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It is common wisdom that practice makes perfect; but why do some adults learn better
than others? Here, we investigate individuals’ cognitive and social profiles to test which
variables account for variability in learning ability across the lifespan. In particular, we
focused on visual learning using tasks that test the ability to inhibit distractors and
select task-relevant features. We tested the ability of young and older adults to improve
through training in the discrimination of visual global forms embedded in a cluttered
background. Further, we used a battery of cognitive tasks and psycho-social measures
to examine which of these variables predict training-induced improvement in perceptual
tasks and may account for individual variability in learning ability. Using partial least
squares regression modeling, we show that visual learning is influenced by cognitive
(i.e., cognitive inhibition, attention) and social (strategic and deep learning) factors rather
than an individual’s age alone. Further, our results show that independent of age, strong
learners rely on cognitive factors such as attention, while weaker learners use more
general cognitive strategies. Our findings suggest an important role for higher-cognitive
circuits involving executive functions that contribute to our ability to improve in perceptual
tasks after training across the lifespan.

Keywords: perceptual learning, visual perception, psychophysics, cognitive abilities, social profiles, individual
differences

Introduction

Successful interactions in dynamic environments are known to benefit from past experience.
But why do some adults learn better than others? Despite the general consensus that practice
makes us ‘‘perfect’’, the striking variability in learning ability among individuals remains largely
unexplained (Ackerman, 1987; Saarinen and Levi, 1995; Withagen and Van Wermeskerken, 2009).
Previous behavioral, neurophysiology and neuroimaging studies (for reviews, see e.g., Gilbert
et al., 2001; Fine and Jacobs, 2002; Kourtzi and DiCarlo, 2006) have advanced our understanding
of the learning mechanisms that facilitate behavioral improvements through training; yet the
socio-cognitive factors that underlie individual variability in learning ability remain largely
unknown.

In this study, we sought to understand the roles of cognitive and social capacities that
may underlie individual variability in our ability to improve in perceptual tasks through
training (cf. Hutchens et al., 2013). Training is shown to facilitate performance in a wide
range of perceptual skills in both young (Fine and Jacobs, 2002; Sagi, 2011) and older
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adults (Ball and Sekuler, 1986; Richards et al., 2006; Andersen
et al., 2010; Bower and Andersen, 2012). For instance, recent
studies show that training enhances performance on a wide
range of tasks, including brightness discrimination (Ratcliff et al.,
2006), acuity (Fahle, 1993), texture discrimination (Andersen
et al., 2010), motion direction discrimination (Ball and Sekuler,
1986; Bower and Andersen, 2012; Bower et al., 2013) and global
form perception tasks (Kuai and Kourtzi, 2013).

To understand how learning improves our ability to recognize
objects, we trained young and older participants on a global
form discrimination task that entails extracting task-relevant
information from distracting background noise similar to
identifying a friend in the crowd or a familiar object in a
cluttered scene. In particular, we used parametric manipulations
of Glass patterns that comprise oriented dot dipoles (Figure 1).
For these stimuli, small local changes to dot patterns have
a predictable influence on the perception of global forms
(concentric vs. radial patterns). Further, adding background
noise (i.e., randomly oriented dipoles) increases the difficulty
of the task and worsens our ability to discriminate between
global patterns. Our previous work (Kuai and Kourtzi, 2013)
has shown that training on this task improves global form
discrimination in both young and older adults. However,
tolerance to external noise varies across individuals, especially in
older age, suggesting that visual selection processes may impose
limits to perceptual learning and result in individual variability.
Thus, we predict that variability in perceptual learning tasks may
relate to cognitive (i.e., attentional, memory) skills that facilitate
extracting relevant information while suppressing distracting
patterns.

To this end, we developed a battery of cognitive tests and
theory-grounded individual differences measures, assessing the
extent to which cognitive abilities combine with individual
strategies to determine learning performance. Next, we sought
to relate cognitive and social profiles from participants of
all ages to individual learning ability in the context of a
visual discrimination task. We asked whether an individual’s
cognitive and social skills profile predicts training-induced
improvements in perceptual tasks and tested for abilities that
mediate learning independent of chronological age. While there
is no single guiding theory that explains learning-dependent
improvement in nonverbal tasks, previous studies have linked
accuracy of learning to variables such as individual’s social
perceptions (including cognitive style; Sternberg and Zhang,
2011), motivation (Dweck, 1986; Lau and Roeser, 2008), self-
confidence and self-esteem (Lamont et al., 2015). Thus, we
tested the hypothesis that these social factors may interact
with cognitive processes that support our ability to extract
relevant information and facilitate behavioral improvement
in perceptual tasks through training in young and older
adults.

Materials and Methods

Participants
Sixty participants, 30 young adults (11 male and 19 female
ranging in age from 19 to 36 years old, M = 21.43), and 30 older

FIGURE 1 | Example stimuli. Examples of Glass pattern stimuli (stimulus
parameters are adjusted for demonstration purposes). The top panel shows
Glass patterns stimuli with different spiral angles from radial (0◦) to concentric
(90◦). The bottom panel shows radial Glass patterns at different levels of
signal-to-noise-ratio (SNR) from 0.43 to 9.

adults (17 male and 13 female, ranging in age from 65 to 90
years, M = 73.60) took part in the study. All participants had
normal to corrected vision and underwent the following visual
tests: Visual acuity (Bailey-Lovie near and far acuity tests; Bailey
and Lovie, 1976), contrast sensitivity (Pelli-Robson Contrast
Sensitivity test; Pelli et al., 1988), and color blindness. None of
the participants had been exposed previously to the task. Older
participants also completed theMiniMental exam (Folstein et al.,
1975), and all scored within the normal range (25–30). This
study was approved by the University of Birmingham Ethics
Committee.

Recruitment
Two strategies were used to guide recruitment. Young
participants were recruited from university’s research
participation scheme; whereas, older participants were
recruited from the university’s database for research into
aging (which is drawn from university alumni and therefore
indicates a secondary education), or by adverts placed in
local publications. Most participants reported having some
educational background (16 were University alumni, 6
reported no educational achievement). Comparison of means
indicates that there are no significant differences between
older participants scores on study variables due to avenue
of recruitment. Further, older participants in our study were
in frequent contact with research groups in the university
and were regularly asked to participate in various studies.
Thus, they were likely to have had exposure to the same
types of equipment and questionnaires as the younger adults
in the study. Importantly, our experiments were conducted
by well-trained researchers that explained in detail and
repeatedly the tasks and instructions and monitored closely
progress in the experiment, ensuring that participants were
familiar with the computer equipment and understood well
all aspects of the task and instructions in questionnaires.
Finally, all young and older participants were paid for their
participation.
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Visual Learning Task
We used Glass patterns (Glass, 1969) as stimuli that are generated
by pairing randomly positioned dots to form dipoles (dot
pairs). Our stimuli comprised 600 white dot pairs (dipoles)
displayed within a square aperture (7.5 × 7.5◦) on a black
background. Each dipole consisted of two 0.0375◦ dots with
0.26◦ separation between them. By placing dipoles tangentially
and orthogonally to the circumference of a circle centered
on the fixation dot we created concentric and radial patterns
respectively. We also generated intermediate Glass patterns
between these two pattern types by parametrically varying
the spiral angle between 0◦ (radial) to 90◦ (concentric). The
spiral angle was defined as the angle between the dot dipole
orientation and the radius from the center of the dipole to
the center of the stimulus aperture. Further, we manipulated
signal-to-noise ratio (SNR; i.e., the ratio of signal dipoles to
noise dipoles: randomly positioned and oriented dipoles) and
presented stimuli at 30%, 45%, 60%, 75%, 90%, and 100% signal
corresponding to SNR of 0.43, 0.82, 1.5, 3, 9 and∞, respectively.
We set the lowest SNR at the detection threshold of Glass
patterns in noise (29.8 ± 1.59% signal) as indicated by our
pilot and previous studies (Kuai and Kourtzi, 2013). A new
pattern was generated for each stimulus presented in a trial,
resulting in stimuli that were locally jittered in their position.
These parameters were chosen based on pilot psychophysical
studies and in accordance with previous work (Wilson and
Wilkinson, 1998; Kuai and Kourtzi, 2013) showing that coherent
form patterns are reliably perceived for these parameters. All
participants were familiarized with the task and stimuli during
a short practice session (100 trials). Participants took part in
one pre- and one post-training session without error feedback
and four to five training sessions with feedback. Feedback was
delivered by an auditory signal (beep) when the participants
responded incorrectly in a trial. On each trial, a stimulus pattern
was presented for 200 ms followed by a 500 ms blank screen.
Participants were instructed to report whether the pattern was
radial or concentric. We measured participants’ performance
using a 3-down-1-up staircase method resulting in 79.4%
convergence level. That is, task difficulty increased following
correct response in three trials, while it decreased following
one incorrect response. Task difficulty was manipulated by
changing the spiral angle (i.e., spiral angles closer to 0◦ or 90◦

corresponding to radial and concentric patterns were easier to
discriminate than spiral angles closer to 45◦). We measured
spiral angle thresholds by averaging the last two-third reversals
in each staircase. In the pre- and post-training sessions, we
measured participants’ performance using three to five staircases
with nine or ten up-down reversals at each SNR. In each training
session, participants received training on 1200–2000 trials with
feedback.

Individual Differences Measures
Previous research exploring individual variability in aging has
typically used measures of control beliefs and self-reported
measures of personal approaches as a means for detecting
individual variability. However, these measures are more
indirect and general in their focus. Here, we develop a more

direct measure of the influence of individual differences and
motivational factors on learning. In particular, we investigated
learning styles (Biggs, 1988; Evans et al., 2009; Sadler-
Smith et al., 2009) within the context of the applied social
cognition framework drawn from work exploring intrinsic
motivation (Dweck, 1986) and the influence of personal self-
esteem (Rosenberg et al., 1995). Additionally, evidence from
the field of social psychology suggests that style of thinking
(Sternberg’s Theory of Mental Self Government; Sternberg,
1988, 1997; Sternberg and Grigorenko, 1997) or learning
approach (J B. Biggs’ ‘‘Theory of Learning Approaches’’; Biggs,
1988), influences learning outcome (Gully and Chen, 2010).
These social constructs including: self-esteem (Entwistle and
Ramsden, 1983), and intrinsic motivation (Dweck, 1986; Lau
and Roeser, 2008) have been argued to affect individuals’
ability and confidence to learn new information. While research
has sought to explore the role of individual differences in
learning ability, it has largely overlooked the role of these
social constructs on learning ability across the lifespan (cf.
Hutchens et al., 2013). The individual difference measures
consisted of the following items: Deep vs. surface learning
style, strategic approach, achievement motivation, and self-
esteem.

To test the ecological validity of individual difference
questionnaires, we conducted pilot trials with 60 (30 young
and 30 older) participants. Participants were asked to rate the
questions included in the individual difference measures for
clarity. Items rated highly by most participants as clear and
comprehensible were included in the questionnaires used. These
measures were then administered to the 60 participants in our
study. In order for the individual differences measures to be
consistent with the scoring of the cognitive variables, three of the
scales (strategic approach, AMT, and self-esteem) were re-coded;
i.e., a low score indicates a high rating on the scale. The individual
difference measures consisted of the following scales:

Deep-Surface Learning Style
Participants were presented with five statements, taken from
Tait et al.’s (1998) Approaches and Study Skills Inventory for
Students (ASSIST; Tait et al.’s, 1998). These included, ‘‘I look at
evidence carefully to reach my own conclusions;’’ and ‘‘What I
have learned frequently seems unrelated to other bits and pieces’’
(reverse coded). All items were scored 1 = disagree completely
through to 5 = agree completely. The mean of the 5-items was
taken as a measure of learning style with high scores indicating
deep learning style, while low scores indicating a ‘‘non-deep’’
surface learning style (∀ = 0.78).

Strategic Approach
The strategic approach scale comprised three subscales, also
adapted from the ASSIST scale (Tait et al.’s, 1998). These
subscales consisted of: (1) a strategic approach scale, with items
such as: ‘‘I pay careful attention to any advice I am given, and
try to improve my understanding’’; (2) an effort scale, with
items including, ‘‘I generally keep working hard even when
things aren’t going all that well’’; and (3) an organized scale,
with items like, ‘‘I carefully prioritize my time to make sure
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I can fit everything in.’’ All items were scored 1 = disagree
completely through to 5 = agree completely. After recoding,
the mean of all of the items across the three subscales was
taken as a measure of a ‘‘strategic learning approach’’, with low
scores indicating a strategic learning approach towards learning
(∀ = 0.75).

Achievement Motivation
The achievement motivation scale consisted of 6-items, such as:
‘‘I work to cultivate people who will be helpful to me in the
future.’’ All items were scored 1 = disagree completely through
to 5 = agree completely. After recoding, the mean of the items was
taken as a measure of achievement motivation, with low scores
indicating high achievement motivation (∀ = 0.69).

Self-Esteem
Self-esteem was measured using a 10-item scale (Rosenberg,
1965) including items like, ‘‘On the whole, I am satisfied with
myself.’’ All items were scored 1 = disagree completely through
to 5 = agree completely. After recoding, the mean of the items
was taken as a measure of self-esteem, with low scores indicating
positive self esteem (∀ = 0.78).

Cognitive Tasks
We used a battery of cognitive tasks to measure a range
of abilities that have been suggested to affect learning
ability. In particular, previous work provides evidence for the
importance of working memory (WM) capacity (Law, 2000),
attention span (Hambrick and Engle, 2002), processing speed
(Salthouse and Ferrer-Caja, 2003; Mayes et al., 2009) and
cognitive inhibition (St Clair-Thompson and Gathercole, 2006)
in learning ability in young adults. Further, work in older
adults suggests that individual differences in cognitive decline
may drive age related differences in perceptual learning ability
(Hultsch et al., 1990). Here, we tested the young and older
participants on the following tasks: WM, cognitive inhibition,
selective and divided attention (DA) and multiple object
tracking.

Memory: Working Memory Task
The WM task was designed based on the sequential WM task
used by Luck and Vogel (Luck and Vogel, 1997). Colored dots
were displayed on a gray background for 500 ms, followed by
a 1000 ms delay. After the delay, the dot display re-appeared
with one of the dots highlighted by a white square. Participants
reported whether the highlighted dot had remained the same
color on the second presentation. An initial display of two
dots was used. By using a two down one up staircase and
a step size of 1 we manipulated the number of dots in the
display, resulting in 70.7% performance. For example; each
time the participant had two responses correct in a row an
additional dot would be added to the next trial’s display, while
for every incorrect answer, one dot was removed from the
display for the next trial. WM thresholds (i.e., number of
dots in the display) were calculated by averaging the last two-
third reversals in each staircase. For each trial, each dot was
randomly assigned a color, and one dot was randomly chosen

as the target. Each dot had a radius of 12 pixels and dots were
displayed in random locations within a 10 × 10 grid (jittered
+/− 10 pixels). Each run consisted of 10 staircase reversals,
participants completed 3 runs, after which we computed the
average threshold as their WM score. In this task, a higher
score (greater number of items in display) denotes better
performance.

Inhibition: Stop-It Task
We used the Stop-It task developed by Verbruggen et al.
(Verbruggen et al., 2008), which measures response inhibition
based on the stop-signal paradigm (Lappin and Eriksen, 1966).
Participants were asked to respond to the ‘‘go signal’’ (a
white square or a circle presented in the center of a black
background, displayed for 250 ms) by pressing a right or left
response key to indicate the shape’s identity. The ‘‘go signal’’
remained on the screen until the participant responded, or for
a maximum of 1,250 ms. ‘‘Go signals’’ were separated by a
white fixation cross, displayed for 2,000 ms. On 25% of the
trials a ‘‘stop signal’’ (750 Hz auditory tone, presented for 75
ms) was presented after the ‘‘go signal’’ had been displayed,
instructing participants to inhibit their response for that trial.
This delay (SSD: Stop Signal Delay) varied across trials. It
was initially set at 250 ms and adjusted continuously using a
staircase tracking procedure: When inhibition was successful,
SSD increased by 50 ms; when inhibition was unsuccessful,
SSD decreased by 50 ms. The task comprised of 3 blocks
which consisted of 64 trials each. We used the latency of
the stop process (SSRT), as initiated by the stop signal (see
Verbruggen et al for full details), as our measure of cognitive
inhibition. Poor inhibition is indicated by a slow SSRT; that
is lower scores (faster SSRT) indicate good performance on
this task.

Attention: Multiple Object Tracking Task
Multiple object tracking tasks measure human attention span
and short term memory. We designed a task similar to that
used by Sekuler et al. (2008). For each trial, a display of
10 stationary, blue and red dots (radius of 8 pixels each)
appeared on a gray background for 1000 ms. After this
initial fixation period the target red dots turned blue and all
dots moved around the display for 5000 ms. Once the dots
were stationary, a number (1–10) appeared in each blue dot.
Participants were asked to indicate where the red dots were
in the display by entering their corresponding numbers. This
task consisted of 80 trials (20 per condition comprising 2,
3, 4 and 5 red target dots). Dots were assigned to random
positions within a 10 × 10 grid (with a jitter of +/− 10
pixels), ensuring all dots were at least 16 pixels apart. Target
locations and the angle at which each dot should move were
randomly assigned for each trial. Dots had a maximum velocity
of 2 pixels per frame and the Euclidean distance between
two disks was always less than the diameter of a disk. If
dots collided in the display, motion direction was altered.
Task performance was measured by plotting the percentage
of correctly tracked dots for each condition and calculating
the slope of the fitted performance across conditions. Thus, a
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lower score (shallower slope) indicates better performance in
this task.

Attention: Useful Field of View
Useful Field of View (Visual Awareness Inc.) is a task that
assesses three attentional processes: processing speed, DA
and selective attention (SA). This version of the task is
explained in full by Edwards et al. (2005, 2006), who also
report a test-retest reliability of 0.74. Each trial consisted of
4 stages: (1) a fixation bounding box (1 s duration), (2)
the test stimuli (variable duration; see below), (3) a white
noise visual mask to control for after images (1 s duration),
and (4) the response screen (displayed until a response is
made). Participants responded using the mouse. The first
test, ‘‘processing speed’’, required participants to identify a
centrally presented stimulus. This stimulus (a silhouette of a
2 cm × 1.5 cm of a car or a truck) was presented on a
black background inside a 3 cm × 3 cm white bounding
box. Participants were asked to indicate whether the central
stimulus comprised a car or truck by mouse click. The second
task, ‘‘divided attention’’, required participants to identify the
central stimulus (car vs. truck), and also identify the location
of a simultaneously presented peripheral stimulus (2 cm ×
1.5 cm silhouette of a car). This peripheral stimulus was
fixed at 11 cm from the central stimulus at one of 8 radial
locations. The third task ‘‘selective attention’’ followed the same
procedure as ‘‘divided attention’’ but the target stimuli were
presented in the context of distractors (47 triangles of the
same size and luminance as the targets). Participants were
instructed to ignore the triangles, and indicate whether the
central stimulus comprised a car or a truck, as we all the
location of the peripheral target. Using a double staircase
method the duration of the display within each task varied
between 16.7 ms and 500 ms. This allowed us to establish
the minimal display duration at which the participant could
correctly perform each of the three tests 75% of the time.
This means that a lower score (shorter duration) indicates
better performance. Further, this manipulation allowed for
the tasks to be adjusted for difficulty across age groups
appropriately.

Data Analysis: Partial Least Squares Regression
Modeling
PLS regression is a component based multivariate statistical
technique that allows predicting single or multiple response
variables Y (i.e., threshold reduction) from highly correlated or
collinear multiple explanatory variables X (i.e., cognitive abilities
and individual differences variables, respectively; Wold, 1985).
In contrast to principal components regression, the goal of PLS
regression is not to form only components that capture most of
the information in X, but components that are also predictive of
Y. As such, the algorithm reduces the dimensions of X through
a weighted linear combination of X variables to form orthogonal
components that are correlated to the dependent variable. The
analysis shows how much of the variation in Y and is accounted
for by each additional component obtained from X. For Y
(threshold reduction) cumulative variance can be interpreted in

the same way as unadjusted R-square. Adjusted R-square shows
the adjusted version of the cumulative Y variance.

Results

To provide a sensitive and controlled measure of perceptual
learning, we asked young and older participants to discriminate
global visual forms (radial vs. concentric) defined by simple
patterns of dots (Glass patterns). We manipulated participants’
ability to perceive these global patterns by varying: (a) the
amount of background noise (i.e., randomly placed dots), and
(b) the similarity between global forms, using linear morphing
between concentric and radial patterns. To quantify the effect of
learning, we used the following index:

Threshold reduction =
Thpre − Thpost
Thpre − Thpost

where Th(session) is themean shape discrimination threshold for
each session.

Performance on this form discrimination task improved
through training in both young and older adults (i.e., a reduction
in the signal needed for 79.4% threshold performance was similar
across age groups) with overall better performance for young
than older participants (Figure 2A). In particular, a mixed
design ANOVA, showed a significant main effect of session
(F(1,58) = 147.82, p = 0.001) and age (F(1,58) = 14.84, p = 0.002), but
no significant interaction between age and session (F(1,58) = 2.62,
p = 0.11). Interestingly, we observed strong individual variability
in performance for both young and older adults (Figure 2B).

Individual Differences
To investigate the sources of this individual variability in
learning improvement, we used the battery of cognitive tests
(multiple object tracking: MOT, DA, SA, WM, and cognitive
inhibition) and theory-grounded individual differencesmeasures
(learning style: deep vs. surface, strategic approach, self-esteem,
and achievement motivation). Consistent with previous studies
(Hedden and Gabrieli, 2004), these measurements showed that
older adults differ in cognitive abilities and social profile from
young adults (Table 1). Specifically, older adults had significantly
lower performance in: cognitive inhibition (t(58) = −2.454,
p = 0.019), divided attention (t(49) =−3.242, p = 0.003), selective
attention (t(48) = −6.288, p = <0.001) and WM (t(58) = 4.046,
p=<0.001) tasks compared to young adults. Further, older adults
were more likely to engage in deep learning (t(54) = −2.715,
p = 0.009), and rely on achievement motivation as a drive for
learning (t(55) = −4.291, p = <0.001) than young adults (See
Table 1).

We then sought to relate the measured cognitive and social
abilities to individual learning ability across age groups, using
a partial least squares (PLS) regression model. This procedure
allows us to test the predictive utility of a model even in smaller
datasets (30 young vs. 30 older adults), that otherwise could be
subjected only to correlational analysis. Our results show that a
combination of cognitive abilities (i.e., performance in cognitive
inhibition, MOT, DA, WM tasks), and individual differences
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FIGURE 2 | Behavioral improvement in visual discrimination task.
(A) Normalized (z-score) thresholds (deg of spiral angle at 79.4%
threshold performance) across training sessions for young (circles) and
older (crosses) participants. (B) Normalized (z-score) threshold reduction
(i.e., difference in thresholds between post- and pre-training) for young
and older participants. Box plots show individual variability in learning

performance: in threshold performance (z-scores) ranged from −1.25 to
2.02 for younger adults and from −2.87 to 0.74 for older adults. The
upper and lower error bars display the minimum and maximum data
values and the central boxes (“bowties”) represent the interquartile range
(25th to 75th percentiles). The notch of the “bowtie” represents the
median.

TABLE 1 | Performance in cognitive and individual differences measures.

Age group Mean Std. error

Cognitive inhibition* Young 280.55 5.84
Older 315.81 13.13

Multiple object tracking Young −23.10 0.86
Older −20.08 1.28

Divided attention** Young 33.48 6.31
Older 85.77 14.84

Selective attention*** Young 87.05 13.18
Older 212.67 14.62

Working memory*** Young 4.56 0.20
Older 3.38 0.21

Learning style* Young 3.59 0.10
Older 4.00 0.10

Strategic approach Young 3.94 0.06
Older 3.83 0.11

Achievement motivation*** Young 3.21 0.12
Older 3.87 0.09

Self esteem Young 0.02 0.14
Older 3.87 0.08

Mean scores and standard errors for each cognitive and individual difference

measures for young and older participants. All variables, other than working

memory, are coded so that lower scores indicate higher performance on cognitive

tasks and a higher rating on individual differences measures. Working memory

is coded so that higher scores indicate high performance. The learning style

(surface/deep) variable is coded so that a low score (1) indicates surface learning

while a high score (5) indicates deep learning. Asterisks indicate a significant

difference between the two age groups. *p < 0.05, **p < 0.01, ***p < 0.001.

variables (i.e., extent to which one engages in deep vs. surface
learning, motivational impetus, and higher self-esteem), account
for 60% of the variance in performance threshold reduction
independent of age (Table 2). Excluding age from the PLS model
showed similar results; that is, cognitive and social variables alone

accounted for a significant portion (i.e., 58%) of the explained
variance in performance. Further, we found that learning is
best predicted by the ability to inhibit irrelevant information
(cognitive inhibition), and select targets (MOT). That is, PLS
values are higher for these cognitive variables when age is
included or excluded from the model (Figure 3). Removing
these cognitive variables from themodel reduces substantially the
explained variance (i.e., 46%).

Comparing Strong and Weaker Learners
To provide an alternative approach to the study of individual
variability, we compared strong andweaker learners independent
of age using partial correlations. To assign participants to these
performance groups we first normalized threshold reduction
scores within each age group. Participants with a normalized
score (z-score) of above 0 were classified as strong learners
while those with a score below 0 were classified as weaker
learners. We correlated cognitive variables and individual
difference measures with threshold reduction, while controlling
for pre-training performance in the visual form discrimination
task and age. This analysis revealed that different cognitive
abilities predict individual learning ability in strong vs. weaker
learners (Figure 4), despite similar performance in these
measures between groups (Table 3). Learning improvement
(i.e., higher threshold reduction) correlated with higher SA
scores (r(24) = −0.499, p = 0.011) for strong learners, while
with cognitive inhibition (r(27) = −0.522, p = 0.006), working
memory (r(30) = 0.411, p = 0.037) and divided attention
(r(24) = −0.479, p = 0.021) scores for weaker learners. These
results were supported by power calculations indicating that we
have 80%–87% power to detect correlations of 0.48 for the sample
sizes included in this study.
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TABLE 2 | Variance predicted by the PLS model.

Latent factors Adjusted R-square

Latent factor 1 0.547
Latent factor 2 0.599
Latent factor 3 0.600

Latent factors

Latent factor 1 Latent factor 2 Latent factor 3

Cognitive inhibition −0.381 −0.297 −0.162
MOT −0.330 −0.474 −0.311
Divided attention −0.392 0.259 0.236
Selective attention −0.249 0.483 −0.663
Working memory 0.351 −0.223 0.035
AMT −0.351 0.129 0.517
Self esteem −0.292 0.045 0.358
Learning style −0.217 −0.068 0.226
Age −0.429 0.325 −0.248
Strategic approach −0.051 −0.545 0.395

Adjusted R2 values, and loadings of each of the cognitive and individual differences measures onto each of the components in the PLS model.

FIGURE 3 | The role of cognitive and social profiles in learning
variability. Outcome of the PLS model showing predictive utility of each
variable in the PLS model when (A) age is included or (B) excluded from the
model. Predictive utility values indicate the relative importance of each variable
in predicting learning performance (i.e., threshold reduction). Variables included

in the model comprise: (i) cognitive abilities measures (black bars): cognitive
inhibition, multiple object tracking ability (MOT), Age, divided attention (DA),
selective attention (SA), working memory (WM); (ii) individual differences
measures (white bars): achievement motivation (AMT), self-esteem, learning
style and strategic approach.

Modulatory Effects of Age
Our findings so far suggest that both cognitive and individual
difference variables play a role in determining learning ability
across age. However, this does not rule out the possibility
that age may modulate the relationship between cognitive
and individual difference variables. To test this hypothesis,
we conducted additional analysis using threshold reduction as
dependent variables in the PLS model. Our results showed
that age modulates the importance of cognitive (i.e., cognitive
inhibition, attention span as assessed by divided and SA)
and social (i.e., learning style, strategic approach, motivational

impetus and self-esteem) variables in predicting learning ability
(Table 4), suggesting that some variables becomemore important
in predicting threshold reduction at older age. Specifically, the
pattern emerging is that age directly impacts cognitive inhibition,
learning style and esteem. Further, older adults drew on a
different style to guide their learning of novel information as
compared to that of younger participants: they are motivated
to look for more detail and a greater overall understanding of
the task. Additionally, higher personal self-esteem is significantly
more important for higher learning improvement in older
participants. That is, older adults rely more on deep or strategic
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TABLE 3 | Cognitive and individual differences measures for strong and weaker learners.

Correlations with threshold reduction (r values)

Mean n-size (strong in brackets) Strong learners Weaker learners

Cognitive inhibition 294.32 (302.60) 27 (30) −0.003 −0.522**
Multiple object tracking −22.28 (−20.80) 27 (30) −0.056 −0.376
Divided attention 56.33 (68.78) 24 (26) −0.306 −0.479*
Selective attention 160.07 (148.81) 24 (26) −0.499* −0.251
Working memory 3.97 (3.97) 27 (30) 0.054 0.411*
Learning style 3.74 (3.84) 27 (30) −0.281 0.279
Strategic approach 3.79 (4.01) 27 (30) −0.316 0.052

Mean performance and standard errors for cognitive variables and individual difference measures. Results for strong and weaker learners are displayed outside vs. inside

brackets, respectively. Partial correlations of cognitive and social variable scores with threshold reduction are reported separately for strong and weaker learners. All

variables with the exception of working memory are coded so that a low score indicates strong performance; that is, negative correlations signal that high scores/ratings

on these variables correlate with increased threshold reduction. For working memory, high performance correlates with increased threshold reduction, as shown by the

positive correlation. For learning style, a negative correlation indicates that surface style correlates with better threshold reduction, while a positive correlation indicates

that deep learning style correlates with better threshold reduction.

FIGURE 4 | Comparing profiles for strong and weaker learners. Results of
partial correlations (r values) for “strong” and “weaker” learners. Threshold
reduction is correlated with cognitive and individual differences measures, while
controlling for pre-training performance in the visual discrimination task and age.

Note that for graphical representation purposes, the signs of any negatively
coded variables have been reversed, indicating that increased scores in
cognitive and individual difference measures correlate with increase in threshold
reduction.

learning strategies than young adults, as self-esteem mostly and
to a lesser extent cognitive abilities decrease with age.

Discussion

Our findings provide evidence that an individual’s cognitive
and social skills profile rather than age per se predicts the
ability to improve in perceptual judgments through training.
Testing for age related differences alone may obscure the role
of these variables in measuring individuals’ learning ability. In
contrast to previous studies focusing on age differences (Ball and
Sekuler, 1986; Richards et al., 2006; Andersen et al., 2010; Bower
and Andersen, 2012), we demonstrate that attentional capacity,
learning style and intrinsic motivation are critical for improving
in perceptual tasks through training. Interestingly, our results
show that strong learners are better able to select the most

appropriate cognitive strategy (i.e., SA to targets) to improve at
the task in hand (i.e., visual form discrimination in noise), while
weaker learners rely on more general cognitive strategies.

Our work focuses on learning as a result of training
on perceptual tasks. Previous studies have suggested that
aging may result in reduced efficiency (Bennett et al., 1999),
increased internal noise (Bennett et al., 2007) or reduced
tolerance to external noise (Bower and Andersen, 2012) affecting
performance in perceptual tasks. However, learning in young
adults has been suggested to enhance performance efficiency
(Gold et al., 2004), improve exclusion of external noise and
reduce internal noise (Dosher and Lu, 1999). Extending beyond
these previous studies, we show that perceptual learning is
influenced by executive functions (i.e., the ability to inhibit
distractors and select task-relevant features) and social attitudes
(i.e., strategic or deep learning). These findings are consistent
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TABLE 4 | (A) Adjusted R-square values for PLS Regression without Age as an independent measure. (B) PLS model with threshold reduction as dependent variable
and age as a moderator.

(A)
Latent factors Adjusted R-Square

1 0.421
2 0.564
3 0.588

(B) Dependent variables

Unstandardized estimates

Independent variables Threshold reduction Age (moderator of independent variable)

Cognitive inhibition 0.868 1.111**
MOT 1.248 0.666
Divided attention 0.962 1.030*
Selective attention 0.941 1.056*
Working memory 1.209 0.736
Self-esteem 0.438 1.345***
Learning style −0.720 −1.241***
Strategic approach 1.000 1.134*
AMT 0.9380 1.059*

Unstandardized estimates for cognitive and individual difference measures (left column) and the interaction between these independent variables and age (right column).

Increased values (from left to right column) indicate the moderating effect of age on the independent variables. For learning style, a low score indicates surface learning and

a high score indicates deep learning; thus a negative sign indicates that strong “surface learning style” predicts strong learning performance. Note: *p < 0.05, **p < 0.01

***p < 0.001.

with previous studies (Kuai and Kourtzi, 2013) showing that
visual form learning in aging is limited by visual selection
processes rather than fine feature processing. Further, the ability
to suppress irrelevant background information has been shown
to deteriorate with age (Betts et al., 2005, 2009) possibly due
to weakening of inhibitory processes (Leventhal et al., 2003;
Hua et al., 2010) or attentional functions in aging (Ball et al.,
1990; Kane et al., 1994). Interestingly, in our previous work
(Mayhew and Kourtzi, 2013) we have shown that visual shape
learning engages primarily parietal regions in older adults,
suggesting a stronger role of attentionally-guided learning
that enhances the perceptual salience of behaviorally relevant
targets in cluttered scenes (Gottlieb et al., 1998; Corbetta and
Shulman, 2002; Roelfsema and van Ooyen, 2005; Mevorach et al.,
2010).

Our findings have potential implications for understanding
compensatory brain mechanisms that may support individual
ability for learning in older age. Understanding the socio-
cognitive profile of individuals and how it influences learning
ability is critical for determining the brain mechanisms that
underlie individual variability and may support better learning
in some older adults than others. For example, our findings
suggest that older participants find it more difficult to inhibit
irrelevant details. It is possible that older adults may attempt
to compensate for this change in cognitive capacity by drawing
on strategic learning, or the use of deep learning strategies
focusing on more thorough understanding of new information.
In future work, it would be interesting to test whether varying
the training task recruits different socio-cognitive variables as
best predictors of learning ability. It is possible that cognitive
inhibition and attention are critical when detecting targets from

noise and discriminating highly similar stimuli. However, other
cognitive variables (e.g., WM) may be more important in the
context of associative or probabilistic learning tasks. Further,
learning in other domains, such as verbal or motor learning,
may be influenced by a different set of socio-cognitive abilities.
It may also be interesting to enrich the individual difference
measures using a measure of control beliefs (Hutchens et al.,
2013), as control beliefs may offer further insights into the factors
that learners perceive as beneficial for their general learning
ability.

Overall, our findings have practical relevance for the
optimization of training programs targeting cognitive abilities
and social attitudes, which are critical for improvement in
perceptual tasks but more importantly for generalizing learning
to real-life situations. Future research would investigate why
older people may adopt different strategies to maximize learning;
and how readily they may adopt alternate strategies for learning,
if they diverge from the ones that they may feel comfortable
employing.
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