FT = −
∫

Γ

pT dΓ = −
∫

Γ

(

ρsL
Tm − T I

Tm

− γκ

)

dΓ (3.13)

(see Rempel et al., 2001), where we have used the Gibbs-Duhem relation (3.3),

ignoring the pressure melting term, to substitute for the pressure difference ps−pl

in the pressure balance (3.12). The surface Γ is the real surface of the ice. We

can close Γ by adding the dashed surface of area A, as seen in figure 3.2, which

we assume is at r = R. It can be shown (Rempel et al., 2001) that the integral

of the curvature over a closed surface vanishes. Defining the surface stress tensor

as σS ≡ γ(I − nn) and applying the divergence theorem, we have

∫

S

γκ dS =

∫

S

∇S.σS dS =

∫

∂S

nS.σS d(∂S) = 0, (3.14)

since the integral is over zero length as the surface S = Γ + A is closed. In the

above expression we have taken ∇S = (I − nn).∇ to be the surface gradient

operator, and nS the normal to ∂S. We assume that the contribution of the

curvature integral over the surface A will be negligible compared to that of Γ,

which is the highly curved ice surface. This implies that the curvature term in

equation (3.13) disappears. Then, implementing the divergence theorem for the
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remaining term, we find

FT = −ρsL
Tm

∫

V

∇(Tm − T I) dV +
ρsL
Tm

∫

A

(Tm − T I) dA. (3.15)

Since the temperature in the ice is constant, the first term on the RHS vanishes,

while the second one simply gives

FT = ρsLA
Tm − T I

Tm

r̂. (3.16)

The important conclusion here is that the net thermomolecular force is indepen-

dent of the curvature and independent of the type and strength of interactions

that give rise to the disjoining pressure pT (see Rempel et al., 2001). Moreover,

it depends only on the approximated boundary A and not on the microscopically

complicated surface Γ, hence we are justified to treat the ice–water–rock bound-

ary as macroscopically smooth. We will ignore the curvature term in the pressure

balance across the freezing front from now on and the effect of the curvature on

the pressure applied on the rock will be discussed in section 3.2.1.

Figure 3.3: The later stage, where disjoining forces are pushing the rock and the ice
apart. Water flow has been reversed (contrast with figure 3.1).

The disjoining forces between rock and ice push the two apart, causing the

cavity to expand and more water to be drawn into the opening gap and freeze.

This results in the reversal of the flow, as can be seen in figure 3.3 (contrast with

figure 3.1). The pressure on the rock pR is a combination of the disjoining forces
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3 The spherical cavity

and the liquid pressure in the thin premelted film and hence is given by

pR − pl = pT . (3.17)

Since we are ignoring the curvature of the ice, the balance of pressures across the

premelted film becomes

pR = pi ≡ ps = pl + pT , (3.18)

i.e. the ice pressure pi and the rock pressure pR are equal.

To model the deformation of the cavity under pressure we use isotropic linear

elasticity with spherical symmetry which gives

ps(R, t) = 4G

(
R

R0

− 1

)

, (3.19)

where R0 is the initial radius of the cavity and G is the shear modulus of the

material. The cavity starts expanding under the pressure that the growing ice

is exerting on its boundary. As the gap opens up, the disjoining pressure is

relaxed. More water flows towards the solidification front and freezes, increasing

the pressure applied on the cavity. Ultimately, the system reaches an equilibrium

where the disjoining pressure is balanced by the restoring force exerted by the

deformed rock.

While the analysis of the pressure balance has been done for the late-time

scenario, when the gap between the ice and the rock is very small, the pressure

balance described by equation (3.18) holds throughout the solidification process.

When the gap is large enough for disjoining forces to be negligible, i.e. pT ≈ 0, the

only pressure applied on the rock is the pressure of the liquid, i.e. pR = pl. Across

the freezing boundary we also have pi = pl, as we have ignored the effect of the

curvature of the boundary. Therefore, the balance of pressures can be described

by equation (3.18) at all times.

3.1.2 The dimensionless problem

We scale lengths with the initial cavity radius R0 and temperatures with the un-

dercooling temperature ∆T = Tm−T∞. We also take temperatures and pressures
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3.1 Governing equations

to be relative to the corresponding values at infinity so that the scaled values van-

ish at r → ∞. A scale for velocities comes from the rate of solidification from

equation (3.4),

u0 =
kl∆T

ρsLR0

. (3.20)

A time scale can be written as t0 = R0/u0 = ρsLR2/kl∆T . The pressure scale

comes from the left-hand side of the Gibbs-Thompson equation (2.8),

p∗ =
ρsL∆T

Tm

(3.21)

and describes the pressure difference across an interface that causes depression

of the freezing temperature by ∆T . We denote the scaled ice radius by x(t) =

a(t)/R0 while, to keep notation simple, we use the same symbols for the scaled

versions of each variable. We can now also non-dimensionalize the flow velocity

u(r, t) =







ǫ
x2ẋ

r2
x < r < R

ǫ
x2ẋ

r2
− (1 − φ)

R2Ṙ

r2
r > R

(3.22)

and the liquid pressure

pl(r, t) =







x2ẋ

ǫΠ̃R
− 1 − φ

ǫ2Π̃
RṘ x < r < R,

x2ẋ

ǫΠ̃r
− 1 − φ

ǫ2Π̃

R2Ṙ

r
r > R,

(3.23)

where ǫ = ∆ρ/ρl and Π̃ is the dimensionless parameter

Π̃ =
ρ2

sL2Π

µklǫ2Tm

, (3.24)

which can be thought of as a dimensionless permeability. Values for parameters

relating to water and ice can be found in table 3.1. The dimensionless heat balance

equation is simply given by

x(t)ẋ(t) = T I(t), (3.25)
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3 The spherical cavity

Parameter Value
Latent heat, L 334 × 107 cm2·s−2

Density of ice, ρs 0.92 g · cm−3

Density of water, ρl 1 g · cm−3

Thermal conductivity, kl 2 × 105 g·cm · s−3· K−1

Dynamic viscosity, µ 1.79 × 10−2 g · cm−1·s−1

Melting temperature, Tm 273 K

Table 3.1: Values for parameters relating to water and ice.

while the interface temperature is given by the dimensionless version of equa-

tion (3.3)

T I(t) = 1 − ps + (1 − ǫ)pl = 1 − ǫps − (1 − ǫ)pT . (3.26)

In the above expression, we have used the pressure balance (3.18) to derive the

second equality. The disjoining and solid dimensionless pressures given by expres-

sions (3.11) and (3.19) can be written in dimensionless terms as

pT =
F

(R − x)3
and ps = E(R − 1), (3.27)

where F = A/p∗R3
0 is a dimensionless effective Hamaker constant and E = 4G/p∗

a dimensionless elastic modulus for the rock. The disjoining pressure pT balances

the pressure difference across the interface, ps − pl, which gives a first equation

for the system:

F

(R − x)3
= E(R − 1) − x2ẋ

ǫΠ̃R
+

1 − φ

ǫ2Π̃
RṘ. (3.28)

The Gibbs-Duhem relation (3.26) together with the dimensionless heat balance (3.25)

give a second equation for x and R

xẋ = 1 − E(R − 1) +
(1 − ǫ)F

(R − x)3
. (3.29)
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3.2 The expansion regime

3.2 The expansion regime

The initial stage of the process is the expansion stage, during which the solid ice

is still small compared to the cavity size so there is no interaction between the ice

and rock. While equations (3.28) and (3.29) will need to be solved numerically

to describe the full problem, we can use some approximations to derive some

important conclusions about this early regime analytically.

During the expansion stage, the disjoining forces are negligible, since the gap

R − x is large. Hence, we can ignore the F/(R − x)3 term on the left-hand-

side of equation (3.28) and the right-hand-side of equation (3.29). Then, we can

eliminate the E(R − 1) term between the two equations to find

xẋ +
x2ẋ

Π̃R
− 1 − φ

ǫΠ̃
RṘ = 1. (3.30)

The first term on the left-hand-side of equation (3.30) comes from the heat

balance and represents the flow of latent heat away from the solidification front,

while the second and third terms represent the pressure melting effect. They all

affect the rate of solidification: the transport of latent heat away from the freezing

front is necessary for the solidification to continue while a high pressure applied

on the ice will cause depression of the freezing temperature and hence the process

to slow down. The third term in particular expresses the relaxation in the liquid

pressure which is caused by the opening of the cavity. For stiff materials like

rocks, we expect the growth of the ice to be much faster than that of the rock, at

least during the early stages of freezing when the ice is not close enough to the

rock for the disjoining forces to be important, hence we can ignore the Ṙ term

and take R ≈ 1 for the rest of this section.

The first two terms are comparable when x ∼ Π̃R ∼ 1015 × Π cm−2. Typical

permeability values vary from 10−3 cm2 for very permeable media such as highly

fractured rocks to 10−12 cm2- 10−15 cm2 for rocks like limestone, granite etc. Even

for very impermeable rocks (e.g. granite), the radius of the ice needs to be of the

order of the radius of the cavity for the two contributions to be comparable, so the
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3 The spherical cavity

pressure melting term is only important for large ice radii and small permeabilities.

If we ignore the x2ẋ term, we end up with

xẋ = 1 ⇒ x2 − x2
0 = 2t. (3.31)

Hence, in most cases the solidification happens without experiencing an effect

from the porous medium, and the ice grows proportional to t1/2.

The pressure in the cavity during the expansion regime can be written as

pexpansion =
x

ǫ(1 + Π̃)
≈ 11x

1 + 1.4 × Π × 1015cm−2
, (3.32)

combining equation (3.23) with (3.30) and ignoring the Ṙ term. When x ≈ R

we enter a regime not covered by the approximations made in this section. If we

consider x large but not large enough for disjoining forces to become important,

we can have dimensional pressures varying from around 10−4p∗ (e.g. in sandstone)

to around 10p∗ in granite. How large is p∗? For an undercooling of ∆T = 1◦ K

we have

p∗ =
ρsL∆T

Tm

≈ 11 atm, (3.33)

where we have taken the far-field pressure to be pm = 1 atm. Hence, the additional

pressure in the cavity varies from 10−3 atmospheres, which is negligible, to 102

atmospheres which is more than sufficient to fracture a rock. This shows us

that the expansion effect is very much dependent on the permeability of the

medium. For a water-saturated granite for example, the flow of water away from

the solidification front during the expansion stage can raise the pressure inside

the cavity significantly.

3.2.1 Curvature effect and critical nucleation radius

We can include the effect of curvature on the freezing temperature in the Gibbs-

Duhem equation (3.26) which becomes

T I = 1 − Γ

x
− x2ẋ

Π̃
, (3.34)
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3.2 The expansion regime

where we have defined a dimensionless surface tension

Γ =
2γTm

ρsLR0∆T
. (3.35)

Combining this with the heat balance (3.25) we find

xẋ = 1 − Γ

x
− x2ẋ

Π̃
⇒ ẋ =

Π̃(x − Γ)

x2(x + Π̃)
. (3.36)

The expression for the pressure in the cavity will also change in a similar way

pexp =
x − Γ

ǫ(x + Π̃)
. (3.37)

The surface tension for the water–ice interface is γ ≈ 33 erg/cm2 so Γ = O(10−5)

when R0 = 1 cm and ∆T = 1 K. As before, the maximum pressure in the cavity

occurs when x = O(1). Since Γ ≪ 1, the effect of curvature melting is negligible

and the extra term can be ignored.

Equation (3.36) also shows that growth only occurs if x > Γ, i.e. there

is a minimum radius of the ice nucleus, below which no ice growth occurs. In

dimensional terms this condition becomes

a > amin ≡ 2γTm

ρsL∆T
. (3.38)

The critical nucleation radius is independent of the permeability of the rock and

the radius of the cavity hence it solely depends on the curvature of the sphere.

The permeability of the porous medium doesn’t determine whether ice nucleation

is possible apart from in the special case Π = 0, i.e. when the rock is impermeable,

where no ice can grow. This is a result of the volume increase occurring during

solidification, owing to the density difference of ice and water, resulting in flow

away from the solidification front. Since no water can flow through the porous

medium when Π = 0, no freezing can occur.
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3 The spherical cavity

3.3 Full results

We solve the full problem, governed by the system of differential equations (3.28)

and (3.29) using Matlab’s solver ode15s. This solver is chosen as it is suitable for

stiff problems like the one here. Since the disjoining pressure term F/(R − x)3

is acting only in a small region of the problem, there are two different scales

and the required step to capture that behaviour is very small. A non-stiff solver

would require a lot more steps to produce accurate results. For the following

examples, we use a value of the Hamaker constant A a few orders of magnitude

larger than the real one, as it helps makes the graphs clearer (a larger A means

that the gap between ice and rock h is larger) and saves computational time.

Smaller values of A require much smaller steps but do not alter the qualitative

results. Typical values of the shear modulus are G ≈ 10 − 100 GPa for rocks like

limestone or granite (see also section 7.2). This corresponds to a dimensionless

elastic modulus of E ≈ 9−90 ·103. In the examples presented here, we have used

a slightly smaller value of E = 3000 to make the deformation of the cavity more

visible, but the qualitative conclusions remain the same.

Graphs 3.4-3.6 show results for the evolution of the radius of the ice and the

cavity (left), and the liquid and solid pressures (right) plotted against time for

three different types of rock. The first one, graph 3.4 shows results for a sandstone

with permeability of 10−12 cm2. There are three distinct regions. The first one

extends up to about t = 0.45 and describes the expansion regime. We notice that

the expansion of the cavity itself is negligible, while the evolution of the solid

ice agrees very well with the t1/2 behaviour (red line) predicted in the expansion

section. There is no pressure difference across the solidification front since we are

ignoring curvature effects and the disjoining forces are negligible (red dotted line).

The important thing to note is that the maximum pressure during the expansion

regime is much smaller than the maximum disjoining pressure. The second region

is characterized by a very fast increase in the disjoining forces. The ice is now

close enough to the cavity for intermolecular forces to become important and the

solidification process has slowed down considerably since the ice is limited by

the cavity boundary. Disjoining forces cause the cavity to expand and water to

be sucked into the gap as we can see from the drop in the water pressure, which

becomes negative. The third and last region is the recovery phase, where both the
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Figure 3.4: Results for the radii evolution (a) and pressure values (b) in relatively
permeable porous rock, such as sandstone. (a) The radius of the cavity is represented
by the green dashed curve, the radius of the ice by the blue solid curve and the red curve
shows the approximate result from §3.2. (b) The blue curve is the solid pressure, the
green dashed curve is the water pressure and the red dotted curve the disjoining pressure.
The cyane straight line represents the vapour pressure. We have taken Π̃ = 100, E =
3000 and F = 10−10.
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Figure 3.5: Results for the radii evolution (a) and pressure values (b) in limestone.
(a) The radius of the cavity is represented by the green dashed curve, the radius of the
ice by the blue solid curve and the red curve shows the approximate result from §3.2.
(b) The blue curve is the solid pressure, the green dashed curve is the water pressure
and the red dotted curve the disjoining pressure. The cyane straight line represents the
vapour pressure. We have taken Π̃ = 1, E = 3000 and F = 10−10.

cavity and the ice keep growing until they reach (asymptotically) the equilibrium
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state where the restoring force of the elastic rock balances the disjoining pressure

and there is no water flow. Then, we have

Req = 1 +
1

E
and xeq = 1 +

1

E
− F 1/3. (3.39)

Similar results are found for the limestone, shown in figure 3.5, in which we

see that the liquid pressure becomes even more negative. Since the pressures are

taken relative to pm, which has been scaled to 0, they are allowed negative values.

Their dimensional values can’t be negative though, as the minimum value is the

water vapour pressure. This is something that isn’t automatically accounted for

by the mathematical problem presented so far. Let p′l be the dimensionless water

pressure and pl the corresponding dimensional value. From the scalings of the

problem we know that

pl = p′lp
∗ + pm. (3.40)

For example, we see that in the second graph in Figure 3.5, the water pressure

gets as low as p′l = −0.3, which in dimensional terms (see equation (3.33) too) is

pl = −4.3 atm. The condition for non-negative dimensional pressures can be writ-

ten as αp∗ ≤ p∞ (practically, we take the vapour pressure to be zero), where −α is

the minimum value that dimensionless pressure is allowed. For 1◦C undercooling

and reference pressure of 1 atm, we find that α ≈ 0.09. This is shown in both

figure 3.4 and 3.5 as a straight cyane-coloured line. In the case of the limestone,

where the calculations give a negative dimensional pressure, we assume that in

reality, the pressure is equal to the vapour reference pressure, hence the water has

vaporized, until pressure rises to positive values again. This is something that

will affect the solid and disjoining pressures too, and requires separate analysis.

We also show the results for a very impermeable rock such as granite, with

permeability of 10−15 cm2, in figure 3.6. The three regions are still distinct. What

is interesting is that the largest pressure, and hence the biggest cavity deforma-

tion, comes from the expansion regime, which can be clearly seen in the pressure

graph; the maximum pressure occurs before the intermolecular forces become im-

portant and is many times larger than the disjoining pressure. As the pressure

increases, the ice growth deviates from the t1/2 analytic solution more. This is

because the high water pressure causes lowering of the freezing temperature and
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Figure 3.6: Results for the radii evolution (a) and pressure values (b) in granite.(a)
The radius of the cavity is represented by the green dashed curve, the radius of the ice
by the blue one and the red line shows the approximate result from §3.2. (b) The blue
line is the solid pressure, the green dashed line is the water pressure and the red dotted
line the disjoining pressure. We have taken Π̃ = 0.01, E = 3000 and F = 10−10.

hence slows down the solidification process. The third regime keeps its recovering

character, with the pressures relaxing to their equilibrium values and the water

flow slowing down. An important point is that the water pressure never becomes

negative, so there is no flow of water towards the solidification front. This is

to show that only in limiting cases of very impermeable rocks is expansion im-

portant, while usually the maximum pressures are a result of the intermolecular

forces between the ice and the rock.

In conclusion, in most cases we observe flow of water from the porous medium

towards the solidification front. The only exception is the case of a very imper-

meable rock where the main contribution to the pressure build-up in the cavity

comes from the expansion regime, due to the difficulty of the unfrozen water to

escape the cavity during solidification. For relatively permeable rocks (see figure

3.4) the water pressure becomes negative and water flows towards the ice front.

As we consider less permeable rocks, the minimum value of water pressure de-

creases. Then there is a regime where the calculations give unphysical negative

dimensional pressures. In reality, when water reaches the minimum pressure (the

vapour pressure), a vapour bubble will be created. The solidification cannot con-

tinue when the supply of water has stopped, hence no freezing or rock expansion

occurs during that period. The solidification process can resume, tending to the
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steady state shown in the third regime, when water from the medium has reached

the freezing front. The timescale of this process will depend on the permeabil-

ity of the medium as less permeable rocks limit the flow of water more. This

regime requires a different approach, as the assumption of the ice–water–rock in-

terface, and the subsequent pressure balance, break down. Further analysis of

this phenomenon is beyond the scope of this thesis.

3.4 Conclusions

We have studied the process of water freezing inside a spherical cavity and how

the growth of ice can create high pressures inside the cavity. We have identified

the main features of the process: the expansion of the water when it freezes and

the disjoining forces across a thin premelted film that develop when the ice has

grown to be close enough to the rock. We have compared the effect that those

two processes have on the pressure inside the cavity and how they depend on

the permeability of the rock. This has shown that it is only in the case of very

impermeable rocks, like granite, that expansion can raise the pressure enough to

cause a fracture. For more permeable rocks, the water can escape the cavity easily

during solidification without experiencing any influence of the porous medium.

Therefore, the main rise in pressure comes from the premelting stage when the

ice is very close to the rock. In this case the flow reverses and the water flows

towards the solidification front. This is a result of disjoining forces that push the

ice and the rock apart and cause the water pressure to drop. These disjoining

forces can easily reach several atmospheres even for very small undercoolings,

which indicates that they could be responsible for the fracturing of rocks.

Although the work presented here is done for a simple geometry, it provides

insight into the processes that take place during the freezing of water-saturated

rocks. It demonstrates the relative importance of expansion and premelting and

shows that, in most cases, high pressures occur at the later stage where the ice has

extended to the cavity boundary, therefore justifying our focusing future attention

to ice-filled cavities. The idealized model developed here provides us with some

important conclusions about the importance of the different interactions taking

place inside the cavity. These conclusions can work as a basis for a mathematical

analysis of more complicated and realistic geometries.
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Chapter 4

The penny-shaped crack

We have so far studied ice growth inside a spherical cavity and the pressure

build-up associated with the different processes taking place. We now have an

understanding of the different balances between these processes which will be

useful in our study of more complicated problems.

In order to develop a more realistic model of frost fracturing, we will have to

look at more relevant geometries. Ice growth inside pre-existing faults in rocks,

and the large pressures associated with it, will cause asymmetric growth of the

faults, with the resulting crack likely to have two dimensions much larger than

the third. Penny-shaped cracks were considered by Walder & Hallet (1985), who

simply assumed a uniform pressure within each crack, resulting in elliptical profiles

(see section 4.2.1). Complications arise if we attempt to account for curvature-

induced melting of the ice, which can be an important effect, especially close to
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the tip of the crack. We will attempt to address these points and consider the

geometry of an isolated crack in more detail. Our aim is to develop a mathematical

model combining fluid dynamics, thermodynamics and elasticity theory that will

allow us to describe the processes taking place inside an ice-filled crack in order

to make predictions of its shape and evolution.

In this chapter, we will develop the equations describing the fluid dynamics

and linear elasticity of the problem, study some simple scalings that arise from the

coupling of the two solid and liquid pressure fields and discuss numerical methods

that can be used to tackle the problem further. We will focus on the balance of

pressures and solve the problem for the propagation of a cavity under uniform

pressure and only restricted by the water supply at the freezing front. We will

find that the propagation rate cannot be determined by fluid dynamic arguments

alone, and the dynamics of the crack need to be studied further. Despite this,

many interesting features arise from the analytic solution obtained, and it is also

used as a test for the two numerical methods developed.

4.1 Setting the problem

In an attempt to model this more complicated geometry, we will consider an ax-

isymmetric, penny-shaped crack of radius R(t) and small width b(r, t) ≪ R(t).

The crack is considered to be inside an elastic porous rock that is large enough

compared to the crack to be treated as infinite in extent. The rock is satu-

rated with water that has been supercooled to a uniform temperature T∞ < Tm,

where Tm is the melting temperature of the ice measured at the reference pres-

sure pm = p∞. In this section, we assume that the crack and the rock remain

isothermal. The latent heat produced during solidification has to be transported

away from the freezing front in order for the process to continue. This requires

a temperature gradient normal to the surface, and the transfer of energy is de-

scribed mathematically by the Stefan condition (2.15). As we saw in section

3.1.1, when the solidification rate is dominated by the latent heat transfer, the

growth of the ice behaves like t1/2. This behaviour is seen in figures 3.4-3.6 for

early times but, as soon as the ice is close enough to the cavity boundary for the

disjoining pressure pT to become important, the growth slows down dramatically.
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This indicates that during the premelting stage, i.e. when the cavity is almost

ice-filled, solidification is not fast enough for the latent heat transfer rate to have

a controlling effect on it.

The study of spherical cavities in chapter 3 showed that the expansion of water

doesn’t contribute significantly to the build-up of pressure inside the cavity. We

also saw that it is during the later phase of solidification, when the ice has almost

filled the cavity, that the pressure is maximized. These two statements allow us

to focus our attention on the period after most of the water in the crack is frozen

and there is only a thin film of water between the ice and the rock. The thickness

of the film, h, is constant as a result of the uniform temperature distribution

inside the rock and crack. Although this requires the water to keep freezing in

order to maintain constant h as the crack opens, we will neglect the expansion of

water as we expect solidification to be slow, implying that the effect of expansion

on the pressure exerted on the rock is even smaller than in the earlier expansion

regime.

porous medium

ice

water film

2b

z

r

R

Figure 4.1: An ice-filled cavity in a water-saturated medium. There is a thin water
film of uniform thickness h between the ice and the rock.

4.1.1 The elastic pressure field

We assume that the rock deforms linearly under load (as we did in chapter 3) and

use linear elasticity to describe the pressure field within the solid. The equations
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relating stress to displacement in cylindrical coordinates are (Sneddon, 1951)

σrr = (λ + 2G)
∂ur

∂r
+ λ

ur

r
+ λ

∂uz

∂z
, (4.1)

σθθ = λ
∂ur

∂r
+ (λ + 2G)

ur

r
+ λ

∂uz

∂z
, (4.2)

σzz = λ
∂ur

∂r
+ λ

ur

r
+ (λ + 2G)

∂uz

∂z
, (4.3)

σrz = G

(
∂ur

∂z
+

∂uz

∂r

)

, (4.4)

where the subscripts represent components of the stress tensor σ and the displace-

ment vector u. The constant λ is Lamé’s first parameter while G is the shear

modulus. Solving the equations above can be reduced to solving the biharmonic

equation (see Appendix A.1)

∇4Φ = 0, (4.5)

where the function Φ is related to the stress field by

ur =
λ + G

G
Φrz, (4.6)

uz =
λ + 2G

G
∇2Φ − λ + G

G
Φzz. (4.7)

There are several methods that can be used to find solutions for the pres-

sure and displacement field using the function Φ. Different approaches are suited

to different problems and their simplicity depends on the geometry of the prob-

lem and the boundary conditions. For the configuration here, we follow Spence

& Sharp (1985) and assume that the crack has zero internal shear stress, i.e.

σrz(r, 0) = 0. By symmetry, the problem for the disk-shaped cavity is equivalent

to that for a half space z > 0 with prescribed pressure field within the circle r < R

and no normal displacement for r > R. Then, the expressions for the pressure

p(r, z) and the displacement b(r) become (Sneddon, 1951, and see Appendix A.2)

p(r, z) = −σzz(r, z) = 2(λ + G)

∫
∞

0

ξ3e−ξzB(ξ)(1 + ξz)J0(rξ) dξ, (4.8)

b(r) = uz(r, 0) = −λ + 2G

G

∫
∞

0

ξ2B(ξ)J0(rξ) dξ. (4.9)
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4.1 Setting the problem

We have ignored the time dependence of the functions for simplicity of the nota-

tion as it only enters the equations as a parameter through the cavity thickness

b(r, t). The history of the crack shape is unimportant as it is only the current

cavity shape that affects the pressure distribution at each time instant t. The func-

tion B(ξ) is an unknown function to be determined from the boundary conditions

while J0(rξ) is the Bessel function of the first kind of order zero. By inverting

the second integral and substituting for B(ξ) in the expression for p(r, z) we find

that

p(r, z) = −m
1

r

d

dr

∫ R

0

∂b

∂s
ds

∫
∞

0

sre−ξz(1 + ξz)J1(ξr)J1(ξs) dξ, (4.10)

where m = G/(1−ν), and ν = λ/(2(λ+G)) is the Poisson ratio for the elastic rock.

We have used the boundary condition b(r) = 0 for r > R to change the limits

of the first integral in equation (4.10) from [0,∞) to [0, R]. On the undeformed

reference boundary of the crack, given by z = 0, r < R, the elastic pressure ps(r, t)

is given by (including the time dependence of R and b in the notation again)

ps(r, t) = − G

1 − ν

∫ R(t)

0

M
(r

s

) ∂b(s, t)

∂s

ds

s
, (4.11)

where the kernel M is

M
(r

s

)

=







2

π

s2

s2 − r2
E

(r

s

)

s > r

2

π

[
sr

s2 − r2
E

(s

r

)

+
s

r
K

(s

r

)]

s < r

(4.12)

and the functions K and E are complete elliptic integrals of the first and second

kind respectively.

4.1.2 Propagation of the tip

Generally, there are three basic types of crack. Here, we are interested in the first

one, the mode-I crack, which corresponds to normal displacement of the crack

walls under tensile stresses. This is the crack most commonly found in brittle
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4 The penny-shaped crack

solids. Figure 4.2 is a sketch showing the typical configuration of a mode-I crack.

Mode I

Figure 4.2: A sketch of the mode-I opening.

Linear elasticity predicts a singularity of the form l−1/2 for the stress near

at the tip of a crack, where l is the distance from the tip. For infinitesimally

narrow cracks, the stress and displacement fields near the tip are given by Irwin’s

solutions (see Lawn, 1993)

σij =
KI√
2πl

fij(θ) (4.13)

ui =
KI

2m

√

l

2π
gi(θ) (4.14)

where KI is the mode-I stress intensity factor, depending only on the applied

loading on the crack walls and the crack geometry. As in the previous section,

m = G/(1 − ν) where G is the shear modulus of the medium and ν is Poisson’s

ratio, while l and θ are the polar coordinates with the tip of the crack as the origin.

The functions f and g describe the angular component of the spatial distribution

of the field.

Linear elastic fracture mechanics (LEFM) predicts that the crack will propa-

gate when the stress-intensity factor KI reaches the critical value of the fracture

toughness K, which is a material property. When the stress is below this critical

value, i.e. KI < K, no propagation occurs. When KI > K, the pressure behind

the propagating tip drops, which slows the propagation down. This indicates that

46



4.1 Setting the problem

propagation occurs in the marginal state KI = K. Using the Irwin equations, we

can show (Savitski & Detournay, 2002) that the near-field of the crack is parabolic

in shape

b ∼ K

m

[
8(R − r)

π

]1/2

, as r → R. (4.15)

An alternative expression for the stress-intensity factor can be derived by consid-

ering the effect that a given loading at the inner walls of a crack has on the stress

at the tip (see Lawn, 1993, pg. 33). We assume that the load p(r) is axisymmet-

ric and continuously distributed along the inner walls. The stress-intensity factor

produced by this load is then given by

KI =
2√
πR

∫ R

0

rp(r)√
R2 − r2

dr. (4.16)

When the crack is at the critical state KI = K, the last two expressions are

equivalent (see Rice, 1968).

4.1.3 The water pressure distribution

We now consider the pressure distribution of water inside the cavity and the

porous medium. The flow of water through the pores is described by Darcy’s

equation

µu = −Π∇p, (4.17)

where µ is the dynamic viscosity of water and Π the permeability of the medium.

We combine (4.17) with the mass continuity equation ∇.u = 0 to find that the

water pressure p satisfies Laplace’s equation ∇2p = 0 everywhere apart from

inside the crack. The pressure can hence be given in terms of a Green’s function:

p =
µ

4πΠ

∫

disk

q(r′)

|x − r′| dr′ =
µ

4πΠ

∫

disk

q(r′)r′ dr′ dθ′

(r2 + r′2 − 2rr′ cos θ′ + z2)1/2
, (4.18)

where q(r) is the flux of water into the cavity

q(r) = −2Π

µ
lim
z→0

∂p

∂z
. (4.19)
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4 The penny-shaped crack

The θ-integral can be expressed as an elliptic integral of the first type. We denote

the water pressure on the boundary z = b(r, t) as pl. The boundary condition can

be evaluated at z = 0 for simplicity, since the cavity opening b is small compared

to the length of the crack. Then,

pl(r, t) =
µ

πΠ

∫ R

0

sq(s, t)

r + s
K

(
2
√

rs

r + s

)

ds, (4.20)

where K is the complete elliptic integral of the first kind.

Inside the cavity, water flows in the film between the ice and the rock. As-

suming there is no flow in the θ direction, we write the velocities in the direction

of r and z as v and w respectively. Because h is small, we can use lubrication

theory to approximate the flow in the thin film. Since we are assuming a con-

stant thickness h, we are ignoring the time-dependence of the flow using steady

Navier-Stokes
∂p

∂z
= 0 and

∂p

∂r
= µ

∂2v

∂z2
, (4.21)

which give the solution

v =
1

2µ

∂p

∂r
(z − b)(z − b + h), (4.22)

satisfying the no-slip condition at the rock and ice boundaries.

ice

water

water

rock
water flow

r

z
∂b

∂t

∂b

∂t h

−u

freezing

flow along thin film

Figure 4.3: A sketch of the premelted film, showing the different contributions to water
flow in and out of it.

Water flows inside the thin gap and freezes at the ice boundary. Since we

have assumed that the gap h is uniform, the rate of growth of the ice is the
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4.1 Setting the problem

same as the rate of opening of the cavity, i.e. ∂b
∂t

. We can use mass conservation

inside the thin film to deduce an equation for the rate of cavity opening ∂b
∂t

.

The film changes as seen in figure 4.3, with the dashed curves representing the

film after time δt. The bottom of the boundary moves as the water occupying

b − h < z < b − h + δb freezes. Since we have ignored the expansion of water as

it freezes, this corresponds to a volume flux (per unit area) out of the gap of ∂b
∂t

hence, at z = b−h, the velocity at the vertical direction is w = −∂b
∂t

. Water flows

into the gap from the porous medium as described by the Darcy equation (4.17)

hence, at z = b, we have w = u. The mass continuity equation is

1

r

∂

∂r
(rv) +

∂w

∂z
= 0 (4.23)

which, integrated from z = b − h to z = b, gives an equation for the evolution of

the cavity width b(r, t)

∂b

∂t
+

1

r

∂

∂r

(

r
h3

12µ

∂pl

∂r

)

= −u(b) =
Π

µ

∂p

∂z

∣
∣
∣
z=b

, (4.24)

where the second equality comes from Darcy’s equation (4.17).

We estimate the sizes of the terms in the equation above, denoting the char-

acteristic length scale by L and the pressure scale by P . The lubrication flow term

on the left-hand side of equation (4.24) describes flow in the thin gap between

the ice and the rock while the pressure term on the right-hand side represents the

flow of water from the porous medium towards the solidification front. Using the

pressure and length scales we find the ratio of these two terms to be

h3

12µ

P

L2
:
Π

µ

P

L
=

h3

12Π
: L. (4.25)

The left-hand side of (4.25) is at most about 10−4 cm (since the thickness of

the film h is of the order of 10 nm, see also section 2.1.3), while the size of a

typical cavity will be several orders of magnitude larger. Hence, the flow through

the porous medium dominates over the flow in the thin films. This allows us to

ignore the lubrication flow term and to write equation (4.24) in the much simpler

form
∂b

∂t
=

Π

µ

∂p

∂z

∣
∣
∣
z=b

≈ Π

µ

∂p

∂z

∣
∣
∣
z=0

= −1

2
q(r, t). (4.26)
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4 The penny-shaped crack

The integral equation for pl (4.20) can now be written in terms of b(r, t)

pl(r, t) = − 2

π

µ

Π

∫ R(t)

0

K

(
2
√

rs

r + s

)
∂b(s, t)

∂t

s ds

r + s
. (4.27)

4.1.4 The pressure balance

We saw in chapter 2 that a difference in the solid–liquid pressure on a freezing

surface can be caused by several effects. The presence of a foreign substance close

to the boundary of the ice can cause a disjoining pressure acting across the film

of water. A curved surface also causes a difference in the pressures across the

freezing interface and depresses the freezing temperature. While studying the

spherical model we found that the effect of the curvature of the surface of the

spherical nucleus is unimportant (see section 3.2.1). Here, we are dealing with

even smaller curvatures since the surface of the penny-shaped ice is much flatter

than the spherical one. The only exception is at the tip of the crack, where the

curvature becomes very large. This could affect the extent of the ice into the tip

of the cavity, as we will discuss towards the end of section 4.2.1.

Close to the rock, we expect the ice to no longer be smooth but highly curved,

extending into the pores of the medium, as described by figure 3.2 (see section

3.1.1). At the beginning of section 3.1.1 we showed why this effect is negligible

and how we can treat the freezing front as a smooth surface, in a similar way to

Rempel et al. (2001). The solid–liquid pressure difference hence must simply be

balanced by the disjoining pressure

ps − pl = pT . (4.28)

The density difference between the solid and liquid phases is again ignored

here, as in section 4.1.3. Its effect on the freezing temperature occurs through

the phenomenon of pressure melting. A departure of the liquid pressure from the

reference value causes a change in the freezing temperature, as described by the

Gibbs-Duhem equation (2.8). In terms of ps and pl, the dimensionless interface

temperature is given by

T I = 1 − (ps − pl) + ǫpl(x, t), (4.29)
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4.2 Similarity solution

where ǫ = ∆ρ/ρl and the second term on the right-hand-side describes the

pressure-melting effect. The pl terms can be combined to give (1 − ǫ)pl and,

since the ǫ ≈ 0.1, we can approximate it as (1 − ǫ)pl ≈ pl, i.e. taking ǫ ≈ 0. The

interface undercooling (in dimensional terms) is therefore simply given by

ρsL∆T

Tm

= ps − pl. (4.30)

4.2 Similarity solution

We begin by investigating a crack whose propagation is limited only by the ability

of water to flow through the porous rock and feed the growing ice, rather than

determined by considerations of the material fracture toughness.

In addition to the length and pressure scales L and P we define the time scale

t∗. The balance of terms in the pressure balance equation (4.28) gives

m ∼ µ

Π

L2

t∗
⇒ L ∼

(
Πm

µ
t∗

)1/2

. (4.31)

There is no other constraint on the time scale so t∗ simply is the elapsed time t.

The radius of the cavity then propagates according to

R(t) = k

(
Πm

µ
t

)1/2

, (4.32)

where k is a constant of proportionality that has to be determined. Since the

cavity shape scales with the elapsed time and there is no inherent time scale in

the problem we can find a similarity solution in which

b(r, t) = k

(
Πm

µ
t

)1/2

B(η) (4.33)

where the similarity variable is scaled with the factor k so that the cavity extent

[0, R(t)] is mapped to [0, 1] and defined as

η =
r

R(t)
=

(
Π

µ

G

1 − ν

)−1/2
r

kt1/2
. (4.34)
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4 The penny-shaped crack

We define the similarity pressure variables Ps(η) and Pl(η) according to

ps(r, t) = mPs(η) and pl(r, t) = mPl(η) and the similarity problem becomes

Ps(η) = −−
∫ 1

0

M
(η

σ

)

B′(σ)
dσ

σ
, (4.35)

Pl(η) = −k2

π

∫ 1

0

K

(
2
√

ησ

η + σ

)

[B(σ) − σB′(σ)]
σ dσ

η + σ
, (4.36)

Ps(η) − Pl(η) = PT , (4.37)

where PT is the dimensionless disjoining pressure given by PT = pT /m.

4.2.1 An analytic solution

In the special case of a uniform liquid pressure along the thin premelted film we

can find an analytic solution to the liquid pressure field. We saw earlier that the

pressure field satisfies Laplace’s equation

∇2p = 0, (4.38)

with the boundary conditions now becoming

p = pl = constant on z = 0, r < R(t) = kc1/2t1/2, (4.39)

where we define c =
Πm

µ
, a group of parameters with dimensions of cm2/sec. The

parameter k is dimensionless and describes the propagation rate of the crack. The

liquid pressure also decays at infinity

p → 0 as |r| → ∞. (4.40)

Since we have assumed that the liquid pressure is uniform along the crack, and

as the undercooling is constant, we find that ps = uniform too. We can solve

Laplace’s equation in this geometry by using oblate spheroidal coordinates σ > 1

and −1 < τ < 1 where r2 = R2σ2τ 2 and z2 = R2(σ2 − 1)(1 − τ 2) and separating
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4.2 Similarity solution

variables. The Laplace operator is then given by

∇2 =
1

R2

1

σ2 + τ 2 − 1

{
∂

∂σ

[

(σ2 − 1)
∂

∂σ

]

− 1

σ

∂

∂σ
+

∂

∂τ

[

(1 − τ 2)
∂

∂τ

]}

. (4.41)

If we write the pressure as a product of functions of the two variables σ and τ ,

p = P (σ)Q(τ), the boundary condition becomes

P (1)Q(τ) = pl, (4.42)

hence Q(τ) is constant and its derivatives vanish. The differential equation for

P (σ) becomes

σ(σ2 − 1)P ′′ + (2σ2 − 1)P ′ = 0 (4.43)

and the solution, after using the boundary conditions is

p = −2pl

π
tan−1

(√
σ2 − 1

)

+ pl. (4.44)

Then, the evolution equation for the cavity width is given by

∂b

∂t
= −1

2
q(r, t) =

Π

µ

∂p

∂z

∣
∣
∣
z=0

= −2pl

π

Π

µ

1√
R2 − r2

(4.45)

and, using the similarity variable η = r/kc1/2t1/2 and trying a similarity solution

in the form

b = − 2pl

πc1/2

Π

µ

t1/2

k
b̃(η), (4.46)

we find that the cavity has an elliptical shape b̃ = 2
√

1 − η2, hence

b = − 4pl

πmk2

1 − ν

G

√
R2 − r2. (4.47)

The solid pressure ps generated by the shape cavity described by equation

(4.47) can now be calculated by using expression (4.11)

ps(r, t) = − 4pl

πk2

∫ R

0

M
(r

s

) ds√
R2 − s2

. (4.48)

An elliptic cavity results in a uniform pressure distribution along the walls, hence

our assumption of uniform ps holds (Sneddon & Lowengrub, 1969). We can find
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4 The penny-shaped crack

the value of the elastic pressure ps in terms of pl and k by evaluating the integral

expression at r = 0:

ps(0) = − 4pl

πk2

∫ R

0

ds√
R2 − s2

= −2pl

k2
. (4.49)

Then, from the pressure balance ps − pl = pT we have pl and ps given in terms of

pT (i.e. in terms of the undercooling ∆T ) and k as

pl = − k2

2 + k2
pT and ps =

2

2 + k2
pT . (4.50)

The cavity shape B(η) = b(r, t)/kc1/2t1/2 varies with k according to

B(η) =
4

π

PT

2 + k2

√

1 − η2, (4.51)

where PT = pT /m is the non-dimensional value of the disjoining pressure.

We see that the propagation rate k cannot be determined by the system of

equations (4.35)-(4.37) alone, and an additional condition is required. In sec-

tion 4.1.2, we showed that LEFM predicts a parabolic-shaped tip, which governs

the propagation of a crack. This condition defines a curvature for the tip which

does not vary with time. In contrast, the elliptic cavity has a time-dependent

tip curvature, as can be seen in equation (4.55). This means that the tip prop-

agation condition predicted by LEFM unfortunately cannot be incorporated in

the elliptic-shaped similarity solution here, so the propagation rate k remains a

parameter in this approach. Figure 4.4 shows the aspect ratio of the cavity for

different propagation rates k. The value of B(η) at η = 0, which gives the aspect

ratio of the crack, is shown as a function of k in equation (4.53). We have taken

the undercooling ∆T = 2 K, the shear modulus G = 13 GPa and Poisson’s ratio

ν = 0.2, representative of a limestone (values for parameters of other rocks and

clays are given in table 7.2 of chapter 7) to find that PT ≈ 10−4.

The first thing we note is that the maximum aspect ratio (defined as thickness

over length) is given by 2PT /π ≈ 10−4, resulting in thin cavities. The thickness of

the cavity depends on parameters such as the undercooling ∆T and the elasticity
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Figure 4.4: The self-similar cavity aspect ratio against the propagation rate k. The
dimensionless disjoining pressure has been taken to be PT = 10−4 which represents an
undercooling of ∆T = 2 K for a limestone-like rock.

of the medium G through the dimensionless parameter

PT =
1 − ν

G

ρsL∆T

Tm

. (4.52)

From the above expression we see that thicker cavities occur for larger undercool-

ings, as the disjoining pressure is larger and hence can deform the cavity more.

Also, a smaller value of G results in a larger aspect ratio as the medium is more

compliant and hence deforms more under a given amount of stress. For small

propagation rates k, the self-similar shape tends to its maximum value

B(η) =
2PT

π

√

1 − η2. (4.53)

This is the limit of no propagation (k → 0), hence the material is tough enough

to withstand the pressure applied for the given undercooling ∆T . The solid

pressure in this case equals the disjoining pressure, as the liquid pressure tends

to zero. This describes a situation of equilibrium, where the elastic back pressure

of the medium is balancing the disjoining forces between rock and ice, and no

more solidifying is occurring, hence there is no flow of water towards the cavity,

agreeing with pl = 0 at k = 0, given from equation (4.50).

A slow propagation rate k generally implies a tough cavity, which requires
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4 The penny-shaped crack

a high pressure to fracture. This implies that the deformation of the cavity,

and hence the aspect ratio, is relatively large. The liquid pressure is negative as

described by equation (4.50) but with a small absolute value. This is expected,

as the process is slow enough for the water flow through the porous medium to be

sufficiently fast so that water is able to fill the opening gap between the ice and the

rock easily. In contrast, fast propagation requires larger negative pressures, and

cavitation effects can become important. Fast fracturing occurs in weak rocks

and, since not much pressure is required to fracture them, their aspect ratios

decay like 1/k2 with the propagation rate k. Here, the controlling process is the

ability of water to flow to the freezing front at the rate required to sustain the

propagation. In general, the parameter k is related to how tough the medium

is, with large values of k corresponding to weak materials. As the radius of the

cavity is

R(t) = k

(
Π

µ

G

1 − ν

)

t1/2, (4.54)

we see that the extent of the crack also depends on other material parameters,

such as the permeability Π and the shear modulus G. For example, in a very im-

permeable medium, the flow towards the solidification front is heavily constrained

and hence the growth of the cavity is slow. This results in small crack extents

for a given time t. Similarly, if a medium is very compliant (i.e. G is small),

the cavity deforms more under pressure, requiring a lot of water to freeze for the

pressure to be sustained. This results in slower propagation.

Secondly, it is interesting to note that this problem produces small aspect

ratios for the propagating cavities. Even for slow propagation, a crack of radius

1cm is only about 1µm thick, hence the aspect ratio is of the order of 10−4. We

have ignored effects of curvature-melting on the near-flat ice surface, but these

effects can become important at the highly curved ice tips. For elliptic-shaped

ice, the curvature at the tip is given by

κ =
R(t)

b(0, t)2
=

π2

16c1/2P 2
T

(2 + k2)2

k
t−1/2 ∼ 6 · 107 (2 + k2)2

k
|t|−1/2cm−1, (4.55)

where |t| is the elapsed time in sec. We have used parameters appropriate for a

limestone. For an undercooling of ∆T , the Gibbs-Thompson relation given by
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equation (2.11) defines the maximum curvature that the tip of the ice can have

κmax =
ρsL∆T

γTm

≈ 3 × 105cm−1K−1 × ∆T. (4.56)

Figure 4.5 shows a plot of the curvature κ against the propagation rate k for

different values of time t. The maximum curvature is shown by the red curve

and we see that even at large times, the curvature of the ice tip is above the

Gibbs-Thompson defined threshold κmax. In these cases, ice can grow inside the

cavity, but is unable to extend all the way to the tip of the crack. This means that

the cavity is not completely ice-filled and some of our assumptions fail, including

that of a uniform gap h between the ice and the rock and the pressure balance

across it. In addition to this, water flow in the r direction inside the cavity might

become important, since the water fills the whole width of the cavity and the

thickness of the film is not small anymore.
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Figure 4.5: The curvature of the ice tip against the propagation rate k at several
times. The red line indicates the maximum curvature κmax given by equation (4.56),
determined by the Gibbs-Thompson relation (2.11).

Despite these limitations, we have studied the balance of the liquid and solid

pressure fields and discovered that they admit elliptic solutions for the cavity
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shape for uniform pressure distributions. The family of solutions has provided

information about the aspect ratio of the cavities and indicated that curvature-

melting phenomena can play an important role in determining the extent of the

ice inside the cavity. We have also derived useful results about the relation be-

tween cavity thickness and propagation rate and discussed the processes that

dominate slow and fast propagation. We now aim to improve our model to close

the problem by determining the propagation variable k and including the crite-

rion for the propagation of the cavity. Analytic solutions are unlikely to be found

for non-uniform pressure distributions. In addition to this, there will likely be

further complications when determining the propagation rate from the tip condi-

tion (4.15). We therefore aim to develop a numerical method to solve the system

of integral equations (4.11) and (4.27) together with the pressure balance (4.28).

The analytic solution obtained in this section can be used as a test for the numer-

ical results and the method can then be adjusted to solve for more complicated

situations.

4.3 Numerical approach

Concentrating on the pressure balance equation and the scales that it dictates

has given us a family of self-similar elliptic solutions. We have ignored the tip

condition which needs to be taken into account in order for the propagation rate

k to be determined. Instead of solving for the liquid pressure field directly, under

the assumption of uniform distribution, we develop a numerical method for the

integral equations, which we will first apply to the similarity solution (4.35) -

(4.37) and compare the results against the analytic solution just found. We note

that at σ = η the kernel of (4.35) has a pole singularity, while the kernel of (4.36)

has a log singularity. Any numerical schemes that we employ will have to be able

to deal with these singularities.

4.3.1 Method 1: Linear spline

The idea here is to extract the tip behaviour described by equation (4.15) and

then represent the remaining part of B(η) by using a linear spline. Even though
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4.3 Numerical approach

the tip equation isn’t used in this test problem, we want our method to be easily

generalized to include the tip behaviour later. To do this, we divide [0, 1] into N

intervals of equal length. We take the cavity width in each interval to be of the

form

Bn(η) =
(
1 − η2

)1/2
fn(η), (4.57)

where fn(η) is a piecewise linear function fn(η) = αnη + βn. Then,

B′

n(η) =
(
1 − η2

)−1/2
(αn − 2αnη

2 − βnη). (4.58)

We can write expressions for the two pressures as sums of integrals that we are

able to compute numerically. For the liquid pressure we have

Pl(η) = −k2

N∑

n=1

(αnQn + βnRn) , (4.59)

where

Qn(η) =
1

π

∫ ηn+1

ηn

K

(
2
√

ησ

η + σ

)
σ4

η + σ

dσ√
1 − σ2

(4.60)

and

Rn(η) =
1

π

∫ ηn+1

ηn

K

(
2
√

ησ

η + σ

)
σ

η + σ

dσ√
1 − σ2

. (4.61)

Similarly,

Ps(η) =

N∑

n=1

(αnSn + βnTn) , (4.62)

with

Sn(η) = −
∫ ηn+1

ηn

M
(η

σ

) 2σ2 − 1√
1 − σ2

dσ

σ
(4.63)

and

Tn(η) = −
∫ ηn+1

ηn

M
(η

σ

) dσ√
1 − σ2

. (4.64)

The complete elliptic integral of the first kind K(x), appearing in both inte-

grals Qn and Rn as well as the kernel M(η/σ) of the integrals Sn and Tn, has a

logarithmic singularity at x = 1. The Matlab built-in function quadgk can deal

with such integrable singularities. In addition to this, there is a pole singularity

from the kernel M(η/σ) at σ = η. We deal with this as explained in appendix C.

We need to find the coefficients of the linear spline, αn and βn, hence we have 2N
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4 The penny-shaped crack

unknowns in total. We require the spline to be continuous across η = ηn, which

gives N − 1 continuity equations

(αn − αn−1) ηn−1 + (βn − βn−1) = 0 for 0 < n < N. (4.65)

Also, we evaluate Ps(η) − Pl(η) = PT at the midpoints of each interval, i.e. at

σj = (2j − 1)/2N to obtain a further N equations

(Sjn + k2Qjn)αn + (Tjn + k2Rjn)βn = PT , (4.66)

where Sjn = Sn(σj) etc. The last condition to complete the linear system comes

from the assumption that the slope at η = 0 is zero, since we assume the crack is

symmetric with respect to η = 0 and smooth. Therefore

α1 = 0. (4.67)

The set of equations can be written in matrix form

G(α1, . . . , αN , β1, . . . , βN ) = (PT , . . . , PT , 0, . . . , 0), (4.68)

where

G =

























A11 · · · · · · A1N C11 · · · · · · C1N

A21 · · · · · · A2N C21 · · · · · · C2N

...
. . .

. . .
...

...
. . . . . .

...

AN1 · · · · · · ANN CN1 · · · · · · CNN

1 0 · · · · · · · · · · · · · · · 0

−η1 η1 · · · 0 −1 1 · · · 0

0 −η2 · · · 0 0 −1 · · · 0
...

. . .
. . .

...

0 · · · −ηN−1 ηN−1 0 · · · −1 1

























,

with Ajn = Sjn + k2Qjn and Cjn = Tjn + k2Rjn.
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4.3 Numerical approach

4.3.2 Method 2: Point values

We are also interested in developing a simpler method and comparing the results

with both the analytic solution as well as the linear spline numerical results. For

the linear spline, we decided to use high order methods to numerically evaluate the

integrals, which meant we had to deal with the singularities of the kernels before

implementing the schemes. Here, we want to investigate how much accuracy we

lose if we use a simpler method both for representing the function B(η) as well

as calculating the integrals.

The simplest methods of approximating an integral are the mid-point rule

∫ ηn+1

ηn

f(η, σ) dσ =
1

N
f (η, σn) (4.69)

and the trapezium rule

∫ ηn+1

ηn

f(η, σ) dσ =
1

2N
[f (η, ηn) + f (η, ηn+1)] . (4.70)

We need to take into account the fact that our function f(η, σ) has singularities

at η = σ. Therefore, if we want to use the mid-point rule, the η at which the

integral is evaluated can’t be the midpoint of an interval, like in the linear spline

algorithm. Instead, we can calculate the solid and liquid pressures Ps(η) and Pl(η)

and apply the pressure balance equation (4.37) at the endpoints of the intervals

η = ηn, for 1 < n < N . We note that this approach still gives us N conditions as

we haven’t evaluated (4.37) at BN+1 = 1, i.e. the tip of the crack.

We use a linear spline to discretize the cavity thickness B(η): we again split

the [0,1] interval into N equal-sized intervals and then represent the function

B(η) by the values Bi at each interval endpoint ηi =
i − 1

N
. The midpoints of

each interval are σi =
2i − 1

2N
. Inside each interval n we have

B(x) = Bn + (Bn+1 − Bn) (x − xn)N for xn ≤ x ≤ xn+1, (4.71)

with the value of B at the interval midpoint given by

B =
Bn + Bn+1

2
. (4.72)
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4 The penny-shaped crack

The derivative of the cavity thickness is the slope of the spline in each interval

B′(x) =
Bn+1 − Bn

ηn+1 − ηn

= N(Bn+1 − Bn) for xn ≤ x ≤ xn+1. (4.73)

... ... ...

... ... ...

B1 B2 B3 BN BN+1

η1 η2 η3 ηN ηN+1

σ1 σ2 σN

Combining all the above, we can write an expression for the pressures Ps and

Pl evaluated at an interval edge-point ηj

Ps(ηj) = −
N∑

n=1

∫ ηn+1

ηn

M
(ηj

σ

)

B′(σ)
dσ

σ
(4.74)

≡ −
N∑

n=1

αjn(Bn+1 − Bn) (4.75)

=

N∑

n=1

(
αjn − αj(n−1)

)
Bn (4.76)

and

Pl(ηj) = −k2

π

N∑

n=1

∫ ηn+1

ηn

K

(
2
√

σηj

σ + ηj

)

[B(σ) − σB′(σ)]
σ dσ

σ + ηj

(4.77)

≡ −k2

π

N∑

n=1

βjn

[(
1

2N
+ σn

)

Bn +

(
1

2N
− σn

)

Bn+1

]

(4.78)

= −k2

π

N∑

n=1

[(
1

2N
+ σn

)

βjn +

(
1

2N
− σn−1

)

βj(n−1)

]

Bn, (4.79)

where

αjn =
1

σn

M

(
ηj

σn

)

and βjn =
σn

ηj + σn

K

(
2
√

ηjσn

ηj + σn

)

(4.80)

for 1 ≤ j ≤ N and 1 ≤ n ≤ N . We have also used the fact that BN+1 = 0 and

we are taking αj0 = βj0 = 0. Using these expressions, the equations reduce to the
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4.3 Numerical approach

matrix problem

(
Ajn + k2Cjn

)
Bn = PT for 1 ≤ j ≤ N, (4.81)

with Ajn = αjn−αj(n−1) and Cjn =
1

π

[(
1

2N
+ σn

)

βjn +

(
1

2N
− σn−1

)

βj(n−1)

]

.

4.3.3 Results

We plot the results from our two numerical schemes against the analytic solution

found in §4.2.1 (red curve) for different values of the parameter k and the interval

number N in figures 4.6-4.8. The left-hand-side graphs show the results of the

point value (PV) algorithm for N = 10, 20 and 40. On the right, we have the

linear spline results (LS) for the same values of N . These are plotted for three

different values of the propagation rate k = 0.1, 1 and 10. On every graph, the

red curve is the analytic solution derived in section 4.2.1. The three sets of graphs
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Figure 4.6: Left: Numerical results from PV method for N = 10 (green), N = 20
(blue) and N = 40 (black) against analytic solution (red). Right: Results from LS
method for the same values of N . In both cases, k = 0.1.

clearly show a much better agreement between the LS results and the analytic

solution. Even though the PV method doesn’t produce curves as close to the

analytic ones, the results are still acceptable, even for grids with relatively low

resolution (N = 10 or 20). The LS method seems to be doing a lot better towards

η = 1 in particular, which is to be expected since the
√

1 − η2 behaviour is already

included in the expression for B(η) (4.57).
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Figure 4.7: Left: Numerical results from PV method for N = 10 (green), N = 20
(blue) and N = 40 (black) against analytic solution (red). Right: Results from LS
method for the same values of N . In both cases, k = 1.
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Figure 4.8: Left: Numerical results from PV method for N = 10 (green), N = 20
(blue) and N = 40 (black) against analytic solution (red). Right: Results from LS
method for the same values of N . In both cases, k = 10.
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Figure 4.9: Plots of the relative error for different resolutions N for the PV method
(left) and the LS method (right) for k = 0.1.
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4.3 Numerical approach

We can look at these observations in more detail by plotting the relative error,

i.e. error = (analytic − numerics)/analytic. There is a distinct trend throughout

the error graphs. The errors are largest towards the η ≈ 1 region, for both

methods, while errors from the PV method are about an order of magnitude

larger than the errors from the LS method close to the tip. As k increases, we

see the errors for PV decreasing. This is because the biggest contribution comes
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Figure 4.10: Plots of the relative error for different resolutions N for the PV method
(left) and the LS method (right) for k = 1.

from the pole singularity in Ajn, which dominates the matrix Ajn + k2Cjn when

k is small. The LS errors are of similar size for all values of k. The main reason

for the better accuracy of the LS method is the fact that the interval integrals

are calculated using the quadgk routine, while in the PV case we have used the

simpler mid-point rule. This also results in the PV method being considerably
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Figure 4.11: Plots of the relative error for different resolutions N for the PV method
(left) and the LS method (right) for k = 10.
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4 The penny-shaped crack

faster than the LS method. The difference in speed, coupled with the considerably

simpler implementation which will become increasingly important as we tackle

more complicated problems in chapters 5 and 6, are the two attractive features

of the PV method.

Averaging the error over the N intervals and plotting against N in a log-

log plot (figure 4.12) can provide information about the order of our numerical

scheme. On the left hand side of figure 4.12 is the average error for the PV

1.5 2 2.5 3 3.5 4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

log(N)

lo
g
(a

v
er

a
g
e

er
ro

r)

1.5 2 2.5 3 3.5 4
−7

−6.5

−6

−5.5

−5

−4.5

−4

log(N)

lo
g
(a

v
er

a
g
e

er
ro

r)

 

 

Figure 4.12: Log-log plots of the average error produced by the PV method (left) and
the LS method (right) against the number of intervals N . Green circles represent k = 10,
blue crosses k = 1 and red diamonds k = 0.1. The solid line has a slope of −1.

numerical scheme. As expected, the average error decreases as the interval number

N increases. It is also interesting that the error of the two methods behaves

differently with k: as we saw, with the PV method, the average error decreases

with k. In the LS case, we observe the opposite behaviour, with the larger error

coming from the k = 10 case, indicating that the log singularity of Cjn is the main

contribution to the error. This shows that the main difference of the two methods

is the treatment of the pole singularities. The black solid lines have slope −1,

indicating that both methods are approximately first order.

4.4 Conclusion

In this chapter we have used some ideas of the spherical model developed in

chapter 3 and expanded on them to create a mathematical model for a 3D penny-

shaped crack. We have solved for the liquid pressure satisfying Laplace’s equation
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4.4 Conclusion

in the porous medium and for the solid pressure governed by linear elasticity. The

two integral equations obtained have been combined through a pressure balance

across the premelted film. We solved the problem of uniform distribution of pres-

sures along the cavity analytically, and obtained solutions describing the propa-

gation of the cavity when the only process limiting the fracturing is the supply

of water. The propagation rate k was not determined by the pressure balance

alone, and hence a family of solutions for different values of k was found. The

theory of linear elasticity predicts the behaviour of the tip of a thin crack but we

saw that the relation cannot be incorporated in the similarity solution framework

described in this chapter.

Despite this, the study of the analytic family of solutions has provided us with

interesting conclusions about the effect that different parameters of the problem

such as the elastic modulus and the permeability of the medium, as well as the

undercooling of the system, have on the characteristics of the cavity. In particu-

lar, small aspect ratios were observed for typical parameters of rocks. In addition

to this, the analytic solution has enabled us to compare different numerical ap-

proaches for the solution of the problem, which will become useful in the next

chapters. The understanding we have obtained from this chapter will be used in

determining the important features our model should include.
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Chapter 5

A similarity solution in a warming

environment

In chapter 4, we discussed the growth of ice in a penny-shaped cavity and looked at

the shape of those cracks and their evolution with time. We took the surrounding

environment to be undercooled to some fixed temperature T∞ < Tm, where Tm

is the melting temperature measured at some pressure pm = p∞. We found

that the propagation rate cannot be determined by the balance of the solid and

liquid pressures alone. In this chapter, we will incorporate the condition on the

tip propagation as described by equation (4.15). We also allow for temperature

variations inside the cavity and the rock, which describes the system in a more

realistic way. Irrespective of the temperature field, a constant undercooling of

the far field ∆T = Tm − T∞ implies a non-decaying temperature field, i.e. a non-

decaying disjoining pressure pT , as can be seen from equation (4.27). Through the
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5 A similarity solution in a warming environment

pressure balance (4.28) we deduce that this implies non-decaying liquid and solid

pressure fields which, as in the previous chapter, lead to a balance between the

width and the length scales W ∼ L. This length scale balance cannot incorporate

the parabolic shape imposed by the tip condition (4.15), which is likely to make

the similarity solution break down.

The problem of a non-decaying disjoining pressure can be addressed by con-

sidering a warming environment, with the undercooling determined by a power

law of the form ∆T = Ht−α, where α > 0. This describes a supercooled system

which is warming up to Tm asymptotically. It overcomes the problem of constant

undercooling and we shall see that it provides us with the opportunity to develop

a similarity solution including the dynamics of the tip for a specific power law

α. This, used together with time-dependent results derived later, can provide an

interesting insight into the long-term behaviour of the fracture. In nature, the far-

field temperatures will vary with time, so the study here can provide interesting

insight on how this variation affects the fracturing.

5.1 The governing equations

Our extended problem is based on the model described in chapter 4, with a few

modifications to allow for temperature variations in the far field as well as the non-

uniform temperature field inside the rock and cavity. We will also consider the

Gibbs–Thompson effect of curvature-induced melting of ice, since we discovered

at the end of chapter 4 that it could potentially play an important role. Therefore,

we assume that the ice in the cavity only extends up to r = λR, where λ ∈ [0, 1],

with the rest of the cavity filled with water. A sketch of the cavity is shown in

Figure 5.1. The pressure field in the surrounding elastic medium can be expressed

in terms of the cavity shape, as in chapter 4,

ps(r, t) = − 2

π
m−

∫ R(t)

0

M∗

(r

s

) ∂b

∂s

ds

s
, (5.1)

where m = G/(1 − ν).

The water pressure satisfies Laplace’s equation in the porous medium. There

is a water flux q(r, t) towards the cavity and, since the crack is long and thin,
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r

z

2b(r, t)ice

porous medium

R(t)

Figure 5.1: A sketch of a penny-shaped crack propagating in a porous rock, where the
tip is at r = R(t) and the ice extends to r = λR(t). The thickness of the cavity is
2b(r, t).

it can be approximated as a planar sink. We can therefore express the liquid

pressure field in terms of q(r, t) using the Green’s function

pl(r, t) =
1

π

µ

Π

∫ R(t)

0

K

(
2
√

rs

r + s

)

q(s, t)
s ds

s + r
, (5.2)

where K is the complete integral of the first kind which arises from integrating

out the θ dependence. The idea we used in section 4.1.3 is to relate the water flux

to the cavity deformation and therefore, substituting into equation (5.2), obtain

an integral expression of the liquid pressure pl(r, t) in terms of b(r, t). In the thin

film between the ice and the rock (i.e. for r < λR), we can still use the thin film

approximation as in section 4.1.3 to find

q(r, t) = −2Π

µ
lim
z→0

∂p

∂z
= −2

∂b

∂t
. (5.3)

When λ < 1, the region towards the tip of the crack isn’t occupied by ice but is

instead filled with water. If this gap is large enough to allow easy flow in the r

direction, we can approximate the liquid pressure as uniform. Close to the tip,

it is likely that the width of the crack will be small, as the ice would be able to

extend further towards the tip otherwise. For example, for ∆T = 1 K the critical

radius of curvature of ice is of the order of 0.1 µm, hence we expect the thickness

of the water-filled tip to be at most that. The balance (4.25) tells us that the flow

inside the film and through the medium are in this case at most comparable. As

the temperature increases, the critical radius of curvature decreases, which means

that the ice can extend further inside the cavity, and the thickness of the water-
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filled tip is even smaller. This indicates that the thin film approximation is valid

in the tip too. The alternative would be to use a uniform pressure distribution for

the water-filled tip, which would describe a situation in which the flow inside the

gap is quick enough to relax any pressure difference along the gap. Appendix D

gives the details of the uniform pressure approximation and compares results of

the two different schemes. We see that the difference in the results is minimal,

but the thin film approximation method is much easier to implement, as it only

uses the cavity width values as unknowns, and the linear matrix is of size N ×N

rather than 2N × 2N . For the remainder of the thesis we will therefore use

expression (5.3) to describe the flux of water inside the cavity. This means that

the liquid pressure can be written as

pl(r, t) = − 2

π

µ

Π

∫ R(t)

0

K

(
2
√

rs

r + s

)
∂b

∂t

s ds

s + r
. (5.4)

We assume that the temperature field is quasi-steady as in section 3.1, and

hence is described by Laplace’s equation

∇2T = 0. (5.5)

The Stefan condition expresses the release of latent heat from the solidification

front, which is necessary for the freezing process to continue

ρsL
∂b

∂t
= −kl lim

z→0

∂T

∂z
. (5.6)

We define the undercooling θ(r, z, t) = T (r, z, t) − T∞(t) > 0 which decays as

r → ∞ and satisfies the same equations as T I , (5.5) and (5.6). By comparing

equations (5.3) and (5.6), and noting that both pl and θI satisfy Laplace’s equation

and decay as r → ∞, we see that the interface undercooling θI(r, t) ≈ θ(r, 0, t)

can be expressed in a similar way to pl as an integral of ∂b/∂t

θI(r, t) =
2

π

ρsL
kl

∫ λR(t)

0

K

(
2
√

rs

r + s

)
∂b

∂t

s ds

s + r
. (5.7)

In the special case λ = 1, we see that the temperature field is simply proportional

to the liquid pressure field θI = −ρsL

kl

Π
µ
pl.
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The balance of pressures across the premelted film is described by ps−pl = pT ,

where the solid pressure acting on the rock is balanced by the liquid pressure in

the thin film and the disjoining forces between the ice and the rock acting across

the film. For r > λR, where there is no ice, the solid pressure simply balances

the liquid pressure. Equation (4.30), taking into account the time-varying tem-

perature field, becomes

ps(r, t) − pl(r, t) =







ρsLHt−α

Tm

− ρsL
Tm

θI(r, t) if r ≤ λR.

0 if r > λR.

The extent of the ice is limited by the curvature at its tip, with its maximum

value given by the Gibbs–Thompson relation (2.11) evaluated at r = λR. The

ice tip is approximated as circular and hence the curvature at the tip is taken as

κ = 1/b(λR, t). The relation determining the ice extent λ is

κγ =
2γ

b(λR(t), t)
=

ρsLHt−α

Tm

− ρsL
Tm

θI(λR(t), t). (5.8)

Finally, as described in section 4.1.2, the tip propagation is governed by

b(r, t) ∼
√

8

π

K

m

√
R − r as r → R, (5.9)

where K is the critical stress-intensity factor (mode I), or fracture toughness, and

m = G/(1 − ν).

5.1.1 Non-dimensionalization

We scale pressures with P , length with L, width with W , time with t∗ and

temperature with θ∗ and we find the following balances of scales

P ∼ G

1 − ν

W

L
(5.10)

P ∼ µ

Π

LW

t∗
(5.11)

73



5 A similarity solution in a warming environment

θ∗ ∼ ρsL
kl

LW

t∗
(5.12)

P ∼ ρsL
Tm

θ∗ ∼ ρsLH

Tm

t∗−α (5.13)

1

W
∼ ρsLH

Tm

t∗−α ∼ ρsL
Tm

θ∗ (5.14)

and

W ∼ K

m
L1/2. (5.15)

The first four relations give us the balance of scales P ∼ θ∗ ∼ t∗−α, L ∼ t∗1/2

and W ∼ t∗−α+1/2 valid for any α. Furthermore, the ice-extent balance (5.14)

dictates that the thickness of the cavity should behave as W ∼ t∗α and the tip

condition (5.15) shows the relation between width and length W ∼ L1/2. The

last two conditions can only be included in the similarity solution for the special

case α = 1/4.

5.2 Special case: α = 1
4

Working with this special undercooling law of course limits the relevance of our

results to real-life scenarios, but there is a lot to be gained by this approach.

First of all, being able to include both the ice-extent condition as well as the tip

condition in our similarity solution makes for a very interesting problem worth

exploring. The results will give us an idea of the behaviour of the cavity shape

and growth rates for this specific case and, combined with the time-dependent

solution derived for more general conditions in chapter 6, we hope to be able to

derive some general conclusions.

When α = 1/4, the equations from section 5.1.1 describe a self-similar cavity.

The scales for pressure, width, length and temperature, P , W , L, θ∗ respectively,

are related to the time scale as follows

P =
2

π

√

8

π

(
Π

µ

)−1/4

Km−1/4t∗−1/4, (5.16)

θ∗ =
2

π

√

8

π

(
Π

µ

)3/4
ρsL
kl

Km−1/4t∗−1/4, (5.17)
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L =

(
Π

µ
m

)1/2

t∗1/2, (5.18)

and

W =

√

8

π

(
Π

µ

)1/4

Km3/4t∗1/4. (5.19)

According to these scalings, we take the cavity length to be R(t) = kt1/2,

for some k to be determined. Unlike chapter 4, the propagation rate k will

be determined here using the tip propagation condition (5.9). Then, we can

define a similarity variable η =
r

kt1/2
and introduce the cavity thickness variable

B(η) =
b(r, t)

kt1/4
, therefore mapping the cavity to [0, 1]. We also define the similarity

functions Ps(η) = t1/4ps(r, t), Pl(η) = t1/4pl(r, t) and ΘI(η) = t1/4θI(r, t). Then,

we have
∂b

∂r
= t−1/4B′(η) and

∂b

∂t
=

k

t3/4

[
1

4
B(η) − 1

2
ηB′(η)

]

. (5.20)

The set of equations in terms of the similarity variable becomes

Ps(η) = −
∫ 1

0

M∗

(η

σ

)

B′(σ)
dσ

σ
, (5.21)

Pl(η) = −k2

∫ 1

0

K

(
2
√

ησ

η + σ

)[
1

4
B(σ) − 1

2
σB′(σ)

]
σdσ

η + σ
(5.22)

ΘI(η) = k2

∫ λ

0

K

(
2
√

ησ

η + σ

) [
1

4
B(σ) − 1

2
σB′(σ)

]
σdσ

η + σ
, (5.23)

Ps(η) =

{

Pl(η) − Π̃
[
ΘI(η) − C

]
if η ≤ λ,

Pl(η) if η > λ,
(5.24)

1

kB(λ)
= K̃Π̃

[
C − ΘI(λ)

]
, (5.25)

B(η) ∼ k−1/2
√

1 − η as η → 1, (5.26)
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where

C =
H̃

Π̃3/4K̃
and







Π̃ =
ρ2

sL2Π

µklTm

K̃ =
4

π

K√
2γm

H̃ =

√
π

2

(
ρ2

sL2kl

γ2mT 3
m

)1/4

H







. (5.27)

The last three parameters can be thought of as dimensionless permeability, frac-

ture toughness and undercooling respectively.

5.2.1 Numerical method

Two different numerical schemes were discussed in chapter 4 and the results were

compared in section 4.3.3. Here, we will use the PV (point values) method as it

gives reasonably accurate solutions even for a small number of intervals and is

simpler to implement and faster to run. In particular, it doesn’t require special

treatment of the pole singularities of the integrands of ps(r, t) and avoids long,

analytic calculations of integrals. As in section 4.3.2, we approximate the cavity

width B as a linear spline, such that the value of B at the nth interval midpoint

is given by

B =
Bn + Bn+1

2
(5.28)

and the spatial derivative is approximated by the slope of the spline in each

interval

B′ =
Bn+1 − Bn

ηn+1 − ηn

= N (Bn+1 − Bn) . (5.29)

The ice extends to η = λ which is inside the Λth interval, say. This way, Λ

is defined by ηΛ+1 =
Λ

N
=

⌈λN⌉
N

. The notation ⌈x⌉ is the ceiling function and

represents the smallest integer that isn’t smaller than x. With that definition, we

have ηΛ < λ ≤ ηΛ+1. We use the mid-point rule to calculate the integrals involved

in the expressions for the solid and liquid pressure and temperature fields. We
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evaluate these expressions at the interval endpoints η = ηj, 1 ≤ j ≤ N , to find

Ps(ηj) = µj1B1 +
N∑

n=2

[
µjn − µj(n−1)

]
Bn, (5.30)

Pl(ηj) = −k2λj1B1 − k2

N∑

n=2

[
λjn + νj(n−1)

]
Bn (5.31)

and

ΘI(ηj) = k2λj1B1 + k2

Λ−1∑

n=2

[
λjn + νj(n−1)

]
Bn + k2νj(Λ−1)BΛ +

+k2Iλ
j BΛ + k2Jλ

j BΛ+1, (5.32)

with

µjn =
1

σn

M∗

(
ηj

σn

)

, (5.33)

λjn = K

(
2
√

ηjσn

ηj + σn

)
σn

σn + ηj

(
1

8N
+

σn

2

)

, (5.34)

νjn = K

(
2
√

ηjσn

ηj + σn

)
σn

σn + ηj

(
1

8N
− σn

2

)

. (5.35)

The last two terms from the expression for ΘI(ηj) (5.32) come from the integral

over (ηΛ, λ), which is the ice-occupied part of the Λth interval. They are given by

Iλ
j = K

(
2
√

ηjσλ

ηj + σλ

)
σλ

σλ + ηj

[
1

8
(NηΛ+1 − Nλ + 1)(λ − ηΛ)−

− 1

4
(NηΛ+1 − Nλ − 1)(λ + ηΛ)

]

(5.36)

and

Jλ
j = K

(
2
√

ηjσλ

ηj + σλ

)
σλ

σλ + ηj

[
1

8
N(λ − ηΛ)2 − 1

4
N(λ2 − η2

Λ)

]

, (5.37)

where σλ = (ηλ +λ)/2. The three expressions are related via the pressure balance
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equation

Ps(ηj) − Pl(ηj) =







Π̃
[
C − ΘI(ηj)

]
if j < Λ

Π̃N(λ − ηΛ)
[
C − ΘI(ηj)

]
if j = Λ

0 if j > Λ

(5.38)

which gives us an N ×N matrix of equations for the Bn. The separate expression

for j = Λ comes from the fact that the Λth interval is not completely ice-filled.

The extra N(λ − ηΛ) factor is the fraction of the interval that is occupied by

ice. The reason for including this factor is to distinguish between solutions with

different λ but same Λ. The final condition required to complete the system for

Bn comes from the fact that at the tip of the crack we have BN+1 = 0. Hence, in

matrix form we have

N∑

n=1

[
k2Ajn + Cjn

]
Bn =

H̃Π̃1/4

K̃
(1, . . . , 1
︸ ︷︷ ︸

Λ

, N(λ − ηΛ), 0, . . . , 0
︸ ︷︷ ︸

N−Λ

). (5.39)

For j ≤ Λ:
N∑

n=1

(
Cjn + k2Ajn

)
=

H̃Π̃1/4

K̃

n = 1 Cj1 = µj1 Aj1 = (1 + Π̃)λj1

n = 2 to Λ − 1 Cjn = µjn − µj(n−1) Ajn = (1 + Π̃)
[
λjn + νj(n−1)

]

n = Λ CjΛ = µjΛ − µj(Λ−1) AjΛ = λjΛ + (1 + Π̃)νj(Λ−1) + Π̃Iλ
j

n = Λ + 1 Cj(Λ+1) = µj(Λ+1) − µjΛ Aj(Λ+1) = λj(Λ+1) + νjΛ + Π̃Jλ
j

n = (Λ + 2) to N Cjn = µjn − µj(n−1) Ajn = λjn + νj(n−1)

For j = Λ:

N∑

n=1

(
Cjn + k2Ajn

)
= N(λ − ηΛ)

H̃Π̃1/4

K̃
with A and C defined as

above with Π̃ substituted with Π̃λ = N(λ − ηΛ)Π̃.

For j > Λ:
N∑

n=1

(
Cjn + k2Ajn

)
= 0 with A and C defined as above with Π̃

substituted with 0.

The ice extent condition becomes

1

kBλ

= H̃K̃2
[
C − ΘI

λ

]
, (5.40)
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where Bλ and ΘI
λ are the values of the cavity width and the interface temperature

at the ice tip, i.e. at η = λ. These are found from the corresponding values at the

end of the intervals η = ηΛ and η = ηΛ+1 using linear extrapolation, such that

Bλ = B(λ) = N(ηΛ+1 − λ)BΛ + N(λ − ηΛ)BΛ+1 (5.41)

and similarly

ΘI
λ = ΘI(λ) = N(ηΛ+1 − λ)ΘI

Λ + N(λ − ηΛ)ΘI
Λ+1. (5.42)

The tip condition is valid in the limit η → 1. If we apply it at η = ηN we get

BN = k−1/2
√

1 − ηN =
1√
kN

(5.43)

The method we use is the following: Solve the following problem M times (default

10) each for λ = m/M , 1 < m ≤ M . For the chosen values of λ:

• Compute λjn, µjn, νjn and therefore Ajn and Cjn.

• Determine the root of (5.43) to find the correct propagation rate k.

• Knowing k and λ, invert G = k2A + C to find the Bn.

• Compute ΘI(ηλ) from (5.32) and (5.42).

• From equation (5.40), find the value of κ − κmax which should be negative

for ice to be able to extend into that interval.

Finally, to find the correct value of the ice extent λ, we first check whether κ −
κmax < 0 for all λ = m/M . If it is always negative, then the ice can extend all the

way to the tip, i.e. λ = 1. If, on the other hand, all the values are positive, then

the cavity is too thin and the curvature effect, described by the Gibbs-Thompson

equation, doesn’t allow for any ice growth. If we find both negative and positive

values, we look for the maximum value λ1 for which κ−κmax < 0 and the minimum

value λ2 for which κ − κmax > 0 and use linear extrapolation to estimate the λ

for which κ−κmax = 0. We can improve accuracy by repeating the process in the

interval (λ1, λ2). If for all the values of λ tried, equation (5.43) can’t be satisfied

for any value of k, then there is no propagation.
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5.3 Results

5.3.1 Solutions

Solving the problem for a variety of parameters reveals the existence of two simi-

larity solutions, a slowly-propagating one and a fast-propagating one. Figures 5.2

and 5.3 show the cavity shape B(η), as well as the pressures Ps(η) and Pl(η),

in terms of the spatial parameter η for these two situations. The region occu-

0 0.2 0.4 0.6 0.8 1
0

2

4

6

B(η)

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

Ps(η)

0 0.2 0.4 0.6 0.8 1
−0.4

−0.35

−0.3

−0.25

Pl(η)

η

Figure 5.2: A plot of the slow solution with k1 = 0.3001: the three plots show the
cavity width B(η), the solid pressure Ps(η) and the liquid pressure Pl(η) against η.

pied by ice is easily distinguishable in both cases, with λ = 0.66 for the slowly

propagating case (figure 5.2) and λ = 0.88 for the fast propagating case (figure

5.3). The slow propagating crack is thicker than the fast one, agreeing with the

balance B ∼ k−1/2 dictated by the tip condition (5.43), which appears to have a

global effect on the cavity width. We also note that the liquid pressure Pl is an

order of magnitude larger in the fast-propagating case than the slow one. This

shows that the effect of water migration towards the solidification front does not

affect the slow cavity as much as the fast one. This could be due to the fact that
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the water freezes slowly, resulting in a smaller negative pressure and slow flow

of water towards the solidification front. The large negative value of the solid

pressure Ps at η = 1 agrees with the prediction of infinite solid pressure at the tip

of the crack due to the parabolic shape of the tip as predicted by linear elasticity,

but remains finite due to the limitations of the discretized numerical scheme we

have used. The value at η = 1 is not used to determine any cavity characteristics

as the pressure balance is not evaluated at the tip, hence the value of the negative

peak is unimportant.
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Figure 5.3: A plot of the fast solution with k2 = 1.2057: the three plots show the cavity
width B(η), the solid pressure Ps(η) and the liquid pressure Pl(η) against η.

5.3.2 Phase planes

Similarity solutions do not exist for all values of the parameters H̃, K̃ and Π̃.

Mathematically, although the matrix C + k2A can always be inverted (provided

it is not singular) for a given k and λ, the tip condition (5.43) and the ice extent

condition (5.40) will only hold for the right choice of k and λ. We investigate the

existence and type of solutions by solving the equations for different values of these
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parameters. The parameters H̃ and K̃ are the ones most directly determining

the ice extent λ and propagation rate k, hence we fix the permeability Π̃ and plot

phase planes of the different types of solutions in terms of the undercooling H̃

and the fracture toughness K̃. Figure 5.4 shows phase plots for both the slow

(left) and the fast (right) solutions.

We find 4 different types of solutions. Two of them (red crosses and black

circles) represent situations when no propagation occurs, but the reason behind

this is different in each case and we shall discuss it further. The other two describe

propagating cracks: the blue diamonds denote completely ice-filled cavities, with

λ = 1, while the green squares represent partially-filled cracks, where λ < 1.

The red crosses indicate problems for which the stress at the tip of the crack

is less than the critical value K, even for completely ice-filled cavities. Practically

this means that whatever the ice extent λ, we can’t find a propagation rate k

for which the tip condition (5.43) is satisfied, even before we take into account

the Gibbs-Thompson effect determining whether curvature allows ice to grow in

the cavity for the given undercooling. This is the case where the material is

tough enough to withstand the pressure caused by the build up of ice for a given

undercooling ∆T . An increase in the elastic modulus m of the rock or a decrease

of the fracture toughness K will result in an overall decrease of K̃, making the

medium stiffer or less tough respectively. A weaker medium requires less pressure

for fracturing hence smaller undercooling. A stiffer medium implies that the

pressure build-up happens faster as the cavity doesn’t deform much and hence

less ice is required to maintain the pressure. The timescale of pressure build-up is

important as the undercooling reduces with time. The longer the process takes,

the smaller the disjoining pressure will be. Also, an increase of the undercooling

H̃ means more ice build-up inside the cavity. Both the increase of H̃ and the

decrease of K̃ result in fracturing of the cavity, as can be seen from the phase

space (5.4). The boundary of the no propagation region (red crosses) looks to be

determined by a linear relationship between H̃ and K̃

K̃ = β(Π̃)H̃, (5.44)

where β is a parameter that depends on the value of the permeability Π̃.
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Figure 5.4: A plot of K̃ against H̃ for Π̃ = 2 showing the regions of existence of slow
solutions (left) and the fast solutions (right). The dark green lines represent the slope
as defined by equation (5.47).

The smaller region shown by the black circles also describes similarity solu-

tions where no propagation occurs. The reason we distinguish this region from

the red crosses is because, while the material is not tough enough to withstand

the pressure from a completely ice-filled cavity, the curvature melting effect does

not allow the ice to extend all the way to the tip of the crack. We can see

from figure 5.4 that this occurs for small undercoolings ∆T , indicating that the

maximum curvature determined by the Gibbs-Thompson relation is small. In

addition to this, the dimensionless fracture toughness is generally small, repre-

senting media that do not deform much under pressure, resulting in thin cavities.

Curvature-induced melting can also affect the ice growth in solutions described

by the red crosses, especially for small ∆T and small K̃ but, in these cases, even

if we ignored the Gibbs-Thompson condition and assumed a completely ice-filled

cavity, the stress at the tip would still be below the critical value K. An increase

in the undercooling ∆T results in ice being able to extend further towards the

tip, with the resulting stress causing fracturing. Physically, all non-propagating

solutions (black circles and red crosses) will begin from an initial radius, with ice

growing up to some λR and deforming them. As the stress at the tip KI is still

below the critical value K, no fracturing can occur, meaning that k = 0 hence

R = 0. This shows that we cannot describe these situations in the similarity solu-

tion framework. In reality, we expect an equilibrium situation were the disjoining

pressure balances the elastic pressure of the cavity. As the environment warms
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up with time, the maximum curvature imposed by the Gibbs-Thompson relation

decreases, resulting in the melting of ice towards the tip. We therefore expect

the pressure to slowly relax and part of the ice to melt as the environment is

warming, which is not captured by the characteristics of the similarity solution.

We will discuss these cases more in chapter 6, where the time dependent problem

is solved, allowing us to explore the initial stages of ice build-up in more detail.

The green squares describe the sets of (H̃, K̃) for which we can find sets of

solutions (k1, λ) and (k2, λ) satisfying the tip and ice extent conditions, (5.43) and

(5.40). The blue diamonds represent sets of parameters where solutions for k exist

but the curvature of the ice tip is always less than the maximum value defined by

equation (5.40), i.e. the ice can extend to the tip of the cavity and the curvature

doesn’t affect the extent of the ice. While we have denoted this as λ = 1, this

would require the curvature of the tip of the ice to be equal to the curvature of

the tip of the crack. In the model we have used here, this is represented by a

parabolic tip, which results in a curvature several orders of magnitude larger than

the approximate circular curvature of the ice close to the tip. This indicates that

the cavity can never be completely ice-filled. Indeed, the section we have labelled

as such actually represents solution for which λ > 1 − 1/N , i.e. the ice extends

inside the last interval. This has a negligible effect on the results, especially for

large N , and the boundary between λ < 1 and λ = 1 is useful in representing

contours of constant λ. The assumption of a parabolic tip is only approximate

and breaks down when within a few nm of the tip (see Lawn, 1993). In reality,

the tip is more likely to be sharp, making the curvature at that point infinite.

The details of what happens at such small scales close to the tip are beyond the

scope of this thesis.

What is interesting is that for the slow solution k1, shown at the left hand

side of figure 5.4, there is a maximum value of K̃ which doesn’t depend on H̃ and

above which the cavity is completely ice-filled. In contrast, for the fast solution

the threshold is affected by the value of H̃ and is quickly reducing for large H̃.

The fast solution has a much larger thickness at a given time, even though its

aspect ratio is smaller, as can be seen from comparing figures 5.2 and 5.3 and

remembering that k2 ≈ 3k1 in that case. This means that the ice can extend

further into the tip as the radius of curvature is larger. As H̃ increases, so does
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the maximum possible curvature of the ice, hence it can grow further towards the

tip.

In general, a large fracture toughness K̃ means more ice inside the cavity.

This can be seen from the phase plane of the fast solution, on the right hand

side of figure 5.4, where cavities are more ice-filled for a given undercooling as

K̃ increases. A large fracture toughness indicates that more stress at the tip is

required for propagation, therefore higher pressure build-up inside the cavity is

needed. This pressure is provided by more water freezing, which creates a thicker

cavity, inside which the ice can extend closer to the tip. A large value of K̃ can

also be caused by a small value of the elastic modulus m, which indicates an

elastic medium deforming considerably under pressure.

5.3.3 Stability of solutions

The stress intensity factor KI describes the stress at the tip of the crack and

is a result of the loading on the cavity walls. The crack starts to propagate if

KI reaches the critical value of the fracture toughness K, and we have steady

propagation for KI = K. This is expressed by equation (5.43) and provides

a means of determining the propagation rate k. We can also investigate how

different values of k correspond to different loadings at the tip. We define a

dimensionless stress-intensity factor K∗ scaled with the fracture toughness K.

The tip condition (5.43) now gives us the propagation rate k produced by some

general stress intensity K∗ at the tip

K∗ =
√

kNBN . (5.45)

In this new formulation, quasi-steady propagation occurs for K∗ = 1, i.e. where

the stress-intensity factor is equal to the critical value. Figure 5.5 shows the

values of the stress intensity K∗ plotted against the corresponding propagation

rate, with the points of quasi-steady propagation denoted by the red squares.

We can now understand how the two solutions react to small perturbations in

propagation rates, therefore determining which solution is stable. We note that

for k1 < k < k2, the stress intensity factor is higher than its critical value and
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Figure 5.5: A plot of K∗ − 1 against the propagation rate k, showing the unstable
(slow) and stable (fast) solutions.

for k > k2 or k < k1 it is lower. Therefore, if the cavity propagates just faster

than the slow solution, at k = k1 + ǫ (where ǫ > 0), the pressure builds up higher

than the critical value. This forces the cavity to propagate even faster, making

the solution unstable. For a propagation rate just slower than k1 we end up with

K∗ < 1 therefore the propagation slows even further. Conversely, for a cavity

propagating at k = k2 + ǫ, the stress-intensity factor is lower than the critical

value, causing the propagation to slow down and hence making the fast solution

stable.

5.3.4 Stable solution

We now focus our attention on the stable solution, which is the fast-propagating

one, and analyse how the propagation and shape of the cavity depend on the

different parameters of the problem. Figure 5.6 shows phase planes of solutions

for different values of the fracture toughness K̃ (y-axis) and the undercooling H̃

(x-axis). The two graphs represent two different values of the permeability, with

Π̃ = 0.02 for the left hand side graph and Π̃ = 200 for the right hand side one.
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5.3 Results

A schematic of the different stable solutions on the H̃ − K̃ plane is shown in

figure 5.7.
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Figure 5.6: A plot of K̃ against H̃ for Π̃ = 0.02 (left) and Π̃ = 200 (right) showing
the regions of existence of solutions. The dark green lines represent the slope as defined
by equation (5.47).

A change in the permeability Π̃ can restrict or facilitate the flow of water

towards the solidification front. We can use this to explain the effect of Π̃ on

the boundary between the region of no propagation (shown by the red crosses on

figure 5.6) and the solutions of either fully filled or partially filled cavities. As

discussed in section 5.3.2, this is described by a linear relationship between H̃

and K̃ with the slope β depending on the permeability Π̃, as can be seen from

equation (5.44).

For a very impermeable rock, as shown on the left of figure 5.6, for a given

value of the fracture toughness K̃, the dimensionless undercooling H̃ required

for propagation is much higher than that in the more permeable rocks. In the

notation used in equation (5.44) this means that β is smaller for smaller Π̃. This

is explained by the fact that in a relatively impermeable medium, the flow of

water towards the freezing front is more restricted and hence the freezing and

pressure build-up processes are slower. As the undercooling ∆T decreases with

time, the freezing process is further slowed, resulting in insufficient stress at the

tip.

To understand the linear relationship between K̃ and H̃ describing the red

crosses boundary, we need to examine what changes across the boundary. Equa-

tion (5.39) describes the balance of the pressures across the premelted film for a
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Figure 5.7: An approximate sketch of the different regions representing the existence

and type of stable solutions in a K̃ - H̃ parameter space.

specific propagation rate k. If no k exists for which this balance is achieved, the

cavity does not propagate, at least under the similarity solution framework. The

tip condition (5.43) gives us that B ∼ k−1/2. We also see that while the matrix

Cjn is independent of any of the physical parameters of the problem, Ajn depends

on the permeability according to Ajn ∼ 1 + Π̃. If we substitute these relations in

equation (5.39), we find

(1 + Π̃)k3/2 + k−1/2 ∼ H̃Π̃1/4

K̃
. (5.46)

The left-hand side of the expression has a minimum at k = 1/
√

3(1 + Π̃) hence, if

the value of H̃Π̃1/4/K̃ is smaller than that minimum, no solution for k exists. This

threshold is the linear boundary described by equation (5.44) with a slope β. The

fact that neither Ajn and Cjn depend on H̃ or K̃ agrees with our observation that

the boundary is a straight line, therefore β is only a function of the dimensionless

permeability Π̃. Substituting β = K̃/H̃ and k = kmin ∼ 1/
√

1 + Π̃ in equation
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5.3 Results

(5.46) we find an expression for β

β(Π̃) ∼ Π̃1/4

(1 + Π̃)1/4
. (5.47)

For impermeable rocks, where Π̃ ≪ 1, we find that β ∼ Π̃1/4 hence the slope

of the boundary increases with permeability. Since only the dependence on Π̃,

rather than the exact value of the factor β, is determined by equation (5.47), we

use the slope of the graph on the right hand-side of figure 5.6 to determine the

slopes for the rest of the phase planes in figures 5.4 and 5.6. These are represented

by the dark green lines and we see that the agreement is excellent.
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Figure 5.8: A log-log plot of the parameter β, defined in equation (5.44), against

the permeability Π̃. The data for β have been obtained numerically and are in good
agreement with the theoretically predicted behaviour described by equation (5.47).

We investigate this behaviour further by plotting β for more values of the

permeability as shown in figure 5.8. The slopes β are obtained from K̃ − H̃

phase planes for different values of Π̃. The results for small values of Π̃ indeed

show a power law dependence of β on the permeability with the value of the
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5 A similarity solution in a warming environment

power matching the theoretically predicted value of 1/4 well. As the permeability

increases, the value of the slope β tends to a constant, as is predicted by equation

(5.47) for Π̃ ≫ 1. Physically this means that for a large enough permeability, the

availability of water supply doesn’t limit the propagation of the cavity. The region

of no propagation becomes smaller as the permeability increases but tends to a

constant for Π̃ ≫ 1. For these permeable rocks, the propagation is only limited

by the amount of undercooling, and whether there can be enough ice growth to

cause the stress at the tip to reach the critical value K̃.

The effect of permeability Π̃

Comparing the two graphs in figure 5.6, we notice that the permeability Π̃ strongly

affects the boundary between the λ = 1 solutions (blue diamonds) and the λ < 1

solutions (green squares). In particular, as the permeability Π̃ decreases, solutions

with the same H̃ and K̃ can become ice-filled.

Figure 5.9 shows the cavity thickness Π̃−1/4B(η), the solid and liquid pressures

Π̃−1/4Ps,l(η) and the undercooling of the ice boundary Π̃3/4
(
ΘI(η) − C

)
, i.e. the

dimensionless T I − Tm, against the spatial variable η. These functions have been

plotted for two different values of the permeability, Π̃ = 2 (blue solid curve) and

Π̃ = 20 (red dashed curve). The more permeable case, described by the dashed

curve, has a smaller aspect ratio. We know from our analysis in section 5.2 that

the width of the cavity W scales with Π̃1/4 while the length scales with Π̃1/2. As

the permeability increases, both width and length increase, making the cavity

longer and thicker, but the aspect ratio decreases, meaning the cavity becomes

more slender. Despite this, the ice extent λ is smaller than in the impermeable

case, which agrees with our observations from figure 5.6. This can be explained

by considering the temperature inside the cavity in both cases: figure 5.9 shows

that for the permeable one, the cavity is much warmer, making the maximum

allowed ice curvature (dictated by the Gibbs-Thompson relation (5.40)) smaller.

Figure 5.10 shows that the propagation rate k decreases as the permeability

increases. To understand this further, we look at how the radius of the crack is

expressed in its dimensional form

R(t) =

(
Π

µ
m

)1/2

kt1/2 (5.48)
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Figure 5.9: The cavity thickness B(η), the liquid and solid pressures Ps(η) and Pl(η)

and the temperature field ΘI(η) for two different values of the permeability Π̃ = 2 (blue
solid curve) and Π̃ = 20 (red dashed curve). The functions are scaled appropriately
with powers of Π̃ to show the dependence on the permeability correctly, e.g. B̃(η) =
Π̃−1/4B(η) etc.

hence when we vary Π̃, we need to take into account the dependence of the radius

on the permeability by looking at R ∼ Π̃1/2k. This is also plotted on figure 5.10

and we see that at a given time t the radius is larger in the more permeable

media. This is expected as there is faster supply of water, resulting in faster

freezing inside the cavity and hence faster build-up of pressure. This can also

explain the warmer temperature inside the cavities of more permeable media.

Since the rate of freezing is larger, the Stefan condition tells us that more latent

heat is released, increasing the temperature in the thin premelted film between

ice and rock.

The ice extent

As discussed in section 4.1.2, the stress-intensity factor at the tip of a crack

induced by a loading ps(r, t) on the inner walls of the crack can be expressed as
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Figure 5.10: The propagation rate k and the scaled propagation rate Π̃1/2k which

represents the cavity radius, plotted against the permeability Π̃.

an integral over ps

KI =
2

(πR)1/2

∫ R

0

rps(r, t)

(R2 − r2)1/2
dr. (5.49)

When KI = K, i.e. when the stress at the tip KI , caused by the pressure

distribution ps(r, t), is equal to the fracture toughness K, the expression above is

equivalent to equations (5.1) and (5.9). We can see that the integral is weighted

towards the stress contributions closer to the tip. For a small λ, the lack of ice

(and therefore pressure) close to the tip has to be counteracted by substantial ice

growth, enough to raise the stress intensity at the tip to the critical value. This

implies that for smaller λ we have bigger width. The thicker the cavity though,

the further the ice can extend towards the tip. The balance of these two processes

leads us to the result that λ increases as K̃ increases, as shown in figure 5.11.

There is a similar explanation for why λ increases with H̃, since a colder cavity

will cause more water to freeze, resulting in a fatter cavity and the ice being able

to extend further towards the tip of the crack.

Figure 5.11 only shows values of the ice extent λ for propagating solutions,

i.e. solutions denoted by the green squares or black diamonds in figures 5.4 and
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Figure 5.11: The ice extent λ vs. the undercooling H̃, for different values of the

fracture toughness K̃. We have taken Π̃ = 20.

5.6. For each value of K̃, there is a minimum possible value of the ice extent

corresponding to a propagating solution. This is because for λ smaller than that,

the stress at the tip is less than critical, hence the tip condition cannot be satisfied.

This minimum value of λ decreases for decreasing K̃. This is a result of small

cavity thicknesses, due to either stiff or weak media, meaning that the ice cannot

extend far into the tip.

The propagation rate

The propagation rate depends on the freezing rate, as more water needs to freeze

to maintain the stress at the tip. The faster the solidification, the quicker the

pressure in the cavity builds up and the stress condition at the tip is met. This

can be seen in figure 5.12 where for a given K̃, the propagation rate increases

with H̃.

The propagation rate decreases as the fracture toughness K̃ increases, since it

is easier to fracture a more brittle rock. Less pressure build-up is required inside

the cavity for the tip condition to be met, resulting in faster propagation.
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Figure 5.12: The propagation rate k vs. the undercooling H̃, for different values of

the fracture toughness K̃. We have taken Π̃ = 20.

The aspect ratio

We can look at either the aspect ratio of the cavity or the aspect ratio of the ice,

though for a given λ it is straightforward to derive conclusions about one from

the other. Since we have scaled the cavity width with W and the length with

L, the aspect ratio scales with W/L, therefore we look at K̃Π̃−1/4B1. The tip

condition (5.43) implies the balance B ∼ k−1/2, therefore we expect the aspect

ratio to decrease with increasing propagation rate.

Larger undercooling means lower temperature and, using equation (5.40), we

expect ice to be able to exist in thinner cavities for larger H̃, since there is a bigger

maximum curvature allowed. Equation (5.49) shows that the stress at the tip is

an integral of the pressure over all of the cavity, but heavily weighted towards

the tip. With ice growing further towards the tip, we need less pressure at any

given r to reach the critical fracture toughness value K̃. We therefore expect the

aspect ratio of the cavity to be smaller as λ increases, for a given K̃. Figures 5.11

and 5.12 support this as we can see that, for larger undercoolings H̃, we have a

smaller aspect ratio and a larger ice extent. As the fracture toughness increases,

more pressure is needed for the crack to propagate and that pressure needs to be
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Figure 5.13: The aspect ratio of the cavity K̃Π̃−1/4B1 vs. the undercooling H̃, for

different values of the fracture toughness K̃. We have taken Π̃ = 20.

provided by more ice build-up inside the cavity. This can clearly be seen in figure

5.13, with the aspect ratio curves increasing for larger K̃.

The temperature field

We plot the temperature ΘI−C against η, both inside (η < 1) and outside (η > 1)

the cavity. The parameters in this case are such that C ≈ 6, and ΘI−C represents

the difference between the interface temperature and the melting temperature, i.e.

in similarity form
(
ΘI − C

)
= t1/4 C

H

(
T I − Tm

)
. (5.50)

We recall that the temperature problem is set so that the far-field is undercooled

to some T∞, which can be seen in figure 5.14 where for large η, ΘI → 0. The

temperature remains negative everywhere, with the cavity being warmer than the

rock. The region where ice exists, which extends almost up to η = 1, has a slight

variation of temperature, with the warmest region being towards the tip of the

ice, at η = λ.
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Figure 5.14: The temperature field ΘI − C, in the cavity (η < 1) and in the rock
(η > 1).

The region around the tip of the ice is where the highest rate of solidification

is, since the ice is growing both in the r and z direction. This implies that

more latent heat is released there, making this region the warmest. In general,

the variations of temperature for η < λ, i.e. the part of the cavity occupied by

ice, are small compared to η > λ . Inside the water-filled tip of the cavity, the

temperature drops rapidly as the latent heat effect from the solidification process

decreases as η increases. As we move away from the cavity and into the porous

medium where η > 1, the temperature decays further, tending to the undercooling

∆T as η → ∞.

5.4 Conclusions

In this chapter, we have developed a mathematical model to describe the fractur-

ing of penny-shaped cracks, incorporating two important features: the curvature-

melting controlled extent of the ice inside the cavity, and the elastic fracturing

which determines the propagation rate. We developed a similarity solution for the

undercooling law ∆T = Ht−1/4 which produces two solutions. The characteristics

of the two were studied and it was shown that only the fast solution is stable.

It was also found that propagation occurs only for certain combinations of

the parameters H̃, K̃ and Π̃. The regions of no propagation were discussed and,

96



5.4 Conclusions

although their features cannot be captured by the similarity solution developed

here, an understanding of why they occur and how they behave has been es-

tablished. These will be studied further in the next chapter, where the time

dependent problem allows us to look at the initial stages of pressure build-up.

Characteristics of the stable fracturing such as the ice extent, the propagation

rate and the aspect ratio of the cavities were studied and their dependence on the

dimensionless parameters H̃, K̃ and Π̃ was discussed. This allowed us to develop

an understanding of the relative importance of the different parameters which will

help us in our studies of the time dependent model.

An interesting feature which arises from the assumption of a warming envi-

ronment is the importance of the permeability Π, which controls the time scale of

flow and water supply. Since the undercooling decreases with time, media with

low permeabilities can experience no fracturing, even for parameters for which

more permeable media would fracture. This is due to the time-dependence of the

undercooling and, since the next chapter is predominantly involved with constant

undercoolings, it is an important point to take away from this study.
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Chapter 6

Time-dependent problem

In chapter 5 we developed a model predicting the fracturing of a crack caused

by the freezing of water in a saturated porous medium. Linear elasticity, which

predicts propagation when the stress at the tip of the cavity reaches a critical

value, is coupled with the Darcy flow and temperature field equations to produce

a system of coupled integral relations that can be solved for the shape and radius

of the cavity. A similarity solution was found for the special case of background

undercooling ∆T ∼ t−1/4. For thin cavities, the curvature at the tip of the ice can

become large. The Gibbs-Thompson relation (2.11) is taken into account when

determining the extent of the ice inside the cavity, as it defines the maximum ice

curvature for a given undercooling. We found a parameter regime for which the

ice cannot extend all the way to the tip of the crack, because of the phenomenon

of curvature-induced melting.
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6 Time-dependent problem

Having a similarity solution that incorporates all the important features of

the problem is extremely useful and has allowed us to derive many interesting con-

clusions about how the different parameters of the problem affect the crack prop-

agation. Using the understanding we have gained, we are now better equipped

to solve the full time-dependent problem. This is important for several reasons,

not least because it allows us to consider a general undercooling law and easily

change from a uniform undercooling to a power law like the one used in chapter

5.

Furthermore, we can study not only the long-time behaviour of the crack,

where the process has developed and the pressure build-up is causing the cavity

to propagate, but also the initial stage of ice growth. This is characterized by

the stress at the tip KI being below the critical value K and therefore the crack

does not propagate. During this stage, the cavity thickness increases as a result

of the ice formation and subsequent pressure build-up, while the stress at the tip

KI approaches the critical value K. The ice extent λ is a complicated function

of the undercooling of the surrounding and the thickness of the cavity, and this

framework allows for it to vary with time. We will, in general, keep the analysis in

this chapter dimensionless, as we are mainly interested in exploring the qualitative

dependence of fracturing on the different parameters of the problem. Applications

of the theory to different rocks and soils are presented in chapter 7.

6.1 Dimensional time-dependent problem

The set-up of the problem is more or less identical to the one presented in section

5.1. We consider the surrounding environment to be undercooled to the constant

value ∆T = Tm − T∞ > 0, but note that it is straightforward to modify this to a

power law and incorporate it into our algorithm if we want to draw comparisons

with the similarity solution. As before, the solid and liquid pressure integrals are

given by

ps(r, t) = − 2

π
m−

∫ R(t)

0

M∗

(r

s

) ∂b

∂s

ds

s
, (6.1)

pl(r, t) = − 2

π

µ

Π

∫ R(t)

0

K

(
2
√

rs

r + s

)
∂b

∂t

s ds

s + r
, (6.2)
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6.2 Scalings

while the temperature is

θI(r, t) = T I(r, t) − T∞ =
2

π

ρsL
kl

∫ λR(t)

0

K

(
2
√

rs

r + s

)
∂b

∂t

s ds

s + r
. (6.3)

These are connected via the pressure balance:

ps(r, t) − pl(r, t) =







ρsL∆T

Tm

− ρsL
Tm

θI(r, t) if r ≤ λR.

0 if r > λR.

(6.4)

The ice extends to r = λ(t)R(t), where the parameter λ is determined by the

Gibbs-Thompson relation

2γ

b(λR, t)
=

ρsL∆T

Tm

− ρsL
Tm

θI(λR(t), t). (6.5)

It is important to remember that λ can vary with time, unlike in the similarity

solution frame, and hence will have to be computed at every time step. When

the stress at the tip reaches the critical value, the cavity propagates according to

b(r, t) ∼ K

m

[
8(R − r)

π

]1/2

as r → R. (6.6)

6.2 Scalings

We scale the equations for pressure, length, width, temperature and time with

p∗, R0 = R(t0), W , θ∗ and t∗. The following scalings arise

W =

√

8

π

K

m
R

1/2
0 , (6.7)

p∗ =
2

π

√

8

π
R

−1/2
0 K, (6.8)

θ∗ =
2

π

√

8

π
R

−1/2
0

ρsLΠ

µkl

K, (6.9)

t∗ =
µ

Πm
R2

0. (6.10)
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6 Time-dependent problem

The pressure balance and ice extent conditions now become

ps(r, t) − pl(r, t) =







H̃

K̃
− Π̃θI(r, t) if r ≤ λR

0 if r > λR

and
1

b(λR, t)
= K̃2

(

H̃

K̃
− Π̃θI(λR(t), t)

)

, (6.11)

where the pressures ps and pl, the temperature θI and the width b(r, t) are now

dimensionless. The new constants that we introduced Π̃, K̃ and H̃ represent the

dimensionless permeability, fracture toughness and undercooling respectively, as

in chapter 5, although their definitions are slightly different:

Π̃ =
ρ2

sL2Π

µklTm

, (6.12)

H̃ =

√

πR0

4γm

ρsL∆T

Tm

, (6.13)

K̃ =
4

π

K√
2γm

. (6.14)

We map the [0, R] interval to [0, 1] by setting η = r/R(t). Then

∂η

∂r
=

1

R(t)
and

∂η

∂t
= −rR′(t)

R2(t)
. (6.15)

We also let B(η, t) = b(r, t)/R(t) in order to preserve the aspect ratio. Then

∂b(r, t)

∂r
=

∂B(η, t)

∂η
(6.16)

and
∂b(r, t)

∂t
= R(t)

∂B(η, t)

∂t
+ R′(t)

(

B(η, t) − η
∂B(η, t)

∂η

)

. (6.17)

Then, the equations describing the system become

Ps(η, t) = −−
∫ 1

0

M
(η

σ

) ∂B(σ, t)

∂σ

dσ

σ
, (6.18)
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6.3 Numerical scheme

Pl(η, t) = −
∫ 1

0

K

(
2
√

ησ

η + σ

)

Q(σ, t)
σ dσ

σ + η
(6.19)

and

ΘI(η, t) =

∫ λ

0

K

(
2
√

ησ

η + σ

)

Q(σ, t)
σ dσ

σ + η
, (6.20)

where

Q(σ, t) =

{

R(t)
∂B(σ, t)

∂t
+ R′(t)

[

B(σ, t) − σ
∂B(σ, t)

∂σ

]}

R(t). (6.21)

The pressure balance simply becomes

Ps(η, t) − Pl(η, t) =







H̃

K̃
− Π̃ΘI(η, t) if η ≤ λ.

0 if η > λ.

The ice extent is determined by

1

R(t)B(λ, t)
= K̃2

(

H̃

K̃
− Π̃ΘI(λ, t)

)

(6.22)

and the condition on the crack propagation comes from

B(η, t) ∼ R(t)−1/2
√

1 − η, as η → 1. (6.23)

6.3 Numerical scheme

We again split [0, 1] in N intervals. The edges of the intervals are ηn = (n− 1)/N

and the values of the cavity width there are Bn(t) = B(ηn, t). We denote the

values at the ith iteration with the superscript i so that Bi
n = Bn(ti). We denote

the time step by ∆t such that ti = t0 + i∆t. As the method used here is almost

identical to that in section 5.2.1, we skip the details, which can be found in

Appendix B. For a given λi and Ri, we have the following linear problem to

solve.
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6 Time-dependent problem

For j < Λ: Ai
jnB

i
n = Ci

jnBi−1
n + H̃K̃−1 where

Ajn =
[
µjn − µj(n−1)

]
+ (1 + Π̃)

[
αjnβi

n + αj(n−1γ
i
n

]
n < Λ

=
[
µjn − µj(n−1)

]
+ αjnβ

i
n + (1 + Π̃)αj(n−1)γ

i
n + Π̃αi

jλβ
i
λ n = Λ

=
[
µjn − µj(n−1)

]
+ αjnβ

i
n + αj(n−1)γ

i
n + Π̃αi

jλγ
i
λ n = Λ + 1

=
[
µjn − µj(n−1)

]
+ αjnβ

i
n + αj(n−1)γ

i
n n > Λ + 1

Cjn =
[
αjn + αj(n−1)

]
(1 + Π̃)Ri2 n < Λ

=
[

αjn + (1 + Π̃)αj(n−1)

]

Ri2 + Π̃αi
jλδ

i
λ n = Λ

=
[
αjn + αj(n−1)

]
Ri2 + Π̃αi

jλǫ
i
λ n = Λ + 1

=
[
αjn + αj(n−1)

]
Ri2 n > Λ + 1

(6.24)

For j = Λ we have Ai
jnB

i
n = Ci

jnBi−1
n +N(λi−ηΛ)H̃K̃−1 and also Π̃ is substituted

by Π̃λ = N(λi − ηΛ)Π̃.

For j > Λ we have Ai
jnB

i
n = Ci

jnB
i−1
n with

Ajn =
[
µjn − µj(n−1)

]
+ αΛnβ

i
n + αΛ(n−1γ

i
n,

Cjn =
[
αΛn + αΛ(n−1)

]
Ri2.

(6.25)

The matrices αjn and µjn, vectors βi
n, γi

n and αjλ, and the factors βi
λ, γi

λ, δi
λ and

ǫi
λ are defined in Appendix B.

The ice extent λi is found via

1

RiBi
λ

= H̃K̃ − Π̃K̃2ΘI i

λ, (6.26)

where Bi
λ = N(ηΛ+1 − λi)Bi

Λ + N(λi − ηΛ)Bi
Λ+1,

ΘI
λ

i
= N(ηΛ+1 − λi)ΘI i

(ηΛ) + N(λi − ηΛ)ΘiI(ηΛ+1),
(6.27)

and the new radius comes from the tip condition

Bi
N =

1√
NRi

. (6.28)
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Technical details

We give a brief outline of the algorithm used to solve the problem described above.

• Choose initial condition

• Compute time-independent matrices µjn and αjn.

• For the ith iteration, for a number of values of λi equally spaced around

λi−1, do the following:

– Use a least squares routine to find the value of Ri that satisfies the tip

condition;

– Now that we know Ri for each of the values of λi, we can find Bi
n by

computing Ajn and Cjn and inverting the matrix;

– Compute the curvature at the tip of the ice using equation (6.28) for

every λi.

• We pick the largest λi for which κ − κmax < 0 (or use linear interpolation

between this and the next (positive) value to find a more accurate solution).

Figure 6.1 shows that κ − κmax is an increasing function of λi.

• We now have found the correct ice extent λi that satisfies Gibbs-Thompson.

We can now find the radius Ri that satisfies the tip condition and then solve

for the thickness Bi
n.

6.4 Initial condition

An advantage of solving the time-dependent problem is that we can investigate

the initial stages of ice formation and pressure build-up, rather than just looking

at the propagation at the critical state KI = K. A simple way of thinking about

how a situation like this can develop in nature is to imagine a pre-existing fault,

with some ice growing inside it. Initially, the stress at the tip is sub-critical

and hence no fracturing occurs. Instead, water keeps freezing inside the non-

propagating cavity, causing it to increase in thickness. This in turn increases the

pressure applied on the rock, and subsequently the stress at the tip. When the

critical value is reached, the propagation begins.
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Figure 6.1: A plot of the curvature of the tip relative to the maximum curvature
allowed by Gibbs-Thompson κ − κmax vs. different ice extents λi. The correct value of
λi is found for κ − κmax = 0.

6.4.1 Elliptic cavity of chosen thickness

We start with an elliptic cavity which implies a uniform pressure distribution and

hence there are two initial parameters to specify: the thickness of the cavity B0
1

and the initial ice extent λ0. Firstly we note that the value of λ0 is not important

if the cavity shape is fixed, hence we take λ0 = 0. The thickness of the cavity will

affect the ability of the ice to grow inside it. For a given value of undercooling,

there is a minimum radius of curvature of ice defined by the Gibbs–Thompson

equation. The initial fault is required to have a thickness larger than this critical

nucleation radius. It is also important to assume an initial thickness that results

in a tip stress smaller than the critical value K, as otherwise the cavity would

already be propagating. An elliptic cavity with KI = Kinitial at the tip is given

by

Bn = Kinitial

√

N

2N − 1

√

1 − (n − 1)2

N2
. (6.29)
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6.4 Initial condition

The higher the value of Kinitial, the thicker the cavity is. This means that there

is more stress at the tip and the cavity is closer to the critical state. Note that

the initial condition doesn’t necessarily satisfy the Gibbs–Thompson relation and

a value for λ needs to be found in the first time iteration. This means that even
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Figure 6.2: Initial cavity growth where at the top we have chosen the initial thickness
to be Kinitial = 1 and at the bottom Kinitial = 0.7. While the initial value of λ differs,
the final cavity shape is the same.

if Kinitial = K, i.e. equal to the critical value, the next time step can produce

a cavity with KI < K as the cavity shape adjusts to the new value of λ. An

example can be seen in the top graph of figure 6.2. Although the elliptic shape

of the initial condition has Kinitial = 1 and hence satisfies the tip condition for

propagation, after the first time step the cavity has λ < 1 and it becomes thinner

closer to the tip, resulting in a non-elliptic shape. The stress at the tip is now

sub-critical, i.e. KI < K. After a few iterations, the critical stress at the tip is

107



6 Time-dependent problem

reached. During the initial pressure build-up stage, we calculate the cavity shape

evolution and the ice extent with R = 1, until the tip stress reaches the critical

value and the cavity fractures.

Our choice of initial thickness will affect how far the ice can grow into the cav-

ity initially and figure 6.2 shows that when we start with a small initial thickness

(bottom graph), the first ice extent λ is smaller too, as expected. At the top, we

have chosen Kinitial = 1 while the bottom figure has Kinitial = 0.7. The important

conclusion from figure 6.2 is that the difference in the initial condition doesn’t

change the final shape of the non-propagating cavity, which is when K = KI ,

and therefore represents the initial condition for propagation. The aspect ratios

of the two final shapes differ by about 0.4%.

6.4.2 Critical stress unreachable

Depending on the properties of the porous medium and the undercooling of the

surroundings, cases exist in which the pressure induced by the ice on the rock is

not enough to make the cavity propagate. If the cavity is completely ice-filled,

the ice growth is limited by the back pressure from the rock. In that case, the

maximum pressure has been achieved but the induced stress at the tip is not

large enough to cause fracturing. In cases of small undercoolings or very stiff

rocks (hence very thin cavities), the equilibrium is reached with the ice extent

λ < 1. This is a result of curvature melting as described by the Gibbs–Thompson

relation (6.5). Since the ice cannot grow further into the tip of the crack, no more

pressure build-up is possible. An example can be seen in figure 6.3 where the ice

has reached the maximum extent it can achieve and the back pressure from the

rock on the ice is preventing any further freezing. The stress at the tip for this

example is about half the value of the critical fracture toughness K and therefore

no propagation occurs in this case. This effect is mainly a result of insufficient

undercooling and/or large fracture toughness which means that more pressure is

required for propagation. The elasticity of the medium can become important

since it affects the extent of the ice and hence the pressure distribution inside

the cavity. As expected, this effect is independent of the initial cavity thickness

we choose and corresponds to the “no propagation” regions discussed in section

5.3.2.

108



6.5 Comparison with similarity solution

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η

B(η)

initial

equilibium

Figure 6.3: Initial cavity growth where the critical tip stress is unreachable. The back
pressure from the rock is balancing the disjoining pressure and ice cannot grow anymore.

6.5 Comparison with similarity solution

A useful and straightforward check for the time-dependent numerical scheme is to

introduce a variable undercooling such as in section 5.2 and compare the results

with those from the similarity solution. To avoid confusion, we denote the di-

mensionless similarity solution parameters as H̃w, K̃w and Π̃w. Comparing them

with the dimensionless parameters of the time-dependent problem, as defined by

equations (6.12)-(6.14), we find

Π̃ = Π̃w, K̃ = K̃w and H̃ = H̃wΠ̃1/4
w t̃−1/4. (6.30)

The dependence of the undercooling H̃ on Π̃w comes from the fact that H̃ now

describes a rate of undercooling. The time dependence comes through Π̃w as

that is the main factor that sets the time scale of the problem as described by

relation (6.10). Using these relations, we can solve the time-dependent problem

for a warming environment and compare it to similarity-solution results produced

for the same parameters of undercooling, fracture toughness and permeability.

For the specific example shown in figures 6.4–6.6 we have used H̃w = 7,

109



6 Time-dependent problem

Π̃w = 10 and K̃w = 0.1. In figure 6.4, we plot the shape of the cavity B(η, t)

at a given time t∗ (solid curve) while the dashed-dotted curve is the similarity

shape B(η). The time t∗ is after a few iterations of the time-dependent problem

to allow the cavity to converge to the similarity shape. The cavities are scaled

so that B(0) is the same in both cases, for more accurate comparison of their

shape. The aspect ratio agreement is shown in figure 6.5. The dashed-dotted
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Figure 6.4: The cavity shape from the similarity solution (red dashed curve) and the
time-dependent code with adjusted undercooling (blue solid curve).

curve is the aspect ratio behaviour of the similarity solution which behaves like

t−1/4. The same decay with time can be seen for the time-dependent aspect

ratio, and the agreement between the two curves is very good. Finally, the extent

of the ice λ(t) and the radius of the crack R(t) can be compared in figure 6.6.

For the similarity solution, the ice extent λ is constant, and the λ(t) value of

the time-dependent problem quickly converges to the uniform value. The radius

of the time-dependent cavity also agrees with the similarity solution t1/2 power

law, as expected. The fact that the similarity solution is reproducible by the

time-dependent problem with the appropriate temperature boundary condition

indicates that the similarity solution is an attractor.
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Figure 6.5: The evolution of the aspect ratio of the cavity. We see that the time

dependent results (blue squares) are in good agreement with the t−1/4 behaviour predicted
by the similarity solution (red dashed-dotted curve).
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Figure 6.6: The ice extent λ (left) and the radius R(t) of the cavity (right) as given
by the similarity solution (dashed curve) and the time-dependent problem (solid curve).

6.6 Growth curves

With the previous section serving as a useful check of the time-dependent code in

the case of ∆T ∼ t−1/4, we now focus our attention again on constant undercool-

ings ∆T . When the undercooling is large enough, the initial period of pressure
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6 Time-dependent problem

build up inside the cavity results in the stress at the tip reaching the critical value

K. This causes the cavity to fracture as can be seen in the example plotted in

figure 6.7. The water continues to freeze, applying more pressure on the rock and

ensuring that the stress at the tip remains at the critical value. While the ice

growth causes the cavity to expand and become thicker, we note that the aspect

ratio decreases with time, making the cavity more slender.

0 5 10 15 20 25 30
0

20

40

60

80

R(t)η

R(t)B(η)

Figure 6.7: Time plots of the cavity shape R(t)B(η) evolving with time. Parameters

used are Π̃ = 4, H̃ = 10 and K̃ = 0.1.
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Figure 6.8: Plot of the ice extent λ (left) and the radius of the cavity R(t) (right)

against the time t. Parameters used are Π̃ = 4, H̃ = 10 and K̃ = 0.1.

We also plot the ice extent λ and the cavity radius R(t) against time in figure

6.8. An interesting feature here is that the ice extent increases with time. This

is in contrast to the constant ice extent we found from the similarity solution in

chapter 5. The difference is because of the behaviour of the temperature field in
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the two scenarios. In chapter 5 we assumed a warming environment; the smaller

undercoolings at later times result in a smaller value for the maximum curvature

as defined by the Gibbs-Thompson relation (6.5). The straightforward conclusion

of this is that ice extends less inside a cavity in warmer environments. This is

counteracted by the increasing thickness of the cavity with time, and hence, for

the warming system, the ice extent λ remains constant with time. In the case of

constant undercooling, which is described in this section, the maximum curvature

remains constant while the thickness of the cavity increases and, as a result, the

ice can extend further towards the tip.

The plot on the right-hand side of figure 6.8 describes the growth of the crack

with time. There are several features associated with these growth curves, and

their characteristics will be investigated in the remainder of this chapter.

6.6.1 The effect of undercooling

The stress build-up inside the cavity is clearly dependent on the temperature of

the surrounding medium. We saw earlier that for very small undercoolings, the

pressure build-up is not enough to overcome the cohesion forces of the rock and

cause it to fracture. We expect faster propagation to occur for greater undercool-

ings of the surrounding, as described by figure 5.12 in chapter 5 for the similarity

solution.

In figure 6.9 we have plotted the growth curves R(t) vs. t for different values

of the undercooling ∆T . We see that the change in temperature affects both the

initial stage of pressure build-up inside the cavity as well as the propagation rate

of the crack. For smaller undercoolings, it takes longer for the stress at the tip

to reach the critical value. It is important to note here that the minimum value

of the undercooling ∆T for propagation to occur at all is just below 8 K for this

specific example. The maximum disjoining pressure acting between the ice and

the rock through the premelted film is a linear function of ∆T and is given by

pT =
ρsL∆T

Tm

. (6.31)

This shows how the maximum pressure the ice can exert on the rock is limited

by the value of the undercooling. As the critical value of the stress at the tip
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Figure 6.9: Growth curves of the radius of the cavity R(t) vs. time t for different
values of the undercooling ∆T .

is reached and the crack extends, more water has to freeze to fill the now larger

cavity and build up the stress again. At lower temperatures, the solidification is

faster, meaning that a faster cavity propagation rate can be sustained.

An increase of the fracture toughness K has a similar effect to a decrease of

∆T , slowing propagation down as more water is needed to freeze to maintain the

critical state KI = K. There is a linear relationship between the temperature and

the disjoining pressure as demonstrated by equation (6.31), as well as the stress

intensity at the tip as shown by equation (4.16). This implies that the ratio of

the fracture toughness of the medium over the undercooling, K/∆T , is important

in determining the propagation rate.

6.6.2 The effect of permeability

As we saw in section 5.3.4, the permeability of the rock affects the time scale of

propagation as well as the ability of a cavity to fracture. Direct comparisons with

the conclusions derived from the warming scenario have limited use as, in that
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case, the permeability of the medium indirectly affects the undercooling of the

environment through the time scale. The permeability limits the flow of water

towards the freezing front and hence the solidification process. In the warming

scenario, if it takes a long time for the ice and the pressure in the cavity to build up

(i.e. small permeability), then the undercooling is reduced and hence the ability

of the ice to fracture the cavity is limited. When the undercooling of the medium

is not time dependent, the permeability will simply affect the propagation rate

rather than the fracturing potential. This will be discussed further in section 7.4.
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Figure 6.10: Growth curves of the radius of the cavity R(t) vs. time t for different
values of the permeability Π.

To study the effect of Π on the growth curves, we recall that the timescale t∗

depends on the permeability Π. To take this into account, we plot R(t) against

c1t
∗t as shown in figure 6.10, where the parameter c1 = mklTm/(ρ2

sL2R2
0) makes

c1t
∗t dimensionless. The timescale t∗ ensures that the correct dependence of the

growth rate on Π is shown. As expected, the permeability has a big effect on

both the time scale of the initial phase as well as the growth rate of the cavity.

This effect is larger for very small permeabilities: in the Π̃ = 0.01 case (blue

solid curve), the build-up time is about 5 times longer than in the Π̃ = 0.1 case
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(red dashed curve) and the growth rate about 5 times slower. In contrast, the

Π̃ = 1 (black dotted curve) build up time is just twice longer than the Π̃ = 10

one (green dash-dotted curve) and the growth rate only slower by a factor of 1.5.

From this, we deduce that the permeability of the medium affects the solidification

and propagation rates by controlling the flow of water towards the freezing front.

For very low permeability media such as granite, this effect is especially strong

and dominates the time scales of the problem. As the medium becomes more

permeable, the resistance to the flow of water isn’t as strong and we see that for

Π̃ greater than about 10, it becomes negligible.

6.6.3 The effect of initial radius

We can intuitively guess that rocks with smaller pre-existing faults will be less

prone to fracturing at a certain undercooling. The maximum solid pressure on

an ice-filled crack is given by the disjoining pressure as

ps = pl + pT ≤ pT ≤ ρsL∆T

Tm

, (6.32)

as the liquid pressure pl is negative. This means that the maximum possible

pressure is dependent on the undercooling. The stress intensity factor at the tip

is given as an integral of the solid pressure over the crack and we can see that

its maximum value will come from the uniform ps(r, t) = pT pressure distribution

such that

KI =
2√
πR

pT

∫ R

0

r dr√
R2 − r2

=
2√
π

pTR1/2. (6.33)

This is simply the pressure distribution where the maximum solid pressure, given

by equation (6.32), is attained along the whole crack. There is no propagation

for KI < K, where K is the fracture toughness of the material, hence, for a given

undercooling ∆T , we need

R0 > Rmin =
πK2T 2

m

4ρ2
sL2∆T 2

(6.34)

for the initial cavity to start fracturing. Expressing the stress at the tip as the

integral of the pressure over the crack shows that, if the pressure has a maxi-

mum value, the stress intensity factor will not reach the critical value when the
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length of the crack is too small. As mentioned before, this estimate corresponds

to completely ice-filled cracks, since it requires the disjoining pressure pT to be

applied along the whole crack surface. If the ice extends to only λR < R, then

the condition becomes

R0 >
Rmin

1 −
√

1 − λ2
. (6.35)

Of course, the factor λ is a complicated function of the undercooling and the rock

properties, and this criterion becomes less straightforward. We can view Rmin as

a lower bound for the minimum radius for propagation but remember that not

all faults of initial radius greater than Rmin are guaranteed to fracture. For the

example presented in figure 6.11, which is a limestone with K = 0.87 MPa m1/2 for

undercooling of ∆T = 15 K, we find that Rmin ≈ 0.21 cm, which is in agreement

with our numerical results. This is further investigated in section 7.4.2.
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Figure 6.11: Growth curves of the radius of the cavity R(t) vs. time t for different
values of the initial radius R0. No propagation for R0 < 0.21 cm.

We are also interested in how the initial size of the cavity affects the propaga-

tion rate for initial radii R0 > Rmin. In figure 6.11 we have plotted growth curves

for three different values of R0. In the main figure, we plot (R(t) − 1)R0 against

the time t which gives us the cavity growth against time. Since the timescale
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t∗ ∼ R2
0, we need to account for its dependence on the initial radius. We do

that by plotting against the real time t∗t, multiplied by c2 = π2Π
16γ2mµ

(
ρsL∆T

Tm

)4

to

keep it dimensionless. We see that, the smaller the initial radius, the less time it

takes for the critical stress condition to be reached and the propagation to start.

This does not contradict the Rmin conclusions above; the maximum pressure in

a cavity is reached faster when the cavity is smaller as less freezing is required.

If R0 < Rmin, the tip stress caused by this maximum pressure is not enough to

fracture the cavity. For R0 > Rmin, the propagation will occur as soon as KI = K.
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Figure 6.12: Growth curves of the radius of the cavity R(t) vs. time t for different
values of the initial radius R0. No propagation for R0 < 0.21 cm. Note that the time
origin has been shifted between the curves.

Comparing the three different growth curves we see that their slopes are very

similar. We investigate this further by plotting the actual crack half radius R(t)R0

against the time t in figure 6.12. Like in figure 6.12, we plot the radius against

c2t
∗t to take into account the dependence of the timescale on R0. The curves for

R0 = 1 cm and R0 = 2 cm are shifted in time to match the R0 = 0.5 cm curve at

R0R(t) = 1 cm and R0R(t) = 2 cm respectively. It is interesting that the three

curves appear now to completely coincide. This tells us that the propagation rate

at any time is only dependent on the cavity radius at that time and not on the
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initial radius R0. Hence, a crack that started from an R0-sized fault and one

that started from a 2R0-sized fault will propagate in an almost identical way if

we ignore the initial time it takes for the smaller cavity to reach R(t) = 2R0.

This important conclusion means that the initial condition we use only has an

important effect on the fracturing potential of the crack rather than the rate of

fracturing.

6.6.4 Growth characteristics

The rate of fracturing of the cavity depends on several parameters of the prob-

lem, a few of which we investigated in sections 6.6.1-6.6.3. The propagation rate

depends on both the undercooling and the fracture toughness of the medium.

A rock being prone to fracturing means that the fracture toughness K is small.

Tough rocks will require large pressures for the stress at the tip to reach the crit-

ical value K. We saw that the maximum pressure is temperature dependent as

described by equation (6.32) and that faster propagation is predicted for larger

undercoolings, as the solidification is faster.

We plot the growth curves for both a weak (small K) and a tough (large K)

rock in figures 6.13 and 6.14. We notice there is a qualitative difference between

the two: for the weak rock, propagation is fastest for early times. Meanwhile,

for the tough rock, early propagation is slow but speeds up for t > 10. This is

accompanied by a contrasting behaviour of the solid and liquid pressures ps and

pl, which are plotted, averaged over the length of the crack, on the right hand

side of figures 6.13 and 6.14.

In both cases, there is a contrasting behaviour of the absolute values of the pres-

sures: while |pl| increases with time, supplying the cavity with an increasing flux

of water, ps decreases. The latter behaviour is easily explained if we consider the

integral expression (4.16) for the stress at the tip induced by a given solid pressure

distribution: as the crack extends, the region over which the solid pressure acts is

larger. The stress-intensity factor is the integrated ps over the whole crack and,

during propagation, is equal to the fracture toughness of the material which is

a constant. As the cavity extends, the integral of the pressure over it remains
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Figure 6.13: The growth curve R(t) (left) and average pressures p̄s and p̄l (right)
against time t for a weak rock. The fracture toughness of the medium is K = 0.5 MPa ·
m1/2 and the undercooling is ∆T = 21K.
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Figure 6.14: The growth curve R(t) (left) and average pressures p̄s and p̄l (right)
against time t for a tough rock. The fracture toughness of the medium is K = 2 MPa ·
m1/2 and the undercooling is ∆T = 21K.

constant despite being integrated over a larger region and therefore, the value of

ps at every r is smaller.

The difference between the behaviour of the two growth curves is even clearer

when we compare the liquid pressure graphs (dashed curve) on the right hand

side of figures 6.13 and 6.14 . For the weak rock we see that the absolute value of

the liquid pressure is much larger than the solid pressure, indicating fast freezing

of the water and rock expansion which requires a lot of water. The situation

is reversed for the tough rock, with the liquid pressure being several orders of

magnitude smaller than the solid pressure at early times, but increasing as the
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propagation continues. As expected, during the faster propagation stages, |pl|
is larger than initially. When |pl| ≪ ps, we have limited flow of water to the

crack and hence slow freezing and pressure build-up. In all cases, the later stages

of propagation are characterized by a liquid pressure of comparable or larger

magnitude to the solid pressure.

In general, the ratio |pl|/ps increases with time. The faster changes occur

for t < 1, i.e. for times less than the timescale t∗. This timescale is derived

by balancing the two pressures ps and pl and its value is given by the ratio of

the coefficients of the pressure integrals, as described by equation (6.10). It is

therefore expected that for t ≪ t∗ we expect smaller |pl|/ps ratios than for later

times t ≫ t∗.

For the example demonstrated in figures 6.13 and 6.14 we have used a value

for the permeability corresponding to a limestone, which gives us a time scale of

t∗ = 6 sec. This shows that, in this case, the initial slow growth only occurs for

the first minute of the propagation. As the timescale is inversely proportional

to the permeability, for more impermeable media this behaviour can extend to

hours.

6.7 Conclusions

In this chapter, we have developed a mathematical model for the fracturing of a

penny-shaped cavity which incorporates both the tip stress rule for propagation as

well as the curvature-induced melting phenomenon defining the ice extent. The

time-dependent problem can be solved for a variety of temperature boundary

conditions.

We have been able to capture both the initial stage of ice growth, where

there is no fracturing and the pressure in the cavity is building up, as well as

the fracturing regime. This has allowed us to identify parameter regimes for

which ice growth and pressure build-up occur in an initial fault but do not cause

fracturing. Small undercoolings in tough materials cause insufficient stress at

the tip, while very stiff rocks result in thin cavities that limit ice growth due

to the curvature-melting effect. All these can result in non-propagating cavities.
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Assuming that the cavities are ice-filled, we have identified a lower bound for

the initial radius of a pre-existing fault which will fracture under given fracture

toughness and undercooling parameters. The expression can also be used to

determine the minimum undercooling required to fracture a cavity of a given

initial radius in a medium of a given fracture toughness.

We have also studied the effect of the different parameters of the problem on

the growth rate of the cavity. Larger undercooling or smaller fracture toughness

both result in faster fracturing. The permeability of the medium controls the flow

of water towards the solidification front. This means that it has the potential to

slow down the pressure build up and hence propagation, especially for relatively

impermeable media with permeabilities less than about 10−11 cm2.

We also find that, although the size of the initial cavity determines whether

propagation occurs or not, according to equation (6.34), it doesn’t have an effect

on the later stages of propagation. Cavities that have reached the same size after

starting from different initial radii will propagate in the same way.

The propagation characteristics were also discussed in relation to the balance

of the liquid and solid pressures. We found that, in general, low |pl| corresponds

to slow propagation and this normally occurs at the beginning of the fracturing

of a tough rock. At later times, rocks can have liquid pressures of the order of

the solid pressure.

In conclusion, the important features of crack propagation and their depen-

dence on the several parameters of the problem have been identified and analysed.

In the next chapter, we will apply the theory developed here to real-life scenarios

and compare the results with existing studies in rock fracturing.
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Chapter 7

Applications

In the last two chapters we explored the penny-shaped crack model for differ-

ent undercooling laws. We found a similarity solution for specific undercooling

conditions and solved the more general time-dependent problem. The geome-

try we considered is applicable to several real-life situations in which media with

pre-existing faults are supercooled to some temperature from all sides. Exam-

ples include cracked pots, damaged buildings, historical monuments or statues

and many more. Even when the precise geometry is not suitable, much can be

deduced from the various scalings emerging from the modelling.

7.1 Past studies

The theoretical model for frost cracking developed by Walder & Hallet (1985) de-

scribes the propagation of an elliptical crack in a porous medium. The main con-

clusions of the study have been summarized in the introduction. Linear elasticity
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was used to describe the pressure distribution, with the solid pressure uniformly

distributed on the crack walls (see also the elliptical solution from section 4.2.1).

Unlike our model, in which we assume that propagation occurs only in the

critical state KI = K, Walder & Hallet consider subcritical growth of cracks,

occurring for values of stress below the fracture toughness K. Subcritical frac-

turing can happen owing to several factors, the most usual being stress corrosion.

The stress is still required to be above a critical value, which is called the stress-

corrosion limit Ks−c. This is usually assumed to be in the region of 0.3K − 0.4K,

although difficulties in performing experiments while maintaining the stress at

such low values creates some uncertainty. Sub-critical growth is assumed to oc-

cur for a range of values of the tip stress KI > Ks−c, and not just one critical

value. Because of this, it is necessary to determine the propagation rate of the

crack caused by different stresses KI . This is usually based on results from load-

fracturing experiments, where a prescribed stress intensity KI is imposed and

the speed of the crack, V , is measured. Several equations, based on data from

experiments described above, have been proposed to describe subcritical growth.

The most used are the power law V ∼ (KI/K)n (Charles, 1958), the exponential

V ∼ eKI (Wiederhorn & Bolz, 1970), as well as V ∼ eK2
I
/K2

(Segall, 1984) which

is the one used by Walder & Hallet. As discussed by Atkinson (1984), because

the dependence of the crack growth rate V on the stress KI is strong, and the

data sets quite limited in range, it is difficult to distinguish between the different

models. In addition to this, it is not clear if all materials have a stress-corrosion

limit, and hence experience subcritical fracturing, as most experimental evidence

concerns glasses and there is limited data on rocks and ceramics (Freiman, 1984).

The V vs. KI law is coupled with a mass conservation of water, relating the

amount of ice freezing inside the cavity and the water flow required for it, in terms

of the hydraulic resistance of the cavity. Through that, Walder & Hallet compute

the radius of the cavity against time. In contrast to this, our model only predicts

cracking for KI = K, hence the propagation rate is directly determined by the

pressure balance across the premelted interface and does not rely on empirical

observations. Two terms contribute to the resistance to the flow into the cavity:

the permeability of the medium, and the resistance to flow from the liquid layer

of thickness h at the crack wall. The inverses of the two terms, proportional to

1/Π and 1/h3, are added to give the flow resistance factor Rf . For example, a
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larger permeability offers less resistance to the flow. The second term corresponds

to the spreading of the water when it exits the pores of the surrounding medium

into the liquid film inside the crack and, according to Walder & Hallet (1985),

can dominate Rf for small undercoolings (not much pore ice) or coarse grains. In

our model, we recognise that the premelted film is too thin for significant flow to

be occurring along the length of the cavity (see section 4.1.3). We assume though

that the size of the grains is small enough for the spreading of the water as it

enters the film to not present significant resistance to the flow. While this can

become significant for grain sizes of a few mm, the rocks considered here will have

considerably smaller grains. For example, one of the most coarse-grained rocks

is granite, with a grain size of 0.75 mm (Atkinson & Rawlings, 1981), but it is a

relatively impermeable rock, hence its permeability dominates the flow resistance.

More permeable media like limestones or clays are much finer-grained, resulting

in a similar balance.

So far, we have ignored the effect that the porosity φ of the medium has on

the flow of water into the cavity. In some cases though (e.g. clays), φ can be

as large as 0.4 − 0.5, and hence its effect can become important. This will be

analysed in section 7.4.1. The existence of a frozen fringe is also discussed in later

sections of this chapter.

Walder & Hallet applied their model to examples of granite and marble for

both sustained freezing and gradual cooling with a linear temperature variation

with time. The growth rates predicted are slow, of the order of mm in tens of

hours. Especially at low temperatures, their theory predicts considerable amounts

of pore ice and hence very low effective permeability which restricts the water flow

towards the solidification front. This slows down the freezing and therefore the

pressure build-up. As a result, they find that in most cases the most effective

fracturing occurs at temperatures between −5◦ C and −14◦ C, as for smaller un-

dercoolings there is not enough ice growth and pressure build-up, while at larger

undercoolings the process is significantly slowed down owing to the large amount

of pore ice restricting the water flow. This interval for “optimal fracturing” is

supported experimentally by Hallet et al. (1991), who used acoustic emissions

to detect fractures in a frozen rock. It is important to note here that, at low

temperatures, the Walder & Hallet model predicts slower fracturing, rather than

no fracturing at all. For example, the instantaneous growth rate for a crack in
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granite is found (numerically) to be zero after 50 hours of freezing at −20◦ C,

but after 100 hours, fracturing is predicted. This is in agreement with our model

which predicts that fracturing of a cavity of a given size in a medium of a given

toughness will always occur for undercoolings larger than a critical value, inde-

pendent of parameters such as the permeability or the elasticity of the medium,

which can only affect the timescale. This is discussed further in section 7.4.

As we have seen in chapter 6, the timescale of our model is much smaller than

that predicted by Walder & Hallet, of the order of minutes for unfrozen granite.

We have seen that the timescale is inversely proportional to the permeability

of the medium, which indicates that the large discrepancies between ours and

Walder & Hallet’s numerical results are due to our different assumptions about

the existence of pore ice. The differences between the two models, and how they

affect the numerical results, are further discussed in section 7.2.

Murton et al. (2006) used Walder & Hallet’s model coupled with heat and wa-

ter transfer equations, given respectively by a thermal energy balance and Darcy’s

law. The pore ice content features explicitly in the energy balance equation and

appears in the effective permeability with some free parameters determined by

experimental measurements. Unlike Walder & Hallet, the sub-critical growth in

this case was modelled by V ∼ eKI/K . A year-long experiment was done on

freezing of a block of chalk. The bottom was kept at temperatures below 0◦ C,

simulating permafrost, while the upper half cycled above and below 0◦ C, simu-

lating seasonal temperature variations. Numerical results are presented for crack

length, solid pressure variations and depth at which fractures occurred, and the

latter is compared to experimental data. The undercoolings are relatively small,

which implies slow fracturing, and melting of the ice inside cracks can occur dur-

ing the thaw cycles. Their numerical predictions for the depth at which cracks

appear agree with their experimental findings when an initial distribution of 5 mm

cracks is assumed. As noted in the paper, the choice of initial crack radius has a

negligible effect on the long-time fracturing rate, which agrees with our findings

in section 6.6.3. Despite this, we would expect it to have an important role in

determining the depth at which the fractures appear, as the temperature field

varies through the depth of the rock, with the colder region being at the bottom.

As we will see in section 7.4.2, the undercooling required for a cavity to fracture

is inversely proportional to the square root of the initial radius of the cavity. This
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implies that a distribution of smaller cracks would result in the bigger fractures

appearing towards the colder regions of the rock, i.e. towards the bottom. More-

over, the interaction of the cracks could have an important effect on the water

content and availability, as several cracks were found in the experiment, in many

cases located quite close together.

7.2 Rock fracturing

While in previous chapters we have discussed the propagation of a cavity in di-

mensionless terms and looked at the quantitative effect of the parameters, here

we apply our model to specific examples of rocks. Table 7.1 lists the values for

the physical constants relevant to water and ice, which are used for all the exam-

ples we consider. We also look at values of the fracture toughness K, the shear

modulus G, Poisson’s ratio ν, the porosity φ and the permeability Π for different

types of rocks and clays, presented in table 7.2.

Parameter Value
L 334 × 107 cm2/sec2

ρs 0.92 g/cm3

kl 2 × 105 g · cm/ sec3 · K
µ 1.79 × 10−2 g/ cm · sec
Tm 273 K
γ 33 g/ sec2

Table 7.1: The physical constants relevant to water and ice. Data from SnowCrys-
tals.com (2011)

Rock type K( MPa · m1/2) G( GPa) ν φ Π( cm2)
Granite 1.74 40 0.2 0.01 10−15

Limestone 0.7 13 0.2 0.2 10−13

Clay 2.75 · 10−3 3.85 · 10−3 0.3 0.5 10−13

Table 7.2: The main rock properties used in the problem for different types of rock and
clays. Data from Walder & Hallet (1985), Murton et al. (2006), Katz et al. (2000),
Al-Shayea (2004), Schmidt (1976) and Konrad & Ayad (1997).
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Table 7.3 shows how the dimensionless parameters of the problem depend on

the undercooling, the rock properties and the initial radius of the cavity. The

values given for the permeability of the different media so far assume that there is

no pore ice, or that its effect on the flow of water through the medium is negligible.

An expression for an undercooling-dependent permeability is given in section 7.6.

Parameter∗ Granite Limestone Clay

Π̃ = 1013Π 0.01 1 1

H̃ = 17R
1/2
0 ∆T/m1/2 2.4R

1/2
0 ∆T 4.2R

1/2
0 ∆T 229R

1/2
0 ∆T

K̃ = 155m1/2K/E 19.9 14 3.1

Table 7.3: Expressions for the three dimensionless parameters of the problem in terms
of the physical parameters and their values for different rock and clays. ∗Values of the
rock properties are given in the units mentioned in table 7.2 while the undercooling ∆T
is in K and the initial radius R0 in cm.
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Figure 7.1: A plot of the length R(t) and average ice pressure against time for a
limestone subjected to an undercooling of ∆T = 10 K.

We show the evolution of the radius of the cavity and the average pressure

distribution with time for a representative example of a limestone-like rock in

figure 7.1. The thickness of the cavity is shown in figure 7.2. We observe that

the propagation is very fast, of the order of cm per minute. The solid pressure

is plotted on the same figure as the growth of the cavity, and we can see that
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Figure 7.2: A plot of the maximum thickness of the cavity against time for a limestone
subjected to an undercooling of ∆T = 10 K.

the peak in pressure occurs at the point where the propagation begins. This is

at the end of the pressure build-up phase, and the pressure drops as the crack

extends since the stress at the tip needs to remain constant. The thickness of the

cavity increases with time, although the most rapid increase is during the initial

build-up phase where considerable amount of ice formation is required for the

stress at the tip to reach the critical value. Since the radius is constant during

that initial phase, the aspect ratio increases. As the cavity propagates, it becomes

more slender, hence we expect the peak of the aspect ratio to coincide with the

peak in the solid pressure.

7.3 Time scales

As we saw in section 6.2, the balance of the liquid and solid pressures determines

the time scale of the system, given by equation (6.10). The timescale t∗ is in-

versely proportional to the permeability of the medium, as the latter controls

the flow of water through the pores. It is also inversely proportional to the elas-

tic modulus of the rock, which affects the deformation caused by a given solid

129



7 Applications

pressure distribution. With the permeability Π having units of cm2, the elastic

modulus m in terms of GPa and the initial cavity radius R0 in cm, we find

t∗ =
R2

0

Πm
10−12sec. (7.1)

The following table shows the time scale for different rocks, for initial radius of

R0 = 1 cm.

Time scale Granite Limestone Clay
t∗ 20 sec 0.6 sec 30 min

Table 7.4: Values of the time scale for different rocks and clays. An initial radius of
R0 = 1 cm has been used.

Both the values for the time scale of the problem as well as the results shown

in figure 7.1 indicate that the growth rates we find are much larger than the ones

predicted by Walder & Hallet (1985). While we find significant growth in minutes

or even seconds, the Walder & Hallet model predicts growth which takes tens of

hours. We are therefore interested in investigating the differences between the

two models and understanding where these time-scale discrepancies come from.

One important difference when it comes to comparing numerical results is

that, as discussed in the beginning of this chapter, the Walder & Hallet model

considers subcritical growth of cracks, which occurs for values of the stress lower

than the fracture toughness K but above the “stress-corrosion limit” Ks-c. This is

typically a fraction of the fracture toughness K, estimated at Ks-c ≈ 0.3K−0.4K.

The main effect of this is that fracturing will be predicted for smaller undercool-

ings than the ones required by our theory. While this will not affect the time scale

of propagation as much as the permeability and pore ice effect, it is still important

to take it into account, since it strongly affects the potential of a pre-existing rock

to fracture at a given undercooling (see section 6.6.1). The subcritical growth is

described by an exponential law based on data from load-fracturing experiments.

As discussed at the beginning of this chapter, our critical propagation rule comes

from the balance of the pressures ps, pl and pT and the linear elasticity theory

and hence should be applicable to a larger range of material.
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Furthermore, Walder & Hallet apply their model to relatively impermeable

rocks and include the effect of a frozen fringe. It is important to point out

here that since they are considering a frozen fringe, the effective permeability of

the medium is significantly smaller than it would be in the absence of pore ice.

The contribution to the “flow resistance” Rf from the frozen fringe alone makes

for a rather large flow resistance, with the effective permeability at just 1◦C of

undercooling being of the order of 10−16cm2 (value derived from their data for the

hydraulic conductivity of the medium), and inversely proportional to the squared

power of the undercooling.
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Figure 7.3: Crack growth vs. time for a cavity of initial radius R0 = 50 mm in granite,
with undercooling of 6 ◦C. The red squares represent numerical results from Walder &
Hallet.

With these differences taken into account, we can attempt a direct comparison

of their numerical results with our theory. With the adjusted values for effective

permeability due to pore ice, we find propagation rates much closer to those

predicted by Walder & Hallet. Figures 7.3 and 7.4 show the evolution of the

radius R(t) and solid pressure ps with time. We see that the agreement of the

initial time it takes for the propagation to begin is good, and the peaks in the

solid pressure are also in agreement. During the propagating phase, the Walder

& Hallet model predicts slightly faster growth than ours. The difference in the

pressure curves is consistent with the growth curves, as faster propagation means
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faster drop in the pressure as the crack extends. This can be explained by an

inherent difference in the two models: linear elasticity predicts stable propagation

only in the critical state KI = K. As we have modified the fracture toughness

to agree with the Walder & Hallet model, this corresponds to KI = 0.3 K here.

The key point is that the critical stress at the tip remains constant throughout

the fracturing process in our model. In contrast, the power law used by Walder &

Hallet predicts propagation for KI > 0.3 K, hence the stress at the tip can take

values larger than the stress-corrosion limit Ks−c = 0.3 K. Indeed, the authors

point out that the value of KI continues to increase slightly after propagation

has started. A larger stress KI causes faster growth rate V , as described by the

exponential growth law V ∼ eK2
I
/K2

.
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Figure 7.4: Elastic pressure vs. time for a cavity of initial radius R0 = 50 mm in
granite, with undercooling of 6 ◦C. The red squares represent numerical results from
Walder & Hallet.

The question is, what is the effect of these very low “effective permeabilities”

and how realistic are they? It has long been assumed that frozen fringes exist

in freezing rocks and soils, and many theories developed for the prediction of ice

lenses in particular require their existence (see O’Neill & Miller, 1985; Fowler,

1989; Rempel et al., 2004). In contrast, there is evidence of ice lens growth in

soils in the absence of a frozen fringe (Watanabe & Mizoguchi, 2000). Several
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factors (curvature melting, premelting etc.) contribute towards the lowering of

the freezing temperature inside small pores, so all of them have to be taken

into account when predicting the existence of pore ice. While it is relatively

easy to predict if ice can exist in a pore of a certain size (see appendix E), it

is less straightforward to quantify the effect that the pore ice has on the overall

permeability of the medium. This is discussed in more details in section 7.6. Our

model shows that a frozen fringe is not necessary for frost fracturing. It also allows

us to consider whether the existence of pore ice can lower the effective permeability

enough to make expansion effects important, as was seen in chapter 3. At the end

of section 3.2 it was shown that the expansion effect becomes important when

x ∼ 1015Π cm−2, (7.2)

i.e. for large radii (x ≈ 1) and small permeabilities (Π < 10−15 cm2). For a

penny-shaped cavity, it is more complicated to quantify the expansion regime

pressure, as the growth of the ice will be asymmetric. We can estimate though

that the worst case scenario will again occur when x ≈ 1, which corresponds to

the case where a large part of the pre-existing fault is occupied with ice which

is growing, but no considerable deformation of the cavity has occurred yet. The

values of permeability for which the expansion can produce large pressures are

not unreasonable for some of the frozen granites Walder & Hallet are considering.

Even though this phenomenon is sensitive to the saturation of the medium as well

as the exact process of ice growth at the early stages of solidification, we expect

that in some cases, high pressures can develop not only during the premelting

stage, where the pre-existing faults are ice-filled, but also during the initial stage

of freezing.

Finally, it is important to note that, despite the two different sets of results not

completely overlapping, our method can reproduce the qualitative features of the

Walder & Hallet model, when we adjust the permeability and fracture toughness

so that they reflect some of their assumptions. We note that the initially slow

and then rapidly accelerating fracturing can be seen in both models. As discussed

at the beginning of this chapter, the empirical law used by Walder & Hallet

is not the only one that can be used to describe subcritical fracturing. Most

laboratory experiments provide data of a small range, making it impossible to

distinguish between the different laws discussed at the beginning of section 7.1.
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When it comes to extrapolating to geophysical conditions though, the predictions

of the different laws diverge considerably (Atkinson, 1984). Moreover, there is

limited experimental evidence of subcritical fracturing in rocks. While our model

describes critical rather than subcritical growth, it does not rely on empirical

observations, hence it can potentially describe a greater range of situations arising

in nature.

7.4 Frost-proof material

The theoretical model we have developed can be used to determine what proper-

ties a material should have to be able to withstand a certain amount of freezing.

The timescale of the pressure build-up and fracturing is also important, as a ma-

terial that requires hours or days to fracture would effectively be frost-proof in

places where temperatures vary significantly below and above zero during the

day-night cycle. The model of a rock cooled from the outside, with the tempera-

ture on its boundary uniform, can successfully describe many real-life situations,

where the materials are exposed to the sub-zero atmosphere from all sides. While

the crack model is of course idealized, the assumption of a flat, thin crack is a

sensible one.

When the temperature of the far-field does not vary with time, the maximum

solid pressure attainable is equal to the maximum disjoining pressure possible,

which can be expressed in terms of the undercooling

pmax =
ρsL∆T

Tm

. (7.3)

This indicates that only the undercooling of the environment and the fracture

toughness of the medium, which represents how much pressure it can withstand,

will determine whether a cavity of a given size will fracture. This might ap-

pear to be contradicting the analysis done in section 5.3.4, which found that

the permeability of the medium affects the boundary between propagating and

non-propagating solutions. In a warming environment though, the time scale of

water transport is important for the pressure build up: water needs to flow to
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Figure 7.5: (a) A phase plane showing propagating and non-propagating solutions for

different values of the fracture toughness K̃ and of the permeability Π at undercooling
∆T = 5 K, showing that the transition is independent of Π. (b) A similar phase plane
showing the effect of the elastic modulus m vs. the fracture toughness K.

the solidification front quickly as the longer it takes, the warmer the surround-

ing environment will be, resulting in a lower value of pmax. Indeed, this agrees

with equation (5.47) which shows that the permeability affects the fracturing of

the medium only when it is small enough to limit the flow of water towards the

solidification front. Therefore, we expect that when the undercooling of the sur-

rounding environment does not vary with time, and therefore pmax is constant,

the permeability of the medium will not affect the boundary between no propa-

gation and fracturing. A phase plane for ∆T = 5 (figure 7.5, left) of the fracture

toughness K against the permeability Π, spanning 10 orders of magnitude of Π,

does indeed show that the potential for fracturing for a given value of undercool-

ing does not depend on how permeable the medium is. The graph on the right

of figure 7.5 shows that the transition regime is also independent of the elastic

modulus.

In both graphs, we see that there is a critical value of the fracture toughness K

for the given undercooling ∆T above which the rock does not fracture. A similar

argument to the one used to derive expression (6.34) gives us that, for a given

∆T and initial radius R0, the maximum fracture toughness K for propagation to

occur is

Kmax =
2√
π

R
1/2
0

ρsL∆T

Tm

, (7.4)

which is, as expected, independent of both Π and m. This theoretical prediction
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Figure 7.6: A phase plane showing propagating and non-propagating solutions for

different values of the fracture toughness K̃ and of the undercooling ∆T . The green line
shows the theoretical prediction defined by equation (7.4).

can be seen in figure 7.6, where we have plotted the slope between K and ∆T

(green line). We see that the match is not perfect, which is a result of the cavity

not being completely ice-filled, as was explained in section 5.3.2. The quantitative

effect of λ < 1 on the above expression is described by equation (6.35).

From the above we can conclude that the most important parameters for the

susceptibility of a medium to fracturing are the fracture toughness of the material

and the undercooling of the environment. The size of the pre-existing faults also

strongly influences the fracturing potential, as indicated by equation (7.4). We

will discuss this further in section 7.4.2. We also found that the permeability and

elasticity of the medium do not affect the potential for fracturing in the idealized

situation of constant undercooling but have an important effect on the timescale

of propagation, as we will see in section 7.5. In real situations, the tempera-

ture of the far field can vary significantly with time. As we saw in chapter 5,

both the permeability and the elasticity of the material affect the potential for

fracturing in a warming environment. In these cases, the timescale of pressure

build-up becomes important when discussing the susceptibility of a material, as

the conditions change with time.
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7.4.1 Effect of porosity

When we derived the equations describing the flow of water through the medium

and inside the crack in section 4.1.3, we ignored the porosity of the medium

and approximated the volume outside the cavity as consisting of only rock when

using mass conservation arguments. Considering the flow of water into the porous

medium, we only included the component of the Darcy flow u as the contribution

to the flux at the film–rock boundary z = b. In reality, a proportion φ of the rock

is already occupied with water and hence, as the rock boundary deforms with

velocity ∂b
∂t

, an additional term of −φ∂b
∂t

needs to be included in the contribution

of the flux at z = b. This indicates that in the frame of reference of the thin film,

there is a component of the flow out of the cavity, acting in an opposing way

to the Darcy flow. This makes sense physically; the term u expresses the flux of

the water that flows towards the cavity to fill the opening gap which is created

because areas previously occupied by rock need to be filled by water. In the limit

of φ → 1, i.e. if the rock is very porous and consists mostly of water, the effect

of the opening of the cavity is negligible, as very little space is occupied by the

rock. In the opposite limit of φ → 0, we assume most of the cavity boundary is

occupied by rock, which when it opens up frees the space to be filled by water.

This limiting case represents the assumption we made when ignoring the porosity.

The mass continuity equation in the thin film now gives

(1 − φ)
∂b

∂t
+

1

r

∂

∂r

(

r
h3

12µ

∂pl

∂r

)

= −u(b) =
Π

µ

∂p

∂z

∣
∣
∣
z=b

. (7.5)

The factor (1 − φ) now multiplies the liquid pressure integral, giving

pl(r, t) =
2

π

µ

Π
(1 − φ)

∫ R(t)

0

K

(
2
√

rs

r + s

)
∂b

∂t

s ds

s + r
if r ≤ λR, (7.6)

hence it can be absorbed in Π to give a new permeability

Πφ =
Π

1 − φ
. (7.7)

As we have seen, a change in the permeability of the medium does not affect the

fracturing potential of a cavity but just the timescale of the pressure build-up

and subsequent fracturing. Similarly, the effect of the porosity is simply limited
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to the timescales of the problem. A large porosity φ implies a larger value of the

“effective permeability” Πφ and hence easier flow of water through the medium

and faster solidification and crack propagation. We see that the effect is quite

small, unless we have a very porous medium with large φ, which increases the

effective permeability.

For most materials we are concerned with, the porosity is small enough

(φ < 0.3 for rocks and φ < 0.5 for clays) for its effect on the time scale to

be quite unimportant. As McGreevy (1981) points out, experiments (Wiman,

1963; Potts, 1970; Keeble, 1971) have failed to provide evidence of a correlation

between porosity and amounts of weathering, which is supported by our analysis.

7.4.2 Effect of initial crack radius

In section 6.6.3 we discussed how the initial radius of the crack affects the propa-

gation. Two important points were found: firstly, two fracturing cracks that are

of the same size at a given time t will propagate in identical ways even if they

originated from different-sized initial faults. That is to say, the rate of propaga-

tion is only dependent on the radius of the cavity at that point in time rather

than the initial size. Secondly, for a given medium and value of undercooling ∆T ,

pre-existing faults need to be larger than a minimum initial radius Rmin to start

propagating.

Figure 7.7 shows the propagating (black circles) and non-propagating (red

crosses) solutions for different values of the initial radius R0 and the undercooling

∆T . As we saw in section 6.6.3, there is a lower bound Rmin for the initial radius

of the cavity R0 for fracturing to occur. This is not an exact minimum as it

assumes that the cavity is completely ice-filled. This lower bound is given in

terms of the fracture toughness of the rock and the undercooling of the medium

Rmin =
πK2T 2

m

4ρ2
sL2

∆T−2. (7.8)

For the example shown in figure 7.7, we have taken K = 1 MPa · m1/2, and

plotted the relation between ∆T and Rmin that the criterion above defines (blue

curve). As expected, the Rmin curve doesn’t quite match the boundary between
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7.4 Frost-proof material

the propagating and non-propagating solutions, but slightly underestimates the

undercooling required for fracturing. This agrees with our conclusion that Rmin

is only a lower bound. Furthermore, the boundary between propagation and

non-propagation agrees with the prediction that ∆T 2R0 = constant and we can

deduce that the slight difference in the constant is due to the λ correction for a

cavity that isn’t completely ice-filled (see also equation (6.35)).
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Figure 7.7: A phase plane showing propagating and non-propagating solutions for
different values of the undercooling ∆T and the initial radius R0 for a limestone-like
rock.

The concept of the minimum size of a fault for fracturing was also described by

Murton et al. (2006), who also find the minimum radius for fracturing to be related

to the inverse square power of the undercooling, as in equation (7.8). Although an

analytic expression is not given and hence we cannot compare it with ours directly,

they mention that their theory predicts no fracturing for cavities of length smaller

than 0.15mm at undercooling of −5 degrees. Their calculations were done for a

limestone with fracture toughness K = 0.2 MPa · m1/2. Using equation (6.34) we

find that the minimum crack radius for propagation is Rmin ≈ 0.9 mm, which is

quite a bit larger than their prediction. Referring back to the Murton et al. (2006)

model, we note that they use the same propagation criterion as Walder & Hallet

(1985), predicting propagation for KI ≥ Ks−c, where Ks−c is the “stress-corrosion

limit”. Substituting the fracture toughness for Ks−c = 0.3 K in expression (6.34),
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we find the minimum length of the initial crack to be 2R0 ≈ 0.16 mm, in good

agreement with the prediction of Murton et al..

As expected, we have found that media with smaller pre-existing faults are

less prone to fracturing as they can withstand the higher pressures caused by

larger undercoolings ∆T . Furthermore, the criterion for the minimum radius for

propagation that is developed here is in agreement with other theoretical models

and, as we will see in section 7.7, with experimental observations too.

7.5 Timescale of pressure build-up

As we saw in the previous section, there are some parameters of the problem

which do not determine whether a fault of a given initial size will fracture, but do

affect the growth rate once the fracturing begins. The permeability of the medium

controls the flow through the pores towards the solidification front and we saw

in section 6.6.2 that it strongly influences the timescale of pressure build-up and

growth, especially for impermeable media. It is also interesting to note that for

a large enough permeability (larger than about 10−12 cm2), the effect becomes

negligible.

The elasticity of the medium is also important in determining the timescale

of propagation. Figure 7.8 shows plots of the growth of the cavity R(t) against

time for different values of the shear modulus G. We see that the growth rate

rapidly increases with G. A large elasticity modulus means that a given amount

of pressure causes only a small amount of deformation. Two cavities of the same

length in two media with different values of G will have different thicknesses when

they are at the critical state KI = K. Since the stress required for fracturing is the

same in every case, as it is determined by the fracture toughness K, the pressure

is equal and hence the cavity with the smaller G will have deformed more. The

pressure that the ice exerts on the rock is relaxed by the rock deformation hence

the more compliant the medium is, the longer it takes for the pressure to reach

the critical value. This demonstrates that a very compliant medium fractures

more slowly than a stiff one, even if the fracture toughness is the same, as can be

seen in figure 7.8.
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Figure 7.8: The growth of the cavity R(t) against time for different values of the
elastic modulus G of the rock.
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Figure 7.9: Plots of the solid pressure against time for different values of the elastic
modulus G of the rock.

Figures 7.9 and 7.10 show how the solid pressure and the width of the cavity

develop with time for the three different values of the shear modulus presented

in figure 7.8. We note that the peak in the solid pressure is the same in all three

cases, ps ≈ 8 MPa. This is expected, as the peak occurs at the exact moment that
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Figure 7.10: Plots of the width of the cavity against time for different values of the
elastic modulus G of the rock.

the critical stress at the tip is reached and just before the fracturing begins. Since

both the fracture toughness and the radius of the cavity (equal to the initial radius

at that stage) are the same, we expect the maximum of ps to be the same in all

three cases. The pressure takes longer to build up to the maximum value and then

drops away slowly in the compliant medium (G = 0.1 Gpa). This is in agreement

with the fact that the slowest growth occurs in the most compliant medium. As

we have explained before, for a medium of a given fracture toughness, a larger

cavity will require smaller pressure to propagate in the critical state KI = K.

It is also clear that in the compliant medium, the thickness of the cavity is

much larger than the one in the stiff medium. This is due to a combination of

two factors: firstly, the pressure applied on the rock at a given time is larger

in the compliant medium, owing to the smaller size of the cavity. Secondly, the

deformation due to a given ps is larger than it would be in a stiff medium.

Finally, we examine the behaviour of the crack during the pressure build-up

phase. We define the time it takes for the stress to reach the critical value as

tinitial and we plot its dependence on the shear modulus G in figure 7.11. The red

curve behaves like G−1 and we can see that the agreement with the numerical
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Figure 7.11: Plot of the time it takes for the pressure to reach the critical value against
the elastic modulus G of the rock. The red curve is ∼ G−1.

results shown by the blue squares is excellent. This demonstrates that

tinitial ∼
1

G
, (7.9)

a result also found by Walder & Hallet (1985). We also expect the time scale

of the fracturing to have a similar dependence on the elasticity, which would

be in qualitative agreement with figure 7.8. This can become important in the

case of very compliant materials, when the value of m can be several orders of

magnitude smaller than in rocks. In those cases, the predicted pressure build up

can take up to hours, even without considering a frozen fringe and the resulting

low permeability. For real materials, a small value of the elastic modulus is usually

accompanied by a fracture toughness a few orders of magnitude smaller than in

rocks. This means that fracturing can occur at much lower undercoolings. Clays

are typical examples of materials with such properties and the application of our

theory to them will be discussed in section 7.7.
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7.6 Frozen fringe

The theory developed in this thesis predicts fracturing of pre-existing faults in

rocks without the need for a frozen fringe. Previous studies of rock fracturing

(Walder & Hallet, 1985; Murton et al., 2006) have assumed the existence of pore

ice, while studies of frost heave (Rempel et al., 2004) predict no ice lens forma-

tion in the absence of a frozen fringe. Physically, when a water-saturated porous

medium is subjected to sub-zero temperatures, water inside the bigger pores can

freeze, restricting the hydraulic connectivity of the medium. The extent of the

freezing depends on the freezing-point depression, which is a result of curvature

melting or the disjoining forces between rock and ice. Quantifying this effect is dif-

ficult, as pore size varies from material to material, and there can be a large range

of pore diameters within one material too. For example, while most limestones

have pore sizes of the order of 0.1−1 µm, marbles and lithographic limestones can

have an average pore size of about 0.005µm (Lautridou & Ozouf, 1982). The crit-

ical nucleation radius for an undercooling of ∆T = 1 K is approximately 0.1 µm

and, while inversely proportional to ∆T , we see that even for low temperatures,

curvature melting can stop ice from growing inside porous material. While we

have assumed no pore ice, it is a concept that is easily incorporated into our

model. The existence of ice in the pores of a medium primarily affects the per-

meability and limits the flow of water towards the solidification front. We expect

the change in permeability to have an effect on the time scale of pressure build-up

and propagation, but not on the fracturing potential of a fault (see sections 6.6.2

and 7.4).

Both Walder & Hallet (1985) and Murton et al. (2006) consider the effect of

pore ice on the permeability of the medium. The former use a modified hydraulic

conductivity for the medium of the form k = κ1∆T−2, where the parameter κ1

is found from experimental data. The value of κ1 used in their work corresponds

to a permeability of Π = 10−16 cm2 at an undercooling of 1◦ C for a granite. In

contrast, Murton et al. include an ‘ice content’ term in the heat equation which is

then used to determine the permeability which behaves like Π ∼ (1 − I)γ , where

I is the volumetric ice fraction and γ is determined experimentally and usually

ranges between 6 and 9.
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The permeability is closely related to the size of the pores, and can be shown

(Bear, 1988) to be proportional to the square of the average pore diameter

Π = Cd2, (7.10)

where C is a constant relating to the flow paths connecting the pores. If we

consider the growth of ice in a small spherical pore, two effects contribute to the

depression of the freezing temperature: the curvature-induced melting, and the

disjoining forces which become important when the pore is almost ice-filled, as

explained in chapter 3. It can be shown that, at first order, the smallest depression

of the freezing temperature is determined by the curvature melting effect (i.e.

dictated by the Gibbs–Thompson relation). In that case, the ice is close enough

to the rock for the curvature to be approximately given by κ = 1/d, where d is

the diameter of the pore, but not close enough for the disjoining forces to become

important, hence causing further depression of the melting temperature. The

details of the calculation are shown in appendix E.

For a given undercooling ∆T , pores that are larger than the corresponding

d∆T diameter

d∆T =
γTm

ρsL∆T
(7.11)

will be almost completely ice-filled, reducing the overall average pore diameter of

the medium to d̃ < d. We expect this new average diameter d̃ to be a function

of both the initial average pore diameter d as well as the freezing pore diameter

d∆T . When ∆T = 0, hence d∆T → ∞, no ice grows inside the pores and therefore

the average diameter remains unchanged, d̃ = d. As the temperature drops, d∆T

becomes smaller and hence some of the pores can fill with ice. This reduces the

overall average pore size. This analysis implies a relationship between d̃, d and

d∆T of the form

1

d̃
=

√

1

d2
+

α

d2
∆T

, (7.12)

where α is a parameter to be determined and relates to the distribution of pore

sizes of the medium. We have used the quadratic average (or root mean square)

of 1/d and 1/d∆T , rather than the mean, as this includes a measure of the spread

of the values. For example, when d∆T is large (i.e. ∆T is small) and hence 1/d∆T

is much smaller than 1/d, the quadratic average means that the effect of 1/d∆T
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will be small. This makes sense physically as we expect only a few pores to be

large enough for ice to grow inside them at small undercoolings. Therefore, when

∆T is small, we expect the average pore size to remain more or less unchanged,

and hence the effective permeability to be very close to the unfrozen value.
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Figure 7.12: The effect of pore ice on the effective permeability shown through plots
of Π∆T vs. ∆T , for different values of the parameter c2.

The effective permeability Π∆T at an undercooling ∆T will be proportional

to d̃2, according to equation (7.10). We can then express the permeability of the

medium Π∆T in terms of the undercooling ∆T and the unfrozen permeability of

the medium

Π∆T =
c1

∆T 2 + c2
2

Π. (7.13)

The parameters c1 and c2 have units of K2 and K respectively, and depend on the

medium characteristics, such as the pore size distribution. We note that the frozen

permeability is inversely proportional to ∆T 2, as in Walder & Hallet (1985). One

of the parameters c1 and c2 can be easily fixed by the condition that Π∆T = Π

for ∆T = 0, from which we deduce that c1 = c2
2. To fix the second parameter,

we need to determine the effective permeability at a given undercooling. For

example, if c2 = 0.1 K, an undercooling of just 1 ◦C will cause a permeability 100

times smaller than the permeability of the unfrozen medium, while c2 = 0.33 K
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means that, at ∆T = 1 K, the permeability is 10 times smaller than the unfrozen

value.

Picking an appropriate value for c2, which is dependent on the properties

of the specific medium, requires experimental data. For the following example

we consider a granite with unfrozen permeability of Π = 10−15 cm2. We take

c2 = 0.33 K, corresponding to an average permeability of Π∆T = 10−16 cm2 at an

undercooling of ∆T = 1 K, which is in agreement with the values used by Walder

& Hallet (1985).
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Figure 7.13: Growth curves of the radius of the cavity R(t) vs. time t for different
values of the undercooling ∆T .

We saw in section 6.6.1 that the growth rate of a crack increases with the

undercooling. This can also be seen in figure 7.13 where we have plotted the

growth curves R(t) vs. t for three different values of undercooling, ∆T = 5 K,

10 K and 15 K. It is clear that the fracturing is fastest in the coldest environment.

However, if we assume the existence of pore ice and approximate the undercooling-

dependent permeability of the medium by expression (7.13) then the effect of an

increased ∆T will be more complicated. While a large undercooling speeds up

fracturing, it also reduces the permeability as equation (7.13) describes. A smaller

permeability Π means that flow through the porous medium is more restricted,

147



7 Applications

hence the propagation slows down. These two effects act in opposing ways and

the balance of the two will determine how an increase in ∆T changes the growth

curves. An example can be seen in figure 7.14. The overall growth rate is about

100 times smaller than the example shown in figure 7.13, hence the effect of pore

ice is significant. Interestingly, we see that the relation between the three curves

has changed significantly. Especially at long times, the effect of undercooling is

reversed and the faster propagation occurs in the warmest environment, which

now has the largest permeability. This effect can also be seen in figure 7.15,

where we have plotted the instantaneous (left) and average (right) growth rate

of a crack after 2 hours of freezing and 20 hours of freezing respectively. We

discover a similar behaviour to that found by Walder & Hallet (1985), with the

most effective fracturing occurring at temperatures higher than −5◦ C and the

fracturing rate decreasing for large values of the undercooling, as there is more

pore ice restricting the flow of the water. The rates of freezing are of the order

of 10−4 mm/sec which is in agreement with the 10−7 − 10−8 m/sec rates found by

Walder & Hallet (1985).
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Figure 7.14: Growth curves of the radius of the cavity R(t) vs. time t for different
values of the undercooling ∆T . The permeability of the medium is adjusted to account
for the existence of ice pore, according to equation (7.13). We have taken c2 = 0.33 K.

In conclusion, both the existence of a frozen fringe and its exact quantitative

effect on the fracturing rate are difficult to determine, since they require detailed
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Ṙ
(m

m
/
se

c)

 

 

after 20h
after 2h

0 5 10 15 20
0

1

2

x 10
−4

∆T (K)

Ṙ
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Figure 7.15: A plot of the instantaneous growth rate Ṙ (left) and the average growth
rate (right) of a cavity in a granite, of initial radius R0 = 1 cm after 2 hours of freezing
(dashed curve) and 20 hours of freezing (solid curve). The permeability of the medium
is adjusted to account for the existence of ice pore, according to equation (7.13). We
have taken c2 = 0.33 K.

data on the pore size distribution of a medium. It should be pointed out that the

effect of the permeability through the undercooling is dependent on the value of

c2. We have used c2 = 0.33 K here but a larger value would result in the effect of

Π∆T being weaker and we could see the propagation rate increasing with ∆T even

with the decreasing permeability. Experimental work could provide further useful

insight here, in particular in investigating the existence of pore ice, determining

c2 and validating expression (7.13).

7.7 Fracturing of clays

While the method developed in this thesis has primarily been used to model

rock fracturing, its applications are not limited to rocks. It has been shown

that the formation of blocks of ice, or ice lenses, in materials such as clays is
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the predominant cause of frost heave, as can be seen in the Taber (1929; 1930)

experiments. The ice-filled cavities in rocks work in similar ways to these ice

lenses in soils. In both cases, the premelting pressure between the ice and the

medium has been identified as the force driving the flow of water towards the

solidification front, causing further growth of the ice and the displacement of the

medium. Most soil studies have assumed that the similarities between frost heave

and frost fracturing are limited to the thermodynamics of the problem. Many of

these studies, with Rempel et al. (2004) one of the most recent ones, assume that

the existence of a frozen fringe is necessary for the formation of ice lenses.

Style et al. (2011) recently developed a model for ice lens formation in soils

which does not require the existence of a frozen fringe. The main ideas of ice lens

growth are similar to the ones presented in this thesis: the difference between the

solid and liquid pressures inside a pre-existing flaw filled with water are balanced

by disjoining forces. The cavity grows when the pressure inside it causes the stress

at the tip to reach the critical value K. When the fracture has extended all the

way to the edges of the column, this becomes a new ice lens.

The paper by Style et al. (2011) represents a change in the approach used

when discussing the growth of ice lenses in soils. The cohesion between particles

is now seen as a phenomenon which can be described using linear elasticity and

fracture mechanics. Arenson et al. (2008) and Style et al. (2011) have observed

crack-like ice segregation in soils, with new ice lenses forming off vertical shrinkage

cracks. The growth velocities observed by Style et al. are of the order of mm/min,

which is of similar order of magnitude as the results seen in figure 7.16 and 7.18.

Furthermore, freezing experiments have shown that ice lenses form at smaller

undercoolings for materials with smaller tensile strength (Akagawa et al., 2006).

In addition to this, Graham & Houlsby (1983) observed linear elastic behaviour

in soils. Linear elastic fracture mechanics (LEFM) were also used by Konrad

& Ayad (1997) to model vertical tension cracks in clays. All this indicates that

saturated soils do indeed exhibit linear elastic behaviour, and hence LEFM is an

appropriate way of approximating soil fracturing under stress.

Clays are characterized by small fracture toughnesses and elastic moduli.

This means that they require a small amount of stress to fracture. Also, a given

amount of pressure will cause a much larger deformation than it would in a rock.
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Figure 7.16: A plot of the growth rate and pressure distribution against time for a
clay subjected to an undercooling of ∆T = 0.1 K, for an initial radius of R0 = 1 cm.
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Figure 7.17: A plot of the maximum thickness of the cavity against time for a clay
subjected to an undercooling of ∆T = 0.1 K, for an initial radius of R0 = 1 cm.

Hence, even though the pressures inside a cavity are small when the cavity is

propagating, the cavity thickness can still be of the same order as in rocks. We

therefore expect similar values of the ice extent λ. Another feature that can be
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seen in our results (figure 7.17) is that during the initial ∼ 15 min, the thickness

of the cavity increases rapidly, while the freezing slows down after that. This

initial “surge” of heave has also been observed experimentally (Penner, 1986).

Owing to the small fracture toughness K, propagation can occur even for

small undercoolings. We recall that the transition from non-propagating to prop-

agating cavities is characterized by a linear relationship between K and ∆T . Since

K can be more than 100 times smaller in clays than in rocks, we expect fractur-

ing to occur even for undercoolings of tenths of a degree. Figure 7.16 shows the

growth rate and pressure distribution with time for a cavity in a clay subjected

to ∆T = 0.1 K. The propagation is slow, as expected, because of the small value

of undercooling and because the medium is much more compliant compared to a

rock. The pressure is two orders of magnitude smaller than in rocks, as only a

small stress is required at the tip for fracturing. The thickness of the cavity is

shown in figure 7.17 and it is interesting to note that it is comparable to cracks in

rocks, despite the difference in the pressure applied. This is due to the medium

being much more compliant than a rock and therefore deforming considerably

even if only a small pressure is applied.
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Figure 7.18: A plot of the growth rate and pressure distribution against time for a
clay subjected to an undercooling of ∆T = 1 K, for an initial radius of R0 = 1 mm.

Similarly, equation 7.8 demonstrates that in weak materials (i.e. with a small

value of K) even small pre-existing faults can fracture. For example, at ∆T = 1 K,
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7.7 Fracturing of clays

an initial cavity of just R0 = 1 mm propagates rapidly as described in figure 7.18.

In this case, the pressures are still small compared to rocks but larger than in

figure 7.16. This is possible due to the higher value of undercooling and is nec-

essary for propagation because, although the fracture toughness is the same in

the two cases, the area over which the pressure is acting is much smaller in the

R0 = 1 mm case.

Watanabe (2002) performed experiments of freezing of a water-saturated pow-

der and found that the growth rate of ice lenses is proportional to the undercool-

ing, a relation that can also be seen in our figure 7.13 which, even though it uses

values representative of a rock, can be used to qualitatively describe soils too.

This indicates that, for the temperature range used in Watanabe’s experiments

(< 1◦ C), either no pore ice exists or its effect on the permeability was negligi-

ble. Indeed, Watanabe et al. (1997) observed the microstructure near the freezing

front of an ice lens in a soil and found no pore ice. The heaving rate in the silt, i.e.

the rate of the thickness increase of the ice lens, was found to be 1µm sec−1 ◦ C−1.

As we have found typical aspect ratios of ice lenses in soils to be about 10−3, we

deduce that this approximately corresponds to a fracturing rate of 0.1 mm min−1

◦ C−1, which is similar to what our theory predicts. As we mentioned earlier,

similar order of magnitude growth rates were observed by Style et al. (2011).

While there is some uncertainty over the exact values of initial cavity radius and

medium permeability used in the experiments, it is important to point out here

that these should not affect the agreement with the growth rates much. First of

all, we have seen that the growth rate of a crack is not very sensitive to the initial

radius (see section 6.6.3). Secondly, the value for the permeability used for the

examples shown in figures 7.16-7.18 is representative of a clay and close to the

critical value (Π ≈ 10−12 cm2) above which the effect of Π on the timescale of

the propagation becomes negligible (see also section 6.6.2). Clays are unlikely to

have permeabilities smaller than the ones used here, unless they are affected by

a large amount of pore ice, which wasn’t observed experimentally.

Some evidence also exists on the temperature required for the first ice lens

to grow. Watanabe (2002), during his experiments in a system of silica micro-

spheres, observed new ice lenses at an undercooling of just 0.02 K. Using a fracture

toughness of K = 102 Pa · m1/2 and an initial radius of R0 = 0.0011 cm (values

taken from Style et al., 2011), our theory predicts that the minimum temperature
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for fracturing to occur is ∆T = 0.024 K. In experiments with kaolinite clay with

K = 1.5 MPa· m1/2 and R0 = 0.001 cm, Style et al. (2011) observed lenses forming

at temperatures of −0.3◦ C, where our theory predicts a minimum undercooling

of 0.37 K required for fracturing. The agreement with predictions from both ex-

periments is good. This reinforces the idea that ice lens formation in soils can be

described by ideas similar to fracturing in rocks, and our model seems to be in

good agreement with existing observations and experimental data in soils.

7.8 Conclusions

In this chapter, our aim has been to further explore the model developed and

solved in chapter 6 to understand some real-life situations of frost fracturing. We

have also discussed some existing models and determined ways in which our work

complements and extends past studies.

We have discussed the work of Walder & Hallet (1985) and compared our

predictions for the growth rate of a cavity to theirs. After incorporating some of

the features of their model in ours we have managed to achieve good agreement

and understand where the small differences in predictions come from. We have

also discussed some aspects of the work of Murton et al. (2006) and found that

our estimates for the minimum radii for propagation are in good agreement.

Extending the work done in chapter 6, we have studied the effect of several

parameters on the fracturing potential of an existing fault. This has led us to

some important conclusions about the properties required for a material to be

frost-proof. Interestingly, it is only the fracture toughness of the material and

the size of pre-existing faults that affect the potential for fracturing at a given

temperature, while all other material parameters can only affect the time scale of

the process once it occurs.

Following from the discussion of the existence of pore ice, motivated by the

work of Walder & Hallet (1985) and Murton et al. (2006), we have attempted

to incorporate a frozen fringe in our model. We suggested a rule to describe the

undercooling-dependent permeability and demonstrated the effect that a variable
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permeability has on the propagation rate. The existence of pore ice is a non-

straightforward subject that requires a lot more theoretical work, coupled with

experimental evidence, which is beyond the scope of this thesis. We have shown

though that our model is flexible enough to include these ideas.

Finally, we have explained how our model can be used to describe fracturing in

clays, and analyzed the main features that differentiate this from rock fracturing.

With the studies of rock fracturing and frost heaving revealing many similarities

between the two processes, our work can serve as a theoretical model for the

analysis of a large variety of frost fracturing problems. Our model agrees with

experimental data of the prediction of the temperature needed for ice lenses to

grow, as well as evidence on ice lens growth rates. It also reproduces other features

that have been observed experimentally, such as the sudden surge of heave at the

initial stages of ice lens formation.
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Chapter 8

Conclusions and future work

The aim of this thesis has been to study the phenomenon of frost fracturing

of rocks due to water freezing inside them at low temperatures, and develop a

theoretical model describing ice growth and crack propagation from fundamental

physical principles. We summarized past theoretical and experimental studies in

chapter 1, where we identified considerable progress in the theoretical modelling

of frost cracking. The important role played by unfrozen films of water between

ice and rock has been identified by several studies. The physics causing and

governing these films were presented in chapter 2. The balance of pressures across

these premelted films determines the fracturing of an ice-filled crack and forms

the basis of our theoretical model.

The first problem we discussed was that of ice growth inside a spherical cav-

ity in a porous, elastic medium. The aim of using this simple geometry was to
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8 Conclusions and future work

compare the contributions of two different processes on the pressure acting on

the rock: the expansion of water during freezing, and the disjoining forces acting

across the thin premelted film in almost-filled cavities. The important conclu-

sion here was that the effect of expansion on the pressure applied to the rock is

negligible for media more permeable than about Π ≈ 10−15 cm2.

The ideas deduced from the spherical model allowed us to develop a theoretical

model for a more realistic geometry, concentrating on the important premelting

stage rather than the initial ice growth. The 3D penny-shaped crack problem,

first developed in chapter 4, was studied both in the framework of a similarity

solution for a warming environment, and as a time-dependent problem. Both

these approaches provided us with the opportunity to study the existence of

solutions for different values of the rock parameters, as well as the undercooling

of the environment. The different regimes were summarized in figure 5.7, and we

developed a criterion predicting whether a pre-existing fault will fracture. This

can be expressed in terms of the fracture toughness of the material, over the

undercooling of the environment

K

∆T
<

2√
π

R
1/2
0

ρsL
Tm

. (8.1)

In the case where this condition is not met, ice can still grow inside the cavity

and deform it without fracturing it. The process continues with the thickness of

the cavity increasing until an equilibrium is reached where the disjoining pressure

between the ice and the rock is balanced by the elastic response of the medium.

We also established that for the permeability of the medium to affect the

fracturing potential of a fault, the undercooling of the environment needs to vary

with time. For example, in the case of a warming environment described in

chapter 5, the maximum value of K/∆T for which fracturing can occur behaves

as

β = max{K̃

H̃
} ∼ Π̃1/4

(1 + Π̃)1/4
. (8.2)

In cases with constant ∆T , the permeability of the medium only affects the

timescale of growth. In either situation, only permeabilities smaller than about

10−12 cm2 have an important effect on either the fracturing potential or the frac-

turing rate. A similar behaviour was found with the elastic modulus m, which
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also affects only the timescale of the problem.

Another interesting result is associated with the initial size of a fault. As

expected, media with smaller faults are less prone to fracturing (see section 7.4.2)

as, due to their shorter length, larger pressure is required for the stress at the tip

to reach the critical value. We did see in section 6.6.3 though that the fracturing

rate of a crack is dependent only on its current size rather than its initial size,

which means that the growth curves of two cracks of different initial sizes will

coincide if all other parameters are the same.

General patterns of dependence of the growth curves of a cavity on different

parameters of the problem were established. The ratio of fracture toughness to

undercooling not only determines the susceptibility of a medium to fracturing,

but also strongly affects the propagation rate, with a larger K/∆T ratio resulting

in slower propagation. The growth rate is also proportional to the elastic modulus

of the medium, hence stiff rocks are expected to fracture quickly. The fast growth

rates ( mm/ sec) found for some rocks can be attributed to the fact that we have

considered the permeability of the medium to remain unchanged even for low

temperatures, but the concept of pore ice is easy to incorporate in our model.

We considered under which conditions a pore of a given size will become ice-

filled. This allowed us to construct an expression for the effective permeability

of a medium with pore ice as an attempt to quantify its effect on the water

flow through the medium. We found that, in the presence of pore ice, maximum

growth rates come from undercoolings of around 5 − 10◦ C. We believe that it

is important to establish a better understanding of the existence of pore ice in

frozen media, through either experimental or field observations.

An important point of the thesis is that the model developed here can also

be used to describe the growth of ice lenses in soils, as these have been observed

to have crack-like behaviour. Treating saturated soils as elastic media means

that ice lens growth is predicted without the need for a frozen fringe, which is in

agreement with observations. The results from our model agree with experimental

observations of the warmest temperature at which an ice lens can form. It is

also in good agreement with the order of magnitude of ice lens growth observed

in experiments. The surge in heave during early times, which has been seen

experimentally, is also present in our results.
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8 Conclusions and future work

In conclusion, we have developed a theoretical model which we believe can

describe both fracturing in rocks as well as ice lens growth in cohesive soils. The

model is based on fundamental physical ideas, and explains the nature of the thin

films of water existing between ice and medium which are critical in the process

of fracturing. We have shown that different features can be incorporated into the

model, such as a variable permeability or temperature, to obtain results for specific

environmental conditions. Much experimental work done in previous decades

was focused around concepts such as the expansion of water upon freezing, which

resulted in the study of only specific parameters of the problem and environmental

conditions necessary for the expansion effect to be important. The existence of

a theoretical model and the analysis of the several parameters of the problem

that we have performed in this thesis can assist with steering future experimental

work in the right direction. In addition to this, if phenomena like pore ice or

freezing rates are found to be important, the model is capable of coupling a time-

dependent temperature with the resulting effective permeability to investigate

their effect on the growth rate of cracks.

While we believe that the penny-shaped geometry here is applicable to many

real-life situations, and we do not expect the results to be very sensitive to it,

the mathematical and physical ideas that we have developed can be modified

for different geometries too. For example, ice lenses in soils have been observed

to grow off vertical ice-filled cracks (Arenson et al., 2008; Style et al., 2011).

This indicates that a 2D wedge geometry could be applicable. Suitable solutions

for both the solid and liquid pressure fields can be found for a quarter plane

configuration, which could then be used to develop a similar model for the wedge

geometry.
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Appendix A

Linear Elasticity

A.1 The biharmonic equation in cylindricals

In cylindricals, the equations relating the stress to the displacement can be written

in the form:

σrr = (λ + 2G)
∂ur

∂r
+ λ

ur

r
+ λ

∂uz

∂z
, (A.1)

σθθ = λ
∂ur

∂r
+ (λ + 2G)

ur

r
+ λ

∂uz

∂z
, (A.2)

σzz = λ
∂ur

∂r
+ λ

ur

r
+ (λ + 2G)

∂uz

∂z
, (A.3)

σrz = G

(
∂ur

∂z
+

∂uz

∂r

)

, (A.4)
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A Linear Elasticity

where the subscripts represent components of the stress tensor σ and the displace-

ment vector u. Lamé’s first parameter is represented by λ, while G is the shear

modulus. Now, if we let

ur =
λ + G

G
Φrz, (A.5)

uz =
λ + 2G

G
∇2Φ − λ + G

G
Φzz, (A.6)

where the subscripts of the function Φ(r, z) describe partial differentiation. Then,

the expressions for the stress components become

σrr = λ∇2Φz − 2(λ + G)Φrrz, (A.7)

σzz = (3λ + 4G)∇2Φz − 2(λ + G)Φzzz, (A.8)

σθθ = ∇2Φz −
2

r
(λ + G)Φzr, (A.9)

σrz = (λ + 2G)
∂

∂r
∇2Φ − 2(λ + G)Φzzr, (A.10)

which, when substituted into the equilibrium equations, imply that Φ(r, z) must

satisfy the biharmonic equation:

∇4Φ = 0. (A.11)

A.2 Pressure and displacement fields in terms of Bessel

functions

We want to use the function Φ to find an expression relating the displacement and

press distribution fields. In cylindrical coordinates we note the following identity

∫
∞

0

r∇2fJ0(ξr) dr =

(
d2

dz2
− ξ2

) ∫
∞

0

rfJ0(ξr) dr. (A.12)

where J0 is the Bessel function of the first kind of order zero. If we use this with

f = ∇2Φ and then again with f = Φ we find

(
d2

dz2
− ξ2

)2

F (ξ, z) =

∫
∞

0

r∇4ΦJ0(ξr) dr = 0, (A.13)
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A.2 Pressure and displacement fields in terms of Bessel functions

where

F (ξ, z) =

∫
∞

0

rΦJ0(ξr) dr. (A.14)

The solution to equation (A.13) is

F (ξ, z) = [A(ξ) + zB(ξ)] e−ξz, (A.15)

where we have assumed that Φ decays at infinity. Now, by multiplying equation

(A.5) by rJ1(ξr) and integrating from 0 to ∞ we find

∫
∞

0

rurJ1(ξr) dr =
λ + G

G
ξ
dF

dz
. (A.16)

We use the following identity to invert the integral

∫
∞

0

Jn(xu)(xu)1/2 du

∫
∞

0

Jn(yu)(yu)1/2f(y) dy = f(x) for n ≥ −1

2
(A.17)

and find an expression for ur:

ur =
λ + G

G

∫
∞

0

ξ2 dF

dz
J1(ξr) dξ. (A.18)

Similarly,

uz =

∫
∞

0

ξ

(
d2F

dz2
− λ + 2G

G
ξ2F

)

J0(ξr) dξ, (A.19)

σzz =

∫
∞

0

ξ

[

(λ + 2G)
d3F

dz3
− (3λ + 4G)ξ2 dF

dz

]

J0(ξr) dξ, (A.20)

σrz =

∫
∞

0

ξ2

[

λ
d2F

dz2
+ (λ + 2G)ξ2F

]

J1(ξr) dξ (A.21)

,

σrr + σθθ = 2

∫
∞

0

ξ

(

λ
d3F

dz3
+ Gξ2 dF

dz

)

J0(ξr) dξ. (A.22)

We can use the equation of equilibrium

∂

∂r

(
r2σrr

)
= r(σrr + σθθ) − r2∂σrz

∂z
. (A.23)
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We substitute for the expressions for σrr + σθθ and σrz and integrate to find

σrr =

∫
∞

0

ξ

[

λ
d3F

dz3
+ (λ + 2G)ξ2 dF

dz

]

J0(ξr) dξ − 2(λ + G)

r

∫
∞

0

ξ2 dF

dz
J1(ξr) dξ

(A.24)

and therefore

σθθ = λ

∫
∞

0

ξ

(
d3F

dz3
− ξ2 dF

dz

)

J0(ξr) dξ +
2(λ + G)

r

∫
∞

0

ξ2 dF

dz
J1(ξr) dξ. (A.25)

164



Appendix B

Numerical method for time-dependent

penny-shaped problem

We use a mid-point rule to represent the cavity shape which means that inside

the nth interval

Bi =
Bi

n + Bi
n+1

2
(B.1)

at the i-th iteration in time. Then

∂Bi

∂η
= N(Bi

n+1 − Bi
n) (B.2)

and
∂Bi

n

∂t
≈ Bi − Bi−1

∆t
=

Bi
n + Bi

n+1 − Bi−1
n − Bi−1

n+1

2∆t
(B.3)

We will treat the interval which includes the tip of the ice a bit more care-

fully. We define Λ = ⌈λN⌉, so that the ice tip is in the Λth interval. Then, we
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ηΛ λ ηΛ+1

BΛ

Bλ

BΛ+1ice

approximate the width of the ice at η = λ as

Bi
λ = Bi(λ) = N(ηΛ+1 − λi)Bi

Λ + N(λi − ηΛ)Bi
Λ+1 (B.4)

Then, inside the Λth interval (as shown in figure B) we have

Bi =
Bi

Λ + Bi
λ

2
=

1

2

[
(NηΛ+1 − Nλi + 1) + N(λi − ηΛ)Bi

Λ+1

]
, (B.5)

(B.6)

∂Bi

∂η
=

Bi
λ − Bi

Λ

λi − ηΛ

= N(Bi
Λ+1 − Bi

Λ) (B.7)

and

∂Bi

∂t
=

Bi − Bi−1

∆t
=

1

2∆t

[
(NηΛ+1 − Nλi + 1)Bi

Λ + N(λi − ηΛ)Bi
Λ+1 −

− (Nηi
Λ+1 − Nλi−1 + 1)Bi−1

Λ − N(λi−1 − ηi
Λ)Bi−1

Λ+1

]
(B.8)

We denote the midpoint of each interval with σn = (2n − 1)/2N and use the

midpoint rule to approximate the integral expressions for Ps, Pl and ΘI as follows

P i
s(ηj) = −

N∑

n=1

f i
s(ηj, σn) (B.9)

P i
l (ηj) =







−
N∑

n=1

f i
l (ηj, σn) , j ≤ Λ

−
N∑

n=1

f i
l (ηΛ, σn) , j > Λ

(B.10)
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ΘI i
(ηj) =

Λi−1∑

n=1

f i
l (ηj, σn) + f i

l (ηj, σ
i
λ) (B.11)

where σi
λ = (ηΛi + λi)/2. The new functions f i

s and f i
l that we have introduced

are given by

f i
s(ηj, σn) =

1

σn

M∗

(
ηj

σn

)

(Bi
n+1 − Bi

n) (B.12)

f i
l (ηj, σn) = αjnR

i
{[

(2n + 1)Ri − 2nRi−1
]
Bi

n − RiBi−1
n +

+
[
(3 − 2n)Ri + (2n − 2)Ri−1

]
Bi

n+1 − RiBi−1
n+1

}
(B.13)

(B.14)

and

f i
l (ηj, σ

i
λ) = αjλR

i
{[

(3NηΛ − Nλi + 4)Ri + 2(NηΛ + 1)Ri−1
]
Bi

Λ

+ −(NηΛ − Nλi + 2)RiBi−1
Λ +

[
N(λi − 3ηΛ)Ri + 2NηΛRi−1

]
Bi

Λ+1 −
+ −N(λi − ηΛ)RiBi−1

Λ+1

}
(B.15)

(B.16)

We now have

P i
s(ηj) =

N∑

n=1

(µjn − µj(n−1))B
i
n where µjn =

1

σn

M∗

(
ηj

σn

)

(B.17)

P i
l (ηj) =







−
N∑

n=1

(αjnβi
n + αj(n−1)γ

i
n)Bi

n +
N∑

n=1

(αjn + αj(n−1))R
i2Bi−1

n , j ≤ Λ

−
N∑

n=1

(αΛnβ
i
n + αΛ(n−1)γ

i
n)Bi

n +
N∑

n=1

(αΛn + αΛ(n−1))R
i2Bi−1

n , j > Λ

(B.18)

with

αjn =
1

2N∆t

σn

ηj + σn

K

(
2
√

ηjσn

ηj + σn

)

and
βi

n = (2n + 1)Ri2 − 2nRiRi−1

γi
n = (5 − 2n)Ri2 − (2n − 4)RiRi−1

(B.19)
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ΘI i
(ηj) =

Λ−1∑

n=1

(αjnβi
n + αj(n−1)γ

i
n)Bi

n + (αj(Λ−1)γ
i
Λ + αi

jλβ
i
λ)B

i
Λ + αi

jλγ
i
λB

i
Λ+1 −

−
Λ−1∑

n=1

(αjn + αj(n−1))R
i2Bi−1

n − (αj(Λ−1)R
i2 + αi

jλδ
i
λ)B

i−1
Λ − αi

jλǫ
i
λB

i−1
Λ+1

(B.20)

where

αi
jλ =

λi − ηΛ

2∆t

σλ

ηj + σλ

K

(
2
√

ηjσλ

ηj + σλ

)

(B.21)

βi
λ = (3NηΛ − Nλi + 4)Ri2 − 2(NηΛ + 1)RiRi−1 (B.22)

γi
λ = N(λi − 3ηΛ)Ri2 + 2NηΛRiRi−1 (B.23)

δi
λ = (NηΛ − Nλi + 2)Ri2 (B.24)

ǫi
λ = N(λi − ηΛ)Ri2 (B.25)

(B.26)

Pressure balance:

P i
s(ηj) − P i

l (ηj) =







= H̃K̃−1 − Π̃ΘI i
(ηj) if j < Λ

= N(λi − ηΛ)
(

H̃K̃−1 − Π̃ΘI i
(ηj)

)

if j = Λ

= 0 if j > Λ

(B.27)
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Appendix C

Method for estimating integrals over

intervals with pole singularities

In general, we integrate numerically by using a gaussian quadrature, which can

deal with weak singularities at an endpoints c like log(x−c) and 1/
√

x − c. Some

intervals though require special treatment because they have stronger singulari-

ties. The kernel M(η/σ) has a pole singularity at σ = η. The elliptic integrals

K(z) and E(z) have the following expansions around z = 1:

K(z) ≈ −1

2
log (1 − z) (1 + O(z − 1)) + log 4 + O(z − 1) (C.1)

and

E(z) ≈ 1 + log (1 − z)O(z − 1) + O(z − 1), (C.2)

hence the singularities are at most logarithmic. For Snn and Tnn (i.e. the intervals

that include the pole singularity) we use the following method. Suppose we want
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C Method for estimating integrals over intervals with pole singularities

to integrate

I = −
∫ ηn

ηn−1

f(σ, η) dσ

(σ − η)
√

1 − σ2
= I− + I+ = (C.3)

= lim
ǫ→0+

[∫ η−ǫ

ηn−1

f1(σ, η) dσ

(σ − η)
√

1 − σ2
+

∫ ηn

η+ǫ

f2(σ, η) dσ

(σ − η)
√

1 − σ2

]

.(C.4)

We want to subtract the singularity in order to be left with some integral that

can be integrated numerically using a gaussian quadrature. To do so, we subtract

the residue in the following way:

I− =

∫ η−ǫ

ηn−1

f1(σ, η) − f1(η, η)

(σ − η)
√

1 − σ2
dσ + f1(η, η)

∫ η−ǫ

ηn−1

dσ

(σ − η)
√

1 − σ2
=

≈
∫ η−ǫ

ηn−1

f1
′(σ, η)√
1 − σ2

dσ + f1(η, η)

∫ η−ǫ

ηn−1

dσ

(σ − η)
√

1 − σ2
, (C.5)

which then gives for the whole integral

I =

∫ η

ηn−1

f1
′(σ, η)√
1 − σ2

dσ +

∫ ηn

η

f2
′(σ, η)√
1 − σ2

dσ + f(η, η)−
∫ ηn

ηn−1

dσ

(σ − η)
√

1 − σ2
, (C.6)

where f(η, η) = f1(η, η) = f2(η, η) since f(σ, η) is continuous at σ = η. The last

integral is a Cauchy principal value integral and when evaluated gives

−
∫ ηn

ηn−1

dσ

(σ − η)
√

1 − σ2
=

1
√

1 − η2
log

(

1 +
√

1 − η2
√

1 − η2
n−1 − ηηn−1

1 +
√

1 − η2
√

1 − η2
n − ηηn

)

.

(C.7)

The remaining integrals are approximated numerically using a Gaussian quadra-

ture since their singularities are weak enough. This analysis can be applied for

both Snn and Tnn.
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Appendix D

Assumption of uniform pressure in the

tip of the crack

In chapter 5, we used the thin film approximation inside all of the cavity in

order to describe the flow of water. This assumed that both the premelted film

occupying r < λR as well as the cavity at r > λR are thin enough for the flow

along them to be negligible. If this is not true for the r > λR region, we can

instead use the uniform pressure assumption, which implies that the flow along

the cavity dominates the flow from the porous medium into the cavity, so that any

pressure variations are evened out quickly. These two ideas represent the opposite

ends of the spectrum but we will see that they make only a small difference to

the overall characteristics of the problem.

The liquid pressure in the porous medium is given as an integral of the flux
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D Assumption of uniform pressure in the tip of the crack

into the cavity q(r, t)

pl(r, t) =
1

π

µ

Π

∫ R(t)

0

K

(
2
√

rs

r + s

)

q(s, t)
s ds

s + r
, (D.1)

The flux is related to the derivative of the liquid pressure through

q(r, t) = −2Π

µ
lim
z→0

∂p

∂z
(D.2)

and for the ice-occupied region, lubrication theory gives

q(r, t) = −2Π

µ
lim
z→0

∂p

∂z
= −2

∂b

∂t
. (D.3)

The liquid pressure now becomes

pl(r, t) = − 2

π

µ

Π

∫ λR(t)

0

K

(
2
√

rs

r + s

)
∂b

∂t

s ds

s + r
−

− 2

π

µ

Π

∫ R(t)

λR(t)

K

(
2
√

rs

r + s

)
∂pl

∂z

∣
∣
∣
∣
z=0

s ds

s + r
, (D.4)

with the condition of uniform pressure in the water-filled tip of the crack

pl(r, t) = pl(λR, t) for r > λR. (D.5)

Following the same process as in chapter 5, we can write down the equations

describing the similarity solution for ∆T = Ht−1/4. The dimensionless liquid

pressure is given by

Pl(η) = −k2

∫ λ

0

K

(
2
√

ησ

η + σ

) [
1

4
B(σ) − 1

2
σB′(σ)

]
σdσ

η + σ
−

−2k

π

∫ 1

λ

K

(
2
√

ησ

η + σ

)

P z
l (σ)

σdσ

η + σ
, (D.6)

where we denote P z
l (σ) =

∂Pl(σ, z)

∂z

∣
∣
∣
∣
z=0

. The temperature is given by equa-
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tion (5.23) as in chapter 5, hence the liquid pressure can be written as

Pl(η) = −ΘI(η) − 2k

π

∫ 1

λ

K

(
2
√

ησ

η + σ

)

P z
l (σ)

σdσ

η + σ
≡ −ΘI(η) − Φ(η). (D.7)

The pressure balance can then be re-written as

Ps(η) = (Π̃ + 1)Pl(η) + Π̃Φ(η) + Π̃C for η < λ.

= Pl(η) for η > λ. (D.8)

We use the same discretization method as in section 5.2.1. The difference

here is that since the terms P z
l cannot be written in terms of the cavity thickness

B, they have to be determined from the matrix problem. The simplest way

to write it is to assume 2N unknowns, [B1, ...BN ] and [Pl1 , ...PlΛ , P z
lΛ+1

, ...P z
lN

],

where Pln = Pl(ηn). We have N conditions from the expression for the liquid

pressure (D.7)

δjnPln +
8k

π

N∑

n=Λ+1

(λjn + νjn)P z
ln + k2

Λ−1∑

n=1

(λjn + νj(n−1))Bn +

+k2(νj(n−1) + Iλ
j )BΛ + k2Jλ

j BΛ+1 = 0, (D.9)

which is valid for j ≤ Λ, while for j > Λ the first term is replaced by PlΛ to

account for the uniform pressure condition in the water-filled tip. The pressure

balance in the ice-filled region provides us with a further Λ conditions for j ≤ Λ

(Π̃ + 1)δjnPln +
8k

π
Π̃

N∑

n=Λ+1

(λjn + νjn)P z
ln −

−
∑

n=1

(µjn − µj(n−1))Bn = −Π̃C, (D.10)

while for j > Λ we have the following N − Λ conditions

PlΛ −
∑

n=1

(µjn − µj(n−1))Bn = 0. (D.11)

The 2N linear relations described by equations (D.9)-(D.11) replace the matrix

equation of section 5.2.1.
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D Assumption of uniform pressure in the tip of the crack

We produce a phase plane of the solutions for different values of the parame-

ters for H̃ and K̃ produced by both this method and the lubrication approxima-

tion method first presented in chapter 5. The comparison can be seen in figure D.1
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Figure D.1: A plot of K̃ against H̃ for Π̃ = 2 showing the regions of existence of fast
solutions as produced by the lubrication approximation method (left) and the method of
uniform pressure in the tip, presented in this appendix (right).

where the two graphs are presented and they look identical. Indeed, only 4 points

belong to different regimes in the two plots. The (5, 1.2) changes from the prop-

agating green squares regime to the black circles, which describes cavities where

the ice cannot grow far enough towards the tip to cause high enough stresses for

fracturing. Points (11, 1.1), (12, 1) and (19, 0.6) describe partially filled cavities

in the phase plane on the left, but become fully ice-filled when we assume uni-

form pressure in the tip, in the phase plane on the right. These points are on

the boundary between different regimes which indicates that the differences are

small.
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Appendix E

Freezing temperature depression of a

spherical nucleus in a spherical pore

Consider a spherical pore of radius R with ice growing inside it. Two effects

contribute to the depression of the freezing temperature: the curvature of the

spherical ice nucleus, and the disjoining forces which become important when the

pore is almost filled with ice. This is shown by the following relation

ρsL
Tm − T

Tm

= pT + κγ =
A

6π(R − a)3
+

2γ

a
, (E.1)

where we have assumed that the ice is also spherical, with radius a. The depression

of T due to curvature melting decreases as the ice grows, whereas the disjoining

pressure pT becomes larger the closer the ice is to the rock. Since these two

effects act in opposing ways, there is a radius of ice for which the depression of
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E Freezing temperature depression of a spherical nucleus in a spherical pore

the freezing temperature is minimised. This is of interest when considering the

existence of pore ice in a porous medium. If the minimum Tm − T occurs for

an almost ice-filled cavity, we can assume that at a given undercooling all pores

larger than a given size are completely ice-filled, while the smaller ones are devoid

of ice. It is also useful to determine which term dominates the depression of the

temperature at that stage. Minimising the right-hand-side of equation (E.1) with

respect to a, we find

(R − a)4 − A
4πγ

a2 = 0. (E.2)

Defining c = A/(4πγ), we find

R = a ± c1/4a1/2. (E.3)

Setting x = a1/2 we have two quadratic equations for x

x2 ± c1/4x − R = 0 (E.4)

with four solutions

x =
∓c1/4 ±

√
c1/2 + 4R

2
. (E.5)

Of these solutions, only one satisfies 0 < a < R (the first minus and the second

plus) and gives

amin = R +
1

2
c1/4

(

c1/4 −
√

c1/2 + 4R
)

. (E.6)

For typical values of the parameters, R is about 7 orders of magnitude larger than

c1/2 which means that we can expand the square root to find

amin = R − c1/4R1/2 +
1

2
c1/2 + c1/4O(ǫ2), (E.7)

where ǫ2 = c1/2/R = O(10−7) and the terms on the right-hand-side are ordered

in decreasing size. This shows that the first and second order terms are R(1− ǫ),

where ǫ = O(10−3) − O(10−4). Substituting into equation (E.1) we find the
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minimum undercooling

min
ρsL∆T

2γTm

=
1

3
c(R − amin)

−3 + a−1
min

=
1

3
c(c1/4R1/2 − 1

2
c1/2)−3 + (R − c1/4R1/2 +

1

2
c1/2)−1

=
1

3
c1/4R−3/2(1 − O(ǫ))−3 + R−1(1 − O(ǫ))−1

= R−1O(ǫ)(1 − O(ǫ)) + R−1(1 + O(ǫ))

= R−1(1 + O(ǫ)), (E.8)

which shows that the largest contribution comes from the curvature melting term,

and it is 3–4 orders of magnitude larger than the disjoining forces effect. In

conclusion, the above analysis shows that the minimum temperature depression

is found for ice which is as large as possible (to minimize curvature melting effect)

but not close enough to the rock to cause the disjoining pressure effect to become

large. This occurs for ice which is 10−3R − 10−4R away from the pore boundary,

hence the pore can be considered ice-filled when we discuss the effect of pore ice

on the permeability of the medium.
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