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Mirrors to Toric Degenerations via

Intrinsic Mirror Symmetry

Evgeny Goncharov

Abstract

We explore the connection between two mirror constructions in Gross-Siebert

mirror symmetry: toric degeneration mirror symmetry [G2, GS1, GS2, GS3]

and intrinsic mirror symmetry [GS7, GS8]. After briefly exploring the case of de-

generations of elliptic curves, we show that the Gross-Siebert mirror construction

for minimal relative log Calabi-Yau degenerations generalizes that for divisorial

toric degenerations X̄ Ñ S of K3-s that have a smooth generic fibre. We achieve

this by constructing a resolution of X̄ Ñ S to a relative minimal log Calabi-Yau

degeneration X Ñ S and comparing the algorithmic scattering diagram D̄ giving

rise to the toric degeneration mirror ˇ̄X and the canonical scattering diagram D

giving rise to the intrinsic mirror X̌. Moreover, we vastly expand the construction

and obtain a correspondence between the restriction of the intrinsic mirror to the

(numerical) minimal relative Gross-Siebert locus and the universal toric degen-

eration mirror. We also discuss generalizing the results to higher dimensions.

In particular, we construct log smooth resolutions for a natural family of toric

degenerations of Calabi-Yau threefolds.
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CHAPTER 1

Introduction

This project arose from the desire to understand the connection between vari-

ous mirror symmetry constructions in the Gross-Siebert program. More precisely,

we were interested in establishing a correspondence between the recently devel-

oped intrinsic mirror symmetry of [GS7, GS8], the toric degeneration mirror

symmetry of [G2, GS1, GS2, GS3], and the classical Batyrev (hypersurfaces,

[B]) and Batyrev-Borisov (complete intersections, [BB1]) mirror symmetry.

Batyrev mirrors. Batyrev and Batyrev-Borisov mirror symmetry are the most

famous classical mirror symmetry constructions. They provide many examples

of mirrors and incorporate the initial mirror symmetry observations (e.g. the

construction of Greene and Plesser [GP]).

Let ∆ Ď Rn be an n-dimensional lattice polytope with 0 P Int∆. Then the

dual of ∆ is defined as

∆˚
“ tx P pRn

q
˚

| xx,∆y ě ´1u

and we also have 0 P Int∆˚. We say that ∆ is reflexive if ∆˚ is also a lattice

polytope. One can check that p∆˚q˚ “ ∆ so reflexive polytopes come in pairs

p∆,∆˚q (we say that a polytope ∆ is self-dual if ∆ – ∆˚ as lattice polytopes).

Following [B], one can construct Batyrev mirrors as follows. A pair

p∆,∆˚q of reflexive polytopes gives rise to projective toric varieties pP∆,OP∆
p1qq,

pP∆˚ ,OP∆˚ p1qq. Let s P OP∆
p1q, s˚ P OP∆˚ p1q be two sections and define

Xs :“ Zpsq Ď P∆, Xs˚ :“ Zps˚
q Ď P∆˚ .

Then for a general (∆-regular in the sense of [B, Definition 3.1.1]) choice of s

and s˚, we call Xs and Xs˚ dual Batyrev mirrors. In particular, they possess a

duality of stringy Hodge numbers.

The setup for Batyrev-Borisov mirror symmetry of complete intersections is

similar, but the combinatorics is more involved, see [BB1, G1] for details.

Toric degeneration mirrors. Toric degenerations of Calabi-Yau varieties are a

natural class to discuss mirror symmetry [G2, GS1, GS2, GS3] and have been

an object of study of the Gross-Siebert approach to mirror symmetry for the last

1



2 1. INTRODUCTION

few decades. Toric degeneration mirrors are double dual in the sense that for any

toric degeneration X̄ Ñ S obtained via the reconstruction algorithm of [GS3],

taking the mirror to the mirror degeneration (i.e. performing the reconstruction

algorithm twice) gives back X̄ Ñ S. Toric degeneration mirrors generalize most

of the classical mirror symmetry constructions. In particular, they generalize the

Batyrev mirror symmetry of hypersurfaces [B] (and the Batyrev-Borisov mirror

symmetry of complete intersections [BB1]) as we explain below (see [G1] for

details).

Let k be an algebraically closed field of characteristic 0 and let S :“ SpecR

where R is a complete1 discrete valuation k-algebra.

Remark 1.1. The reader may think of R “ kJtK, but we do not wish to

restrict to this case. Note that for any complete discrete valuation k-algebra R,
choosing a uniformizing parameter for R defines a map kJtK Ñ R.

Let 0 P S denote the closed point. Roughly, a toric degeneration is a flat

proper morphism ḡ : X̄ Ñ S of varieties such that the central (or “special”) fibre

X̄0 is a union of toric varieties meeting along toric strata. Moreover, away from

the singular (or discriminant) locus Z Ď X̄ of codimension 2 and not containing

any toric strata, X̄ Ñ S is described étale locally as a monomial map on an affine

toric variety. We copy the precise technical definition from [GS1, Definition 4.1].

Definition 1.2. A toric degeneration of Calabi-Yau varieties over S :“

SpecR is a normal algebraic space X̄ along with a flat proper morphism X̄ Ñ S
satisfying the following properties:

(1) The generic fibre X̄η is an irreducible normal variety over η.

(2) If ν : ˜̄X0 Ñ X̄0 is the normalization, then ˜̄X0 is a disjoint union of

toric varieties, the conductor scheme C Ď ˜̄X0 is reduced and the map

1We only require completeness of R for convenience of notation. For any non-complete

R and a toric degeneration X̄ Ñ SpecR, the basechange by the canonical map R Ñ R̂ to

the completion defines a toric degeneration X̄ Ñ Spec R̂. Since the mirror toric degeneration

only depends on the central fibre X̄0, replacing X̄ Ñ SpecR by X̄ Ñ Spec R̂ does not change

the mirror. We shall be performing blowups of toric degenerations, but the blowup locus will

always be supported on the central fibre as well. Therefore, the results of this thesis hold for

non-complete R by replacing relevant mentions of X̄ Ñ SpecR with mentions of the basechange

X̄ Ñ Spec R̂.
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C Ñ νpCq is unramified and generically two-to-one. The square

C ˜̄X0

νpCq X̄0

ν

is cartesian and cocartesian.

(3) X̄0 is Gorenstein, and the conductor locus C restricted to each irreducible

component of ˜̄X0 is the union of all toric Weil divisors.

(4) There exists a closed subset Z Ď X̄ of relative codimension ě 2 such that

Z satisfies the following properties:

(a) Z does not contain the image under ν of any toric stratum of ˜̄X0.

(b) For any geometric point x̄ Ñ X̄zZ, there is an étale neighbourhood

Ux̄ Ñ X̄zZ of x̄, an affine toric variety Yx̄, a regular function fx̄ on

Yx̄ given by a monomial, a choice of uniformizing parameter for R

giving a map krNs Ñ R, and a commutative diagram

Ux̄ Yx̄

SpecR Spec krNs

f |Ux̄ fx̄

such that the induced map Ux̄ Ñ SpecR ˆSpec krNs Yx̄ is smooth.

Furthermore, fx̄ vanishes on each toric divisor of Yx̄.

The central fibre X̄0 of a toric degeneration X̄ Ñ S is a union of toric varieties

D̄i, 1 ď i ď m̄. We let D̄ :“ X̄0 “ D̄1 ` ¨ ¨ ¨ ` D̄m̄. We shall always endow

X̄ Ñ S with divisorial log structures MX̄ on X̄ and MS on S with divisors D̄

and 0 respectively. This makes pX̄, Dq Ñ pS, 0q a log morphism that we usually

just denote X̄ Ñ S. Moreover, condition (4)(b) of Definition 1.2 implies that

the log structure MX̄ on X̄ is fine and saturated away from Z2 and that X̄ Ñ S
is log smooth away from Z.3 We shall always work with toric degenerations

satisfying the following additional assumption (and just refer to them as toric

degenerations).

2That is, the stalks MX̄,x̄ of the ghost sheaf MX̄ :“ MX̄{Mˆ

X̄
of the log structure MX̄ are

finitely generated, integral, saturated monoids for all geometric points x̄ Ñ X̄zZ. Note that by

the definition of the ghost sheaf Mˆ

X̄,x̄ is trivial so the stalks MX̄,x̄ are actually toric and sharp

monoids.
3These claims follow from the fact that the Yx̄ are toric varieties and from Kato’s criterion

(see [K1, Theorem (3.5)]) respectively. See [GS1, Proposition 4.6] (using [GS1, Definition

4.3]) for details.
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Assumption 1.3. Let X̄ Ñ S be a toric degeneration. We assume, in addi-

tion, that:

(1) X̄ is a variety (not just an algebraic space).

(2) The morphism X̄ Ñ S is projective.

(3) pX̄, D̄q is a Zariski log scheme (it is enough to require that the irreducible

components of X̄0 are normal) that is a simple log scheme in the sense

of [ACGS1, Definition 2.1].4

(4) Any (possibly empty) intersection of the irreducible components of D̄ is

connected.

The conditions in Assumption 1.3 are necessary to fit with the setup for intrin-

sic mirrors (and log smooth degenerations) [GS7, GS8] as well as the general

framework for scattering diagrams of [GHS]. As we explain in Section 5.5.1,

conditions (1), (3), and (4) are not critical, but removing them would require a

significant revision of [GS7, GS8, GHS]. Throughout the thesis, we shall keep

in mind the following example.

Example 1.4. Let X̄ be defined as

X̄ :“ ttf4 ` x0x1x2x3u Ď P3
ˆ Spec kJtK

where f4 is a general homogeneous quartic polynomial, and let X̄ Ñ Spec kJtK
be the natural projection. Then X̄0 is the coordinate tetrahedron of four P2-s

intersecting in P1-s. Let

Z :“ tt “ f4 “ 0u X Sing
`

X̄0

˘

be the singular locus. Then Z consists of 24 (log) singular points, 4 on each P1,

and it is easy to see that X̄ Ñ Spec kJtK is a toric degeneration of K3-s satisfying

Assumption 1.3.

The mirror to a toric degeneration X̄ Ñ S is obtained using the dual intersec-

tion complex
`

B̄, P̄
˘

, which is a topological manifold B with a natural polyhedral

decomposition P̄. Conditions (3) and (4) of Assumption 1.3 ensure that
`

B̄, P̄
˘

is a genuine polyhedral complex rather than a generalized polyhedral complex of

[ACGS1, Section 2.1.3] (or, in the language of [GS1], a manifold with a toric

polyhedral decomposition, see [GS1, Definitions 1.21 and 1.22]). In particular, the

4In the construction of tropicalization in [ACGS1, Section 2.1.4] (used to define simple log

schemes) the authors assume that the log structure MX̄ on X̄ is fine and saturated. However,

it is easy to extend the construction to the case of toric degenerations, see Section 3.2.1. The

tropicalization of X̄ naturally coincides with the tropicalization of X̄zZ (see Remark 3.21(1)),

so equivalently, we can require that X̄zZ is a simple log scheme.
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cells of P̄ don’t self-intersect, and an intersection of two cells of P̄ is a cell of P̄.

As a result,
`

B̄, P̄
˘

satisfies the conditions of [GHS, Construction 1.1.1], and

we will be able to use the conventions of [GHS] (instead of the rather elaborate

language of [GS1, GS3]) to work with
`

B̄, P̄
˘

. The dual intersection complex
`

B̄, P̄
˘

depends only on the central fibre X̄0.

A toric degeneration X̄ Ñ S also gives rise to the structure of an integral

affine manifold with singularities (in codimension ě 2) on
`

B̄, P̄
˘

. The toric

degeneration mirror to X̄ Ñ S is a toric degeneration ˇ̄X Ñ Spec kJtK that arises

from
`

B̄, P̄
˘

by an algorithmic procedure (the “reconstruction algorithm” of

[GS3]) encoded by an algorithmic scattering diagram D̄ on
`

B̄, P̄
˘

. We note

that one can get a family over S by basechanging ˇ̄X Ñ Spec kJtK by the map

of Remark 1.1. It will be more convenient to work with the universal ˇ̄X Ñ

Spec kJtK but one can easily formulate similar results for ˇ̄X Ñ S by applying the

additional basechange. The construction of the toric degeneration mirror requires

and depends on a choice of a relatively ample divisor A on X̄ that we call the

polarization of X̄.

Following [G1], one can construct Batyrev degenerations as follows. As before,

we take sufficiently general sections s P OP∆
p1q, s˚ P OP∆˚ p1q and let s0 be given

by 0 P Int∆, s˚
0 be given by 0 P Int∆˚. Then one can define5

X̄∆ :“ tts ` s0 “ 0u Ď P∆ˆSpec kJtK, X̄∆˚ :“ tts˚
` s˚

0 “ 0u Ď P∆˚ˆSpec kJtK.

Along with the natural projections to Spec kJtK, these give a pair of dual Batyrev

degenerations. Note that the toric degeneration of Example 1.4 is a Batyrev de-

generation by taking ∆ to be the standard polytope for P3. By [G1, Proposition

2.16] Batyrev degenerations are toric degenerations, and one can show that their

dual intersection complexes are related by a discrete Legendre transform (which

is a purely combinatorial construction, see [GS1, Section 1.4]). It is possible

to generalize the construction to other ample line bundles and to complete in-

tersections, but one needs to take certain partial resolutions of P∆ and P∆˚ to

achieve duality, see [G1, Theorem 3.25]. In this sense, toric degeneration mirror

symmetry generalizes Batyrev (and Batyrev-Borisov) mirror symmetry.

Intrinsic mirrors. More recently in [GHK] the authors have constructed a

mirror to an arbitrary Looijenga pair pX, Dq, that is a smooth rational projective

surface X with D P | ´ KX| a singular nodal curve. These assumptions ensure

5The construction works for any discrete valuation k-algebra R, but we choose to work with

R :“ kJtK for a direct comparison with the other mirror constructions. As before, one may get

a family over any R by basechanging via the map of Remark 1.1.
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that XzD is a log Calabi-Yau (CY) surface.6 The mirror is a formal family

X̌ Ñ Spf zkrP s7 where NEpXq Ď P Ď A1pX,Zq is any finitely generated, saturated

and sharp (having no non-trivial invertible elements) submonoid of the finitely

generated free abelian group A1pX,Zq of 1-cycles modulo algebraic or numerical

equivalence (we sometimes write A1pX,Zqalg and A1pX,Zqnum respectively, note

that the two groups coincide for a Looijenga pair) containing the submonoid

NEpXq generated by the effective curve classes.

The construction has been generalized to arbitrary log CY varieties pX, Dq

(the absolute setup) and to the relative setup of a projective log smooth morphism

g : X Ñ S where X carries a Zariski log structure and S is a regular one-

dimensional scheme over Spec k with a divisorial log structure coming from a

single closed point 0 P S (in particular, S may be the spectrum of a discrete

valuation k-algebra R) in [GS7, GS8].

In general, A1pX,Zq is not a free group, and one needs to modify the conditions

on P slightly. One no longer requires that P is sharp but that the group Pˆ of

the invertible elements of P coincides with the torsion part of A1pX,Zq. Note

that A1pX,Zqnum is always free. In the relative setup, one has similar assumptions

on P but should use a different group of curve classes that we denote A1pX0,Zq.

This may be the group of 1-cycles on X0 or the group of relative 1-cycles for

X Ñ S modulo algebraic or numerical equivalence.

We shall always work in the relative setup. Similarly to the case of toric

degenerations, let Di, 1 ď i ď m be the components of the reduced central fibre

pX0qred
8 and let D :“ pX0qred “ D1 ` ¨ ¨ ¨ `Dm. We assume that the log structure

MX on X is divisorial with divisor D.9 Note that the underlying morphism

of schemes is a flat morphism10 and the mirror extends to an algebraic family

X̌ Ñ SpeczkrP s.11 We also need to assume that any intersection of the irreducible

components of D is connected so that X Ñ S satisfies the same conditions as

6Conversely, all the minimal log CY surfaces pX, Dq in the sense of Gross-Siebert mirror

symmetry are Looijenga pairs.
7Here zkrP s is the completion with respect to the maximal ideal of krP s.
8We will almost always deal with log smooth morphisms X Ñ S with X0 reduced.
9In [GS8] one needs to require that the divisor D giving the divisorial log structure on X

is simple normal crossings. However, this technical assumption can be removed (see Section

3.3.2).
10Indeed, a log smooth morphism is log flat, see [O, Part IV, Proposition 4.1.2(1)]. Further,

a log flat and integral morphism is flat by [O, Part IV, Proposition 4.3.5(1)]. But S is one-

dimensional so X Ñ S is always integral by [O, Part III, Proposition 2.5.3(3)].
11This is true as long as D “ g´1p0q set-theoretically, see [GS7, Construction 1.19].
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in Assumption 1.3. Furthermore, we shall only work with projective log smooth

morphisms X Ñ S that are minimal log CY.12

Definition 1.5. X Ñ S is minimal log CY if KX ` D ” 0 (numerically

equivalent).

The following lemma gives a logarithmic interpretation (used in [GS7]) of

Definition 1.5.

Lemma 1.6. Suppose that D is simple normal crossings. Then we have

c1
`

Ω1
X{SplogD{ log 0q

˘

” KX ` D

where c1pΩ
1
X{SplogD{ log 0qq is the first Chern class of the relative sheaf of log

differentials.

Proof. We calculate the first Chern class c1pΩ
1
XplogDqq of the (absolute)

sheaf of log differentials on pX, Dq first. From the definitions of the sheaf of log

differentials and of the divisorial log structure, we have a short exact sequence

0 ÝÑ Ω1
X ÝÑ Ω1

XplogDq ÝÑ ‘iODi
ÝÑ 0

which implies that

c1pΩ
1
XplogDqq “ c1pΩ1

Xq `
ÿ

i

c1pODi
q “ KX `

ÿ

i

Di “ KX ` D.

Similarly, we have

c1pΩ1
Splog 0qq “ KS ` 0.

Now, since g : X Ñ S is log smooth, we have a logarithmic analogue of the

classical short exact sequence (see [O, Part III, Theorem 3.2.3])

0 ÝÑ g˚Ω1
Splog 0q ÝÑ Ω1

XplogDq ÝÑ Ω1
X{SplogD{ log 0q ÝÑ 0

which implies that

c1
`

Ω1
X{SplogD{ log 0q

˘

“ c1
`

Ω1
XplogDq

˘

´ g˚
`

c1
`

Ω1
Splog 0q

˘˘

“

“ KX ` D ´ g˚
pKS ` 0q .

But g˚ pKS ` 0q ” 0 since S is one-dimensional and the fibres of g are numerically

trivial. □

12We refer to [GS7] for the more general case of log CY degenerations (see [GS7, Definition

1.10]).



8 1. INTRODUCTION

As in the case of toric degenerations, X Ñ S gives rise to the structure of

an integral affine manifold with singularities on the dual intersection complex

pB,Pq.13 In [GS7], the mirror X̌ Ñ SpeczkrP s arises by defining an explicit

product of the generators ϑp (that we call theta functions) of the theta function

ring which correspond to rational points of the integral affine structure on pB,Pq.

In [GS8] the mirror is obtained from the canonical scattering diagram D on

pB,Pq.14 Both the product of the theta functions and the definition of D use

the theory of punctured log Gromov-Witten invariants developed in [ACGS1,

ACGS2] that allows, in particular, to make sense of negative contact orders.

The two constructions agree by [GS8, Theorem 6.1].

We shall call these mirrors intrinsic. They are supposed to be a very general

construction and generalize the previous approaches to the Gross-Siebert mirror

symmetry. However, they are not expected to be double dual in general.15 It

is natural to investigate if the intrinsic mirror construction generalizes Batyrev-

Borisov and (more generally) toric degeneration mirror symmetry.

Degenerations of elliptic curves. The easiest case to consider is that of de-

generations of elliptic curves since, in this case, all three mirrors can be computed

explicitly. Consider a pair of dual 2-dimensional reflexive polytopes p∆,∆˚q. As

before, they give rise to dual Batyrev degenerations pX∆,X∆˚q of elliptic curves

that are both toric degenerations and log smooth.16

It is easy to explicitly compute both the toric degeneration mirror X̌TD Ñ

Spec kJtK “ SpeczkrNs (using e.g. the anticanonical polarization A “ ´KP∆
) and

the intrinsic mirror X̌IMS Ñ Spec {krNEpX∆,0qs (here X∆,0 is a wheel of irreducible

rational curves so the submonoid NEpX∆,0q Ď A1pX∆,0,Zq is finitely generated

and we just let P :“ NEpX∆,0q) to X∆, and to show that one has isomorphisms

of the central fibres

X̌IMS,0 – X̌TD,0 – X∆˚,0 – BP∆˚ .

13However, the location of the singularities is rather different from the toric degeneration

case. The singularities of pB,Pq are contained in a union of cells of codimension at least

2 whereas the singularities of pB̄, P̄q are contained in the union of cells of the barycentric

subdivision ˜̄P of P̄ not containing any vertex of P̄.
14Strictly speaking, in [GS7] the scattering diagram is defined on pCB,CPq, the cone over

pB,Pq. However, it is easy to modify the definition so that D is defined on pB,Pq and gives

rise to the same mirror, see Construction 3.89 and Remark 3.91(1).
15Although some forms of duality might work, see [GHK, Section 0.4] for a duality state-

ment expected in the positive absolute surface case.
16Therefore, in the case of elliptic curves only, we drop the bar in the notation for a toric

degeneration (and for related objects).
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However, the isomorphism X̌TD,0 – X∆˚,0 does not extend to the generic fibre and

in most cases (unless P∆ – P2 or P∆ – P1 ˆ P1) there is no apparent connection

between the two mirrors.

This is, perhaps, not so surprising. By the technology of [GHS], both X̌TD

and X̌IMS can be constructed by gluing together certain special thickenings of

the irreducible components of X̌TD,0. Viewing X̌TD as a log deformation of the

central fibre, one can prove that this deformation is, in fact, quite special and

possesses well-behaved local models. In the language of [GS2], it is a divisorial log

deformation (see [GS2, Definition 2.7]).17 Therefore, it has no reason to coincide

with X∆˚ (even though X∆˚ has the same dual intersection complex), which is

defined via toric geometry.

On the other hand, in Chapter 2 we show that the constructions of the intrinsic

and toric degeneration mirrors imply that for any toric degeneration X Ñ S of

elliptic curves X̌TD Ñ Spec kJtK is the basechange of X̌IMS Ñ Spec {krNEpX0qs by

h : NEpX0q Ñ N, β ÞÑ A ¨ β

(inducing a map {krNEpX0qs Ñ kJtK by sending tβ to thpβq “ tA¨β). Further, if

one uses the universal version X̌TD Ñ Spec {krNEpX0qs of the toric degeneration

mirror constructed in [GHS, Appendix A.2], then X̌TD – X̌IMS. One of the main

objectives of this thesis is to generalize these observations about degenerations of

elliptic curves to higher dimensions. We cover the case of degenerations of elliptic

curves in more detail in Chapter 2.

Resolution setup. Suppose now that p∆,∆˚q is a dual pair of n-dimensional

reflexive polytopes for some n ě 3. Again, they give rise to dual Batyrev degen-

erations
`

X̄∆, X̄∆˚

˘

of Calabi-Yau hypersurfaces of dimension n´1 that are toric

degenerations. However, they are no longer log smooth, and to relate them to

the log smooth setup, we need to resolve the log singularities. Assume that the

generic fibre of X̄∆ Ñ Spec kJtK is smooth. This implies that X̄∆ Ñ Spec kJtK
is log smooth away from a codimension 2 subset Z Ď X̄∆,0 of the central fibre.

As we shall show in this thesis, the singularities of Z can often be resolved (see

Section 4.3 for n “ 3 and Section 6.1 for n ě 4). Suppose that we have found

a resolution π : X∆ Ñ X̄∆ of the log singularities such that the composition

X∆ Ñ Spec kJtK is a minimal log CY degeneration. Then it is natural to compare

17Indeed, this follows from [GS2, Corollary 2.18] and the fact that simplicity (see [GS1,

Definition 1.60]) of the dual intersection complex pB,Pq is a vacuous condition in dimension

1.
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the dual Batyrev degeneration X̄∆˚ , the toric degeneration mirror ˇ̄XTD to X̄∆,

and the intrinsic mirror X̌IMS to X∆.

As we shall discover, obtaining a small (i.e. not contracting any divisors)

resolution is not always possible, even in the case of n “ 3. If π : X∆ Ñ X̄∆ is not

small, then pB,Pq is a non-trivial subdivision of
`

B̄, P̄
˘

and as a result X̌IMS,0

has more irreducible components than ˇ̄XTD,0. Assuming π is small, one still has18

X̌IMS,0 – ˇ̄XTD,0 – X̄∆˚,0 – BP∆˚ (1.1)

as in the n “ 2 case, but there is no reason to expect a more interesting connection

between X̄∆˚ and ˇ̄XTD, X̌IMS as we don’t have one even for n “ 2. There is one

notable exception. If P∆ – P3, then one can use the symmetries of the dual

intersection complex B̄ – B∆˚ of X̄∆ to restrict the form of the mirror equation

and generalize the similar correspondence in the n “ 2 case. In Appendix A,

we construct a rational map ˇ̄XTD Ñ X̄∆˚ in the case that P∆ – P3 using Cox

coordinates [C3] and conjecture a generalization to Pn, n ě 4.

Since there is no reason to expect a (stronger than (1.1)) connection between

X̄∆˚ and ˇ̄XTD, X̌IMS in general, we shall instead investigate if there is a connection

between toric degeneration mirrors (that generalize Batyrev and Batyrev-Borisov

mirror symmetry by [G1]) and intrinsic mirrors.

Main conjecture. We are going to be working with special toric degenerations.

Roughly, we will define a toric degeneration X̄ Ñ S to be special if it has a smooth

generic fibre, one can construct the toric degeneration mirror ˇ̄X Ñ Spec kJtK
(unless

`

B̄, P̄
˘

is simple19, this is not automatic), and X̄ Ñ S admits good étale

local models at points of the singular locus Z Ď X̄0. We defer the exact definition

until Section 3.2.7 as it is rather technical.

For every special toric degeneration X̄ Ñ S one should be able to define a

class of strongly admissible resolutions X Ñ X̄ to minimal log CY degenerations

X Ñ S. Roughly, we require that a strongly admissible resolution π : X Ñ X̄

18The last isomorphism immediately follows from the Cox coordinate description of Batyrev

degenerations (see Section 2.1) via the anticanonical embedding, this is similar to the proof of

a similar statement for degenerations of elliptic curves (see Proposition 2.5). Along with the

results of [G1], this implies the second isomorphism (we use trivial gluing data to construct
ˇ̄XTD,0). By the construction of the central fibre of the mirror family in [GHS, Section 2.1]

(denoted X0 in loc. cit.), it is clear that it only depends on the polyhedral manifold structure

on the dual intersection complex. But the construction of the dual intersection complex as a

height one slice of the tropicalization and the fact that π : X∆ Ñ X̄∆ is an isomorphism in

codimension 1 imply that pB,Pq –
`

B̄, P̄
˘

as rational polyhedral complexes.
19This is a technical maximal degeneracy assumption, see [GS1, Definition 1.60].
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is trivial away from strata of X̄0 of codimension at least one and étale locally

at every point contained in a stratum of X̄0 of codimension at least one π looks

like one of the specified resolutions of the local model at that point. Further, the

resolutions of the local models should be the same for two points in the same

stratum and compatible with passing to deeper strata, and the dual intersection

complex pB,Pq of π : X Ñ S should be an integral subdivision of
`

B̄, P̄
˘

(with

a different affine structure).

We say that a resolution π : X1 Ñ X̄ of a special toric degeneration X̄ Ñ S
is admissible if it factors as X1 Ñ X Ñ X̄ with X Ñ X̄ strongly admissible and

X1 Ñ X a logarithmic modification (i.e. a proper, representable, birational, log

étale morphism).

We are ready to state the main conjecture of this thesis.

Conjecture 1.7. Let X̄ Ñ S be a special toric degeneration with polarization

A. Then (possibly after a finite basechange) there exists an admissible resolution

π : X Ñ X̄ to a minimal log CY degeneration X Ñ S. Moreover, for any

admissible resolution π the basechange of the intrinsic mirror X̌ Ñ SpeczkrP s

by h : P Ñ N, β ÞÑ π˚A ¨ β is isomorphic to the toric degeneration mirror
ˇ̄X Ñ Spec kJtK.

There are a few things to clarify here:

1) The definition of a special toric degeneration should guarantee the ex-

istence of a (strongly) admissible π : X Ñ X̄ and a π-ample effective

simple normal crossings divisor D1 on X supported on D “ pX0qred. If

X̄ Ñ S is a toric degeneration of K3-s, being special means that X̄ Ñ S
is a divisorial log deformation in the sense of [GS2, Definition 2.7] (in

particular, all the étale local models are toric) and has a smooth generic

fibre. Basechange is also not necessary in this case. More generally,

any X̄ Ñ S obtained via the reconstruction algorithm of [GS3], with

a smooth generic fibre and with a simple
`

B̄, P̄
˘

is special. This is a

natural case to consider since such a X̄ Ñ S is a divisorial log deforma-

tion and the toric local models can be constructed from
`

B̄, P̄
˘

. In this

thesis, unless X̄ Ñ S is a degeneration of K3-s, we shall mostly restrict

our attention to this case.

2) Note that a monoid homomorphism h : P Ñ N gives rise to a map
zkrP s Ñ zkrNs “ kJtK only if the completion in zkrP s is taken with re-

spect to an ideal J Ď P with h´1p0q Ď P zJ . The intrinsic mirror is

defined over SpeczkrP s where the completion in zkrP s is with respect to
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the maximal ideal. However, hpβq “ 0 for any curve class β of a curve

contracted by π : X Ñ X̄. As we explain in Section 3.4.5, the existence

of a π-ample effective simple normal crossings divisor D1 supported on

D allows extending (for good choices of P and under certain further re-

strictions on D1) the intrinsic mirror to a family over the completion of

the toric stratum SpeckrKs corresponding to the face K Ď P contain-

ing the classes of the contracted curves. This corresponds to taking the

completion in zkrP s with respect to J :“ P zK. The map h : P Ñ N
defines a basechange of this extended intrinsic mirror which can be seen

as the restriction to a specified one-parameter family through a point in

Spec krKs.

3) Unless the dual intersection complex
`

B̄, P̄
˘

of X̄ Ñ S is simple, there

are some parameters (encoded in a choice of the initial slab functions

for
`

B̄, P̄
˘

) involved in the construction of the mirror ˇ̄X that the mirror

depends on. In the above conjecture, the basechange should be isomor-

phic to the toric degeneration mirror for a certain specified choice of the

initial slab functions.

4) We will provide an exact definition of a strongly admissible resolution in

two cases. For special toric degenerations of K3-s, we define a strongly

admissible resolution in Definition 4.29. In this case, one can often obtain

a strongly admissible resolution by blowing up a sequence of irreducible

components of the central fibre. In the case that X̄ Ñ S is a special toric

degeneration of CY threefolds obtained via the reconstruction algorithm

of [GS3] and has a simple
`

B̄, P̄
˘

, we define a strongly admissible reso-

lution in Definition 6.11. In both cases, one can define these resolutions

tropically by subdividing
`

B̄, P̄
˘

and using a certain PA-function on the

subdivision to obtain the resolutions of the local models and glue them

together. Under an additional assumption, the analysis generalizes to

relative dimension ě 4, see Section 6.1.5.

5) Much of the literature on punctured log Gromov-Witten invariants and

intrinsic mirrors has been written for the case that D is a simple normal

crossings divisor. However, having more flexibility in choosing a resolu-

tion is often desirable. Therefore, we will not restrict to this case and

will argue that one may drop this requirement (see Section 3.3.2). In

all the relevant situations, we shall argue that there exists an admissible

resolution X Ñ S such that D is simple normal crossings. Therefore,
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Conjecture 1.7 still holds if we require in addition that D is a simple

normal crossings divisor.

The following shows that it is enough to prove Conjecture 1.7 for strongly

admissible resolutions.

Proposition 1.8. Suppose that Conjecture 1.7 holds for a toric degeneration

X̄ Ñ S and a minimal log CY resolution π : X Ñ X̄. Let π1 : X1 Ñ X be a further

logarithmic modification. Then Conjecture 1.7 holds for X̄ Ñ S and the composed

resolution X1 Ñ S.

Proof. Let P 1 be a monoid such that:

(1) NEpX1
0q Ď P Ď A1pX

1
0,Zq.

(2) P 1 is finitely generated and saturated.

(3) The group pP 1qˆ of the invertible elements of P 1 coincides with the tor-

sion part of A1pX1
0,Zq.

Let P be the saturation of π1
˚pP 1q and note that it satisfies the same conditions

with respect to X0. The result follows from the birational invariance of punctured

log Gromov-Witten invariants recently proved by Samuel Johnston in [J].

We claim that [J, Corollary 1.6] implies that the extended the intrinsic mir-

ror X̌ Ñ SpeczkrP s is the basechange of the well-defined extended intrinsic

mirror X̌1 Ñ Spec zkrP 1s by π1
˚ : P 1 Ñ P . Indeed, [J, Corollary 1.6] states

that for any ideal I Ď P with radical the maximal ideal the finite-order mir-

ror X̌ Ñ Spec krP s{I is the basechange of the well-defined mirror over X̌1 Ñ

Spec krP 1s{pπ1
˚q´1pIq via π1

˚ : P 1 Ñ P . The proof does not use the fact that the

radical of I is the maximal ideal apart from concluding that the mirror over krP s{I

is well-defined. Therefore, using ideals I with radical J “ P zK corresponding

to the curves contracted by π (instead of ideals with radical the maximal ideal),

we see that the extended intrinsic mirror X̌1 Ñ Spec zkrP 1s is well-defined if the

extended intrinsic mirror X̌1 Ñ SpeczkrP s is. Further, the basechange claim holds

since it holds modulo any ideal I with radical J .

Let π̃ :“ π1 ˝ π. It suffices to show that the map h̃ : P 1 Ñ N, β ÞÑ π̃˚A ¨ β

factors as the composition h̃ “ h ˝ π1
˚ with h : P Ñ N, β ÞÑ π˚A ¨ β as before.

Indeed, we have

h ˝ π1
˚pβq “ hpπ1

˚βq “ π˚A ¨ π1
˚β “

“ π1
˚ ppπ1˚

˝ π˚
q pAq ¨ βq “ π1

˚ pπ̃˚A ¨ βq “ π̃˚A ¨ β “ h̃pβq.

Here we used the projection formula (see, e.g. [H1, Appendix A.1]) for the third

equality. □
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By [AW, Theorem 2.4.1 and Corollary 2.6.7], there is a one-to-one correspon-

dence between logarithmic modifications of X Ñ S and subdivisions of pB,Pq.

Strategy and results. A strategy to relate intrinsic mirrors and toric degen-

eration mirrors was first mentioned in [GS6, Remark 2.15] of the paper that

announced the development of the intrinsic mirrors viewpoint. The idea is to

interpret intrinsic mirrors via scattering diagrams, compare the algorithmic scat-

tering diagram D̄ arising from a toric degeneration X̄ Ñ S and the canonical

scattering diagram D arising from the log smooth resolution X Ñ S, and use the

strong uniqueness properties of the inductive construction of D̄ in [GS3]. The

first part was done in [GS8]. In this thesis, we will prove the following.

Theorem A (Theorem 4.73). Conjecture 1.7 holds for special toric degener-

ations of K3-s.

We will also vastly expand the result. In Chapter 5, we introduce the (nu-

merical) minimal relative Gross-Siebert locus of the extended intrinsic mirror

X̌ Ñ SpeczkrP s. In the case that π : X Ñ X̄ is small and A1pX0,Zq is the group

of numerical curve classes on the central fibre, the minimal relative Gross-Siebert

locus is just the completion of SpeckrKgps Ď Spec krKs. In general, one re-

stricts to the completion of SpeckrEgps where E Ď K is the subface generated

by p´1q-curves contracted by π : X Ñ X̄.

The definition of the relative Gross-Siebert locus is motivated by a similar

construction in the absolute case of a log CY surface pX, Dq in [GHK]. Such

surfaces admit toric models π : pX, Dq Ñ pX̄, D̄q (possibly after a toric blowup)

where pX̄, D̄q is a toric variety with its boundary divisor and π only contracts

p´1q-curves. The authors show that the mirror X̌ Ñ SpeczkrP s extends to the

completion of the stratum corresponding to the contracted curves and define the

Gross-Siebert locus as the restriction to the completion of the large torus of that

stratum.

Our most general result can be summarized as follows (see Theorem 5.35 for

details).

Theorem B (Theorem 5.35). Let X̄ Ñ S be a special toric degeneration

of K3-s and π : X Ñ X̄ be a strongly admissible resolution. The basechange of

Conjecture 1.7 extends to a correspondence between the restriction of the extended

intrinsic mirror X̌ Ñ SpeczkrP s to the (numerical) minimal relative Gross-Siebert

locus and a subfamily of the universal toric degeneration mirror of [GHS, Theo-

rem A.4.2] varied in the free parameters of the initial slab functions and in gluing

data.
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We also discuss in detail how to generalize the results to higher dimensions.

In particular, we prove the following.

Theorem C (Theorem 6.16). Let X̄ Ñ S be a special toric degeneration

of CY threefolds obtained via the reconstruction algorithm of [GS3] and with a

simple
`

B̄, P̄
˘

. Then there exists an LX̄ P Zą0 such that for every L P Zą0 with

L ě LX̄ the basechange X̄1 Ñ S of X̄ Ñ S by R Ñ R, t ÞÑ tL (where t is the

uniformizer of R) admits a strongly admissible resolution π : X1 Ñ X̄1.

In the course of the exposition, we shall often explain things in the basic case

when D is a simple normal crossings divisor and π : X Ñ X̄ is small before

explaining the general case. This is a natural case of interest in [GHKS] (in the

case of degenerations of K3-s).

Deformation philosophy. We would like to mention a possible connection of

this research to log deformation theory which may be an interesting topic to

explore. Conjecture 1.7 suggests that the intrinsic mirror (at least in the case

that π : X Ñ X̄ is small) may be universal (or miniversal, etc.) for a suitable

functor of log deformations of the central fibre of the mirror families (note from

(1.1) that X̌0 – ˇ̄X0 if π is small).

In the case that
`

B̄, P̄
˘

is simple, it is natural to consider the functor of

divisorial log deformations since the toric degeneration mirrors (for any choice

of polarization A) are deformations of this form. The functor of divisorial log

deformations satisfies (see [RS, Appendix C]) the logarithmic analogue of Sch-

lessinger’s conditions [S] and therefore has a miniversal family by the results of

[K3]. It is shown in [RS, Theorem 4.4] that this miniversal family is the com-

pletion of the universal toric degeneration of [GHS, Theorem A.2.4]. In general,

there should be a corresponding theory of log deformations for toric degeneration

mirrors since there are still well-behaved local models for the deformation (see

[GS3, Section 4.4.1]) that can be “decomposed” into the divisorial local models.

Intrinsic mirrors are not divisorial log deformations but one might be able to

develop a suitable theory of log deformations that would include both toric degen-

eration and intrinsic mirrors. One should only consider deformations that are log

smooth away from codimension 2, and additional restrictions on the functor may

be required. Indeed, all toric degenerations are log smooth away from the singular

locus Z of codimension 2 and in Appendix B, we also enhance X̌ Ñ SpeczkrP s to

a log morphism that is log smooth away from codimension 2.
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A result on the universality of the intrinsic mirror would connect the new

theory back to the original hope of constructing mirrors in the Gross-Siebert pro-

gram via a Bogomolov-Tian-Todorov type argument showing the smoothability

of log CY spaces. We refer to [GS2, Remark 2.19] for a more detailed discussion.

Smoothability of a general ˇ̄X0 (i.e. of a maximaly degenerate Calabi-Yau variety)

has recently been shown in [CLM, FFR].

Preliminaries. We assume that the reader is familiar with logarithmic geom-

etry but provide alternative interpretations where feasible. One can avoid the

more technical discussion by restricting attention to the case that D is a simple

normal crossings divisor. We shall summarize the relevant facts about scattering

diagrams, toric degenerations, and intrinsic mirror symmetry in Chapter 3. We

do not review punctured log Gromov-Witten theory, see [ACGS1, ACGS2]. We

will not use punctured invariants directly and will refer to [G3] and [GHKS] for

explicit computations.

Structure of the thesis. The rest of the thesis is organized as follows:

Chapter 2 is motivational, independent of the rest of the thesis, and covers

the case of elliptic curves. In particular, in Proposition 2.4, we prove Conjecture

1.7 for any toric degeneration of elliptic curves.

In Chapter 3, we review the setup in all dimensions, prove some auxiliary

results (including a discussion of special toric degenerations in Section 3.2.7 and

the construction of the extended intrinsic mirror following [GHK] in Section 3.4),

and set the stage for proving Conjecture 1.7 for toric degenerations of K3-s. We

also explain the idea of the proof and give an overview of the results proved in

Chapters 4 and 5.

Chapter 4 is the core of this thesis. It is devoted to the proof of Conjecture 1.7

for toric degenerations of K3-s, which involves constructing log smooth resolutions

and introducing the notion of being an admissible resolution (Sections 4.1, 4.2,

and 4.3), interpreting the extended intrinsic mirror family via scattering diagrams

(extending the results of [GS8]) following [GHKS] (Section 4.4), and relating

the canonical scattering diagram D giving rise to the intrinsic mirror and the

algorithmic scattering diagram D̄ giving rise to the toric degeneration mirror

(Section 4.5). We prove Conjecture 1.7 in Theorem 4.73.

In Chapter 5, we gradually extend the correspondence to families over larger

strata of the base of the extended intrinsic mirror. The most general result

providing the correspondence between the (numerical) minimal relative Gross-

Siebert locus of the extended intrinsic mirror (see Definition 5.4) and the universal
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toric degeneration mirror of [GHS, Theorem A.4.2] is proved in Theorem 5.35.

We also briefly discuss our results, philosophy, and possible generalizations in

Section 5.5.

Chapter 6 discusses generalizing to higher dimensions. In particular, we con-

struct admissible resolutions of special toric degenerations X̄ Ñ S of CY three-

folds in the natural case that X̄ Ñ S is distinguished (i.e. can be obtained via

the reconstruction algorithm of [GS3], see Definition 3.38) and has a simple dual

intersection complex (see [GS1, Definition 1.60]). We also sketch a generalization

to relative dimension n ě 4 (modulo a combinatorial Conjecture 6.21) and reduce

Conjecture 1.7 to Conjecture 6.21 and a generalization of the results of Section

4.4 (see Conjectures 6.23 and 6.26) in this case. Finally, we conjecture (under the

same assumptions) a generalization of Theorem 5.35 (the main result of Chapter

5) to higher dimensions (see Conjecture 6.28).

In Appendix A, we prove a correspondence between the toric degeneration

mirror to a Batyrev degeneration of K3-s in P3 (i.e. the toric degeneration of

Example 1.4) and the dual Batyrev degeneration by restricting the form of the

equation for the toric degeneration mirror. We also conjecture a generalization

to Pn, n ě 4.

In Appendix B, we construct natural log structures on toric degeneration

mirrors and intrinsic mirrors and note that all the basechanges considered in

Chapters 4, 5, and 6 are also basechanges in the category of log schemes.

Related work. The results of this thesis crucially depend on the theories of

toric degeneration mirror symmetry [G2, GS1, GS2, GS3], intrinsic mirror

symmetry [GS7, GS8], and punctured log Gromov-Witten invariants [ACGS1,

ACGS2, G3].

Parts of this thesis are closely related to [GHK] that carried out similar

constructions for an arbitrary log CY surface pX, Dq. The result was generalized

to higher dimensions in [AG] where the authors related the canonical scattering

diagram of [GS8] arising from a log CY variety pX, Dq that is a blowup of a

toric variety along disjoint hypersurfaces in its toric boundary to the algorithmic

scattering diagram arising from the toric variety. The results of this paper are

relevant in higher dimensions (see the discussion after Conjecture 6.25). A related

paper [A] uses the results of [AG] to calculate explicit equations of the mirrors

to certain pX, Dq.

This thesis is also closely related to [GHKS], in particular in the basic case

of a simple normal crossings D and a small resolution π : X Ñ X̄. The crucial
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part that we borrow (and slightly generalize) from this paper is the construction

of a (finite) scattering diagram giving rise to the extended intrinsic mirror.

We shall use the results of [G3] and [GHKS] for explicit computations of

punctured log Gromov-Witten invariants and the gluing formulas in the case of

degenerations of K3-s. The gluing formula originally appeared in [W] in the case

of toric gluing strata (and arbitrary dimension).

Conventions. Apart from Chapter 2, where the notation would be redundant,

we use the notation with a bar to denote the objects related to the toric degener-

ation X̄ Ñ S:
`

B̄, P̄
˘

, ∆̄, D̄, etc. We use the notation without a bar to denote

the similar objects related to the minimal log CY degeneration X Ñ S (that is

usually a log smooth resolution of X̄ Ñ S): pB,Pq, ∆, D, etc. We drop the bar

for cells σ P P̄ of the dual intersection complex
`

B̄, P̄
˘

apart from places where

that would lead to confusion. We shall always assume that the log structure on

the total space X of a log smooth X Ñ S is fine and saturated.

We use the notation with a check to denote the mirror objects, e.g. ˇ̄X denotes

the toric degeneration mirror to X̄, X̌ denotes the intrinsic mirror to X, pB̌, P̌q

denotes the discrete Legendre transform of pB,Pq, etc.

A1pX0,Zq stands for the relevant group of curve classes that may be the

group of 1-cycles on X0 or the group of relative 1-cycles for X Ñ S modulo alge-

braic or numerical equivalence (we sometimes write A1pX0,Zqalg, A1pX0, Zqnum,

A1pX{S,Zqalg, and A1pX{S,Zqnum respectively) and NEpX0q Ď A1pX0,Zq stands

for the submonoid generated by the effective curve classes.

For m P M an element in a monoid, we use the notation zm for the corre-

sponding element of the monoid ring ArM s (here A is any Noetherian ring). If

β P P is a curve class in the monoid containing the effective curve classes, we

shall use the notation tβ instead. For any monoid ideal I Ď P , we abuse the

notation by writing I for the corresponding ideal in ArP s. We denote by N the

integer lattice of the relevant dimension (i.e. N – Zn for some n ě 1) and set

NR :“ N bZ R. We work over an algebraically closed field k of characteristic 0.



CHAPTER 2

Degenerations of elliptic curves

We shall discuss Batyrev degenerations of elliptic curves, compute the toric de-

generation and intrinsic mirrors to a degeneration of elliptic curves, and compare

the dual Batyrev degeneration, the toric degeneration mirror, and the intrinsic

mirror. This chapter is motivational, and the results are not used in other parts

of the thesis.

2.1. Batyrev degenerations of elliptic curves

There are 16 (up to the action of AGLp2,Zq20) reflexive polytopes in dimension

2 that form 6 dual pairs and 4 self-dual polytopes (see, e.g. [KOS, Fig.1] for the

classification). We shall focus on the two pairs p∆1,∆
˚
1q and p∆2,∆

˚
2q as in Figure

2.1. The computations for the other reflexive polytopes are similar.

D0

D2

D1

∆1

D0

D2

D1

A2

A2

A2

∆˚
1

D0

D3

D1

D2

∆2

D3

D0

D2

D1

A1

A1

A1

A1

∆˚
2

Figure 2.1. Reflexive pairs p∆1,∆
˚
1q and p∆2,∆

˚
2q.

Note that P∆1 – P2 and P∆2 – P1 ˆ P1 are smooth toric varieties, and

P∆˚
1
and P∆˚

2
have Ak, k ě 1 singularities. As in Chapter 1, the polytopes of

Figure 2.1 give rise to dual Batyrev degenerations pX∆1 ,X∆˚
1
q and pX∆2 ,X∆˚

2
q.

It is easy to read off information about the central fibre of X∆ (which is just

BP∆) from the polytope ∆. Indeed, there is a one-to-one correspondence between

components Di, 0 ď i ď m´1 of the central fibre X∆,0 and edges δi of ∆ (between

intersections Di´1 XDi and vertices εi). The degree of ´KP∆
on Di is the integral

20The group of affine unimodular transformations consisting of translations by an integer

vector and the linear transformations in GLp2,Zq.

19
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length di of δi and the singularity of the total space at Di´1 X Di is Aei where

ei “ | detpvδi´1
, vδiq| ´ 1 for vδi the primitive generator of δi (we set ei :“ 0 if the

intersection Di´1 X Di is normal crossings). Here and later, we take the indices

modulo m so that D0 “ Dm, etc. For ∆˚ we use notations d˚
i and e˚

i . We have

reflected this information in Figure 2.1.

From the point of view of the Gross-Siebert mirror symmetry, knowing di
and ei corresponds to specifying the affine structure and kinks of a piecewise-

linear function φ on B∆ respectively. In the language of [GS1], pB∆, ei, diq is the

intersection complex 21 of X∆, and pB∆˚, e˚
i , d

˚
i q is the dual intersection complex.

Note that we have e˚
i “ di ´ 1, d˚

i “ ei ` 1. It is easy to see that this corresponds

precisely to the discrete Legendre transform (as defined in [GS1, Section 1.4])

between the intersection complex and its dual exchanging information about the

affine structure and polarization.

A natural way to describe X∆ explicitly is via the Cox coordinates on P∆ (the

construction works in all dimensions). We will briefly recall the setup, see [C3]

for more details. Consider a simplicial toric variety P∆ with dim∆ “ n and m

boundary divisors Dρ, ρ Ď ∆ corresponding to the maximal faces of ∆. We can

define its Cox ring as SpP∆q “ krxρ | ρ Ď ∆s with a natural grading as follows.

For every divisor D “
ř

ρ aρDρ let xD :“
ś

ρ x
aρ
ρ be the corresponding element

in SpP∆q. We set degpxDq :“ βpDq P An´1pP∆q where β is the map in the exact

sequence

Zm ÝÑ ‘ρZDρ
β

ÝÑ An´1pP∆,Zq ÝÑ 0 (2.1)

taking a divisor to its class in the Chow group.

For each face σ Ď ∆ let

xσ :“
ź

σĘρ

xρ.

We call S` :“ xxσ | σ Ď ∆y the irrelevant ideal and denote by V pS`q Ď Am the

corresponding variety.

Let G :“ HomZpAn´1pP∆q,k˚q. Dualizing (2.1), we obtain a natural action

of G on Am leaving V pS`q invariant (since it consists of coordinate subspaces).

This action gives rise to a GIT description of toric varieties.

Theorem 2.1 ([C3, Theorem 2.1(iii)]). P∆ is the geometric quotient

pAmzV pS`qq{G.

21One can think of the intersection complex as the “real picture” of the central fibre with a

polyhedral subdivision P. Here P is the natural subdivision of B∆ by the edges and vertices

of ∆.
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So one can describe P∆ by specifying the Cox coordinates xρ, ρ Ď ∆ and the

grading on the Cox ring SpP∆q. One can also describe subvarieties of P∆ by giving

expressions in terms of Cox coordinates on the cover. Given D P An´1pP∆q, the

vanishing locus of the general section s P OpDq is given by the sum of elements

of the same degree in SpP∆q:

s “
ÿ

D1 s.t degpxD1
q“degpxDq

xD
1

(where we abuse the notation by dropping the coefficients). The general section

s P Op´KP∆
q admits a particularly nice description. We have

s “
ÿ

pP∆pZq

xp

where the sum is over the lattice points of ∆ and

xp :“
ź

ρ

xdistpp,Dρq
ρ .

Here distpp,Dρq :“ xp, nρy ` aρ is the lattice distance between p and the face

xm,nρy ` aρ “ 0 of ∆ corresponding to Dρ. Note that in the case of a reflex-

ive ∆, there is just one lattice point 0 in the interior of ∆, and the section s0
corresponding to 0 is

ś

ρ xρ.

Using the above, we can compute explicit equations for the toric degenerations

X∆ (where ∆ is a 2-dimensional reflexive polytope) in the Cox coordinates. The

polytopes of Figure 2.1 give rise to the toric degenerations in Figure 2.2 below.

The variables xi correspond to the Di in Figure 2.1, and we list their degrees with

respect to the standard basis of A1pP∆,Zq – Zl ‘Zk (for some l ě 1, k ě 1). To

describe

X∆ “ tts ` s0u Ď P∆ ˆ Spec kJtK

(with the anticanonical polarization) we give the Cox coordinates along with the

expressions for s0 and s (we drop the s0-monomial in s).

2.2. The mirror to a degeneration of elliptic curves

We want to compute the toric degeneration mirrors X̌TD and the intrinsic

mirrors X̌IMS to the Batyrev degenerations X∆ of Figure 2.2. More generally, let

X Ñ S be a toric degeneration of elliptic curves in P∆ ˆ S Ñ S.22 Then the

central fibre is a cycle of rational curves Di, 0 ď i ď m ´ 1. As before, let di
specify the degrees of ´KP∆

on Di, 0 ď i ď m´ 1 and ei specify the singularities

22Instead of an ambient P∆ ˆ S Ñ S one can specify a polarization on X (i.e. a relatively

ample line bundle) defining the degrees di.
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X∆1
«

x0 x1 x2

Z 1 1 1

ff

s0 “ x0x1x2

s “ x30 `x31 `x32 `x0x
2
1 `x0x

2
2 `

x1x
2
0 ` x1x

2
2 ` x2x

2
0 ` x2x

2
1

X∆˚
1

»

—

–

x0 x1 x2

Z 1 1 1

Z3 0 1 2

fi

ffi

fl

s0 “ x0x1x2
s “ x30 ` x31 ` x32

X∆2
»

—

–

x0 x1 x2 x3

Z 0 1 0 1

Z 1 0 1 0

fi

ffi

fl

s0 “ x0x1x2x3
s “ x20x

2
1 ` x20x

2
3 ` x21x

2
2 ` x22x

2
3 `

x0x2x
2
1`x0x2x

2
3`x1x3x

2
0`x1x3x

2
2

X∆˚
2

»

—

—

—

–

x0 x1 x2 x3

Z 0 1 0 1

Z 1 0 1 0

Z2 0 0 1 1

fi

ffi

ffi

ffi

fl

s0 “ x0x1x2x3
s “ x20x

2
1 ` x20x

2
3 ` x21x

2
2 ` x22x

2
3

Figure 2.2. Equations for the toric degenerations X∆ in the Cox

coordinates.

of the total space at the intersections Di´1 X Di. By the duality discussed in

Section 2.1, the central fibre of the mirror X̌ Ñ Spec kJtK should again be a cycle

of rational curves D˚
i , 0 ď i ď m ´ 1, with e˚

i “ di ´ 1, d˚
i “ ei ` 1. We record

this information in Figure 2.3.

D0

Ae1

Ae0

Dm´1

D1

Ae2
D2

Ae3

D3

X0

D˚
0

Ae˚
1

Ae˚
0

D˚
m´1

D˚
1

Ae˚
2

D˚
2

Ae˚
3

D˚
3

X̌0

Figure 2.3. The central fibres of a degeneration of elliptic curves

and its mirror.
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We shall now explain how to construct the toric degeneration mirror X̌TD

and the intrinsic mirror X̌IMS to X Ñ S. We can make an explicit computation

because the dual intersection complex B of X Ñ S has an affine structure with no

singularities. In this situation, the recipes of [GS3] and [GS8] for constructing

mirrors reduce to a simple rule.

The construction that we give generalizes the classical construction (see, e.g.

[DBMS, Chapter 8.4] by Mark Gross) of the mirror to a degeneration of elliptic

curves with no singularities in the total space. In [GS5, Section 2], the authors

explain how one can explicitly compute mirrors to degenerations of abelian vari-

eties (where the dual intersection complex B is a torus) that includes our case,

and [GHS, Example 6.0.1] implies that the mirrors that we construct are indeed

the ones of [GS3] (for the toric degeneration mirror) and [GS8] (for the intrinsic

mirror). The key to the construction is Mumford’s description [M1] of a degen-

eration of abelian varieties of dimension n via a toric cover X – X̂Σ{Zn where XΣ

is a toric variety that is not of finite type with a natural map π : XΣ Ñ A1 and

X̂Σ is the completion of XΣ along π´1p0q. We shall describe a tropical version of

this for degenerations of elliptic curves. Unlike [DBMS, Chapter 8.4], we use the

theta functions of [GHS, Section 3.3] for the construction (and not the jagged

path theta functions that have been used historically, see [GS8, Section 3.2] or

[GHS, Section 4.5]). They directly correspond to the classical theta functions

on abelian varieties (see [GHS, Example 6.0.1]) but are much more general and

admit a tropical construction via broken lines.23 Our description will use the tech-

nology of [GHS] as a black box. See Section 3.1 and [GHS] for the definitions

of the terms we use when motivating the construction.

2.2.1. The intrinsic mirror. We first construct the intrinsic mirror

X̌IMS Ñ Spec {krNEpX0qs.

The construction for the toric degeneration mirror X̌TD Ñ Spec kJtK will be sim-

ilar. The submonoid of A1pX0,Zq generated by the effective curve classes is just

NEpX0q “ ‘iNDi (note that it is finitely generated) so we may indeed take the

base of the family to be

Spec {krNEpX0qs “ Spec k
““

tD0 , . . . , tDm´1
‰‰

.

The intrinsic mirror can be viewed as a family

X̌IMS :“ Proj
à

pPCBpZq

k
““

tD0 , . . . , tDm´1
‰‰

ϑp Ñ Spec k
““

tD0 , . . . , tDm´1
‰‰

23We review the tropical construction of the theta functions in Section 3.1.6.
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where CB is the cone over the dual intersection complex B of X (equivalently,

CB is the tropicalization of X), CBpZq is the set of integer points of CB, and

we need to define the products of the theta functions ϑp, p P CBpZq. For the

purposes of this discussion one may think of ϑp, p P CBpZq as the generators of

the theta function ring
à

pPCBpZq

k
““

tD0 , . . . , tDm´1
‰‰

ϑp.

In our case, CB is just the cone over the m-gon with side lengths d˚
i . Let

d˚ :“
řm´1
i“0 d˚

i and consider a fan Σ in R2 spanned by the countable collection of

rays with primitive vectors
˜

k
ÿ

i“0

d˚
i ` jd˚, 1

¸

, j P Z, 0 ď k ď m ´ 1.

The support of Σ is tR ‘ Rą0u Y p0, 0q and there is a natural action of Z on Σ

with 1 P Z acting by px, yq Ñ px ` d˚y, yq. Then we have CB – Σ{Z which

corresponds to Mumford’s description of X as the quotient X – X̂Σ{Z.
The integer points ΣpZq “ tpp1, p2q P tZ ‘ Zą0u Y p0, 0qu of Σ define theta

functions ϑ̃p1,p2 on the cover (viewed as generators of the theta function ring for

XΣ). We refer to the second term of the subscript (in either ϑ̃p1,p2 or ϑp1,p2) as the

degree of the theta function (this corresponds to a grading on the theta function

ring). Factoring ΣpZq by the action of Z gives CBpZq so there are exactly d˚p2
theta functions ϑ0,p2 , . . . , ϑd˚p2´1,p2 of degree p2.

We want to define a product ϑp1,p2 ¨ ϑp1
1,p

1
2
respecting the degrees. Let us first

define products of theta functions ϑ̃p1,p2 on the cover and then descend it to a

product of ϑp1,p2 . Denote the ray of Σ with primitive generator pi, 1q by ρi and

denote the corresponding divisor of XΣ by D̃ρi . In the language of [GHS], the

fan Σ defines a consistent scattering diagram with trivial wall functions. The

triviality of the wall functions implies that the broken lines on Σ are just rays

supported on |Σ| (and running off to infinity) and the broken line product formula

for theta functions [GHS, Theorem 3.5.1] reduces to the following rule:

ϑ̃p1,p2 ¨ ϑ̃p1
1,p

1
2
:“ ϑ̃p1`p1

1,p2`p1
2
tdegpp1,p2,p1

1,p
1
2q

P
à

pPΣpZq

k
”

tD̃ρi | ρi P Σ
ı

ϑp

where

degpp1, p2, p
1
1, p

1
2q :“

ÿ

ρi

xpp1, p2q, nρiy D̃ρi `
ÿ

ρj

@

pp1
1, p

1
2q, nρj

D

D̃ρj (2.2)

and the first sum is over all the rays intersecting the ray coming from infinity

with direction vector pp1, p2q and terminating at the point pp1 ` p1
1, p2 ` p1

2q, the
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second sum is over all the rays intersecting the ray coming from infinity with

direction vector pp1
1, p

1
2q and terminating at the point pp1 ` p1

1, p2 ` p1
2q (if the

point pp1 ` p1
1, p2 ` p1

2q is on a ray, we only include this ray in one of the sums),

and nρ is the primitive normal to ρ pointing in the direction of the coming ray.

This product rule corresponds to a balanced tropical curve in Σ where the term

txpp1,p2q,nρiyD̃ρi comes from the wall-crossing automorphisms of [GHS, (2.19)] that

use the canonically defined convex multi-valued piecewise-affine (MPA) function

φ on Σ (with values in NEpX0q
gp
R – Rn) with kink D̃ρi at ρi.

Example 2.2. Suppose that d˚
i “ 2 for 0 ď i ď m ´ 1 (we have X “ X∆˚

2
if

m “ 4). Then

ϑ̃´1,1 ¨ ϑ̃2,1 “ ϑ̃1,2t
xp´1,1q,p´1,0qyD̃ρ0 “ ϑ̃1,2t

D̃ρ0

(see Figure 2.4).

ϑ̃2,1ϑ̃´1,1

ϑ̃1,2

p2, 1q
p´1, 1qp´1, 1q

p1, 2q

ρ0

ρ´2

ρ´4

ρ2

ρ4

Figure 2.4. The tropical curve corresponding to the product

ϑ̃´1,1 ¨ ϑ̃2,1 “ ϑ̃1,2t
D̃ρ0 when d˚

i “ 2 for 0 ď i ď m ´ 1.

Note that all the D̃ρi with i “
řk
i“0 d

˚
i ` jd˚ get identified with Dk under the

quotient map X̂Σ Ñ X̂Σ{Z – X. Similarly, the theta functions ϑ̃p1
1`p1

2αd
˚,p1

2
for

α P Z get identified with ϑp1
1,p

1
2
. We define the product ϑp1,p2 ¨ϑp1

1,p
1
2
by taking the

sum over all the lifts of ϑp1
1,p

1
2
. This leads to the following formula:

ϑp1,p2 ¨ ϑp1
1,p

1
2
:“

ÿ

αPZ

ϑp1`p1
1`p1

2αd
˚ mod d˚pp2`p1

2q,p2`p1
2
tdegpp1,p1

1`p1
2αd

˚,p2,p1
2q

P Proj‘pPCBpZqk
““

tD0 , . . . , tDm´1
‰‰

ϑp (2.3)
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where degpp1, p2, p
1
1, p

1
2q is as in (2.2) with D̃ρi replaced by the corresponding Dk.

Explicitly, we have:

degpp1, p2, p
1
1, p

1
2q “

m´1
ÿ

k“0

degkpp1, p2, p
1
1, p

1
2qDk

where

degkpp1, p2, p
1
1, p

1
2q “

C

pp1, p2q,
ÿ

j s.t
p1
p2

ă
řk

i“0 d
˚
i `jd˚ď

p1`p1
1

p2`p1
2

˜

´1,
k
ÿ

i“0

d˚
i ` jd˚

¸G

`

`

C

pp1
1, p

1
2q,

ÿ

j s.t
p1`p1

1
p2`p1

2
ă
řk

i“0 d
˚
i `jd˚ă

p1
1

p1
2

˜

1,´
k
ÿ

i“0

d˚
i ´ jd˚

¸G

.

Let ϑi :“ ϑi,1. One can compute the ideal of relations Irel between ϑi, 0 ď

i ď d˚ ´ 1 and represent

X̌IMS “ Proj
à

pPCBpZq

k
““

tD0 , . . . , tDm´1
‰‰

ϑp “

“ Proj
k rϑ0, . . . , ϑd˚´1s

““

tD0 , . . . , tDm´1
‰‰

Irel
(2.4)

as a subvariety of Pd˚´1

krrtD0 ,...,tDm´1ss
cut out by the ideal of relations Irel.

2.2.2. The toric degeneration mirror. To compute the toric degeneration

mirror X̌TD Ñ Spec kJtK we need to fix a relatively ample divisor (that we call

polarization) A on X. The mirror can be defined via the theta functions as before:

X̌TD :“ Proj
à

pPCBpZq

kJtKϑp Ñ Spec kJtK.

The recipe to obtain the mirror is similar to that of Section 2.2.1 except that now

we use a different MPA function φA on Σ (with values in Ngp
R – R). Namely, we

let the kink at ρi be A ¨Dk ą 0 if D̃ρi is a lift of Dk. This corresponds to replacing

D̃ρi and Dk in the formulas by A ¨Dk and defines X̌TD as a one-parameter family

over SpeckJtK.
As we are using the anticanoncal polarizationA “ ´KP∆

, we have ´KP∆
¨Dk “

dk. So we can recover the equations for the toric degeneration mirror X̌TD from the

equations for the intrinsic mirror X̌IMS by replacing Dk with dk in the equations
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for the mirror. Similarly to (2.4), this represents

X̌TD “ Proj
à

pPCBpZq

kJtKϑp “ Proj
krϑ0, . . . , ϑd˚´1sJtK

Irel

as a subvariety of Pd˚´1
kJtK . Setting di “ d˚

i “ 1 for 0 ď i ď m ´ 1, we recover the

formula for the product of the theta functions of [DBMS, Chapter 8.4].24

We will only give explicit equations for toric degeneration mirrors for sim-

plicity. Let X̌∆1,TD be the toric degeneration mirror to X∆1 . It is easy to see

that ϑ0ϑ1ϑ2, ϑ
3
0, ϑ

3
1, ϑ

3
2 are all expressions in ϑ0,3, ϑ3,3, ϑ6,3 so we expect a unique

relation between them of the form

λ1ptqϑ0ϑ1ϑ2 “ λ2ptqpϑ3
0 ` ϑ3

1 ` ϑ3
2q

for some λ1ptq, λ2ptq P kJtK. Indeed, the mirror is described by a single equation

ϑ0ϑ1ϑ2 “ t3αptqpϑ3
0 ` ϑ3

1 ` ϑ3
2q

in P2
kJtK where

αptq “ 1 ´ 5t9 ` 28t18 ´ 150t27 ` 794t36 ´ 4189t45 ` 22092t54 ` Opt55q.

In fact, the mirror is a Tate curve with a known j-invariant, and one could also

compute αptq from the j-invariant. More generally, similar considerations lead to

the following.

Proposition 2.3. Let X̌∆,TD be the toric degeneration mirror to X∆ for ∆ a

2-dimemsional reflexive polytope. Define a grading of Z ‘ Zd˚ on

krϑ0, . . . , ϑd˚´1sJtK

by setting degpϑiq “ p1, iq. Unless ∆ “ ∆1, the ideal Irel defining X̌∆,TD is

generated by linear relations between any 3 elements of degree p2, iq. If ∆ “ ∆1,

Irel is generated by a single linear relation between the 4 elements of degree p3, 0q.

Proposition 2.3 follows from our definition of the product of the theta func-

tions (2.3) by an explicit computation. We give equations for the toric degenera-

tion mirrors (with polarization ´KP∆
) to the degenerations of Figure 2.2 in Figure

2.5 (here αptq, βptq, γiptq, µjptq P kJtK are certain power series with constant term

1).

24The setup in [DBMS, Chapter 8.4] is slightly different and uses jagged path theta func-

tions instead of the theta functions we use here. This is an equivalent viewpoint where one

uses
Ť

p2PZě0
B
´

1
p2
Z
¯

instead of CBpZq to parameterize the theta functions. The equivalence

between the two viewpoints corresponds to replacing our ϑp1,p2 with ϑp2,
p1
p2

(in the notation of

[DBMS, Chapter 8.4]).
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X̌∆1,TD

1 equation in P2
kJtK:

ϑ0ϑ1ϑ2 “

t3αptqpϑ3
0 ` ϑ3

1 ` ϑ3
2q

X̌∆˚
1 ,TD

27 equations in P8
kJtK:

ϑ1ϑ8 “ t4γ1ptqϑ3ϑ6 ` tγ2ptqϑ
2
0

ϑ2ϑ7 “ t2γ3ptqϑ3ϑ6 ` t2γ4ptqϑ2
0

ϑ4ϑ5 “ γ5ptqϑ3ϑ6 ` t3γ6ptqϑ
2
0

Changing ϑi ÞÑ ϑi`3, ϑi`6 in these gives 6 more

equations.

Changing ϑi ÞÑ ϑi`1, ϑi`2, ϑi`4, ϑi`5, ϑi`7, ϑi`8

and multiplying the left side by t gives the rest.

X̌∆2,TD

2 equations in P3
kJtK:

ϑ0ϑ2 “ t2βptqpϑ2
1 ` ϑ2

3q

ϑ1ϑ3 “ t2βptqpϑ2
0 ` ϑ2

2q

X̌∆˚
2 ,TD

20 equations in P7
kJtK:

ϑ3ϑ5 “ t5µ1ptqϑ2
0 ` tµ2ptqϑ

2
4

ϑ2ϑ6 “ t2µ3ptqpϑ2
0 ` ϑ2

4q

ϑ1ϑ7 “ tµ2ptqϑ
2
0 ` t5µ1ptqϑ

2
4

ϑ4ϑ6 “ t4µ1ptqϑ2
1 ` µ2ptqϑ2

5

ϑ3ϑ7 “ t2µ3ptqpϑ2
1 ` ϑ2

5q

ϑ2ϑ8 “ µ2ptqϑ
2
1 ` t4µ1ptqϑ2

5

Changing ϑi ÞÑ ϑi`2 in these gives 6 more equa-

tions.

We also have:

ϑ3ϑ6 “ t3µ4ptqϑ0ϑ1 ` tµ5ptqϑ4ϑ5

ϑ2ϑ7 “ tµ5ptqϑ0ϑ1 ` t3µ4ptqϑ4ϑ5

Changing ϑi ÞÑ ϑi`1, ϑi`2, ϑi`3 gives the rest.

Figure 2.5. Equations for the toric degeneration mirrors X̌∆,TD.

2.3. Comparing the mirror families

We first note that Conjecture 1.7 tautologically holds for toric degenerations

of elliptic curves.

Proposition 2.4. Let X Ñ S be a toric degeneration of elliptic curves

with polarization A. Then X Ñ S is a minimal log CY degeneration, and the

basechange of the intrinsic mirror X̌IMS Ñ Spec {krNEpX0qs by h : NEpXq Ñ

N, β ÞÑ A ¨ β is isomorphic to the toric degeneration mirror X̌TD Ñ Spec kJtK.
Moreover, the universal toric degeneration mirror X̌TD Ñ Spec {krNEpX0qs of

[GHS, Theorem A.2.4] is isomorphic to X̌IMS Ñ Spec {krNEpX0qs.
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Proof. The first statement follows from our description of the mirrors in

Section 2.2. X Ñ S satisfies KX `D “ 0 as a toric degeneration, so it is minimal

log CY. The basechange corresponds exactly to replacing Dk by A ¨Dk ą 0 (it is

well-defined since A is a relatively ample divisor).

For the second statement note that the dual intersection complex B of X Ñ S
has no singularities and that φ´KP∆

is a strictly convex MPA function since ´KP∆

is relatively ample. So we are in the setup of [GHS, Theorem A.2.4]. Moreover,

AP “ k as there is only trivial gluing data in dimension 1. The universal monoid

Q Ď MP̆ApB,Nq˚ coincides with Q0 “ MPApB,Nq˚ – Nm – NEpX0q by [GHS,

Proposition 1.2.9(a)] and the fact that MPApB,Nq “ MP̆ApB,Nq in dimension

1. The canonical version [GS3, Theorem 5.2] of the reconstruction algorithm

corresponds to interpreting powers of t as elements of Q – NEpX0q in exactly

the same way as when constructing X̌IMS Ñ Spec {krNEpX0qs. □

The first part of Proposition 2.4 motivates Conjecture 1.7. The second part

inspired the generalizations of Chapter 5.

The connection between X̌∆,TD (and thus X̌∆,IMS by the above) and X∆˚ is

more subtle. We use the Cox coordinate description [BB2] for rational maps

between subvarieties of toric varieties.

Proposition 2.5. We have X̌∆,TD,0 – X∆˚,0 – BP∆˚

Proof. The second identification is immediate from the Cox coordinate de-

scription of X∆˚ . The first one is a consequence of the discrete Legendre trans-

form. To describe the identification explicitly, note that we have natural bijec-

tions:

tϑi, 0 ď i ď m ´ 1u ðñ
␣

sections s˚
i ‰ s˚

0 of ´ KP∆˚

(

ðñ B∆˚
pZq

The identification comes from considering the anticanonical embedding of X∆˚

into PmkJtK with coordinates pϑ0, . . . , ϑm´1, ϑ
˚q and ϑ˚ corresponding to 0 P Int∆.

In the Cox coordinates, it can be described as ϑi ÞÑ si, ϑ
˚ ÞÑ s0. It is easy to see

that the equations for the image of this embedding and the equations for X̌∆,TD

agree modulo the ideal ptq Ď kJtK (the image of the embedding has an additional

equation ϑ˚ “ 0). This implies the first identification. Note that the isomorphism

does not extend to the generic fibre. □

We slightly modify X∆ by allowing more general deformations. Let ηptq P kJtK
and denote

X
ηptq
∆ :“ tηptqs ` s0 “ 0u Ď P∆ ˆ Spec kJtK. (2.5)



30 2. DEGENERATIONS OF ELLIPTIC CURVES

Proposition 2.6. If ∆ “ ∆1 or ∆ “ ∆2 (that is P∆ – P2 or P∆ – P1 ˆP1),

there is a rational map X̌∆,TD Ñ X
ηptq
∆˚ for a certain ηptq P kJtK. Explicitly:

(1) There is a rational map X̌∆1,TD Ñ X
´t3αptq

∆˚
1

given by

x0 ÞÑ ϑ0, x1 ÞÑ ϑ1, x2 ÞÑ ϑ2

in the Cox coordinates.

(2) There is a rational map X̌∆2,TD Ñ X
´t4β2ptq

∆˚
2

given by

x0 ÞÑ ϑ0, x1 ÞÑ ϑ1, x2 ÞÑ ϑ2, x3 ÞÑ ϑ3

in the Cox coordinates.

Here αptq, βptq P kJtK are as in Figure 2.5.

Proof. By the description of the image of a map given in the Cox coordinates

[BB2, Theorem 1.1], it is enough to show that pulling back the equations for

X̌∆,TD to SpP∆˚q and taking the homogeneous part of the ideal generated by

the pulled back equations with respect to the grading on SpP∆˚q gives the ideal

pηptqs ` s0q Ď SpP∆˚q.

By comparing the equations in Figures 2.2 and 2.5, we see that in the first

case, the pulled back equation is just x0x1x2 ´ t3αptqpx30 ` x31 ` x32q which proves

(1).

In the second case, the pulled back equations generate an ideal
@

x0x2 ´ t2βptqpx21 ` x23q, x1x3 ´ t2βptqpx20 ` x22q
D

.

However, the pulled back equations are not homogeneous with respect to the

grading on SpP∆˚
2
q. It is easy to check that the homogeneous part of this ideal is

@

x0x2x2x3 ´ t4β2
ptqpx20x

2
1 ` x20x

2
3 ` x21x

2
2 ` x22x

2
3q
D

which proves (2). □

Note that the maps in the above proposition are not birational but rather

quotients by an action of Z3 (in the first case) or Z2 (in the second case).

There are two reasons why we can construct these maps. First, in these

examples, the number of degree one theta functions ϑi is the same as that of Cox

coordinates xj. Second, ∆1 and ∆2 have a lot of symmetries. One can explicitly

check that for other 2-dimensional reflexive polytopes, there are no rational maps

given by linear expressions in terms of the theta functions in the Cox coordinates.

So the results of Proposition 2.6 are a coincidence and not a rule.

In higher dimensions, one does not have a similar result for P∆ “ pP1qn since

the number of ϑi and xj is no longer the same. However, in Appendix A, we
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show that the result of Proposition 2.6(1) directly generalizes to the case of a

Batyrev degeneration of K3-s in P3 (i.e. the case of Example 1.4) and conjecture

a generalization to the case of a Baryrev degeneration in Pn, n ě 4.





CHAPTER 3

Setup and preliminaries

In this chapter, we review the setups, and adapt them to our needs, of scat-

tering diagrams [GHS, GS5], toric degenerations [GS1, GS2, GS3], and in-

trinsic mirrors [GS6, GS7, GS8]. We also discuss the resolution setup of a map

X
π

Ñ X̄ Ñ S where X̄ Ñ S is a toric degeneration and the composed X Ñ S is

a log smooth minimal log CY degeneration, and explain how π : X Ñ X̄ gives

rise to an extension of the intrinsic mirror X̌ Ñ SpeczkrP s. We mostly keep the

discussion general but sometimes specialize to degenerations of K3-s. Finally,

we set up the scene for proving Conjecture 1.7 in the case of K3-s and give an

overview of the results of Chapters 4 and 5.

3.1. Scattering diagrams

Both the toric degeneration and the intrinsic mirror constructions can be

understood in terms of a combinatorial device of a scattering diagram (also called

wall structure in [GHS] and [GS7]). The descriptions vary slightly throughout

the literature. We stick to the conventions of [GHS] except for imposing stronger

conditions on the polyhedral (pseudo-)manifold pB,Pq.

3.1.1. Polyhedral manifold. We start with a polyhedral manifold pB,Pq. For

us, such a manifold will usually arise as the dual intersection complex of a toric

degeneration X̄ Ñ S or of its log smooth resolution X Ñ S.

Definition 3.1. We say that a pair pB,Pq is a polyhedral manifold of di-

mension n if:

(1) B is a real topological manifold with BB “ 0 and of pure dimension n.

(2) P is a polyhedral decomposition of B. That is, P is a set of bounded

integral polyhedra along with a set of integral affine maps ω Ñ τ iden-

tifying ω with a face of τ making P into a category such that:

(a) For τ P P any face of τ occurs as a domain of an element of hompPq

with target τ .

(b) We have

B “ lim
ÝÑ
τPP

τ

33
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with the colimit taken in the category of topological spaces.

(c) For each τ P P the canonical map τ Ñ B is injective. That is, no

cells self-intersect.

(d) By abuse of notation we view the elements of P as subsets of B.

We assume that a (possibly empty) intersection of any two cells of

P is a cell of P.

We refer to the cells of dimensions 0, 1, and n as vertices, edges, and maximal cells

respectively. We use the notation P rks for the set of k-cells and Pmax :“ P rns

for the set of maximal cells. We denote by BpZq the set of points of B that are

the images of integer points of some τ P P under τ Ñ B.

We say that two polyhedral manifolds pB,Pq and pB1,P 1q are isomorphic

if there exists an isomorphism pB,Pq – pB1,P 1q of polyhedral complexes that

preserves the integral structure.

We also define a polyhedral manifold with boundary as a pair pB,Pq satisfying

all the conditions of (1) and (2) apart from requiring BB “ 0. Unless explicitly

mentioned otherwise, all the polyhedral manifolds in this thesis will be without

boundary.

Our requirements on pB,Pq differ from both those of [GHS] and those of

[GS1, GS3], as we now explain.

Remarks 3.2. There are two directions in which Definition 3.1 can be gen-

eralized:

(1) Our notions are more restrictive than those of a polyhedral pseudomani-

fold of [GHS, Construction 1.1.1] which allow B not to be a manifold in

codimension ě 2 or have a non-empty boundary, and allow P to contain

unbounded polyhedra. We include the additional assumptions since our

manifolds will always satisfy them, leading to a simplified exposition.

(2) The dual intersection complex of a toric degeneration X̄ Ñ S satisfying

Definition 1.2 might not satisfy conditions (2)(c) and (2)(d) of Definition

3.1. Dropping these conditions leads to the notion of a toric polyhedral

decomposition of [GS1, Definitions 1.21 and 1.22]. In [GS1, GS3], the

authors developed a sophisticated language to deal with such decompo-

sitions. It is easy to see that conditions (3) and (4) of Assumption 1.3

on X̄ Ñ S imply that its dual intersection complex satisfies conditions

(2)(c) and (2)(d) of Definition 3.1 respectively.
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One can likely generalize the results of this thesis to toric degenera-

tions that don’t satisfy conditions (3) and (4) of Assumption 1.3. How-

ever, removing them would require a significant revision of [GS7, GS8,

GHS]. We don’t feel that this generality is worth the added complexity

of the language and prefer to work in the setup of [GHS].

3.1.2. Affine manifold. We assume that our polyhedral manifold pB,Pq is

given a structure of an integral affine manifold with singularities. Recall that an

affine manifold is a topological manifold with transition maps in the group of

affine transformations

AffpNRq :“ NR ¸ GLnpRq

of NR “ N bZR for a fixed lattice N – Zn. We refer to such an atlas as an affine

structure. We say that the affine manifold is integral if the transition maps lie in

AffpNq :“ N ¸ GLnpZq.

Let P̃ be the barycentric subdivision of P and let the discriminant (or

singular) locus ∆ be the union of all pn ´ 2q-dimensional cells of P̃ that do not

intersect the interiors of the maximal cells of P. An integral affine manifold with

singularities (that we shall usually just call an affine manifold) is a topological

manifold B with an integral affine structure on B0 :“ Bz∆ (we write i for the

inclusion i : B0 ãÝÑ B). We denote by ρ Ď ρ P P rn´1s the connected components

of ρz∆. We write ρ P P̃ rn´1s and call them slabs.

Remarks 3.3. In the future, we shall often need to modify the discriminant

locus ∆.

(1) Both for the dual intersection complex
`

B̄, P̄
˘

of a toric degeneration

X̄ Ñ S and for the dual intersection complex pB,Pq of a log CY degen-

eration X Ñ S we will actually choose a smaller discriminant locus (that

will still be a union of submanifolds of codimension ě 2), see Section

3.2.3 and Sections 3.3.3, 3.3.4 respectively. We will denote the discrimi-

nant locus of
`

B̄, P̄
˘

by ∆̄ and denote the discriminant locus of pB,Pq

by ∆ regardless of the exact situation.

(2) In the case that we have a resolution π : X Ñ X̄, the affine structure on

pB,Pq will extend across each vertex corresponding to a toric component

of the exceptional locus due to [AG, Proposition 2.3]. This corresponds

to replacing ∆ with a smaller discriminant locus and will enable us to

define a PL-isomorphism Φ : B Ñ B̄ in general (see Constructions 4.23

and 4.36).
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(3) In the definition of the affine structure on
`

B̄, P̄
˘

we select ∆̄ in such a

way that it does not contain any rational points of the integral structure

(and we shall still denote the resulting subdivision of P̄ by ˜̄P).

Neither choosing a smaller ∆ nor modifying its precise location (as long as ∆

respects the cell structure) changes the constructions in this section. We shall

make explicit remarks when the exact location of ∆ is important.

An integral affine manifold B0 comes with a sheaf of integral (co-) tangent

vectors Λ “ ΛB0 (dually Λ̌ “ Λ̌B0). These are locally constant sheaves with stalks

Λx – Zn, Λ̌x – Zn, x P B0. Further, for τ P P, we use the notation Λτ for the

sheaf of integral tangent vectors on Intpτq (viewed as an integral affine manifold

with boundary) or for the stalk of this sheaf at any y P Intpτq, depending on the

context. If τ Ď τ 1, we consider Λτ naturally as a subgroup of Λτ 1 .

An important piece of data is the monodromy of the affine structure in the

neighbourhood of ρ P P rn´1s. Let ρ, ρ1 Ď ρ P P rn´1s be two slabs and let

σ, σ1 P Pmax be the maximal cells adjacent to ρ. Consider a simple loop γ based

at x P Int ρ, passing successively into Intσ, to Int ρ1, into Intσ1, and back to x.

Parallel transform along this path takes form

Tγpmq “ m ` ďρpmq ¨ mρ ρ1 , m P Λx (3.1)

where mρ ρ1 P Λρ and ďρ P Λ̌x is the generator of Λ
K
ρ Ď Λ̌x that takes non-negative

values on σ. We call mρ ρ1 the monodromy vector. Note that mρ1ρ “ ´mρ ρ1 .

We now describe a general procedure that we will use to define the structure

of an integral affine manifold with singularities on a polyhedral manifold pB,Pq.

Construction 3.4. To define an integral affine structure on B0 “ Bz∆25

(viewed as a topological manifold only) it is enough to give:

(1) To every

tσ | σ P Pmax
u (3.2)

the structure of an integral polyhedron (so that for any ρ P P rn´1s such

that ρ “ σXσ1 for σ, σ1 P Pmax the structures of an integral polyhedron

on ρ induced from σ and σ1 are the same). These define integral affine

charts on

tIntσ | σ P Pmax
u . (3.3)

25Here, ∆ should be understood as the union of all pn ´ 2q-dimensional cells of P̃ (with,

possibly, the perturbed P̃ of Remark 3.3(3)) that do not intersect the interiors of the maximal

cells of P. It will be easy to see when the affine structure defined via this construction extends

over some codimension 2 cells.
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Note that if pB,Pq is a polyhedral manifold, these structures are already

provided by Definition 3.1.

(2) Structures of integral affine manifolds on every
␣

Wvz∆ | v P P r0s
(

(3.4)

for

Wv :“
ď

tσ̃PP̃ | vĎσ̃u

Int σ̃ (3.5)

that are compatible with the affine charts of (3.3).

We often use the following refined description of the affine structures on (3.4).

p21q To define the integral affine manifold structures on (3.4) it is enough

to give, for any ρ P P rn´1s with ρ “ σ X σ1 for σ, σ1 P Pmax and any

v Ď ρ, v P P r0s, an integral piecewise-linear (PL) embedding

ψρ,v : σ Y σ1
Ñ Rn (3.6)

with ψρ,vpvq “ 0 compatible with the structures of affine polyhedra of

(3.2).

To see that any data of p1q and p21q in Construction 3.4 defines a data of

(2), note that for every v P P r0s the PL-embedding ψρ,v : σ Y σ1 Ñ Rn of (3.6)

restricts to a PL-embedding

ψρ,v : σ̃ Y σ̃1
Ñ Rn (3.7)

where σ̃, σ̃1 P P̃max with σ̃X σ̃1 “ ρ P P̃ rn´1s are the unique cells of P̃ such that

ρ Ď ρ, σ̃ Ď σ, σ̃1 Ď σ1, and v P ρ. Now the embedding ψρ,v defines an affine chart

on Int pσ̃ Y σ̃1q and the collection of such charts over all ρ P P̃ rn´1s with v P ρ,

along with the charts on
!

Int σ̃ | v P σ̃, σ̃ P P̃max
)

induced by restricting the charts of (3.3), defines the structure of an affine man-

ifold on Wvz∆.

Conversely, assuming that for every v P P r0s there exist affine charts onWvz∆

covering Int pσ̃ Y σ̃1q for any σ̃, σ̃1 P P̃max with σ̃ X σ̃1 “ ρ P P̃ rn´1s and v P ρ

(e.g. the affine structure on Wvz∆ is given by a single chart), the data of (1)

and (2) defines a data of p21q. Indeed, the affine charts induce PL-embeddings

ψρ,v : σ̃ Y σ̃1 Ñ Rn of (3.7). Such a PL-embedding uniquely extends to a PL-

embedding ψρ,v : σYσ1 Ñ Rn of (3.6) for ρ P P rn´1s and σ, σ1 P Pmax the unique

cells such that ρ Ď ρ, σ̃ Ď σ, σ̃1 Ď σ1.
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We will use Construction 3.4 to define the affine structures on the dual inter-

section complex
`

B̄, P̄
˘

of a toric degeneration X̄ Ñ S and the dual intersection

complex pB,Pq of a log CY degeneration X Ñ S in Construction 3.28 and Con-

structions 3.57, 3.69 respectively. In the first case, we shall use the description of

Construction 3.4(2). In the second case, we shall use the refined description of

Construction 3.4p21q. We will use the above discussion on the equivalence of the

two descriptions to define a PL-isomorphism Φ : B Ñ B̄ in increasing generality

(see Constructions 4.6, 4.23, and 4.36).

3.1.3. MPA function and the initial slab functions. The next ingredient of

the setup is a convex multi-valued piecewise-affine (MPA) function φ on B with

values in a toric monoid. We fix a toric monoid Q, that is a finitely generated,

integral, saturated monoid with Qgp torsion-free.26 The choice of a Qgp
R -valued

MPA function (see [GHS, Definition 1.2.5]) φ on B consists of a choice of single-

valued integral piecewise-linear (PL) functions φU : U Ñ Qgp
R in the charts of the

affine structure well-defined up to linear functions.27

Let ρ P P̃ rn´1s be a slab contained in σ, σ1 P Pmax and let φU : U Ñ Qgp
R be

the single-valued integral PL-function defined in a neighbourhood of x P Int ρ.

Let n, n1 P Λ̌x b Qgp be the slopes of φU |σ and φU |σ1 . Then we may write

n1
´ n “ δ ¨ κρ (3.8)

where κρ P Qgp and δ : Λx Ñ Z is the surjective map that vanishes on tangent

vectors to ρ and is positive on tangent vectors pointing into σ1. Then κρ (or κρpφq

if we want to emphasise the dependence on φ) is independent of x P Int ρ and we

call it the kink of φ at ρ.

The collection of kinks
!

κρpφq, ρ P P̃ rn´1s
)

completely determines the MPA function φ (see [GHS, Proposition 1.2.6]) and

we will usually specify an MPA function by giving a collection of kinks. Unless

otherwise specified, we require in addition that κρ “ κρ1 “: κρ for any ρ, ρ1 Ď

ρ P P rn´1s. We fix an MPA function φ and assume that it is convex, that is

26Equivalently, we require Q to be isomorphic to a finitely generated saturated submonoid

of a finitely generated free abelian group. We do not require Q to be sharp, so it might have

non-trivial invertible elements. So Q can be realized as the set of integral points of some convex

(but not necessarily strictly convex) rational polyhedral cone.
27This description is the reason that these functions are called multi-valued piecewise-linear

(MPL) in [GS8] and [AG].
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κρ P Q Ď Qgp for all ρ P P rn´1s. All MPA functions in this thesis will be convex.

We say that φ is strictly convex if κρ P QzQˆ for all ρ P P rn´1s.

Fix a Noetherian ring A28 and let I0 Ď Q be a monoid ideal. We assume

that κρ P I0 for any ρ P P rn´1s. We also fix an additional piece of discrete data

fρ P pArQs{I0qrΛρs for each ρ P P̃ rn´1s such that for any ρ, ρ1 Ď ρ P P rn´1s we

have

fρ1 “ z
mρ1ρfρ. (3.9)

We call the elements of
!

fρ

ˇ

ˇ

ˇ
ρ P P̃ rn´1s

)

the initial slab functions.

3.1.4. Monomials and the definition of a scattering diagram. The choice

of a Qgp
R -valued MPA function φ gives rise to a local system P (see [GHS, Defi-

nition 1.2.12]) on B0 that fits into an exact sequence

0 ÝÑ Qgp
ÝÑ P ÝÑ Λ ÝÑ 0 (3.10)

where Qgp denotes the constant sheaf with stalk Qgp. For every m P Px, we write
m̄ P Λx for the image of the projection. Moreover, each x P B0 gives a submonoid

P`
x Ď Px (see [GHS, Definition 1.2.13]). We describe the monoids P`

x and the

effects of parallel transform on them explicitly.

For σ P Pmax, x P Intσ, we have

P`
x “ Λx ˆ Q. (3.11)

For ρ P P rn´1s, x P Int ρz∆, we have

P`
x “ pΛρ ‘ NZ` ‘ NZ´ ‘ Qq{xZ` ` Z´ “ κρy. (3.12)

This description requires an ordering σ, σ1 P Pmax of the maximal cells containing

ρ and a choice of vector ξ P Λx pointing into σ and representing a generator of

Λσ{Λρ (we call such a ξ a normal generator), so that Z̄` “ ξ and Z̄´ “ ´ξ.

For x, x1 P Intpσq, σ P Pmax the parallel transport P`
x Ñ P`

x1 is trivial in the

representation of (3.11). For x P Int ρz∆ and y P Intσ, y1 P Intσ1, the parallel

transports from P`
x to P`

y and P`
y1 in the local system P take form

pλρ, aZ`, bZ´, qq ÞÑ

$

&

%

`

λρ ` pa ´ bqξ, q ` bκρq P P`
y

`

λρ ` pa ´ bqξ, q ` aκρq P P`
y1

(3.13)

See the discussion of [GHS, Section 2.2] for more details.

28We will always have A “ k until Chapter 5.
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More generally, let x P B0. Parallel transport inside the chart U of the affine

structure in the neighbourhood of x P σ, σ P Pmax identifies Px with Py for any
y P σ X U . Via this parallel transform we have

P`
x “

č

xPσPPmax

P`
y . (3.14)

Notation 3.5. For x P Intσ, σ P Pmax, we will write a monomial in ArP`
x s “

ArQsrΛxs either as zm for m P P`
x or as tqzm̄ for pm̄, qq P Λx ‘ Q via (3.11).

Similarly, if x P Int ρz∆, ρ P P rn´1s, we have a canonically defined submonoid

Λρ ‘Q Ď P`
x via (3.12) giving a subring ArQsrΛρs Ď ArP`

x s. Again, we write the

monomials in this subring as tqzm̄ for q P Q, m̄ P Λρ.

For any monoid ideal I Ď Q and any x P B0, we obtain an ideal Ix Ď ArP`
x s.

If x P Intσ, σ P Pmax, then Ix is defined via the inclusion of ArQs into ArP`
x s.

More generally, using the description of (3.14), we can define

Ix :“
ÿ

xPσPPmax

Iy X ArP`
y s. (3.15)

Let I be a monoid ideal with
?
I “ I0.

Definition 3.6. A wall on pB,Pq is a codimension one rational polyhedral

subset p of some σ P Pmax along with a wall function

fp “
ÿ

mPP`
x , m̄PΛp

cmz
m

P ArP`
x s{Ix

for x P Int p. Let y P pz∆. If cm ‰ 0, we require that under the identification

of Py with Px via parallel transport inside σz∆ we have m P P`
y . We further

require that:

(1) If p X Intσ ‰ ∅, then fp “ 1 mod I0.

(2) If p Ď ρ for some ρ P P̃ rn´1s, then fp “ fρ mod I0.

We denote a wall by either pp, fpq or just p and say that a wall is trivial if fp “ 1.

Definition 3.7. A scattering diagram DI (or pB,DIq if we want to keep

track of the affine manifold) on pB,Pq is a set of walls that is:

(1) Finite.

(2) Forms the codimension one cells of a rational polyhedral decomposition

PDI
of P refining P.

(3) Every ρ P P̃ rn´1s is contained in a union of walls.29

29This is not required in [GHS], and is just a convention to make the notation easier, see

Remark 3.8 and Definition 3.17.
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We define the support and singular locus of DI as follows:

|DI | :“
ď

pPDI

p

SingpDIq :“ ∆ Y
ď

p,p1PDI

pp X p1
q

We call elements u P Pmax
DI

chambers, elements b P P rn´1s

DI
such that b Ď ρ

for ρ P P̃ rn´1s slabs30 (and their wall functions slab functions), and elements

j P P rn´2s

DI
joints. The codimension k of a joint j or a wall p is the codimension

of the smallest cell of P containing j or p respectively. In particular, slabs are

precisely the codimension 1 walls.

Remark 3.8. The walls of [GS3, GS8] often don’t satisfy conditions (2) and

(3) of Definition 3.7. Suppose that D1
I is a scattering diagram in that sense and

set

|D1
I | :“

ď

pPD1
I

p Y
ď

ρPP̃rn´1s

ρ

SingpD1
Iq :“ ∆ Y

ď

p,p1PD1
I

pp X p1
q

where the union in SingpD1
Iq is over all pairs of walls p, p

1 with pXp1 of codimension

at least two. If fρ ‰ 1 for ρ P P̃ rn´1s, assume in addition that there are no two

walls b1, b2 Ď ρ such that fbi ‰ 1 mod I0, i “ 1, 2 and dim b1 X b2 X ρ “ n´ 1.31

Now, do the following:

(1) Decompose every wall (p, fpq into walls pp1, fp1q, . . . , ppn, fpnq where

p1, . . . , pn are the closures of the connected components of pzpSingpD1
IqX

pq and fpi :“ fp.

(2) If after (1) there are multiple walls pp1, fp1q, . . . ppm, fpmq with the same

support, replace them by one wall pp1, fp1q where p1 has the same support

as pi and fp1 :“
śm

i“1 fpi .

(3) For every ρ P P̃ rn´1s, introduce a slab b for every connected component

of

ρ
I

¨

˝

ď

pPD1
I

p Y SingpD1
Iq

˛

‚

30Note that we slightly abuse the notation here since we also call elements ρ P P̃rn´1s

slabs. The meaning will be clear from the context.
31This assumption is necessary to ensure that step (2) below produces walls satisfying

condition (2) of Definition 3.6.
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with slab function fb :“ fρ.

(4) Add trivial walls so that condition (2) of Definition 3.7 is satisfied.

The resulting scattering diagram DI satisfies Definition 3.7. We shall freely drop

conditions (2) and (3) of Definition 3.7 when convenient and assume that this

procedure has taken place32 when using the setup of [GHS].

We will usually have to deal with a compatible collection of scattering dia-

grams over multiple ideals.

Definition 3.9. The scattering diagrams DI and DI 1 for I Ď I 1 are compat-

ible if for every wall p P DI 1 we either have p P DI and fp,I “ fp,I 1 mod I or

p P DI 1zDI and fp “ 1 mod I.

A scattering diagram DI gives rise to a canonical family X̌DI
Ñ SpecArQs{I

if DI satisfies the additional requirement of consistency. We will now review the

construction.

3.1.5. Consistency in codimensions 0 and 1, and the construction of

X̌o
DI
. First, we define a family X̌0 Ñ SpecArQs{I0, which one should think of as

the central fibre33 of X̌DI
Ñ SpecArQs{I. The construction is purely combinato-

rial. For any integral polyhedron σ P Rk we define the cone over σ as

Cσ :“ Rě0 ¨ pσ ˆ t1uq Ď R ˆ Rk. (3.16)

Then for any d ě 0 let

B

ˆ

1

d
Z
˙

:“
ď

σPPmax

Cσ X pZn ˆ tduq. (3.17)

The notation is justified as B
`

1
d
Z
˘

is in bijection with the set of points of B with

denominator d in some integral affine chart. Now let

pArQs{I0q rBs :“
à

dPN
pArQs{I0q

Bp 1
d
Zq (3.18)

with basis elements zm, m P B
`

1
d
Z
˘

for some d P N. We define the multiplication

as zm ¨ zm
1

:“ zm
1`m if m and m1 are in the same σ P Pmax (the sum taken in

32The described procedure does not change the mirror family XDI
constructed from DI .

For [GS3], see the discussion of [GHS, Appendix A.1]. For [GS8], that is precisely how the

construction goes, see [GS8, Remark 3.4].
33It is indeed the central fibre of the family if I0 “ m is the maximal ideal.
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Cσ) and zm ¨ zm
1

:“ 0 otherwise. This makes pArQs{I0q rBs into a ring and we

have a natural Z-grading by d. We define34

X̌0 :“ Proj pArQs{I0q rBs

and assume that X̌0 is projective.

We now want to deform X̌0. We define rings

Rσ :“ pArQs{IqrΛσs

for every σ P Pmax and

Rρ :“ pArQs{IqrΛρsrZ`, Z´s{pZ`Z´ ´ fρ ¨ zκρq

for every ρ P P̃ rn´1s, this arises from (3.11) and (3.12). We also define

Ru :“ pArQs{IqrΛσs

for every chamber u Ď σ P Pmax and

Rb :“ pArQs{IqrΛρsrZ`, Z´s{pZ`Z´ ´ fb ¨ zκρq

for every slab b Ď ρ P P̃ rn´1s.

For every b Ď u we have localization homomorphisms

χb,u : Rb Ñ Ru (3.19)

given by (this arises from (3.13)):

Z` ÞÑ zξ, Z´ ÞÑ fbz
κρz´ξ

with ξ P Λσ the normal generator pointing into σ as in (3.12) and other monomials

identified using Λρ Ď Λσ.

Let p be a codimension 0 wall separating two chambers u, u1 Ď σ P Pmax. Let

np be the generator of Λ̌p Ď Λ̌x for some x P Int p that is non-negative on u. We

have wall-crossing homomorphisms

θp : Ru Ñ Ru1 , zm ÞÑ f
xnp,m̄y
p zm. (3.20)

Definition 3.10. Let j Ď σ P Pmax be a codimension 0 joint and suppose

that it is contained in the set of walls p1, . . . , pr ordered cyclically. DI is consistent

around j if

θγj :“ θp1 ˝ ¨ ¨ ¨ ˝ θpr “ Id

34In [GHS], this scheme is denoted X0. We include a check here since we will use the

construction to produce mirrors. The same remark applies to other objects constructed from

pB,Pq.
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as an automorphism of Rσ.
35 DI is consistent in codimension 0 if it is consistent

around every codimension 0 joint.

Definition 3.11. Let j Ď ρ P P rn´1s be a codimension 1 joint. Then we have

unique σ, σ1 P Pmax such that ρ “ σ X σ1 and unique slabs b1, b2 Ď ρ such that

j “ b1 Xb2. Suppose that j is contained in a set of walls p1, . . . , pr, p
1
1, . . . , p

1
s such

that p1, . . . , pr Ď σ, p1
1, . . . , p

1
s Ď σ1, and b1, p1, . . . , pr, b2, p

1
1, . . . , p

1
s is a cyclic

ordering around j. Then there are homomorphisms36

χbi,σ : Rbi Ñ Rσ, χbi,σ : Rbi Ñ Rσ1 , i “ 1, 2

and compositions of wall-crossings

θ :“ θpr ˝ θpr´1 ˝ ¨ ¨ ¨ ˝ θp1 : Rσ Ñ Rσ

θ1 :“ θp1
1

˝ θp1
2

˝ ¨ ¨ ¨ ˝ θp1
s
: Rσ1 Ñ Rσ1

DI is consistent around j if

pθ ˆ θ1
q ppχb1,σ, χb1,σ1qpRb1qq “ pχb2,σ, χb2,σ1qpRb2q.

In this case we define

θj : Rb1 Ñ Rb2

as the isomorphism induced by θˆ θ1.37 DI is consistent in codimension 1 if it is

consistent around every codimension 1 joint.

Given a scattering diagram DI consistent in codimensions 0 and 1, [GHS,

Proposition 2.4.1] constructs a family X̌o
DI

Ñ SpecArQs{I by gluing together the

various SpecRu for u a chamber of DI and SpecRb for b a slab of DI along the

localization homomorphisms χb,u of (3.19), the wall-crosssing homomorphisms θp
of (3.20) and the isomorphisms θj associated to crossing a codimension 1 joint j.

Consistency conditions ensure that the gluing is well-defined. The reduction of

X̌o
DI

modulo I0 is canonically isomorphic (see [GHS, Proposition 2.4.4]) to the

complement of the union of codimension 2 strata of X̌0.

3.1.6. Consistency in codimension 2 and the extension to X̌DI
. Consis-

tency in codimension 2 is more complicated than in codimensions 0 and 1 and

roughly means that one has a well-defined basis ϑm of sections of ΓpX̌o
DI
,OX̌o

DI

q

called theta functions. We review the construction, see [GHS, Sections 3.1 and

3.2] for details.

35The notation θγj
comes from thinking of the composition as going around j via a small

loop γj and multiplying by a wall-crossing homomorphism each time we cross a wall.
36Obtained by composing (3.19) with Id : Ru Ñ Rσ for any u Ď σ P Pmax.
37It is easy to see that the homomorphisms pχbi,σ, χbi,σ1 q, i “ 1, 2 are injective.
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First, we want to generalize the notion of a wall-crossing homomorphism

(3.20) to slabs. This is a bit more delicate. Let b be a slab separating two

chambers u Ď σ P Pmax and u1 Ď σ1 P Pmax. Let Rb
u Ď Ru be the ArQs{I

subalgebra generated by Λρ and the χb,upZ`q of (3.19). Now define a slab-crossing

homomorphism

θb : R
b
u Ñ Ru1 (3.21)

as an identity on Λρ and by setting

θbpχb,upZ`qq :“ χb,u1pZ´q ¨ fb ¨ zκρ .

Note that the expression θbpaz
mq is defined for any azm P Ru that is defined

at a point of Intpu X u1q via parallel transport.

Now we can define broken lines that can be roughly described as piecewise-

linear paths in B0 that bend when they cross a wall p in a way specified by fp.

Formally, we have the following.

Definition 3.12. A broken line for a scattering diagram DI on pB,Pq is a

proper continuous map

β : p´8, 0s Ñ Bz SingpDIq

along with:

‚ A sequence ´8 “ t0 ă t1 ă ¨ ¨ ¨ ă tr “ 0 for some r ě 1 such that

βptiq P |DI | for i ď r ´ 1. We say that p :“ βp0q is the endpoint of β.

‚ For each 1 ď i ď r, an expression aiz
mi with ai P ArQs{I, mi P Λβptq for

some t P pti´1, tiq, defined at all points of βprti´1, tisq. We require a1 “ 1.

We call m1 the asymptotic monomial of β and introduce the notation:

aβ :“ ar, mβ :“ mr.

This information is subject to the following conditions:

(1) β|pti´1,tiq is a non-constant affine map with image contained in a unique

chamber u and β1ptq “ ´mi for all t P pti´1, tiq.

(2) If βptiq for 1 ď i ď r ´ 1 lies in a codimension 0 wall p Ď u X u1 for

chambers u, u1 Ď σ P Pmax and β|pti´1,tiq is contained in u, then we

require that ai`1z
mi`1 is one of the ajz

mj in

θppaiz
miq “

ÿ

j

ajz
mj

where θp is the wall-crossing homomorphism of (3.20).
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(3) If βptiq for 1 ď i ď r ´ 1 lies in a slab b Ď ρ P P̃max, b Ď u X u1 is

contained in the chambers u Ď σ P Pmax, u1 Ď σ1 P Pmax, and β|pti´1,tiq

is contained in u, we require that38 ai`1z
mi`1 is one of the ajz

mj in

θbpaiz
miq “

ÿ

j

ajz
mj

where θb is the slab-crossing homomorphism of (3.21).

In either (2) or (3), we say that ai`1z
mi`1 is the result of transport of aiz

mi from

u to u1.

Notation 3.13. Suppose that DI is a scattering diagram consistent in codi-

mensions 0 and 1 and let u, u1 P Pmax be two adjacent chambers. We introduce

a single notation θu1u for the change of chamber homomorphism θp of (3.20) or θb
of (3.21) when p Ď u X u1 (resp. b Ď u X u1).39

Let j be a joint of codimension 2 and let ω P P rn´2s be the smallest cell

containing j. Build a new affine manifold pBj,Pjq by replacing any τ P P with

j Ď τ by the tangent wedge of ω in τ . Note that the inclusion of faces τ Ď τ 1

induces an inclusion of the corresponding tangent wedges. So Bj is a local model

of pB,Pq near j all of whose cells are cones. Similarly, the scattering diagram

DI induces a scattering diagram DI,j by considering only the walls containing j

and going over to the tangent wedges based at ω for the underlying polyhedral

subsets of codimension one. Now, let m be an asymptotic monomial on pBj,Pjq.

For a general point p P Bj, say contained in a chamber u P Pmax
j,DI,j

, define

ϑj
mppq :“

ÿ

β

aβz
mβ P Ru (3.22)

where the sum is over all the broken lines on pBj,Pjq with asymptotic monomial

m and endpoint p.

Definition 3.14. A scattering diagram DI is consistent along the codimen-

sion 2 joint j if the ϑj
mppq:

(1) Do not depend on the choice of a general point p in the same chamber

u.

(2) Are compatible with the change of chamber homomorphisms θu1u for DI,j

as defined in Notation 3.13.

38This is well-defined since βptiq P Int b as impβq is disjoint from the joints.
39Consistency in codimensions 0 and 1 implies that this does not depend on the choice of

p Ď u X u1 (resp. b Ď u X u1). See the proof of [GHS, Proposition 2.4.1] and the reference to

[GS3, Lemma 2.30] therein.
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A scattering diagram is consistent in codimension 2 if it is consistent along every

codimension two joint. A scattering diagram is consistent if it is consistent in

codimensions 0 (Definition 3.10), 1 (Definition 3.11), and 2.

One can show that (see [GHS, Theorem 3.3.1]) if DI is consistent, then the

local expressions ϑj
mppq give rise to canonical globally defined functions ϑm P

ΓpX̌o
DI
,OX̌o

DI

q that form an ArQs{I basis of ΓpX̌o
DI
,OX̌o

DI

q.

The construction of X̌DI
Ñ SpecArQs{I proceeds as follows. One defines

(see [GHS, Definition 4.2.1]) a new topological manifold with a polyhedral de-

composition, the cone over B, as a pair pCB,CPq by taking the limit over

tCσ | σ P Pu with Cσ defined as in (3.16). Now, one can lift a consistent scat-

tering diagram pB,DIq to a consistent scattering diagram pCB,CDIq (see [GHS,

Definition 4.2.4 and Proposition 4.2.6]). Following Section 3.1.5, CDI gives rise

to a family Ňo
CDI

Ñ SpecArQs{I. Then let

X̌DI
:“ Proj ΓpŇo

CDI
,OŇo

CDI

q

along with the natural flat morphism to SpecArQs{I. By [GHS, Theorem

4.3.2(c)], there is a canonical embedding of X̌o
DI

into X̌DI
as an open dense sub-

scheme and the reduction of X̌DI
modulo I0 is canonically isomorphic to X̌0. The

product of the theta functions on CB forming the basis of ΓpŇo
CDI

,OŇo
CDI

q can

be given explicitly in terms of the broken lines on CB, see [GHS, Theorem 3.5.1].

3.1.7. Equivalence of scattering diagrams. We need a way to detect whether

two families X̌pB,DIq and X̌pB1,D1
Iq

40 are isomorphic by either looking at the scat-

tering diagrams or using the gluing setup of Section 3.1.5.

Definition 3.15. We say that two consistent scattering diagrams pB,DIq

and pB1,D1
Iq are equivalent if the families X̌o

pB,DIq
and X̌o

pB1,D1
Iq

constructed as in

Section 3.1.5 are isomorphic.

Equivalence guarantees that the projective families constructed from consis-

tent scattering diagrams coincide.

Proposition 3.16. Suppose that pB,DIq and pB1,D1
Iq are two equivalent

consistent scattering diagrams and that there is an isomorphism

α : pB,Pq Ñ pB1,P 1
q

of polyhedral manifolds. Then X̌pB,DIq – X̌pB1,D1
Iq.

40Possibly on different affine manifolds but using the same general setup (i.e. the same

Q,A, I0, I).
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Proof. The construction of X̌0 and the fact that for any σ P Pmax, σ – αpσq

as integral polyhedra imply that X̌0 is the same using either scattering diagram.

Equivalence says that the two families agree away from the codimension 2 strata

of X̌0. By [GHS, Proposition 2.1.6], both OX̌pB,DI q
and OX̌

pB1,D1
I

q
are sheaves on

X̌0 satisfying Serre’s S2 condition which are canonically isomorphic on X̌o
0 , the

complement of the codimension 2 strata of X̌0. But now also X̌pB,DIq – X̌pB1,D1
Iq

canonically since

OX̌pB,DI q
“ i˚OX̌o

pB,DI q
“ i˚OX̌o

pB1,D1
I

q

“ OX̌
pB1,D1

I
q

by the S2 condition. □

Definition 3.17. Let pB,DIq be a scattering diagram (that does not neces-

sarily satisfy conditions (2) and (3) of Definition 3.7, see the discussion of Remark

3.8). If x P Bz SingpDIq, we define

fx :“
ź

xPpPDI

fp.

We say that two scattering diagrams pB,DIq and pB,D1
Iq (on the same affine

manifold with singularities B) are combinatorially equivalent if fx “ f 1
x for all

x P BzpSingpDIq Y SingpD1
Iqq.

Observations 3.18. We make a few observations:

(1) Definition 3.17 agrees with the definition of equivalence of [GS8, Defini-

tion 3.5] and the definition of equivalence of [GS3, Definition 3.3].41

(2) If pB,DIq and pB,D1
Iq are combinatorially equivalent and consistent,

then they are equivalent in the sense of Definition 3.15 (after applying

the construction of Remark 3.8). This is easy to see from the gluing

construction of Section 3.1.5.

(3) Adding a finite number of walls p with fp “ 1 to a scattering dia-

gram produces a combinatorially equivalent scattering diagram and does

not change consistency (again, with the construction of Remark 3.8 as-

sumed). So it produces an equivalent scattering diagram by (2).

3.2. Toric degeneration setup

After slightly generalizing the notion of tropicalization of a log scheme from

[ACGS1, Section 2.1.4], we summarize the mirror reconstruction setup for toric

degenerations. See [G2] for an overview, [GS1, GS3] for the full details, and

41The notation of [GS3] is rather different.
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Appendix A for an explicit example. We also introduce and discuss the definition

of being a special toric degeneration (i.e. a degeneration for which we stated

Conjecture 1.7).

3.2.1. Tropicalization. We recall the construction of the tropicalization of a

Zariski log scheme. The construction of the tropicalization ΣpXq of a Zariski log

scheme X of [ACGS1, Section 2.1.4] requires that the log structure MX on X

is fine and saturated. Since the total space X̄ of a toric degeneration X̄ Ñ S only

has a fine and saturated log structure away from the discriminant locus Z, we

need to generalize the construction slightly.

Recall that logarithmic strata of a fine and saturated Zariski log scheme X

are the connected components of the subsets where the ghost sheaf MX of the

log structure MX is constant.

Definition 3.19. Let X be a Zariski log scheme such that the log structure

MX on X is fine and saturated away from a subset Z of codimension at least 2.

We say that Y is a logarithmic stratum of X if:

(1) Y zZ is a logarithmic stratum Y 1 of XzZ of the same dimension and the

closure of Y in X coincides with the closure of Y 1 in X.

(2) MX is constant on Y zZ.

(3) Y is a maximal subset satisfying (1) and (2).

Note that Definition 3.19 agrees with the usual definition if Z “ ∅ and that

the logarithmic strata of the total space X̄ of a toric degeneration X̄ Ñ S agree

with the toric strata.

Construction 3.20. We construct the tropicalization ΣpXq of a Zariski log

scheme X of finite type and with log structure fine and saturated away from a

subset Z of codimension at least 2 following [ACGS1, Section 2.1.4]. For the

generic point η of a logarithmic stratum of X let

ση :“ HompMX,η,NqR Ď HompMX,η,ZqR

be the corresponding rational polyhedral cone. If η is a specialization of η1, then

there is a well-defined generization map MX,η Ñ MX,η1 since X carries a Zariski

log structure. Dualizing gives a face morphism ση1 Ñ ση.

Going over all the logarithmic strata of X gives a diagram of rational poly-

hedral cones indexed by the strata with face morphisms. Thus, it defines a

generalized cone complex ΣpXq with topological realization

|ΣpXq| :“ lim
ÝÑ
η

ση
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(here the colimit is over all the generic points of logarithmic strata of X). It is

clear from the construction that this agrees with [ACGS1, Section 2.1.4] in the

case that Z “ ∅.

The construction is functorial. Given a morphism of log schemes f : X Ñ Y ,

the map f : f´1MY Ñ MX induces a morphism of generalized cone complexes

ftrop : ΣpXq Ñ ΣpY q. (3.23)

Note that |ΣpXq| has a natural integral structure by setting |ΣpXq|pZq to

be the set of points of |ΣpXq| that are the images of integer points of some ση
under the canonical map ση Ñ |ΣpXq|. Moreover, for a morphism of log schemes

f : X Ñ Y , the tropical morphism (3.23) induces a map |ΣpXq|pZq Ñ |ΣpY q|pZq.

We refer to [ACGS1, Section 2.1] for more details on the construction.

Remarks 3.21. (1) Note that if X̄ Ñ S is a toric degeneration, then the

definitions immediately imply that ΣpX̄q – ΣpX̄zZq.

(2) Construction 3.20 gives a unified view on tropicalizing toric degenera-

tions X̄ Ñ S and log smooth degenerations X Ñ S. However, it does not
produce well-behaved tropicalizations in general. For example, suppose

that X1 Ñ S satisfies the assumptions of Definition 1.2 of a toric degen-

eration but in condition 4(a) instead of requiring that Z does not contain

the image of a toric stratum under ν, we let Z be the union of (images

of) toric strata of codimension ě 2. Then ΣpX1q is two-dimensional and

does not reflect the combinatorics of the central fibre X1
0 of X

1. We shall

only use Construction 3.20 for toric degenerations and their (possibly

partial) resolutions.

Definition 3.22. We say that X is a simple log scheme if for every σ P ΣpXq

the canonical map σ Ñ |ΣpXq| is injective.

We shall always work with simple log schemes (recall that for a toric degen-

eration X̄ Ñ S, Assumption 1.3(3) is precisely this requirement). In our cases

of interest, we will always have a one-to-one inclusion-reversing correspondence

between cones of ΣpXq and logarithmic strata of X. Further, the fact that X is

a simple log scheme implies that the topological realization |ΣpXq| is a genuine

cone complex, so we shall confuse it with ΣpXq and write ΣpXq for both from

now on. Similarly, for a morphism f : X Ñ Y of simple log schemes we shall

confuse ftrop : ΣpXq Ñ ΣpY q with the induced ftrop : |ΣpXq| Ñ |ΣpY q|.

3.2.2. Dual intersection complex. Let X̄
ḡ

Ñ S be a toric degeneration of n-

dimensional Calabi-Yaus in the sense of Definition 1.2 and satisfying Assumption
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1.3. Let D̄i, 1 ď i ď m̄ be the (toric) irreducible components of the central

fibre X̄0. We endow X̄ with the divisorial log structure given by D̄ :“ X̄0 “

D̄1 ` ¨ ¨ ¨ ` D̄m̄ and S with the divisorial log structure given by 0 P S. Then

ḡ : pX̄, D̄q Ñ pS, 0q

is a log morphism, and we can apply the tropicalization functor Σ of Construction

3.20 to produce a map of rational cone complexes42:

ḡtrop : Σ
`

X̄
˘

Ñ ΣpSq “ Rě0.

We define the dual intersection complex of X̄ Ñ S as
`

B̄, P̄
˘

:“ ḡ´1
tropp1q (3.24)

where the polyhedral structure P̄ comes from restricting the cones of Σ
`

X̄
˘

to

the fibre over 1 P Rě0. Clearly, we have CB̄ – Σ
`

X̄
˘

where CB̄ is the cone over

B̄ of Section 3.1.6.

Proposition 3.23. The dual intersection complex
`

B̄, P̄
˘

of X̄ Ñ S is a

polyhedral manifold of dimension n in the sense of Definition 3.1.

Proof. By [GS1, Propositions 4.10], B̄ is a real topological manifold with

BB̄ “ 0 and of pure dimension n. Therefore,
`

B̄, P̄
˘

satisfies condition (1) of

Definition 3.1. The fact that P̄ is a set of bounded integral polyhedra follows as

in [GS1, Lemma 4.9] so we need to check conditions (2)(a)-(2)(d) of Definition

3.1.

Condition (2)(a) of Definition 3.1 is satisfied since the logarithmic strata of

X̄ agree with the toric strata. Condition (2)(b) is immediate from (3.24) and

Construction 3.20 of the tropicalization functor. The analogue of condition (2)(c)

for Σ
`

X̄
˘

is exactly the requirement that X̄ is a simple log scheme (satisfied by

Assumption 1.3(3)). So condition (2)(c) follows by (3.24). Finally, condition

(2)(d) is a direct consequence of Assumption 1.3(4) via tropicalization. □

Notation 3.24. There is an inclusion-reversing correspondence between the

toric strata of X̄0 and the cells of P̄. We denote the stratum corresponding to a

cell σ P P̄ by X̄σ. We make an exception for vertices v P P̄ r0s where we denote

the corresponding divisor by D̄v.

By tracing the definitions, it is easy to check that our description of
`

B̄, P̄
˘

is equivalent to the construction of [GS1, Section 4.1].

42Here we use Assumption 1.3(3) to get a map of actual cone complexes and not the

generalized cone complexes of Construction 3.20.
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Remark 3.25. Under some simplifying assumptions43, it is possible to de-

scribe
`

B̄, P̄
˘

without using logarithmic geometry. Condition (4)(b) of Definition

1.2 of a toric degeneration implies that for every 0-dimensional stratum x̄ of X̄0

there exists an affine toric variety Yx̄ such that X̄
ḡ

Ñ S is étale locally isomorphic

to Yx̄
fx̄
Ñ Spec kJtK near x̄. Under the assumptions, the Yx are defined by cones

over certain polyhedra σx. One can then glue together the σx by integral affine

transformations to obtain
`

B̄, P̄
˘

. We refer to [G2, Section 7] for details.

3.2.3. Affine structure. We want to use the formalism of Section 3.1 to con-

struct the mirror family ˇ̄X Ñ Spec kJtK from
`

B̄, P̄
˘

. By Proposition 3.23,
`

B̄, P̄
˘

is a polyhedral manifold, and we need to give it the structure of an

integral affine manifold with singularities.

We first choose the discriminant locus ∆̄. In [GS1], ∆̄ is the union of all the

cells of the barycentric subdivision ˜̄P of P̄ which are not contained in any cells

of P̄max and do not contain any vertices v P P̄ r0s. However, to construct the

mirror family from
`

B̄, P̄
˘

via a scattering diagram (following [GS3]), one needs

to choose a more general ∆̄.

Construction 3.26. Following [GS3, Section 1.1], let xσ P Intpσq for σ P

P̄ ris, 1 ď i ď n ´ 1 be any points and let

∆̄ ptxσuq :“
ď

σ1Ď¨¨¨Ďσn´1

Conv txσi | 1 ď i ď n ´ 1u

where the union is over all chains of cells σ1 Ď ¨ ¨ ¨ Ď σn´1 with σi P P̄ ris.

Then [GS7, Lemma 1.3] shows that for any sufficiently general choice of xσ for

σ P P̄ ris, 1 ď i ď n ´ 1, the discriminant locus ∆ ptxσuq contains no rational

point. We let ∆̄ :“ ∆̄ ptxσuq for such a choice. As in Remark 3.3(3), we let ˜̄P

be the polyhedral subdecomposition of P̄ induced by ∆̄.

The point of the deformation of Construction 3.26 is that since the walls of

any scattering diagram D̄I on
`

B̄, P̄
˘

are rationally defined, any joint j P D̄I of

codimension 1 either satisfies j Ę ∆̄ or is only contained in slabs. Note also that

by construction, there are no codimension 2 joints j with j Ď ∆̄.

Remark 3.27. By [GS3, Remark 5.3], the mirror family constructed from
`

B̄, P̄
˘

does not depend on the choice of xσ for σ P P̄ ris, 1 ď i ď n ´ 1 in

43One needs to assume that the fx̄ of condition (4)(b) of Definition 1.2 vanish precisely once

along each toric divisor of Yx̄. [G2, Section 7] also assumes that the irreducible components of

X̄0 are normal but that follows from the fact that pX̄, D̄q is a simple log scheme (see Assumption

1.3(3)).
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Construction 3.26. By the discussion of [GHS, Appendix A.1], it is isomorphic

to the family constructed using the barycentric choice for ∆̄ of [GS1].

We now give
`

B̄, P̄
˘

an affine structure on B̄0 :“ B̄z∆̄.

Construction 3.28. Following the general framework of Construction 3.4,

note that all the σ P P̄max have natural structures of integral polyhedra via their

inclusion into the cones of Σ
`

X̄
˘

. In other words, these are precisely the integral

polyhedra given by the polyhedral manifold structure on
`

B̄, P̄
˘

.

For any v P P̄ r0s, let Σv be the fan defining the toric variety D̄v. It is easy

to show (see the proof of [GS1, Proposition 4.10]) that a neighbourhood of v in

the dual intersection complex
`

B̄, P̄
˘

is homeomorphic to Σv. Let

Wv :“
ď

!

σ̃P ˜̄P | vPσ̃
)

Int σ̃

as in (3.5). Then there is a unique integral affine linear map ψv : Wv Ñ Rn

compatible with the induced structures of integral polyhedra on all the σ̃ P ˜̄Pmax

with v P σ̃ that maps every σ̃ P ˜̄Pmax to the corresponding cone of Σv.

As in Construction 3.4, this data gives an integral affine structure on B̄0 “

B̄z∆̄. The affine structure of Construction 3.4 extends to the complement of ∆̄

since ψv : Wv Ñ Rn defines an affine manifold structure on the whole Wv and not

just the complement of codimension 2 cells of ˜̄P containing v.

Note that, as in the discussion after Construction 3.4, this affine structure

admits the refined description of Construction 3.4p21q. We shall freely use this

description when we need to.

3.2.4. MPA function and the initial slab functions. We work over A “ k,
use the toric monoid N and let I0 “ m :“ Nz t0u be the maximal ideal (which

corresponds to ptq Ď krts “ krNs). We assume that X̄ carries a ḡ-ample divisor

A and fix such a choice. We say that A is the polarization of ḡ : X̄ Ñ S. The

polarization A gives rise to an Ngp
R “ R-valued MPA function φ̄A on

`

B̄, P̄
˘

defined via its kinks by setting

κ̄ρ :“ X̄ρ ¨ A P Z “ Ngp

for every ρ Ď ˜̄P rn´1s such that ρ Ď ρ P P̄ rn´1s. Note that for any two ρ, ρ1 Ď

ρ P P̄ rn´1s we have κ̄ρ “ κ̄ρ1 “: κ̄ρ as we required in Section 3.1.3. Since A is

ḡ-ample, we have κ̄ρ P Nz t0u and φ̄A is strictly convex.

Now, we specify any initial slab functions
!

fρ P krΛρs
ˇ

ˇ

ˇ
ρ P ˜̄P rn´1s

)

(3.25)
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satisfying (3.9)44, having no poles, and normalized in the sense that their constant

coefficient is 1. Such a choice is always possible in dimensions 2 and 3 (this is

claimed in [GS1] after Example 4.28), but it is not known if it exists in general.

This information determines a toric log CY structure on ˇ̄X0 in the sense of [GS1,

Definition 4.3]. If
`

B̄, P̄
˘

is simple in the sense of [GS1, Definition 1.60]45, then

there is a unique choice of slab functions, see Proposition 6.22 or [GHS, Lemma

A.1.1].

Remark 3.29. An important element in [GS1, GS7] is a choice of open

gluing data s. Also, one can use the intersection complex 46 p ˇ̄B, ˇ̄Pq of X̄ (which

is the discrete Legendre transform of
`

B̄, P̄
˘

as defined in [GS1, Section 1.4])

to construct ˇ̄X0 instead of using
`

B̄, P̄
˘

. In the language of [GS1], we have
ˇ̄X0 “ X0p

ˇ̄B, ˇ̄P, 1q “ X̌0pB̄, P̄, 1q where 1 stands for trivial gluing data. We

shall sometimes need to discuss gluing data, notably in Assumption 3.37, but we

do not use non-trivial gluing data for constructing mirrors until Section 5.4. We

will give an overview of gluing data (in the language of [GHS]) in Section 5.4.1.

3.2.5. Toric degenerations of K3-s. We now specialize to toric degenerations

of K3-s.

Proposition 3.30. Suppose that X̄ Ñ S is a toric degeneration of K3-s.

Then topologically, B̄ is a sphere.

Proof. By Proposition 3.23, B̄ is a two-dimensional real manifold. So it

is enough to show that it has genus zero, i.e. to check that dimH1pB̄, kq “

0. By [GS1, Proposition 4.6] and [GS1, Theorem 4.14], the central fi-

bre X̄0 of X̄ Ñ S is of the form X̄0 – X0pB̄, P̄, sq for some open glu-

ing data s (in the notations of Remark 3.29). But now [GS1, Proposi-

tion 2.37] implies that H ipB̄, kq – H ipX̄0,OX̄0
q for all i ě 0. So we have

H0pX̄0,OX̄0
q – H0pB̄, kq – k, H2pX̄0,OX̄0

q – H2pB̄, kq – k, and H1pB̄, kq –

H1pX̄0,OX̄0
q. Since a toric degeneration X̄ Ñ S is proper and flat, the arith-

metic genus is constant in the fibres of X̄ Ñ S. Let X̄η be the generic fi-

bre of X̄ Ñ S and note that we have dimH0pX̄0,OX̄0
q “ dimH0pX̄η,OX̄η

q “

1 and dimH2pX̄0,OX̄0
q “ dimH2pX̄η,OX̄η

q “ 1. Therefore, we also have

dimH1pX̄0,OX̄0
q “ dimH1pX̄η,OX̄η

q. But dimH1pX̄η,OX̄η
q “ 0 since X̄η is a

K3-surface. So dimH1pB̄, kq “ 0 and B̄ is a topological sphere. □
44This is the same equation as the one in [GS1, Theorem 3.27] for trivial gluing data by

identifying fρ with fρ,x for any x P Int ρ, following [GHS, Appendix A.1].
45Not to confuse with the notion of simplicity of Definition 3.22.
46Defined using the g-ample divisor A.
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Remark 3.31. B̄ is not always a topological sphere in higher dimensions.

For example, products of spheres occur. However, B̄ is a sphere if X̄ Ñ S is

a Batyrev degeneration of hypersurfaces or a Batyrev-Borisov degeneration of

complete intersections satisfying a certain natural assumption. We refer to [G1,

Remark 2.17] and the references therein for details.

The singular locus ∆̄ of B̄ is a union of irrational points

∆̄ “
␣

xρ P Intpρq | ρ P P̄ r1s
(

and it is easy to see that the local affine monodromy around xρ is conjugate to
˜

1 rρ

0 1

¸

for some rρ P N. We will call such an xρ an rρ-fold singularity and call

rρ the index of xρ. Simplicity of
`

B̄, P̄
˘

(in the sense of [GS1, Definition 1.60])

corresponds to having rρ ď 1 for all ρ P P̄ r1s.

Remark 3.32. One can have rρ “ 0, in which case X̄ Ñ S is log smooth in

a neighbourhood of X̄ρ. By [GS1, Proposition 1.27] the affine structure on B̄0

extends across xρ in this case.

The initial slab functions in dimension 2 can be described as follows.

Proposition 3.33. Let ρ, ρ1 P ˜̄P r1s be two slabs with ρ, ρ1 Ď ρ P P̄ r1s and let

fρ, fρ1 be the corresponding slab functions. Let wρ :“ zmρ where mρ is the integral

generator of Λρ that points towards the vertex endpoint of ρ1. Then we have

fρ “1 ` aρ,1wρ ` ¨ ¨ ¨ ` aρ,rρ´1w
rρ´1
ρ ` wrρρ

fρ1 “1 ` aρ,rρ´1w
´1
ρ ` ¨ ¨ ¨ ` aρ,1w

´rρ`1
ρ ` w´rρ

ρ

(3.26)

for some fixed choice of constants aρ,i P k, 1 ď i ď rρ ´ 1.

Proof. This follows immediately from the fact that the monodromy vector

mρ1ρ of (3.1) is mρ1ρ “ ´rρmρ, the compatibility of slab functions (3.9), and the

normalization requirement. □

Note that there is a unique choice of slab functions in the case that
`

B̄, P̄
˘

is simple.

Example 3.34. Continuing with the setup of Example 1.4, the dual inter-

section complex
`

B̄, P̄
˘

of X̄ Ñ Spec kJtK is the boundary of a tetrahedron with

each face isomorphic to a standard triangle. The affine structure near each vertex

makes the polyhedral decomposition look like the fan for P2. There is a singu-

larity xρ with index rρ “ 4 at an irrational point of each edge ρ P P̄ r1s that
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subdivides ρ into two slabs. One can choose any initial slab functions satisfying

(3.26).

3.2.6. The scattering diagram D̄, the mirror family ˇ̄XD̄, and uniqueness.

Fixing a choice of the initial slab functions
!

fρ P krΛρs
ˇ

ˇ

ˇ
ρ P ˜̄P rn´1s

)

of (3.25), we define the initial scattering diagram D̄0 :“ D̄I0 “ D̄ptq, whose only

walls are the slabs pρ, fρq with support ρ P ˜̄P rn´1s and the attached initial slab

function fρ. Consistency of D̄0 follows from equation (3.9) relating fρ and fρ1

for two slabs ρ, ρ1 Ď ρ P P̄ rn´1s. The main result of [GS3], proved in [GS3,

Proposition 3.9], is the following.

Theorem 3.35. Suppose that ˇ̄X0 is locally rigid in the sense of [GS3, Defi-

nition 1.26]. Then we have the following.

Existence: There exists a collection of scattering diagrams D̄ “
␣

D̄k, k ě 0
(

where

D̄k :“ D̄Ik`1
0

“ D̄ptk`1q,

such that D̄k is compatible with D̄k´1 (in the sense of Definition 3.9) for

k ě 1 and the D̄k, k ě 0 are consistent in the sense of [GS3, Definition

2.28]. We sometimes refer to the whole collection D̄ as an algorithmic

scattering diagram.

Uniqueness: For any two sequences D̄, D̄1 of compatible scattering di-

agrams such that D̄k, D̄1
k, k ě 0 are consistent in the sense of [GS3,

Definition 2.28] and D̄0 is combinatorially equivalent to D̄1
0, D̄k is com-

binatorially equivalent to D̄1
k for any k ě 0.

The theorem is a far-reaching generalization of [KS, Theorem 6] and pro-

vides an explicit algorithm to produce D̄. The most important property for us

is uniqueness up to combinatorial equivalence. Indeed, combinatorially equiva-

lent scattering diagrams produce isomorphic canonical families by Observation

3.18(2) and Proposition 3.16. Local rigidity is a technical assumption that guar-

antees uniqueness up to equivalence. It is empty in dimension 2. More generally,

simplicity of
`

B̄, P̄
˘

implies local rigidity of ˇ̄X0, see [GS3, Remark 1.29].

As in Section 3.1.6, we obtain families

ˇ̄XD̄k
Ñ Spec krts{ptk`1

q



3.2. TORIC DEGENERATION SETUP 57

for every k ě 0 that form an inverse system since D̄k is compatible with D̄k´1 for

k ě 1. Taking the limit over this system gives (see [GS1, Proposition 2.42] and

[GHS, Remark A.1.4]) a toric degeneration

ˇ̄X :“ ˇ̄XD̄ Ñ Spec kJtK (3.27)

that we call the toric degeneration mirror to X̄ Ñ S.
We shall not use consistency in the sense of [GS3, Definition 2.28] directly.

Consistency in the sense of [GS3, Definition 2.28] implies consistency in the

sense of Definition 3.14 by [GHS, Lemma A.1.2] and the reference to [CPS,

Proposition 3.2] therein. Conversely, we have the following.

Proposition 3.36. Let D̄1
k be a scattering diagram on

`

B̄, P̄
˘

. It is con-

sistent in the sense of [GS3, Definition 2.28] if the following two conditions are

satisfied.

(1) D̄1
k is consistent in the sense of Definition 3.14.

(2) D̄1
k is consistent in the sense of [GS3, Definition 2.28] around every

codimension one joint j Ď ∆̄.

Proof. Suppose that D̄1
k satisfies (1) and (2). The notion of consistency in

codimension 0 is the same, so it is enough to prove consistency in the sense of

[GS3, Definition 2.28] around all codimension 1 and 2 joints.

Suppose that j P P̄D̄1
k
is a codimension 1 joint that is an intersection of

two slabs j “ b1 X b2. By (2), we may assume that j Ę ∆̄, which allows us

to reinterpret consistency in codimension 1 in the sense of Definition 3.11 in a

way similar to Definition 3.10 for consistency in codimension 0. We consider the

ring R1
b1

:“ krP`
x s{Ix for x P Int b1. Suppose that b1, p1, . . . , pr, b2, p

1
1, . . . , p

1
s is a

cyclic ordering of walls around j as in Definition 3.11. Since j Ę ∆̄, the definition

of walls (Definition 3.6) implies that we may canonically view

fb1 , fp1 , . . . , fpr , fb2 , fp1
1
, . . . , fp1

s
P R1

b1

as in [AG, Section 2.2.2]. Then define

θp : R
1
b Ñ R1

b, zm ÞÑ f
xnp,m̄y
p zm

for any wall containing j as in (3.20) and define θγj : R
1
b Ñ R1

b as the composition

θγj :“ θb1 ˝ θp1 ˝ ¨ ¨ ¨ ˝ θpr ˝ θb2 ˝ θp1
1

˝ ¨ ¨ ¨ ˝ θp1
s
.

As in [AG, Remark 2.18], consistency around j is equivalent to having θγj “ Id

as an automorphism of R1
b. But having θγj “ Id is also equivalent to consistency

around j in the sense of [GS3, Definition 2.28].
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Suppose j is a codimension 2 joint. By our choice of ∆̄ we have j Ę ∆̄. Then

if p is a wall containing j, fp is defined as an element of krP`
x s{Ix for x P j.

By (3.14) and (3.15), we may actually view fp P R1
b as above for a slab b with

j Ď b. We may then cyclically order the walls and define θγj as in the case of a

codimension 1 joint. As in the case of codimension 1 joint, consistency around j

in the sense of [GS3, Definition 2.28] is equivalent to having θγj “ Id.

So it remains to show that θγj “ Id for a codimension 2 joint j. We proceed

as in the proof of [AG, Theorem 2.41]. Since j is codimension 2 we can pass to
`

B̄j, P̄j

˘

and D̄1
k,j. Choose a general point p P D̄1

k,jzj. Then by the construction

of broken lines of Definition 3.12 and the formula (3.22) for ϑj
mppq, we may view

ϑj
mppq P R1

b “ krP`
x s{Ix for x P Int b. Now, consistency along j implies, by

composing the wall-crossings homomorphisms around j, that θγjpϑ
j
mppqq “ ϑj

mppq

for any asymptotic monomial m. But [GHS, Proposition 3.2.9] implies that

ϑj
mppq generate R1

b as a krts{ptk`1q module so θγj acts as the identity and we are

done. □

3.2.7. Special toric degenerations. We shall now define the property of being

a special toric degeneration in Conjecture 1.7. We need to use open gluing data

(see Definition 5.20 and [GS1, Definition 2.25]) to state the definition in full

generality. Consider a toric degeneration X̄ Ñ S with polarization A and dual

intersection complex
`

B̄, P̄
˘

.

Assumption 3.37. The central fibre X̄0 of X̄ Ñ S satisfies X̄0 – X0pB̄, P̄, sq

(using the same notation as in Remark 3.29) for some open gluing data s on
`

B̄, P̄
˘

such that opsq “ 1 P H2pB̄, kˆq for the homomorphism o defined in

[GS1, Theorem 2.34].

This assumption is closely related to projectivity of X̄0 (which follows from

Assumption 1.3(2)) but unless H1pB̄,Qq “ 0 it is not equivalent. Apart from

defining special toric degenerations, we shall use this assumption when gener-

alizing Conjecture 1.7 in Chapter 5. In the language of [GS1] (see Remark

3.29), Assumption 3.37 means that one can use the discrete Legendre transform

p ˇ̄B, ˇ̄P, ˇ̄φAq of pB̄, P̄, φ̄Aq to construct X̄0 as X̄0 – X̌0p ˇ̄B, ˇ̄P, šq for some gluing

data š on p ˇ̄B, ˇ̄Pq.

Definition 3.38. Suppose that the central fibre X̄0 of X̄ Ñ S satisfies As-

sumption 3.37 and is locally rigid in the sense of [GS1, Definition 1.26]. Then

we say that X̄ Ñ S is distinguished if it is isomorphic to the basechange of the

family X̄ ˇ̄D
Ñ Spec kJtK of (3.27) by the map kJtK Ñ R of Remark 1.1. Here ˇ̄D
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is a scattering diagram on p ˇ̄B, ˇ̄Pq constructed using Theorem 3.35 and one uses

the MPA function ˇ̄φA for the construction.

Here Assumption 3.37 guarantees the existence of X̄ ˇ̄D
Ñ Spec kJtK as an

algebraic (and not just formal) family.47 Indeed, the MPA-function ˇ̄φA gives rise

to ample line bundles on the toric irreducible components of X̄0 and one can see

that opsq P H2pB̄, kˆq is the obstruction to gluing them to an ample line bundle

on X̄0. Thus, Assumption 3.37 provides an ample line bundle L on X̄0. One can

show that L extends to the formal degeneration and obtain an algebraic family

via Grothendieck’s existence theorem. Alternatively, one can obtain the algebraic

family directly by applying [GHS, Theorem 5.2.19]. See [GHS, Remarks 5.2.15

and A.1.4] for more details.

Definition 3.39. A toric degeneration X̄ Ñ S is special if it satisfies the

following conditions:

(1) The generic fibre of X̄ Ñ S is smooth.

(2) There exists a toric log CY structure on ˇ̄X0
48 and it is locally rigid in

the sense of [GS1, Definition 1.26].

(3) One of the following conditions is satisfied:

(a) X̄ Ñ S is a divisorial log deformation of the central fibre X̄0 in the

sense of [GS2, Definition 2.7].49

(b) X̄0 satisfies Assumption 3.37 and is locally rigid. Moreover, X̄ Ñ S
is distinguished in the sense of Definition 3.38.

Remarks 3.40. We explain the assumptions:

(1) We need this assumption to construct a log smooth resolution. Indeed,

the log structure is trivial on the generic fibre, so log smoothness is

equivalent to regular smoothness. Thus, we only need to resolve the

singularities in the central fibre.

(2) This assumption is necessary to construct the toric degeneration mirror
ˇ̄XD̄ Ñ Spec kJtK using Theorem 3.35. Conjecture 1.7 would then provide

47We only stated Theorem 3.35 for trivial gluing data. A similar statement is true for any

choice of gluing data s on
`

B̄, P̄
˘

, but one can only construct a formal family in general.
48Recall from Section 3.2.4 that such a structure always exists in dimensions 2 and 3 (this

requires using trivial gluing data in dimension 3) but it is not known if it exists in general.
49Strictly speaking, [GS2, Definition 2.7] does not apply in this situation since R is not

Artinian. However, the definition clearly extends to non-Artinian local k-algebras. Equivalently,
we can say that X̄ Ñ SpecR is a divisorial log deformation if all the induced families X̄ Ñ

SpecR{mk for k ě 1 are divisorial log deformations (here m is the unique maximal ideal of R).
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a particular (possibly using a different choice of the initial slab functions)

toric degeneration mirror.

(3) These assumptions guarantee the existence of local models near points

of the discriminant locus Z.

(a) In this case, local models come from the local structure of the family

(see [GS2, Construction 2.1]). Condition (1) further restricts the

possible local models (see [GS2, Proposition 2.2]).

(b) The first two assumptions are necessary to construct X̄ ˇ̄D
Ñ Spec kJtK

as an algebraic family. The local models come from the reconstruc-

tion algorithm of Theorem 3.35 and can be “decomposed” into stan-

dard pieces that look like the local models in (a), see [GS1, Sections

4.4.2 and 4.4.3]. In fact, a distinguished toric degeneration is a di-

visorial log deformation if p ˇ̄B, ˇ̄Pq is simple, see [GS2, Corollary

2.18].

Although we have stated Conjecture 1.7 in full generality, in higher dimen-

sions, we will mainly be interested in the case when X̄ Ñ S is a distinguished

toric degeneration with
`

B̄, P̄
˘

simple. We shall discuss this further in Chapter

6.

Proposition 3.41. A distinguished toric degeneration X̄ Ñ S with a sim-

ple dual intersection complex
`

B̄, P̄
˘

satisfies conditions (2), (3)(a) and 3(b) of

Definition 3.39. In particular, it is special if and only if it satisfies condition (1)

of Definition 3.39.

Proof. The simplicity of
`

B̄, P̄
˘

implies that there is a unique way to put

a toric log CY structure on ˇ̄X0 by [GS1, Theorem 5.2]. Then ˇ̄X0 is locally rigid

by [GS3, Remark 1.29] since
`

B̄, P̄
˘

is simple. So X̄ Ñ S satisfies condition (2)

of Definition 3.39. X̄ Ñ S satisfies condition (3)(a) of Definition 3.39 by [GS2,

Corollary 2.18] and the fact that the basechange by the map kJtK Ñ R of Remark

1.1 preserves the notion of being a divisorial log deformation. It satisfies condition

(3)(b) since it is distinguished. Note that the discrete Legendre transform p ˇ̄B, ˇ̄Pq

of
`

B̄, P̄
˘

is also simple and so we don’t need to check local rigidity of X̄0 in

Definition 3.38. □

We now specialize to the case of toric degenerations of K3-s. First, we would

like to understand when a toric degeneration X̄ Ñ S of K3-s is a divisorial log

deformation of the central fibre. [GS2, Definition 2.7] of being a divisorial log

deformation provides étale local models at the points of the singular locus Z of
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X̄ Ñ S. Therefore, we need to investigate the local models for toric degenerations

of K3-s in the neighbourhoods of one-dimensional strata.

Let ρ P P̄ r1s be an edge. The local model for the toric degeneration X̄ Ñ S in

the neighbourhood of a codimension 1 stratum X̄ρ (one-dimensional for X̄ Ñ S
a toric degeneration of K3-s) is given by (see [GS1, (1.9)] and [GS2, Example

2.8]):
␣

xy “ tlfρpt, wρq
(

Ď Spec krx, y, wρsJtK (3.28)

(with the natural map to Spec kJtK) where l ě 1 is the integral length of ρ P P̄ r1s

and fρpt, wρq P krwρsJtK is a polynomial in wρ of degree rρ (the index of the

singularity xρ Ď ρ of the affine structure) that is not divisible by t.

Lemma 3.42. Let X̄ Ñ S be a toric degeneration of K3-s and suppose that all

the polynomials fρpt, wρq P krwρsJtK for ρ P P̄ r1s in (3.28) are of the form

fρpt, wρq “

r1
ρ

ź

i“1

pwρ ´ γiρptqq
kiαρpt, wρq (3.29)

where ki P Zą0 are multiplicities of the roots, 0 ď
řr1

ρ

i“1 ki ď rρ, γ
i
ρptq P kJtK are

power series with γiρp0q ‰ γjρp0q for 1 ď i ă j ď r1
ρ, and αρpt, wρq P krwρspptqq is a

polynomial in wρ of degree rρ ´
řr1

ρ

i“1 ki with αρp0, wρq “ β P kzt0u. Then X̄ Ñ S
is étale locally isomorphic to

␣

xy “ tlwkρ
(

Ď Spec krx, y, wρsJtK (3.30)

(with the natural map to Spec kJtK) for some l ě 1, k ě 0 in the neighbourhood

of any point in a one-dimensional stratum of X̄0.

Proof. Fix a ρ P P̄ r1s and the corresponding stratum X̄ρ, and consider the

local model
␣

xy “ tlfρpt, wρq
(

Ď Spec krx, y, wρsJtK (3.31)

in the neighbourhood of X̄ρ. It is enough to check that X̄ Ñ S has the required

local models at all the points of X̄ρ.

The points of X̄ρ correspond to setting wρ “ w0
ρ P k (and x “ y “ 0). Fix an

1 ď i ď r1
ρ and let w0

ρ “ γiρp0q. Consider a change of variables

krx, y, wρsJtK Ñ krx, y, wρsJtK, wρ ÞÑ wρ ´ γiρptq, px, y, tq ÞÑ px, y, tq.

This clearly determines an étale map under which the local model (3.31) becomes
␣

xy “ tlwkiρ gρpt, wρq
(

Ď Spec krx, y, wρsJtK (3.32)

for a certain polynomial gρpt, wρq P krwρsJtK. Moreover, our assumptions ensure

that gρpt, wρq is invertible in the neighbourhood of 0.
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We need to check that (3.30) is étale locally isomorphic to (3.32) in the neigh-

bourhood of 0. Standard results about étale morphisms (see, e.g. [M2, Chapter

I. 3.16]) say that a map of rings C Ñ CrZ1, . . . , Zns{pF1, . . . , Fnq is étale if and

only if detpBFi{BZjq is a unit in CrZ1, . . . , Zns{pF1, . . . , Fnq. Consider the map

krx, y, wρsJtKras

pxy ´ tlwkiρ , gρpt, wρqa ´ 1q
ÝÑ

krx, y, wρsJtKras

pxy ´ tlwkiρ , gρpt, wρqa ´ 1q
rZs

N

py ´ Zaq .

We have detpBFi{BZjq “ Bpy ´ Zaq{BZ “ ´a which is a unit. But the ring

on the left-hand side is the localization of the coordinate ring for (3.30) (with

k :“ ki) to gpt, wρq ‰ 0 and the ring on the right-hand side is the localization of

the coordinate ring for (3.32) to gρpt, wρq ‰ 0. Since gpt, wρq is invertible in the

neighbourhood of 0, this implies that X̄ Ñ S has the required local model at the

point corresponding to setting wρ “ γiρp0q. Note that this is compatible with the

maps to SpeckJtK.
For every point of X̄ρ corresponding to setting wρ “ w0

ρ with w0
ρ ‰ γiρp0q

for 1 ď i ď r1
ρ, the same arguments as above show that X̄ Ñ S is étale locally

isomorphic to
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK.

Therefore, X̄ Ñ S has the required local models at all the points of any one-

dimensional stratum of X̄0. □

Observations 3.43. Let X̄ Ñ S be a toric degeneration of K3-s satisfying

the assumptions of Lemma 3.42.

(1) X̄ Ñ S is log smooth in the neighbourhood of any point with a local

model of the form
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK and the finite number

of points with local models
␣

xy “ tlwkρ
(

Ď Spec krx, y, wρsJtK for k ě 1

form the singular locus Z of X̄ Ñ S.
(2) If the generic fibre of X̄ Ñ S is smooth, then we only have local models of

the form
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK and of the form
␣

xy “ tlwρ
(

Ď

Spec krx, y, wρsJtK since for k ě 1 the generic fibre of
␣

xy “ tlwkρ
(

Ď

Spec krx, y, wρsJtK has Ak´1, k ě 2 singularities. This corresponds to

fρpt, wρq not having any multiple roots γiρptq P kJtK for all ρ P P̄ r1s.

Note that (1) and (2) apply to any divisorial log deformation X̄ Ñ S of K3-s. This

follows from [GS2, Definition 2.7] of being a divisorial log deformation, and the

fact that all the étale local models in dimension 3 given by [GS2, Construction

2.1] are of the form
␣

xy “ tlwkρ
(

Ď Spec krx, y, wρsJtK for some l ě 1, k ě 0 (see

the proof of Proposition 3.44 below).
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Proposition 3.44. Let X̄ Ñ S be a toric degeneration of K3-s satisfying the

assumptions of Lemma 3.42. Then X̄ Ñ S is a divisorial log deformation of the

central fibre.

Proof. By [GS2, Definition 2.7] of being a divisorial log deformation, it is

enough to check that there are étale local models given by [GS2, Construction

2.1] at all the points in the discriminant locus Z. Indeed, such a local model is

an affine toric variety given by the cone over the convex hull

Conv

˜

q
ď

i“0

p∆i ˆ teiuq

¸

(3.33)

where ∆i are integral polytopes in a lattice N (not necessarily of maximal di-

mension), ei for 0 ď i ď q are the standard generators of the second factor of

N 1 :“ N ‘ Zq`1 and the convex hull is taken in N 1
R. The map to Spec krts is

induced by e˚
0 . Now, set N :“ Z, q :“ 1, and let ∆0 be an interval of length l

and ∆1 be an interval of length k (note that this is the general form of a local

model in dimension 3). The corresponding toric variety is a cone over the convex

hull of p0, 0, 1q, pk, 0, 1q, p0, 1, 0q and pl, 1, 0q, and it is easy to see that it is given

by an equation of the form

txy “ tlwku Ď Spec krx, y, t, ws.

Since the local models of (3.30) are given by the same equation (after completion

in t), this implies the result. □

The assumptions of Lemma 3.42 are rather general. Let k̄pptqq be the field of

Puiseux series. For a βptq P k̄pptqq of the form βptq “
ř`8

i“i0
ait

i
c for some c P Zą0

and for i0 P Z the smallest integer such that the coefficient at t
i0
c is non-zero, we

shall write βp0q “ a0 if i0 “ 0, βp0q “ 0 if i0 ą 0, and βp0q “ 8 if i0 ă 0. We

denote deg βptq :“ i0
c
.

Any fρpt, wρq P krwρsJtK of (3.28) can be written in the form

fρpt, wρq “ brρptq

r2
ρ

ź

i“1

pwρ ´ βiρptqq
ki (3.34)

where ki P Zą0 are multiplicities of the roots,
řr2

ρ

i“1 ki “ rρ, brρptq P kJtK is the

coefficient of fρpt, wρq at w
rρ
ρ , and βiρptq P k̄pptqq for 1 ď i ă j ď r2

ρ are the distinct

roots of fρpt, wρq.

Corollary 3.45. Let X̄ Ñ S be a toric degeneration of K3-s such that for any

ρ P P̄ r1s in the expression (3.34) for fρpt, wρq P krwρsJtK we have βiρp0q “ βjρp0q
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for 1 ď i ă j ď r2
ρ if and only if βiρp0q “ βjρp0q “ 8. Then there exists a c P Zą0

such that the basechange of X̄ Ñ S by R Ñ R, t ÞÑ tc (here t is the uniformizer

of R) satisfies the assumptions of Lemma 3.42.

Proof. Let c P Zą0 be such that the βiρptq for all ρ P P̄ r1s and all 1 ď i ď r2
ρ

are defined over kppt
1
c qq. Then the basechange of X̄ Ñ S by R Ñ R, t ÞÑ tc

changes the local models in the neighbourhoods of a one-dimensional stratum X̄ρ

from
␣

xy “ tlfρpt, wρq
(

Ď Spec krx, y, wρsJtK

for fρpt, wρq P krwρsJtK of (3.34) to

␣

xy “ tc¨lfρpt
c, wρq

(

Ď Spec krx, y, wρsJtK

for fρpt
c, wρq P krwρsJtK of the form

fρpt
c, wρq “ b1

rρptq

r2
ρ

ź

i“1

pwρ ´ β1i
ρ ptqq

ki

where b1
rρptq :“ brρptcq is still defined over kJtK and the β1i

ρ ptq :“ βiρpt
cq for all

ρ P P̄ r1s and all 1 ď i ď r2
ρ are now defined over kpptqq.

Suppose without loss of generality that βiρp0q ‰ 8 for 1 ď i ď r1
ρ and β

i
ρp0q “

8 for r1
ρ ă i ď r2

ρ (for some r1
ρ with 1 ď r1

ρ ď r2
ρ and suitably interpreted if

βiρp0q “ 8 for 1 ď i ď r2
ρ). Let γ

i
ρptq :“ β1i

ρ ptq for 1 ď i ď r1
ρ and let

αρpt, wρq :“ b1
rρptq

ź

r1
ρăiďr2

ρ

pwρ ´ β1i
ρ ptqq

ki .

We claim that αρp0, wρq “ β P kzt0u. Indeed, krwρsJtK is a unique factorization

domain and

fρpt
c, wρq P krwρsJtK,

r1
ρ

ź

i“1

pwρ ´ β1i
ρ ptqq

ki P krwρsJtK.

So αρpt, wρq P krwρsJtK as well. Then we must have

deg b1
rρptq ě ´

ÿ

r1
ρăiďr2

ρ

ki deg β
1i
ρ ptq (3.35)

(with the degree defined above) since the constant coefficient of αρpt, wρq (viewed

as a polynomial in wρ) has non-negative degree. It follows that all the non-

constant coefficients of αρpt, wρq are of some positive degrees. Therefore,

αρp0, wρq “ b1
rρp0q

ź

r1
ρăiďr2

ρ

p´β1i
ρ p0qq

ki “: β P k.
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If β “ 0, the inequality (3.35) is strict and the degree of the constant coefficient

of αρpt, wρq is positive. But then αρpt, wρq is divisible by t. This implies that

fρpt, wρq is also divisible by t, contradicting our assumptions. So αρp0, wρq “ β P

kzt0u.

We have

fρpt
c, wρq “

r1
ρ

ź

i“1

pwρ ´ γiρptqq
kiαρpt, wρq

as in (3.29) and fρpt
c, wρq satisfies the assumptions of Lemma 3.42. Since this

holds for all fρpt
c, wρq, ρ P P̄ r1s, this implies the result. □

In the case of toric degenerations of K3-s, Definition 3.39 of a special toric

degeneration simplifies as follows.

Proposition 3.46. A toric degeneration X̄ Ñ S of K3-s is special if and only

if it is a divisorial log deformation and the generic fibre of X̄ Ñ S is smooth.

Proof. Note that giving a toric log CY structure on ˇ̄X0 is equivalent to giving

slab functions as in Proposition 3.33 and that the local rigidity condition is empty

in dimension 2. Therefore, condition (2) of Definition 3.39 is empty in dimension

2. The generic fibre of a special toric degeneration X̄ Ñ S is smooth by condition

(1) of Definition 3.39. It is enough to check that a special toric degeneration

X̄ Ñ S of K3-s is a divisorial log deformation. If X̄ Ñ S satisfies condition (3)(a)

of Definition 3.39, then there is nothing to check. Condition (3)(b) of Definition

3.39 says that X̄ Ñ S is distinguished (in the sense of Definition 3.38). Therefore,

it is enough to check that a distinguished toric degeneration X̄ Ñ S of K3-s is a

divisorial log deformation.50

Let X̄ Ñ S be a distinguished toric degeneration of K3-s. It follows from

[GS3, Construction 2.7] that for any ρ P P̄ r1s the polynomial fρpt, wρq P krwρsJtK
in the local model

␣

xy “ tlfρpt, wρq
(

Ď Spec krx, y, wρsJtK

for X̄ Ñ S has constant coefficients, i.e. fρpt, wρq is of the form fρpt, wρq “
řrρ
j“0 bjw

j
ρ for some bj P k (this is no longer true in higher dimensions). But then

we have

fρpt, wρq “ brρ

r2
ρ

ź

i“1

pwρ ´ βiρq
ki

50Recall from Proposition 3.41 that this is true in any dimension provided that
`

B̄, P̄
˘

is

simple. The general claim only holds for toric degenerations of K3-s.
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for βiρ P k the distinct roots of fρpt, wρq. Therefore, fρpt, wρq satisfies the assump-

tions of Lemma 3.42 by taking r1
ρ :“ r2

ρ, γ
i
ρptq :“ βiρ, and αρpt, wρq :“ brρ . Since

this holds for any fρpt, wρq with ρ P P̄ r1s, Proposition 3.44 implies that X̄ Ñ S
is a divisorial log deformation. □

Remarks 3.47. We make a few remarks about extending Conjecture 1.7 to

non-special toric degenerations of K3-s.

(1) Note that if Conjecture 1.7 holds for a toric degeneration X̄ Ñ S then

it also holds for any toric degeneration X̄1 Ñ S such that X̄ Ñ S is

the basechange of X̄1 Ñ S by R Ñ R, t ÞÑ tc for some c P Zą0 (since

Conjecture 1.7 allows a finite basechange). Then our proof of Conjecture

1.7 for special toric degenerations X̄ Ñ S of K3-s in Chapter 4 along with

Proposition 3.46 above imply that Conjecture 1.7 holds for any toric

degeneration X̄ Ñ S of K3-s satisfying the assumptions of Corollary

3.45 and with a smooth generic fibre (i.e. with ki “ 1 in (3.34) for all

1 ď i ď r2
ρ). Such a degeneration need not be special, but unlike the

case of special toric degenerations of K3-s, a basechange is necessary.

(2) It would be interesting to see if one can construct resolutions of toric de-

generations X̄ Ñ S of K3-s that are not divisorial log deformations. For

instance, one can consider the case that X̄ Ñ S satisfies the assumptions

of Lemma 3.42 apart from requiring that the γiρptq P kJtK of (3.29) satisfy
γiρp0q ‰ γjρp0q for 1 ď i ă j ď r1

ρ. The difficulty is that one can no longer

use toric models to construct a resolution. If one finds such resolutions,

Conjecture 1.7 for them should follow in the same way as in Chapter 4.

By the same argument as in (1), this would imply Conjecture 1.7 for all

toric degenerations of K3-s with a smooth generic fibre. It is more likely

that there is a way to relax (but not eliminate) the condition that a toric

degeneration X Ñ S of K3-s has to be a divisorial log deformation in

Conjecture 1.7.

Regardless of the (possible) extensions of Conjecture 1.7 to non-special degenera-

tions of K3-s, in higher dimensions local models become much harder to control,

so Definition 3.39 of being special seems to be the most general way to guarantee

well-behaved local models near points of the discriminant locus Z (see Remark

3.40(3)).



3.3. INTRINSIC SETUP 67

3.3. Intrinsic setup

We summarize two approaches to constructing intrinsic mirrors. See [GS6]

for an overview, [GS7] for the first construction, and [GS8] for the second con-

struction and equivalence of the two.

Our exposition differs from this literature in two main aspects. First, we

define the affine structure and the scattering diagram on the dual intersection

complex pB,Pq of a log smooth degeneration X Ñ S directly instead of defining

it on the cone pCB,CPq over it. Second, [GS8] is written under the simplifying

assumption that the divisor D is simple normal crossings which is also the main

case of interest in [GS7]. As we do not wish to restrict to this case, we extend

the definition of the affine structure on pB,Pq to a more general situation.

3.3.1. Dual intersection complex. Let X
g

Ñ S be a projective log smooth

morphism of relative dimension n where X carries a fine and saturated Zariski

log structure MX and S is a regular one-dimensional scheme over Speck with

the divisorial log structure MS coming from a single closed point 0 P S. In this

thesis, we shall always have S :“ SpecR for R a complete discrete valuation

k-algebra as in Section 3.2. Let Di, 1 ď i ď m be the components of the reduced

central fibre pX0qred. We will always assume that the log structure MX on X is

divisorial with divisor D :“ pX0qred “ D1`¨ ¨ ¨`Dm. So the log smooth morphism

g is of the form

g : pX, Dq Ñ pS, 0q.

We also require that X
g

Ñ S is minimal log CY (i.e. KX ` D ” 0, see Definition

1.5).

Note that pX, Dq is Zariski and log smooth over Spec k, so by [ACGS1,

Proposition 2.2], it is a simple log scheme in the sense of Definition 3.22. As in

the case of toric degenerations (see Section 3.2.2), we apply the tropicalization

functor Σ of Construction 3.20 to produce a map of rational cone complexes51:

gtrop : ΣpXq Ñ ΣpSq “ Rě0. (3.36)

We define the dual intersection complex of X Ñ S as

pB,Pq :“ g´1
tropp1q (3.37)

where the polyhedral structure P comes from restricting the cones of Σ pXq to

the fibre over 1 P Rě0. Clearly, we have CB – Σ pXq where CB is the cone over

B of Section 3.1.6.

51It is a map of actual cone complexes (and not the generalized complexes of Construction

3.20) since pX, Dq is a simple log scheme.
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Assumption 3.48. We assume that the dual intersection complex pB,Pq of

g : X Ñ S is a polyhedral manifold of dimension n in the sense of Definition 3.1.

Remark 3.49. Note that if g´1p0q is not reduced, pB,Pq is not a polyhedral

manifold. Indeed, let ρi P ΣpXq be the ray corresponding to a divisor Di of

multiplicity k ą 1 in g´1p0q. Then Construction 3.20 of tropicalization implies

that vi :“ ρi X g´1
tropp1q is not an integral point of ρi (instead, we have vi P

ΣpXq
`

1
k
Z
˘

). This is not a major issue as one may extend Definition 3.1 to this case

by allowing rational polyhedra in the construction instead of integral polyhedra.

With this modification, all the constructions go through.

The morphism X Ñ S arising from an admissible (see Definition 4.31) reso-

lution X Ñ X̄ in Conjecture 1.7 may have a non-reduced central fibre. However,

Proposition 1.8 implies that it is enough to prove Conjecture 1.7 for a more re-

stricted class of strongly admissible resolutions (see Definition 4.29) which have

a reduced central fibre.

Notation 3.50. Similarly to the case of toric degenerations (see Notation

3.24), the fact that pX, Dq is a simple log scheme implies that there is an inclusion-

reversing correspondence between the logarithmic strata of X0 and the cells of

P. We denote the stratum corresponding to a cell σ P P by Xσ. We make an

exception for vertices v P P r0s where we denote the corresponding divisor by Dv.

Remark 3.51. Both [GS7] and [GS8] work with CB – ΣpXq, the cone

over B, directly (see Section 3.1.6). To prove Conjecture 1.7, we will need to

relate, for a resolution π : X Ñ X̄, the scattering diagram on B̄ defining the toric

degeneration mirror ˇ̄X Ñ Spec kJtK and a certain scattering diagram defining the

intrinsic mirror X̌ Ñ SpeczkrP s. So it is more convenient to work on B. Note

that our notation differs from [GS7, GS8] where B denotes the manifold that

we denote CB.

In the case that D is a simple normal crossings divisor, there is a straightfor-

ward description of ΣpXq and gtrop in terms of DivDpXq˚
R :“ HompDivDpXq,Rq

where DivDpXq :“
À

1ďiďm ZDi is the group of divisors supported on D.

Construction 3.52. Assume that D is simple normal crossings. Then we

have MX “
À

1ďiďmNDi
where NDi

is the constant sheaf on Di with stalk N. In
particular, there is a natural isomoprhism Γ

`

X,Mgp

X

˘

– DivDpXq.

Assumption 3.48 implies (by condition (2)(d) of Definition 3.1) that for any

index set I Ď t1, . . . ,mu the (possibly empty)

DI :“
č

iPI

Di (3.38)
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is connected. Following [GS7, Example 1.4], we can identify ΣpXq with the

collection of cones

ΣpXq :“

#

ÿ

iPI

Rě0D
˚
i

ˇ

ˇ

ˇ

ˇ

I Ď t1, . . . , su an index set with DI ‰ ∅

+

Ď DivDpXq
˚
R.

with integral structure

ΣpXqpZq “

#

ÿ

aiD
˚
i

ˇ

ˇ

ˇ

ˇ

ai P N,
č

i:aią0

Di ‰ ∅

+

.

Under this identification, the map gtrop : ΣpXq Ñ Rě0 is just the restriction of the

linear map DivDpXq˚
R Ñ R given by evaluation on the (not necessarily reduced)

divisor g˚p0q.

3.3.2. Technical assumptions. Consider a minimal log CY degeneration X Ñ

S (with pX, Dq a Zariski log scheme) satisfying Assumption 3.48. The setups of

[GS7, GS8] have some additional technical assumptions that we now discuss.

The intrinsic mirror constructions in [GS7, GS8] rely heavily on the theory

of punctured log Gromov-Witten invariants developed in [ACGS2] under the

additional assumption that the ghost sheaf MX of the log structure MX on X is

globally generated in the sense that the natural map ΓpX, Mgp

X bZQq Ñ Mgp

X,xbZQ
is surjective for every x P X. For instance, this assumption holds in the case that

D is a simple normal crossings divisor.52

Lemma 3.53. Suppose that X Ñ S is a minimal log CY degeneration of K3-s

satisfying Assumption 3.48. Then topologically, B is a sphere.

Proof. We will only be interested in the case that X Ñ S is obtained by

composing a toric degeneration X̄ Ñ S with an admissible (see Definition 4.31)

resolution π : X Ñ X̄. In this case, pB,Pq is a subdivision of the dual intersection

complex
`

B̄, P̄
˘

of X̄ Ñ S and the claim follows from Proposition 3.30.

In general, rather than generalizing the proof of Proposition 3.30 and getting

involved in the details of the proof of [GS1, Proposition 2.37], we reduce to the

classification of semi-stable degenerations of K3-s (see, e.g. [F, Theorem 5.2]).

First, note that X Ñ S is flat and proper. Indeed, X Ñ S is projective,

thus proper. Since X Ñ S is log smooth, it is also log flat, see [O, Part IV,

Proposition 4.1.2(1)]. Further, a log flat and integral morphism is flat by [O,

Part IV, Proposition 4.3.5(1)]. But S is one-dimensional so X Ñ S is always

integral by [O, Part III, Proposition 2.5.3(3)]. So X Ñ S is flat.

52This immediately follows from Construction 3.52 and [ACGS2, Proposition 3.12].
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By Assumption 3.48, pB,Pq is a polyhedral manifold of dimension 2. Recall

from the introduction that by [AW, Theorem 2.4.1 and Corollary 2.6.7], there

is a one-to-one correspondence between logarithmic modifications of X Ñ S and

subdivisions of pB,Pq. Consider a subdivision pB̃, P̃q of pB,Pq with all the

cells σ P P̃max standard triangles (it exists by e.g. Lemma 4.40). Let X̃ Ñ X be

the corresponding logarithmic modification. Then the composed X̃ Ñ S is proper

and flat (since a logarithmic modification is proper and log étale). Moreover, the

central fibre X̃0 of X̃ Ñ S is simple normal crossings since pB̃, P̃q is the dual

intersection complex of X̃ Ñ S and all the cells σ P P̃max are standard triangles.

Therefore, X̃ Ñ S is a semi-stable degeneration of K3-s.53

Since pB̃, P̃q is a subdivision of pB,Pq, it is enough to show that B̃ is a

topological sphere. Indeed, since we have dim B̃ “ dimB “ 2, the classification

of semi-stable degenerations of K3-s (see, e.g. [F, Theorem 5.2]) implies that

X̃ Ñ S is a Type III degeneration and pB̃, P̃q is a triangulation of a sphere. □

Proposition 3.54. Let X Ñ S be a minimal log CY degeneration of K3-s

satisfying Assumption 3.48. Then the ghost sheaf MX of the log structure MX

on X is globally generated.

Proof. By [ACGS2, Proposition 3.12], global generation of MX is equiv-

alent to having a piecewise-linear (PL) map |ΣpXq| Ñ Rr for some r P N that

is injective when restricted to each cone σ P ΣpXq. It is enough to find a PL-

embedding B Ñ Rr. Indeed, given a PL-embedding i : B Ñ Rr we can define a

PL-embedding i : ΣpXq – CB Ñ Rr`1 as follows. For any Cσ P CP rks and any

pa, xq P Cσ “ Rě0 ¨ pt1u ˆ σq Ď R ˆ Rk we set ipαqpa, xq :“ pa, αpxqq P R ˆ Rr.

B is a topological sphere by Lemma 3.53. Since B has the structure of a

polyhedral manifold of dimension 2, by Steinitz’s theorem (see, e.g. [R1]), B is

PL-isomorphic to the boundary complex of a polytope ∆ Ď R3. This gives rise

to a PL-embedding B Ñ R3 with image ∆. □

In higher dimensions, the situation is more complicated. As the proof of

Proposition 3.54 shows, to prove that the ghost sheafMX of the log structureMX

on X is globally generated, it is enough to show that B admits a PL-embedding

B Ñ Rr for some r P N. It is well-known that every simplicial complex of

dimension n is geometrically realizable in R2n`1. This implies the condition for any

X Ñ S with all σ P Pmax simplices (including the case that D is simple normal

53This construction is an instance of the semi-stable reduction theorem of [KKMS, Chapter

II] which shows that every degeneration X Ñ S :“ SpecR admits a semi-stable model X 1 Ñ S 1

via a finite basechange S 1 Ñ S and a blowup.
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crossings). However, already in dimension 3, there exist polyhedral complexes

(even if we only consider topological spheres) with no PL-embedding into Rr for

any r P N (see [C1, HZ2]). There are also some positive embeddability results

(see, e.g. [PW, Z1]).

During the writing of this thesis, the paper [J] came out, showing the bi-

rational invariance of punctured log Gromov-Witten invariants. As in the case

of ordinary stable logarithmic maps, this removes the need for the assumption

that MX is globally generated in punctured log Gromov-Witten theory (see

[AC, GS4] for stable logarithmic maps and [ACMW] for the construction).

Indeed, this assumption is only necessary to show boundedness of M pX{S, βq

(the stack of all basic stable punctured maps to X{S of class β), i.e. to show

that the natural map M pX{S, βq Ñ S is of finite type (see [ACGS2, Section

3.3] for details). The construction of [ACMW] gives, for any X Ñ S, a loga-

rithmic modification Y Ñ X with MY globally generated. Then by the same

arguments as in [ACMW, Section 5], boundedness of M pY{S, βq along with

birational invariance of MpX{S, βq (the Artin stack associated to M pX{S, βq)

imply boundedness of M pX{S, βq.

The discussion above allows us to remove the assumption that MX is globally

generated from [GS7]. In [GS7], there are no other assumptions. We now discuss

the assumptions of [GS8]. First, [GS8] assumes that theDI of (3.38) is connected

for any index set I Ď t1, . . . ,mu. Moreover, [GS8, Assumptions 1.2] impose some

conditions on pCB,CPq and on the map X Ñ S.

Proposition 3.55. Let X Ñ S be a minimal log CY degeneration satisfying

Assumption 3.48. Then DI is connected for any index set I Ď t1, . . . ,mu and

X Ñ S satisfies [GS8, Assumptions 1.2].

Proof. By Assumption 3.48, pB,Pq is a polyhedral manifold in the sense

of Definition 3.1. The first claim immediately follows from condition (2)(d) of

Definition 3.1. Condition (2) of [GS8, Assumptions 1.2] is satisfied since for

any ρ P P54 the corresponding stratum Xρ is connected and the restriction

g|Xρ of g : X Ñ S is constant. So we only need to check that pX, Dq satisfies

[GS8, Assumptions 1.1]. It satisfies condition (1) of [GS8, Assumptions 1.1] since

pB,Pq is of pure dimension n by condition (1) of Definition 3.1. For conditions

(2) and (3) of [GS8, Assumptions 1.1] note that since X Ñ S is minimal log

CY, we have KX ` D ” 0 and all the strata DI for I Ď t1, . . . ,mu are good

54Here ρ P P is any cell, not necessarily of dimension 1, following the notations of [GS8,

Assumptions 1.2].
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in the sense of [GS8, Section 1.1]. This immediately implies condition (2) of

[GS8, Assumptions 1.1]. Moreover, using Construction 3.20 of the tropicalization

functor and the fact that pB,Pq is a polyhedral manifold in the sense of Definition

3.1, it also implies that condition (3) of [GS8, Assumptions 1.1] is equivalent to

the claim that the boundary of any polyhedron σ̌ P P̌ rks, k ą 1 of the dual

complex
`

B̌, P̌
˘

of pB,Pq is connected. This is indeed the case for any bounded

polyhedron of dimension at least 2. □

Finally, [GS8] requires D to be simple normal crossings. However, this as-

sumption can easily be removed and only requires a generalization of the con-

struction of the affine structure on pB,Pq that we describe in Section 3.3.4 using

[W, Theorem 4.1]. Indeed, one can check that all the arguments of [GS8] work

in this generalized setting (using boundedness of M pX{S, βq in the case that MX

is not globally generated, as discussed above).

Remark 3.56. There is a different way to see this generalization in the case

that X Ñ S admits a logarithmic modification π1 : X̃ Ñ X with the divisor

pπ1q´1D defining the pullback log structure on X̃ simple normal crossings and all

the exceptional divisors toric varieties. In this case, the dual intersection com-

plex pB̃, P̃q of X̃ Ñ S is a subdivision of pB,Pq (see [AW, Theorem 2.4.1 and

Corollary 2.6.7]) and the affine structure on pB̃, P̃q extends across each vertex

corresponding to an exceptional divisor by [AG, Proposition 2.3]. This gives

rise to an affine structure on pB,Pq, and one can check that this is the same

affine structure we describe in Section 3.3.4. Moreover, the canonical scattering

diagram (see Section 3.3.8) DI on pB,Pq is equivalent to the natural pushfor-

ward
´

pπ1q˚D̃
¯

I
of the canonical scattering diagram D̃pπ1q

´1
˚ pIq on pB̃, P̃q by an

argument as in the proof of [J, Corollary 1.7].

In the case that X Ñ S is a strongly admissible resolution of a special toric

degeneration of K3-s (see Definition 4.29), X Ñ S always admits a logarithmic

modification of the form above by Corollary 4.44. Proposition 1.8 implies that it is

enough to prove Conjecture 1.7 for strongly admissible resolutions. Therefore, this

remark’s description of the affine structure and the canonical scattering diagram

on pB,Pq suffices for special toric degenerations of K3-s.

To summarize, we will only need to check that the degenerations X Ñ S
we construct are minimal log CY and satisfy Assumption 3.48. One may wish

to think of the case that D is simple normal crossings to avoid some of the

complexities of the general situation. We do not restrict to this case, allowing

us to have more flexibility in Definition 4.31 of an admissible resolution. We will
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show that every special toric degeneration X̄ Ñ S of K3-s admits an admissible

resolution with D simple normal crossings in Proposition 4.42. We generalize to

special toric degenerations X̄ Ñ S of CY threefolds that are distinguished and

have a simple dual intersection complex
`

B̄, P̄
˘

in Corollary 6.17 and Proposition

6.18. The general case is similar, see the discussion at the end of Section 6.1.5.

3.3.3. Affine structure in the simple normal crossings case. We now need

to put the structure of an affine manifold with singularities on pB,Pq. We first

describe the construction in the case that the central fibre X0 of X Ñ S is reduced,

D is a simple normal crossings divisor and the DI of (3.38) is connected for any

index set I Ď t1, . . . ,mu. It is easy to see that these assumptions imply that

X Ñ S satisfies Assumption 3.48.

Construction 3.57. Suppose that the central fibre of X Ñ S is reduced and

D is simple normal crossings, and let pB,Pq be the dual intersection complex

of X Ñ S which is a polyhedral manifold by Assumption 3.48. We let the

discriminant locus ∆ be the union of cells of codimension 2:

∆ :“
ď

Prn´2s

σ. (3.39)

We want to put an affine structure on B0 :“ Bz∆.

Following the general framework of Construction 3.4, as in the case of toric

degenerations, all the σ P Pmax have natural structures of integral polyhedra via

their inclusion into the cones of Σ pXq. In other words, these are precisely the inte-

gral polyhedra of the polyhedral manifold structure on pB,Pq. Our assumptions

and Construction 3.52 imply that all the σ P P are standard simplices.

Using the refined description of 3.4p21q, we now need to give, for any ρ P P rn´1s

with ρ “ σ X σ1 for σ, σ1 P Pmax and any v Ď ρ, v P P r0s, an integral PL-

embedding

ψρ,v : σ Y σ1
Ñ Rn

with ψρ,vpvq “ 0 compatible with the structures of standard simplices on σ P

Pmax.

We have ρ “ xvi | 0 ď i ď n´1y for some vi P P r0s with v0 :“ v (without loss

of generality). Suppose that σ “ xρ, vny, σ1 “ xρ, v1
ny for some vn, v

1
n P P r0s

and choose integral bases pe1, . . . , enq and pe1, . . . , en´1, e
1
nq of Rn subject to the

constraint that

en ` e1
n “ ´

n´1
ÿ

i“1

pDvi ¨ Xρq ei. (3.40)
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Note that the intersection numbers are defined. Since D is simple normal cross-

ings, Dvi is a Cartier divisor and Assumption 3.48 ensures that Xρ is proper.

We define the embedding ψρ,v0 by requiring it to be linear on each cone and

by setting

ψρ,v0pv0q “ 0, ψρ,v0pviq “ ei, 1 ď i ď n, ψρ,v0pv1
nq “ e1

n. (3.41)

As in Construction 3.4, this data gives an integral affine structure on B0 “

Bz∆. The affine structure of Construction 3.4 extends to the complement of ∆

since the embeddings ψρ,vi for 0 ď i ď n ´ 1 are compatible. This follows by an

easy computation using Lemma 3.58 below, which gives a natural generalization of

the triple point formula of [P, p. 39]. Alternatively, it follows from compatibility

of the affine structure on B with the construction of [GS8, Section 1.3] of the

affine structure on CB under the natural inclusion B ãÝÑ CB, that we show in

Proposition 3.59 below.

Note that, as in the discussion after Construction 3.4, the affine structure

on B admits the description of Construction 3.4p2q Namely, for every v P P r0s,

the restrictions of the embeddings ψv,ρ for all the ρ P P rn´1s with v Ď ρ along

with the restrictions of the charts on the maximal cells σ P Pmax define an affine

structure on Wvz∆ for Wv as in (3.4). We shall freely use this description when

we need to.

We now show that Construction 3.57 is compatible with the construction of

[GS8, Section 1.3] of the affine structure on CB.

Lemma 3.58. In the setup of Construction 3.57, we have

n´1
ÿ

i“0

pDvi ¨ Xρq “ ´2. (3.42)

Proof. Note that D is numerically equivalent to the trivial divisor, so we

have
m
ÿ

j“1

pDj ¨ Xρq “

˜

m
ÿ

j“1

Dj

¸

¨ Xρ “ D ¨ Xρ “ 0. (3.43)

Also, if Dj X Xρ ‰ ∅, we have Dj ¨ Xρ “ 0. Therefore (3.43) implies that

n´1
ÿ

i“0

pDvi ¨ Xρq ` Dvn ¨ Xρ ` Dv1
n

¨ Xρ “ 0.

Now (3.42) follows by noting that D being simple normal crossings implies that

Dvn ¨ Xρ “ Dv1
n

¨ Xρ “ 1. □
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Compatibility with the construction of [GS8, Section 1.3] follows from an

easy computation.

Proposition 3.59. The affine structure of Construction 3.57 is the affine

structure on B induced by the inclusion B ãÑ CB (using the affine structure of

[GS8, Section 1.3] on CB).

Proof. In the conventions of Construction 3.57, the affine structure of [GS8,

Section 1.3] on CB is defined via the natural charts on

tInt pCσq | Cσ P CPmax
u

induced by Construction 3.20 of tropicalization and the charts on
␣

Int pCσ Y Cσ1
q | Cσ,Cσ1

P CPmax, Cσ X Cσ1
“ Cρ P CP rpn`1q´1s

(

given by selecting integral bases pē0, ē1, . . . , ēnq and pē0, ē1, . . . , ēn´1, ē
1
nq of Rn`1

subject to the constraint that

ēn ` ē1
n “ ´

n´1
ÿ

i“0

pDvi ¨ Xρq ēi, (3.44)

and defining the embedding

ψCρ : Cσ Y Cσ1
Ñ Rn`1

by requiring it to be linear on each cone and by setting

ψCρpviq “ ēi, 0 ď i ď n, ψCρpv
1
nq “ ē1

n. (3.45)

Construction 3.20 of tropicalization implies that the charts on the maximal

cells of CB induce the corresponding charts on B defined via Construction 3.57.

Passing from a chart of CB on Int pCσ Y Cσ1q to a chart of B on Intpσ Y σ1q

sending v0 to 0 P Rn corresponds to setting

ei :“ ēi ´ ē0, 1 ď i ď n, e1
n :“ ē1

n ´ ē0.

This recovers (3.41) from (3.45) . Also, we have

en ` e1
n “ ēn ´ ē0 ` ē1

n ´ ē0 “ ´

n´1
ÿ

i“0

pDvi ¨ Xρq ēi ´ 2ē0 “

“ ´

n´1
ÿ

i“0

pDvi ¨ Xρq pēi ´ ē0q ´

˜

n´1
ÿ

i“0

pDvi ¨ Xρq ` 2

¸

ē0 “ ´

n´1
ÿ

i“1

pDvi ¨ Xρq ei

(here we used (3.44) for the second equality and Lemma 3.58 for the last one)

which recovers (3.40).
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So the charts of [GS8, Section 1.3] of the affine structure on CB induce

by inclusion the charts of Construction 3.57 of the affine structure on B, which

implies the claim. □

Remark 3.60. The affine structure of [GS8, Section 1.3] on CB is natu-

ral from the logarithmic point of view. For every Cρ P CP rpn`1q´1s, the log

scheme XCρ with the log structure induced from pX, Dq by inclusion is isomor-

phic as a log scheme to the stratum XΣCρ,ψCρpCρq of the toric variety XΣCρ
(with

the standard toric log structure) constructed from the fan ΣCρ that consists of

ψCρpCσq, ψCρpCσ
1q, and their faces. This follows from a direct computation of

the sheaves defining the log structures induced on XCρ and XΣCρ,ψCρpCρq by inclu-

sion. A similar statement holds in the absolute case of a log CY variety pX, Dq.

We refer to [GS8, Lemma 1.10] for details.

We now specialize to the case n “ 2 corresponding to minimal log CY degen-

erations of K3-s and show that in this case, the affine structure of Construction

3.57 recovers the affine structure of [GHS, Example 1.1.3(2)].

Observation 3.61. If n “ 2, then the singular locus ∆ of the affine structure

on pB,Pq is just the set of v P P r0s, all the maximal cells are standard triangles,

and for ρ “ xv0, v1y, σ “ xv0, v1, v2y, σ
1 “ xv0, v1, v

1
2y, the definition (3.41) of the

embedding ψρ,v0 : σ Y σ1 Ñ R2 reduces to a simple rule:

ψρ,v0pv0q “ p0, 0q, ψρ,v0pv1q “ p1, 0q, ψρ,v0pv2q “ p0, 1q,

ψρ,v0pv1
2q “ p´Dv1 ¨ Xxv0,v1y,´1q,

and ψρ,v0 linear on each cone.

Notation 3.62. Consider subvarieties Y1, Y2 and W of X such that Y1 Ď

W Ď X and Y2 Ď W Ď X. In what follows, we shall denote by pY1 ¨ Y2qW the

intersection product of Y1 and Y2 computed in W .

Proposition 3.63. In the case n “ 2, Construction 3.57 recovers the affine

structure of [GHS, Example 1.1.3(2)].

Proof. The definitions of charts are the same for the interiors of the maximal

cells. The definition of ψρ,v : σYσ1 Ñ R2 in [GHS, Example 1.1.3(2)] is the same

up to permuting the basis vectors and using
´

X2
xv0,v1y

¯

Dv0

instead of Dv1 ¨Xxv0,v1y.

So it is enough to show that
`

X2
xv0,v1y

˘

Dv0

“ Dv1 ¨ Xxv0,v1y.
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Indeed, consider the embedding i : Dv0 ãÝÑ X. We have

`

X2
xv0,v1y

˘

Dv0

“ i˚
`

Xxv0,v1y ¨ Xxv0,v1y

˘

“

“ i˚
`

i˚ pDv1q ¨ Xxv0,v1y

˘

“ Dv1 ¨ i˚pXxv0,v1yq “ Dv1 ¨ Xxv0,v1y.

Here we used the projection formula (see, e.g. [H1, Appendix A.1]) for the third

equality. □

Remark 3.64. The argument in the proof of Proposition 3.63 also implies

that (3.42) is the natural generalization of the triple point formula

`

Xxv0,v1y

˘2

Dv0
`
`

Xxv0,v1y

˘2

Dv1
“ ´2

of [P, p. 39] in the case n “ 2.

We can generalize the argument of Proposition 3.63 to show that the inter-

section numbers Dvi ¨ Xρ in (3.40) and (3.42) can be computed in strata of the

central fibre of the desired dimension.

Proposition 3.65. Let Dvk be a divisor corresponding to a fixed vk in

ρ “ xvi | 0 ď i ď n ´ 1y

and let

XJ :“
č

jPJ

Dvj , where J Ď t0, . . . , n ´ 1u , J X tku “ ∅

be a stratum of the central fibre. Then we have

ppXJ X Dvkq ¨ XρqXJ
“ Dvk ¨ Xρ.

Proof. The result follows from the projection formula (see, e.g. [H1, Appen-

dix A.1]) in the same way as in the proof of Proposition 3.63 using the embedding

i : XJ ãÝÑ X. □

This allows us to rewrite the sums
řn´1
i“1 pDvi ¨ Xρq ei in (3.40) and

řn´1
i“0 pDvi ¨ Xρq in (3.42) in terms of intersection numbers in certain strata of

the central fibre of chosen codimension. In particular, this, perhaps, gives a more

natural way to view (3.42) as the generalization of the triple point formula (see

Remark 3.64).

Corollary 3.66. For any 1 ď m ď n ´ 2 and any 0 ď i ď n ´ 1 let

Jmi :“ ti ´ 1 mod pn ´ 1q, . . . , i ´ m mod pn ´ 1qu .



78 3. SETUP AND PRELIMINARIES

(1) For any m, we have

n´1
ÿ

i“1

pDvi ¨ Xρq ei “

n´1
ÿ

i“1

``

XJm
i

X Dvi

˘

¨ Xρ

˘

XJm
i

ei

which is a sum of intersection numbers in strata of the central fibre of

codimension m in X.

(2) In particular, we have

n´1
ÿ

i“1

pDvi ¨ Xρq ei “

n´1
ÿ

i“1

``

Dvi´1
X Dvi

˘

¨ Xρ

˘

Dvi´1

ei “

n´1
ÿ

i“1

`

X2
ρ

˘

Xxρzviy

ei.

(3) Similarly, we have

n´1
ÿ

i“1

pDvi ¨ Xρq ei “

n´1
ÿ

i“1

ppDv0 X Dviq ¨ XρqDv0
ei

(4) Similar statements hold for
řn´1
i“0 pDvi ¨ Xρq.

Proof. For (1), apply Proposition 3.65 to every intersection product in the

sum with J “ Jmi . Now (2) follows by setting m “ 1 for the first equality and

m “ n ´ 2 for the second. For (3), apply Proposition 3.65 to every intersection

product in the sum with J “ t0u. The statements for (4) follow by the same

arguments. □

The following observation gives a different way to view Construction 3.57 that

is better suited to generalizing the construction of the affine structure on
`

B̄, P̄
˘

to arbitrary minimal log CY degenerations X Ñ S satisfying Assumption 3.48.

Observation 3.67. Corollary 3.66(3) gives an alternative way to view Con-

struction 3.57 giving B the structure of an affine manifold with singularities. For

any v P P r0s, the component Dv of the central fibre with the log structure in-

duced by the inclusion Dv ãÝÑ X is a log CY variety pDv, BDvq where the divisorial

log structure is given by

BDv :“
ď

vĎρPPrn´1s

Xρ

(indeed, KX ` D ” 0 implies that KDv ` BDv ” 0 by adjunction). In the case

that X Ñ S is a degeneration of K3-s, pDv, BDvq is a Looijenga pair (e.g. by the

classification of surfaces).

Now, [GS8, Section 1.3] gives an affine structure on ΣpDvqz∆v (where ∆v is

the union of cells of ΣpDvq of codimension 2) in the same way as in the description
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of the affine structure on CB in the proof of Proposition 3.59. This gives PL-

embeddings

ψρv : σv Y σ1
v Ñ Rn (3.46)

for any maximal cones σv, σ
1
v P ΣpDvq with intersection a codimension 1 cone

ρv P ΣpDvq.

It is clear from Construction 3.20 of tropicalization and definition (3.37) of

the dual intersection complex pB,Pq that there is a one-to-one correspondence

between cones of ΣpDvq and cells of P containing v. Moreover, it respects the

integral structure. Let bpσvq, bpσ
1
vq P Pmax be the maximal cells corresponding

to σv, σ
1
v P ΣpDvq and let bpρvq P P rn´1s be the cell corresponding to ρv P

ΣpDvq. Then there are natural inclusions bpσvq Ď σv, bpσ
1
vq Ď σ1

v, and bpρvq Ď ρv
compatible with inclusions of faces. We can now define an embedding

ψbpρvq,v : bpσvq Y bpσ1
vq Ñ Rn (3.47)

as the restriction of ψρv and doing this over all the v P P r0s and all the codi-

mension 1 cells ρv of ΣpDvq defines a data of the refined description of charts of

Construction 3.4p21q.

It is straightforward to check using the equality of Corollary 3.66(3) that (3.47)

defines the same embedding as (3.41). Therefore, an alternative way to define the

structure of an affine manifold with singularities on B using Construction 3.4 is

to define the structures of integral polyhedra on σ P Pmax via the tropicalization

ΣpXq as before and to define the affine structure on every Wvz∆, v P P r0s to be

the one induced by the affine structure on ΣpDvqz∆v.

Finally, we note what happens if a component Dv, v P P r0s of X0 is toric and

observe that Construction 3.57 can be seen as a generalization of Construction

3.28 of an affine structure on the dual intersection complex
`

B̄, P̄
˘

of a toric

degeneration X̄ Ñ S with all σ P P̄max standard simplices.

Remarks 3.68. Suppose that Dv, v P P r0s is a toric variety, and its induced

log stratification coincides with its toric stratification.

(1) Then the embedding ψρ,v of Construction 3.57 maps σ Y σ1 to the union

of the corresponding cones of the fan ΣDv defining Dv. This follows from

Observation 3.67, Corollary 3.66(3), and standard toric geometry. This

is actually the motivation behind Construction 3.57.

(2) By [AG, Proposition 2.3] the affine structure on Wvz∆ extends to an

affine structure on the whole Wv. It follows from (1) that it is the same

affine structure on Wv as that of Construction 3.28. A similar statement

holds for toric strata Dτ , τ P P of lower dimension.
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(3) In particular, the recipe of Construction 3.57 (viewed via Observation

3.67, i.e. replacing the right hand side of (3.40) with the expression

of Corollary 3.66(3)) recovers Construction 3.28 if applied to the dual

intersection complex
`

B̄, P̄
˘

of a toric degeneration X̄ Ñ S with all σ P

P̄max standard simplices. However, note that there is no generalization

of the triple point formula of Lemma 3.58 in this case, so the affine

structure is defined on the complement of the discriminant locus ∆̄ of

Construction 3.57.

3.3.4. Affine structure in general. We now describe the structure of an affine

manifold with singularities on B in the general case of a minimal log CY degen-

eration X Ñ S satisfying Assumption 3.48. Since the components Di, 1 ď i ď m

of the central fibre X0 are not necessarily Cartier, we can’t use intersection theory

for the general description. Instead, we will argue as in Observation 3.67 using

logarithmic geometry to define the embeddings (3.46).

Construction 3.69. Let X Ñ S be a minimal log CY degeneration satisfy-

ing Assumption 3.48 and let pB,Pq be the dual intersection complex of X Ñ S.
We let the discriminant locus ∆ be the union of codimension 2 cells (3.39) of P

as before and want to put the affine structure on B0 :“ Bz∆ using the frame-

work of Construction 3.4. As before, we let the structures of integral polyhedra

on σ P Pmax be given by their inclusions into cones of ΣpXq. By Construc-

tion 3.4(2), it suffices to give structures of integral affine manifolds on every
␣

Wvz∆ | v P P r0s
(

for Wv as in (3.4), compatible with the integral structures on

the maximal cells.

As in Observation 3.67, for any v P P r0s, we endow Dv with the log structure

induced by the inclusion Dv ãÝÑ X, making it a log CY variety. Arguing as in

Observation 3.67, it is enough to give, for every v P P r0s, an affine structure on

ΣpDvqz∆v respecting the integral structure. We let the affine structure on the

interiors of the maximal cones be given via the images of those cones in ΣpDvq

as before.55 Now, it is enough to give PL-embeddings ψρv : σv Y σ1
v Ñ Rn for any

maximal cones σv, σ
1
v P ΣpDvq with intersection a codimension 1 cone ρv P ΣpDvq.

Following the logic of Section 3.3.3, these embeddings should be natural from the

logarithmic point of view in the same sense as in Remark 3.60.

Since X Ñ S and pB,Pq satisfy [GS8, Assumptions 1.2] by Proposition

3.55, it follows that Dv and ΣpDvq satisfy [GS8, Assumptions 1.1]. Let ρv P

55By Construction 3.20 of tropicalization and definition (3.37) of the dual intersection

complex pB,Pq, this is the only definition compatible with the structures of integral polyhedra

on σ P Pmax.
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ΣpDvq be a codimension 1 cone (of the form ρv “ σv X σ1
v for maximal cones

σv, σ
1
v P ΣpDvq). Assumption 3.48 implies that for any stratum DI of (3.38) with

Xρv XDI non-empty, Xρv XDI is either Xρv itself or one of the zero-dimensional

strata Xσv , Xσ1
v

Ď Xρv . As in the proof of [GS8, Proposition 1.3], the fact that

KDv ` BDv ” 0 implies, by repeatedly applying adjunction, that KXρv
` BXρv ”

KXρv
` Xσv ` Xσ1

v
” 0 (using the notations of Observation 3.67). In particular,

pXρv , BXρvq is itself a log CY variety. SinceXρv is one-dimensional, it is a compact

non-singular curve. But KXρv
` BXρv ” 0 so the only possibility is that Xρv – P1

andXσv , Xσ1
v
are the torus-fixed points ofXρv . In particular, Xρv is a toric variety,

and the induced log stratification of Xρv is the same as the toric stratification.

Under these assumptions, [W, Theorem 4.1] uses charts of the log structure

MXρv
to provide a toric variety XΣρv

and a cone σ̃ρv P Σρv such that Xρv (with

the pullback log structure induced from Dv by inclusion) is isomorphic as a log

scheme to the toric stratumXΣρv ,σ̃ρv (with the log structure induced fromXΣρv
).56

More explicitly, in the case of Xρv the construction in the proof of [W, The-

orem 4.1] produces a fan ΣXρv
with |ΣXρv

| Ď Rn consisting of two cones σ̃v, σ̃
1
v

of dimension n and σ̃ρv “ σ̃v X σ̃1
v. The n-dimensional cones correspond to the

torus-fixed points of Xρ – P1, we let σ̃v (resp. σ̃1
v) be the cone corresponding to

the point Xσv (resp. Xσ1
v
). The construction of ΣXρv

is performed via charts of

the log structure MXρv
which ensures that the integral structure on σ̃v (resp. σ̃

1
v)

is the same as on σv (resp. σ
1
v). We define

ψρv : σv Y σ1
v Ñ Rn (3.48)

to be the unique PL-embedding identifying σv with σ̃v, σ
1
v with σ̃

1
v and respecting

the integral structures. This concludes the construction of the affine structure on

ΣpDvqz∆v and defining such structures for all v P P r0s defines an affine structure

on B0 “ Bz∆.

Remarks 3.70. One needs to check a few things regarding Construction 3.69.

(1) One needs to show that the structure of an affine manifold with singu-

larities on B defined via Construction 3.4 extends to the complement of

the smaller discriminant locus ∆ of (3.39). As in the case of Construc-

tion 3.57, one can show that the affine structure on B is the one induced

from CB via the natural inclusion B ãÝÑ CB. Here the affine structure

on CB – ΣpXq is defined in the same way as the affine structures on

ΣpDvq, v P P r0s in Construction 3.69. Compatibility under the inclusion

56[W, Theorem 4.1] also requires that MXρv
is globally generated. Since Xρv

– P1, ΣpXρv
q

admits a PL-embedding into R so MXρv
is globally generated by [ACGS2, Proposition 3.12].
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is a consequence of the construction in the proof of [W, Theorem 4.1]

and the fact that the Dv, v P P r0s carry the pullback log structures.

(2) One also needs to check that in the case that X Ñ S has a reduced

central fibre, and D is simple normal crossings, Construction 3.69 re-

duces to Construction 3.57. It suffices to show that the PL-embedding

(3.48) recovers (3.46) under these assumptions. This is a consequence

of the construction in the proof of [W, Theorem 4.1] and the explicit

presentation of MXρv
in the proof of [GS8, Lemma 1.10].

(3) Finally, in the case that Dv, v P P r0s is a toric variety, and its induced

log stratification coincides with its toric stratification, the analogues of

Remarks 3.68 hold. This follows from standard toric geometry. In par-

ticular, the affine structure extends across v to the wholeWv in this case,

and applying Construction 3.69 to the dual intersection complex
`

B̄, P̄
˘

of a toric degeneration X̄ Ñ S recovers Construction 3.28 of the affine

structure with discriminant locus ∆̄.

3.3.5. The group A1pX0,Zq and the monoid P . Let A1pX0,Zq be the relevant

group of curve classes. That may be the group of 1-cycles on X0 or the group

of relative 1-cycles for X Ñ S modulo algebraic or numerical equivalence (we

sometimes write A1pX0,Zqalg, A1pX0,Zqnum, A1pX{S,Zqalg, and A1pX{S,Zqnum

respectively). Out of the possible choices for A1pX0,Zq, the group A1pX{S,Zqnum

fits best with the extension of the intrinsic mirror results of Section 3.4 and

A1pX0,Zqnum fits best with the generalizations of Chapter 5. We have canonical

splittings as follows.

Construction 3.71. We have a commutative diagram with exact rows and

columns:

0 0

RelpX{Sqalg RelpX{Sqnum

0 GriffpX{Sq A1pX{S,Zqalg A1pX{S,Zqnum 0

0 GriffpX0q A1pX0,Zqalg A1pX0,Zqnum 0

0 0

a

c d

b



3.3. INTRINSIC SETUP 83

Here GriffpX0q :“
Z1pX0qnum

Z1pX0qalg
and GriffpX{Sq :“ Z1pX{Sqnum

Z1pX{Sqalg
are the Griffiths groups

of 1-cycles that are numerically but not algebraically equivalent to 0.57 With this

definition, the exactness of the rows is clear. Since S is the spectrum of a discrete

valuation k-algebra, every relative 1-cycle for X Ñ S is defined over X0, which

gives rise to the surjections c and d. Moreover, we have Z1pX0qalg Ď Z1pX{Sqalg

and Z1pX0qnum Ď Z1pX{Sqnum so exactness of the columns follows once we set

RelpX{Sqalg :“
Z1pX0qalg

Z1pX{Sqalg
and RelpX{Sqnum :“ Z1pX0qnum

Z1pX{Sqnum
.

Now, note that A1pX0,Zqnum and A1pX{S,Zqnum are finitely generated free

abelian groups. Therefore, the maps a, b, and d admit splittings. Fixing such

splittings, we have

A1pX0,Zqalg – A1pX0,Zqnum ‘ GriffpX0q

A1pX{S,Zqnum – A1pX0,Zqnum ‘ RelpX{Sqnum

A1pX{S,Zqalg – A1pX0,Zqnum ‘ RelpX{Sqnum ‘ GriffpX{Sq

(3.49)

Generally, we will write A1pX0,Zq “ A1pX0,Zqnum ‘ G for the splitting and we

will write A1pX0,Zqnum Ď A1pX0,Zq for the inclusion as the first factor.

We further assume that A1pX0,Zq is a finitely generated abelian group. This

is always the case for A1pX0,Zqnum and A1pX{S,Zqnum. For A1pX0,Zqalg and

A1pX{S,Zqalg this is equivalent to requiring that GriffpX0q and GriffpX{Sq re-

spectively are finitely generated. In many examples, this is not the case. For

instance, the Griffiths group of a general Calabi-Yau threefold is not finitely gen-

erated even after factoring by the torsion subgroup (see [C2] for the case of a

quintic threefold, and [V] for the general case). Note that GriffpX0q “ 0 if X Ñ S
is a degeneration of K3-s.58

We allow various choices for A1pX0,Zq to offer more flexibility in the construc-

tion. The reader may wish to just think of A1pX0,Zq “ A1pX0,Zqnum. Note that

for any choice of A1pX0,Zq we have a natural pairing

A1pX0,Zq ˆ PicpXq Ñ Z, pβ,Lq ÞÑ degLpβq

which allows us to compute intersection numbers of curve classes with Cartier

divisors.

Remark 3.72. One may consider more general groupsH2pX{Sq of degree data

than the choices of A1pX0,Zq we have described. See [GS7, Basic Setup 1.6] for

57A Griffiths group of a scheme X is more commonly defined as GriffpXq :“ Z1pXqhom
Z1pXqalg

where

Z1pXqhom is the group of 1-cycles homologically equivalent to 0 for a particular choice of a Weil

cohomology theory. Unless we assume standard conjecture D, our groups may be larger.
58Since algebraic and numerical equivalence coincide for divisors, see [L1] (in French).
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a discussion on this. In particular, one can use other equivalence relations (as

long as they are at least as coarse as algebraic equivalence). One can also use

H2pX,Zq if working over k “ C. For our purposes, one can take H2pX{Sq to

be any finitely generated abelian group of curve classes that admits a splitting

H2pX{Sq – A1pX0,Zqnum ‘ G.

Let NEpX0q Ď A1pX0,Zq be the submonoid generated by the effective curve

classes (again, we specify NEpX0qalg, NEpX0qnum, NEpX{Sqalg, NEpX{Sqnum

when the distinction is important).

Remark 3.73. In the situation that we have a map π : X Ñ X̄ resolving a

toric degeneration X̄ Ñ S to a minimal log CY degeneration X Ñ S and such that

the cone NEpπq Ď NEpX0q of curves contracted by π is finitely generated (our

resolutions will always satisfy this requirement), the group A1pX0,Zq is finitely

generated if and only if the corresponding A1pX̄0,Zq is finitely generated.

Therefore, it is enough to assume that A1pX̄0,Zq is finitely generated for

the toric degeneration X̄ Ñ S we work with. The groups A1pX̄0,Zqnum and

A1pX̄{S,Zqnum are always finitely generated. The group A1pX̄0,Zqalg is also

finitely generated in this case since there is a natural surjective map
à

i

A1pD̄i,Zqalg Ñ A1pX̄0,Zqalg

and the groups A1pD̄i,Zqalg are finitely generated because the irreducible compo-

nents D̄i, 1 ď i ď m̄ of X̄0 are toric. We refrain from making comments on finite

generation of A1pX0,Zq from now on.

The monoid NEpX0q Ď A1pX0,Zq is usually not finitely generated (see [KM,

Example 1.23] for some examples) so we choose a larger finitely generated monoid.

Definition 3.74. We choose a base monoid P such that:

(1) NEpX0q Ď P Ď A1pX0,Zq.

(2) P is finitely generated and saturated.

(3) The group Pˆ of the invertible elements of P coincides with the torsion

part of A1pX0,Zq.

Note that if f : C Ñ X{S is a stable map with f˚rCs P Pˆ, then f˚rCs “ 0.

Remarks 3.75. Some remarks on this setup are in order.

(1) A monoid P satisfying Definition 3.74 is not necessarily toric since P gp “

A1pX0,Zq is not always torsion-free. Therefore, Definition 3.74 allows

slightly more general monoids than the setup of Section 3.1.3. Since
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A1pX0,Zqnum and A1pX{S,Zqnum are always free, these choices guarantee

that P is a toric and sharp (i.e. Pˆ “ 0) monoid.

(2) The construction of an extended intrinsic mirror in Section 3.4 allows to

relax Condition (3) of Definition 3.74 under some conditions (see Remark

3.110).

We prove a quick lemma that shows how to produce monoids satisfying Defi-

nition 3.74.

Lemma 3.76. Suppose that P 1 is a monoid satisfying conditions (1) and (2) of

Definition 3.74 and such that A1pX0,Zqtors Ď pP 1qˆ. Then there exists a monoid

P with NEpX0q Ď P Ď P 1 Ď A1pX0,Zq and satisfying Definition 3.74. In partic-

ular, there exist monoids P satisfying Definition 3.74.

Proof. Since X0 is projective, NEpX0qR Ď A1pX0,Rq is a strictly convex cone

of maximal dimension k. Let NEpX0qqR Ď A1pX0,Rqqbe the dual cone and let

e0, . . . , ek P HompNEpX0q,Zq be linearly independent as elements of A1pX0,Rqq.

Then we have

HompNEpX0q,Zq Ě xe0, . . . , eky
sat
Z

(we use the notation M sat for the saturation of a monoid M), so

NEpX0q Ď HompHompNEpX0q,Zq,Zq ‘ A1pX0,Zqtors Ď

Ď
`

xe0, . . . , eky
sat
Z
˘

q ‘ A1pX0,Zqtors

where the first inclusion is since NEpX0q is integral. It follows that

NEpX0q Ď P :“
``

xe0, . . . , eky
sat
Z
˘

qX P 1
{P 1

tors

˘

‘ A1pX0,Zqtors

(where the intersection is computed in A1pX0,Zq{A1pX0,Zqtors). It is easy to

check that P satisfies all the necessary conditions. The last claim follows by

taking P 1 “ A1pX0,Zq. □

3.3.6. MPA function and the initial slab functions. We work over A “ k.
We let I0 “ m :“ P zPˆ be the maximal ideal and define a P gp

R “ A1pX0,Rq-

valued convex MPA function φ on B via its kinks59 by setting

κρ :“ rXρs P A1pX0,Zq “ P gp

59If P has torsion, then there are a few subtleties. The kinks as defined in (3.8) only lie in

P gp{P gp
tors. However, if P has torsion, it is more natural to view an MPA function as a collection

of kinks in P gp “ A1pX0,Zq. This only affects the definition of the sheaf P of (3.10). See [GS8,

Footnotes 5 and 7] for more details.
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for every ρ Ď P̃ rn´1s with ρ Ď ρ Ď P rn´1s.60 Note that for any two slabs

ρ, ρ1 Ď ρ P P rn´1s we have κρ “ κρ1 “: κρ as we required in Section 3.1.3. The

curve class makes sense since Assumption 3.48 implies that Xρ is proper. Further,

the curve class is not invertible, so we actually have κρ P P zPˆ and φ is strictly

convex.

We set the initial slab functions to be trivial:
!

fρ “ 1
ˇ

ˇ

ˇ
fρ P krΛρs, ρ P P̃ rn´1s

)

.

3.3.7. The mirror via three-pointed punctured maps. In the paper [GS7],

the mirror to X
g

Ñ S is constructed without using scattering diagrams by defining

the products in the theta function ring for CB directly, using the theory of

punctured log Gromov-Witten invariants developed in [ACGS2].

Notation 3.77. For any element s P Γ
`

X,Mgp

X

˘

, η P X a generic point

of a logarithmic stratum, and u P Hom
`

MX,η,Z
˘

an integral tangent vector to

the cone ση P ΣpXq, we have a natural evaluation of s on u that we denote

xs, uy (this defines a bilinear pairing). In particular, by Construction 3.20 of

tropicalization we have a well-defined xs, py for any s P Γ
`

X,Mgp

X

˘

and any

p P ΣpXqpZq “ CBpZq. If s P Γ
`

X,MX

˘

Ď Γ
`

X,Mgp

X

˘

, then xs, py ě 0 for any

p P CBpZq.

In the case that D is a simple normal crossings divisor, we have a natural

isomorphism Γ
`

X,MX

˘

– DivDpXq (see Construction 3.52). Under this isomor-

phism, the above pairing corresponds to the canonical pairing between DivDpXq

and DivDpXq˚.

Let P be as in Definition 3.74 and let zkrP s be the completion of krP s with

respect to the maximal ideal m :“ P zPˆ. We define a graded ring (that we call

the theta function ring):

pR “
à

pPCBpZq

zkrP sϑp. (3.50)

Here we regard the theta functions ϑp, p P CB as just the generators of pR.

Let ρ P Γ
`

X,MX

˘

be the pullback of 1 P Γ
`

S,MS
˘

. The grading on (3.50)

comes from setting deg ϑp :“ xρ, py. Note that deg ϑp for p P Cσ is equal to the

d such that p P B
`

1
d
Z
˘

(as defined in (3.17)). It remains to define a product rule

on R̂, i.e. to specify the structure constants αp1p2r P zkrP s in the product of the

60By [GS8, Remark 1.17], this agrees with the restriction of the MPA function defined in

[GS8] on CB.
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theta functions

ϑp1 ¨ ϑp2 “
ÿ

rPCBpZq

αp1p2rϑr, (3.51)

such that only a finite number of αp1p2r P zkrP s are non-zero and deg ϑr “ deg ϑp1`

deg ϑp2 for any ϑr with αp1p2r ‰ 0. In fact, it is enough to require that the product

rule respects the grading since B is compact, so B
`

1
d
Z
˘

is finite.

We can expand

αp1p2r “
ÿ

βPP

Nβ
p1p2r

tβ (3.52)

where the sum is over all classes β P P of stable maps to X{S and Np1p2r P k are

the structure constants we need to define. Note that the sum is finite modulo

any mk, k ě 1 since P zmk is finite. So we can view αp1p2r P zkrP s by taking the

inverse limit over zkrP s{mk, k ě 1.

Remark 3.78. In [GS7], the inverse limit is taken over all monoid ideals

I Ď P with P zI is finite. However, our description is equivalent. Indeed, it is

easy to check that P zI is finite if and only if
?
I “ m. So it is enough to show

that any I with
?
I “ m is contained in mk for some k ě 1. But since krP s is

Noetherian, any ideal is contained in some power of its radical.

The structure constants Nβ
p1p2r

P Q are rationally defined as certain punctured

log Gromov-Witten invariants, as introduced in [ACGS2]. A point p P CB can

be seen as imposing tangency conditions on stable or punctured log curves, we

refer to [ACGS1, Section 2.3]. In the case that D is a simple normal crossings

divisor, the structure constants Nβ
p1p2r

P Q are virtual counts of genus zero three-

pointed punctured stable maps of class β with marked points x1, x2, xout, having

contact order xDi, p1y with Di at x1, contact order xDi, p2y with Di at x2, and

contact order ´xDi, ry with Di at xout (here we make use of Notation 3.77), with

a certain logarithmically imposed point constraint.

Note that ´xDi, ry is negative unless r “ 0, but one can make sense of negative

contact orders using punctured theory. Negative contact orders correspond to

punctures of a punctured curve, and if the contact order with Di at the puncture

xout is negative, the component of the curve containing xout is contained in Di.

The logarithmic point constraint at the schematic level means that we only

count punctured maps that map xout to an arbitrary fixed point z in the interior

of the stratum Xσ such that the corresponding Cσ is the smallest cell containing

r.
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Associated to a choice of data β, p1, p2, r and z, one can define a moduli space

M pX, β, zq that is a Deligne-Mumford stack of virtual dimension 061, and set

Nβ
p1p2r

:“ degrM pX, β, zqs
virt.

The construction of M pX, β, zq is quite technical, and we do not review it here.

We refer to [GS7, Section 3] for more details on defining the invariants Nβ
p1p2r

.

We now explain that the product rule (3.51) for theta functions respects the

grading on the theta function ring R̂. Consider the natural exact sequence

0 ÝÑ Oˆ
X ÝÑ Mgp

X ÝÑ Mgp

X ÝÑ 0.

The associated long exact sequence in cohomology gives a connecting homomor-

phism

τ : Γ
`

X,Mgp

X

˘

Ñ H1
pX,Oˆ

X q “ PicpXq. (3.53)

For s P Γ
`

X,Mgp

X

˘

we denote Ls :“ τpsq. Explicitly, Ls is the line bundle

associated to the Oˆ
X -torsor that is the preimage of s under Mgp

X Ñ Mgp

X .

Lemma 3.79. For any stable punctured map f : C Ñ X{S, f P M pX, β, zq

and any s P Γ
`

X,Mgp

X

˘

we have (using Notation 3.77)

degLs
pβq “ xs, p1y ` xs, p2y ´ xs, ry.

Proof. This is [GS7, Proposition 1.13] specialized to f P M pX, β, zq. □

The fact that the product rule (3.51) respects the grading on R̂ follows from

Lemma 3.79 and the fact that D is numerically equivalent to the trivial divisor.

We note the following consequence of Lemma 3.79 for future use.

Corollary 3.80. Suppose that D is simple normal crossings. For any stable

punctured map f : C Ñ X{S, f P M pX, β, zq and any divisor D1 supported on

D we have

β ¨ D1
“ xD1, p1y ` xD1, p2y ´ xD1, ry.

Proof. This is [GS7, Corollary 1.14] specialized to f P M pX, β, zq. Follow-

ing the proof of [GS7, Corollary 1.14], the result follows from Lemma 3.79 and

the fact that MX “
À

1ďiďmNDi
where NDi

is the constant sheaf on Di with

stalk N. Indeed, for s given by 1 P NDi
we have Ls “ OXp´Diq, which implies

the claim. □

One of the main results of [GS7] (that we formulate here in the limit case) is

as follows.

61This is only true in the case that X Ñ S is minimal log CY. More generally, the virtual

dimension of this stack is pKX ` Dq ¨ β, see [GS7, Construction 1.8].
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Theorem 3.81 ([GS7, Theorem 1.9]). The structure constants Nβ
p1p2r

define

via (3.51) and (3.52) a commutative, associative zkrP s algebra structure on pR with

unit ϑ0.

We define the intrinsic mirror as the family

X̌ :“ Proj pR Ñ SpeczkrP s. (3.54)

Note that it is clear from the construction that if Pˆ “ A1pX0,Zqtors is non-

trivial, then the intrinsic mirror is a disjoint union of |A1pX0,Zqtors| isomorphic

copies.

Observations 3.82. We make two observations concerning the choice of the

base monoid P :

(1) For any NEpX0q Ď P Ď P 1 Ď A1pX0,Zq where both P and P 1 satisfy

Definition 3.74, the mirror constructed using P 1 is the basechange of

the mirror constructed using P by P ãÑ P 1. So the intrinsic mirror is

independent of the choice of the base monoid in this sense.

(2) The product (3.52) is defined over NEpX0q. However, NEpX0q is not

finitely generated in general (implying that {krNEpX0qs is not Noether-

ian), so we prefer to work over a (usually) larger finitely generated

monoid P . We will sometimes think of the family over NEpX0q as a

useful heuristic.

3.3.8. The mirror via the canonical scattering diagram DI. The paper

[GS8] gives a scattering diagram interpretation of the intrinsic mirror family.

We have already described the affine manifold with singularities B, the monoid

P , the ideal I0 “ m :“ P zPˆ, the MPA function φ and the (trivial) initial

slab functions. Let I Ď P be any monoid ideal with P zI finite (we are mostly

interested in I “ mk, k ě 1). We will now describe a finite set of walls on B

(and thus define a scattering diagram, see Remark 3.8) following [GS8, Sections

2 and 3.2]. See loc. cit. for details.

The walls are defined via punctured theory governed by tropical geometry. We

review the notations of [ACGS1, ACGS2] for tropical maps to pΣpXq,ΣPq.62

We consider genus zero graphs G with sets of vertices V pGq, edges EpGq, and legs

LpGq. Legs have only one vertex, correspond to marked and punctured points of

a punctured curve, and are rays in the marked case and compact line segments

62Here ΣP is the natural cone structure on ΣpXq provided by Construction 3.20 of trop-

icalization. Naturally, we have pΣpXq,ΣPq – pCB,CPq but the notation pΣpXq,ΣPq fits

better with the conventions of [GS8]. The cone structure ΣP is denoted by P in [GS8].
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in the punctured case. An abstract tropical curve of genus zero over a rational

polyhedral cone ω with integral structure Λω is specified by the data G :“ pG, ℓq

where ℓ : EpGq Ñ Hompω X Λω,Nq determines the edge lengths.

One can associate to pG, ℓq and a rational polyhedral cone ω a generalized

cone complex (a diagram in the category of rational polyhedral cones) along with

a morphism of generalized cone complexes ΓpG, ℓq Ñ ω. The fibre over s P Intpωq

is a metric graph with underlying graph G and the affine edge length of E P EpGq

equal to ℓpEqpsq P Rě0. Associated to each vertex v P V pGq of G is a copy ωv
of ω in ΓpG, ℓq. Associated to each edge or leg E P EpGq Y LpGq is a cone

ωE P ΓpG, ℓq with ωE Ď ω ˆ Rě0 and the map to ω is given by projection onto

the first coordinate.

Definition 3.83. A family of tropical maps to ΣpXq over ω is a morphism of

cone complexes

h : ΓpG, ℓq Ñ ΣpXq.

If s P Intpωq, we may view the fibre of ΓpG, ℓq Ñ ω over s as a metric graph with

underlying graph G, and write

hs : G Ñ ΣpXq

for the corresponding tropical map.

The type of h consists of the data τ :“ pG,σ,uq where

σ : V pGq Y EpGq Y LpGq Ñ ΣP

associates to x P V pGq Y EpGq Y LpGq the minimal cone of ΣP containing

hpωxq. Further, u associates to each (oriented) edge or leg E P EpGq Y LpGq

the corresponding contact order upEq P ΛσpEq, the image of the tangent vector

p0, 1q P ΛωE
“ Λω ‘ Z under the map h.

We say a type τ is realizable if there exists a family of tropical maps to ΣpXq of

type τ . If τ is realizable, then there exists a universal family h “ hτ : ΓpG, ℓq Ñ

ΣpXq of tropical maps of type τ over a certain cone that we also denote by τ .

Generally, we write h rather than hτ when unambiguous.

A decorated type is data τ “ pτ,Aq where A : V pGq Ñ A1pX0,Zq associates a

curve class to each vertex of G. The total curve class of A is A “
ř

vPV pGq
Apvq.

For a decorated type τ , we define Autpτ q as the group of automorphisms of

the underlying graph G preserving σ,u, and A.

Using the fact that tropical maps in the above sense arise as tropicalizations

of punctured maps, one can define the notion of marking a punctured map by τ

and the Deligne-Mumford stack M pX, τ q of τ -marked punctured maps to X, see
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[ACGS2, Definition 3.8]. The punctured theory here is rather technical. We do

not review it and refer to [ACGS2].

The walls of the canonical scattering diagram arise from a particular family

of types τ such that the corresponding stack M pX, τ q is of virtual dimension 0.

First, the tropicalizations of stable punctured maps satisfy a certain balancing

condition we impose on the types.

Definition 3.84. A type τ of a tropical map to ΣpXq is balanced if:

(1) For each v P V pGq with σpvq P ΣP a codimension zero or one cone, a

balancing condition holds at v. Namely, if E1, . . . , Em are the legs and

edges adjacent to v and oriented away from v, we interpret the contact

orders upEiq as elements of Λhspvq and require that

m
ÿ

i“1

upEiq “ 0.

(2) τ induces a type of a balanced tropical map to ΣpSq “ Rě0 by composing

with the gtrop of (3.36).

We impose some further restrictions that ensure that we get well-defined walls.

Definition 3.85. A wall type is a type τ “ pG,σ,uq of a tropical map to

ΣpXq such that:

(1) G is a genus zero graph with LpGq “ tLoutu with uτ :“ upLoutq ‰ 0.

(2) τ is realizable and balanced.

(3) Let h : ΓpG, ℓq Ñ ΣpXq be the corresponding universal family of tropical

maps, and let τout P ΓpG, ℓq be the cone corresponding to Lout. Then63

dim τ “ n ´ 1 and dimhpτoutq “ n.

A decorated wall type is a decorated type τ “ pτ,Aq with τ a wall type.

Now h|τout : τout Ñ σ induces a morphism

h˚ : Λτout Ñ Λσ,

and we define

kτ :“ | cokerph˚qtors| “ |Λhpτoutq{h˚pΛτoutq|.

Remark 3.86. Note that the universal family h : ΓpG, ℓq Ñ ΣpXq of trop-

ical maps in Definition 3.85 carries the same information as its restriction hB :

ΓpG, ℓqB Ñ B to the dual intersection complex B “ g´1
tropp1q Ď ΣpXq. Indeed, this

63There is a notational disparity with [GS8, Definition 3.6] here that might seem confusing.

The reason is simply that in [GS8], n is the dimension of X and not the relative dimension of

X Ñ S.
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immediately follows from the fact that τ is balanced and from condition (2) of

Definition 3.84. This phenomenon was first observed in [ACGS1, Section 2.5.3].

It is often easier to perform explicit computations by studying tropical maps

to B instead of tropical maps to ΣpXq since this lowers dim τ and dimhpτoutq by

1. In particular, in the case that X Ñ S is a minimal log CY degeneration of

K3-s, a wall type τ defines a single tropical curve hB : ΓpG, ℓqB Ñ B that is rigid

in the sense of [ACGS1, Definition 3.6] (since we require dim τ “ n ´ 1 in the

definition of a wall type).

We need the following definition to define the canonical scattering diagram

on B and not on CB (as in [GS8, Construction 3.13]).

Definition 3.87. Let Cp be a cone over a codimension one rational polyhe-

dral subset p of some σ P Pmax. Then there is a map ΛCp Ñ Z (projection to

the first component, see (3.16)) that is not necessarily surjective. The image is of

the form indpCpq ¨ Z for some indpCpq P N. Following [GHS, Definition 4.2.2],

we call indpCpq the index of Cp.

For τ a wall type we denote indpτq :“ indphpτoutqq and we set indpτ q :“ indpτq

for a decorated wall type τ with underlying wall type τ .

Observation 3.88. Note that indpCpq “ 1 if p Ď ρ P P rn´1s since in this

case ρ contains integral points.

We are now ready to define the canonical scattering diagram.

Construction 3.89. Fix a decorated wall type τ “ pτ,Aq, and let A “
ř

vPV pGq
Apvq be the total curve class. Then M pX, τ q is of virtual dimension 0

(see the proof of [GS8, Lemma 3.9]) and one can define

Wτ :“
degrM pX, τ qsvirt

|Autpτ q|
.

For every τ such that Wτ ‰ 0 we define a wall

pτ :“
`

hpτoutq X g´1
tropp1q, exppkτWτ t

Az´uτ q
indpτ q

˘

(3.55)

Here we view tAz´uτ as a monomial in krP`
x s for x P Intphpτoutqq using Notation

3.5. Note that pkrP s{IqrΛhpτoutqs Ď krP`
x s{Ix, and exppkτWτ t

Az´uτ qindpτ q makes

sense as an element in pkrP s{IqrΛhpτoutqs by removing all the monomials that are

zero in pkrP s{IqrΛhpτoutqs. We define the canonical scattering diagram as follows.

DI :“
!

pτ

ˇ

ˇ

ˇ

τ an isomorphism class of a decorated wall
type with total curve class lying in P zI

)

.

The following theorem is the first major result of [GS8].
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Theorem 3.90 ([GS8, Theorem 5.2]). DI is a consistent scattering diagram.

Remarks 3.91. Some remarks are in order:

(1) The scattering diagram of [GS8] is defined on CB, rather than B. Our

definition ensures (see [GHS, Definition 4.2.4]) that the lifting of the

scattering diagram of Construction 3.89 to CB is the scattering diagram

of [GS8, Construction 3.13].

(2) [GS8, Theorem 5.2] proves consistency of the lifted scattering diagram

on CB. However, by reversing the proof of [GHS, Proposition 4.2.6],

one can see that consistency of a scattering diagram on B is equivalent

to consistency of the lifted scattering diagram on CB.

(3) [GS8, Theorem 5.2] proves consistency of the undecorated version [GS8,

Definition 3.10] of the canonical scattering diagram (using τ instead of

τ ). However, the two scattering diagrams are combinatorially equivalent,

see [GS8, Construction 3.13].

We now define

X̌DI
Ñ Spec krP s{I (3.56)

following the recipe of Section 3.1.6. The scattering diagram Dmk is compatible

with Dmk´1 (in the sense of Definition 3.9) for k ě 1 so the families X̌D
mk

Ñ

Spec krP s{mk for k ě 1 form an inverse system and taking the limit over this

system gives

X̌D Ñ SpeczkrP s

where zkrP s is the completion with respect to m as in Section 3.3.7. The second

major result of [GS8] (formulated in the limit case) is proved by comparing the

two product formulas for theta functions: the product formula (3.51) defined via

three-pointed punctured maps and the broken line product formula on CB (see

[GHS, Theorem 3.5.1]).

Theorem 3.92 ([GS8, Theorem 6.1]). The family X̌D Ñ SpeczkrP s is iso-

morphic to the intrinsic mirror family X̌ Ñ SpeczkrP s of (3.54).

So we may use the constructions of the intrinsic mirror of this section and of

Section 3.3.7 interchangeably.

Remark 3.93. For any ideal I with
?
I “ m we can talk about the intrinsic

mirror modulo I, which is just the family of (3.56). Using the setup of Section

3.3.7, this corresponds to viewing the coefficients αp1p2r defined by (3.52) modulo
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I and replacing pR in (3.50) with

RI :“
à

pPCBpZq

pkrP s{Iqϑp. (3.57)

3.4. Resolution setup

Suppose that we have a projective resolution π : X Ñ X̄ where ḡ : X̄ Ñ S is

a toric degeneration with polarization A and the composed g : X Ñ S is a log

smooth minimal log CY degeneration satisfying Assumption 3.48. Note that since

pX̄, D̄q is a Zariski log scheme (by Assumption 1.3(3)), so is pX, Dq. Projectivity

of X Ñ S follows from projectivity of X̄ Ñ S (i.e. Assumption 1.3(2)) and

projectivity of the resolution π : X Ñ X̄.

In this section, we will explain that one may choose the monoid P of Definition

3.74 so that the curves contracted by π are contained in a face K of P . We will

also study extensions of the intrinsic mirror X̌ Ñ SpeczkrP s and show that under

certain assumptions on the resolution π : X Ñ X̄ one can extend X̌ Ñ SpeczkrP s

to a family over the completion of SpeckrKs.

3.4.1. Restricting to well-chosen monoids P . The map π : X Ñ X̄ contracts

some curve classes.

Definition 3.94. We say that a monoid P satisfying Definition 3.74 is well-

chosen if there exists a face K of P such that for any curve C Ď X we have

C P K X NEpX0q if and only if dimpπpCqq “ 0.

We always assume that K is the minimal face of P with this property.

Proposition 3.95. For any monoid P 1 satisfying the assumptions of Def-

inition 3.74 there exists a well-chosen monoid P with NEpX0q Ď P Ď P 1 Ď

A1pX0,Zq.

Proof. Note that π˚A is g-nef and that a curve C Ď X0 is contracted by

π : X Ñ X̄ if and only if π˚A¨C “ 0. We let P “ P 1Xtβ P A1pX0,Zq | π˚A¨β ě 0u

and let K “ P 1 X tβ P A1pX0,Zq | π˚A ¨ β “ 0u. Then clearly, K is a face of P ,

and P is well-chosen. □

Proposition 3.96. Suppose that Conjecture 1.7 holds for a toric degeneration

X̄ Ñ S, a choice of resolution π : X Ñ X̄ and all well-chosen monoids P . Then

it holds for X̄ Ñ S, π, and all monoids P 1 satisfying Definition 3.74.
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Proof. Let P 1 be any monoid satisfying Definition 3.74 and let P be the well-

chosen monoid with NEpX0q Ď P Ď P 1 Ď A1pX0,Zq given by Proposition 3.95.

By Observation 3.82(1), X̌ Ñ Spec zkrP 1s is the basechange of X̌ Ñ SpeczkrP s by

the inclusion P ãÝÑ P 1. If the completion in X̌ Ñ SpeczkrP s is taken with respect

to an ideal J , then we can take the completion in X̌ Ñ Spec zkrP 1s with respect to

the ideal generated by the image of J under P ãÝÑ P 1. It is enough to check that

the basechange of the intrinsic mirror X̌ Ñ Spec zkrP 1s by h1 : P 1 Ñ N, β ÞÑ π˚A¨β

coincides with the basechange of X̌ Ñ SpeczkrP s by h : P Ñ N, β ÞÑ π˚A ¨ β.

Indeed, the two basechanges agree since h : P Ñ N factors as P ãÝÑ P 1 h1

Ñ N. □

3.4.2. The minimal ideal for extension. In Sections 3.3.7 and 3.3.8, we de-

fined the intrinsic mirror X̌ Ñ SpeczkrP s to a minimal log CY degeneration

X Ñ S satisfying Assumption 3.48 to lie over the completion of the smallest toric

stratum Spec krP s{m (here m “ P zPˆ is the maximal ideal of P ). However, the

mirror can often be defined over the completion of a larger union of toric strata

Spec krP s{J for some monoid ideal J Ď m Ď P . This phenomenon was first ob-

served in [GHK, Section 6] in the case of a log CY surface pX, Dq. Our analysis

in this section is similar but simpler since, as explained in Section 3.3.7, the sum

ϑp1 ¨ ϑp2 “
ř

rPCBpZq
αp1p2rϑr in (3.51) is always a finite sum.

Note that for any monoid ideal J Ď P such that the sums αp1p2r “
ř

βPP zJ N
β
p1p2r

tβ of (3.52) are finite, the intrinsic mirror is defined over krP s{J

via (3.51) and (3.52). Let

A :“

"

monoid ideals J Ď P such that αp1p2r “
ř

βPP zJ N
β
p1p2r

tβ

is finite for all p1, p2, r P CB.

*

.

Lemma 3.97. If J P A and J Ă J 1, then J 1 P A. In addition, A is closed

under finite intersections.

Proof. The first statement follows since any β P P zJ 1 is contained in P zJ .

For the second statement let J1, J2 P A. Then we know that
ř

βPP zJ1
Nβ
p1p2r

tβ and
ř

βPP zJ2
Nβ
p1p2r

tβ are finite sums. But then
ÿ

βPP zpJ1XJ2q

Nβ
p1p2r

tβ “
ÿ

βPpP zJ1qYpP zJ2q

Nβ
p1p2r

tβ

is also a finite sum. □

Proposition 3.98. There is a unique radical monomial ideal Imin such that

if Imin Ď
?
J , then J P A.

Proof. We have J P A for any J with
?
J “ m (since

?
J “ m if and only if

P zJ is finite). Note that a radical monomial ideal is the complement of a union
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of faces of P , so there are only a finite number of such ideals. Suppose I1, I2 are

two radical ideals such that if Ii Ď
?
J , then J P A for i “ 1, 2. Note that any

ideal J with I1 X I2 Ď
?
J can be written as J1 X J2 with Ii Ď

?
Ji (Indeed,

we can use the primary decomposition of J . If J “ Xkpk is an intersection of

primary ideals, necessarily the prime ideal
?
pk contains either I1 or I2 for each

k. Then let J1 be the intersection of those pk whose radical contains I1 and J2 be

the intersection of those pk whose radical contains I2). Lemma 3.97 implies that

J P A. This shows the existence of Imin. □

3.4.3. Extending the intrinsic mirror family: simple normal crossings

case. We want to understand Imin better. Assume for now that D is simple

normal crossings. We shall treat the general case in the next section. It is easy

to prove the following using the same reasoning as in [GS7, Remark 1.22].

Proposition 3.99. For any contraction X
π1

Ñ X1 (not necessarily to a toric

degeneration), let P be a well-chosen monoid and K Ď P be the face containing

the contracted curves. Suppose that there exists a π1-ample D1 supported on D.

Then P zK P A.

Proof. For any curve class β P P , the intersection number β ¨ D1 is deter-

mined by p, q, r by Corollary 3.80. Because D1 is π1-ample, the relative Hilbert

scheme is of finite type, and there are only a finite number of effective curve

classes β P K with the given value of β ¨ D1. So every αp1p2r is a finite sum and

P zK P A. □

We would like to further show that Imin Ď P zK. We note as in [GS7, Con-

struction 1.24] that for any monoid ideal J Ď P , there is a natural grading

(corresponding to a torus action on the intrinsic mirror modulo J) of RJ (as de-

fined in (3.57)) by DivDpXq, the group of divisors supported on D. Indeed, define

the Di-component of the degree by degDi
ϑp :“ xDi, py for p P CBpZq (using

Notation 3.77) and degDi
tβ :“ Di ¨ β for tβ P krP s{J . Additivity of the degrees

follows from Corollary 3.80.

Now, let peD1 , . . . , eDmq be the basis for ZDivDpXq – Zm. We define a character

map

w : CBpZq ˆ P zJ Ñ Zm, pp, βq ÞÑ

m
ÿ

i“1

xDi, pyeDi
`

m
ÿ

i“1

pDi ¨ βqeDi
. (3.58)

Now, we need a technical lemma.
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Lemma 3.100. Let Q be a toric monoid with Qˆ finite, I Ď Q a monoid ideal

with
?
I a prime ideal, and

w : QzI Ñ Zm

a linear map to a finitely generated free abelian group. Then w has finite fibres if

and only if

kerw X

´

Qz
?
I
¯

“ Qˆ.

Proof. Since Qˆ is finite, it is torsion so wpqq “ 0 for any q P Qˆ by

linearity of w. Let α : Q Ñ Q{Qˆ be the canonical quotient map. Then αpIq is

an ideal of Q{Qˆ, w : QzI Ñ Zm factors through pQ{Qˆq zαpIq, and the fibres of

QzI Ñ pQ{Qˆq zαpIq have cardinality |Qˆ|. So it suffices to show the claim for

a monoid Q that is toric and sharp.

A toric and sharp Q can be viewed as the set of integral points of a strictly

convex rational polyhedral cone. So there exists a unique minimal system of

generators v1, . . . , vk P Q such that every q P Q is of the form q “
řk
i“1 aivi with

ai P N for all 1 ď i ď k. Every face of Q is generated by a subset of tv1, . . . , vku

so we have two subsets of generators tα1, . . . , αk1u and tβ1, . . . , βk2u such that

Qz
?
I “ xα1, . . . , αk1y, Q “ xα1, . . . , αk1 , β1, . . . , βk2y “ xv1, . . . , vky.

The fibre of w : QzI Ñ Zm over d P Zm is the set of tq P QzI | wpqq “ du.

That is, it is the set of solutions of the system of linear equations

wpqq “ a1wpα1q ` ¨ ¨ ¨ ` ak1wpαk1q ` b1wpβ1q ` ¨ ¨ ¨ ` bk2wpβk2q “ d (3.59)

with ai, bj P N and q “ a1α1 ` ¨ ¨ ¨ ` ak1αk1 ` b1β1 ` ¨ ¨ ¨ ` bk2βk2 P QzI a general

element.

Since QzI is the complement of an ideal, we have bjβj P QzI for all 1 ď j ď k2.

Also, we have bjβj R Qz
?
I by construction so bjβj P

?
IzI. But then bjβj P I for

large enough bj P N so there are a finite number of choices for bj, 1 ď j ď k2.

Therefore, it is enough to show that there are a finite number of solutions of

(3.59) for any fixed choices of bj “ b0j P N, 1 ď j ď k2 if and only if kerw X
`

Qz
?
I
˘

“ 0. This amounts to checking that the system of equations

a1wpα1q ` ¨ ¨ ¨ ` ak1wpαk1q “ d̃

with d̃ :“ d ´ b01wpβ1q ´ ¨ ¨ ¨ ´ b0k2wpβk2q has finitely many solutions with ai P

N. Every equation in this system is a linear Diophantine equation with integer

coefficients. It is classical (see, e.g. [CF, Lemma 1]) that such an equation has

finitely many solutions in non-negative integers if and only if the corresponding
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homogeneous equation has finitely many solutions in non-negative integers. So it

is enough to check that

a1wpα1q ` ¨ ¨ ¨ ` ak1wpαk1q “ 0

has finitely many solutions with ai P N. But this is equivalent to kerwX
`

Qz
?
I
˘

“

0 by construction. □

Proposition 3.101. In the setup of Proposition 3.99, suppose in addition

that:

(1) D1 “
řm
i“1 aiDi is an effective divisor supported on D and such that Di

is π1-nef for any i with ai “ 0 (e.g. ai ą 0 for 1 ď i ď m).

(2) K X NEpX0q “ K X NEpX0qnum (under the splittings of (3.49)), i.e. π1

only contracts numerical classes of curves C Ď X0.

Then we have Imin Ď P zK.

Proof. We first want to show that we can choose a monoid P and a face K

so that D1 ¨ β ą 0 for any β P KzPˆ.

Step 1. Suppose without loss of generality that D1 “
řm1

i“1 aiDi with ai ą 0.

Let Drel :“
řm1

i“1Di and Dirrel :“
řm
i“m1`1Di so that D “ Drel ` Dirrel. Let

∆ :“ Drel ´ εD1 for some rational 0 ă ε ! 1, then t∆u “ 0 (here we define

t
řm
i“1 biDiu :“

řm
i“1tbiuDi), and ∆ is effective and simple normal crossings (as it

is supported on a simple normal crossings D). Also, KX ` ∆ “ ´Dirrel ´ εD1 is

Q-Cartier (some rational multiple of it is Cartier) since all the Di, 1 ď i ď m

are Cartier and ε is rational. Under these conditions, pX,∆q is dlt (divisorial log

terminal, see [KM, Definition 2.37]) by [KM, Proposition 2.40]. Further, since

t∆u “ 0, it is actually klt (Kawamata log terminal, see [KM, Definition 2.34]) by

[KM, Proposition 2.41].

Step 2. Suppose that A1pX0,Zq :“ A1pX{S,Zqnum. It is clear from as-

sumption (1) that KX ` ∆ “ ´Dirrel ´ εD1 is negative on K X NEpX{Sqnum so

K X NEpX{Sqnum is a KX ` ∆-negative extremal face of NEpX{Sqnum. By the

relative cone theorem [KM, Theorem 3.25], NEpX{Sqnum is rational polyhedral

near K X NEpX{Sqnum. So there exists a monoid P 1 with NEpX{Sqnum Ď P 1 Ď

P Ď A1pX{S,Zqnum, satisfying Definition 3.74, and such that K X NEpX{Sqnum

is a face of P 1. By Observation 3.82(1), X̌ Ñ Spec zkrP 1s is the basechange of

X̌ Ñ Spec zkrP 1s by the inclusion P 1 ãÝÑ P , so (replacing P by P 1) we can assume

that K “ K X NEpX{Sqnum. Then D
1 is positive on KzPˆ “ Kzt0u.

Using the splittings of Construction 3.71, the same claim is true for other

choices of A1pX0,Zq. Indeed, we have NEpX0qnum “ NEpX0q X A1pX0,Zqnum
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under the splittings. Fix a choice of P 1 as above (for any corresponding choice

of P with NEpX{Sqnum Ď P Ď A1pX{S,Zqnum). Then if using A1pX0,Zqnum

(and a choice of P and K), we can take the corresponding restricted monoid

and face to be P 1 X P X A1pX0,Zqnum and P 1 X K X NEpX0qnum respectively.

Now, if A1pX0,Zq – A1pX0,Zqnum ‘ G, then assumption (2) implies that we can

take the restricted monoid and face to be ppP 1 X A1pX0,Zqnumq ‘ Gq X P and

ppP 1 X A1pX0,Zqnumq ‘ Gq X pK X NEpX0qq respectively.

Step 3. Assume that we have a choice of P and K such that D1 is positive on

KzPˆ and let J Ď P be a monoid ideal with
?
J “ P zK. Combining together

(3.51) and (3.52), we have

ϑp1 ¨ ϑp2 “
ÿ

rPCBpZq, βPP zJ

Nβ
p1p2r

tβϑr

and all the tβϑr with N
β
p1p2r

‰ 0 are of the same DivDpXq-degree by additivity of

the degrees.

It is enough to show that the character map w of (3.58) has finite fibres.

Clearly, it suffices to consider the fibres of CσpZq ˆ P zJ Ñ Zm for every Cσ P

CPmax. Fix a Cσ P CPmax and note that CσpZq ˆ P is a toric monoid with

pCσpZq ˆ P qˆ “ Pˆ finite, and that w is linear on CσpZq ˆ P . Also CσpZq ˆ J

is an ideal of CσpZq ˆP with prime radical
a

CσpZq ˆ J “ Cσˆ
?
J that is the

complement of the face CσpZq ˆ K of CσpZq ˆ P .

Step 4. We are in the setup of Lemma 3.100, so it is enough to check that

kerwX pCσpZq ˆKq “ Pˆ. Suppose that pr, βq P kerwX pCσpZq ˆKq. We have

Cσ “ xv1, . . . , vn`1y for vi P P r0s, 1 ď i ď n ` 1 the generators of the rays of

Cσ. Then r “
řn`1
i“1 aivi for some ai P N, 1 ď i ď n ` 1. Now

wpr, βq “

n`1
ÿ

i“1

aieDvi
`

m
ÿ

j“1

pDj ¨ βqeDj
“ 0,

so we have Dj ¨ β ď 0 for all 1 ď j ď m. In particular, D1 ¨ β ď 0 since D1 is

effective. But D1 is positive on KzPˆ so β P Pˆ. Therefore, Dj ¨ β “ 0 for all

1 ď j ď m and we have
řn`1
i“1 aieDvi

“ 0. But then ai “ 0 for all 1 ď i ď n ` 1.

So r “ 0 and kerw X pCσpZq ˆ Kq “ Pˆ. □

Remark 3.102. Note from the proof that it is enough to require that Dirrel

is π1-nef instead of the second part of condition (1) of Proposition 3.101.

3.4.4. Extending the intrinsic mirror family: general case. We now want

to generalize Propositions 3.99 and 3.101 to the case when the divisor D is not

simple normal crossings. Note that the components Di, 1 ď i ď m are not
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generally Cartier, and we can’t use Corollary 3.80. One can still argue similarly

to Section 3.4.3 in the case that Di, 1 ď i ď m are Q-Cartier (e.g. if X is Q-

factorial) and all the cells σ P Pmax are simplices. We shall consider the general

case.

In general, it is natural to use Lemma 3.79 instead of Corollary 3.80. Lemma

3.79 applies to line bundles that lie in the image of the map τ : Γ
`

X,Mgp

X

˘

Ñ

PicpXq, s ÞÑ Ls of (3.53). Accordingly, we are going to use the group Γ
`

X,Mgp

X

˘

instead of the group DivDpXq we used in the previous section.

First, we want to understand Γ
`

X,Mgp

X

˘

and τ better. Let PApBq :“

PApB,Zq and PLpCBq :“ PLpCB,Zq be the groups of integral piecewise-affine

(PA) functions on B and integral piecewise-linear (PL) functions on CB respec-

tively.64

Proposition 3.103. Let X Ñ S be a log smooth minimal log CY degeneration

(with the log structure MX on X fine, saturated, and Zariski as usual). Then:

(1) We have canonical isomorphisms

PApBq – PLpCBq – Γ
`

X,Mgp

X

˘

.

(2) The natural map

div : PApBq – Γ
`

X,Mgp

X

˘ τ
Ñ PicpXq ãÝÑ ClpXq

is of the form

div : α ÞÑ
ÿ

vPPr0s

αpvqDv. (3.60)

Proof. We first explain that PApBq – PLpCBq. We have a natural inclu-

sion i : PApBq ãÝÑ PLpCBq by extending an α P PApBq to a PL-function on CB

as follows. For any Cσ P CP rks and any pa, xq P Cσ “ Rě0 ¨ pσˆ t1uq Ď RˆRk,

we define ipαqpa, xq :“ a ¨αpxq. Then clearly, ipαq is a PL-function on CB. Con-

versely, a PL-function β on CB induces a PA-function β|B on B by restriction.

The isomorphism PLpCBq – Γ
`

X,Mgp

X

˘

can be viewed as a global version of

[GS1, Lemma 5.15] which applies in the context of toric degenerations. Let Cσ P

CP be a cell of CB (here we include the minimal cell 0 P CP r0s) and let ησ P X

be the generic point of the corresponding logarithmic stratum XCσ Ď X. Then

specifying an integral PL-function on Cσ “ Hom
`

MX,ησ ,Rě0

˘

is equivalent to

specifying an element of Hom
`

Hom
`

MX,ησ ,N
˘

,Z
˘

. But under the assumptions

64Not to confuse with the multi-valued functions of Section 3.1.3.
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on the log structure, we have canonical isomorphisms:

Hom
`

Hom
`

MX,ησ ,N
˘

,Z
˘

– Hom
`

Hom
`

MX,ησ ,N
˘gp

,Z
˘

–

– Hom
`

Hom
`

MX,ησ ,Z
˘

,Z
˘

– Hom
`

Hom
`

Mgp

X,ησ ,Z
˘

,Z
˘

– Mgp

X,ησ (3.61)

where the second isomorphism is since MX,ησ is sharp and the last isomorphism

is since MX,ησ is toric so Mgp

X,ησ is torsion-free.

Now, an element β P PLpCBq specifies linear functions βCσ, Cσ P CP on

the cones of CB such that for any Cτ “ Cσ X Cσ1 with Cσ,Cσ1,Cτ P CP we

have βCτ “ βCσ|Cτ “ βCσ1 |Cτ . This implies that the corresponding stalks of Mgp

X

agree under generization maps (well-defined since MX is Zariski)

Mgp

X,ησ ÝÑ Mgp

X,ητ ÐÝ Mgp

X,ησ1

and hence give rise to a global section of Mgp

X .

Conversely, evaluating a section s of Mgp

X on all u P Hom
`

MX,ησ ,N
˘

Ď

Hom
`

MX,ησ ,Z
˘

specifies a linear function βCσ on Cσ P CP. For any Cτ “

Cσ X Cσ1 with Cσ,Cσ1,Cτ P CP we have βCτ “ βCσ|Cτ “ βCσ1 |Cτ since the

stalks sσ P Mgp

X,ησ of s that we use to evaluate the section agree under generiza-

tion. So the linear functions βCσ, Cσ P CP glue to a β P PLpCBq. This shows

(1).

From the isomorphisms PApBq – PLpCBq – Γ
`

X,Mgp

X

˘

we see that the

section s P Γ
`

X,Mgp

X

˘

corresponding to ipαq P PLpCBq has stalks sv “ αpvq P

Mgp

X,ηv – Z at the generic points ηv of Dv, v P P r0s (and a stalk s0 “ 0 P Mgp

X,η0
“

0 at the generic point η0 of the locus of triviality of the log structure MX). Now

the constructions of τ : Γ
`

X,Mgp

X

˘

Ñ PicpXq and PicpXq ãÝÑ ClpXq imply (2). □

Definition 3.104. We say that a (Weil) divisor D1 on X is PA-generated if

it is a Cartier divisor of the form D “ divpαq for some α P PApBq. Note that

(3.60) implies that all PA-generated divisors are supported on D.

Remark 3.105. If the divisor D is simple normal crossings, then we have

Γ
`

X,Mgp

X

˘

– DivDpXq (see Construction 3.52). So every D1 supported on D is

PA-generated.

Corollary 3.106. In the assumptions of Proposition 3.103, the divisor D is

PA-generated.

Proof. This is an immediate consequence of Proposition 3.103 by taking the

constant function 1 P PApBq. □

We are ready to generalize Propositions 3.99 and 3.101.
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Proposition 3.107. For any contraction X
π1

Ñ X1 (not necessarily to a toric

degeneration), let P be a well-chosen monoid and K Ď P be the face containing

the contracted curves. Suppose that there exists a π1-ample PA-generated divisor

D1 on X. Then P zK P A.

Proof. The proof is the same as that of Proposition 3.99 using Lemma 3.79

instead of Corollary 3.80. □

For any monoid ideal J Ď P , we have a natural grading of RJ (as defined in

(3.57)) by Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

via the maps

CBpZq Ñ Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

, p ÞÑ ps ÞÑ xs, pyq

(using Notation 3.77) and

P Ñ Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

, β ÞÑ
`

s ÞÑ degLs
pβq

˘

. (3.62)

Additivity of the degrees follows from Lemma 3.79.

Remark 3.108. Note that we have defined a grading by Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

rather than by Γ
`

X,Mgp

X

˘

. The reason is that the Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

-grading

we defined falls into the general framework for gradings on RJ (corresponding to

a torus action on the intrinsic mirror modulo J) of [GHS, Section 4.4]. This is

the natural way to define gradings (in particular, it guarantees the functoriality

of the torus action).

According to [GHS, Section 4.4], to define a grading by an arbitrary

finitely generated free abelian group Γ, it is enough to define maps δB :

HompPApBq,Zq Ñ Γ and δP : P Ñ Γ that fit into a commutative diagram

[GHS, (4.8)]65:

Q0 HompPApBq,Zq

P Γ

g

h δB

δP

(3.63)

Here Q0 :“ HompMPApB,Nq,Nq, g is the natural map

g : Q0 ãÝÑ HompMPApB,Zq,Zq Ñ HompPApBq,Zq

and h : Q0 Ñ P is the map defined by the MPA function φ (see [GHS, Propo-

sition 1.2.9(b)]). One also needs to check that the wall functions fp of DJ are

homogeneous of degree 0 with respect to the resulting Γ-degree.

65Unlike [GHS, (4.8)], we are using PApBq – PLpCBq instead of PLpBq since we are in

the projective case, see [GHS, Remark 4.4.4].
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We can define the Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

-grading by taking δB to be the dual of

the canonical isomorphism PApBq – Γ
`

X,Mgp

X

˘

and taking δP to be the map of

(3.62). It is straightforward to check that (3.63) is commutative and the induced

Hom
`

Γ
`

X,Mgp

X

˘

,Z
˘

-grading is the same grading we defined above. The fact

that the wall functions fp of DJ are homogeneous of degree 0 follows from the

analogue of Lemma 3.79 for f P M pX, τ q (see [GS7, Proposition 1.13]).

In the case that D is simple normal crossings (so that Γ
`

X,Mgp

X

˘

– DivDpXq,

see Construction 3.52), our grading recovers the grading by HompPLpCBq,Zq

of [GHS, Example 4.4.6] and [GS8, Construction 3.16] (using the canonical

isomorphism PLpCBq – Γ
`

X,Mgp

X

˘

). Moreover, the irreducible components

Di, 1 ď i ď m of X0 define a natural basis of DivDpXq that gives rise to the

canonical isomorphism

DivDpXq
–
ÝÑ HompDivDpXq,Zq, Di Ñ D˚

i .

Under this isomorphism, our grading is just the grading by DivDpXq from the

previous section.

Suppose that the rank of Γ
`

X,Mgp

X

˘

is l and let si P Γ
`

X,MX

˘

Ď Γ
`

X,Mgp

X

˘

,

1 ď i ď l be any linearly independent sections (not necessarily forming a Z-basis),
such that xs1, ¨ ¨ ¨ , slyZ bZ Q “ Γ

`

X,Mgp

X

˘

bZ Q. Let pe1, . . . , elq be a basis for

Zl. We define a character map

ws : CBpZq ˆ P zJ Ñ Zl, pp, βq ÞÑ

l
ÿ

i“1

xsi, pyei `

l
ÿ

i“1

degLsi
pβqei. (3.64)

Proposition 3.109. In the setup of Proposition 3.107, suppose in addition

that:

(1) The divisor D1 is simple normal crossings and effective.

(2) The divisor Dirrel (defined as in the proof of Proposition 3.101) is Q-

Cartier and π1-nef.

(3) K X NEpX0q “ K X NEpX0qnum (under the splittings of (3.49)), i.e. π1

only contracts numerical classes of curves C Ď X0.

Then we have Imin Ď P zK.

Proof. The proof that pX,∆q is klt is as in Proposition 3.101 using assump-

tions (1) and (2), Remark 3.102, and the fact that D1 is PA-generated, thus

Cartier. We continue as in the proof of Proposition 3.101 (using assumption (3))

until we need to use the character map (Step 3).

Let s1 P Γ
`

X,Mgp

X

˘

be the global section corresponding to D1. The fact that

D1 is effective (by condition (1)) implies that s1 P Γ
`

X,MX

˘

Ď Γ
`

X,Mgp

X

˘

.
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Indeed, by Proposition 3.103(2), the PL-function β P PLpCBq corresponding

to D1 is non-negative on CB. Following the proof of Proposition 3.103(1), β

specifies a compatible collection βCσ, Cσ P CP of non-negative linear func-

tions on the cones of CB. Non-negativity of βCσ implies that it corresponds

to a stalk of MX,ησ Ď Mgp

X,ησ under the isomorphism of (3.61). The collec-

tion of such stalks over all the generic points ησ P X of logarithmic strata

XCσ Ď X is compatible under generization maps and defines the global section

s1 P Γ
`

X,MX

˘

Ď Γ
`

X,Mgp

X

˘

.

Choose any s2, . . . , sl P Γ
`

X,MX

˘

Ď Γ
`

X,Mgp

X

˘

with xs1, ¨ ¨ ¨ , slyZ bZ Q “

Γ
`

X,Mgp

X

˘

bZ Q (note that it is not always possible to choose s2, . . . , sl P

Γ
`

X,MX

˘

, such that xs1, ¨ ¨ ¨ , slyZ – Γ
`

X,Mgp

X

˘

) and let pe1, . . . , elq be a ba-

sis for Zl. We now have the character map ws of (3.64).

Similarly to the proof of Proposition 3.101 (using duality and the fact that

xs1, ¨ ¨ ¨ , slyZ bZ Q “ Γ
`

X,Mgp

X

˘

bZ Q), it is enough to check that ws has finite

fibres. As in the proof of Proposition 3.101, it suffices to show that kerws X

pCσpZq ˆKq “ Pˆ for every σ P Pmax. Suppose that pr, βq P kerws X pCσpZq ˆ

Kq and let D1
i be the divisor corresponding to Lsi for all 2 ď i ď l). We have

wspr, βq “

l
ÿ

i“1

xsi, ryei ` pD1
¨ βq e1 `

l
ÿ

i“2

pD1
i ¨ βqei “ 0

Note that xsi, ry ě 0 for all 1 ď i ď l since si P Γ
`

X,MX

˘

by the above. So

D1 ¨β ď 0 and D1
i ¨β ď 0 for all 2 ď i ď l. But D1 is positive on KzPˆ, so β P Pˆ.

But thenD1¨β “ 0 andD1
i¨β “ 0 for all 2 ď i ď l, so we have

řl
i“1xsi, ryei “ 0. So

xsi, ry “ 0 for all 1 ď i ď l. Since the log structure MX is fine and saturated (in

particular, Γ
`

X,Mgp

X

˘

is torsion-free) and xs1, ¨ ¨ ¨ , slyZ bZQ “ Γ
`

X,Mgp

X

˘

bZQ,

for every section s P Γ
`

X,Mgp

X

˘

zt0u we have αs P xs1, ¨ ¨ ¨ , slyZ for some α P

Zzt0u. So αxs, ry “ xαs, ry “ 0 and xs, ry “ 0. Therefore, we have xs, ry “ 0 for

all s P Γ
`

X,Mgp

X

˘

. This implies that r “ 0, so kerws X pCσpZq ˆ Kq “ Pˆ. □

3.4.5. Extension corresponding to the resolution π : X Ñ X̄. Going back

to the setup at the start of this section, suppose that the resolution π : X Ñ X̄ of

a toric degeneration X̄ Ñ S to a log smooth minimal log CY degeneration X Ñ S
satisfies the assumptions of Proposition 3.109 (or the assumptions of Proposition

3.101 if D is simple normal crossings). We want to use π : X Ñ X̄ to extend the

intrinsic mirror X̌ Ñ SpeczkrP s.

Let Imin be the ideal of Proposition 3.98 for X Ñ S and let J Ď P be any

radical ideal with Imin Ď J . For any J 1 with
?
J 1 “ J we have J 1 P A by

Proposition 3.98. So the intrinsic mirror is defined over J 1. Taking the inverse
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limit over all the J 1 with
?
J 1 “ J we obtain the extended intrinsic mirror

X̌ Ñ SpeczkrP sJ (3.65)

where we denote by zkrP sJ the completion of krP s with respect to J .66 As in

Remark 3.78, it is actually enough to take the limit over the families

X̌Jk`1 Ñ Spec krP s{Jk`1

for k ě 0.

Proposition 3.109 (or Proposition 3.101 if D is simple normal crossings) im-

plies that for a well-chosen monoid P and a face K Ď P containing the contracted

curve classes, we may take the ideal J to be J :“ P zK (which is a prime, thus rad-

ical, ideal of P ) in which case (3.65) is a family over the completion of SpeckrKs.

We shall only use the extension (3.65) in this context.

Remark 3.110. We explain a slightly different way to view the extension

(3.65) that will be useful in Chapter 5. For any well-chosen monoid P and an

extension using J :“ P zK, the intrinsic mirror is well-defined over the monoid

P `Kgp. Note that P `Kgp does not satisfy condition (3) of Definition 3.74 on

the base monoid. As a result, the maximal ideal mext of P `Kgp has complement

Kgp which is not finite. However, we have mext “ J as subsets of A1pX0,Zq which

implies that the intrinsic mirror X̌ Ñ Spec {krP ` Kgps is well-defined via (3.51)

and (3.52). This mirror may also be viewed as the basechange of the extended

intrinsic mirror of (3.65) via the natural inclusion P ãÝÑ P ` Kgp. We still call

X̌ Ñ Spec {krP ` Kgps the extended intrinsic mirror.

Remark 3.111. Even though one can use π : X Ñ X̄ to extend the intrinsic

mirror of Section 3.3.7, it is not obvious that one can give a scattering diagram in-

terpretation for the extended intrinsic mirror. Indeed, the recipe of Construction

3.89 produces infinitely many walls (even for I “ J). By grouping certain walls

together, we will provide a scattering diagram interpretation of X̌ Ñ SpeczkrP sJ

in Section 4.4. Our analysis will generalize [GHKS, Section 5.3], which covers

the case when the resolution π : X Ñ X̄ factors as a composition of a small

contraction and a log étale blowup (e.g. π : X Ñ X̄ is small). On one hand,

we will require our resolution to be of a specific form (i.e. toric, integral, and

homogeneous, see Definition 4.25). On the other hand, we won’t need to require

the existence of a π-ample PA-generated divisor D1 (or assumptions (1) and (2)

of Proposition 3.109), see Remark 4.64(1).

66For example, if P “ Nk and J “ Nk´l for some 1 ď l ă k, then zkrP sJ “

krt1, . . . , tlsJtl`1, . . . , tkK where the formal elements correspond to the generators of J .
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3.5. Overview of the results

We will now give a brief overview of the results that we are going to prove in

Chapters 4 and 5, using Example 1.4 as a working model. First, we set up the

stage for proving Conjecture 1.7 by summarizing the setups of Sections 3.2, 3.3,

and 3.4.

Basic Setup 3.112. Let X̄
ḡ

Ñ S be a special toric degeneration with polar-

ization A and let π : X Ñ X̄ be a projective resolution to a minimal log CY

degeneration X
g

Ñ S. We assume that X̄
ḡ

Ñ S satisfies Assumption 1.3 and

X
g

Ñ S satisfies Assumption 3.48.

Let P be a well-chosen monoid (see Definition 3.94) with K Ď P the face

containing the classes of the contracted curves, and let J :“ P zK. We assume

that π : X Ñ X̄ satisfies the assumptions of Proposition 3.109 (or Proposition

3.101 ifD is simple normal crossings). Fix also a choice of the initial slab functions
!

fρ P krΛρs
ˇ

ˇ

ˇ
ρ P ˜̄P rn´1s

)

of (3.25) for the toric degeneration that defines a toric log CY structure on ˇ̄X0.

We have defined the algorithmic scattering diagram D̄ “
␣

D̄k, k ě 0
(

in

Theorem 3.35 and defined the toric degeneration mirror

ˇ̄X Ñ Spec kJtK

to X̄ Ñ S as the limit over ˇ̄XD̄k
Ñ Spec krts{ptk`1q for k ě 0 in (3.27). We also

defined the extended intrinsic mirror

X̌ Ñ SpeczkrP sJ

to X Ñ S as the limit over X̌Jk`1 Ñ Spec krP s{Jk`1 for k ě 0 in (3.65). Note

that the basechange (of Conjecture 1.7) of the extended intrinsic mirror by P Ñ

N, β ÞÑ π˚A ¨ β makes sense.

Chapter 4 is devoted to the proof of Conjecture 1.7 for toric degenerations

of K3-s. Consider the toric degeneration X̄ Ñ Spec kJtK of Example 1.4 (which

clearly satisfies Assumption 1.3). Recall that we have

X̄ :“ ttf4 ` x0x1x2x3u Ď P3
ˆ Spec kJtK

and the generic fibre of X̄ Ñ Spec kJtK is smooth for a general choice of f4.

Moreover, genericity of f4 implies, by Lemma 3.42 and Proposition 3.44, that

X̄ Ñ Spec kJtK is a divisorial log deformation. So it is special by Proposition

3.46.
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The dual intersection complex
`

B̄, P̄
˘

of X̄ Ñ Spec kJtK is the boundary

of a tetrahedron with all faces standard triangles, see Example 3.34. The sin-

gularities xρ P Intpρq of the affine structure are at the irrational points of the

edges ρ P P̄ r1s and have monodromy index rρ “ 4. Every xρ, ρ P P̄ r1s

corresponds to 4 ordinary double point singularities on X̄ρ with local models

txy “ twρu Ď Spec krx, y, wρsJtK. They can be resolved by blowing up the com-

ponents D̄1, D̄2, D̄3, D̄4 of the central fibre X̄0 in any order. Suppose that we blow

up D̄i before D̄i`1. We obtain a small resolution π : X Ñ X̄ to a minimal log CY

degeneration X Ñ Spec kJtK.
The dual intersection complex pB,Pq of X Ñ Spec kJtK is isomorphic to

`

B̄, P̄
˘

as a polyhedral manifold but has a different affine structure with singu-

larities contained at the vertices. The irreducible components Di, 1 ď i ď 4 of

the central fibre X0 of X Ñ Spec kJtK are the strict transforms of D̄i, 1 ď i ď 4

and the divisor D “ D1 `D2 `D3 `D4 is clearly simple normal crossings. Since

pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds and
`

B̄, P̄
˘

satisfies Assumption 3.48,

so does pB,Pq.

A divisor of the form D1 “ a1D1 ` a2D2 ` a3D3 ` a4D4 for some ai P Z is

π-ample as long as a1 ă a2 ă a3 ă a4. Further assuming a1 ą 0, the degeneration

X Ñ S, the resolution π : X Ñ X̄, and the effective π-ample divisor D1 satisfy

the assumptions of Proposition 3.101. The exceptional locus of π : X Ñ X̄ is the

union of 24 disjoint curves

␣

Eρ,k | 1 ď k ď 4, ρ P P̄ r1s
(

, (3.66)

one for each singularity of X̄0. Let P be a well-chosen monoid (obtained via

Proposition 3.95) with a face K containing the contracted curves.

In the case that all the maximal cells σ P P̄max of the dual intersection com-

plex
`

B̄, P̄
˘

of a special toric degeneration X Ñ S of K3-s are standard triangles,

we construct a resolution π : X Ñ X̄ (and prove that it has the required prop-

erties) to a minimal log CY degeneration X Ñ S in Section 4.1 by blowing up

a sequence of irreducible components of the central fibre. Generalizing Example

1.4, we actually construct a small resolution π : X Ñ X̄ in this case. We gener-

alize the construction to a larger class of σ P P̄max in Section 4.2. To perform

the construction in general and have more control over the resolution, we need

a tropical interpretation. We give this interpretation in Section 4.3, introducing

admissible resolutions in Definition 4.31 and showing that any special toric de-

generation X̄ Ñ S of K3-s admits a (strongly) admissible resolution π : X Ñ X̄
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in Proposition 4.42. We define a piecewise-linear (PL) isomorphism Φ : B Ñ B̄

in these three cases in Constructions 4.6, 4.23, and 4.36 respectively.

In (4.2), we define the initial slab functions (of the form required by (3.26))

for the toric degeneration X̄ Ñ S. In the case of Example 1.4, for ρ, ρ1 P ˜̄P r1s

two slabs with ρ, ρ1 Ď ρ P P̄ r1s and wρ a choice of coordinate on X̄ρ, we have

fρ “ p1 ` wρq
4, fρ1 “ p1 ` w´1

ρ q
4. (3.67)

We are now in Basic Setup 3.112 for proving Conjecture 1.7.

In Section 4.4, we give a scattering diagram interpretation of the extended

intrinsic mirror

X̌ Ñ SpeczkrP sJ . (3.68)

Namely, in Constructions 4.54 and 4.61, we produce a collection DJ :“

tDJk`1 , k ě 0u of compatible scattering diagrams such that every DJk`1 is con-

sistent modulo Jk`1 and X̌D
Jk`1

Ñ Spec krP s{Jk`1 is isomorphic to the family

X̌Jk`1 Ñ Spec krP s{Jk`1 obtained by reducing (3.68) modulo Jk`1. This involves

computing the walls modulo J using the recipe of Construction 3.89, see Propo-

sition 4.53. There are infinitely many such walls, but one can replace all the

walls with the same support with one wall, with the wall function the infinite

product of the wall functions (that turns out to be polynomial). This defines the

scattering diagram DJ . In the case of Example 1.4, DJ consists of six slabs bρ

supported on the edges ρ P P r1s, with attached functions

fbρ “

4
ź

k“1

p1 ` tEρ,kwρq.

Note that these look similar to the initial slab function fρ of (3.67) for the toric

degeneration.

We prove Conjecture 1.7 in Section 4.5 by relatingDJ and D̄. The basechange

of Conjecture 1.7 corresponds to interpreting scattering diagrams DJk`1 , k ě 0

as scattering diagrams Dk, k ě 0 with base monoid N, see Construction 4.65.

In the case of Example 1.4, the basechange just sets all the Eρ,k of (3.66) to 0.

Now, using the PL-isomorphism Φ : B Ñ B̄, in Construction 4.69 we define the

image of the scattering diagram Dk on pB,Pq as a scattering diagram ΦpDkq on
`

B̄, P̄
˘

. The image of every codimension 0 wall p P Dk that is not a slab is a

codimension 0 wall Φppq P ΦpDkq with the same attached wall function. Defining

the image of a slab b Ď ρ P P r1s is more complicated. The image is either one or

two slabs depending on whether Φpbq Ď Φpρq contains the singularity xΦpρq of the

affine structure on
`

B̄, P̄
˘

. We also need to adjust the slab functions to account

for the monodromy around the singularities.
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By construction, ΦpD0q is (combinatorially) equivalent to D̄0. We show that

ΦpDkq is consistent for all k ě 0 in Proposition 4.71 and that ΦpDkq is equiva-

lent to Dk in Proposition 4.72. We finish the argument in Theorem 4.73. The

uniqueness of the reconstruction algorithm of Theorem 3.35 implies that ΦpDkq

is equivalent to D̄k for all k ě 0. So Conjecture 1.7 follows by Proposition 3.16.

In Chapter 5, we vastly generalize the conjecture. Thinking again of Example

1.4 (or any situation where the resolution is small) andA1pX0,Zq :“ A1pX0,Zqnum,

let us explain the heuristics, treating the monoid P as NEpX0q (see Observation

3.82(2)). Since the resolution π : X Ñ X̄ is small, it induces a splitting of

f˚ : NEpX0q Ñ NE
`

X̄0

˘

by sending every curve C P X̄0 to the scheme-theoretic

preimage f´1pCq. So we have

NEpX0q “ K ‘ π´1NE
`

X̄0

˘

, (3.69)

inducing a canonical isomorphism

{krNEpX0qs – krKsJNE
`

X̄0

˘

K “ krtEρ,ksJNE
`

X̄0

˘

K

(where the notation means that the completion is only with respect to the sec-

ond factor). Now the restriction of SpeckrtEρ,ks to
␣

tEρ,k ‰ 0, 1 ď k ď 4, ρ P P̄
(

can be seen as the parameter space of toric log CY structures on ˇ̄X0 of a certain

form (we will make this more precise in Proposition 5.38 and Remark 5.39(2)).

Here the log structure on ˇ̄X0 is induced from the natural log structure on X̌ Ñ

Spec krtEρ,ksJNE
`

X̄0

˘

K of Appendix B by inclusion. By analogy with [GHK],

we call the family X̌ Ñ Spec krt˘Eρ,ksJNE
`

X̄0

˘

K the (numerical) minimal rela-

tive Gross-Siebert locus (see Definition 5.4). We formalize these heuristics using

Noetherian families in Section 5.1.

Since the fibres over the points with
␣

tEρ,k ‰ 0, 1 ď k ď 4, ρ P P̄
(

are toric

log CY, they can be deformed to toric degenerations. We recover these deforma-

tions from the minimal relative Gross-Siebert locus, performing the construction

universally in polarization A, choices of the initial slab functions, and in a family

of gluing data for toric degenerations. Note that the fibres over the points of

Spec krtEρ,ksJNE
`

X̄0

˘

K that are not in the base of the minimal relative Gross-

Siebert locus are not toric log CY (so such fibres can’t define central fibres of

toric degenerations) since the singularities of the log structure fall into deeper

strata, see the discussion of Section 5.5.2.

Figure 3.1 illustrates the various extension results. Theorem 4.73 constructs a

one-dimensional family, specified by the polarization A, through the point where

tEρ,k “ 1 for all Eρ,k, ρ P P̄ r1s, 1 ď k ď rρ (since π
˚A ¨ Eρ,k “ 0). It corresponds

to the black line in Figure 3.1. In Section 5.2, we use the universal version of the
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tE , E P NE
`

X̄0

˘

tEρ,k

tEρ,k

Theorem 5.35

Theorem 4.73

Proposition 5.12

Proposition 5.18

Proposition 5.28

Figure 3.1. Extensions of Conjecture 1.7.

toric degeneration mirror (see [GHS, Theorem A.2.4]) to remove the dependence

on A. We recover the toric degeneration mirror over a certain universal finitely

generated monoid containing NE
`

X̄0

˘

. This mirror corresponds to the red sphere

in Figure 3.1, and we prove the result in Proposition 5.12.

In Section 5.3, we vary the point of krtEρ,ks to recover the toric degeneration

mirrors constructed using other choices of the initial slab functions satisfying

Proposition 3.33. Since the local rigidity condition is empty in dimension 2,

one can interpret the free coefficients aρ,i in the slab functions as new variables

and construct the toric degeneration mirror using the ring A :“ kraρ,is “ krNKs

for K :“
ř

ρPP̄r1s,rρą0prρ ´ 1q instead of A “ k (see [GHS, Theorem A.4.2]).

We obtain a correspondence between this toric degeneration mirror and the

restriction of the extended intrinsic mirror to the family over the subvariety
␣
śrρ

k“1 t
Eρ,k “ 1, ρ P P̄ r1s

(

of Spec {krNEpX0qs “ Spec krtEρ,ksJNE
`

X̄0

˘

K. This

mirror corresponds to the blue tubular (corresponding to the formal terms) neigh-

bourhood in Figure 3.1, and we prove the result in Proposition 5.18. Note that
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this result is more general than Proposition 5.12 only if the dual intersection

complex
`

B̄, P̄
˘

of X̄ Ñ S is not simple.

Finally, in Section 5.4, we study the fibres of the extended intrinsic mirror X̌ Ñ

Spec krtEρ,ksJNE
`

X̄0

˘

K over points with arbitrary choices of
ś4

k“1 t
Eρ,k P kˆ for

ρ P P̄ r1s (such that this system of equations is consistent67). These produce slab

functions of the form not covered by Proposition 3.33 (i.e. non-normalized), so

understanding them requires introducing gluing data for toric degenerations into

the picture. We generalize the correspondence of Proposition 5.18 to arbitrary

fixed
␣
śrρ

k“1 t
Eρ,k P kˆ, ρ P P̄ r1s

(

in Proposition 5.28, corresponding to the grey

tubular neighbourhood in Figure 3.1. In Theorem 5.35, we obtain the result

in complete generality, showing a correspondence between the minimal relative

Gross-Siebert locus and a certain subfamily in the gluing data of the universal

(varied in the free parameters of the initial slab functions and in gluing data)

toric degeneration mirror of [GHS, Theorem A.4.2].

67In general, one can have relations between the Eρ,k, see the discussion after (5.3).





CHAPTER 4

Proof of Conjecture 1.7 for toric degenerations

of K3-s

In this chapter, we prove Conjecture 1.7 following the plan of Section 3.5.

4.1. Small resolution in the generically simple normal crossings case

Let X̄ Ñ S be a special toric degeneration of K3-s (satisfying Assumption

1.3) with polarization A and dual intersection complex
`

B̄, P̄
˘

. As in Section

3.2.2, let D̄i, 1 ď i ď m̄ be the irreducible components of the central fibre X̄0.

We endow X̄ with the divisorial log structure given by D̄ :“ X̄0 “ D̄1 ` ¨ ¨ ¨ ` D̄m̄.

We also endow S with the divisorial log structure given by 0 P S making X̄ Ñ S
a log morphism. By Proposition 3.46, being special is equivalent to X̄ Ñ S being

a divisorial log deformation with a smooth generic fibre.

In this section, we assume in addition that all the maximal cells σ P P̄max are

standard triangles. This assumption corresponds to requiring that D̄ is simple

normal crossings away from a finite number of singularities at the double curves

X̄ρ, ρ P P̄ r1s. In particular, Example 1.4 satisfies this requirement. We are going

to construct a small resolution π : X Ñ X̄ to a minimal log CY degeneration

X Ñ S by blowing up a sequence of irreducible components of the central fibre

X̄0. We shall generalize the construction to a larger class of σ P P̄max in Section

4.2 and treat the case of general σ P P̄max in Section 4.3.

4.1.1. Resolving local models. By Observation 3.43(2), a toric degenera-

tion X̄ Ñ S that is a divisorial log deformation with a smooth generic fibre

has local models of the form
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK and
␣

xy “ tlwρ
(

Ď

Spec krx, y, wρsJtK (with the natural map to Spec kJtK) at the non-singular and

singular points of the double curve X̄ρ, ρ P P̄ r1s respectively, where l is the inte-

gral length of ρ. Because of the assumption on the maximal cells, we have l “ 1

in all the local models.

The local model txy “ tu Ď Spec krx, y, wρsJtK is simple normal crossings, and

the map to Spec kJtK is log smooth (here the induced divisorial log structure in

the model is given by tt “ 0u). So we only need to resolve the log singularities

113
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with local models of the form txy “ twρu Ď Spec krx, y, wρsJtK, which are ordinary

double point singularities (ODP-s).

The local model txy “ twρu Ď Spec krx, y, wρsJtK can be resolved to a sim-

ple normal crossings and log smooth degeneration by blowing up one of the

divisors in the central fibre tt “ 0u, that is by blowing up tx “ t “ 0u or

ty “ t “ 0u. Torically, txy “ twρu Ď Spec krx, y, wρsJtK is (the completion in

t of) the affine variety defined by the cone over the square, that is the convex hull

of p0, 0, 1q, p1, 0, 1q, p0, 1, 1q, p1, 1, 1q. Vertices of the square correspond to toric di-

visors, and the two blowups correspond to the two ways to subdivide the square,

see Figure 4.1.

x “ t “ 0 y “ t “ 0

x “ wρ “ 0 y “ wρ “ 0

Blowup of

x “ t “ 0

x “ t “ 0 y “ t “ 0

x “ wρ “ 0 y “ wρ “ 0

ODP

singularity

x “ t “ 0 y “ t “ 0

x “ wρ “ 0 y “ wρ “ 0

Blowup of

y “ t “ 0

Figure 4.1. Two resolutions of an ODP.

The exceptional locus of the blowup is a single curve E meeting tx “ y “ t “ 0u

at one point and contained in the divisor that was blown up. See Figure 4.2 below

for a sketch of the central fibres of the local model and the resolutions correspond-

ing to Figure 4.1.

4.1.2. Blowing up a divisor. We want to obtain a global resolution of X̄ Ñ S
by blowing up a sequence of irreducible components of the central fibre X̄0. Let

D̄i for some 1 ď i ď m̄ be a component of X̄0. Then blowing up D̄i corresponds

to blowing up either tx “ t “ 0u or ty “ t “ 0u in the local models of all

the singular points contained in every double curve X̄ρ Ď D̄i (with a compatible

choice of local models for the singular points contained in the same X̄ρ, ρ P P̄ r1s).

Note that the number of singular points in X̄ρ, ρ P P̄ r1s is equal to rρ (the index

of the singularity xρ Ď Intpρq of the affine structure). The exceptional locus is

a disjoint union of exceptional curves contained in the strict transform of D̄i,
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E

y “ t “ 0x “ t “ 0

E

Figure 4.2. Two blowups of an ODP.

intersecting the adjacent divisors at one point. Every exceptional curve arises as

the curve E in Section 4.1.1 using the local model at the corresponding singular

point.

Notations 4.1. We introduce the following notations:

(1) We denote the strict transform of D̄i (after blowing it up) by Di. We

denote the strict transforms of the other divisors D̄k (for 1 ď k ď m̄ and

k ‰ i) by D̄k.

(2) We denote the exceptional curves contained in Di and intersecting D̄j

by Eij
k for 1 ď k ď rρ. Alternatively, if the divisor that the curve is

contained in is not important, we will use the notation Eρ,k for X̄ρ :“

D̄i X D̄j. Note that E
ij
k does not intersect any irreducible components of

the central fibre of the resolution apart from Di and D̄j.

We will use similar notations for further blowups of irreducible components of

(the proper transform of) the central fibre X̄0 of X̄ Ñ S. That is, we shall denote
the divisors that have been blown up without a bar and use the notation Eij

k (or

Eρ,k) for the exceptional curves of further blowups.

Note that after blowing up D̄i, the deformation becomes log smooth and

simple normal crossings in a neighbourhood of Di. We give an example of a

divisor blowup in Figure 4.3.

We explain the effect of blowing up D̄i on the dual intersection complex
`

B̄, P̄
˘

. Let g1 : X1 Ñ S be the degeneration obtained after blowing up D̄i.

Similarly to the toric degeneration and log smooth cases (see (3.24) and (3.37)

respectively), we define the dual intersection complex pB1,P 1q of X1 g1

Ñ S as

pg1q
´1
tropp1q for g1

trop : ΣpX1q Ñ Rě0 the tropicalization of g1 of Construction 3.20.

As usual, the polyhedral structure P 1 comes from restricting the cones of Σ pX1q
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D1

D̄2

D̄3

D̄4

E12
1 E12

2

E14
1

E13
3

E13
2

E13
1

D̄1

D̄2

D̄3

D̄4

Figure 4.3. Blowing up the divisor D̄1. The number of singular-

ities on every X̄ρ “ D̄1 X D̄j, j “ 1, 2, 3 corresponds to rρ.

to the fibre over 1 P Rě0. The fact that all the maximal cells σ P P̄max are stan-

dard triangles implies that pB1,P 1q –
`

B̄, P̄
˘

as polyhedral manifolds. Indeed,

the local toric model for a codimension 2 stratum X̄σ (with v̄i Ď σ) is given by

the cone over σ P P̄max. So it is smooth, and the blowup of the toric divisor cor-

responding to D̄i is trivial in the local model. Therefore, blowing up D̄i does not

subdivide any cells of P̄. In particular, since
`

B̄, P̄
˘

is a polyhedral manifold of

dimension 2 in the sense of Definition 3.1 (see Proposition 3.23), so is pB1,P 1q.

Notation 4.2. We denote by vi P P 1r0s the vertex corresponding to Di and

by v̄k P P 1r0s the vertices corresponding to D̄k (for 1 ď k ď m̄ and k ‰ i). We

use similar notations for X̄0 and for further blowups of irreducible components of

X1
0.

Now, we can give pB1,P 1q the structure of an affine manifold with singularities

using Construction 3.57 (viewed via Observation 3.67, i.e. replacing the right-

hand side of (3.40) with the expression of Corollary 3.66(3)). Note from Remark

3.68(2) that this defines the usual toric charts of Construction 3.28 on Wv̄k for

1 ď k ď m̄, k ‰ i and the intrinsic affine structure on Wvizvi. Therefore, at

the level of affine manifolds, the blowup of D̄i can be visualized as pulling the

singularities xρ P Intpρq for ρ P P̄ r1s with v̄i Ď ρ (and with rρ ‰ 0 so that there is

an xρ) into v̄i. We give the transformation corresponding to the blowup of Figure

4.3 in Figure 4.4. Here and later, if we draw a singularity at an interior point xρ
of an edge ρ, we always assume that the point is not rational.
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v1

v̄2

v̄3

v̄4

pB1,P 1q

v̄1

v̄2

v̄3

v̄4

`

B̄, P̄
˘

Figure 4.4. Transformation of
`

B̄, P̄
˘

corresponding to blowing

up D̄1.

Blowing up the component D̄i of the central fibre X̄0 of X̄ Ñ S resolves all

the singularities contained in every double curve X̄ρ Ď D̄i and gives rise to a

partial resolution X1 Ñ S. We may now blow up any other component D̄k (for

1 ď k ď m̄, k ‰ i) of the central fibre X1
0 of X

1 Ñ S, resolving all the (remaining)

singularities in the one-dimensional strata of D̄k. Moreover, the effect of this

blowup on the dual intersection complex pB1,P 1q of X1 Ñ S is similar to the

description we give above.

Definition 4.3. We call the degenerations obtained from X̄ Ñ S by blowing

up a sequence of irreducible components of the central fibre X̄0 (and its proper

transforms after some blowups) generically log smooth partial resolutions. Indeed,

they are log smooth away from a subset of codimension 2 of the singularities of

X̄ Ñ S that have not been resolved.

Note that any generically log smooth partial resolution X2 Ñ S of X̄ Ñ S
has a well-defined dual intersection complex pB2,P2q by a description similar

to the above. Under the assumption that all the σ P P̄max are standard trian-

gles, we have pB2,P2q –
`

B̄, P̄
˘

as polyhedral manifolds and pB2,P2q has the

structure of an affine manifold with singularities via Construction 3.57 (viewed

via Observation 3.67).

4.1.3. A global resolution. Blow up all the irreducible components of the

central fibre X̄0 of X̄ Ñ S in any order. By the analysis of the previous section,

this gives a resolution π : X Ñ X̄ to a log smooth degeneration X Ñ S. Here
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the log structure on X is the divisorial log structure given by D “ D1 ` ¨ ¨ ¨ `Dm

where Di, 1 ď i ď m are the irreducible components of the central fibre X0 (note

that we have m “ m̄). Moreover, the exceptional locus of π : X Ñ X̄ is the

disjoint union of curves (using Notation 4.1(2))

␣

Eρ,k | ρ P P̄ r1s, 1 ď k ď rρ
(

, (4.1)

so π is small. The singularities of the affine structure on the dual intersection

complex pB,Pq of X Ñ S are at the vertices (any singularity at an edge is pulled

into a vertex at some point) and one may view the resolution tropically as a

composition of transformations as in Figure 4.4. Note that we have pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds.

Proposition 4.4. X Ñ S is minimal log CY and D is simple normal cross-

ings. The dual intersection complex pB,Pq of X Ñ S satisfies Assumption 3.48.

Proof. To show that D is simple normal crossings, it is enough to check

the double and triple intersections of the components of X0. D is simple normal

crossings at all the triple intersections by our assumption on the maximal cells

σ P P̄max since pB,Pq –
`

B̄, P̄
˘

implies that all the maximal cells σ P Pmax are

standard triangles as well. But σ P Pmax being a standard triangle is equivalent

to D being simple normal crossings at the point Xσ. D is simple normal crossings

at all the points of the double curves Xρ, ρ P P r1s since the local models at such

points are of the form txy “ tu Ď Spec krx, y, wρsJtK. This comes from the strict

transform of the divisorial local model at points that are not the intersection of

Xρ with the curves Eρ,k, 1 ď k ď rρ. At the intersections, the local model is

given by an affine chart of the resolution of an ODP singularity.

To show that X Ñ S is minimal log CY note that KX̄ ” ´pD̄1 ` ¨ ¨ ¨ ` D̄m̄q

since X̄ Ñ S is a toric degeneration. So KX̄ ` D̄ ” 0. But since π : X Ñ X̄ is

small, we have

KX ” π˚
pKX̄q ” ´

`

π˚
pD̄1q ` ¨ ¨ ¨ ` π˚

pD̄m̄q
˘

” ´pD1 ` ¨ ¨ ¨ ` Dm̄q ” ´D,

so X Ñ S is minimal log CY (see Definition 1.5).

We have pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds and
`

B̄, P̄
˘

is a polyhe-

dral manifold of dimension 2 in the sense of Definition 3.1. Therefore, pB,Pq is

also a polyhedral manifold of dimension 2 in the sense of Definition 3.1. Hence,

pB,Pq satisfies Assumption 3.48. □

Let P be a well-chosen monoid in the sense of Definition 3.94. Explicitly, P

satisfies the following properties:
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(1) NEpX0q Ď P Ď A1pX0,Zq.

(2) P is finitely generated and saturated.

(3) The group Pˆ of the invertible elements of P coincides with the torsion

part of A1pX0,Zq.

(4) There exists a (minimal) face K of P containing the classes of the con-

tracted curves (4.1).

Note that Proposition 3.95 implies (using Lemma 3.76) that such a monoid exists.

Proposition 4.5. The resolution π : X Ñ X̄ satisfies the assumptions of

Proposition 3.101. Explicitly:

(1) There exists an effective π-ample divisor D1 “
řm
i“1 aiDi such that Di is

π-nef for any i with ai “ 0.

(2) K X NEpX0q “ K X NEpX0qnum (under the splittings of (3.49)), i.e. π

only contracts numerical classes of curves C Ď X0.

Proof. It is clear that the contracted curves Eρ,k of (4.1) define non-zero

classes in A1pX0,Zqnum. Therefore, assumption (2) is satisfied. To show that

π : X Ñ X̄ satisfies assumption (1) it is enough to find a π-ample divisor D1 “
řm
i“1 aiDi with ai ą 0 for 1 ď i ď m.

Without loss of generality, assume that D̄i is blown up before D̄j for 1 ď

i ă j ď m̄. The cone NEpπq Ď NEpX0q of curves contracted by π is finitely

generated by the Eρ,k of (4.1) so NEpπq “ NEpπq. By the (relative) Kleiman’s

criterion for ampleness, the divisor D1 is π-ample if and only if D1 ¨Eij
k ą 0 for all

1 ď i ă j ď m̄ with D̄i X D̄j “ X̄ρ, ρ P P̄ r1s and all 1 ď k ď rρ. The intersection

of Dj and E
ij
k is transversal so Dj ¨ Eij

k “ 1. Further, we have

pD1 ` ¨ ¨ ¨ ` Dmq ¨ Eij
k “ D ¨ Eij

k “ 0

since D is numerically equivalent to the trivial divisor. We also have Dl ¨Eij
k “ 0

for any 1 ď l ď m such that l ‰ i, j (since DlXE
ij
k “ ∅ in this case). This implies

that Di ¨E
ij
k “ ´1. So any divisor D1 “

řm
i“1 aiDi with ai ă aj for 1 ď i ă j ď m

is π-ample. Further requiring ai ą 0 for 1 ď i ď m, the resolution π : X Ñ X̄

satisfies assumption (1). □

We define the initial slab functions
!

fρ P krΛρs
ˇ

ˇ

ˇ
ρ P ˜̄P rn´1s

)

for the toric degeneration X̄ Ñ S by setting

fρ :“ p1 ` wρq
rρ , fρ1 :“ z

mρ1ρfρ “ p1 ` w´1
ρ q

rρ (4.2)
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for ρ, ρ1 P ˜̄P r1s two slabs with ρ, ρ1 Ď ρ P P̄ r1s and wρ :“ zmρ where mρ is

the integral generator of Λρ that points towards the vertex endpoint of ρ1. If

ρ “ xv̄i, v̄jy for v̄i, v̄j P P̄ r0s and D̄i is blown up before D̄j, then we assume that

ρ, ρ1 P ˜̄P r1s are chosen so that the vertex endpoint of ρ1 is v̄j. Note that these

are of the form required by (3.26) in Proposition 3.33 that describes the possible

initial slab functions. We have now defined all the necessary data in Basic Setup

3.112.

4.1.4. The PL-isomorphism Φ : B Ñ B̄. The resolution π : X Ñ X̄ gives

rise to a piecewise-linear (PL) isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

, linear on

the maximal cells of P. We shall use this isomorphism to relate the canonical

scattering diagram D on pB,Pq to the algorithmic scattering diagram D̄ on
`

B̄, P̄
˘

.

Construction 4.6. We define the PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

,

linear on the maximal cells of P, by using the descriptions of the affine struc-

tures with singularities on pB,Pq and
`

B̄, P̄
˘

of Constructions 3.57 and 3.28

respectively. Recall that we have pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds. For

every τ P P, let τ̄ P P̄ be the corresponding cell of P̄.

For all the maximal cells σ P Pmax, there are canonical identity maps Id :

σ Ñ σ̄ compatible with each other. Therefore, it suffices to give PL-maps Φv :

Wv Ñ Wv̄, linear on the maximal cells of Wv (using the notation of (3.5) for the

open stars of v and v̄) and compatible with the identifications on the maximal

cells. The fact that pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds implies that there

exist unique such maps Φv. Indeed, using the refined description of Construction

3.4p21q, fix a ρ P P rn´1s such that ρ “ σ X σ1 for σ, σ1 P Pmax and with v Ď

ρ. Consider the embedding ψρ,v : σ Y σ1 Ñ R2 of Construction 3.57 and the

corresponding embedding ψ̄ρ̄,v̄ : σ̄ Y σ̄1 Ñ R2 of Construction 3.28. Then there

is a unique piecewise-linear, linear on impIntpσqq and impIntpσ1qq, and sending

the generator of impρq to the generator of impρ̄q, identification Φρ,v : impψρ,vq Ñ

impψ̄ρ̄,v̄q and the collection tΦρ,v | ρ P P r1s, v Ď ρu of such identifications defines

Φv. We have defined a PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

, linear on the

maximal cells of P.

Since we assume thatD is simple normal crossings in this section, we can write

an easy formula for Φρ,v. Indeed, we have an explicit description for ψρ,v given by

Observation 3.61 and an explicit description for ψ̄ρ̄,v̄ given by Observation 3.61

and Remark 3.68(3). Using the notations of Observation 3.61 and Notation 3.62
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(and Corollary 3.66(3)), we just send

p0, 0q Ñ p0, 0q, p1, 0q Ñ p1, 0q, p0, 1q Ñ p0, 1q,
´

´
`

X2
xv0,v1y

˘

Dv0

,´1
¯

Ñ

´

´
`

X̄2
xv̄0,v̄1y

˘

D̄v̄0

,´1
¯

,

and extend linearly.

For any τ P P, we write Φpτq P P̄ for the image of τ under Φ. Similarly, the

image of any rational polyhedral subset p Ď σ P Pmax of codimension 1 is a well-

defined rational polyhedral subset Φppq Ď Φpσq P P̄max of codimension 1. Note

that Φ induces a canonical isomorphism P`
x – P̄`

Φpxq
(see Section 3.1.4 for the

definition of P`
x ) for every x P Intpσq, σ P Pmax, so we also have an identification

of monomials. We denote the image of a monomial m P P`
x by Φpmq P P̄`

Φpxq

and set Φpzmq :“ zΦpmq. We define the image under Φ of any codimension 0 wall

pp, fpq on pB,Pq as a codimension 0 wall Φppq :“ pΦppq,Φpfpqq on
`

B̄, P̄
˘

.

The image of any rational polyhedral subset b Ď ρ P P r1s (of full dimension

1) is a well-defined rational polyhedral subset Φpbq Ď Φpρq P P̄ r1s (of full dimen-

sion 1). For x P Intpρq, ρ P P r1s there is no canonical isomorphism between P`
x

and P̄`

Φpxq
since Φ is only piecewise-linear in the neighbourhood of ρ. For a slab

b “ pb, fbq on pB,Pq we will always have fb P krP srΛρs “ krP srzmρs Ď krP`
x s

(via Notation 3.5) where mρ is an integral generator of Λρ. We assume that mρ

is chosen to point in the same direction as mΦpρq under the identification of Λρ
and ΛΦpρq (induced by the identification of ρ and Φpρq via the PL-isomorphism).

We define Φpmρq :“ mΦpρq. As above, we set Φpzmρq :“ zΦpmρq “ zmΦpρq and

define Φpbq :“ pΦpbq,Φpfbqq. Note that Φpbq is not a slab if there is a singularity

xΦpρq contained in Φpbq. For now, we just regard Φpbq as a codimension 1 poly-

hedral subset of B̄ with an attached function. We will define the slabs (one if

xΦpρq R IntpΦpbqq and two if xΦpρq P IntpΦpbqq) on
`

B̄, P̄
˘

corresponding to b in

Construction 4.69.

4.2. An extension to non-small resolutions

We continue with the general setup of Section 4.1. As in Section 4.1, we

are going to construct a resolution π : X Ñ X̄ of a special (i.e. a divisorial log

deformation with a smooth generic fibre) toric degeneration X̄ Ñ S of K3-s to

a minimal log CY degeneration X Ñ S by blowing up a sequence of irreducible

components of the central fibre X̄0 (and irreducible components of their proper

transforms after some of the blowups). We relax the requirement on the maximal

cells of P̄ and unless all the σ P P̄max are standard triangles or standard squares



122 4. PROOF OF CONJECTURE 1.7 FOR TORIC DEGENERATIONS OF K3-S

(i.e. as in Figure 4.5(2) with l “ k “ 1), the resolution π : X Ñ X̄ will not be

small.

We no longer assume that the maximal cells σ P P̄max of the dual intersection

complex
`

B̄, P̄
˘

are standard triangles. Instead, we require that every σ P P̄max

is, up to the action of AGLp2,Zq68, one of the following (see Figure 4.5):

(1) A “lattice triangle of height 1”, i.e. the convex hull of p0, 0q, p0, 1q, and

pl, 0q for some l P Zě1 (if l “ 1, we get a standard triangle).

(2) A “lattice trapezoid of height 1”, i.e. the convex hull of p0, 0q, p0, 1q, pl, 0q,

and pk, 1q for some l, k P Zě1.

(3) A “lattice equilateral triangle”, i.e. the convex hull of p0, 0q, p0, kq, and

pk, 0q for some k P Zě1 (if k “ 1, we get a standard triangle).

(4) A “lattice rectangle”, i.e. the convex hull of p0, 0q, p0, kq, pl, 0q, and pl, kq

for some l, k P Zě1 (if l “ 1 or k “ 1, this is also an example of (2)).

(5) The “minimal lattice hexagon”, i.e. the convex hull of p0, 0q, p1, 0q, p2, 1q,

p2, 2q, p1, 2q, and p0, 1q.

(1) (2)

(3)
(4) (5)

Figure 4.5. Types of σ P P̄max in Section 4.2.

The motivation for restricting the types of σ P P̄max to Figure 4.5 is as

follows. Blowing up a component of X̄ Ñ S corresponding to a vertex v̄ P P̄ r0s

induces subdivisions of the maximal cells σ P P̄max with v̄ Ď σ. To ensure that

the dual intersection complex of the partial resolution is a polyhedral manifold,

we need to require that the subdivision of every such σ P P̄max is integral and

only subdivides edges of σ adjacent to v̄. The types of σ P P̄max in Figure 4.5

68The group of affine unimodular transformations consisting of translations by an integer

vector and the linear transformations in GLp2,Zq.
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form a class satisfying these properties (see Figure 4.6 below). We expect that it

is the largest such class.

The subdivision of every σ P P̄max with v̄ Ď σ can be understood via the

local toric model for the codimension 2 stratum X̄σ. We shall now discuss these

models in detail. We will treat the case of general σ P P̄max in Section 4.3.

4.2.1. Local models in codimension 2. The local toric model for a codi-

mension 2 stratum X̄σ, σ P P̄max is given by the cone over σ. To understand

the effect of blowing up a component D̄i of X̄0 on the dual intersection complex
`

B̄, P̄
˘

, we need to first study the effect of blowing up a toric divisor of the toric

variety XCσ defined by the cone Cσ.

Lemma 4.7. Let XCσ be the toric variety defined by the cone Cσ. Then

blowing up the toric divisor corresponding to a ray Cv of Cσ (here v Ď σ is a

vertex) corresponds to the subdivision of Cσ by the bend locus of the PL-function

φDCv
:“ min tm | zm P IDCv

u .

Here IDCv
Ď kr |CσXN s is the ideal of the divisor DCv. Note that it is enough to

take the minimum over the (finitely many) generators of IDCv
.

Proof. The claim follows from the discussion of [T, Section 3]. Indeed,

consider the subdivision Σ of Cσ given by the bend locus of φDCv
. Then, by

construction, φDCv
satisfies the requirements (1) and (2) of [T, Section 3] on the

support function for Σ and the generators zm1 , . . . , zmk of IDCv
define the Cartier

data m1, . . . ,mk for Σ and φDCv
. Then, by the recipe of [T, Section 3], the

ideal of the blowup is defined by xzm1 , . . . , zmky Ď kr |Cσ XN s, which is precisely

IDCv
. □

Corollary 4.8. For σ P P̄max of one of the types in Figure 4.5, consider the

subdivision of σ (induced from a subdivision of Cσ) that corresponds to blowing

up the toric divisor of XCσ corresponding to a vertex v. This subdivision is

integral, only subdivides edges of σ adjacent to v, and all the maximal cells of the

subdivision are of one of the types in Figure 4.5.

Proof. We have discussed the cases of σ a standard triangle or a square (i.e.

the convex hull of p0, 0q, p1, 0q, p0, 1q, and p1, 1q) in Section 4.1. The other cases

follow by a direct computation using Lemma 4.7 and the fact that the ideal IDCv

is generated by, for m1, . . . ,mk a choice of generators of |Cσ X N ,
␣

zmi | mi R CvK
X N, 1 ď i ď k

(

.

□
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(1) (2)

(3)
(4) (5)

Figure 4.6. Subdivisions corresponding to divisor blowups.

In Figure 4.6, we give the subdivisions of σ P P̄max for the types of σ P P̄max

in Figure 4.5 (the subdivision is given in blue and the vertex corresponding to

the blown up divisor is highlighted in red).69

Remark 4.9. The reason that we restrict to σ P P̄max of Figure 4.5 in this

section is that the subdivision of a more general σ P P̄max induced by blowing

up the divisor corresponding to a vertex v Ď σ could be non-integral or subdivide

edges that are not adjacent to v. Globally, a blowup of an irreducible component

D̄i of X̄0 with v̄i Ď σ P P̄max would produce a subdivision pB1,P 1q of
`

B̄, P̄
˘

that no longer satisfies Assumption 3.48. See Figure 4.7 for examples of these

phenomena (we use the same notations as in Figure 4.6).

Figure 4.7. Subdivisions of more general σ P P̄max.

We expect that the types of σ P P̄max in Figure 4.5 define the most general

class for which Corollary 4.8 holds.

69Figure 4.6 does not cover the cases when σ P P̄max is either a standard triangle or square,

or of the type of Figure 4.5(2) with l “ 1. If σ P P̄max is a standard triangle, the subdivision

is trivial. If it is a standard square, the subdivision is as in Figure 4.1. Finally, if σ P P̄max is

of the type of Figure 4.5(2) with l “ 1, it is subdivided by the diagonal connecting p0, 0q and

pk, 1q.
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4.2.2. Resolving local models in codimension 1. As in Section 4.1.1, by

Observation 3.43(2), a toric degeneration X̄ Ñ S that is a divisorial log de-

formation with a smooth generic fibre has local models of the form
␣

xy “ tl
(

Ď

Spec krx, y, wρsJtK and
␣

xy “ tlwρ
(

Ď Spec krx, y, wρsJtK (with the natural map to

Spec kJtK) at the non-singular and singular points of the double curve X̄ρ, ρ P P̄ r1s

respectively, where l is the integral length of ρ.

The local model
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK is not simple normal crossings

unless l “ 1 (it is a line of Al´1 singularities), but the map to SpeckJtK is log

smooth (here the induced divisorial log structure in the model is given by tt “ 0u).

Suppose that l ą 1. Blowing up tx “ t “ 0u (without loss of generality) produces

a chart that is simple normal crossings and a chart where the local model takes

form
␣

xy “ tl´1
(

Ď Spec krx, y, wρsJtK (here we still denote the strict transform

of tx “ t “ 0u by tx “ t “ 0u and denote the “new” divisor by tx1 “ t “ 0u). We

can then blow up tx “ t “ 0u again or we can blow up tx1 “ t “ 0u. Repeating

this procedure l ´ 1 times (with choices of divisors to blow up at every step)

produces a simple normal crossings degeneration.

Notation 4.10. We will follow the convention that for every successive

blowup, the strict transform of tx “ t “ 0u (resp. tx1 “ t “ 0u) will be denoted

by tx “ t “ 0u (resp. tx1 “ t “ 0u) and the “new” divisor contained in the proper

transform will be denoted by tx1 “ t “ 0u (resp. tx “ t “ 0u).

Torically,
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK is (the completion in t of) the affine

variety defined by the cone over the triangle that is the convex hull of p0, 0, 1q,

p0, 1, 1q, and pl, 0, 1q (i.e. it is of the same type as Figure 4.6(1)). We assume

that p0, 0, 1q corresponds to tx “ t “ 0u, pl, 0, 1q corresponds to ty “ t “ 0u, and

that we first blow up tx “ t “ 0u. Suppose that we have blown up tx “ t “ 0u

ix times and tx1 “ t “ 0u ix1 times (with ix ` ix1 ď l ´ 1), using Notation

4.10. Then this partial resolution corresponds to the subdivision of the triangle

by the line segments connecting p0, 1, 1q to p1, 0, 1q, p2, 0, 1q, . . . , pix1 , 0, 1q and to

pl´ 1, 0, 1q, . . . , pl´ ix, 0, 1q. Note that after l´ 1 blowups, we arrive at the same

resolution regardless of the choices of divisors that we blow up at each step. See

Figure 4.8 for these subdivisions in the case that l “ 4.

The exceptional locus after all the l´1 blowups is a chain of l´1 new divisors

D1, . . . , Dl´1 that separate the original divisors tx “ t “ 0u and ty “ t “ 0u, see

Figure 4.9 for a sketch of the central fibres of the local model and the resolution

corresponding to Figure 4.8. The new divisors are P1-bundles with exceptional

curves Fi, 1 ď i ď l ´ 1.
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x “ t “ 0 y “ t “ 0

wρ

xy “ t4 ll-

llll

x “ t “ 0 y “ t “ 0

wρ

Blowup of

x “ t “ 0

x “ t “ 0 y “ t “ 0

wρ

After

3 blowups

Figure 4.8. Resolution of txy “ t4u Ď Spec krx, y, wρsJtK.

y “ t “ 0x “ t “ 0 D1 D2 D3

F3F2F1

y “ t “ 0x “ t “ 0

Figure 4.9. Blowing up txy “ t4u Ď Spec krx, y, wρsJtK.

Similarly, the local model
␣

xy “ tlwρ
(

Ď Spec krx, y, wρsJtK can be resolved

to a simple normal crossings and log smooth degeneration by blowing up the

divisors tx “ t “ 0u or tx1 “ t “ 0u at each step l times (using Notation 4.10).

Indeed, suppose that l ą 1 (otherwise, we are in the case of an ODP singularity

of Section 4.1.1). Blowing up tx “ t “ 0u (without loss of generality) produces a

chart that is simple normal crossings and a chart where the local model takes form
␣

xy “ tl´1wρ
(

Ď Spec krx, y, wρsJtK. We can then blow up tx “ t “ 0u again or

we can blow up tx1 “ t “ 0u. Repeating this procedure l´1 times (with choices of

divisors to blow up at every step) produces a degeneration that is simple normal

crossings away from an ODP singularity as in Section 4.1.1. We then blow up one

of the divisors in the local model of the ODP singularity to obtain a log smooth

and simple normal crossings degeneration.
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Torically,
␣

xy “ tlwρ
(

Ď Spec krx, y, wρsJtK is (the completion in t of) the

affine variety defined by the cone over the trapezoid that is the convex hull of

p0, 0, 1q, p0, 1, 1q, pl, 0, 1q, and p1, 1, 1q (i.e. it is of the same type as Figure 4.6(2)).

Again, we assume that p0, 0, 1q corresponds to tx “ t “ 0u, pl, 0, 1q corresponds to

ty “ t “ 0u, and that we first blow up tx “ t “ 0u. Suppose that we have blown

up tx “ t “ 0u ix times and tx1 “ t “ 0u ix1 times (with ix ` ix1 ď l ´ 1), using

Notation 4.10. Then this partial resolution corresponds to the subdivision of the

trapezoid by the segments connecting p0, 1, 1q to p1, 0, 1q, p2, 0, 1q, . . . , pix1 , 0, 1q

and connecting p1, 1, 1q to pl´1, 0, 1q, . . . , pl´ ix, 0, 1q. If ix ` ix1 “ l´1, the final

blowup resolving the ODP singularity subdivides the square that is the convex

hull of p0, 1, 1q, p1, 1, 1q, pix1 , 0, 1q, pl´ ix, 0, 1q by the diagonal connecting pix1 , 0, 1q

to p1, 1, 1q if we blow up tx “ t “ 0u and by the diagonal connecting pl´ ix, 0, 1q

to p0, 1, 1q if we blow up tx1 “ t “ 0u.

Note that, unlike the resolution of
␣

xy “ tl
(

Ď Spec krx, y, wρsJtK described

above, the final resolution depends on the choices of divisors we blow up. However,

it does not depend on the order of the blowups and only depends on the total

number itotx of times that we blow up tx “ t “ 0u and the total number itotx1 of

times that we blow up tx1 “ t “ 0u (here itotx ` itotx1 “ l). See Figure 4.10 for the

subdivisions in the case that l “ 4, itotx “ 2, itotx1 “ 2.

x “ t “ 0 y “ t “ 0

x “ wρ “ 0 y “ wρ “ 0

xy “ t4wρ
llllll

x “ t “ 0 y “ t “ 0

x “ wρ “ 0 y “ wρ “ 0

After

3 blowups

x “ t “ 0 y “ t “ 0

x “ wρ “ 0 y “ wρ “ 0

After

4 blowups

Figure 4.10. Resolution of txy “ t4wρu Ď Spec krx, y, wρsJtK.

The exceptional locus after all the l blowups is a chain of l ´ 1 new divisors

D1, . . . , Dl´1 that separate the strict transforms of the original divisors tx “ t “

0u and ty “ t “ 0u, along with an exceptional curve E (possibly contained in one

of these divisors).
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The divisors Di, 1 ď i ď l ´ 1 with i ‰ itotx1 are P1-bundles with exceptional

curves Fi. The last divisor blown up is Ditot
x1

(interpreted as tx “ t “ 0u if itotx1 “ 0

and as ty “ t “ 0u if itotx1 “ l). If itotx1 ‰ 0, l then Ditot
x1

is the strict transform of

a P1-bundle (with an exceptional curve Fitot
x1
) under the last blowup and has an

exceptional curve E intersecting a curve of class Fitot
x1

´E (the strict transform of

the exceptional curve of the P1-bundle meeting the singularity) at one point.70 If

itotx1 “ 0, then we have an exceptional curve E contained in the strict transform of

tx “ t “ 0u that meets D1 at one point. If itotx1 “ l, then we have an exceptional

curve E contained in the strict transform of ty “ t “ 0u that meets Dl´1 at one

point. See Figure 4.11 for a sketch of the central fibres of the local model and

the resolution corresponding to Figure 4.10.

y “ t “ 0x “ t “ 0 D1 D2 D3

E F3F1

F2 ´ E

y “ t “ 0x “ t “ 0

Figure 4.11. Blowing up txy “ t4wρu Ď Spec krx, y, wρsJtK.

Remark 4.11. Note that performing a similar construction in the case

of the more general divisorial singularity with local model
␣

xy “ tlwkρ
(

Ď

Spec krx, y, wρsJtK for k ě 2 (see Observation 3.43(1)) is not possible since there

is no way to resolve the singularity in the generic fibre of this local model by

blowing up irreducible components of the central fibre. This is why we require

that a special toric degeneration X̄ Ñ S has a smooth generic fibre (see condition

(1) of Definition 3.39).

4.2.3. Blowing up a divisor. We want to obtain a global resolution of X̄ Ñ S
by blowing up a sequence of irreducible components of the central fibre X̄0 (and

irreducible components of the proper transform of X̄0 under the blowups). Let

D̄i for some 1 ď i ď m̄ be a component of the central fibre. As in Section 4.1.2,

blowing up D̄i corresponds to blowing up either tx “ t “ 0u or ty “ t “ 0u in

70Note that even though the resolution does not depend on the order of the blowups, our

notations for the exceptional curves reflect which divisor was blown up last.
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the local models of all the (singular and non-singular) points contained in every

double curve X̄ρ Ď D̄i (with a compatible choice for the points contained in the

same X̄ρ, ρ P P̄ r1s). Note that the number of singular points in X̄ρ, ρ P P̄ r1s is

equal to rρ (the index of the singularity xρ Ď Intpρq of the affine structure).

Notation 4.12. From now on, we shall denote the integral length of an edge

ρ P P̄ r1s by lρ.

Fix a ρ P P̄ r1s with X̄ρ Ď D̄i. If lρ “ 1, then the proper transform of each

singular point of X̄ρ Ď D̄i is an exceptional curve contained in the strict transform

of D̄i as in Section 4.1.2. If lρ ą 1, then the resolution is not small on X̄ρ and

the proper transform of X̄ρ gives a P1-bundle. This is a globalization of the first

blowup in the local models of Section 4.2.2.

Notations 4.13. We expand Notations 4.1 to this case.

(1) We use Notations 4.1 for the strict transforms of the irreducible compo-

nents of X̄0. However, we denote the strict transform of D̄i by D̄i (and

not Di) unless the degeneration becomes log smooth in the neighbour-

hood of the strict transform after blowing up D̄i (we will also use the

bar if speaking of the general situation).

(2) We use Notations 4.1 for the exceptional curves Eij
k (or Eρ,k) contained

in the strict transform of D̄i.

(3) For every ρ P P̄ r1s with lρ ą 1 and X̄ρ “ D̄i X D̄j, we denote by D̄ij
1

(or by Dij
1 if the degeneration is log smooth in the neighbourhood of

that component) the P1-bundle contained in the proper transform of X̄ρ

and we denote its exceptional curve by F ij
1 . Alternatively, we use the

notations D̄ρ,1 and Fρ,1.

Suppose that X̄ρ Ď D̄i and lρ ą 1. Then the points of D̄ρ,1 X D̄i have local

models of the form
␣

xy “ tlρ´1
(

Ď Spec krx, y, wρsJtK at the strict transforms

of non-singular points of X̄ρ and local models of the form
␣

xy “ tlρ´1wρ
(

Ď

Spec krx, y, wρsJtK at strict transforms of the singularities of X̄ρ. Therefore, we

have improved the singularities.

Let g1 : X1 Ñ S be the generically log smooth (in the sense of Definition

4.3) degeneration obtained after blowing up D̄i. To better understand the global

structure of the central fibre X1
0 of g1, we can use the local models at the 0-

dimensional strata of D̄i.

Consider a stratum X̄σ Ď D̄i with σ P P̄max. By condition (4)(a) in Definition

1.2 of a toric degeneration, the point X̄σ does not lie in the singular locus Z of
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D̄1

D̄2

D̄3

D̄4D̄5

D̄6

D̄7

E13
1

E13
2

E13
3

F 15
1D̄15

1

F 16
1

D16
1

D̃
F 12
1 D̄12

1

D̄1

D̄2

D̄3

D̄4D̄5

D̄6

D̄7

X̄ρ13

X̄ρ15

X̄ρ12

X̄ρ16

Figure 4.12. Blowing up the divisor D̄1. Here lρ13 “ 1, lρ12 “ 3,

and lρ15 “ lρ16 “ 2 (one can only see that lρ12 , lρ15 , lρ16 ą 1 from this

sketch).

X̄ Ñ S. This implies, via Construction 3.20 of tropicalization, that there is a

local toric model at X̄σ given by the cone over the polyhedron σ. The blowup of

D̄i corresponds to blowing up the divisor corresponding to v̄i (following Notation

4.2) in the local model. We have described such local models and their blowups

in Section 4.2.1 (for the allowed class of σ P P̄max). Note from Figure 4.6 that

blowing up D̄i can give rise to new toric irreducible components and new curve

classes in the central fibre.

We give an example of a divisor blowup in Figure 4.12 (obtained using the

analysis of the local models of Sections 4.2.1 and 4.2.2). The blowup resolves

the ODP singularities of X̄ρ13 producing exceptional curves E13
1 , E

13
2 , E

13
3 and

improves the other singularities, producing three P1-bundles D̄12
1 , D̄

15
1 , D̄

16
1 with

exceptional curves F 12
1 , F 15

1 , F 16
1 respectively (it also introduces an additional toric

irreducible component, isomorphic to P2, that we denote by D̃).

We explain the effect of blowing up D̄i on the dual intersection complex
`

B̄, P̄
˘

. As usual, we define the dual intersection complex pB1,P 1q of X1 g1

Ñ S
as pg1q

´1
tropp1q for g1

trop : ΣpX1q Ñ Rě0 the tropicalization of g1, with the polyhedral

structure P 1 obtained by restricting the cones of Σ pX1q to the fibre over 1 P Rě0.

Notation 4.14. Expanding Notation 4.2, we denote by v̄i P P 1r0s (resp.

vi P P 1r0s) the vertex corresponding to D̄i (resp. Di) and by v̄k P P 1r0s the

vertices corresponding to D̄k (for 1 ď k ď m̄, k ‰ i). For every ρ P P̄ r1s with
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lρ ą 1 and X̄ρ “ D̄i X D̄j, we denote by v̄ij1 P P 1r0s the vertex corresponding to

D̄ij
1 . Alternatively, we denote it by v̄ρ,1.

Unlike Section 4.1.2, it is not the case that pB1,P 1q –
`

B̄, P̄
˘

as polyhedral

manifolds unless all the maximal cells σ P P̄max with v̄i Ď σ are standard trian-

gles. Instead, pB1,P 1q is a natural subdivision of
`

B̄, P̄
˘

and the analysis of the

local models in codimension 2 of Section 4.2.1 implies that the cells σ P P̄max

are subdivided according to Figure 4.6. Since
`

B̄, P̄
˘

is a polyhedral manifold of

dimension 2 in the sense of Definition 3.1 (see Proposition 3.23), this implies that

pB1,P 1q is also a polyhedral manifold of dimension 2 in the sense of Definition

3.1.

Now, we can give pB1,P 1q the structure of an affine manifold with singularities

using Construction 3.69. Note from Remark 3.70(3) that this defines the usual

toric charts of Construction 3.28 on Wv̄k for 1 ď k ď m̄, k ‰ i and the intrinsic

affine structure on Wv̄izv̄i. We also have an intrinsic affine structure on Wv̄ρ,1zv̄ρ,1
for all ρ P P̄ r1s with X̄ρ Ď D̄i and lρ ą 1. By Remark 3.70(3), it extends to the

whole Wv̄ρ,1 since D̄ρ,1 is a toric variety and its log stratification (in the sense of

Definition 3.19) coincides with its toric stratification. In this case, it is easy to

see directly that in Construction 3.69 the embeddings ψρv̄ρ,1 of (3.48) over the

codimension 1 cones ρv̄ρ,1 P ΣpDv̄ρ,1q glue to a global embedding ΣpDv̄ρ,1q Ñ R2

(inducing a chart on Wv̄ρ,1). Similarly, the intrinsic affine structure on Wv̄izv̄i
extends to the whole Wv̄i in the case that lρ ą 1 for all ρ P P̄ r1s with X̄ρ Ď D̄i.

This analysis, along with the description of the blowups in the local models

of Section 4.2.2, implies that at the level of the affine manifolds, the blowup of

D̄i can be visualized as follows. First, the dual intersection complex
`

B̄, P̄
˘

is

subdivided to pB1,P 1q as described above. Let ρ P P̄ r1s be an edge with v̄i Ď ρ

and rρ ‰ 0 (so that there is a singularity xρ P Intpρq). If lρ “ 1, then xρ is

pulled into v̄i as in Section 4.1.2. If lρ ą 1 then ρ is subdivided into two edges

ρv̄1 , ρ
1 P P 1r1s with v̄i Ď ρv̄i and lρv̄i “ l ´ 1, lρ1 “ 1. The singularity xρ is, again,

pulled into v̄i, i.e. it now lies in Intpρv̄iq (the monodromy of the new singularity

is still rρ). We give the transformation corresponding to the blowup of Figure

4.12 in Figure 4.13.

4.2.4. Further blowing up components. Blowing up D̄i improves the singu-

larities of X̄ Ñ S contained in the strict transform of D̄i but (unless lρ “ 1 for

all ρ P P̄ rn´1s with v̄i Ď ρ) it does not completely resolve them. Therefore, we

need to continue blowing up components of the proper transform of D̄i after the

blowup to resolve the singularities.
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v̄1

v̄2

v̄3

v̄4v̄5

v̄6

v̄7

v161

v̄151

v̄121

pB1,P 1q

v̄1

v̄2

v̄3

v̄4v̄5

v̄6

v̄7

`

B̄, P̄
˘

Figure 4.13. Transformation of
`

B̄, P̄
˘

corresponding to blowing

up D̄1.

Let ρ P P̄ r1s be an edge with lρ “ 2. Then to resolve the ODP singularities of

D̄ρ,1 X D̄i it is enough to blow up either D̄ρ,1 or D̄i once (and the blowup map is

small on D̄ρ,1 X D̄i). If lρ ą 3 instead, then the blowup is not small on D̄ρ,1 X D̄i

and introduces a “new” P1-bundle. Moreover, the index of the singularities (now

contained in the intersection of D̄i with the “new” P1-bundle) decreases by 1.

These observations follow from analyzing the local models of Sections 4.2.1 and

4.2.2, similarly to the analysis of the previous section. The transformation of the

dual intersection complex pB1,P 1q corresponding to this blowup is similar to the

description at the end of the previous section (using the blown up local models

for X̄σ, σ P P̄max and X̄ρ, ρ P P̄ r1s). Namely, pB1,P 1q gets (further) subdivided

according to Figure 4.6 (note that all the cells σ P P 1max are of one of the types

in Figure 4.5 by Corollary 4.8) and the singularities are pulled into the vertex

corresponding to the component that we blow up. One may then continue to

blow up the components of the new central fibre (in particular, one may blow up

the “new” P1-bundle).

Suppose that we have blown up some sequence of irreducible components of

proper transforms of X̄0. This gives rise to a generically log smooth partial res-

olution X2 Ñ S of X̄ Ñ S. This resolution has a well-defined dual intersection

complex pB2,P2q that is a natural subdivision of
`

B̄, P̄
˘

and has an affine struc-

ture given by Construction 3.69 that extends across the vertices corresponding

to the toric irreducible components.



4.2. AN EXTENSION TO NON-SMALL RESOLUTIONS 133

Notations 4.15. Let X2 Ñ S be a generically log smooth partial resolution of

X̄ Ñ S with dual intersection complex pB2,P2q. We fix the notations naturally

expanding Notations 4.13 and Notation 4.14.

(1) We denote an irreducible component of X2
0 with a bar unless the degen-

eration is log smooth in a neighbourhood of that component (and we will

use the bar if speaking of the general situation). We use similar nota-

tion for the corresponding vertices v̄ P P2r0s. Note that every v̄ P P2r0s

corresponds to an element of B̄pZq.

(2) We write D̄i (or Di) for the strict transform of a component D̄i of X̄0

and we write v̄i (or vi) for the corresponding vertex in P2r0s.

(3) For an edge ρ “ xv̄i, v̄jy P P̄ of length lρ we write Dij
p , 1 ď p ď lρ ´ 1

(possibly not all divisors and possibly with bars) for the divisors cor-

responding to integral points of ρ at distance p from v̄j. We write

F ij
p , 1 ď p ď lρ ´ 1 for the exceptional curves of the P1-bundles D̄ij

p

(and their strict transforms after further blowups). We may also use al-

ternative notations Dρ,p and Fρ,p. We write vijp P P2r1s (or vρ,p P P2r1s)

for the vertex corresponding to Dij
p (similarly with bars).

(4) We denote the exceptional curves of the last blowup of one of theDij
p , 1 ď

p ď lρ ´ 1 (it could also be a blowup of D̄i or D̄j) resolving the ODP-s

by Eij
k (or Eρ,k) for 1 ď k ď rρ.

To give an example of these further blowups and illustrate the notation, we

explain how to resolve the singularities on D̄15
1 XD̄1 and D̄

12
1 XD̄1 in the resolution

obtained after blowing up D̄1 in Figures 4.12 and 4.13. Blow up D̄1 again, this

resolves the ODP singularities of D̄15
1 X D̄1 (since lρ15 “ 2) producing exceptional

curves E15
1 , E

15
2 and improves the singularity on D̄12

1 X D̄1 to an ODP, introduc-

ing a P1-bundle D̄12
2 with exceptional curve F 12

2 . It also separates D̄15
1 and D̄3,

introducing another exceptional curve. The singularity of the dual intersection

complex contained in the interior of xv̄151 , v̄1y moves to v̄1 and the singularity con-

tained in the interior of xv̄121 , v̄1y moves into the interior of xv̄122 , v̄1y. We give the

central fibre and the dual intersection complex of this partial resolution in Figure

4.14. Note that we could have blown up D̄15
1 instead. Then the proper transforms

of the singularities on D̄15
1 X D̄1 would be contained in D15

1 (and the singularity

contained in the interior of xv̄151 , v̄1y would move to v151 ).

Now, to resolve the singularity on D̄12
2 X D̄1, we can blow up either D̄12

2

or D̄1. Either way, this resolves the ODP singularity on D̄12
2 X D̄1, producing

an exceptional curve E12
1 . In the first case, the curve is contained in D12

2 and

intersects a curve of class F 12
2 ´ E12

1 at one point. In the second case, the curve
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Figure 4.14. Blowing up D̄1 again and the corresponding trans-

formation of the dual intersection complex.

is contained in D1. The blowup also introduces an exceptional curve separating

D̃ and D1 in the first case and separating D16
1 and D12

2 in the second case. The

singularity of the dual intersection complex contained in the interior of xv̄122 , v̄1y

moves to v122 in the first case and to v1 in the second case. We give the central

fibre and the dual intersection complex of the resolution obtained by blowing up

D̄1 (once again) in Figure 4.15.

After these blowups, the resolution becomes log smooth in a neighbourhood

of the proper transform of D̄1.

4.2.5. A global resolution. By continuously performing the blowups of Sec-

tions 4.2.3 and 4.2.4 in some order, we resolve all the singularities of X̄ Ñ S and

obtain a resolution π : X Ñ X̄ to a log smooth degeneration X Ñ S. Here the log
structure on X is the divisorial log structure given by D “ D1 ` ¨ ¨ ¨ `Dm where

Di, 1 ď i ď m are the irreducible components of the central fibre X0 and Di is

the strict transform of D̄i for 1 ď i ď m̄. Note that this construction agrees with

the construction of Section 4.1 if all the σ P P̄max are standard triangles.

The dual intersection complex pB,Pq of X Ñ S is a natural subdivision of
`

B̄, P̄
˘

and has an affine structure (with singularities at the vertices) given by

Construction 3.69. One may view the resolution tropically as a composition of

transformations as in Figure 4.13. Note that the affine structure extends across

the toric components, so we only have singularities at vertices of the form vi for
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Figure 4.15. Blowing up D̄1 (once again) and the corresponding

transformation of the dual intersection complex.

1 ď i ď m̄ and vρ,p for ρ P P̄ r1s, 1 ď p ď lρ ´ 1. Moreover, for any ρ P P̄ r1s there

is at most one singularity at a vertex of the form vρ,p, 1 ď p ď lρ ´ 1.

Remarks 4.16. (1) One can always resolve the singularities of X̄ Ñ S
by blowing up the original components D̄i, 1 ď i ď m̄ and their strict

transforms. Indeed, we can blow up D̄1 the number of times equal to

the integral length of the longest edge adjacent to v̄1 P P̄ r0s and then do

the same for all the other divisors. In this case, all the Eρ,p (for ρ P P̄ r1s

and 1 ď p ď rρ) are contained in Di, 1 ď i ď m̄ and the singularities

are contained in vi, 1 ď i ď m̄.

(2) One can also always construct a resolution with D simple normal cross-

ings. To ensure this, after obtaining a log smooth resolution, one can keep

blowing up components (corresponding to vertices contained in maximal

cells that are not standard triangles) until all the cells σ P Pmax are

standard triangles.

(3) Resolutions satisfying (1) and (2) would suffice for our purposes, but we

choose to allow some additional flexibility. The reader may prefer to

think of the resolutions satisfying these additional requirements.

The exceptional locus of π : X Ñ X̄ is a union of exceptional curves and

exceptional divisors. Note that the cone NEpπq Ď NEpX0q of curves contracted
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by π is finitely generated and that we have
␣

Eρ,k | ρ P P̄ r1s, 1 ď k ď rρ
(

Y
␣

Fρ,p, ρ P P̄ r1s, 1 ď p ď lρ ´ 1
(

Ď NEpπq.

(with possibly not all Fρ,p present if rρ “ 0). We will mostly be interested in

these curve classes.

Unlike Section 4.1, the divisor D is not simple normal crossings unless all

the σ P Pmax are standard triangles. However, we can generalize the rest of

Proposition 4.4.

Proposition 4.17. X Ñ S is minimal log CY. The dual intersection complex

pB,Pq satisfies Assumption 3.48.

Proof. The fact that X Ñ S is minimal log CY follows from the behaviour

of the canonical class under blowup. Indeed, for any degeneration X̄ Ñ S with

KX̄`X̄0 ” 0 and any blowup π : X Ñ X̄ supported on X̄0, we have KX`pX0qred ”

0. Now, D “ D1 ` ¨ ¨ ¨ `Dm where Di, 1 ď i ď m are the irreducible components

of X0, D̄ “ D̄1 ` ¨ ¨ ¨ ` D̄m̄ where D̄i, 1 ď i ď m̄ are the irreducible components

of X̄0, and KX̄ ` D̄ ” 0 since X̄ Ñ S is a toric degeneration. So it suffices to

check that X0 is reduced. But this follows from the fact that pB,Pq is an integral

subdivision of
`

B̄, P̄
˘

by construction (see Remark 3.49). So X Ñ S is minimal

log CY.

The fact that pB,Pq satisfies Assumption 3.48 follows from
`

B̄, P̄
˘

satisfying

Assumption 3.48 and the description of pB,Pq as a subdivision of
`

B̄, P̄
˘

(here

it is crucial that the cells σ P P̄max are subdivided according to Figure 4.6). □

As in Section 4.1.3, let P be a well-chosen monoid (see Definition 3.94) with

a face K containing the classes of the contracted curves.

Notation 4.18. For a PA-function α on a polyhedral manifold B (possibly

with boundary), we denote by minpαq the subset of B where the minimum of α

is achieved. We say that minpαq is well-defined if it consists of one point.

Proposition 4.5 can be partially generalized as follows (again, we can’t guar-

antee that the π-ample divisor D1 is simple normal crossings in general).

Proposition 4.19. The resolution π : X Ñ X̄ satisfies the following assump-

tions:

(1) The log structure MX on X is fine, saturated, and Zariski.

(2) There exists a π-ample effective divisor D1 “
řm
i“1 aiDi such that:

(a) D1 is PA-generated i.e. corresponds to an integral PA-function on

B (see Definition 3.104).
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(b) Let Dirrel :“
řm
i“1 εiDi where εi “ 0 if ai ą 0 and εi “ 1 if ai “ 0.

Then Dirrel is Q-Cartier and π-nef.

(3) K X NEpX0q “ K X NEpX0qnum (under the splittings of (3.49)), i.e. π

only contracts numerical classes of curves C Ď X0.

In particular, π : X Ñ X̄ satisfies the assumptions of Proposition 3.109 if D1 is

simple normal crossings.

Proof. Step 1. First of all, pX̄, D̄q is a Zariski log scheme by Assumption

1.3(3), so pX, Dq is also a Zariski log scheme. The log structure MX on X is fine

and saturated away from the proper transform of the singular locus Z Ď X̄0 since

the log structure MX̄ on X̄ is fine and saturated away from Z. It follows from

the local models of Sections 4.2.1 and 4.2.2 that it is also fine and saturated in

the neighbourhood of any point of the proper transform of Z. So MX is fine

and saturated, and π : X Ñ X̄ satisfies assumption (1). It is also clear from the

analysis of the local models that the cone NEpπq Ď NEpX0q of curves contracted

by π is finitely generated and every curve C P NEpX0q defines a non-zero class

in A1pX0,Zqnum. So π : X Ñ X̄ satisfies assumption (3).

Step 2. It suffices to show that there exists a π-ample PA-generated divisor

D1 on X. Indeed, if we find such a D1, then D1 ` ND is PA-generated, π-ample,

and effective for N " 0 (since D ” 0, D is PA-generated by Corollary 3.106 and

PA-generated divisors are supported on the central fibre). Moreover, we would

have pD1 ` NDqirrel “ 0 for N " 0, so π : X Ñ X̄ would satisfy assumption (2).

Step 3. Finding a π-ample PA-generated divisor D1 is equivalent to finding

a PA-function α P PApBq such that:

(1) The restriction α|σ of α to any σ P P̄max is strictly convex (on the

induced subdivision of σ).

(2) The restriction α|ρ of α to any ρ P P̄ r1s is strictly convex with minpα|ρq “

tvρ,pu (using Notation 4.18) if the exceptional curves Eρ,k, 1 ď k ď rρ

are contained in Dρ,p (as before, if p “ 0 or p “ lρ, we understand Dρ,p

and vρ,p as the strict transform of an irreducible component of X̄0 and

the corresponding vertex respectively). There is no condition if rρ “ 0.

Indeed, let D1 :“ divpαq via (3.60). Condition (1) is equivalent to the toric

divisors corresponding to α|σ in the resolved local models for X̄σ, σ P P̄max being

relatively ample. Condition (2) is equivalent to requiring that the PA-functions

α|0ρ,x that are the extensions of α|ρ by 0 to the subdivision of the triangle or

trapezoid of Figure 4.10 (or Figure 4.8) giving rise to the resolved local models

at the points x P X̄ρ, ρ P P̄ r1s are strictly convex. Here by an extension by 0,
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we mean that α|0ρ,x is the PA-function that takes the same values as α at the

points corresponding to the integer points of ρ and takes value 0 at p0, 1, 1q and

p1, 1, 1q (or just p0, 1, 1q). Now condition (2) is equivalent to requiring that the

toric divisors corresponding to α|0ρ,x in these local models are relatively ample.

The claim follows from the fact that NEpπq “ NEpπq (since NEpπq is finitely

generated), from the (relative) Kleiman’s criterion for ampleness, and from the

local nature of intersection numbers (see, e.g. [H1, Appendix A.1]).

Note that condition (2) implies that α P PApBq determines the singular

locus ∆ of the affine structure on pB,Pq. Indeed, since for every ρ P P̄ r1s the

exceptional curves Eρ,k, 1 ď k ď rρ are contained in Dρ,p and all the other

irreducible components of X0 are toric, the singular locus of the affine structure

on pB,Pq is ∆ “ tvρ,p | ρ P P̄ r1s, rρ ‰ 0u.

Step 4. To find a PA-function α P PApBq satisfying the required properties,

we proceed inductively.71 For a partial resolution X1 Ñ S with dual intersection

complex pB1,P 1q, we require a PA-function α1 P PApB1q that satisfies the ana-

logues of conditions (1) and (2) in Step 3 with the minimum requirement in (2)

replaced by the requirement that

p˚q v̄ρ,p P minpα|ρq for D̄v̄ρ,p the strict transform of the last divisor (with

v̄ρ,p Ď ρ) that has been blown up.

in the case that the singularities of X̄ρ have not been fully resolved.

The dual intersection complex
`

B̄, P̄
˘

of X̄ Ñ S admits a PA-function ᾱ

satisfying these (modified) conditions. Namely, we can just take ᾱ :“ 0 P PApB̄q.

Suppose that at some point we have a partial resolution X1
1 Ñ S with dual

intersection complex pB1
1,P

1
1q and a PA-function α1

1 P PA pB1
1q satisfying the

conditions. Let X1
2 Ñ X1

1 be the blowup of a component D̄1
1,i of pX1

1q0 (the

next blowup in the resolution process). We need to construct a PA-function

α1
2 P PA pB1

2q on the the dual intersection complex pB1
2,P

1
2q of X

1
2 Ñ S satisfying

the conditions. Let αnew P PA pB1
2q be a PA-function with value ´1 at v̄1

1,i (the

vertex corresponding to the strict transform of D̄1
1,i under the blowup) and at

all the “new” vertices and value 0 at all the other vertices. It is easy to confirm

using Figure 4.6 that αnew P PA pB1
2q is well-defined, that for every σ P P 1max

1

subdivided by the blowup, pαnewq|σ is a strictly convex function on σ, and that

we have v̄1
1,i P minppαnewq|ρq for every ρ P P 1r1s

1 with v̄1
1,i Ď ρ. Now for M " 0 the

PA-function α1
2 :“ αnew ` Mα1

1 on pB1
2,P

1
2q satisfies the conditions. Repeating

71The motivation for the argument below is that for a morphism f : X Ñ Y of projective

varieties with DY an ample divisor on Y and DX{Y a relatively ample divisor on X, DX{Y `

Mf˚DY is an ample divisor on X for M " 0 (see [H1, Part II, Proposition 7.10]).
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the argument for all the blowups in the construction of π : X Ñ X̄, we obtain an

α P PApBq satisfying conditions (1) and (2) of Step 3. □

We shall revisit the idea of Steps 3 and 4 of the proof of Proposition 4.19 in

Section 4.3, where we construct admissible resolutions in general.

As a consequence of Proposition 4.19, we obtain resolutions satisfying the

assumptions of Proposition 3.109.

Corollary 4.20. For any resolution π : X Ñ X̄ obtained by blowing up

a sequence of irreducible components of X̄0, there exists a further sequence of

blowups π1 : X̃ Ñ X of irreducible components of X0 with the combined X̃ Ñ X Ñ

X̄ satisfying the assumptions of Proposition 3.109.

Proof. We let D̃ :“ pπ1q´1D and denote by D̃1 any divisor on X̃ supported

on D̃. By Proposition 4.19, we just need to check that there exists a further

sequence of blowups π1 : X̃ Ñ X of irreducible components of X0 such that the

PA-generated relatively ample divisor D̃1 on X̃ given by Proposition 4.19 is simple

normal crossings. Indeed, by Remark 4.16(2), we can always resolve to a X̃ with

D̃ simple normal crossings and D̃1 is supported on D̃. □

Remark 4.21. Note that one can often produce resolutions X Ñ S satisfying

the assumptions of Proposition 3.109 but with D not simple normal crossings,

especially in the case that rρ “ 0 for some ρ P P̄ r1s.

We define the initial slab functions for X̄ Ñ S as in (4.2) but require that the

slabs ρ, ρ1 P ˜̄P r1s are chosen so that the vertex vρ,p P P r0s corresponding to the

component Dρ,p containing the exceptional curves Eρ,k, 1 ď k ď rρ is contained

in ρ. We have now defined all the necessary data in Basic Setup 3.112.

Sometimes the extended intrinsic mirror is algebraic.

Observation 4.22. Let A be the polarization on X̄ Ñ S, π : X Ñ X̄ be a

resolution as before and suppose that π˚A is a PA-generated divisor (supported

on the central fibre). Then for M " 0, D1 ` Mπ˚A is a PA-generated divisor

on X, relatively ample for X Ñ S (see the footnote in the proof of Proposition

4.19 above). The extended intrinsic mirror is defined as an algebraic family

X̌ Ñ Spec krP s by arguing as in Proposition 3.107 for the contraction X Ñ S.

4.2.6. The PL-isomorphism Φ : B Ñ B̄. We want to generalize Construction

4.6 of the PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

to the setup of this section. The

difference with the situation of Section 4.1 is that we no longer have pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds.
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Construction 4.23. We define a PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

,

linear on the maximal cells of P. Note that pB,Pq is a natural subdivision

of
`

B̄, P̄
˘

. Moreover, the affine structure on pB,Pq extends across the toric

components so we only have singularities at vertices of the form vi for 1 ď i ď m̄

and at most one vertex of the form vρ,p, 1 ď p ď lρ ´ 1 for ρ P P̄ r1s. Let Pcoar

be the obvious coarsened polyhedral decomposition on B such that pB,Pcoarq –
`

B̄, P̄
˘

as polyhedral manifolds.

Now, pB,Pcoarq is an affine manifold with singularities that satisfies Con-

struction 3.4. Indeed, it has the obvious structures of integral polyhedra on

tσ | σ P Pmax
coar u and the structures of integral affine manifolds on

␣

Wvz∆ | v P P r0s
coar

(

coming from the extended affine structure on pB,Pq. Note that pB,Pcoarq may

have singularities at both the vertices v P P r0s
coar and at the interiors of the edges

ρ P P r1s
coar (unless we consider a resolution π : X Ñ X̄ satisfying Remark 4.16(2)).

We have pB,Pq – pB,Pcoarq as affine manifolds with singularities, so it is enough

to define a PL-isomorphism Φ : pB,Pcoarq Ñ
`

B̄, P̄
˘

, linear on the maximal cells

of Pcoar.

We define the PL-isomorphism Φ : pB,Pcoarq Ñ
`

B̄, P̄
˘

as in Construction

4.6, using the fact that for all the maximal cells σ P Pmax
coar there are canonical

identity maps Id : σ Ñ σ̄ compatible with each other (here for τ P Pcoar, we let

τ̄ P P̄ be the corresponding cell of P̄) and the refined description of Construction

3.4p21q for the affine structures.

We define Φpτq for τ P P or τ P Pcoar (in which case Φpτq P P̄), Φppq

for a codimension 0 wall p on pB,Pq and Φpbq for a slab b on pB,Pq as in

Construction 4.6. Note that the image of a codimension 0 (resp. codimension 1)

rational polyhedral subset of σ P Pmax is a codimension 0 (resp. codimension 1)

rational polyhedral subset of the unique cell containing Φpσq.

4.3. Tropical approach and admissible resolutions in general

We continue with the general setup of Section 4.1. We remove the restrictions

of Sections 4.1 and 4.2 on the types of σ P P̄max and will treat the general case. As

we have seen in Remark 4.9, a blowup of an irreducible component of the central

fibre X̄0 of X̄ Ñ S (a toric degeneration of K3-s that is a divisorial log deformation

with a smooth generic fibre) can give rise to a subdivision of
`

B̄, P̄
˘

that does

not satisfy Assumption 3.48. Therefore, to construct a resolution π : X Ñ X̄ to a
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minimal log CY degeneration X Ñ S in the general case, we need to consider more

general blowups to have more control over the induced subdivisions of
`

B̄, P̄
˘

.

4.3.1. Tropical approach to resolutions. As in Sections 4.1 and 4.2, we have

étale local models for points in codimension 1 and 2 strata of X̄0 that are given

by toric varieties.

Notations 4.24. (1) For σ P P̄max, we denote the local toric model at

the point X̄σ (given by the cone over σ) by ˜̄Xσ.

(2) For ρ P P̄ r1s, we denote the local toric model at the point x P X̄ρ (given

by the cone over the triangle as in Figure 4.8 if x is a non-singular point

or the cone over the trapezoid as in Figure 4.10 if x is a singular point)

by ˜̄Xρ,x.

Suppose that we have obtained a resolution π : X Ñ X̄ to a log smooth

X Ñ S. We want to understand π : X Ñ X̄ in terms of log smooth resolutions of

the étale local models ˜̄Xσ and ˜̄Xρ,x.

For every σ P P̄max, since ˜̄Xσ is an étale local model for X̄, we have a variety

Ūσ equipped with étale maps Ūσ Ñ X̄ and Ūσ Ñ ˜̄Xσ. We let Uσ :“ Ūσ ˆX̄ X be

the basechange of Ūσ Ñ X̄ by π : X Ñ X̄. For any morphism πσ : X̃σ Ñ ˜̄Xσ, we

let Ũσ,πσ :“ Ūσ ˆ ˜̄Xσ
X̃σ be the basechange of Ūσ Ñ ˜̄Xσ by πσ.

Similarly, for every ρ P P̄ r1s and every x P X̄ρ, since
˜̄Xρ,x is an étale local

model for X̄, we have a variety Ūρ,x equipped with étale maps Ūρ,x Ñ X̄ and

Ūρ,x Ñ ˜̄Xρ,x. We let Uρ,x :“ Ūρ,x ˆX̄ X be the basechange of Ūρ,x Ñ X̄ by

π : X Ñ X̄. For any morphism πρ,x : X̃ρ,x Ñ ˜̄Xρ,x,we let Ũρ,x,πρ,x :“ Ūρ,xˆ ˜̄Xρ,x
X̃ρ,x

be the basechange of Ūρ,x Ñ ˜̄Xρ,x by πρ,x.

Definition 4.25. We say that a resolution π : X Ñ X̄ of a special toric

degeneration X̄ Ñ S of K3-s to a log smooth degeneration X Ñ S is toric if for

every σ P P̄max there exists a toric blowup πσ : X̃σ Ñ ˜̄Xσ such that Uσ – Ũσ,πσ ,

for every ρ P P̄ r1s and every x P X̄ρ there exists a toric blowup πρ,x : X̃ρ,x Ñ ˜̄Xρ,x

such that Uρ,x – Ũρ,x,πρ,x , and π is trivial at every point of X̄ not contained in a

codimension 1 or 2 stratum of X̄0.

We say that a toric resolution π : X Ñ X̄ is integral if for every σ P P̄max,

the toric blowup πσ : X̃σ Ñ ˜̄Xσ induces an integral subdivision of σ and for every

ρ P P̄ r1s and every x P X̄ρ, the toric blowup πρ,x : X̃ρ,x Ñ ˜̄Xρ,x induces an integral

subdivision of:

(1) If x is a non-sigular point, the triangle defining ˜̄Xρ,x of Figure 4.8.

(2) If x is a singular point, the trapezoid defining ˜̄Xρ,x of Figure 4.10.
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Moreover, we require that the subdivisions of (1) and (2) are of the form in the

respective figures (possibly in an intermediate form if ρ P P̄ r1s has rρ “ 0). We

also require that for every ρ Ď σ with ρ P P̄ r1s, σ P P̄max, the subdivision of

ρ induced by the subdivision of σ agrees with the subdivision of ρ induced by

the subdivision of (1) or (2). Here and later, we assume that the cells of any

subdivision don’t self-intersect and that an intersection of any two cells is also a

cell.

We say that a toric and integral resolution is homogeneous if for every ρ P P̄ r1s

and x, y P X̄ρ singular points, the subdivisions of the trapezoid of (2) correspond-

ing to the blowups πρ,x : X̃ρ,x Ñ ˜̄Xρ,x and πρ,y : X̃ρ,y Ñ ˜̄Xρ,y are the same. Note

that the same is true for non-singular points, even when rρ “ 0, by the definition

of an integral resolution above.

We are going to consider toric, integral, and homogeneous resolutions π : X Ñ

X̄ from now on. Sections 4.1 and 4.2 give examples of such resolutions. We will

use Notations 4.15 for exceptional curves and irreducible components of X0, and

for vertices v P P r0s of the dual intersection complex pB,Pq of X Ñ S.
From the local models, it is easy to see that the cone NEpπq Ď NEpX0q of

curves contracted by π is finitely generated and that we have

␣

Eρ,k | ρ P P̄ r1s, 1 ď k ď rρ
(

Y
␣

Fρ,p, ρ P P̄ r1s, 1 ď p ď lρ ´ 1
(

Ď NEpπq (4.3)

(with possibly not all Fρ,p present if rρ “ 0) as in Section 4.2.

Remark 4.26. Considering non-homogeneous (but toric and integral) resolu-

tions is also interesting. Such resolutions π : X Ñ X̄ correspond to not requiring

all the Eρ,k, 1 ď k ď rρ (for a fixed ρ P P̄) to be contained in the same irreducible

component of X0. These resolutions can’t be constructed as in Proposition 4.27

below, might not be projective (they are still proper), or might have X an al-

gebraic space. See Section 5.5.1 for a further discussion. At the level of dual

intersection complexes, the singularity xρ of the affine structure on
`

B̄, P̄
˘

splits

into the singularities of the affine structure on pB,Pq at the vertices correspond-

ing to the irreducible components containing the Eρ,k, 1 ď k ď rρ.

Assuming that D is simple normal crossings, by considering intersection num-

bers of the curve classes of (4.3) with the irreducible components, one can see

that there can be no π-ample divisor D1 supported on D. If D is not simple nor-

mal crossings, one can similarly argue that there is no π-ample PA-generated D1.

Indeed, the extension by 0 of the restriction α|ρ of the corresponding α P PApBq

(see Step 3 in the proof of Proposition 4.19) would not be strictly convex in one
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of the subdivisions of the trapezoids corresponding to the resolutions of the local

models at the singular points of X̄ρ.

In Sections 4.1 and 4.2, we defined the resolutions globally and looked at the

local models to understand how the central fibre X̄0 and the dual intersection

complex
`

B̄, P̄
˘

transform after the blowup. We will now reverse this logic

and define resolutions corresponding to certain subdivisions of
`

B̄, P̄
˘

by gluing

together the resolutions in the local models. We use the observations about PA-

functions of Step 3 in the proof of Proposition 4.19.

Proposition 4.27. Let X̄ Ñ S be a special toric degeneration of K3-s.

Let
`

B̄, P̄
˘

be its dual intersection complex and consider an integral subdivision

pB,Pq (defined as a polyhedral manifold only) of
`

B̄, P̄
˘

with every ρ P P̄ r1s

such that rρ ‰ 0 subdivided into edges of integral length 1. We require that the

cells of the subdivision don’t self-intersect and that an intersection of any two

cells is also a cell (i.e. pB,Pq satisfies Assumption 3.48). Suppose also that

there exists an α P PApBq such that:

(a) αpvq ě 0 for all v P P̄ r0s.72

(b) The restriction α|σ of α to any σ P P̄max is strictly convex (on the induced

subdivision of σ).

(c) The restriction α|ρ of α to any ρ P P̄ r1s with rρ ‰ 0 has a well-defined

minpα|ρq Ď ρpZq (see Notation 4.18).

Then:

(1) There exists a toric, integral, and homogeneous resolution π : X Ñ X̄

to a log smooth and minimal log CY degeneration X Ñ S with dual

intersection complex isomorphic to pB,Pq as a polyhedral manifold.

(2) The PA-function α defines a π-ample PA-generated divisor divpαq “
ř

vPPr0s αpvqDv on X via (3.60) (with the coefficient at Dv positive if

v P P̄ r0s).

(3) Identifying the dual intersection complex of X Ñ S with pB,Pq under

the isomorphism, the affine structure on pB,Pq extends to the comple-

ment of the vertices

∆ “
␣

vρ,p P P r0s
| minpα|ρq “ tvρ,pu, ρ P P̄ r1s, rρ ‰ 0

(

(4.4)

72This is a technical condition that is necessary to ensure that the ideal sheaves defining

the blowups in the étale local models glue to an ideal sheaf on X̄.
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(as before, we understand vρ,p as the vertex corresponding to the strict

transform of an irreducible component of X̄0 if p “ 0, lρ, so some of such

vertices may appear more than once).

Proof. By Proposition 3.46, X̄ Ñ S is special if and only if it is a divisorial

log deformation and the generic fibre of X̄ Ñ S is smooth. The subdivision

pB,Pq and the PA-function α P PApBq define the blowups in the local models

and the corresponding ideal sheaves. We will construct these ideal sheaves and

glue them to an ideal sheaf I on X̄ supported on codimension 1 and 2 strata of

X̄0. The blowup of I will give the desired resolution π : X Ñ X̄.

Step 1. We consider the local models in codimension 2 first. Fix a σ P P̄max.

Then the induced subdivision of the cone Cσ over σ gives rise to a toric blowup

πσ : X̃σ Ñ ˜̄Xσ of the local model ˜̄Xσ. Moreover, the canonical extension of α|σ to

a PL-function Cα|Cσ on the cone Cσ defines the support function for the induced

subdivision of Cσ since α|σ is strictly convex by condition (b). By the discussion

of [T, Section 3], Cα|Cσ gives rise to an ideal sheaf Iσ on ˜̄Xσ such that the blowup

of Iσ induces the given subdivision.

Explicitly, the ideal sheaf Iσ can be described as follows. We let Iσ Ď |CσXN

be the monoid ideal

Iσ :“ x´mCτ , | τ P Pmax, τ Ď σy X

´

|Cσ X N
¯

where mCτ is the linear function defining Cα|Cσ on Cτ (i.e. ´mCτ , τ Ď σ define

the Cartier data of [T, Section 3] for the subdivision of σ). Then Iσ is the unique

torus-invariant ideal sheaf on ˜̄Xσ with ΓpUCσ, Iσq Ď kr |Cσ X N s the monomial

ideal corresponding to Iσ Ď |Cσ X N .

We note that the support of Iσ is contained in the union of codimension 1

and 2 toric strata of B ˜̄Xσ. Indeed, for every v P P̄ r0s with v Ď σ let uv be the

primitive generator of Cv and let τ P Pmax be such that v Ď τ Ď σ. Then

xuv,´mCτy “ ´αpvq ď 0 by condition (a). This implies that Iσ X pCvqK ‰ ∅ so

Iσ vanishes on the toric divisor corresponding to v.

Step 2. We now consider the local models in codimension 1. Fix a ρ P P̄ r1s

and x P X̄ρ. If x is non-singular, we define the subdivision of the triangle ρ1
x

defining ˜̄Xρ,x of Figure 4.8 to be as in Figure 4.8 (possibly, we have an interme-

diate form if rρ “ 0, in which case the subdivision is determined by the induced

subdivision of ρ and is the same for all non-singular x P X̄ρ). If x is singular, we

define the subdivision of the trapezoid ρ1
x defining ˜̄Xρ,x of Figure 4.10 to be as in

Figure 4.10 with the vertex connected to both p0, 1, 1q and p1, 1, 1q corresponding

to the minpα|ρq Ď ρpZq of condition (c) (note that this does not depend on the
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choice of a singular point x P X̄ρ). The subdivision of ρ1
x gives rise to a toric

blowup πρ,x : X̃ρ,x Ñ ˜̄Xρ,x of the local model ˜̄Xρ,x.

Let α|0ρ,x be the extension by 073 of α|ρ to ρ
1
x. Here by an extension by 0, we

mean that α|0ρ,x is the PA-function that takes the same values as α at the points

corresponding to the integer points of ρ and takes value 0 at p0, 1, 1q and p1, 1, 1q

(or just p0, 1, 1q if x is non-singular). As in Step 3 in the proof of Proposition

4.19, α|0ρ,x is strictly convex with respect to the subdivision of ρ1
x. So its canonical

extension to a PL-function Cα|0Cρ,x on the cone Cρ1
x over ρ1

x defines the support

function for the induced subdivision of Cρ1
x. By the discussion of [T, Section

3], Cα|0Cρ,x gives rise to an ideal sheaf Iρ,x on ˜̄Xρ,x such that the blowup of Iρ,x
induces the given subdivision.

An explicit description of Iρ,x using a monoid ideal Iρ,x Ď }Cρ1
x XN is similar

to Step 1, and we can similarly show that the support of Iρ,x is contained in the

union of codimension 1 and 2 toric strata of B ˜̄Xρ,x. However, we actually know

more. Since α|0ρ,x is the extension by 0, we have α|0ρ,xpṽq “ 0 for any vertex ṽ of ρ1
x

that is not a vertex of ρ. Arguing as in Step 1, this implies that Iρ,x X pCρ̃qK ‰ ∅
for any edge ρ̃ of ρ1

x that is not ρ and that Iρ,x contains the vertex of }Cρ1
x. So

the support of Iρ,x is contained in the toric stratum corresponding to ρ.

Step 3. We want to define an ideal sheaf I on X̄ supported on codimension

1 and 2 strata of X̄0, that gives rise to the desired resolution. Let

Ū :“ X̄
I

ď

σPP̄max

X̄σ Y
ď

ρPP̄r1s

X̄ρ

be the complement of codimension 1 and 2 strata of X̄0, Ū ãÝÑ X̄ be the natural

inclusion, and IŪ be the trivial sheaf on Ū. For every σ P P̄max, let IŪσ
be the

ideal sheaf on Ūσ that is the pullback of the ideal sheaf Iσ on ˜̄Xσ constructed

in Step 1 via the étale map Ūσ Ñ ˜̄Xσ (using the notations of Definition 4.25).

Similarly, for every ρ P P̄ r1s and x P X̄ρ, let IŪρ,x
be the ideal sheaf on Ūρ,x that

is the pullback of the ideal sheaf Iρ,x on ˜̄Xρ,x constructed in Step 2 via the étale

map Ūρ,x Ñ ˜̄Xρ,x.

The collection of maps Ū ãÝÑ X̄, Ūσ Ñ X̄ for σ P P̄max, and Ūρ,x Ñ X̄ for

ρ P P̄ r1s and x P X̄ρ gives an étale covering of X̄. Therefore, we can apply étale

descent for quasi-coherent sheaves (see, e.g. [Z2, Theorem 2.3]) to construct an

ideal sheaf I on X̄ such that its pullback via the maps in the covering gives the

ideal sheaves IŪ, IŪσ
, and IŪρ,x

respectively. To do that, we need to check that

we can define isomorphisms of the pullbacks of the ideal sheaves IŪ, IŪσ
, IŪρ,x

73This is as in Step 3 in the proof of Proposition 4.19.
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to the double fibre products that satisfy the cocycle condition on the triple fibre

products (i.e. we can define a descent datum for quasi-coherent sheaves, see [Z2,

Definition 2.1]). This follows from the correspondence between the ideals in the

local toric models and the support functions, the fact that pα|σq|ρ “ pα|0ρ,xq|ρ for

every ρ Ď σ with ρ P P̄ r1s, σ P P̄max, and every x P X̄ρ
74 (for fibre products not

involving Ū), and the fact that Iρ,x is supported on the union of codimension 1 and

2 toric strata of B ˜̄Xρ,x and Iρ,x is supported on the toric stratum corresponding

to ρ (for fibre products involving Ū).

Step 4. We let π : X Ñ X̄ be the blowup of I. Then the construction of Step

3 immediately implies that Uσ – Ũσ,πσ for every σ P P̄max and πσ : X̃σ Ñ ˜̄Xσ

as in the construction and Uρ,x – Ũρ,x,πρ,x for every ρ P P̄ r1s, every x P X̄ρ, and

πρ,x : X̃ρ,x Ñ ˜̄Xρ,x as in the construction (using the notations of Definition 4.25).

Further, the fact that IŪ is trivial implies that π is trivial at every point of X̄ not

contained in a codimension 1 or 2 stratum of X̄0. So π : X Ñ X̄ is toric. Our

definitions of the blowups of local models in Steps 1 and 2 imply that π : X Ñ X̄

is integral and homogeneous. The fact that X Ñ S is minimal log CY follows as

in Proposition 4.17, so we have proved (1).

Now (2) follows exactly as in Step 3 in the proof of Proposition 4.19 and (3)

follows since the analysis of the local models of Sections 4.2.1 and 4.2.2 implies

that the irreducible components Dvρ,p contain the curves Eρ,k, 1 ď k ď rρ and

all the other irreducible components of X0 are toric. □

Proposition 4.27 gives us a tropical way to work with resolutions. Note that

the correspondence in Proposition 4.27 is actually one-to-one.

Corollary 4.28. There is a one-to-one correspondence

tpB,Pq, α P PApBqu ðñ
␣

π : X Ñ X̄, D1
(

where X̄ Ñ S is a special toric degeneration of K3-s with dual intersection complex
`

B̄, P̄
˘

, pB,Pq is an integral subdivision of
`

B̄, P̄
˘

with every ρ P P̄ r1s such that

rρ ‰ 0 subdivided into edges of integral length 1, α P PApBq satisfies conditions

(a), (b), (c) of Proposition 4.27, π : X Ñ X̄ is a toric, integral, and homogeneous

resolution, and D1 “
ř

vPPr0s avDv is a π-ample PA-generated divisor with av ě 0

if Dv is the strict transform of an irreducible component of X̄0.

74This is since pα|0ρ,xq|ρ “ α|ρ and both α|ρ and α|σ arise as the restrictions of a globally

defined α P PApBq.
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Proof. One direction is Proposition 4.27. For the other direction, note that

for every toric, integral, and homogeneous resolution π : X Ñ X̄, the dual inter-

section complex pB,Pq of X Ñ S is an integral subdivision of
`

B̄, P̄
˘

by the

analysis of the local models. By an argument as in Step 3 in the proof of Propo-

sition 4.19, every π-ample PA-generated divisor D1 corresponds to a PA-function

α P PApBq such that the restriction α|σ of α to any σ P P̄max is strictly convex

(on the induced subdivision of σ) and the restriction α|ρ of α to any ρ P P̄ r1s

with rρ ‰ 0 has a well-defined minpα|ρq Ď ρpZq. The fact that av ě 0 if Dv is the

strict transform of an irreducible component of X̄0 implies that αpvq ě 0 for all

v P P̄ r0s. □

4.3.2. Admissible and strongly admissible resolutions. We are ready to

define admissible resolutions (i.e. resolutions allowed in Conjecture 1.7), the data

of Basic Setup 3.112, and the PL-isomorphism Φ : B Ñ B̄ in general. In the

next section, we will show that any special toric degeneration admits a (strongly)

admissible resolution.

Definition 4.29. We say that a resolution π : X Ñ X̄ of a special toric

degeneration X̄ Ñ S of K3-s is strongly admissible if it is a toric, integral, and

homogeneous resolution admitting a π-ample PA-generated divisor D1 such that:

(1) The divisor D1 is simple normal crossings and effective.

(2) The divisor Dirrel (defined as in the proof of Proposition 3.101) is Q-

Cartier and π-nef.

Remarks 4.30. (1) Note that conditions (1) and (2) in Definition 4.29

correspond to conditions (1) and (2) in Proposition 3.109 that we use

to define the extended intrinsic mirror. In particular, it follows from

Proposition 4.5 that the resolutions of Section 4.1 are strongly admissible.

Similarly, the resolutions of Corollary 4.20 and Remark 4.21 in Section

4.2 are strongly admissible.

(2) It will follow from the results of Section 4.4 that we don’t actually need

the existence of a π-ample PA-generated divisor D1 in Definition 4.29

(satisfying conditions (1) and (2)) to construct the extended intrinsic

mirror. As a result, Conjecture 1.7 will follow for all toric, integral, and

homogeneous resolutions, see Remark 4.64(1).

Definition 4.31. We say that a resolution π : X1 Ñ X̄ of a special toric

degeneration X̄ Ñ S of K3-s is admissible if it factors as X1 Ñ X Ñ X̄ with

X Ñ X̄ strongly admissible and X1 Ñ X a logarithmic modification.
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By Proposition 1.8, it is enough to prove Conjecture 1.7 for strongly admis-

sible resolutions. Using the results of Section 4.3.1, we can understand strongly

admissible resolutions tropically.

Notation 4.32. For α P PApBq, denote by psuppα,Pαq the polyhedral

subcomplex of pB,Pq consisting of the following cells of P. A cell τ P P is in

Pα if and only if for all vertices v Ď τ, v P P r0s, we have αpvq ‰ 0. Note that

psuppα,Pαq might consist of multiple components of different dimensions.

Proposition 4.33. Under the correspondence of Corollary 4.28 a pair
␣

π : X Ñ X̄, D1
(

with π : X Ñ X̄ a strongly admissible resolution and D1 a

π-ample PA-generated divisor corresponds to a pair tpB,Pq, α P PApBqu with

pB,Pq the dual intersection complex of X Ñ S and α such that divpαq “ D1 via

(3.60) satisfying the following conditions:

(1) αpvq ě 0 for all v P P r0s and suppα is such that every σ P P r2s
α is a

standard triangle and every ρ P P r1s
α is of integral length 1.

(2) Suppose in addition that MDirrel is PA-generated for those M P N for

which it is Cartier. Then αcomp : B Ñ R defined by

αcomppvq “

#

1, if v R suppα

0, if v P suppα

is a well-defined PA-function on B with Nαcomp P PApBq (i.e. it is in-

tegral75) for some N P N. Moreover, it satisfies the following conditions:

(a) The restriction pNαcompq|σ of Nαcomp to any σ P P̄max is convex

(but not necessarily strictly convex).

(b) For every ρ P P̄ r1s with rρ ‰ 0 we either have supppNαcompqXρ “ ∅
or supppNαcompq X ρ “ ρ.

Proof. The description of the correspondence follows from the proof of

Corollary 4.28. Condition (1) on α corresponds to condition (1) on D1 in Def-

inition 4.29 of being strongly admissible. For condition (2) note that Nαcomp

corresponds to NDirrel via (3.60), provided that NDirrel is Cartier. Further, simi-

larly to Step 3 in the proof of Proposition 4.19, one can show that a PA-generated

divisor divpβq is π-nef if and only if β P PApBq satisfies the analogues of condi-

tions (1) and (2) in Step 3 on β with strict convexity replaced by convexity and the

minimum condition minpβ|ρq “ tvρ,pu replaced by vρ,p P minpβ|ρq. Now, pNαcompq

satisfying the analogue of condition (1) in Step 3 is equivalent to (2)(a). For any

75Recall from Section 3.4.4 that PApBq :“ PApB,Zq stands for the group of integral PA-

functions on B.
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ρ P P̄ r1s with rρ “ 0, the analogue of condition (2) in Step 3 for pNαcompq|σ is

equivalent to requiring that pNαcompqρ is convex on ρ. This is implied by (2)(a),

so it suffices to check that for ρ P P̄ r1s with rρ ‰ 0, the analogue of condition

(2) in Step 3 is equivalent to (2)(b). Indeed, it is clear from the setup that

(2)(b) implies the analogue of condition (2) in Step 3. Conversely, if neither

supppNαcompq Xρ “ ∅ nor supppNαcompq Xρ “ ρ, then vρ,p R minpNαcomp|ρq and

the analogue of condition (2) in Step 3 is not satisfied. □

A generalization of Proposition 4.17 to strongly admissible resolutions in the

general case follows from the setup.

Proposition 4.34. A strongly amissible resolution X Ñ S is minimal log

CY. The dual intersection complex pB,Pq satisfies Assumption 3.48.

Proof. The fact that X Ñ S is minimal log CY follows as in the proof of

Proposition 4.17 (we have also already proved this for any toric, integral, and

homogeneous resolution via Corollary 4.28 and Proposition 4.27).

pB,Pq satisfies Assumption 3.48 since so does
`

B̄, P̄
˘

and pB,Pq is a subdi-

vision of
`

B̄, P̄
˘

such that the cells of the subdivision don’t self-intersect and that

an intersection of any two cells is also a cell (see Definition 4.25 and Proposition

4.27). □

As in Section 4.1.3, let P be a well-chosen monoid (see Definition 3.94) with a

face K containing the classes of the contracted curves. We also have an analogue

of Proposition 4.19 and Corollary 4.20 by design.

Proposition 4.35. A strongly amissible resolution X Ñ X̄ satisfies the as-

sumptions of Proposition 3.109.

Proof. The resolution X Ñ X̄ satisfies the assumptions of Proposition 3.107

and assumption (3) of Proposition 3.109 by Definition 4.29 and the same argu-

ments as in Step 1 in the proof of Proposition 4.19. Assumptions (1) and (2) of

Proposition 3.109 are the same as assumptions (1) and (2) of Definition 4.29. □

We define the initial slab functions for X̄ Ñ S as in (4.2) with the same

convention for the choice of slabs ρ, ρ1 P ˜̄P r1s as in Section 4.2.5. For any strongly

admissible resolution π : X Ñ X̄, we have now defined all the necessary data in

Basic Setup 3.112. Observation 4.22 on when the extended intrinsic mirror is

algebraic holds in this context.

Finally, for any strongly admissible resolution π : X Ñ X̄, we need to define a

PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

generalizing Construction 4.23.
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Construction 4.36. By Proposition 4.27(3), the affine structure on pB,Pq

extends to the complement of singularities at vertices of the form vi for 1 ď i ď m̄

and at most one vertex of the form vρ,p, 1 ď p ď lρ ´ 1 for ρ P P̄ r1s, so we are in

a similar setup to Construction 4.23. As in Construction 4.23, let Pcoar be the

obvious coarsened polyhedral decomposition on B such that pB,Pcoarq –
`

B̄, P̄
˘

as polyhedral manifolds. Then pB,Pcoarq is an affine manifold with singularities

that satisfies Construction 3.4 by the same argument as in Construction 4.23,

and we define Φ : pB,Pcoarq Ñ
`

B̄, P̄
˘

, Φpτq for τ P P or τ P Pcoar (in which

case Φpτq P P̄), Φppq for a codimension 0 wall p on pB,Pq and Φpbq for a slab

b on pB,Pq in exactly the same way.

4.3.3. Existence of strongly admissible resolutions. We now show that any

special toric degeneration X̄ Ñ S of K3-s admits a strongly admissible resolution.

First, we prove a weaker result to illustrate how Proposition 4.33 can be applied

in practice.

Proposition 4.37. Let X̄ Ñ S be a special toric degeneration of K3-s with

dual intersection complex
`

B̄, P̄
˘

and suppose that all the σ P P̄max are either

a standard triangle or one of the 16 reflexive polytopes in dimension 2 (up to an

action of AGLp2,Zq). Then there exists a strongly admissible resolution π : X Ñ

X̄. Moreover, we may assume that the divisor D of X Ñ S is simple normal

crossings.

Proof. Step 1. By Proposition 4.33, it suffices to construct a subdivision

pB,Pq of
`

B̄, P̄
˘

and an α P PApBq such that:

(1) All the cells σ P Pmax are standard triangles.

(2) αpvq ą 0 for all v P P r0s.

(3) The restriction α|σ of α to any σ P P̄max is strictly convex (on the

induced subdivision of σ).

(4) The restriction α|ρ of α to any ρ P P̄ r1s with rρ ‰ 0 has a well-defined

minpα|ρq Ď ρpZq.

Indeed, assumptions (1) and (2) together imply condition (2) of Proposition 4.33.

Assumption (2) implies that αcomp “ 0 P PApBq which is a well-defined convex

PA-function satisfying conditions (2)(a) and (2)(b) of Proposition 4.33 for any

subdivision pB,Pq of
`

B̄, P̄
˘

. Assumption (1) implies that D is simple normal

crossings (so D1 is also simple normal crossings).

Step 2. Let pB,Pq be the subdivision of
`

B̄, P̄
˘

obtained by introducing, for

every σ P P̄max that is not a standard triangle, a vertex vσ P P r0s at the unique

interior integral point of σ and edges ρ “ xvσ, vy P P r1s for every v P P r0s an
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integral point of an edge ρ P P̄ r1s with ρ Ď σ. It follows from the classification of

the 16 reflexive polytopes (see, e.g. [KOS, Fig.1]) that this procedure produces

a subdivision satisfying assumption (1) above. As in Step 2 in the proof of

Proposition 4.19, it suffices to find an α P PApBq satisfying assumptions (3) and

(4) above.

Step 3. To find an α P PApBq satisfying assumptions (3) and (4) above, it is

enough to define a PA-function αB on the 1-dimensional polyhedral subcomplex

pB,PBq that is given by the induced subdivision of the codimension 1 skeleton

pB, P̄Bq (with P̄B “ P̄ r0s Y P̄ r1s) of P̄, such that pαBq|ρ is strictly convex for

every ρ P P̄ r1s and has well-defined minppαBq|ρq Ď ρpZq. Indeed, given such a

function αB, the PA-function α P PApBq given by

αpvq “

#

NαBpvq, if v ‰ vσ, σ P P̄max

0, if v “ vσ, σ P P̄max

for N P N, N " 0 and chosen so that α is integral, satisfies assumptions (3) and

(4) above.

Step 4. Let Ḡ be a graph supported on pB, P̄Bq and choose an acyclic orienta-

tion on Ḡ.76 Then it gives rise to an acyclic orientation on a graph G supported

on pB,PBq by either orienting all the edges subdividing every ρ P P̄ r1s

B in the

same direction as ρ77 or modifying the orientation in such a way that there is

a unique vertex v Ď ρ, v P P r0s

B with two adjacent edges ρ1, ρ2 with orienta-

tion vectors pointing into v and no vertices v1 Ď ρ, v1 P P r0s

B with two adjacent

edges ρ1
1, ρ

1
2 with orientation vectors pointing out of v. Then let αB be given by

αBpvq “ Nv P N for v P P r0s

B with the Nv chosen so that for any ρ “ xv, v1y P P r1s

B

with orientation vector on ρ pointing from v to v1, we have Nv ą 2Nv1 . The

fact that the orientation on G is acyclic implies that this system of inequalities is

consistent and gives rise to a well-defined αB. Moreover, pαBq |ρ is strictly convex

for every ρ P P̄ r1s with well-defined minppαBq|ρq Ď ρpZq. □

Observations 4.38. We make a few observations:

(1) Proposition 4.37 directly applies only in the case that all the σ P P̄max

are either a standard triangle or one of the 16 reflexive polytopes in

76It is classical that every graph admits an acyclic orientation. Indeed, to obtain an acyclic

orientation of a graph G, suppose that V pGq “ tv1, . . . , vnu for some n P N and orient every

xvi, vjy P EpGq with 1 ď i ă j ď n from vi to vj .
77Then, similarly to Remark 4.16(1) for the resolutions of Section 4.2, the dual intersection

complex of the corresponding resolution would have all the singularities contained at the vertices

corresponding to the strict transforms of the original irreducible components.
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dimension 2. Indeed, we need every σ P P̄max to have a unique (to get

a subdivision with all maximal cells standard triangles) integral interior

point and reflexive polytopes are precisely such polytopes in dimension

2.

(2) In the case that all the σ P P̄max are either a standard triangle or contain

an integral interior point, we can argue as in the proof of Proposition

4.37 (choosing vσ P P r0s to be any integral interior point) that there

exists a toric, integral, and homogeneous resolution X Ñ X̄ admitting a

π-ample PA-generated divisor D1.

(3) In particular, (2) implies that any special toric degeneration X̄ Ñ S of

K3-s admits a toric, integral, and homogeneous resolution X Ñ X̄ with a

π-ample PA-generated divisor D1 after a basechange by R Ñ R, t ÞÑ t3

(where t is the uniformizer of R). Indeed, such a basechange rescales

the integral affine structure on
`

B̄, P̄
˘

by 3 and every integral polygon

σ P P̄max has an integral interior point after such a rescaling.78

To obtain a strongly admissible resolution in general, we can argue inductively

similarly to Step 4 in the proof of Proposition 4.19. Unlike the setup of Proposi-

tion 4.19, we have control over the subdivision by appealing to the correspondence

of Proposition 4.33.

Definition 4.39. Let pB̄, P̄q be a polyhedral manifold and let v P BpZq be an

integral point. Consider a polyhedral manifold pB,Pq obtained by subdividing

every σ P P̄max with v P σ by the cells
␣

Convpτ, vq | τ P P̄, τ Ď σ, v R τ
(

.

We say that pB,Pq is obtained from pB̄, P̄q by pulling v.

Lemma 4.40. Let pB̄, P̄q be a polyhedral manifold of dimension 2. Then one

can subdivide pB̄, P̄q to a polyhedral manifold pB,Pq with all the cells σ P Pmax

standard triangles by pulling a sequence of integral points.

Proof. Start pulling integral points and producing more and more refined

integral subdivisions of pB̄, P̄q. Since B̄ is compact, it is enough to show that

for any integral subdivision pB1,P 1q such that not all σ P P 1max are standard

simplices, one has a non-trivial pull of an integral point of B1pZq. Indeed, consider

a σ P P 1max that is not a standard simplex or a standard square. Then σ has

an integral point v P σ that is not one of the vertices v P σ, v P P 1r0s (i.e. either

78This follows from the classification of lattice polygons without interior lattice points, see,

e.g. [K2, §5].
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v P Intpσq or v P Intpρq for ρ Ď σ, ρ P P 1r1s). But then pulling v induces a

non-trivial subdivision of σ. If σ is a standard square, then pulling any vertex of

σ produces a non-trivial subdivision. □

Remark 4.41. Note that the analogue of Lemma 4.40 does not hold in higher

dimensions since in dimension n ě 3 there exist integral simplices σ with the

only integral points at the vertices (called elementary or empty simplices, see,

e.g. [HZ1]) and not AGLpn,Zq-equivalent to a standard simplex of dimension n.

Proposition 4.42. Any special toric degeneration X̄ Ñ S of K3-s admits a

strongly admissible resolution π : X Ñ X̄. Moreover, we may assume that the

divisor D of X Ñ S is simple normal crossings.

Proof. Let
`

B̄, P̄
˘

be the dual intersection complex of X̄ Ñ S and let

pB,Pq be an integral subdivision of
`

B̄, P̄
˘

with all the cells σ P Pmax standard

triangles, obtained by pulling a sequence of integral points (such a subdivision

exists by Lemma 4.40). Similarly to Steps 1 and 2 in the proof of Proposition 4.37

(using Proposition 4.33 and an argument as in Step 2 in the proof of Proposition

4.19), it suffices to find an α P PApBq that satisfies:

p˚q The restriction α|σ of α to any σ P P̄max is strictly convex (on the

induced subdivision of σ).

p:q The restriction α|ρ of α to any ρ P P̄ r1s with rρ ‰ 0 has a well-defined

minpα|ρq Ď ρpZq.

To find an α P PApBq satisfying p˚q, we argue inductively similarly to Step

4 in the proof of Proposition 4.19.
`

B̄, P̄
˘

admits a PA-function satisfying p˚q.

Namely, we can just take ᾱ :“ 0 P PApB̄q. Suppose that an intermediate subdi-

vision pB1
1,P

1
1q (obtained after pulling a sequence of integral points) of

`

B̄, P̄
˘

admits a PA-function α1
1 P PA pB1

1q satisfying p˚q and that we next pull an in-

tegral point v P B1pZq, obtaining a further subdivision pB1
2,P

1
2q. We need to

construct a PA-function α1
2 P PA pB1

2q satisfying p˚q. Let αnew P PA pB1
2q be a

PA-function with value ´1 at v and value 0 at all the other vertices v1 P P 1r0s

2 .

Then kαnew P PA pB1
2q is a well-defined integral PA-function for some k P N, and

for every σ P P 1max
1 that is subdivided by pulling v, pkαnewq|σ is a strictly convex

function on σ. Now for M " k, the PA-function α1
2 :“ kαnew `Mα1

1 on pB1
2,P

1
2q

satisfies p˚q. Repeating the argument over the whole sequence of pulls of integral

points giving rise to pB,Pq, we obtain an α P PApBq satisfying p˚q. There are

multiple ways to ensure that α P PApBq obtained by this procedure satisfies p:q.

The easiest is to just pull all the vertices v P P̄ r0s (in some order) first. □
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Observation 4.43. Similarly to Remark 4.16(1), one can always guarantee

that the singularities of pB,Pcoarq of Construction 4.36 lie at the vertices. To

do that, it is enough to pull all the vertices v P P̄ r0s (in some order) first in the

proof of Proposition 4.42.

We also have an analogue of Corollary 4.20.

Corollary 4.44. Let X̄ Ñ S be a special toric degeneration of K3-s. For

any strongly admissible resolution π : X Ñ X̄, there exists a further logarithmic

modification π1 : X̃ Ñ X with the combined X̃ Ñ X Ñ X̄ a strongly admissible

resolution with D̃ :“ pπ1q´1D simple normal crossings.

Proof. Let pB,Pq be the dual intersection complex of X Ñ S and let

pB̃, P̃q be an integral subdivision of pB,Pq with all the cells σ P P̃max standard

triangles, obtained by pulling a sequence of integral points (such a subdivision

exists by Lemma 4.40). Recall that by [AW, Theorem 2.4.1 and Corollary 2.6.7]

there is a one-to-one correspondence between logarithmic modifications of X Ñ S
and subdivisions of pB,Pq, and let π1 : X̃ Ñ X be the logarithmic modification

corresponding to the subdivision pB̃, P̃q. Alternatively, consider pB̃, P̃q as a

subdivision of
`

B̄, P̄
˘

and use the correspondence of Corollary 4.28 to obtain the

resolution X̃ Ñ X̄. Then X̃ Ñ X̄ factors through X since pB̃, P̃q is an integral

subdivision of pB,Pq. Note that D̃ is simple normal crossings since all the cells

σ P P̃max are standard triangles.

As in the proof of Proposition 4.42, it is enough to find an α̃ P PApB̃q that

satisfies assumptions p˚q and p:q in that proof. By Proposition 4.33 and Corollary

4.28, we have an α P PApBq satisfying p˚q and p:q. But then we can construct

an α̃ P PApB̃q that satisfies assumptions p˚q and p:q by the same argument as in

the proof of Proposition 4.42. □

Remark 4.45. As in Remark 4.21, note that one can often produce strongly

admissible resolutions X Ñ S with D not simple normal crossings using Propo-

sition 4.33, especially in the case that rρ “ 0 for some ρ P P̄ r1s.

Remark 4.46. It is classical that any lattice polygon P admits a subdivi-

sion that is unimodular (i.e. all the maximal cells of the subdivision are stan-

dard triangles) and regular (i.e. the subdivision supports a strictly convex PA-

function), and such a subdivision can be obtained by pulling integral points, see,

e.g. [HPPS, Lemma 2.1]. Lemma 4.40 (showing that there exists a pB,Pq with

all the cells σ P Pmax standard triangles) along with the argument in the proof

of Proposition 4.42 (giving an α P PApBq such that the restriction α|σ of α to
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any σ P P̄max is strictly convex) provide a natural generalization of this fact to

polyhedral manifolds of dimension 2.

4.4. Scattering diagram interpretation of the extended intrinsic

mirror

For any special toric degeneration X̄ Ñ S of K3-s and a strongly admissible

resolution π : X Ñ X̄, we have defined the necessary data of Basic Setup 3.112

in Section 4.3.2. In particular, this gives us the toric degeneration mirror ˇ̄X Ñ

Spec kJtK, the extended intrinsic mirror X̌ Ñ SpeczkrP sJ (here J :“ P zK for

P a well-chosen monoid and K Ď P the face containing the classes of curves

contracted by π), and the basechange of the extended intrinsic mirror by P Ñ

N, β ÞÑ π˚A ¨ β makes sense. The toric degeneration mirror is defined via a

collection of algorithmic scattering diagrams D̄ “
␣

D̄k, k ě 0
(

on
`

B̄, P̄
˘

. As

promised in Remark 3.111, we are going to give a collection of scattering diagrams

DJ :“ tDJk`1 , k ě 0u (that we still call canonical scattering diagrams) on pB,Pq

giving rise to the extended intrinsic mirror. We actually won’t use the existence

of a π-ample PA-generated divisor D1 in Definition 4.29 (satisfying conditions (1)

and (2)) of a strongly admissible resolution, see Remark 4.64(1). Our analysis

will generalize [GHKS, Section 5.3], and we shall often refer to loc. cit. for the

details.

The setup of [GHKS] is that one has a normal crossings degeneration Y Ñ S,
a small contraction Y Ñ Ȳ , and a log étale blowup Ỹ Ñ Y such that Ỹ Ñ S is

simple normal crossings. One then constructs the mirror to Ỹ Ñ S by defining,

for every ideal Ĩ with radical J̃ “ P̃ zK̃ (for, in our terminology, a well-chosen

ideal P̃ with a face K̃) a scattering diagram DĨ , consistent if Y Ñ S is projective.

The construction of [GHKS, Section 5.3] is quite general since it allows an

arbitrary small contraction Y Ñ Ȳ . In particular, it covers our case of interest

if the resolution π : X Ñ X̄ factors as a composition of a small contraction and

a log étale blowup. For a general π : X Ñ X̄, the main difference between our

setup and the setup of [GHKS] is that pB,Pcoarq might have a singularity at

the interior of an edge ρ P P r1s
coar, corresponding to the case that the exceptional

curves Eρ,k, 1 ď k ď rρ of (4.3) are contained in some Dρ,p for 1 ď p ď lρ ´ 1.

We shall need to treat this case separately. We will write ∆ for the singular locus

of the extended affine structure of (4.4) on pB,Pq.

4.4.1. Canonical scattering modulo J. We first define a scattering diagram

DJ that is consistent modulo J and such that X̌DJ
Ñ Spec krP s{J is isomorphic
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to the family X̌J Ñ Spec krP s{J obtained by reducing the extended intrinsic

mirror X̌ Ñ SpeczkrP sJ modulo J .

Notation 4.47. Let τ be a decorated wall type. Following [GHKS, Section

5.3], we will abuse the notation by writing hτ : G Ñ B (or just h : G Ñ B) for

the corresponding tropical map to B (see Remark 3.86).

Remark 4.48. Following [GHKS, Remark 5.20], note that if τ is a decorated

wall type (see Definition 3.85) and M pX, τ q is non-empty, then the curve classes

Apvq are determined by the underlying type τ provided v is a vertex of G with

hτ pvq R ∆. We say that a decorated wall type τ is well-decorated if the decorations

Apvq are as required by τ whenever hτ pvq R ∆. See [GHKS, Remark 5.20] for

details.

First, we modify [GHKS, Definition 5.23] of a slab twig. If there is a singu-

larity vρ,p P P r1s of the affine structure in the interior of an edge ρ̃ P P r1s
coar (with

Pcoar defined as in Construction 4.36) and ρ is one of the connected components

of ρ̃zvρ,p, we say that ρ is a half-edge of Pcoar.

Notation 4.49. For ρ a half-edge of Pcoar and ρ̃ P P r1s
coar the unique edge

containing ρ, we will write rρ, Eρ,k, and Fρ,p for rρ̃, Eρ̃,k, and Fρ̃,p respectively.

Note that if there is a singularity vρ,p P P r1s of the affine structure in the

interior of an edge ρ P P r1s
coar, then Dvρ,p contains p´1q-curves with curve classes

Eρ,k and Fρ,p ´ Eρ,k for 1 ď k ď rρ. If there is no such singularity, then we

only have p´1q-curves with curve classes Eρ,k, 1 ď k ď rρ contained in Dv for

v P P r0s
coar one of the endpoints of ρ.

Definition 4.50. We say that a well-decorated wall type τ “ pG,σ,u,Aq is

a slab twig with curve class Eρ,k (resp. either Eρ,k or Fρ,p ´Eρ,k), weight w, and

length n ě 0 for

(a) ρ an edge (resp. half-edge) of Pcoar such that Eρ,k (resp. either Eρ,k or

Fρ,p ´ Eρ,k)
79 intersects Xρ1 for a ρ1 P P r1s with ρ1 Ď ρ.

(b) v P ∆ X P r0s
coar (resp. v “ vρ,p P ∆zP r0s

coar) such that Eρ,k Ď Dv (resp. either

Eρ,k Ď Dv or Fρ,p ´ Eρ,k Ď Dv).

if:

(1) G has vertices v0, . . . , vn “ vout and edges Ei connecting vi to vi`1 for

i ě 0, so that v0 is univalent and all the other vertices are bivalent.

79Here we confuse the curve classes with the underlying curves.
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(2) σpv0q “ Cv P C∆ and Apv0q “ wEρ,k (resp. either Apv0q “ wEρ,k or

Apv0q “ wpFρ,p ´ Eρ,kq).

(3) hτ pviq P Intpρq for 1 ď i ď n.

(4) For each i, upEiq is wνρ where νρ is a primitive tangent vector to ρ

pointing away from v, when Ei is oriented from vi to vi`1. The same is

true for upLoutq.

Remarks 4.51. (1) As in [GHKS, Remark 5.24], a slab twig is com-

pletely determined by its curve class, length, and weight. If n ą 0, the

vertices v1, . . . , vn map to successive vertices of P r0s along ρ by rigidity.

The curve classes Apviq for i ě 1 are determined by the well-decorated

condition. Note that the length of a slab twig for an edge or half-edge ρ

is bounded by lρ ´ 1 where lρ is the length of ρ.

(2) Definition 4.50 agrees with [GHKS, Definition 5.23] (up to different

notations) if ∆ Ď P r0s
coar. By Observation 4.43, we can always construct

a strongly admissible resolution π : X Ñ X̄ satisfying this property. The

results of [GHKS, Section 5.3] suffice for such resolutions.

We also need the following.

Definition 4.52 ([GHKS, Definition 5.25]). Let τ “ pG,σ,u,Aq be a dec-

orated wall type. We define a sub-wall type of τ as a type τ 1 obtained as follows.

There is an edge E P EpGq such that if we split G at E, we obtain two connected

components G1, G2. Here, splitting at E turns E into a leg for both G1 and G2.

Choose G2 so that vout P V pG2q. Then τ 1 is obtained by restricting σ,u and A

to G1.80 We call E the output edge of the sub-wall type.

Construction 3.89 describes the canonical scattering diagram modulo any

monoid ideal I Ď P with P zI finite. We compute the walls this construction

gives for X Ñ S modulo J . Since P zJ “ K is not finite, it is reasonable to

expect infinitely many non-trivial walls.

Proposition 4.53. The walls given by Construction 3.89 for X Ñ S modulo

J can be described as follows. Let ρ P P r1s
coar be such that the corresponding edge

ρ P P̄ r1s has rρ ‰ 0. Suppose that ρ “ xv, v1y for some v, v1 P P r0s
coar and let

ρ1 :“ xv, vρ,1y, ρ2 :“ xvρ,1, vρ,2y, . . . , ρlρ :“ xvρ,lρ´1, v
1
y

be the edges of P r1s subdividing ρ. Suppose also that the exceptional curves

Eρ,k, 1 ď k ď rρ are contained in Dρ,p0 for some 0 ď p0 ď lρ ´ 1 (here we set

80It follows from [G3, Lemma 8.12] that a sub-wall type is itself a decorated wall type.
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Dρ,0 :“ Dv, Dρ,lρ :“ Dv1 and use similar notations for the corresponding vertices,

as usual) and intersect Dρ,p0`1 at one point (this can be achieved by permuting v

and v1). Let wρ “ zmρ where mρ P Λρ is the integral generator pointing from v1

to v. Then the walls supported on every ρ P P r1s
coar with rρ ‰ 0 are

"

bρp,k,b :“

ˆ

ρp, exp

ˆ

p´1qb´1

b
tbpFρ,p`¨¨¨`Fρ,p0´Eρ,kqw´b

ρ

˙˙

ˇ

ˇ

ˇ

1ďpďp0
1ďkďrρ
bPZą0

*

,

"

bρp0`1,k,b :“

ˆ

ρp0`1, exp

ˆ

p´1qb´1

b
tbEρ,kwbρ

˙˙

ˇ

ˇ

ˇ

1ďkďrρ
bPZą0

*

,

"

bρp,k,b :“

ˆ

ρp, exp

ˆ

p´1qb´1

b
tbpEρ,k`Fρ,p0`1`¨¨¨`Fρ,p´1qwbρ

˙˙

ˇ

ˇ

ˇ

p0`1ăpďlρ
1ďkďrρ
bPZą0

*

,

(4.5)

and all the other walls are trivial.

Proof. By birational invariance of punctured log Gromov-Witten invariants

(see [J, Theorem 1.4]) and Corollary 4.44, we may assume that D is simple

normal crossings (note that the map X̃ Ñ X of Corollary 4.44 does not resolve

any curve classes appearing in the description of walls (4.5)). In particular, all the

irreducible components of X0 are Cartier, and we have well-defined intersection

numbers β ¨Di for β P P and Di, 1 ď i ď m an irreducible component of X0. We

use the notations of Construction 3.89.

Let τ “ pτ,Aq be a decorated wall type with total curve class A P P zJ “ K

and Wτ ‰ 0. We will show that τ is necessarily a slab twig. Let h : G Ñ B be

the corresponding tropical map (using Notation 4.47). We proceed inductively

on the number of vertices of G. This is similar to the argument in Step I in the

proof of [GHKS, Theorem 5.7].

The base case is that G consists of a single vertex vout, necessarily with adja-

cent leg Lout. By the balancing condition, we must have v :“ hpvoutq P ∆. There

are two cases: either v P ∆ X P r0s
coar or v “ vρ,p0 P ∆zP r0s

coar. In the first case,

τ is a slab twig by an argument as in Step I in the proof of [GHKS, Theorem

5.7] (note that case (1) in that argument does not occur, and in case (3), C 1

is necessarily the unique curve of class Eρ,k for some 1 ď k ď rρ). So we may

assume v “ vρ,p0 P ∆zP r0s
coar. Let f : Co Ñ X be a punctured curve of class A P K

contributing to Wτ . Then its image C 1 is a genus 0 connected curve contracted

by π : X Ñ X̄ and satisfying C 1 Ď Dv. Let ρ1, ρ2 be the two half-edges of Pcoar

containing v “ vρ,p0 and let Sρ1 , Sρ2 be the corresponding irreducible components

of BDv. Let Sρ1 , S1, . . . , Sr, Sρ2 , S
1
1, . . . , S

1
s be a cyclic ordering of the irreducible

components of BDv.
81 Then C 1 is one of the following:

81Our notations here are different from Step I in the proof of [GHKS, Theorem 5.7].
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(1) C 1 Ď
Ťr
i“1 Si or C

1 Ď
Ťs
j“1 S

1
j is a chain of curves contained in BDv.

(2) C 1 is a fibre of π|Dv : Dv Ñ P1 and A is a multiple of the fibre class Fρ,p.

(3) C 1 is of the form C 1 “ C 1
1 YC 1

2 where C
1
1 is the unique curve of class Eρ,k

and C 1
2 is the unique curve of class Fρ,p0 ´ Eρ,k for some 1 ď k ď rρ.

(4) C 1 is the unique curve of class Eρ,k for some 1 ď k ď rρ.

(5) C 1 is the unique curve of class Fρ,p0 ´ Eρ,k for some 1 ď k ď rρ.

In cases (1-3), there exist (distinct) irreducible components D1 and D2 of X0 such

thatD1XC 1 andD2XC 1 are one-point sets. As in case (2) of the argument in Step

I in the proof of [GHKS, Theorem 5.7], [GS7, Corollary 1.14] (or its analogue

[G3, Proposition 2.1] for irreducible components of C 1) implies that f : Co Ñ X

must have at least two punctured points, mapping to D1 X C 1 and D2 X C 1. So

these cases do not occur. Therefore, C 1 is as in case (4), or C 1 is as in case (5).

In particular, τ is a slab twig.

Suppose our induction hypothesis is true when G has ă n vertices, and assume

τ is now given with G having n vertices. If τ1, . . . , τr are the sub-wall types

adjacent to vout, these are all slab twigs by the induction hypothesis. We have

two cases:

(1) hpvoutq lies in the interior of a half-edge ρ.

(2) hpvoutq “ v P ∆ X P r0s
coar.

Here it is crucial that our setup does not allow a slab twig τ 1 of Definition 4.50

to “end” at vρ,p0 P ∆zP r0s
coar (i.e. to have hpτ 1

outq an edge of P r1s containing

vρ,p P ∆zP r0s
coar). But then τ is a slab twig by arguing in (1) and (2) exactly as

in cases (1) and (2) of the induction argument in Step I in the proof of [GHKS,

Theorem 5.7] respectively (one needs to adjust [GHKS, Construction 5.34] and

[GHKS, Theorem 5.37] to our setup, see Steps 2 and 3 in the proof of Proposition

4.62 below).

It remains to compute the contributions of the slab twigs. It is clear that

[GHKS, Lemma 5.36] holds in our setup (with all µj “ 1 since X0 is reduced).

We have the following cases:

(I) τ is a slab twig with curve class Eρ,k for some 1 ď k ď rρ, weight

b P Zą0 and length n “ 0. We have kτWτ “
p´1qb´1

b
and A “ bEρ,k

by [GHKS, Lemma 5.36]. Further, it is immediate from Definition 4.50

of a slab twig that hpτoutq “ ρp0`1 and uτ :“ upLoutq “ ´bmρ. We have

indpτ q “ 1 by Observation 3.88. By Construction 3.89, the wall type τ

defines a wall

bρp0`1,k,b :“

ˆ

ρp0`1, exp

ˆ

p´1qb´1

b
tbEρ,kwbρ

˙˙

.



160 4. PROOF OF CONJECTURE 1.7 FOR TORIC DEGENERATIONS OF K3-S

(II) τ is a slab twig with curve class Eρ,k for some 1 ď k ď rρ, weight

b P Zą0 and length 1 ď n ď lρ ´ pp0 ` 1q. We have kτWτ “
p´1qb´1

b
and

A “ b pEρ,k ` Fρ,p0`1 ` ¨ ¨ ¨ ` Fρ,p0`nq by [GHKS, Lemma 5.36]. Further,

it is immediate from Definition 4.50 of a slab twig that hpτoutq “ ρp0`n`1

and uτ :“ upLoutq “ ´bmρ. We have indpτ q “ 1 by Observation 3.88. Set

p :“ p0 ` n ` 1. By Construction 3.89, the wall type τ defines a wall

bρp,k,b :“

ˆ

ρp, exp

ˆ

p´1qb´1

b
tbpEρ,k`Fρ,p0`1`¨¨¨`Fρ,p´1qwbρ

˙˙

.

(III) τ is a slab twig with curve class Fρ,p0 ´ Eρ,k for some 1 ď k ď rρ,

weight b P Zą0 and length n “ 0. Arguing as in (I), this case contributes

a wall

bρp0 ,k,b :“

ˆ

ρp0 , exp

ˆ

p´1qb´1

b
tbpFρ,p0´Eρ,kqw´b

ρ

˙˙

.

(IV) τ is a slab twig with curve class Fρ,p0 ´ Eρ,k for some 1 ď k ď rρ,

weight b P Zą0 and length 1 ď n ď p0 ´ 1. Arguing as in (II), this case

contributes a wall

bρp,k,b :“

ˆ

ρp, exp

ˆ

p´1qb´1

b
tbpFρ,p`¨¨¨`Fρ,p0´Eρ,kqw´b

ρ

˙˙

for p :“ p0 ´ n.

The collection of walls of (I-IV), varied in all the relevant parameters, defines

exactly the walls of (4.5). □

We define DJ by grouping the walls of Proposition 4.53 with the same support

together. This procedure is similar to Remark 3.8(2), but now we have countably

many walls with the same support.

Construction 4.54. In the notations of Proposition 4.53, we define DJ as

follows. Let ρ P P r1s
coar with rρ ‰ 0 and fix a p with 1 ď p ď p0. We compute the

infinite product of the wall functions over the walls
␣

bρp,k,b | 1 ď k ď rρ, b P Zą0

(

supported on ρp:

ź

1ďkďrρ, bPZą0

fbρp,k,b “
ź

1ďkďrρ, bPZą0

exp

ˆ

p´1qb´1

b
tbpFρ,p`¨¨¨`Fρ,p0´Eρ,kqw´b

ρ

˙

“

“
ź

1ďkďrρ

exp

˜

ÿ

bPZą0

p´1qb´1

b
tbpFρ,p`¨¨¨`Fρ,p0´Eρ,kqw´b

ρ

¸

“

“
ź

1ďkďrρ

exp
`

log
`

1 ` tFρ,p`¨¨¨`Fρ,p0´Eρ,kw´1
ρ

˘˘

“
ź

1ďkďrρ

`

1 ` tFρ,p`¨¨¨`Fρ,p0´Eρ,kw´1
ρ

˘

.
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Note that the product is a polynomial function, so we can use it as a wall function.

Instead of the infinitely many walls
␣

bρp,k,b | 1 ď k ď rρ, b P Zą0

(

, we define a

single wall supported on ρp:

bρp :“

˜

ρp,
ź

1ďkďrρ

`

1 ` tFρ,p`¨¨¨`Fρ,p0´Eρ,kw´1
ρ

˘

¸

.

Similarly, for p “ p0 ` 1, the infinite product of the wall functions over the walls
␣

bρp0 ,k,b | 1 ď k ď rρ, b P Zą0

(

supported on ρp0 is:
ź

1ďkďrρ, bPZą0

fbρp0 ,k,b
“

ź

1ďkďrρ

`

1 ` tEρ,kwρ
˘

and we define a single wall supported on ρp0 :

bρp0 :“

˜

ρp0 ,
ź

1ďkďrρ

`

1 ` tEρ,kwρ
˘

¸

.

Finally, for p with p0 ` 1 ď p ď lρ, the infinite product of the wall functions over

the walls
␣

bρp,k,b | 1 ď k ď rρ, b P Zą0

(

supported on ρp is:
ź

1ďkďrρ, bPZą0

fbρp,k,b “
ź

1ďkďrρ

`

1 ` tEρ,k`Fρ,p0`1`¨¨¨`Fρ,p´1wρ
˘

and we define a single wall supported on ρp:

bρp :“

˜

ρp0 ,
ź

1ďkďrρ

`

1 ` tEρ,k`Fρ,p0`1`¨¨¨`Fρ,p´1wρ
˘

¸

.

We set:

DJ :“
␣

bρp | ρ P P r1s
coar with rρ ‰ 0, 1 ď p ď lρ

(

.

See Figure 4.16 for an example of DJ .

Note thatDJ has finitely many walls, so it is a well-defined scattering diagram.

We need to check that DJ is consistent and recovers the extended intrinsic mirror

X̌ Ñ SpeczkrP sJ modulo J .

Proposition 4.55. DJ is a consistent scattering diagram and X̌DJ
Ñ

Spec krP s{J is isomorphic to the family X̌J Ñ Spec krP s{J obtained by reducing

the extended intrinsic mirror X̌ Ñ SpeczkrP sJ modulo J .

Proof. Consistency of DJ follows from the fact that its only walls are slabs.

Alternatively, note that for any l ě 1, the ideal J ` ml has a finite complement

in P and Construction 4.54 implies that DJ agrees with the scattering diagram

DJ`ml of Construction 3.89 modulo J `ml. Moreover, the ideals J `ml for l ě 1
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form an inverse system with limit J so consistency of DJ follows from consistency

of all the DJ`ml for l ě 1 (see Theorem 3.90 or [GS8, Theorem 5.2]).

The families X̌D
J`ml

Ñ Spec krP s{pJ ` mlq for l ě 1 form an inverse system

with limit X̌DJ
Ñ Spec krP s{J , so to prove the second claim it is enough to

check that X̌D
J`ml

Ñ Spec krP s{pJ ` mlq is isomorphic to the family X̌J`ml Ñ

Spec krP s{
`

J ` ml
˘

obtained by reducing the extended intrinsic mirror X̌ Ñ

SpeczkrP sJ modulo J ` ml. But J ` ml is an ideal with a finite complement

in P , so this follows by [GS8, Theorem 6.1]. □

4.4.2. Canonical scattering modulo Jk`1, k ě 0. By the same reasoning as

in Section 4.4.1, to define DJk`1 , k ě 0, we need to combine certain walls with

the same support to get a finite scattering diagram. The idea is to group the

wall types that only differ by slab twigs. We copy the precise definitions from

[GHKS, Section 5.3] (with our modified definition of a slab twig and different

notations).

Definition 4.56. Let τ be a well-decorated wall type. A slab twig of τ is a

sub-wall type of τ (see Definition 4.52) which is:

(1) A slab twig in the sense of Definition 4.50.

(2) Maximal in the sense that it is not a sub-wall type of another sub-wall

type of τ , which is also a slab twig.

Notation 4.57. For a (decorated) slab type τ and v P V pGq, we denote

ṽ :“ hτ pvq.

Definition 4.58. We say that two decorated wall types τ1, τ2 are slab equiv-

alent if the following holds. There exist subgraphs G1
i Ď Gi obtained by deleting

all slab twigs of τi and their output edges, and an isomorphism ϕ : G1
1 Ñ G1

2

preserving σ,u, and A. Further, if v P V pG1
1q, ṽ P ∆, ρ is either a half-edge or an

edge (if no half-edge exists) of Pcoar containing ṽ, and k is a fixed integer with

1 ď k ď rρ, let w
1
j , 1 ď j ď n1 be the weights of the slab twigs for v and ρ of

curve class Eρ,k (or Fρ,p ´ Eρ,k if ṽ “ vρ,p and Eρ,k intersects Xρ1 for ρ1 P P r1s

such that ρ1 Ę ρ). Similarly, let w2
j , 1 ď j ď n2 be the weights of the slab twigs

adjacent to ϕpvq of the same curve class. Then we require

n1
ÿ

j“1

w1
j “

n2
ÿ

j“1

w2
j .

Given a decorated wall type τ , we write rτ s for its slab equivalence class.



4.4. SCATTERING DIAGRAM INTERPRETATION 163

Definition 4.59. A decorated slab type is a decorated wall type τ̃ “

pG̃, σ̃, ũ, Ãq such that, for each vertex v P V pG̃q not contained in a slab twig

of τ̃ , there is at most one slab twig adjacent to v with any fixed curve class

(either Eρ,k or Fρ,p ´ Eρ,k).

If a decorated slab type is itself a slab twig, we call the decorated slab type

trivial.

Remark 4.60. It is easy to see that for every decorated wall type τ , there

exists a unique slab type τ̃ representing the slab equivalence class rτ s. Conversely,

given a decorated slab type τ̃ it is easy to describe all the decorated wall types

τ giving rise to τ̃ , see [GHKS, Construction 5.30].

We define DJk`1 , k ě 0 following [GHKS, Definition 5.31] (with the same

remarks as in Remarks 3.91, i.e. we define a scattering diagram on B instead of

CB).

Construction 4.61. For τ̃ a decorated slab type, we write rτ̃ s for the set of

isomorphism classes of decorated wall types which give rise to τ̃ . For a non-trivial

decorated slab type τ̃ , set

Wτ̃ :“
ÿ

τPrτ̃ s

kτWτ (4.6)

and

dτ :“
´

hpτoutq X g´1
tropp1q, exp

`

Wτ̃ t
Az´ũpLoutq

˘indpτ q
¯

where A is the total class of any τ P rτ̃ s and indpτ q is as in Definition 3.87.

Let k ě 0. We define

DJk`1 :“ DJ Y

"

dτ̃

ˇ

ˇ

ˇ

τ̃ an isomorphism class of a non-trivial decorated slab
type with total curve class lying in P zJk`1, Wτ̃ ‰ 0

*

.

Note that this is consistent with Construction 4.54 for DJ . Indeed, as shown in

the proof of Proposition 4.53, for a decorated wall type τ with total curve class

A P P zJ “ K one has Wτ “ 0 unless τ is a slab twig (i.e. a trivial slab type).

Proposition 4.62. For every k ě 0, DJk`1 is a well-defined consistent scat-

tering diagram.

Proof. Step 1. Since we allow scattering diagrams that don’t satisfy con-

ditions (2) and (3) of Definition 3.7 (see Remark 3.8), it is enough to show

that DJk`1 is finite and consistent. Note that Construction 4.61 implies that

DJk`1 agrees with the scattering diagram DJk`1`ml of Construction 3.89 modulo

Jk`1 ` ml for every l ě 1. So, assuming that DJk`1 is finite, consistency follows

as in the proof of Proposition 4.55, replacing J with Jk`1. It is enough to prove
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that DJk`1 is finite. Moreover, by birational invariance of punctured log Gromov-

Witten invariants (see [J, Theorem 1.4]) and Corollary 4.44, we may assume that

D is simple normal crossings.

Step 2. The crucial ingredients of the proof of the corresponding [GHKS,

Theorem 5.7] are [GHKS, Construction 5.34] and [GHKS, Theorem 5.37], which

give an inductive way to compute the invariants Wτ̃ of (4.6). It is easy to gener-

alize them to our setting. We first explain how to modify [GHKS, Construction

5.34].

Fix a non-trivial decorated slab type τ̃ “ pG̃, σ̃, ũ, Ãq with Wτ̃ ‰ 0 and let

h̃ : G̃ Ñ B be the unique tropical map of type τ̃ . Let vout be the vertex in G̃

attached to Lout. Since τ̃ is non-trivial, it is not a slab twig. Write the sub-wall

types adjacent to vout as τ̃
1
1, . . . , τ̃

1
p1 , τ̃1, . . . , τ̃p where the τ̃

1
i are all slab twigs and

the τ̃j are not slab twigs. We assume that τ̃ 1
i has associated curve class Eρi,ki (or

Fρi,pi ´Eρi,ki) and weight wi. Let E
1
1, . . . , E

1
p1 , E1, . . . , Ep be the edges connecting

vout to τ̃ 1
1, . . . , τ̃

1
p1 , τ̃1, . . . , τ̃p respectively. Let x :“ h̃pvoutq and denote by σx the

minimal cell of Pcoar containing x. We use similar notations for a decorated wall

type τ P rτ̃ s with τ “ pG,σ,u,Aq, denoting the adjacent sub-wall types to vout
by τ1, . . . , τr and the edges attaching them to vout by E1, . . . , Er.

[GHKS, Construction 5.34] associates to τ̃ and τ Looijenga pairs pŶx, D̂xq

and pŶ 1
x, D̂

1
xq respectively. Moreover, it defines decorated types τ̃out “

pG̃out, σ̃out, ũout, Âxq (with V pG̃outq “ tvoutu, EpG̃outq “ ∅, LpG̃outq “

tE1, . . . , Ep, Loutu) and τout “ pGout,σout,uout, Â
1
xq (with V pGoutq “ tvoutu,

EpGoutq “ ∅, LpGoutq “ tE1, . . . , Er, Loutu) of log maps to pŶx, D̂xq and pŶ 1
x, D̂

1
xq

respectively. For τ , the construction follows [G3, Construction 8.13], and for τ̃ ,

one gets a modification that takes the slab twigs into account.

We define τ̃out and τout by restricting the corresponding data for τ̃ and τ re-

spectively, as in [GHKS, Construction 5.34]. There are four cases to consider for

the construction of pŶx, D̂xq and pŶ 1
x, D̂

1
xq, and the curve classes Âx P A1pŶxq, Â1

x P

A1pŶ
1
xq.

Case I: x P B0 and there are no slab twigs adjacent to vout. This is

exactly as Case I of [GHKS, Construction 5.34].

Case II: x P B0 but there are slab twigs adjacent to vout. Note that

we have dim σx “ 1 and there exists a half-edge (or edge) ρx with x Ď ρx Ď σx.

Let ρ, ρ1 P P r1s be the two edges contained in ρx and adjacent to the endpoints

of ρx. Note that either every slab twig τ̃i, 1 ď i ď p1 has an edge (or leg if it is

length 0) mapping to ρ or every slab twig τ̃i, 1 ď i ď p1 has an edge (or leg if it

is length 0) mapping to ρ1. We proceed as in Case II of [GHKS, Construction
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5.34] with the modified definitions of ρ and ρ1 (Case II of [GHKS, Construction

5.34] corresponds to the situation that ρx “ σx is an edge). Note that Case II

of [GHKS, Construction 5.34] is more general in the sense that it allows some

slab twigs to have an edge mapping to ρ and some to have an edge mapping to

ρ1. Our construction of π : X Ñ X̄ does not allow that to happen.

Case III: x P ∆ X P r0s
coar. For every half-edge or edge ρ of Pcoar with x

as an endpoint (here we only take edges ρ with Intpρq X ∆ “ ∅), let vρ be the

other endpoint of ρ. Recall that the curve class associated to the twig τ̃ 1
i is Eρi,ki

(or Fρi,pi ´ Eρi,ki). Let ṽi be the image of the univalent vertex of τ̃ 1
i and note

that ṽi “ vρi as otherwise the edge E 1
i is contracted. Let ρ̃ P P r1s be the edge

contained in ρ P Pcoar and containing x. We set Vρ̃ :“ tτ̃ 1
i | ρ “ ρiu and proceed

as in Case III of [GHKS, Construction 5.34] with the modified definition of Vρ̃
(again, Case III of [GHKS, Construction 5.34] corresponds to the situation that

all the ρ containing x are edges).

Case IV: x “ vρ,p P ∆zP r0s
coar. This case does not appear in [GHKS]. Note

that there are no slab twigs adjacent to vout as otherwise the edges E 1
1, . . . , E

1
p1

are contracted. We can again proceed as in Case III of [GHKS, Construction

5.34].

Explicitly, following the notations of [GHKS, Construction 5.34], let Yx
82 be

the irreducible component of X0 corresponding to x P P r0s and let pBx,Σxq be

the tropicalization of Yx (with the log structure coming from the divisor Dx :“

BYx). Note that by construction and the assumption that τ̃ is a wall type,

for any adjacent edge or leg E to vout P V pG̃q, h̃pEq is one-dimensional and

ρE :“ Txph̃pEqq is a ray in Bx. Then let Σ̂x be any refinement of Σx such that:

(1) Every top-dimensional cone in Σ̂x is a strictly convex rational polyhedral

cone integral affine isomorphic to the standard cone R2
ě0.

(2) The rays ρEi
, 1 ď i ď q and ρLout are one-dimensional cones of Σ̂x.

The refinement Σ̂x of Σx leads to a toric blowup π1 : Ȳx Ñ Yx, see [GHK,

Lemma 1.6]. This comes with the boundary divisor D̄x, which is the strict trans-

form of Dx. For L P LpG̃outq, write wL for the index of ũoutpLq, i.e. ũoutpLq is wL
times a primitive tangent vector. This represents the order of tangency imposed

by the contact order ũoutpLq with the corresponding divisor. Define Āx P A1pȲxq

to be a class such that π1
˚pĀxq “ Ãpvoutq P A1pYxq and, for τ a ray in Σ̂x,

Āx ¨ D̄τ “
ÿ

LPLpG̃outq, σ̃outpLq“τ

wL. (4.7)

82We usually denote this by Dx.
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By [G3, Lemma 8.14], Āx is unique if it exists. If Āx exists, we define

pŶx, D̂xq “ pŶ 1
x, D̂

1
xq :“ pȲx, D̄xq and Âx “ Â1

x :“ Āx. This corresponds to

the construction of Case III of [GHKS, Construction 5.34] since there are no

slab twigs adjacent to vout.

Step 3. As in [GHKS, Construction 5.34], the Construction of Step 2 gives

rise to invariants Nτ̃out and Nτout via [GHKS, Definition 5.32] or [G3, (8.3)]. In

cases III and IV, if a curve class Āx satisfying [GHKS, (5.21)] (which reduces to

(4.7) in Case IV) does not exist, we define Nτ̃out “ Nτout :“ 0. There are some

strong vanishing results on Nτ̃out and Nτout (see [GHKS, Lemma 5.33]) that are

crucial to the proof of finiteness.

[GHKS, Theorem 5.37] gives an inductive way to compute the invariants Wτ̃

of (4.6). It is the analogue of [G3, Theorem 8.15], which does the same for τ . We

claim that the theorem still works in our setup. Let τ̃ be a non-trivial decorated

slab type. Let w̃out be the index of ũoutpLoutq in the tangent lattice to σ̃outpLoutq

in the notations of Step 2. Then

indpτ̃ qWτ̃ “
w̃outNτ̃out

śp
i“1pindpτ̃iqWτ̃iq

|Autpτ̃1, . . . , τ̃pq|
(4.8)

where the group Autpτ̃1, . . . , τ̃pq is the set of permutations σ of t1, . . . , pu such

that τ̃i and τ̃σpiq are isomorphic decorated slab types. To check that (4.8) applies

in our setup, we proceed as in the proof of [GHKS, Theorem 5.37] until the

case-by-case analysis. Then our Cases I, II, and III follow exactly as Cases I, II,

and III in the proof of [GHKS, Theorem 5.37] respectively. In Case IV, note

that x is integral point of pB,Pq, so indpτ̃ q “ 1 and indpτ̃iq “ 1 for 1 ď i ď p.

Further, there are no slab twigs, so it is enough to check that woutNτout “ w̃outNτ̃out

where wout is the index of uoutpLoutq in the tangent lattice to σoutpLoutq. Since x is

integral point of pB,Pq, we have wout “ w̃out. Further, Ŷx “ Ŷ 1
x, so Nτout “ Nτ̃out .

Therefore, (4.8) applies in our setup.

Step 4. To prove thatDJk`1 is finite, we will argue as in the proof of [GHKS,

Theorem 5.7] but will need to consider Case IV separately. Denote the polariza-

tion on X̄ by H to keep with the notations of [GHKS, Theorem 5.7] (we usually

denote it by A). There exists a k P N such that if A P P and A ¨π˚pHq ą k, then

A P Jk`1 (here π is the resolution π : X Ñ X̄ as usual). Call A ¨ π˚pHq the degree

of the curve class A. We then go by induction on degree, showing that there are

at most a finite number of non-trivial decorated slab types τ̃ with Wτ̃ ‰ 0 and

the total curve class Ã of τ̃ of degree at most k.

Note that if the degree of A P P is 0, then A P K. As shown in the proof of

Proposition 4.53, for a decorated wall type τ with total curve class A P K one
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has Wτ “ 0 unless τ is a slab twig (i.e. a trivial slab type). Since the DJ of

Construction 4.54 is finite, it suffices to prove the induction step.

Assume a finite number of non-trivial decorated slab types τ̃ with Wτ̃ ‰ 0

and total curve class of degree ă k. We need to show that there are only a finite

number of non-trivial decorated slab types τ̃ of degree k with Wτ̃ ‰ 0.

First, we say that τ̃ has a tail if there exists a sequence of vertices v0, . . . , vn “

vout of G̃ with n ě 1 and edges E1, . . . , En with Ei having endpoints vi´1 and vi,

satisfying the following properties:

(1) vi is bivalent for i ě 1.

(2) h̃pviq ‰ ∆ for i ě 1 (unlike [GHKS], ∆ includes singularities contained

in the interiors of the edges ρ P P r1s
coar).

(3) There exists a cell σ P Pcoar such that σ̃pEiq Ď Cσ for each i and

σ̃pLoutq Ď Cσ.

As in Step II of the proof of [GHKS, Theorem 5.7], it follows that it is enough

to consider slab types without a tail. Let τ̃ be such a decorated slab type. We

set x :“ h̃pvoutq and let σx be the minimal cell of Pcoar containing x as before.

We have a case-by-case analysis.

Case I: dimσx “ 2. This corresponds to Case I in Step 2 above and follows

exactly as in Case I of the proof of [GHKS, Theorem 5.7].

Case II: dimσx “ 1 and x P B0. This corresponds to Case II in Step 2

above and follows exactly as in Case II of the proof of [GHKS, Theorem 5.7].

Case III: dimσx “ 2. This corresponds to Case III in Step 2 above and

follows exactly as in Case III of the proof of [GHKS, Theorem 5.7].

Case IV: x “ vρ,p P ∆zP r0s
coar. This corresponds to Case IV in Step 2 above.

The argument will use ideas from both Case II and Case III of the proof of

[GHKS, Theorem 5.7]. Let τ̃1, . . . , τ̃p be the adjacent sub-wall types to vout as

before (recall that there are no slab twigs adjacent to vout in this case). We need

to show that there are a finite number of choices for τ̃1, . . . , τ̃p and Ãpvoutq. Note

that we have p ě 1 since otherwise τ̃ is a trivial slab type. Note also that the

total degree of each τ̃i is positive (indeed, otherwise τ̃i is a trivial slab type, a

contradiction).

If p ě 2, then the degree of each τ̃i is smaller than k so there are a finite

number of choices for τ̃1, . . . , τ̃p. If p “ 1 and the degree of τ̃1 is ă k, again

there are a finite number of choices for τ̃1. So, in these cases, it suffices to show

that there are a finite number of choices for Ãpvoutq (we will consider the case

that p “ 1 and the degree of τ̃1 is k separately). To show that there are a finite

number of choices for Ãpvoutq it is enough to prove that there are a finite number
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of choices for Āx of degree ď k (with degree measured with respect to the pullback

of H to Ȳx).

Consider the contraction g : Ȳx Ñ P1 induced by π1 : Ȳx Ñ Yx and π : X Ñ X̄,

and note that g˚H is a multiple of the fibre class Fρ,p. We claim that there

exist l P N and aτ P N for τ a ray in Σ̂x such that W :“ lg˚H `
ř

τ aτD̄τ is

ample. Let ρ1, ρ2 be the two half-edges of Pcoar containing x “ vρ,p and let

τρ1 , τρ2 be the corresponding rays of Σ̂x. Note that either D̄τρ1
¨ Eρ,k ą 0 or

D̄τρ2
¨ Eρ,k ą 0 for all 1 ď k ď rρ, and that g˚H ¨ D̄τρ1

ą 0, g˚H ¨ D̄τρ2
ą 0. Let

τρ1 , τ1, . . . , τr, τρ2 , τ
1
1, . . . , τ

1
s be a cyclic ordering of the rays of Σ̂x. Choose aτ P N

so that aτ1 " ¨ ¨ ¨ " aτr ą 0, aτ 1
1

" ¨ ¨ ¨ " aτ 1
s

ą 0, aτρ1 “ aτρ2 " maxtaτ1 , aτ 1
1
u, and

choose l " aτρ1 . It follows that W “ lg˚H `
ř

τ aτD̄τ is ample. Moreover,

W ¨ Āx “ lg˚H ¨ Āx `

˜

ÿ

τ

aτD̄τ

¸

¨ Āx ď lk `
ÿ

τ

aτ
`

D̄τ ¨ Āx
˘

is bounded for a fixed decorated slab type τ̃ since τ̃ controls every D̄τ ¨ Āx via

(4.7). By the fact that the Hilbert scheme is of finite type, there are at most a

finite number of possibilities for Āx, as desired.

Suppose now that p “ 1 and the degree of τ̃1 is k. Necessarily, the degree of

Ãpvoutq is 0. A priori, we have

Ãpvoutq “
ÿ

1ďkďrρ

aρ,kEρ,k `
ÿ

τ

bτD̄τ ` bρ,pFρ,p

for some aρ,k P Z and bτ , bρ,p P N. However, if bτ ą 0 for some ray τ in Σ̂x,

the image of every stable log map in M pȲx, τ̃outq contains D̄τ and Nτ̃out “ 0 by

[GHKS, Lemma 5.33(1)]. Hence Wτ̃ “ 0 by (4.8). If aρ,k ą 0, the image of

every stable log map in M pȲx, τ̃outq contains the unique curve C 1 of class Eρ,k
in Ȳx (the preimage under π1 : Ȳx Ñ Yx of the unique curve of class Eρ,k in Yx).

Moreover, C 1 meets D̄x at one point. But then Nτ̃out “ 0 by [GHKS, Lemma

5.33(2)] and Wτ̃ “ 0 by (4.8). Similarly, if aρ,k ă 0, the image of every stable log

map in M pȲx, τ̃outq contains the unique curve C 1 of class Fρ,p ´ Eρ,k in Ȳx and

Wτ̃ “ 0.

So Ãpvoutq “ bρ,pFρ,p is a multiple of the fibre class. This implies

that σ̃outpLoutq and σ̃outpE1q are the rays corresponding to xvρ,p, vρ,p´1y and

xvρ,p`1, vρ,py respectively (in the notations of Proposition 4.53). Further,

ũoutpLoutq “ bρ,pmρ and ũoutpE1q “ ´bρ,pmρ. But then we have σ̃pLoutq “

Cxvρ,p, vρ,p´1y, σ̃pE1q “ Cxvρ,p`1, vρ,py and ũpLoutq “ bρ,pmρ, ũpE1q “ ´bρ,pmρ by

the construction of τ̃out. This immediately implies that for every τ̃1 there exists a

unique τ̃ inducing τ̃1. Note that this is similar to the argument that it is enough
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to consider slab types without a tail in Step II of the proof of [GHKS, Theorem

5.7]. The point is that even though there is no notion of τ̃ being well-decorated

at x P ∆, Ãpvoutq “ bρ,pFρ,p is still controlled by the underlying wall type τ̃ (since

bρ,pFρ,p is the pullback of a curve class in a toric variety).

To conclude the proof, it is enough to show that there are a finite number of

choices for τ̃1. Indeed, we have x1 :“ h̃1pv1,outq “ vρ,p`1 (with obvious notations).

So either dimσx1 “ 1 and x1 P B0 (if p ` 1 ‰ lρ) or dimσx1 “ 2 (if p ` 1 “ lρ).

But then there are a finite number of choices for τ̃1 by Case II or Case III

respectively. □

It follows from Construction 4.61 that the scattering diagram DJk`1 is com-

patible with DJk (in the sense of Definition 3.9) for k ě 1, so the families

X̌D
Jk`1

Ñ Spec krP s{Jk`1 for k ě 0 form an inverse system and taking the

limit over this system gives

X̌DJ Ñ SpeczkrP sJ . (4.9)

Finally, we need to check that (4.9) agrees with the extended intrinsic mirror.

Proposition 4.63. The family X̌DJ Ñ SpeczkrP sJ is isomorphic to the ex-

tended intrinsic mirror family X̌ Ñ SpeczkrP sJ .

Proof. It is enough to show that for every k ě 0, X̌D
Jk`1

Ñ Spec krP s{Jk`1

is isomorphic to the family X̌Jk`1 Ñ Spec krP s{Jk`1 obtained by reducing the

extended intrinsic mirror X̌ Ñ SpeczkrP sJ modulo Jk`1. This follows as in the

proof of Proposition 4.55, replacing J with Jk`1 (and using the fact that for every

l ě 1, DJk`1 agrees with the scattering diagram DJk`1`ml of Construction 3.89

modulo Jk`1 ` ml). □

Remarks 4.64. The results of this section allow us to extend the setup of

Conjecture 1.7.

(1) Note that we have not used the existence of a π-ample PA-generated divi-

sor D1 in Definition 4.29 (satisfying conditions (1) and (2)) of a strongly

admissible resolution in this section. So the family X̌DJ Ñ SpeczkrP sJ

is well-defined for any toric, integral, and homogeneous π : X Ñ X̄.

Moreover, it follows from Proposition 4.63 that the extended intrinsic

mirror X̌ Ñ SpeczkrP sJ of (3.65) is also well-defined and isomorphic to

X̌DJ Ñ SpeczkrP sJ . So the results of this section are stronger than the

extension results of Section 3.4 (at least for toric, integral, and homoge-

neous π). As a consequence, we will actually prove Conjecture 1.7 for

any toric, integral, and homogeneous resolution π : X Ñ X̄.
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(2) One can also consider working with non-homogeneous resolutions of Re-

mark 4.26, i.e. allowing Eρ,k, 1 ď k ď rρ (for a fixed ρ P P̄) to be

contained in different irreducible components of X0. This requires a

more general definition of a slab twig, and the argument in Case IV in

the proof of Proposition 4.62 (as well as the induction step in the proof of

Proposition 4.53) is more involved. Since non-homogeneous resolutions

are often non-projective, we can’t appeal to Construction 3.89 to claim

that DJk`1 is consistent in this case.

4.5. Relating the canonical and algorithmic scattering diagrams

We are ready to prove Conjecture 1.7 for a special toric degeneration X̄ Ñ S
of K3-s. Let π : X Ñ X̄ be a strongly admissible resolution (or just a toric,

integral, and homogeneous resolution, see Remark 4.64(1)). We are going to

relate the collection of scattering diagrams DJ :“ tDJk`1 , k ě 0u giving rise to

the extended intrinsic mirror X̌ Ñ SpeczkrP sJ and the collection of scattering

diagrams D̄ “
␣

D̄k, k ě 0
(

giving rise to the toric degeneration mirror ˇ̄X Ñ

Spec kJtK.

4.5.1. Basechange of the canonical scattering diagram. First, we interpret

the basechange h : P Ñ N, β ÞÑ π˚A ¨ β at the level of scattering diagrams.

Construction 4.65. We define a collection of scattering diagrams D “

tDk, k ě 0u on pB,Pq with monoid N and I0 “ m Ď N as follows.

We let D0 :“ Dptq have walls
`

bρp , h
`

fbρp
˘˘

for bρp a wall of DJ of Construction 4.54. We still write bρp for these walls. Note

that we have
hpbρpq “

`

1 ` w´1
ρ

˘rρ
, 1 ď p ď p0

hpbρpq “ p1 ` wρq
rρ , p0 ` 1 ď p ď lρ

(4.10)

since π˚A ¨ β “ 0 for β P K.

More generally, we let Dk :“ Dptk`1q have walls

pp, hpfpq mod ptk`1
qq

for p a wall of DJk`1 of Construction 4.61. Again, we still denote such a wall by p.

Here the reduction modulo ptk`1q is necessary to guarantee that Dk is compatible

with Dk´1 for k ě 1.

We define the MPA function φA on pB,Pq via its kinks by setting κρ :“

Xρ ¨ π˚A. Note that this is compatible with the basechange.



4.5. RELATING THE SCATTERING DIAGRAMS 171

NowDk is a consistent scattering diagram since consistency in codimensions 0,

1 and 2 follows trivially from the corresponding consistency statement for DJk`1

by interpreting all the relevant monomials as elements of krts via the basechange

and reducing the equations modulo ptk`1q. By taking the inverse limit over X̌Dk
Ñ

Spec krts{ptk`1q for k ě 0 we define a family X̌D Ñ Spec kJtK.

Proposition 4.66. The basechange of the extended intrinsic mirror family

X̌ Ñ SpeczkrP sJ by h : P Ñ N, β ÞÑ π˚A ¨ β is isomorphic to the family

X̌D Ñ Spec kJtK of Construction 4.65.

Proof. By the construction of X̌o (see Section 3.1.5 and [GHS, Proposition

2.4.1]), the basechange of the family X̌o
D

Jk`1
via h is isomorphic to the family

X̌o
hpDJk`1q

with h pDJk`1q a scattering diagram on pB,Pq with monoid N, the
MPA function φA of Construction 4.65, and walls pp, hpfpqq for p a wall of DJk`1

(with no reduction modulo ptk`1q). Indeed, changing the scattering diagram from

DJk`1 to h pDJk`1q corresponds to interpreting the monomials in Ru and Rb as

elements of krts in the gluing construction of X̌o.

Note that the scattering diagram hpDJk`1q is defined over the ideal ptmq for

m :“ max
␣

π˚A ¨ β | β P P zJk`1
(

but it agrees with Dk modulo ptk`1q. So the family X̌o
hpDJk`1q

agrees with X̌o
Dk

modulo ptk`1q. But then as in the proof of Proposition 3.16, we see that also

X̌hpDJk`1q agrees with X̌Dk
modulo ptk`1q. This implies the result by taking the

limit of both families over ptk`1q for k ě 0. □

4.5.2. The image of D under Φ. To prove Conjecture 1.7, we show that

pB,Dkq is equivalent to the algorithmically constructed pB̄, D̄kq of Theorem 3.35.

To do that, we will define a scattering diagram ΦpDkq on
`

B̄, P̄
˘

that is consistent

and equivalent to pB,Dkq, and appeal to the uniqueness statement of Theorem

3.35. It will be more convenient to work with a scattering diagram on a refinement

of
`

B̄, P̄
˘

.83

Notation 4.67. Let pB,Pq be a polyhedral manifold of dimension 2 and let

P 1 be a refinement of the polyhedral decomposition P on B. Then we denote

83If all the singularities of pB,Pcoarq are contained at the vertices, then one can argue

in terms of ΦpDkq directly. However, singularities at the edges make it more convenient to

work with a refinement to check consistency at the joints corresponding to these singularities.

Note from Observation 4.43, that one can always construct a strongly admissible resolution

π : X Ñ X̄ of X̄ Ñ S such that the singularities of pB,Pcoarq are at the vertices.
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by P 1r0szP r0s the set of vertices of P 1r0s that are not vertices of P r0s and denote

by P 1r1szP r1s the set of edges of P 1r1s that do not subdivide an edge of P r1s.

Construction 4.68. We let P̄ 1 be the obvious refined polyhedral decom-

position on B̄ such that pB,Pq –
`

B̄, P̄ 1
˘

as polyhedral complexes. Note that
`

B̄, P̄ 1
˘

is an affine manifold with singularities, and the singularities only lie at

the interiors of the edges ρ1 P P̄ 1r1s (since we assumed that the singularities of
`

B̄, P̄
˘

lie at irrational points of the edges). Moreover, by Remark 3.27, for every

singularity xρ P Intpρq, ρ P P̄ r1s, we are free to choose a ρ1 P P̄ 1r1s, ρ1 Ď ρ such

that xρ P Intpρ1q. We will fix particular choices of such ρ1 Ď ρ in Construction

4.69. The PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

can be viewed as a map to
`

B̄, P̄ 1
˘

. This procedure is inverse to the coarsening Pcoar of P of Constructions

4.23 and 4.36.

Define the MPA function φ1
A on

`

B̄, P̄ 1
˘

via its kinks by setting κρppφ1
Aq :“

κρpφAq for ρp P P̄ 1r1s, 1 ď p ď lρ subdividing a ρ P P̄ r1s (using the notations of

Construction 4.54) and κρ1pφ1
Aq :“ 0 for ρ1 P P̄ 1r1szP̄ r1s (using Notation 4.67).

We will typically denote the edges of P̄ 1r1s and the corresponding edges of P r1s

by ρ1 or ρp, and reserve the notation ρ for edges of P̄ r1s and P r1s
coar.

Now, let D̄ be a scattering diagram on
`

B̄, P̄
˘

. Then D̄ defines a scatter-

ing diagram D̄1 on
`

B̄, P̄ 1
˘

by subdividing the walls of D̄ (similarly to Remark

3.8(1)). Note that since κρpφ
1
Aq “ 0 for ρ1 P P̄ 1r1szP̄ r1s, crossing a ρ1 P P̄ 1r1szP̄ r1s

is equivalent (for gluing purposes) to crossing a trivial wall with support ρ1 and

crossing a slab b Ď ρ1 P P̄ 1r1szP̄ r1s is equivalent to crossing a codimension 0 wall

with the same support and wall function. Moreover, since there are no singulari-

ties at the vertices v P P̄ 1r0szP̄ r0s, consistency for the newly-formed codimension

2 joints can be reinterpreted similarly to consistency in codimension 0, see the

proof of Proposition 3.36. So consistency of D̄ is equivalent to consistency of D̄1.

Moreover, D̄1 is equivalent to a scattering diagram on
`

B̄, P̄
˘

obtained by adding

trivial walls with support ρ1 P P̄ 1r1szP̄ r1s to D̄ (assuming that D̄1 is consistent).

But then D̄1 is equivalent to D̄ by Remark 3.18(3), and the two give rise to the

same family by an argument as in Proposition 3.16.

We define a scattering diagram ΦpDkq on
`

B̄, P̄
˘

by defining ΦpDkq1 on
`

B̄, P̄ 1
˘

first.

Construction 4.69. We define a scattering diagram ΦpDkq1 on
`

B̄, P̄ 1
˘

as

follows. For every codimension 0 wall p P Dk, we introduce a wall

Φppq :“ pΦppq,Φpfpqq P ΦpDkq
1



4.5. RELATING THE SCATTERING DIAGRAMS 173

defined as in Construction 4.36 via Construction 4.6. Similarly, for every slab

b P Dk with b Ď ρ1 P P r1szP r1s
coar (using Notation 4.67), we introduce a slab

Φpbq :“ pΦpbq,Φpfbqq P ΦpDkq
1. (4.11)

By Remark 3.27, we may assume that for every ρ P P r1s
coar, the singularity xΦpρq

of Φpρq P P̄ r1s is contained in Φpρp0`1q P P̄ 1r1s (using the notations of Proposition

4.53).84 We have Φpρq “ Φpρq YΦpρq
1 for Φpρq,Φpρq

1
P ˜̄P r1s chosen as in Sections

4.3.2 and 4.2.5. This choice, along with (4.2), ensures that Φpmρq “ mΦpρq (for

Φpmρq defined as in Construction 4.36 via Construction 4.6) and we have

fΦpρq “
`

1 ` wΦpρq

˘rΦpρq , fΦpρq
1 “ z

mΦpρq1ΦpρqfΦpρq “

´

1 ` w´1
Φpρq

¯rΦpρq

.

Moreover, we have Φpρpq Ď Φpρq
1 for 1 ď p ď p0 and Φpρpq Ď Φpρq for p0`2 ď p ď

lρ (since for every ρ P P r1s
coar, we required that the singularity xΦpρq of Φpρq P P̄ r1s

is contained in Φpρp0`1q P P̄ 1r1s).

Now, suppose that b P Dk is a slab with b Ď ρp P P r1s. There are three cases:

(1) Either Φpbq Ď Φpρq, or Φpbq Ď Φpρq
1 and 1 ď p ď p0. We introduce a

slab

Φpbq :“ pΦpbq,Φpfbqq P ΦpDkq
1

defined as in Construction 4.36 via Construction 4.6.

(2) Φpbq Ď Φpρq
1 and p “ p0 ` 1. We introduce a slab

Φpbq
1 :“ pΦpbq, z

mΦpρq1ΦpρqfΦpbqq P ΦpDkq
1.

(3) xΦpρq P IntpΦpbqq. Then ΦpbqzxΦpρq “ Φ̄pbq Y Φ̄pbq1 for some

Φ̄pbq Ď Φpρq X Φpρp0`1q, Φ̄pbq
1

Ď Φpρq
1
X Φpρp0`1q.

We introduce two slabs as follows85:

Φ̄pbq :“ pΦ̄pbq, fΦpbqq P ΦpDkq
1

Φ̄pbq
1 :“ pΦ̄pbq

1, z
mΦpρq1ΦpρqfΦpbqq P ΦpDkq

1

This defines ΦpDkq1. We define the MPA function φ̄1
A on

`

B̄, P̄ 1
˘

as in Construc-

tion 4.68. Note that for any ρ1 P P̄ 1r1szP̄ r1s we have κρ1 “ π˚A ¨ Xρ1 “ 0 since

Xρ1 is contracted by π : X Ñ X̄. It follows that κρ1pφAq “ κΦpρ1qpφ̄
1
Aq for any

ρ1 P P̄ 1r1s, so the construction is compatible with the MPA functions.

84This is not a crucial requirement for the construction but allows for a less cumbersome

definition for images of the slabs b P Dk, b Ď ρp.
85Here we confuse Φ̄pbq and Φ̄pbq1 with their closures.
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We call slabs of the form Φpbq or Φ̄pbq slabs of the first type. We call slabs of

the form Φpbq1 or Φ̄pbq1 slabs of the second type. We will often drop the bar in

the notation for Φ̄pbq and Φ̄pbq1.

Let ΦpDkq be the scattering diagram on
`

B̄, P̄
˘

that is obtained from ΦpDkq1

by replacing the edges ρ1 P P̄ 1r1szP̄ r1s with trivial walls with support ρ1 and

replacing the slabs b Ď ρ1 P P̄ 1r1szP̄ r1s with codimension 0 walls with the same

support and wall functions.

Observations 4.70. It is immediate from Construction 4.69 that:

(1) ΦpDkq1 arises from ΦpDkq by the procedure of Construction 4.68 (here it

is crucial that the walls of D0 satisfy (4.10)). So if ΦpDkq1 is consistent,

then so is ΦpDkq. Moreover, the two are equivalent and give rise to the

same family.

(2) ΦpDkq1 is compatible with ΦpDk´1q
1 and ΦpDkq is compatible with

ΦpDk´1q for k ě 1 (since the same is true for Dk).

(3) ΦpD0q is combinatorially equivalent to D̄0. This is the main motiva-

tion for Construction 4.69 and will be crucial when we appeal to the

uniqueness statement of Theorem 3.35.

In Figure 4.16 on the next page, we give the scattering diagrams DJ , D0,

ΦpD0q1 (to obtain ΦpD0q, remove the vertex v̄151 and replace xv151 , v4y and xv151 , v
16
1 y

with trivial walls), and D̄0 for π : X Ñ X̄ of Figure 4.15 in the neighbourhood of

the edge ρ “ xv1, v5y (or xv̄1, v̄5y for the diagrams on
`

B̄, P̄
˘

and
`

B̄, P̄ 1
˘

). Note

that we have ρp0`1 “ xv1, v
15
1 y.
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p1 ` tE
15
1 wρqp1 ` tE

15
2 wρq

p1 ` tE
15
1 `F15

1 wρqp1 ` tE
15
2 `F15

1 wρq

v1 v5
v151

xv151 , v4y

xv151 , v161 y

DJ

v1 v5

xv151 , v4y

xv151 , v161 y

v151
p1 ` wρq2p1 ` wρq2

D0

p1 ` w´1
ρ q2

p1 ` wρq2

p1 ` wρq2
v̄1 v̄5

xv151 , v4y

xv151 , v161 y

v̄151ΦpD0q
1

p1 ` w´1
ρ q2

p1 ` wρq2
v̄1 v̄5D̄0

Figure 4.16. DJ ,D0,ΦpD0q1, and D̄0 in the neighbourhood of

xv1, v5y of Figure 4.15.
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We check consistency of ΦpDkq.

Proposition 4.71. For every k ě 0, the scattering diagram ΦpDkq is consis-

tent.

Proof. By Remark 4.70(1), it is enough to show that ΦpDkq1 is consistent.

By Definition 3.14 of consistency, we need to check that ΦpDkq is consistent in

codimensions 0, 1, and 2. This will follow from consistency of Dk and Construc-

tion 4.69.

Consistency in codimension 0. Every codimension 0 joint of P̄ 1rn´2s

ΦpDkq1 “

P̄ 1r0s

ΦpDkq1 is of the form Φpjq for j a codimension 0 joint of P rn´2s

Dk
“ P r0s

Dk
. Moreover,

the walls containing Φpjq are of the form Φpp1q, . . . ,Φpprq for p1, . . . , pr the walls

containing j and if σ P Pmax is the maximal cell containing j, then Φpσq P

P̄ 1max is the maximal cell containing Φpjq. Recall from Construction 4.23 (via

Construction 4.6) that Φ induces an isomorphism P`
x – P̄`

Φpxq
for every x P

Intpσq, σ P Pmax. This implies that we have an isomorphism Rσ – RΦpσq and for

any 1 ď i ď r, the automorphism θΦppiq of RΦpσq is the same as the automorphism

θpi of Rσ under this identification. But then θp1 ˝ ¨ ¨ ¨ ˝ θpr “ Id implies that also

θΦpp1q ˝ ¨ ¨ ¨ ˝ θΦpprq “ Id and ΦpDkq1 is consistent in codimension 0.

Consistency in codimension 1. Every joint j P P r0s

Dk
of codimension 1

gives a joint Φpjq P P̄ 1r0s

ΦpDkq1 of codimension 1 and we have Φpjq Ď Φpρ1q P P̄ 1r1s

if j Ď ρ1 P P r1s. We also have joints jspρ :“ xΦpρq for every edge ρ1 of the form

ρp0`1 P P r1s and xΦpρq the singular point of Φpρp0`1q. Moreover, if σ, σ1 P Pmax

are the maximal cells containing ρ1, then Φpσq,Φpσ1q P P̄ 1max are the maximal

cells containing Φpρ1q. Using the conventions of Construction 4.69, all the joints

Φpjq P P̄ 1r0s

ΦpDkq1 of codimension 1 fall into one of the following cases:

Case 1. One of the following holds:

(a) j Ď Intpρ1q, ρ1 P P r1szP r1s
coar (using Notation 4.67).

(b) j Ď Intpρpq, ρp P P r1s and Φpjq Ď IntpΦpρqq for ρ P P r1s
coar the edge

containing ρp.

(c) j Ď Intpρpq, ρp P P r1s for 1 ď p ď p0 and Φpjq Ď IntpΦpρpqq Ď

IntpΦpρq
1
q.

Case 2. j Ď Intpρp0`1q, ρp0`1 P P r1s and Φpjq Ď IntpΦpρp0`1q X Φpρq
1
q.

Case 3. jspρ Ď IntpΦpρp0`1qq of the form jspρ “ xΦpρq.

Here in Cases 1, 2, and 3, the wall functions for the slabs of ΦpDkq1 containing j

arise as in Construction 4.69(1) (or (4.11)), Construction 4.69(2), and Construc-

tion 4.69(3) respectively. We consider these cases one by one.
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Case 1. In this case, the proof of consistency is similar to the proof of

consistency in codimension 0. We have Rσ – RΦpσq and Rσ1 – RΦpσ1q. More-

over, the two slabs Φpb1q,Φpb2q containing Φpjq are of the first type. This im-

plies that we have natural isomorphisms Rb1 – RΦpb1q, Rb2 – RΦpb2q. Then

for b1, p1, . . . , pr, b2, p
1
1, . . . , p

1
s a cyclic ordering of walls around j as in Defini-

tion 3.11, the automorphism θΦppiq of RΦpσq is the same as the automorphism θpi
of Rσ and the automorphism θΦpp1

jq of RΦpσ1q is the same as the automorphism

θp1
j
of Rσ1 under the identifications. Further, the localization homomorphisms

χΦpbiq,Φpσq, χΦpbiq,Φpσ1q for i “ 1, 2 are the same as χbi,σ, χbi,σ1 under the identifica-

tions of rings. Let

Φpθq :“ θΦpprq ˝ θΦppr´1q ˝ ¨ ¨ ¨ ˝ θΦpp1q : RΦpσq Ñ RΦpσq

Φpθ1
q :“ θΦpp1

1q ˝ θΦpp1
2q ˝ ¨ ¨ ¨ ˝ θΦpp1

sq : RΦpσ1q Ñ RΦpσ1q

be defined similarly to θ and θ1 in Definition 3.11. Consistency of Dk around j

means that

pθ ˆ θ1
q ppχb1,σ, χb1,σ1qpRb1qq “ pχb2,σ, χb2,σ1qpRb2q (4.12)

which implies that

pΦpθq ˆ Φpθ1
qq
`

pχΦpb1q,Φpσq, χΦpb1q,Φpσ1qqpRΦpb1qq
˘

“ pχΦpb2q,σ, χΦpb2q,Φpσ1qqpRΦpb2qq

by the discussion above. So ΦpDkq1 is consistent around Φpjq.

Case 2. To prove consistency in this case, note that the two slabs Φpb1q
1,

Φpb2q
1 containing Φpjq are of the second type. The only difference with the first

case is that we no longer have natural isomorphisms Rb1 – RΦpb1q1 , Rb2 – RΦpb2q1

and need to choose the isomorphisms. We have

Rbi “ krts{ptk`1
qrΛρsrZ`, Z´s{ pZ`Z´ ´ fbi ¨ zκρp0`1 q

RΦpbiq1 “ krts{ptk`1
qrΛΦpρqsrZ`, Z´s{

`

Z`Z´ ´ z
mΦpρq1ΦpρqΦpfbiq ¨ z

κΦpρp0`1q
˘

for i “ 1, 2 and κρp0`1 “ κΦpρp0`1q by construction. We define an isomorphism86

Φ1 : Rbi Ñ RΦpbiq1 , Z` ÞÑ Z`, Z´ ÞÑ z
mΦpρq Φpρq1

Z´ (4.13)

with Λρ and ΛΦpρq identified by the PL-isomorphism. We now have

pχΦpbiq1,Φpσq, χΦpbiq1,Φpσ1qqpRΦpbiq1q “ pχbi,σ, χbi,σ1qpRbiq (4.14)

86This is similar to the isomorphism Rρ Ñ Rρ1 for ρ, ρ1 Ď ρ P Pr1s two slabs constructed

in [GHS, Lemma 2.2.3].
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for i “ 1, 2 under the identifications Rσ – RΦpσq, Rσ1 – RΦpσ1q. But then (4.12)

implies that

pΦpθqˆΦpθ1
qq
`

pχΦpb1q1,Φpσq, χΦpb1q1,Φpσ1qqpRΦpb1q1q
˘

“ pχΦpb2q1,σ, χΦpb2q1,Φpσ1qqpRΦpb2q1q.

So ΦpDkq1 is consistent around Φpjq.

Case 3. Recall that jspρ “ xΦpρq is an irrational point of Φpρp0`1q and since

both the walls on Dk and the PL-isomorphism Φ are rationally defined, the

only walls containing jspρ are the two slabs Φ̄pbq “ pΦ̄pbq, fΦpbqq and Φ̄pbq1 “

pΦ̄pbq1, z
mΦpρq1ΦpρqfΦpbqq defined as in Construction 4.69(3) for some slab b of Dk.

Now, we have a natural isomorphism Rb – RΦ̄pbq and an isomorphism Φ1 : Rb Ñ

RΦ̄pbq1 defined as in (4.13). But then

pχΦ̄pbq,Φpσq, χΦ̄pbq,Φpσ1qqpRΦ̄pbqq “ pχb,σ, χb,σ1qpRbq “ pχΦ̄pbq1,Φpσq, χΦ̄pbq1,Φpσ1qqpRΦ̄pbq1q

under the identifications Rσ – RΦpσq, Rσ1 – RΦpσ1q where the second equality

follows as in (4.14). Since there are no other walls containing jspρ , this implies

that ΦpDkq1 is consistent around jspρ .
87

Consistency in codimension 2. Every codimension 2 joint of P̄ 1r0s

ΦpDkq1 is

of the form Φpjq for j a codimension 2 joint of P r0s

Dk
. First, we note that the PL-

isomorphism of Construction 4.36 induces a PL-isomorphism Φ :
`

Bj,Pj,Dk,j

˘

Ñ
´

B̄Φpjq, P̄
1
Φpjq,ΦpDkq1

j

¯

. Consistency of Dk along j means that for a general point p P

Bj contained in a chamber u of Pj,Dk,j
, the theta functions ϑj

mppq “
ř

β aβz
mβ P Ru

of (3.22) satisfy conditions (1) and (2) of Definition 3.14. We need to show that

a similar property holds for BΦpjq.

As a set, we define the image of a broken line β : p´8, 0s Ñ B0
j with endpoint

p to be the image Φpβq : p´8, 0s Ñ B0
Φpjq under the PL-isomorphism (with

endpoint Φppq). We also define the attached monomial on Φpβqprti´1, tisq to be

aiz
Φpmiq if the attached monomial on βprti´1, tisq is aiz

mi . This gives a one-to-

one correspondence since Φ is a PL-isomorphism. We need to check that Φpβq

satisfies the properties of a broken line of Definition 3.12.

The only non-trivial check is that ai`1z
Φpmi`1q is the result of transport of

aiz
Φpmiq from Φpuq to Φpu1q (here Φpuq and Φpu1q are the chambers of P̄ 1

Φpjq,ΦpDkq1
j

corresponding to the chambers u and u1 of Pj,Dk,j
respectively). If Φpuq XΦpu1q “

Φppq is a codimension 0 wall, this follows from the canonical identifications

Rσ – RΦpσq, Rσ1 – RΦpσ1q for σ P Pmax
j and σ1 P Pmax

j the unique cells con-

taining u and u1 respectively. Similarly, if Φpuq X Φpu1q “ Φpbq (or Φpbq “ Φ̄pbq

87Note that for k “ 0, we recover the fact that every scattering diagram is consistent

modulo I0.
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as in Construction 4.69(3)) is a slab of the first type, this follows from the identifi-

cations Rσ – RΦpσq, Rσ1 – RΦpσ1q along with the natural isomorphism Rb – RΦpbq.

If ΦpuqXΦpu1q “ Φpbq1 (or Φ̄pbq1 as in Construction 4.69(3)) is a slab of the second

type, the condition follows from the fact that the diagram

Rb Rb
u Ru1

RΦpbq1 R
Φpbq1

Φpuq
RΦpu1q

Φ1

θb

–

θΦpbq1

(4.15)

with the rows defined by (3.21) and Φ1 the isomorphism of (4.13) is commutative.

Every chamber of P̄ 1
Φpjq,ΦpDkq1

j
is of the form Φpuq for u a chamber of Pj,Dk,j

and

every asymptotic monomial on pB̄Φpjq, P̄
1
Φpjqq is of the form Φpmq for m an asymp-

totic monomial on pBj,Pjq. So the theta functions ϑ
Φpjq
Φpmq

pΦppqq on pB̄Φpjq, P̄
1
Φpjqq

are of the form ϑ
Φpjq
Φpmq

pΦppqq “
ř

β aβz
Φpmβq P RΦpuq for ϑj

mppq “
ř

β aβz
mβ P Ru

the corresponding theta function on pBj,Pjq.

This immediately implies that ϑ
Φpjq
Φpmq

pΦppqq satisfy condition (1) of Definition

3.14 and satisfy condition (2) of Definition 3.14 for all the change of chamber

homomorphisms θΦpu1qΦpuq with Φpu1q X Φpuq either a codimension 0 wall or a

slab of the first type. Compatibility with the change of chamber homomorphism

θΦpu1qΦpuq for Φpu1q X Φpuq “ Φpbq1 a slab of the second type again follows from

commutativity of (4.15). □

Now the construction of X̌o implies that ΦpDkq is equivalent to Dk.

Proposition 4.72. For every k ě 0, the scattering diagram ΦpDkq is equiv-

alent to Dk.

Proof. By Remark 4.70(1), it is enough to show that ΦpDkq1 is equivalent

to Dk. We need to check that the families X̌o
pB,Dkq

and X̌o
pB̄,ΦpDkq1q

are isomorphic.

As in the proof of [GHS, Proposition 2.4.1], consistency of Dk implies that

all the rings Ru for chambers u P PDk
contained in the same σ P Pmax are

canonically isomorphic and all the rings Rb for slabs b P Dk contained in the same

ρ1 P P r1s are canonically isomorphic. Fixing one chamber u for every σ P Pmax

and one slab b for every ρ1 P P r1s, we can glue X̌o
pB,Dkq

from tSpecRu, σ P Pmaxu

and
␣

SpecRb, ρ
1 P P r1s

(

via the maps χb,u, χb,u1 that are compositions of the

localization homomorphisms with isomorphisms of Ru for u Ď σ P Pmax. The

same is true for X̌o
pB̄,ΦpDkq1q

by consistency of ΦpDkq1, so we are free to choose the

chambers and slabs in both constructions.
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We make an arbitrary choice of chambers u for every σ P Pmax and use the

choice Φpuq for Φpσq P P̄ 1max. We choose b for every ρ1 P P r1s so that its image

under the PL-isomorphism Φ is either Φpbq or contains Φ̄pbq using the setup of

Construction 4.69. We use the choice Φpbq or Φ̄pbq respectively for Φpρ1q P P̄ 1r1s

and drop the bar in the second case.

As in the proof of Proposition 4.71, we have natural isomorphisms Ru – RΦpuq

and Rb – RΦpbq. Moreover, χΦpbq,Φpuq, χΦpbq,Φpu1q are the same as χb,u, χb,u1 under

these identifications. This implies that X̌o
pB,Dkq

– X̌o
pB̄,ΦpDkqq

by the description of

the gluing above. □

4.5.3. Proof of the conjecture. We combine the results of this chapter to

prove the conjecture.

Theorem 4.73. Conjecture 1.7 holds for special toric degenerations of K3-s.

Proof. By Proposition 3.46, a toric degeneration X̄ Ñ S of K3-s is special

if and only if it is a divisorial log deformation and the generic fibre of X̄ Ñ S
is smooth. Sections 4.1, 4.2, and 4.3 construct resolutions in increasing general-

ity. Proposition 1.8 implies that it is enough to prove the conjecture for strongly

admissible resolutions, and Proposition 4.42 constructs a strongly admissible res-

olution π : X Ñ X̄ of X̄ Ñ S to a minimal log CY degeneration X Ñ S (with D

simple normal crossings) in general. It is enough to prove the conjecture for well-

chosen monoids P by Proposition 3.96 (well-chosen monoids exist by Proposition

3.95). For every strongly admissible resolution π : X Ñ X̄ and a well-chosen

monoid P , Section 4.3.2 defines the data of Basic Setup 3.112.

In Section 4.4, we constructed a collection of canonical scattering diagrams

DJ :“ tDJk`1 , k ě 0u on pB,Pq giving rise to the extended intrinsic mirror

X̌ Ñ SpeczkrP sJ . Construction 4.65 defines a collection of scattering diagrams

D “ tDk, k ě 0u on pB,Pq with monoid N and Dk :“ Dptk`1q. By Proposition

4.66, the basechange of the extended intrinsic mirror X̌ Ñ SpeczkrP sJ by h : P Ñ

N, β ÞÑ π˚A ¨β is isomorphic to the family X̌D Ñ Spec kJtK of Construction 4.65.

It is enough to show that the families X̌Dk
Ñ Spec krts{ptk`1q and ˇ̄XD̄k

Ñ

Spec krts{ptk`1q are isomorphic for every k ě 0. Here the second family is de-

fined in (3.27) using Theorem 3.35 that can be applied since local rigidity is an

empty condition in dimension 2. By Proposition 3.16 and Observation 4.70(1),

it is enough to show that pB,Dkq is equivalent to pB̄, D̄kq for every k ě 0. Since

ΦpDkq is consistent by Proposition 4.71 and pB,Dkq is equivalent to pB̄,ΦpDkqq

by Proposition 4.72, it is enough to prove that ΦpDkq is equivalent to D̄k. By
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Observation 3.18(2), it is enough to prove that they are combinatorially equiva-

lent.

We want to use the uniqueness statement of Theorem 3.35. Consider two

sequences of scattering diagrams:

D̄ “
␣

D̄k, k ě 0
(

, ΦpDq :“ tΦpDkq, k ě 0u .

By the existence part of Theorem 3.35, D̄k is compatible with D̄k´1 for k ě 1.

By Observation 4.70(2), ΦpDkq is compatible with ΦpDk´1q for k ě 1. Moreover,

ΦpD0q is combinatorially equivalent to D̄0 by Observation 4.70(3). Every D̄k, k ě

0 is consistent in the sense of [GS3, Definition 2.28] by the existence part of

Theorem 3.35. It remains to prove that every ΦpDkq, k ě 0 is consistent in the

sense of [GS3, Definition 2.28].

By Proposition 4.71, ΦpDkq is consistent for every k ě 0. By Proposition

3.36, it suffices to check that ΦpDkq is consistent in the sense of [GS3, Definition

2.28] around every codimension one joint j Ď ∆̄. Every such joint is of the

form jspρ “ xΦpρq for xΦpρq the singularity of Φpρq. As in Case 3 in the proof

of Proposition 4.71, the fact that xΦpρq is an irrational point implies that jspρ
is contained in exactly two walls that are the slabs Φ̄pbq “ pΦ̄pbq, fΦpbqq and

Φ̄pbq1 “ pΦ̄pbq1, z
mρ1ρfΦpbqq. Since there are no other walls containing jspρ and the

slab functions satisfy fΦ̄pbq1 “ z
mΦpρq1ΦpρqfΦ̄pbq, consistency around jspρ in the sense

of [GS3, Definition 2.28] follows exactly as in the proof of consistency of D̄0 in

the sense of [GS3, Definition 2.28] (in the case of trivial gluing data), given in

[GS3, Proposition 3.2]. □





CHAPTER 5

Intrinsic mirror over the minimal relative

Gross-Siebert locus

In this chapter, we generalize Conjecture 1.7 following the plan of Section 3.5.

5.1. Setup for the generalizations

Let X̄ Ñ S be a special toric degeneration of K3-s as before. In Basic Setup

3.112, we assumed a choice of polarization A on X̄ Ñ S. In this chapter, we

just require that there exists some polarization A on X̄ Ñ S. We also require

that X̄ Ñ S satisfies Assumption 3.37. Let π : X Ñ X̄ be a strongly admissible

resolution (see Definition 4.29) to a log smooth minimal log CY degeneration

X Ñ S. We further require that A1pX0,Zq “ A1pX0,Zqnum.

Remark 5.1. Note that for any well-chosen monoidNEpX0q Ď P Ď A1pX0,Zq

with a face K containing the classes of the contracted curves (see Definition 3.94),

we can construct a well-chosen monoid NEpX0qnum Ď Pnum Ď A1pX0,Zqnum by

setting Pnum :“ P XA1pX0,Zqnum and Knum :“ K XA1pX0,Zqnum using the split-

ting A1pX0,Zqnum ‘ G of Construction 3.71. Then for Jnum :“ PnumzKnum, we

have a map krP sJ Ñ krPnumsJnum by sending tβ ÞÑ tβ for β P A1pX0,Zqnum and

sending tβ ÞÑ 0 for β P G. The extended intrinsic mirror X̌ Ñ Spec krPnumsJnum

is the basechange of X̌ Ñ Spec krP sJ via this map (this is easy to see both from

the construction of the extended intrinsic mirror of Section 3.4 and from the

scattering diagram description of Section 4.4) that we call the numerical locus of

X̌ Ñ Spec krP sJ .

Conversely, given a well-chosen monoid NEpX0qnum Ď Pnum Ď A1pX0,Zqnum

with a face Knum, we can construct a well-chosen monoid NEpX0q Ď P Ď

A1pX0,Zq and a face K such that X̌ Ñ Spec krPnumsJnum is the basechange of

X̌ Ñ Spec krP sJ by fixing a well-chosen monoid NEpX0q Ď P 1 Ď A1pX0,Zq with

a face K 1 and setting P :“ P 1 X pP ‘ Gq and K :“ K 1 X pP ‘ Gq. So working

over A1pX0,Zq “ A1pX0,Zqnum is equivalent to studying the numerical locus of

the extended intrinsic mirror X̌ Ñ Spec krP sJ for arbitrary A1pX0,Zq.

183
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5.1.1. A compatible choice of base monoid. In Conjecture 1.7, we use an ar-

bitrary choice of a finitely generated saturated monoid P satisfying NEpX0qnum Ď

P Ď A1pX0,Zqnum. For generalizations, we will use a fixed choice, compatible with

π : X Ñ X̄. In [GHS, Appendix A.2], the authors construct a universal toric

degeneration mirror to X̄ Ñ S using a (finitely generated, saturated, and sharp)

universal monoid Q.

Proposition 5.2. The universal monoid Q of [GHS, Appendix A.2] natu-

rally satisfies NE
`

X̄0

˘

num
Ď Q Ď A1

`

X̄0,Z
˘

num
.

Proof. We use the notation MPApB̄, Qq of [GHS, Definition 1.2.5] for the

monoid of convex integral MPA functions on
`

B̄, P̄
˘

with values in Q (without

the requirement of Section 3.1.3 that κρ “ κρ1 “: κρ for any slabs ρ, ρ1 Ď ρ P

P̄ rn´1s). We also use the notation MP̆ApB̄, Qq for the monoid of the restricted

convex integral MPA functions that are used in [GS1, GS7] (see [GHS, Example

1.2.8(1)]). These functions satisfy κρ “ κρ1 “: κρ for any slabs ρ, ρ1 Ď ρ P P̄ rn´1s

as well as an additional balancing condition at each vertex.

The monoid Q is defined as Q :“ rpQ0q
sat where Q0 :“ HompMPApB̄,Nq,Nq,

r is the surjective restriction map

r : HompMPApB̄,Nq,Zq Ñ HompMP̆ApB̄,Nq,Zq,

and we use the notation M sat for the saturation of a monoid M . See [GHS,

Appendix A.2] for details.

Step 1. We first show that Nef
`

X̄0

˘

– MP̆ApB̄,Nq. Indeed, a nef line

bundle L on X̄0 restricts to a nef line bundle Lv̄ on each irreducible component

D̄v̄, v̄ P P̄ r0s of X̄0. By standard toric geometry, every Lv̄, v̄ P P̄ r0s defines a

convex PL-function φv̄ with integral slopes on the fan Σv̄ of D̄v̄. The φv̄ patch

to a global multi-valued convex integral MPA function φL on pB̄, P̄q with kinks

κρpφLq “ κρ1pφLq “ degL|X̄ρ
for any slabs ρ, ρ1 Ď ρ P P̄ r1s. The fact that the

D̄v̄, v̄ P P̄ r0s are toric varieties implies that the balancing condition is satisfied.

This defines a homomorphism

Nef
`

X̄0

˘

Ñ MP̆ApB̄,Nq.

Conversely, given a convex multi-valued integral PL-function ψ with κρpψq “

κρ1pψq for any slabs ρ, ρ1 Ď ρ P P̄ r1s and satisfying a balancing condition, a

piecewise-linear representative ψv̄ at a vertex v̄ P P̄ r0s defines a line bundle Lv̄
on D̄v̄. These are isomorphic on the double curves X̄ρ, ρ P P̄ r1s since for ρ of

the form ρ “ xv̄, v̄1y for v̄, v̄1 P P̄ r0s, we have

degLv̄|X̄ρ
“ κρpψq “ κρ1pψq “ degLv̄1 |X̄ρ

.
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Choosing an isomorphism on the overlaps defines an obstruction class in

H2pB̄, kˆq that is precisely the opsq of [GS1, Theorem 2.34]. So it van-

ishes by Assumption 3.37, and we get a line bundle L on X̄0. This proves

Nef
`

X̄0

˘

– MP̆ApB̄,Nq.

Step 2. Note that we have a natural pairing

deg : A1

`

X̄0,Z
˘

num
ˆ Pic

`

X̄0

˘

Ñ Z (5.1)

that is non-degenerate.88 We define a map

i : NE
`

X̄0

˘

Ñ HompMP̆ApB̄,Nq,Zq – Hom
`

Nef
`

X̄0

˘

,Z
˘

β ÞÑ pL ÞÑ degLpβqq

Non-degeneracy of the pairing (5.1) and the fact that for every L P Nef
`

X̄0

˘

and

every β P NE
`

X̄0

˘

we have degLpβq ě 0 imply that i is injective with image

contained in rpQ0q. But rpQ0q Ď rpQ0q
sat “ Q which shows the first inclusion.

Step 3. To define the inclusion Q Ď A1

`

X̄0,Z
˘

num
, note that we have Q Ď

HompMP̆ApB̄,Nq,Zq and

HompMP̆ApB̄,Nq,Zq – Hom
`

Nef
`

X̄0

˘

,Z
˘

–

– Hom
`

Nef
`

X̄0

˘gp
,Z

˘

“ Hom
`

Pic
`

X̄0

˘

,Z
˘

– A1

`

X̄0,Z
˘

num

where the last isomorphism is again due to non-degeneracy of (5.1). □

Consider the surjective pushforward map

A1pX0,Zq
π˚

ÝÑ A1

`

X̄0,Z
˘

and let Kgp :“ kerπ˚, so that there is a short exact sequence

0 ÝÑ Kgp
ÝÑ A1pX0,Zq

π˚
ÝÑ A1

`

X̄0,Z
˘

ÝÑ 0. (5.2)

Note that Kgp is generated by the classes of curves contracted by π. In particular,

we have Eρ,k P Kgp and Fρ,p P Kgp for Eρ,k, ρ P P̄ r1s, 1 ď k ď rρ and Fρ,p, ρ P

P̄ r1s, 1 ď p ď lρ ´ 1 the curve classes of (4.3).

Corollary 5.3. We have natural inclusions NEpX0qnum Ď Kgp ‘ Q Ď

A1pX0,Zqnum for Q the universal monoid of [GHS, Appendix A.2].

88Indeed, it is enough to show that Pic
`

X̄0

˘

is isomorphic to Num
`

X̄0

˘

, the quotient of

Pic
`

X̄0

˘

by the numerically trivial line bundles. For a smooth K3-surface X, it is classical

that PicpXq – NumpXq since the fact that H1pX,OXq “ 0 and the Riemann-Roch theorem

for line bundles on surfaces imply that every numerically trivial line bundle is trivial, see, e.g.

[H3, Chapter 1, Proposition 2.4]. However, a similar proof applies in the case of X̄0 since

H1pX̄0,OX̄0
q – H1pB̄, kq “ 0, see the proof of Proposition 3.30.
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Proof. Since A1

`

X̄0,Z
˘

is a finitely generated free abelian group, we have

a splitting of π˚ in (5.2) inducing an isomorphism A1pX0,Zqnum – Kgp ‘

A1

`

X̄0,Z
˘

num
. We have NEpX0qnum Ď Kgp ‘ NE

`

X̄0

˘

num
under this isomor-

phism and NE
`

X̄0

˘

num
Ď Q Ď A1

`

X̄0,Z
˘

num
by Proposition 5.2. The claim

follows from

NEpX0qnum Ď Kgp
‘ NE

`

X̄0

˘

num
Ď Kgp

‘ Q Ď

Ď Kgp
‘ A1

`

X̄0,Z
˘

num
– A1pX0,Zqnum.

□

The intrinsic mirror is well-defined overKgp‘Q. Indeed, Proposition 4.35 and

the proof of Proposition 3.109 (via the proof of Proposition 3.107) imply that one

can find a well-chosen monoid P 1 and a face K 1 Ď P 1 such that K 1 gp “ Kgp. But

then the claim follows by applying Remark 3.110 to the monoid P 1 X pKgp ‘ Qq

and the face K 1 X pKgp ‘ Qq.

In this chapter, we shall work with the base monoid Kgp ‘ Q. Note that

Kgp ‘ Q does not satisfy condition (3) of Definition 3.74, but Remark 5.1 still

makes sense in this setup.

5.1.2. The minimal relative Gross-Siebert locus. The intrinsic mirror over

P :“ Kgp ‘ Q is of the form

X̌ Ñ SpeczkrP sJ “ Spec krKgp
sJQK

(where the notation means that the completion is only with respect to the second

factor) for J :“ P zKgp “ Qz t0u (thinking of Qz t0u as an ideal of P ). We still

call it the extended intrinsic mirror.

Note from (4.3) that we have Egp Ď Kgp for

Egp :“ xEρ,k , ´Eρ,k | ρ P P̄ r1s, 1 ď k ď rρy. (5.3)

It is clear from the construction that the curve classes Eρ,k for ρ P P̄ r1s, 1 ď

k ď rρ don’t have any relations with the other curve classes of Kgp. On the

other hand, in general, there will be relations between the Eρ,k so we have

dimEgp ď
ř

ρPP̄r1s rρ. One can check that both dimEgp “
ř

ρPP̄r1s rρ and

dimEgp ă
ř

ρPP̄r1s rρ occur.
89

89For the equality, consider a special toric degeneration X̄ Ñ S with a simple dual inter-

section complex
`

B̄, P̄
˘

and a strongly admissible small resolution π : X Ñ X̄ to a log smooth

X Ñ S with the divisor D simple normal crossings. Simplicity of
`

B̄, P̄
˘

implies that rρ ď 1

for every ρ P P̄r1s. Suppose further that if ρ1, ρ1 P P̄r1s are such that rρ1
“ rρ2

“ 1, then
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Write Kgp as Kgp “ Egp ‘Ggp for a finitely generated free abelian group Ggp.

In particular, Ggp contains the curve classes Fρ,p, ρ P P̄ r1s, 1 ď p ď lρ ´ 1 of

(4.3).

Definition 5.4. Define hGS : Kgp ‘ Q “ Egp ‘ Ggp ‘ Q Ñ Egp ‘ Q by

sending Ggp Ñ 0 and by the identity on Egp and Q. We call the basechange

X̌ Ñ Spec krEgpsJQK of the extended intrinsic mirror X̌ Ñ Spec krKgpsJQK by

hGS the (numerical) minimal relative Gross-Siebert locus.90

Notation 5.5. We shall often write the ring krEgpsJQK as krt˘Eρ,ksJQK using
(5.3).

Remark 5.6. The Gross-Siebert locus of the extended intrinsic mirror X̌ Ñ

SpeczkrP sJ to a log CY surface pX, Dq was defined in [GHK, Section 3.2]. Our

definition is similar in the case that π : X Ñ X̄ is small. By “minimality”, we

mean that the minimal relative Gross-Siebert locus only captures the essential

curve classes Egp of Kgp (i.e. the curve classes that would be present if we could

construct a minimal resolution). See Section 5.5.2 for the discussion on the strata

of X̌ Ñ Spec krKgpsJQK that are not in the minimal relative Gross-Siebert locus.

We will show, by extending the correspondence of Conjecture 1.7 to larger and

larger strata, that the minimal relative Gross-Siebert locus X̌ Ñ Spec krEgpsJQK
of the extended intrinsic mirror can be recovered (up to a basechange) from

X̄ Ñ S. First, we need to interpret the basechange by hGS at the level of scattering

diagrams. The following is a universal version of Construction 4.65.

Construction 5.7. We define a collection of scattering diagrams

DGS
“
␣

DGS
Qk`1 , k ě 0

(

ρ1 X ρ2 “ ∅. Then the equality dimEgp “
ř

ρPP̄r1s rρ can be deduced by considering the inter-

section numbers of the curves Eρ,1 (for ρ P P̄r1s with rρ “ 1) with the irreducible components

of X0.

For the inequality, consider the toric degeneration X̄ Ñ S of Example 1.4 and its small

log smooth resolution X Ñ S. Then there are 24 curves Eρ,k of (3.66) corresponding to 6

singularities xρ, ρ P P̄r1s with rρ “ 4 of the affine structure on
`

B̄, P̄
˘

. On the other hand,

we have H2pX0,Zq – Z22. This follows from an easy computation using a Mayer-Vietoris type

spectral sequence for homology similar to the spectral sequence of [TTAG, Chapter VI, §1] (by
David R. Morrison) for cohomology. So dimEgp ď dimH2pX0,Zq “ 22 ă 24 “

ř

ρPP̄r1s rρ.
90Note that this is defined via Remark 5.1 for any extended intrinsic mirror, even when

using A1pX0,Zq ‰ A1pX0,Zqnum.
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on pB,Pq with monoid Egp ‘ Q and I0 “ pEgp ‘ QqzEgp “ Qz t0u as follows.

We let DGS
Q :“ DGS

I0
have walls

`

bρp , h
GS

pfbρp q
˘

for bρp a wall of DJ defined in Construction 4.54. We still write bρp for these

walls. Note that we have

hGS
pfbρp q “

ź

1ďkďrρ

`

1 ` t´Eρ,kw´1
ρ

˘

, 1 ď p ď p0

hGS
pfbρp q “

ź

1ďkďrρ

`

1 ` tEρ,kwρ
˘

, p0 ` 1 ď p ď lρ

since hGSpFρ,pq “ 0 for all ρ P P̄ r1s, 1 ď p ď lρ ´ 1.

More generally, we let DGS
Qk`1 :“ DGS

Ik`1
0

have walls

pp, hGS
pfpqq

for p a wall of DJk`1 of Construction 4.61. Again, we still denote such a wall by

p.

We define the MPA function φGS on pB,Pcoarq via its kinks by setting

κρpφ
GSq :“ hGSpκρpφqq. Note that this is clearly compatible with the basechange

and that κρppφGSq “ κρppφq for an edge ρp P P r1s subdividing ρ P P r1s
coar and

κρ1pφGSq “ 0 for ρ1 P P r1szP r1s
coar.

Now DGS
Qk`1 is a consistent scattering diagram since consistency in codimen-

sions 0, 1 and 2 follows trivially from the corresponding consistency of DJk`1

by interpreting all the relevant monomials as elements of krEgpsrQs via the

basechange. By taking the inverse limit over X̌DGS
Qk`1

Ñ Spec krEgpsrQs{Ik`1
0

for k ě 0 (using the MPA function φGS in the construction) we define a family

X̌DGS Ñ Spec krEgpsJQK. It is evident from the construction that this is the same

family as the minimal relative Gross-Siebert locus X̌ Ñ Spec krEgpsJQK.

Remark 5.8. One can equivalently view DGS as a collection of scattering

diagrams with A “ krEgps, monoid Q, and I0 “ m.

We are ready to start generalizing Conjecture 1.7.

5.2. Universal version

First, we would like to remove the dependency on the choice of polarization

A on X̄ Ñ S. We use a version of the toric degeneration mirror defined over the

universal monoid Q.
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As explained in [GHS, Appendix A.2], [GS3, Theorem 5.2] implies that

one can do a universal version of the reconstruction algorithm of Theorem 3.35.

Namely, given a choice of the initial slab functions
!

fρ P krΛρs
ˇ

ˇ

ˇ
ρ P ˜̄P rn´1s

)

as in Proposition 3.33, one can produce a collection of scattering diagrams D̄ :“
␣

D̄k, k ě 0
(

with D̄k :“ D̄mk`1 using monoid Q, the maximal ideal m “ Qz t0u,

and the universal MPA function φ̄91 with values in Q (constructed in [GHS, Ap-

pendix A.2]). Moreover, D̄ satisfies the compatibility and uniqueness properties

of Theorem 3.35. We let the initial slab functions be given by (4.2) as before

(with the convention for slabs ρ, ρ1 Ď ρ P P̄ r1s as in Sections 4.3.2 and 4.2.5).

The restriction of the universal toric degeneration mirror of [GHS, Theorem

A.2.4] to the trivial gluing data is the family ˇ̄XD̄ Ñ Spec kJQK defined as the

inverse limit over ˇ̄XD̄ Ñ Spec krQs{mk`1 for k ě 0.

Remarks 5.9. (1) Note a slight abuse of notation in the definition of D̄.

In this chapter, we will denote by D̄ any collection of scattering diagrams

defining the toric degeneration mirror of interest, regardless of the exact

situation (i.e. of the ring A, monoid Q, and ideal I0).

(2) Similarly, regardless of the exact situation, we will denote by D the col-

lection of scattering diagrams defining the basechange X̌D of the intrinsic

mirror family X̌, for which we compare X̌D and ˇ̄XD̄.

(3) The family ˇ̄XD̄ Ñ Spec kJQK is universal in the sense that every toric

degeneration mirror family ˇ̄X Ñ Spec kJtK constructed using trivial glu-

ing data, the initial slab functions of (4.2), and any polarization A

on X̄ Ñ S can be obtained from ˇ̄XD̄ Ñ Spec kJQK via basechange by

Q Ñ N, β ÞÑ A ¨ β. Note that the composition of this map with hGS is

exactly the map h of Conjecture 1.7.

Instead of taking the basechange of the extended intrinsic mirror by h : P Ñ

N, β ÞÑ π˚A ¨ β as in Conjecture 1.7, we consider the basechange of the minimal

relative Gross-Siebert locus by h : Egp ‘ Q Ñ Q that sends Egp Ñ 0 and is

the identity on Q (note that the composition h ˝ hGS sends Kgp Ñ 0 and is the

identity on Q). At the level of rings, this corresponds to restricting to tEρ,k “ 1 for

all 1 ď k ď rρ, ρ P P̄ r1s. We need to define the appropriate version of D giving

91This function is denoted by φ̆ in [GHS, Appendix A.2] but φ̄ fits better with our notation.

One needs to have some polarization A on X̄ Ñ S to define φ̄ (which is why in this chapter we

require that some such polarization exists).
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rise to the basechanged family. The following (combined with Construction 5.7)

is the analogue of Construction 4.65.

Construction 5.10. We define a collection of scattering diagrams D “

tDk, k ě 0u on pB,Pq with monoidQ and I0 “ m as follows. We letDk :“ Dmk`1

have walls

pp, hpfpqq

for p a wall of DGS
Qk`1 . We still denote such a wall by p. We use the MPA function

φ with the same kinks as φGS (seen as elements of Q), this is clearly compatible

with the basechange.

As in Constructions 4.65 and 5.7, Dk is a consistent scattering diagram and

taking the inverse limit over X̌Dk
Ñ Spec krQs{mk`1 for k ě 0 we get a family

X̌D Ñ Spec kJQK, which is the same family as the basechange of the minimal

relative Gross-Siebert locus X̌ Ñ Spec krEgpsJQK by h : Egp ‘ Q Ñ Q.

Construction 5.11. We use the analogue of Construction 4.68 for a scat-

tering diagram D̄1 on
`

B̄, P̄ 1
˘

equivalent to D̄, and define the MPA function φ̄1

on
`

B̄, P̄ 1
˘

from φ̄ in the same way as the MPA function φ1
A is defined from φA

in Construction 4.68.

We define ΦpDkq1 and ΦpDkq exactly as in Construction 4.69. It is easy to see

that κρ1pφq “ κΦpρ1qpφ̄
1q for any ρ1 P P̄ 1r1s. So the constructions are compatible

with the MPA functions. Moreover, ΦpD0q is still combinatorially equivalent to

D̄0.

Proposition 5.12. The basechange of the minimal relative Gross-Siebert lo-

cus X̌ Ñ Spec krEgpsJQK by h : Egp ‘ Q Ñ Q is isomorphic to the restriction
ˇ̄XD̄ Ñ Spec kJQK of the universal toric degeneration mirror of [GHS, Theorem

A.2.4] to the trivial gluing data.

Proof. Consistency of ΦpDkq and equivalence of ΦpDkq and Dk follow ex-

actly as in the proofs of Propositions 4.71 and 4.72 respectively since the proofs

do not depend on the base monoid. Similarly, changing N to Q, ptk`1q to mk`1,

and using h : Egp ‘Q Ñ Q, the same argument as in the proof of Theorem 4.73

implies the result. □

Viewing Speckrt˘Eρ,ks as the parameter space, we have interpreted the fibre

over the point
␣

tEρ,k “ 1, ρ P P̄ r1s, 1 ď k ď rρ
(
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as a (universal in polarization) toric degeneration. We will now extend this cor-

respondence to the restriction of the extended intrinsic mirror to a family over a

certain subvariety of Spec krt˘Eρ,ks.

5.3. Extension in the free parameters

Recall from Proposition 3.33 that if
`

B̄, P̄
˘

is not simple, there are coefficients

aρ,i P k for 1 ď i ď rρ ´ 1, ρ P P̄ r1s in the initial slab functions fρ, fρ1 that we are

free to choose when constructing the toric degeneration mirror. So far, we have

always made the choice specified by (4.2). We can make any other choice of the

initial slab functions fρ, fρ1 satisfying (3.26). Proving the analogues of Theorem

4.73 and Proposition 5.12 is straightforward. However, we can in fact do better.

As shown in [GHS, Appendix A.4], in the case of toric degenerations of K3-s, one

can make the toric degeneration mirror universal in the choice of slab functions.

Indeed, let K :“
ř

ρPP̄r1s,rρą0prρ´1q and consider A “ krNKs “: kraρ,is where

we now think of aρ,i as variables. Then the initial slab functions

fρ “1 ` aρ,1wρ ` ¨ ¨ ¨ ` aρ,rρ´1w
rρ´1
ρ ` wrρρ

fρ1 “1 ` aρ,rρ´1w
´1

` ¨ ¨ ¨ ` aρ,1w
´rρ`1
ρ ` w´rρ

ρ

of (3.26) make sense as elements of ArΛρs. Again, [GS3, Theorem 5.2] implies

that the reconstruction algorithm of Theorem 3.35 generalizes to this setting

and we can produce a collection of scattering diagrams D̄ :“
␣

D̄k, k ě 0
(

with

D̄k :“ D̄mk`1 using the ring A and the same monoid, ideal and MPA function as

in Section 5.2. Moreover, D̄ satisfies the compatibility and uniqueness properties

of Theorem 3.35.

The restriction of the universal toric degeneration mirror of [GHS, Theorem

A.4.2] to the trivial gluing data is the family ˇ̄XD̄ Ñ Spec kraρ,isJQK defined as the

inverse limit over ˇ̄XD̄ Ñ Spec kraρ,isrQs{mk`1 for k ě 0.

Remark 5.13. Similarly to Remark 5.9(3), the family ˇ̄XD̄ Ñ Spec kraρ,isJQK
is universal in the sense that every one-parameter toric degeneration mirror family
ˇ̄X Ñ Spec kJtK constructed using the trivial gluing data and polarization A can

be obtained from ˇ̄XD̄ Ñ Spec kraρ,isJQK by a basechange that is induced by

Q Ñ N, β ÞÑ A ¨ β and by sending the variables aρ,i to the values chosen for the

initial slab functions fρ, fρ1 satisfying (3.26).
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The slab functions fbρp for the walls bρp of DGS
Q are of the form

fbρp “
ź

1ďkďrρ

`

1 ` t´Eρ,kw´1
ρ

˘

“ 1 ` σ1pt
´Eρqwρ ` ¨ ¨ ¨ ` σrρ´1pt´Eρqwr´1

ρ ` σrρpt´Eρqwrρ

fbρp “
ź

1ďkďrρ

`

1 ` tEρ,kwρ
˘

“ 1 ` σ1ptEρqwρ ` ¨ ¨ ¨ ` σrρ´1pt
Eρqwr´1

ρ ` σrρptEρqwrρ

where σipt
´Eρq is the i-th symmetric polynomial in t´Eρ,k , 1 ď k ď rρ and

σipt
Eρq is the i-th symmetric polynomial in tEρ,k , 1 ď k ď rρ. Since the initial

slab functions fρ of (3.26) have coefficient 1 at w
rρ
ρ and we want to construct a

collection of scattering diagrams D :“ tDk, k ě 0u with ΦpD0q combinatorially

equivalent to D̄0, we need to restrict to the family over the locus where σrρptEρq “
śrρ

k“1 t
Eρ,k “ 1 for all ρ P P̄ r1s (clearly, this forces σrρpt´Eρq “ 1 for all ρ P P̄ r1s

as well).

Let Egp
1 :“ Egp{

@
řrρ
k“1Eρ,k, ρ P P̄ r1s

D

and consider the basechange of the

minimal relative Gross-Siebert locus by

h : Egp
‘ Q Ñ Egp

1 ‘ Q

that is the natural projection on Egp Ñ Egp
1 and the identity on Q. At the level

of rings, this corresponds to the natural projection

h : krt˘Eρ,ksJQK Ñ krt˘Eρ,ksJQK

OC

rρ
ź

k“1

tEρ,k “ 1, ρ P P̄ r1s

G

. (5.4)

The scattering diagram interpretation of this basechange is similar to Con-

struction 5.10.

Construction 5.14. We define a collection of scattering diagrams D “

tDk, k ě 0u on pB,Pq with monoid Egp
1 ‘ Q and I0 “ pEgp

1 ‘ QqzEgp
1 “ Qz t0u

as follows. We let Dk :“ DIk`1
0

have walls

pp, hpfpqq

for p a wall of DGS
Qk`1 . We still denote such a wall by p. We use the MPA function

φ with the same kinks as φGS, this is clearly compatible with the basechange.

Taking the inverse limit over X̌Dk
Ñ Spec krEgp

1 srQs{Ik`1
0 for k ě 0 we get

a family X̌D Ñ Spec krEgp
1 sJQK, which is the same family as the basechange of

the minimal relative Gross-Siebert locus X̌ Ñ Spec krEgpsJQK by h : Egp ‘ Q Ñ

Egp
1 ‘ Q.

Remark 5.15. As in Remark 5.8, we can view D as a collection of scattering

diagrams with A “ krEgp
1 s, monoid Q, and I0 “ m.
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The slab functions fbρp for the walls bρp of D0 are of the form

fbρp “
ź

1ďkďrρ

`

1 ` t´Eρ,kw´1
ρ

˘

“ 1 ` σ1pt
´Eρqwρ ` ¨ ¨ ¨ ` σrρ´1pt

´Eρqwr´1
ρ ` wrρ

fbρp “
ź

1ďkďrρ

`

1 ` tEρ,kwρ
˘

“ 1 ` σ1pt
Eρqwρ ` ¨ ¨ ¨ ` σrρ´1pt

Eρqwr´1
ρ ` wrρ

where we still write t´Eρ,k and tEρ,k for the images of t´Eρ,k and tEρ,k under h.

We need to interpret the variables aρ,i as elements of krEgp
1 s to set up the

correspondence. This requires a basechange of ˇ̄XD̄ Ñ Spec kraρ,isJQK.

Construction 5.16. Consider the ring map

σ : kraρ,is Ñ krEgp
1 s, aρ,i ÞÑ σipt

Eρq, 1 ď i ď rρ ´ 1, ρ P P̄ r1s. (5.5)

We can define a new collection of scattering diagrams D̄σ :“
␣

D̄σ
k , k ě 0

(

with ring A “ krEgp
1 s, monoid Q, and ideal I0 “ m as follows. We let D̄σ

k have

walls

pp, σpfpqq

for p a wall of D̄k. We also use the same MPA function φ̄.

Taking the inverse limit over ˇ̄XD̄σ
k

Ñ Spec krEgp
1 srQs{mk`1 for k ě 0 we get

a family ˇ̄XD̄σ Ñ Spec krEgp
1 sJQK, which is the same family as the basechange

of ˇ̄XD̄ Ñ Spec kraρ,isJQK by σ. If dimEgp “
ř

ρPP̄r1s rρ, then the induced map
ˇ̄XD̄σ Ñ ˇ̄XD̄ is generically a covering of index

ś

ρPP̄r1s rρ! ramified at the points

where tEρ,i “ tEρ,j for some ρ P P̄ r1s and 1 ď i ă j ď rρ. If dimEgp ă
ř

ρPP̄r1s rρ,

then the morphism ˇ̄XD̄σ Ñ ˇ̄XD̄ is not surjective.

Now that the collections of scattering diagrams D and D̄σ are defined over

the same ring (via Remark 5.15 for D). We define ΦpDkq1 and ΦpDkq as before.

Construction 5.17. As in Construction 5.11, we use the analogue of Con-

struction 4.68 for a scattering diagram D̄1 on
`

B̄, P̄ 1
˘

. We define ΦpDkq1 and

ΦpDkq exactly as in Construction 4.69. This is compatible with the MPA func-

tions and ΦpD0q is combinatorially equivalent to D̄σ
0 .

Proposition 5.18. The basechange of the minimal relative Gross-Siebert lo-

cus X̌ Ñ Spec krEgpsJQK by h : Egp‘Q Ñ Egp‘Q is isomorphic to the basechange

by σ : kraρ,is Ñ krEgp
1 s, aρ,i ÞÑ σipt

Eρq of the restriction ˇ̄XD̄ Ñ Spec kraρ,isJQK of

the universal toric degeneration mirror of [GHS, Theorem A.4.2] to the trivial

gluing data.
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Proof. We need to show that the families X̌D Ñ Spec krEgp
1 sJQK and ˇ̄XD̄σ Ñ

Spec krEgp
1 sJQK are isomorphic. As in the proof of Proposition 5.12, consistency

of ΦpDkq and equivalence of ΦpDkq and Dk follow exactly as in the proofs of

Propositions 4.71 and 4.72 respectively. Similarly, changing D̄ to D̄σ, k to A “

krEgp
1 s, N to Q, ptk`1q to mk`1, and using h : Egp ‘ Q Ñ Egp

1 ‘ Q, the same

argument as in the proof of Theorem 4.73 implies the result. □

Observation 5.19. If
`

B̄, P̄
˘

is simple, Proposition 5.18 reduces to Propo-

sition 5.12.

Viewing Speckrt˘Eρ,ks as the parameter space, we have interpreted the re-

striction of the extended intrinsic mirror to the family over the subvariety
#

rρ
ź

k“1

tEρ,k “ 1, ρ P P̄ r1s

+

as a natural basechange of a (universal in polarization and slab functions) toric de-

generation. It remains to understand the fibres over the points with
śrρ

k“1 t
Eρ,k ‰

1 for some ρ P P̄ r1s, which requires introducing gluing data for toric degenera-

tions.

5.4. Extension over non-normalized fibres via gluing data

Let cρ P kˆ for ρ P P̄ r1s be fixed constants and suppose that we tried to do

the same construction as in Section 5.3 but instead of restricting to
śrρ

k“1 t
Eρ,k “

1, ρ P P̄ r1s we restricted to
śrρ

k“1 t
Eρ,k “ cρ, ρ P P̄ r1s (we assume that cρ, ρ P

P̄ r1s are chosen so that this system of equations is consistent92). Then for a wall

bρp on pB,Pq, the constant coefficient of z
mΦpρq1ΦpρqfΦpbρp q is cρ. So unless cρ “ 1

for all ρ P P̄ r1s, Construction 5.17 would give some slabs b of ΦpD0q with the

constant coefficient of fb not equal to 1. However, recall from Section 3.2.4 that

the initial slab functions for a toric degeneration are assumed to be normalized.

As explained in [GS1, Definition 4.23] (in a rather different language), one can

always normalize the slab functions by introducing gluing data.

We will give an overview of gluing data for toric degenerations and prove the

analogue of Proposition 5.18 for the restriction of the extended intrinsic mirror

to the family over the subvariety
#

rρ
ź

k“1

tEρ,k “ cρ, ρ P P̄ r1s
| cρ P kˆ

+

.

92Recall that one can have relations between the Eρ,k, see the discussion after (5.3).
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Finally, in Theorem 5.35, we do the construction universally in a subfamily of

gluing data and extend the correspondence to the whole minimal relative Gross-

Siebert locus.

It is important to emphasize that we keep the gluing data on the intrinsic

mirror side trivial in this chapter. See Section 5.5.3 for a discussion on introducing

gluing data for intrinsic mirrors.

5.4.1. Overview of gluing data. We review gluing data in our case of interest

following [GHS, Section 5.2], see loc. cit. for more details. The treatment of

gluing data in [GS1, GS3] is rather different, but any gluing data in the sense of

[GHS, Section 5.2] induces gluing data in the sense of [GS1, GS3] (see [GHS,

Appendix A.1]).

Let
`

B̄, P̄
˘

be the dual intersection complex of a toric degeneration of K3-s.

We work over an arbitrary ring A, use monoid Q, ideal I0, and fix an ideal I with
?
I “ I0, as in Sections 3.1.3 and 3.1.4.

Definition 5.20. For every ρ P P̄ r1s with two (or one, if rρ “ 0) slabs ρ, ρ1 Ď

ρ P P̄ r1s and a maximal cell σ P P̄max adjacent to ρ, choose homomorphisms of

abelian groups

sσρ : Λσ Ñ Aˆ

sσρ1 : Λσ Ñ Aˆ

subject to the constraint

sσρ|Λρ ¨ psσρ1 |Λρq
´1

“ sσ1ρ|Λρ ¨ psσ1ρ1 |Λρq
´1

if ρ “ σ X σ1 for σ, σ1 P P̄max (if there is just one slab ρ, the condition simplifies

to sσρ|Λρ “ sσ1ρ|Λρ). We call this collection s of homomorphisms (open) gluing

data. Setting all homomorphisms to be trivial defines trivial gluing data.

For a slab b Ď ρ P ˜̄P r1s and a chamber u Ď σ P P̄max, we define the

localization homomorphism χsb,u twisted by s as the composition of the canonical

χb,u : Rb Ñ Ru of (3.19) with the map

sσρ : Ru Ñ Ru, zm ÞÑ sσρpmqzm. (5.6)

We also need to modify the equation (3.9) relating the initial slab functions

fρ, fρ1 P pArQs{I0qrΛρs for slabs ρ, ρ
1 Ď ρ P P̄ rn´1s to ensure that Rρ and Rρ1 are

compatible with the localization homomorphisms twisted by s. We replace (3.9)

with

fρ1 “
sσρ1pξqsσ1ρ1pξ1q

sσρpξqsσ1ρpξ1q
s´1
σρ1psσρpfρqqz

mρ1ρ (5.7)
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where ξ is the normal generator pointing into σ as in (3.12) and ξ1 is the parallel

transport of ξ through ρ into σ1. As in Section 3.2.4, we require that the initial

slab functions have no poles and are normalized.

We have an analogue of Proposition 3.33.

Proposition 5.21. Let ρ, ρ1 P ˜̄P r1s be two slabs with ρ, ρ1 Ď ρ P P̄ r1s and let

fρ, fρ1 be the corresponding slab functions. Let wρ :“ zmρ where mρ is the integral

generator of Λρ that points towards the vertex endpoint of ρ1. We have

fρ “1 ` aρ,1wρ ` ¨ ¨ ¨ ` aρ,rρ´1w
rρ´1
ρ ` cs,ρw

rρ
ρ

fρ1 “1 ` a1
ρ,1wρ ` ¨ ¨ ¨ ` a1

ρ,rρ´1w
´rρ`1
ρ ` cs,ρ1w´rρ

ρ

(5.8)

where the a1
ρ,i P kraρ,is are polynomials in aρ,i, 1 ď i ď rρ ´ 1 such that fρ, fρ1

satisfy (5.7) and cs,ρ, cs,ρ1 P kˆ are certain fixed constants determined by the gluing

data s. A similar statement holds over k in which case we view aρ,i, a
1
ρ,i P k, 1 ď

i ď rρ ´ 1 as constants satisfying (5.7).

Proof. We refer to the proof of [GHS, Proposition A.4.1]. □

The notion of consistency of a scattering diagram D̄I on
`

B̄, P̄
˘

in codimen-

sion 0 is as in Definition 3.14. Consistency in codimension 1 is similar, but we

replace χb,u with χsb,u.

We also replace χb,u with χ
s
b,u in the construction of ˇ̄Xo

DJ
. In general, there is

an obstruction to doing that, but it is empty in our case of interest.

Proposition 5.22. The obstruction to gluing ˇ̄Xo
DI

using the localization ho-

momorphisms χsb,u vanishes if B̄ is a manifold and dim B̄ “ 2.

Proof. We need to show that s is consistent for
`

B̄, P̄
˘

in the sense of [GHS,

Definition 5.2.10]. Since B̄ is a topological manifold, by [GHS, Proposition 5.2.9]

it is enough to show that every vertex v P P̄ r0s satisfies the equation [GHS, (5.4)].

But that equation is trivially satisfied since dim B̄ “ 2. □

Given a scattering diagram D̄I on pB̄, P̄q consistent in codimensions 0 and

1 for gluing data s, we have a well-defined ˇ̄Xo,s

D̄I
. Here we introduce s in the

notation to indicate the use of gluing data in the construction. We will extend

this notation to other objects obtained using s.93

To define consistency in codimension 2, one needs to modify the requirement

a1 “ 1 on the starting coefficient a1 in the Definition 3.12 of a broken line to

ensure that theta functions are compatible with slab-crossings. We require that

a1 “ 1 in a chosen cell σ P P̄max
j such that the asymptotic monomial m of the

93Our notation here differs from [GHS] where s is implicit in the notation.
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broken line satisfies m P Λσ. Then for a cell σ1 P P̄max
j with σXσ1 “ ρ P P̄ r1s

j and

m P Λσ1 , we need to modify the initial coefficient of a broken line with asymptotic

monomial m by s´1
σρ pm̄qsσρpm̄q. We can define the initial coefficient in all cells

σ2 P P̄max
j with m P Λσ2 in this fashion. The vanishing of the obstruction

of Proposition 5.22 and contractability of the subcomplex of cells σ2 P P̄max
j

with m P Λσ2 along with their faces imply that this is well-defined. With this

modification, consistency in codimension 2 is defined as in Definition 3.14 using

χsb,u instead of χb,u to define the slab-crossing homomorphisms of (3.21).

Suppose that D̄I is consistent for gluing data s. There is an additional ob-

struction to extending the mirror family over the codimension 2 strata. Due

to Proposition 5.22, every open gluing data s induces a cohomology class s̄ P

H1
`

B̄,Q b Aˆ
˘

94 that we call closed gluing data.

Definition 5.23. We say that s is projective if the induced closed gluing data

s̄ lifts to a lifted closed gluing data ˜̄s for CB in the sense of [GHS, Definition

5.2.12].

In general, there might be different lifts (the set of lifts is a torsor for

H1
`

B̄, Aˆ
˘

) producing non-isomorphic families

ˇ̄Xs
D̄I

:“ Proj Γp ˇ̄No,s̃

C̄DI
,O ˇ̄No,s̃

C̄DI

q

(here s̃ is an open gluing data inducing ˜̄s, see the proof of [GHS, Proposition

5.2.13]). However, as explained in the proof of [GHS, Proposition A.4.1], reex-

amining the proof of [GS1, Theorem 5.4] shows that there is always a unique

lift ˜̄s of s̄ in the case that
`

B̄, P̄
˘

is the dual intersection complex of a toric

degeneration. So ˇ̄Xs
D̄I

is well-defined.

Theorem 3.35 admits a generalization to non-trivial gluing data s (see [GS3,

Proposition 3.9]). Using this generalization, one can obtain a collection of scat-

tering diagrams D̄ :“
␣

D̄k, k ě 0
(

consistent for gluing data s. Fixing the initial

slab functions
!

fρ P kraρ,isrΛρs | ρ P P̃ rn´1s
)

satisfying (5.8), we define the initial scattering diagram D̄0 :“ D̄m to have slabs

with support ρ P ˜̄P r1s and the attached slab functions fρ as before. Consistency

of D̄0 follows from equation (5.7) relating fρ, fρ1 for two slabs ρ, ρ1 Ď ρ P P̄ r1s.

Then one can produce a collection D̄ :“
␣

D̄k, k ě 0
(

of scattering diagrams

with D̄k :“ D̄mk`1 such that D̄k, k ě 0 are consistent for s in the sense of

94Here Q is a certain constructible sheaf with stalks HompΛτ ,Zq along Int τ̌ for every cell

τ̌ P ˇ̄P of the Legendre dual decomposition ˇ̄P of B̄. See [GHS, Section 5.2] for details.
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[GS3, Definition 2.28] and satisfy the compatibility and uniqueness properties of

Theorem 3.35.

5.4.2. Non-normalized fibres via gluing data. We want to generalize the

result of Section 5.3 to the restriction of the extended intrinsic mirror to the

family over the subvariety
#

rρ
ź

k“1

tEρ,k “ cρ, ρ P P̄ r1s
| cρ P kˆ

+

.

The crucial extra step is finding the gluing data s normalizing the slab functions

of all the slabs in ΦpD0q. Using the ring kraρ,is, for a maximal cell σ P P̄max

adjacent to ρ P P̄ r1s we define the gluing data s via:

sσρ : Λσ Ñ pkraρ,isq
ˆ

“ kˆ,

#

mρ ÞÑ c
´ 1

rρ
ρ

ξ ÞÑ 1

sσρ1 : Λσ Ñ pkraρ,isq
ˆ

“ kˆ, m ÞÑ 1

(5.9)

where the slabs ρ, ρ1 P ˜̄P r1s are chosen as in Sections 4.3.2 and 4.2.5, ξ is the

normal generator pointing into σ as in (3.12), and we fix some choice of primitive

rρ-th roots for rρ ě 1. If rρ “ 0, we interpret sσρ as the trivial homomorphism.

It is easy to check using the long exact cohomology sequence for [GHS, (5.9)]

(as in the proof of [GHS, Proposition 5.2.13]) that this gluing data lifts. So s is

projective, and there is a unique lift of s̄ to a lifted closed gluing data ˜̄s on CB.

The corresponding initial slab function fρ of (5.8) is

fρ “ 1 ` aρ,1wρ ` ¨ ¨ ¨ ` aρ,rρ´1w
rρ´1
ρ ` cρw

rρ
ρ (5.10)

and from equation (5.7) relating fρ and fρ1 we have

fρ1 “
sσρ1pξqsσ1ρ1pξ1q

sσρpξqsσ1ρpξ1q
s´1
σρ1psσρpfρqqz

mρ1ρ “ sσρpfρqz
mρ1ρ (5.11)

which has constant coefficient 1, so it is normalized. The initial slab functions

define D̄0 that is consistent for s and by the discussion at the end of Section

5.4.1 we get a collection of scattering diagrams D̄ :“
␣

D̄k, k ě 0
(

and a family
ˇ̄Xs
D̄

Ñ Spec kraρ,isJQK defined as the inverse limit over ˇ̄Xs
D̄

Ñ Spec kraρ,isrQs{mk`1

as usual. This family is isomorphic to the restriction of the universal toric degen-

eration mirror of [GHS, Theorem A.4.2] to closed gluing data s̄.

Remark 5.24. Similarly to Remark 5.13, the family ˇ̄Xs
D̄

Ñ Spec kraρ,isJQK is

universal in the sense that every one-parameter toric degeneration mirror fam-

ily ˇ̄Xs Ñ Spec kJtK constructed using gluing data s and polarization A can
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be obtained from ˇ̄Xs
D̄

Ñ Spec kraρ,isJQK via a basechange that is induced by

Q Ñ N, β ÞÑ A ¨ β and by sending the variables aρ,i to the values chosen for the

initial slab function fρ of (5.8).

We proceed as in Section 5.3. First, we restrict the minimal relative Gross-

Siebert locus to a family over
#

σrρptEρq “

rρ
ź

k“1

tEρ,k “ cρ, ρ P P̄ r1s

+

.

We generalize (5.4) by setting

AGS :“ krt˘Eρ,ksJQK, AGS
cρ :“ krt˘Eρ,ksJQK

OC

rρ
ź

k“1

tEρ,k “ cρ, ρ P P̄ r1s

G

and considering the natural projection hcρ : AGS Ñ AGS
cρ . We still write tEρ,k for

the image of tEρ,k under hcρ .

Construction 5.25. We define a collection of scattering diagrams D “

tDk, k ě 0u in the same way as in Construction 5.14 (via Remark 5.15 and using

hcρ instead of h). The resulting family X̌D Ñ SpecAGS
cρ JQK is the same family as

the basechange of the minimal relative Gross-Siebert locus X̌ Ñ SpecAGSJQK by

hcρ : A
GS Ñ AGS

cρ .

Now we need to interpret the variables aρ,i as elements of AGS
cρ to set up the

correspondence. Similarly to Construction 5.16, this is achieved by a basechange.

Construction 5.26. We consider the map

σ : kraρ,is Ñ AGS
cρ , aρ,i ÞÑ σipt

Eρq, 1 ď i ď rρ ´ 1, ρ P P̄ r1s

as in (5.5) and define a new collection of scattering diagrams D̄σ :“
␣

D̄σ
k , k ě 0

(

with ring AGS
cρ , monoid Q, and ideal I0 “ m in the same way as in Construction

5.16. The family ˇ̄Xs
D̄σ Ñ SpecAGS

cρ JQK constructed using the gluing data (that we

still call s) defined via the homomorphisms

sσρ : Λσ Ñ kˆ
Ď

´

AGS
cρ

¯ˆ

induced by the s of (5.9) is the same family as the basechange of ˇ̄Xs
D̄

Ñ

Spec kraρ,isJQK by σ. If dimEgp “
ř

ρPP̄r1s rρ, then the induced map ˇ̄Xs
D̄σ Ñ ˇ̄Xs

D̄
is

generically a covering of index
ś

ρPP̄r1s rρ! ramified at the points where tEρ,i “ tEρ,j

for some ρ P P̄ r1s and 1 ď i ă j ď rρ. If dimEgp ă
ř

ρPP̄r1s rρ, then the morphism
ˇ̄Xs
D̄σ Ñ ˇ̄Xs

D̄
is not surjective.
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Now that the scattering diagrams D and D̄σ are defined over the same ring,

we define ΦpDkq1 and ΦpDkq in a way that ensures that ΦpD0q is combinatorially

equivalent to D̄σ
0 .

Construction 5.27. As in Construction 5.11, we use the analogue of Con-

struction 4.68 to get a scattering diagram D̄σ1

on
`

B̄, P̄ 1
˘

. Note that the gluing

data s of (5.9) defines a gluing data s1 on
`

B̄, P̄ 1
˘

by defining the gluing data

for every slab ρp Ď ρp P P̄ 1r1s to be the same as the gluing data on the unique

slab ρ Ď ρ P P̄ r1s containing ρp and defining the gluing data for ρ1 Ď P̄ 1r1szP̄ r1s

(using Notation 4.67) to be trivial.

We modify Construction 4.69 of ΦpDkq1 and ΦpDkq by replacing z
mΦpρq1ΦpρqfΦpbq

in (2) and (3) with z
mΦpρq1Φpρqs1

ΦpσqΦpρpq
pfΦpbqq. Thus defined ΦpDkq1 and ΦpDkq

are compatible with the MPA functions and it follows immediately from the

construction of s in (5.9) and fρ, fρ1 in (5.10), (5.11) that ΦpD0q is combinatorially

equivalent to D̄σ
0 (one needs to verify that fΦpb1q “ z

mΦpρq1Φpρqs1
ΦpσqΦpρpq

pfΦpb2qq for

b1 as in Construction 4.69(1) with b1 Ď ρp1 P P r1s for 1 ď p1 ď p0 and b2 as

in Construction 4.69(2,3) with b2 Ď ρp2 P P r1s for p0 ` 1 ď p2 ď lρ). Here we

extend Definition 3.17 of combinatorial equivalence to non-trivial gluing data by

requiring that the gluing data used to construct the family is the same for the

two scattering diagrams.

We can now prove an analogue of Proposition 5.18.

Proposition 5.28. For any gluing data s as in (5.9), the basechange of the

minimal relative Gross-Siebert locus X̌ Ñ SpecAJQK by hcρ : AGS Ñ AGS
cρ is

isomorphic to the basechange by σ : kraρ,is Ñ AGS
cρ , aρ,i ÞÑ σipt

Eρq of the restric-

tion ˇ̄Xs
D̄

Ñ Spec kraρ,isJQK of the universal toric degeneration mirror of [GHS,

Theorem A.4.2] to closed gluing data s̄ (induced from s).

Proof. We need to show that the families X̌D Ñ SpecAGS
cρ JQK and ˇ̄Xs

D̄σ Ñ

SpecAGS
cρ JQK are the same. First, we need to check consistency of ΦpDkq. Remark

4.70(1) still applies in this setting, so it is enough to show consistency of ΦpDkq1.

This follows as in the proof of Proposition 4.71 with the following modifications:

(1) Work over the ring AGS
cρ , use monoid Q, and replace Constructions 4.68

and 4.69 with Construction 5.27. The proof of consistency in codimen-

sion 0 is the same.

(2) Replace the canonical localization homomorphisms χΦpbq,Φpuq with χ
s1

Φpbq,Φpuq

and the canonical isomorphisms Rb – RΦpbq with

Φρ1 : Rb Ñ Rs1

Φpbq, Z` ÞÑ Z`, Z´ ÞÑ Z´, wρ ÞÑ s1´1
ΦpσqΦpρ1qpwρq. (5.12)
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for b Ď ρ1 P P r1s a slab of the first type. Modify the argument in Step

1 of the proof of consistency in codimension 1 to an argument similar to

the one in Step 2.

(3) Replace the isomorphism Φ1 : Rbi Ñ RΦpbiq1 of (4.13) with, for

Rbi “

´

AGS
cρ rQs{mk`1

¯

rΛρsrZ`, Z´s{ pZ`Z´ ´ fbi ¨ zκρp0`1 q

Rs1

Φpbiq1 “

´

AGS
cρ rQs{mk`1

¯

rΛΦpρqsrZ`, Z´s

M´

Z`Z´ ´ z
mΦpρq1Φpρqs1

ΦpσqΦpρqpfΦpbiqq ¨ z
κΦpρp0`1q

¯

(for i “ 1, 2 and with κρp0`1 “ κΦpρp0`1q by construction), the map

Φ1 : Rbi Ñ Rs1

Φpbiq1 , Z` ÞÑ Z`, Z´ ÞÑ z
mΦpρq Φpρq1

Z´, wρ ÞÑ s1´1
ΦpσqΦpρpqpwρq.

The arguments of Steps 2 and 3 in the proof of consistency in codimension

1 go through with this modification.

(4) In the proof of consistency in codimension 2, use broken lines in the mod-

ified sense of Section 5.4.1. The proof that Φpβq is a well-defined broken

line goes through (using the modified slab-crossing homomorphisms).

Compatibility with the change of chamber homomorphism θΦpu1qΦpuq for

Φpu1q X Φpuq “ Φpbq1 a slab of the second type follows in the same way

(using the modified slab-crossing homomorphisms and Φ1).

Equivalence of
`

B̄,ΦpDkq
˘

and pB,Dkq should be understood in the sense of

using trivial gluing data on pB,Pq and gluing data s on pB̄, P̄q. Remark 4.70(1)

still applies in this setting, so it is enough to show the equivalence of
`

B̄,ΦpDkq1
˘

and pB,Dkq (using gluing data s1 on
`

B̄, P̄ 1
˘

). This follows as in the proof of

Proposition 4.72 with the same modifications as in (1) and (2) above. We need

to slightly modify the last paragraph of the proof since the isomorphism Φρ1 of

(5.12) is not canonical. However, it follows from the constructions of X̌o,s1

pB̄,ΦpDkq1q

and X̌o
pB,Dkq

that it is enough to check that the diagrams

Rρ1 Rσ

Rs1

Φpρ1q
Rs1

Φpσq

χρ1,σ

Φρ Id

χs1

Φpρ1q,Φpσq

commute for all ρ1 P P r1s and σ P Pmax with ρ1 Ď σ. This is immediate from the

definitions.

Now, changing D̄ to D̄σ, k to AGS
cρ , N to Q, ptk`1q to mk`1, the trivial gluing

data for
`

B̄, P̄
˘

to the gluing data s of (5.9), and using hcρ : AGS Ñ AGS
cρ , the

same argument as in the proof of Theorem 4.73 implies the result.
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There is one place where an additional argument is required. We can’t directly

apply Proposition 3.16 that says that equivalent scattering diagrams induce iso-

morphic families to claim that it is enough to prove equivalence of pB,Dkq and
`

B̄,ΦpDkq1
˘

in the sense discussed above to ensure that X̌pB,Dkq – X̌s1

pB̄,ΦpDkq1q
.

Indeed, the definition of ˇ̄Xs1

0 is different from the definition of X̌0. Instead

of the ring
´

AGS
cρ rQs{m

¯

rBs of (3.18), one uses the ring
´

AGS
cρ rQs{m

¯

rB̄s p˜̄s1q

where the multiplication rule depends on the lifted closed gluing data ˜̄s1 (see

[GHS, Section 5.2]). However, ˇ̄Xs1

0 :“ Proj
´

AGS
cρ rQs{m

¯

rB̄s p˜̄s1q is isomorphic to

X̌0 :“ Proj
´

AGS
cρ rQs{m

¯

rBs via

α :
´

AGS
cρ rQs{m

¯

rBs Ñ

´

AGS
cρ rQs{m

¯

rB̄s p˜̄s1
q

zm ÞÑ ˜̄s1´1
ΦpσqΦpρ1qpz

m
q, m P Cρ1, ρ1

P P r1s

zm ÞÑ zm, m R Cρ1, ρ1
P P r1s

which is clearly compatible with the isomorphisms Φρ1 of (5.12). Using the iso-

morphism α, an argument similar to the one in the proof of Proposition 3.16

implies that it is enough to prove equivalence of pB,Dkq and
`

B̄,ΦpDkq1
˘

in the

sense discussed above to ensure that X̌pB,Dkq – X̌s1

pB̄,ΦpDkq1q
. □

Observation 5.29. If s is the trivial gluing data, then cρ “ 1 for all ρ P P̄ r1s

and Proposition 5.28 reduces to Proposition 5.18.

5.4.3. The minimal relative Gross-Siebert locus via gluing data. The

subvarieties
#

rρ
ź

k“1

tEρ,k “ cρ, ρ P P̄ r1s
| cρ P kˆ

+

of Speckrt˘Eρ,ks cover Speckrt˘Eρ,ks. In particular, Proposition 5.28 implies

that we can realize any fibre of the minimal relative Gross-Siebert locus X̌ Ñ

Spec krt˘Eρ,ksJQK as a (universal in polarization) toric degeneration mirror fam-

ily ˇ̄Xs Ñ Spec kJQK constructed using gluing data s of the form (5.9) and a choice

of slab functions fρ, fρ1 as in (5.10), (5.11) (with aρ,i, a
1
ρ,i P k). Note that not all

(universal in polarization) toric degeneration mirror families of this form arise as

fibres of X̌ Ñ Spec krt˘Eρ,ksJQK unless dimEgp “
ř

ρPP̄r1s rρ.

We would like to do the toric degeneration mirror construction universally

in gluing data of the form (5.9) and exhibit a connection between the minimal

relative Gross-Siebert locus of the extended intrinsic mirror and a certain toric

degeneration mirror family. To do that, we need to think of cρ P kˆ, ρ P P̄ r1s as

variables and work over kraρ,i, c
˘1
ρ s instead of kraρ,is. The slab functions fρ, fρ1 of
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(5.10), (5.11) make sense as elements of kraρ,i, c
˘1
ρ srΛρs. However, unless

`

B̄, P̄
˘

is simple (that is unless rρ ď 1 for all ρ P P̄ r1s), the maps defined in (5.9) can’t

be viewed as homomorphisms Λσ Ñ pkraρ,i, c
˘1
ρ sqˆ “ kˆrc˘1

ρ s since c
´ 1

rρ
ρ does not

make sense as an element of kraρ,i, c
˘1
ρ s for rρ ě 2. To circumvent this issue, we

do an additional basechange.

Construction 5.30. We work over kraρ,i, c
˘1
ρ s, use monoid Q, and set I0 “

m. Consider the map

r : kraρ,i, c
˘1
ρ s Ñ kraρ,i, c

˘1
ρ s, aρ,i ÞÑ aρ,i, cρ ÞÑ crρρ (5.13)

and define the initial slab functions f rρ :“ rpfρq, f
r
ρ1 :“ rpfρ1q where fρ, fρ1 are as

in (5.10), (5.11). Let sr be the gluing data on
`

B̄, P̄
˘

defined via

srσρ : Λσ Ñ kˆ
rc˘1
ρ s,

"

mρ ÞÑ c´1
ρ

ξ ÞÑ 1

srσρ1 : Λσ Ñ kˆ
rc˘1
ρ s, m ÞÑ 1

(5.14)

for every ρ P P̄ r1s with rρ “ 1 where the slabs ρ, ρ1 P ˜̄P r1s are chosen as in

Sections 4.3.2 and 4.2.5, and ξ is the normal generator pointing into σ as in

(3.12). For ρ P P̄ r1s with rρ “ 0, we set srσρ to be the trivial homomorphism.

Similarly to (5.9), one can check that sr is projective. Note that f rρ , f
r
ρ1 satisfy

(5.7) with gluing data sr since fρ and fρ1 satisfy (5.7) with gluing data s (treating

cρ as constants).

We define D̄r
0 :“ D̄r

m to have the slabs with support ρ P ˜̄P r1s and the at-

tached slab functions f rρ , f
r
ρ1 . Consistency of D̄r

0 for sr follows from the fact that

(5.7) is satisfied. As before, [GS3, Theorem 5.2] implies that the reconstruc-

tion algorithm of Theorem 3.35 generalizes to this setting and we can produce

a collection D̄r :“
␣

D̄r
k, k ě 0

(

of scattering diagrams such that the scattering

diagrams D̄r
k :“ D̄r

mk`1 are consistent for s
r in the sense of [GS3, Definition 2.28]

and satisfy the compatibility and uniqueness properties of Theorem 3.35.

We can now construct a family ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK via the recipe of

Section 5.4.1 (using the universal MPA function φ̄) by taking the inverse limit as

usual. We need to understand the connection with the universal toric degener-

ation mirror ˇ̄XP Ñ Spec kPraρ,isJQK of [GHS, Theorem A.4.2], which is defined

over kPraρ,isJQK for a subring kP Ď krH1pB̄, i˚Λ̌q˚
f s. Here krH1pB̄, i˚Λ̌q˚

f s param-

eterizes closed gluing data and kP is a universal choice of a subring parametrizing

projective gluing data, see [GHS, Appendix A.2] for details. For every choice of

cρ P kˆ, ρ P P̄ r1s we obtain a gluing data (with values in kˆ) via (5.9). It is

easy to see from the universality of kP that the corresponding closed gluing data
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is contained in the subfamily parameterized by kP. Let k1
P Ď kP be the subring

generated by s̄ for s as in (5.9) and let ˇ̄X1
P Ñ Spec k1

Praρ,isJQK be the restriction

of ˇ̄XP Ñ Spec kPraρ,isJQK to Spec k1
Praρ,isJQK Ď Spec kPraρ,isJQK.

We define a universal analogue of the map r of (5.13):

runiv : k1
Praρ,is Ñ k1

Praρ,is, aρ,i ÞÑ aρ,i, s̄ ÞÑ s̄r. (5.15)

Here s̄r is defined as follows. Let s be any open gluing data giving rise to s̄

and define an open gluing data sr by setting srσρpmq :“ psσρpmqqrρ for every

σ P P̄max, every slab ρ Ď ρ P P̄ r1s with ρ Ď σ, and any m P Λσ. Then s̄r is the

closed gluing data corresponding to sr (it is easy to check that s̄r is independent of

the choice of s giving rise to s̄). Let ˇ̄X1runiv
P Ñ Spec k1

Praρ,isJQK be the basechange
of ˇ̄X1

P Ñ Spec k1
Praρ,isJQK by runiv.

Now, for every ρ P P̄ r1s, define a gluing data sr,ρ by setting sr,ρσ,ρpmq :“ srσ,ρpmq

(for sr and ρ as in (5.14) and any m P Λσ) and setting sr,ρσ,ρ1 to be the trivial

homomorphism for any other slab ρ1 Ď ρ1 P P̄ r1s and σ P P̄max containing ρ1.

Let s̄r,ρ be the corresponding closed gluing data. Then the map

cuniv : kraρ,i, c
˘1
ρ s Ñ k1

Praρ,is, aρ,i ÞÑ aρ,i, cρ ÞÑ s̄r,ρ

is well-defined and surjective. Our construction implies that ˇ̄X1runiv
P Ñ

Spec k1
Praρ,isJQK is isomorphic to the basechange of ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK

by cuniv, i.e. we have a commutative diagram as follows:

ˇ̄Xsr

D̄r
ˇ̄X1runiv
P

ˇ̄X1
P

ˇ̄XP

Spec kraρ,i, c
˘1
ρ sJQK Spec k1

Praρ,isJQK Spec k1
Praρ,isJQK Spec kPraρ,isJQKcuniv runiv

(5.16)

Remark 5.31. Similarly to Remark 5.24, the family ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK

is universal in the sense that every one-parameter toric degeneration mirror fam-

ily ˇ̄Xs Ñ Spec kJtK constructed using gluing data s as in (5.9) and polarization A

can be obtained from ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK via a basechange that is induced

by Q Ñ N, β ÞÑ A¨β and by sending the variables aρ,i to the values chosen for the

initial slab function fρ of (5.8), and sending the variables cρ to the 1
rρ
-th powers

of the constants used in defining s (for some fixed choice of primitive rρ-th roots

for rρ ě 1 as in (5.9)).

We will now relate the minimal relative Gross-Siebert locus X̌ Ñ

Spec krt˘Eρ,ksJQK to ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK. This requires a basechange by a

map similar to the map r of (5.13).
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Construction 5.32. Consider the map

r : krt˘Eρ,ks Ñ krt˘Eρ,ks, tEρ,k ÞÑ ptEρ,kq
rρ (5.17)

and define a collection of scattering diagrams Dr “
␣

Dr
mk`1 , k ě 0

(

on pB,Pq

with A “ krEgps, monoid Q, and I0 “ m by letting Dr
mk`1 have walls

pp, rpfpqq

for p a wall of DGS
mk`1 (using Remark 5.8). We use the MPA function φGS. Taking

the inverse limit as usual, we define a family X̌Dr Ñ Spec krt˘Eρ,ksJQK (using the

trivial gluing data) which is just the basechange of the minimal relative Gross-

Siebert locus X̌DGS Ñ Spec krt˘Eρ,ksJQK by r.

After these basechanges, we can proceed as in Section 5.4.2. Similarly to

Construction 5.26, we interpret aρ,i and cρ as elements of krt˘Eρ,ks and the gluing

data sr as gluing data with homomorphisms taking values in
`

krt˘Eρ,ks
˘ˆ

“

kˆrt˘Eρ,ks.

Construction 5.33. We consider the map

σ : kraρ,i, c
˘1
ρ s Ñ krt˘Eρ,ks

aρ,i ÞÑ σipt
rρEρq, 1 ď i ď rρ ´ 1, ρ P P̄ r1s

cρ ÞÑ σrρptEρq “

rρ
ź

k“1

tEρ,k , ρ P P̄ r1s

(5.18)

where σipt
rρEρq is the i-th symmetric polynomial in trρEρ,k , 1 ď k ď rρ. Define

a new collection of scattering diagrams D̄rσ :“
␣

D̄rσ
k , k ě 0

(

with ring krEgps,

monoid Q, and ideal I0 “ m by setting the walls of D̄rσ
k to be

pp, σpfpqq

for p a wall of D̄r
k.

Similarly, we define gluing data srσ on
`

B̄, P̄
˘

by setting srσσρpmq :“ σpsrσρpmqq

(where sr is the gluing data of (5.14)) for any slab ρ P ˜̄P r1s with adjacent maximal

cell σ P P̄max and any m P Λσ. The gluing data srσ is well-defined since the tEρ,i

are invertible in krt˘Eρ,ks. Explicitly, srσ given by homomorphisms

srσσρ : Λσ Ñ kˆ
rt˘Eρ,ks,

$

’

&

’

%

mρ ÞÑ

˜

rρ
ź

k“1

tEρ,k

¸´1

ξ ÞÑ 1

srσσρ1 : Λσ Ñ kˆ
rt˘Eρ,ks, m ÞÑ 1

using the same conventions as in (5.14).



206 5. INTRINSIC MIRROR OVER THE GROSS-SIEBERT LOCUS

We use the MPA function φ̄. Taking the inverse limit as usual, we get a

family ˇ̄Xsrσ

D̄rσ Ñ Spec krt˘Eρ,ksJQK which is the same family as the basechange of
ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK by σ.

Now that the scattering diagrams Dr and D̄rσ are defined over the same ring,

we define ΦpDr
kq1 and ΦpDr

kq in a way that ensures that ΦpDr
0q is combinatorially

equivalent to D̄rσ
0 .

Construction 5.34. As in Construction 5.27, we use the analogue of Con-

struction 4.68 for a scattering diagram D̄rσ1

on
`

B̄, P̄ 1
˘

with gluing data psrσq1

on
`

B̄, P̄ 1
˘

defined similarly to the s1 of Construction 5.27.

We define ΦpDr
kq1 and ΦpDr

kq in the same way as in Construction 5.27, but

using psrσq1 instead of s1. As in Construction 5.27, it follows that ΦpDr
kq1 and

ΦpDr
kq are compatible with the MPA functions and ΦpDr

0q is combinatorially

equivalent to D̄rσ
0 .

Finally, we obtain a correspondence between the minimal relative Gross-

Siebert locus X̌ Ñ Spec krt˘Eρ,ksJQK and the subfamily ˇ̄X1
P Ñ Spec k1

Praρ,isJQK
of the universal toric degeneration mirror ˇ̄XP Ñ Spec kPraρ,isJQK of [GHS, The-

orem A.4.2].

Theorem 5.35. The basechange of the minimal relative Gross-Siebert locus

X̌ Ñ Spec krt˘Eρ,ksJQK

by

r : krt˘Eρ,ks Ñ krt˘Eρ,ks, tEρ,k ÞÑ ptEρ,kq
rρ

is isomorphic to the basechange of the toric degeneration mirror family

ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK

of Construction 5.30 by

σ : kraρ,i, c
˘1
ρ s Ñ krt˘Eρ,ks

aρ,i ÞÑ σipt
rρEρq, 1 ď i ď rρ ´ 1, ρ P P̄ r1s

cρ ÞÑ σrρptEρq “

rρ
ź

k“1

tEρ,k , ρ P P̄ r1s

Therefore, we obtain a correspondence between X̌ Ñ Spec krt˘Eρ,ksJQK and ˇ̄X1
P Ñ

Spec k1
Praρ,isJQK via (5.16).
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Proof. We need to show that the families X̌Dr Ñ Spec krt˘Eρ,ksJQK and
ˇ̄Xsrσ

D̄rσ Ñ Spec krt˘Eρ,ksJQK are the same. The proof is the same as the proof of

Proposition 5.28 after replacing AGS
cρ with krt˘Eρ,ks and s with srσ. □

If the dual intersection complex
`

B̄, P̄
˘

of X̄ Ñ S is simple, the corre-

spondence is more direct. Note that in this case we have kraρ,is – k since

K :“
ř

ρPP̄r1s,rρą0prρ ´ 1q “ 0. We also have krt˘Eρ,ks – krt˘Eρ,1s.

Corollary 5.36. Suppose that
`

B̄, P̄
˘

is simple. Let k1
P Ď kP be the subring

generated by s̄ for s as in (5.9) and let ˇ̄X1
P Ñ Spec k1

PJQK be the corresponding

subfamily of the universal toric degeneration mirror ˇ̄XP Ñ Spec kPJQK of [GHS,

Theorem A.2.4]. The map

cuniv : krc˘1
ρ s Ñ k1

P, cρ ÞÑ s̄ρ

(where the gluing data sρ is defined similarly to sr,ρ in Construction 5.30 and s̄ρ

is the corresponding closed gluing data) is well-defined and surjective.

Let ˇ̄Xs
D̄

Ñ Spec krc˘1
ρ sJQK be the toric degeneration mirror family constructed

using the gluing data s of (5.9) (viewing cρ as a variable) and let σ be the map

σ : krc˘1
ρ s Ñ krt˘Eρ,1s, cρ ÞÑ tEρ,1 . (5.19)

Note that σ is not an isomorphism in general, see the discussion after (5.3). Let

X̌ Ñ Spec krt˘Eρ,1sJQK be the minimal relative Gross-Siebert locus. We have a

commutative diagram as follows:

X̌ ˇ̄Xs
D̄

ˇ̄X1
P

ˇ̄XP

Spec krt˘Eρ,1sJQK Spec krc˘1
ρ sJQK Spec k1

PJQK Spec kPJQKσ cuniv

Proof. Since
`

B̄, P̄
˘

is simple, the universal toric degeneration mirror of

[GHS, Theorem A.4.2] is just the universal toric degeneration mirror of [GHS,

Theorem A.2.4]. The maps r of (5.13) and (5.17) and the map runiv of (5.15) are

trivial since rρ ď 1 for all ρ P P̄ r1s. The map σ of (5.18) reduces to the map σ of

(5.19). So Theorem 5.35 reduces to the claimed result. □

Remark 5.37. Even in the case of simple
`

B̄, P̄
˘

, there is no isomorphism

between X̌ Ñ Spec krt˘Eρ,1sJQK and ˇ̄X1
P Ñ Spec k1

PJQK in general. Indeed, we have

k1
P Ď krH1pB̄, i˚Λ̌q˚

f s and dimH1pB̄, i˚Λ̌q˚
f “ 20 (see [GS1, Example 5.22(2)]).

On the other hand, there are examples when dimEgp “
ř

ρPP̄r1s rρ “ 24 (see the

discussion after (5.3) and [GS1, Example 5.22(2)]).
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5.5. Discussion of the results

We highlight certain features of our construction along with some philosophy.

Note that the fact that there is an algorithmic construction for the toric degen-

eration mirror means that we might be able to compute certain intrinsic mirrors

to minimal log CY resolutions of special toric degenerations of K3-s explicitly

(and in particular, compute certain punctured log Gromov-Witten invariants)

similarly to the calculations of [A] (also see Observation A.2 for the equation of

the intrinsic mirror to a small resolution of the toric degeneration of Example 1.4).

For this reason, it would be interesting to study minimal log CY degenerations

of K3-s that admit a blowdown to a special toric degeneration.

We now discuss relaxing the underlying assumptions, the minimal relative

Gross-Siebert locus modulo I0 and mirrors to generically log smooth resolutions,

and gluing data for intrinsic mirrors.

5.5.1. Relaxing the underlying assumptions. We have made certain re-

stricting assumptions throughout the paper. First, we have Assumption 1.3 on

the toric degeneration X̄ Ñ S. The assumption that X̄ is a variety is only needed

to ensure that so is X (for a resolution π : X Ñ X̄ that we consider), which

is necessary to fit with the assumptions of the literature [ACGS1, ACGS2]

on punctured log Gromov-Witten invariants. As explained in [GHKS, Remark

5.16(2)], one can work with an algebraic space X instead, and this only requires

a slight modification of Definition 3.85 of a decorated wall type τ . Assumptions

1.3(3) and 1.3(4) ensure that both
`

B̄, P̄
˘

and pB,Pq are polyhedral manifolds

in the sense of Definition 3.1. These assumptions can likely be removed by work-

ing with the toric polyhedral decompositions of [GS1, Definitions 1.21 and 1.22]

and revising [GS7, GS8, GHS] for this more general setup, see Remark 3.2(2).

The assumption that X̄ Ñ S is projective (and not just proper) is only needed to

ensure that so is X Ñ S, a condition we now discuss.

It may sometimes seem more natural to work with non-projective but proper

resolutions X Ñ S. For instance, consider the case of Example 1.4. We can

blow up two singular points of Di XDj in Di and the other two points in Dj for

1 ď i ă j ď 4 to obtain a more symmetric resolution X Ñ Spec kJtK. There are

certain obstacles to extending the results of this thesis to such a resolution.

It is clear that X Ñ Spec kJtK should be the classical degeneration of a Calabi-

Yau hypersurface to four rational surfaces that are P2-s with 6 boundary points

blown up. However, such X Ñ Spec kJtK can’t be obtained as a sequence of

blowups of irreducible components of the central fibre. Moreover, by considering
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the intersection numbers of Eρ,k, ρ P P̄ r1s, 1 ď k ď rρ with the irreducible

components of X0 it is easy to see that there is no relatively ample divisor D1

supported on D for this resolution. Note that we actually prove Conjecture 1.7

for any toric, integral, and homogeneous resolution (see Remark 4.64(1)), so this

is not crucial. More seriously, the projectivity assumption is currently required

in [GS8] to ensure that the canonical scattering diagram is consistent.

This discussion generalizes to the setup of the tropical approach to resolutions

of Section 4.3.1 and corresponds to considering non-homogeneous resolutions, see

Remark 4.26. These resolutions are often not projective. Generalizing the results

of this thesis to toric, integral, and non-homogeneous projective resolutions should

be straightforward. This only requires a generalization of Section 4.4, as explained

in Remark 4.64(2), and a corresponding generalization of Construction 4.69.

We believe that the results of this thesis can also be extended to certain

proper, non-projective resolutions. One reason this is desirable is the results

of [H2] that construct log smooth families directly from polytopes (with certain

specified decompositions), similarly to how we constructed Batyrev degenerations

in Section 2.1. These families are often non-projective but proper. It would be

interesting to see how the mirror Batyrev degenerations of Section 2.1 are related

to the intrinsic mirrors to the degenerations of [H2].

The assumption that a strongly admissible resolution π : X Ñ X̄ (see Defini-

tion 4.29) is integral is necessary to guarantee that pB,Pq is an integral subdivi-

sion of
`

B̄, P̄
˘

, which implies that pB,Pq is a polyhedral manifold. In particular,

the central fibre of X Ñ S is reduced, see Remark 3.49. We chose to require inte-

grality of the polytopes in the polyhedral decomposition P on B in Definition 3.1

of a polyhedral manifold to be in line with the conventions of [GHS]. However, as

we mention in Remark 3.49, one can allow rational polyhedra in the construction,

and all the results still make sense (this is the approach of [GHKS]). Therefore,

one may weaken the requirement that a strongly admissible resolution is integral

and allow rational subdivisions of σ P P̄max (they should still induce integral

subdivisions of ρ P P̄ r1s since in Definition 4.25 we require compatibility with

the subdivisions of the cones defining the local models for the singular points

x P X̄ρ). This extends the results of this thesis, particularly those of Chapter 5

where we only work with strongly admissible resolutions.

We discuss generalizing Conjecture 1.7 to non-special toric degenerations X̄ Ñ

S of K3-s in Remarks 3.47. In particular, Remark 3.47(1) gives a positive result

in this direction.
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5.5.2. The minimal relative Gross-Siebert locus modulo I0 and mirrors

to generically log smooth degenerations. In Theorem 5.35, we proved that

there is a correspondence between the minimal relative Gross-Siebert locus and

a subfamily of the universal toric degeneration mirror family of [GHS, Theorem

A.4.2]. Proposition 5.28 and Remark 5.24 imply that we can obtain certain one-

parameter toric degeneration mirrors from the minimal relative Gross-Siebert

locus X̌ Ñ Spec krt˘Eρ,ksJQK by basechange. In particular, Spec krt˘Eρ,ks can be

viewed as the parameter space of toric log CY structures on ˇ̄X0 of a certain form.

Proposition 5.38. The minimal relative Gross-Siebert locus modulo I0 “

Qz t0u is the family X̌DGS
Q

Ñ Spec krt˘Eρ,ks (here DGS
Q is defined in Construction

5.7). It is a trivial deformation of schemes (i.e. X̌DGS
Q

– ˇ̄X0 ˆ Spec krt˘Eρ,ks).

Suppose further that dimEgp “
ř

ρPP̄r1s rρ. Then all the toric log CY structures on
ˇ̄X0 with gluing data in the subring k1

P Ď krH1pB̄, i˚Λ̌q˚
f s parametrizing closed glu-

ing data generated by s̄ for s as in (5.9) appear as fibres of X̌DGS
Q

Ñ Spec krt˘Eρ,ks.

Here the log structures on the fibres are induced from the natural log structure on

X̌DGS
Q

Ñ Spec krt˘Eρ,ks (see Appendix B) by inclusions.

Proof. To show that X̌DGS
Q

Ñ Spec krt˘Eρ,ks is a trivial deformation of the

central fibre, it is enough to show that the family X̌o
DGS

Q
outside codimension 2 is a

trivial deformation (by Proposition 3.16 and since the empty scattering diagram

provides the trivial deformation). X̌o
DGS

Q
is obtained by gluing together the affine

schemes SpecRb with

Rb “ pkrEgp
‘ Qs{I0qrΛρsrZ`, Z´s{pZ`Z´ ´ fb ¨ zκρq (5.20)

for choices of slabs b Ď ρ P P r1s for every ρ P P r1s along the SpecRu for choices

of chambers u Ď σ P Pmax for every σ P Pmax (see the proof of Proposition

4.72). Note that modulo I0, all the non-trivial walls are slabs.

Construction 5.7 implies that for every non-trivial slab b Ď ρ P P r1s, we have

κρ :“ rXρs. Then either Xρ is not contracted by π : X Ñ X̄ and zκρ “ 0 P

krEgp ‘ Qs{I0, or ρ P P r1szP r1s
coar (using Notation 4.67) and zκρ “ fb “ 1. Thus

SpecRb are trivial deformations of their counterparts over the maximal ideal.

From the construction of X̌o
DGS

Q
in [GHS, Proposition 2.4.1], we immediately see

that the gluing respects this triviality and produces a trivial deformation.

A toric log CY structure with gluing data s as in (5.9) specified by cρ P kˆ is

determined by a choice of the initial slab functions as in (5.8) with aρ,i P k and

cs,ρ “ cρ, cs,ρ1 “ 1 for ρ P P̄ r1s. Proposition 5.28 and Remark 5.24 imply that
ˇ̄X0 with such a toric log CY structure is isomorphic as a log scheme to the fibre
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of X̌DGS
Q

Ñ Spec krt˘Eρ,ks (with the log structure induced from the natural log

structure on X̌DGS
Q

Ñ Spec krt˘Eρ,ks by inclusion) over the point

␣

tEρ,k “ ζρ,k | ρ P P̄ r1s, 1 ď k ď rρ
(

(5.21)

where ζρ,k is the k-th root of

1 ` aρ,1wρ ` ¨ ¨ ¨ ` aρ,rρ´1w
rρ´1
ρ ` cρw

rρ
ρ “ 0 (5.22)

(for any ordering of the roots, note that cρ P kˆ implies that ζρ,k ‰ 0 for all

1 ď k ď rρ). Here the fact that dimEgp “
ř

ρPP̄r1s rρ implies that the system

(5.21) has a solution in Egp. □

Remarks 5.39. (1) Note that the correspondence between the fibres of

X̌DGS
Q

Ñ Spec krt˘Eρ,ks and toric log CY structures on ˇ̄X0 is not one-

to-one. If the equations (5.22) have no multiple roots for all ρ P P̄ r1s,

then there are at least
ś

ρPP̄r1s rρ! fibres of X̌DGS
Q

Ñ Spec krt˘Eρ,ks corre-

sponding to the toric log CY structure on ˇ̄X0 specified by cρ P kˆ and

aρ,i P k (note that some of these log CY structures are equivalent). This

follows from the fact that the basechange by σ in Construction 5.26 gives

a covering of index
ś

ρPP̄r1s rρ!.

(2) If dimEgp ă
ř

ρPP̄r1s rρ, then the system (5.21) does not always have a

solution in Egp. Therefore, X̌DGS
Q

Ñ Spec krt˘Eρ,ks only parametrizes the

log CY structures on ˇ̄X0 corresponding to choosing cρ P kˆ and aρ,i P k
so that (5.21) has a solution.

Suppose that we are in the case of a small resolution π : X Ñ X̄ of a spe-

cial toric degeneration X̄ Ñ S of Section 4.1 (e.g. the case of Example 1.4).

Then (3.69) implies that the intrinsic mirror X̌ Ñ Spec krtEρ,ksJQK is defined

over krEs “ krtEρ,ks. By Theorem 5.35, we have a correspondence between

the restriction of the intrinsic mirror to the minimal relative Gross-Siebert lo-

cus X̌ Ñ Spec krt˘Eρ,ksJQK (the family over the large torus of SpeckrtEρ,ks) and a

certain universal toric degeneration mirror. It is natural to ask what the restric-

tions of the intrinsic mirror to families over deeper toric strata of Spec krtEρ,ks

correspond to. Since tEρ,k “ 0 implies that σrρptEρq “
śrρ

k“1 t
Eρ,k “ 0, the

analogue of the constructions of Chapters 4 and 5 can’t work for such strata

since
śrρ

i“1p1 ` tEρ,kwρq has coefficient 0 at w
rρ
ρ , so it is not of the form fρ in

(5.8). In particular, restricting modulo I0, a fibre of X̌ Ñ Spec krtEρ,ks with some

tEρ,k “ 0 and with the log structure induced from the natural log structure on

X̌ Ñ Spec krtEρ,ks (see Appendix B) by inclusion is not toric log CY (it follows
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from the local equations (5.20) that the singularities of the log structure fall into

codimension ě 2). So the restrictions of the intrinsic mirror to deeper strata are

not toric degenerations.

The original non-extended intrinsic mirror is a family X̌ Ñ Spec kJtEρ,kKJQK
defined over the completion of the minimal stratum t0u Ď Spec krtEρ,ks. Recall the

generically log smooth families of Definition 4.3. The mirror to a generically log

smooth partial resolution X1 Ñ S of X̄ Ñ S should correspond to the restriction

of X̌ Ñ Spec krtEρ,ksJQK to the completion of the stratum corresponding to the

resolved Eρ,k. This suggests that there should be a general construction of mirrors

to generically log smooth degenerations.

From this point of view, the extended intrinsic mirror X̌ Ñ SpeczkrP sImin

of (3.65) obtained using the ideal Imin of Proposition 3.98 can be viewed as a

universal mirror such that the restrictions to the completions of the toric strata

of SpeczkrP sImin
correspond to mirrors to the families obtained by contracting the

corresponding curves in the central fibre of X Ñ S. It is not clear how to construct

such contractions or if they can always be constructed. Some contractions may

be non-projective or only defined as algebraic spaces.

This philosophy extends to the case when the resolution is not small. In

that case, we have some exceptional divisors. In Section 5.1.2, we restricted to

the minimal relative Gross-Siebert locus, which is the family over the stratum

corresponding to setting all the curve classes except for Eρ,k, ρ P P r1s, 1 ď

k ď rρ to 0. The reason that we restricted to this locus is that we were only

interested in the mirror to X̄ Ñ S and the curves Eρ,k, ρ P P r1s, 1 ď k ď rρ
correspond to the singularities of X̄ Ñ S. This restriction smooths out the

components of the intrinsic mirror corresponding to the other curve classes. If

we include all the strata, X̌ Ñ SpeczkrP sImin
should parameterize the mirrors to

generically log smooth contractions in this case as well (these contractions don’t

need to be small). In particular, there may be multiple non-isomorphic toric

degenerations among the contractions where we know how to construct mirrors,

and the described property is just Theorem 5.35. To summarize, contracting

on the side of the minimal log CY degeneration X Ñ S should correspond to

smoothing out the components on the mirror side X̌ Ñ SpeczkrP sImin
.

Conversely, Theorem 5.35 implies that for any two strongly admissible reso-

lutions π1 : X1 Ñ X̄ and π2 : X2 Ñ X̄ of a toric degeneration X̄ Ñ S of K3-s,

the minimal relative Gross-Siebert locus X̌1 Ñ Spec krt˘Eρ,ksJQK agrees with the

minimal relative Gross-Siebert locus X̌2 Ñ Spec krt˘Eρ,ksJQK. So the difference
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between the two mirrors comes from the curve classes that are not common be-

tween them. In the case of non-small resolutions, the mirrors might have different

components that smooth out to the same components of the minimal relative

Gross-Siebert locus. In the case of small resolutions, X1 and X2 are related by

a sequence of flops which correspond to swapping the wall functions attached to

the corresponding slabs of DJ .

It would be interesting to find a mirror construction for generically log smooth

degenerations generalizing both the toric degeneration mirror construction [GS3]

and the intrinsic mirror construction [GS7, GS8] and make the philosophy of

this section precise.

5.5.3. Gluing data for intrinsic mirrors. In Section 5.4, we used gluing data

on
`

B̄, P̄
˘

to obtain the correspondence between the minimal relative Gross-

Siebert locus and the restriction of the universal toric degeneration mirror of

[GHS, Theorem A.4.2] to the subfamily k1
P Ď kP of gluing data generated by s̄

for s as in (5.9). It is natural to wonder if we can extend this correspondence to

a larger subfamily of the universal toric degeneration mirror of [GHS, Theorem

A.4.2] by introducing gluing data on pB,Pq and modifying the wall functions of

Construction 3.89 of the canonical scattering diagram to account for gluing data

(changing Construction 4.61 of DJ accordingly). Introducing gluing data into

the construction of the intrinsic mirror does not seem very natural and requires

extending the results of [GS8] to the case of gluing data. Therefore, we refrain

from giving a formal exposition and just outline the possible extension.

First, we introduce gluing data on pB,Pq. We work over the ring krt˘Eρ,ks as

in Section 5.4.3. Since there are no singularities at the interiors of the edges, we

can simplify Definition 5.20 and define gluing data s on pB,Pq as a collection of

homomorphisms of abelian groups sσρ1 : Λσ Ñ
`

krt˘Eρ,ks
˘ˆ

“ kˆrt˘Eρ,ks for every

ρ1 P P r1s and an adjacent maximal cell σ P Pmax subject to the constraint

sσρ1 |Λρ1 “ sσ1ρ1 |Λρ1 (5.23)

if ρ1 “ σ X σ1 for σ, σ1 P P̄max.

Now, consider the map σ : kraρ,i, c
˘1
ρ s Ñ krt˘Eρ,ks of Construction 5.33 and

let krσis :“ imσ – kraρ,i, c
˘1
ρ s. Note that we have

pkrσisq
ˆ

“ kˆ

»

–

˜

rρ
ź

k“1

tEρ,k

¸˘1 ˇ

ˇ

ˇ

ˇ

ˇ

ρ P P̄ r1s

fi

fl .

We shall only consider gluing data s on pB,Pq with all the sσρ1 : Λσ Ñ kˆrt˘Eρ,ks

taking values in pkrσisq
ˆ Ď kˆrt˘Eρ,ks. Further, we require that sσ1ρp1 “ sσ2ρp2 :“
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sσ,ρ for any ρp1 , ρp2 P P r1s supported on the same ρ P P r1s
coar and contained in the

maximal cells σ1, σ2 P Pmax with σ1, σ2 Ď σ P Pmax
coar and require the gluing data

to be trivial on any ρ1 P P r1szP r1s
coar (using Notation 4.67). Indeed, only such

gluing data corresponds to gluing data on
`

B̄, P̄
˘

with values in pkraρ,i, c
˘1
ρ sqˆ “

kˆrc˘1
ρ s. Given a gluing data s on pB,Pq with values in pkrσisq

ˆ, we define the

corresponding gluing data s1 on
`

B̄, P̄
˘

with values in kˆrc˘1
ρ s by setting, for

every two slabs ρ, ρ1 Ď ρ P P̄ r1s and an adjacent maximal cell σ P P̄max:

s1
σρ “ s1

σρ1 :“ sσρ (5.24)

(using the isomorphism krσis – kraρ,i, c
˘1
ρ s and the same notations ρ, σ for the

corresponding cells of Pcoar).

Unless s is a trivial gluing data, the canonical scattering diagram DI of Con-

struction 3.89 is not consistent for s and the wall functions of (3.55) need to be

modified to account for gluing data. We set the new wall functions to be

f spτ :“

¨

˝

ź

ρPPr1s,Int ρXpτ ‰∅

sσρ

˛

‚pfpτ q

where σ is the maximal cell containing pτ (if pτ is a slab, then we choose any

maximal cell containing pτ and the choice does not matter by (5.23)), fpτ is the

wall function of (3.55), and we set sσρpz
mq :“ sσρpmqzm as in (5.6). One needs

to check that this modification defines a scattering diagram Ds
I consistent for

s by modifying the argument of [GS8] to account for gluing data. The modi-

fication also requires changing Construction 4.61 of DJ accordingly. Now, one

should be able to construct a universal in gluing data extended intrinsic mir-

ror X̌ Ñ Spec {kIMS
P rP sJ , where kIMS

P is the universal choice of a subfamily of

projective closed gluing data with values in pkrσisq
ˆ and satisfying the require-

ments above, by using the techniques similar to [GHS, Appendix A.2]. One

can then define the minimal relative Gross-Siebert locus varied in gluing data

X̌ Ñ Spec kIMS
P rt˘Eρ,ksJQK in the same way as in Definition 5.4.

Consider the subfamily

kTD
P :“ xs̄1

¨ s̄2
| s1 as in (5.24), s2 as in (5.9)y Ď krH1

pB̄, i˚Λ̌q
˚
f s

of projective gluing data on
`

B̄, P̄
˘

. It is easy to see that kTD
P is a subring of the

universal ring kP parametrizing projective gluing data used in the construction

of the universal toric degeneration mirror of [GHS, Theorem A.4.2]. Arguing

similarly to Section 5.4.3, one should be able to prove the following.
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Conjecture 5.40. The correspondence of Theorem 5.35 naturally ex-

tends to the minimal relative Gross-Siebert locus varied in gluing data X̌ Ñ

Spec kIMS
P rt˘Eρ,ksJQK and the restriction of the universal toric degeneration mirror

of [GHS, Theorem A.4.2] to Spec kTD
P JQK Ď Spec kPJQK.

Remark 5.41. One may wonder if (possibly under some additional assump-

tions) one has kTD
P “ kP (or even k1

P “ kP) so that Conjecture 5.40 (resp. Theorem

5.35) gives a correspondence with the whole universal toric degeneration mirror of

[GHS, Theorem A.4.2]. Answering this question requires a better understanding

of the structure of the ring krH1pB̄, i˚Λ̌q˚
f s parametrizing closed gluing data.





CHAPTER 6

Generalizing to higher dimensions

We outline the challenges of generalizing the results of this thesis to higher

dimensions which is a subject of ongoing work. To prove Conjecture 1.7 for a

special toric degeneration X̄ Ñ S of relative dimension n ě 3 we need to:

(1) Define strongly admissible and admissible resolutions π : X Ñ X̄ of

X̄ Ñ S and show that X̄ Ñ S admits a strongly admissible resolution,

generalizing the results of Section 4.3. For any well-chosen monoid P (see

Definition 3.94) and J :“ P zK the complement of the face containing

the curve classes contracted by π as before, we obtain the extended

intrinsic mirror X̌ Ñ SpeczkrP sJ via (3.65) (alternatively, we may define

the extended intrinsic mirror via the collection DJ of scattering diagrams

as in (2) to allow a more general definition of a strongly admissible

resolution).

(2) Provide a collection of scattering diagrams DJ :“ tDJk`1 , k ě 0u giving

rise to X̌ Ñ SpeczkrP sJ , generalizing the results of Section 4.4.

(3) Relate the collection DJ of the canonical scattering diagrams giving rise

to X̌ Ñ SpeczkrP sJ to the collection D̄ “
␣

D̄k, k ě 0
(

of the algorithmic

scattering diagrams giving rise to the toric degeneration mirror ˇ̄X Ñ

Spec kJtK via a PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

. Here ˇ̄X Ñ

Spec kJtK is the toric degeneration mirror constructed using the initial

slab functions obtained from the walls of DJ by basechange and trivial

gluing data. In particular, check that this choice of slab functions defines

a structure of a toric log CY on ˇ̄X0. This should be a straightforward

generalization of the argument in Section 4.5.

To do (1), we need good local models of X̄ Ñ S near the points of the singular

locus (for special toric degenerations of K3-s these are given by Observation

3.43(2)). Although condition (3) in Definition 3.39 of a special toric degeneration

guarantees that we have such local models (see Remark 3.40(3)), in general, these

local models can be quite complicated (especially when the toric degeneration

satisfies part (b) of condition (3)) and hard to control. Moreover, in general, it

217
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is challenging to globalize the resolution (using the arguments as in the proof of

Proposition 4.27).

By Proposition 3.41, we can restrict to the natural case of a distinguished

toric degeneration X̄ Ñ S with a simple dual intersection complex
`

B̄, P̄
˘

and

a smooth generic fibre. In this case, the local models for the singular points

of X̄ Ñ S are controlled by
`

B̄, P̄
˘

. Another reason to restrict to this case is

that simplicity of
`

B̄, P̄
˘

guarantees a unique choice of the initial slab functions

independent of the gluing data (see Proposition 6.22). Therefore, unlike the

general case, the space of toric log CY structures on ˇ̄X0 is well-behaved (see

[GS1, Theorem 5.4]). This should make it possible to generalize the results of

Chapter 5 to this setting.

Assumption 6.1. Let X̄ Ñ S be a special toric degeneration. We assume that

X̄ Ñ S is distinguished in the sense of Definition 3.38 and the dual intersection

complex
`

B̄, P̄
˘

of X̄ Ñ S is simple in the sense of [GS1, Definition 1.60].95

In this chapter, we construct (strongly) admissible resolutions of special toric

degenerations of CY threefolds satisfying Assumption 6.1 and sketch a generaliza-

tion to relative dimension n ě 4 (under an additional Assumption 6.2 and modulo

a combinatorial Conjecture 6.21). We also discuss generalizing the scattering re-

sults of Section 4.4 (see Conjectures 6.23 and 6.26) and reduce Conjecture 1.7 for

a special toric degeneration X̄ Ñ S satisfying Assumption 6.1 and Assumption

6.2 (if n ě 4) to Conjectures 6.21, 6.23, and 6.26. Finally, we conjecture (un-

der the same assumptions) a generalization of Theorem 5.35 (the main result of

Chapter 5) to higher dimensions (see Conjecture 6.28).

6.1. Resolutions in higher dimensions

As in the case of special toric degenerations of K3-s, to construct resolutions,

we need to first understand how to resolve the local models. Let X̄ Ñ S be a

special toric degeneration of relative dimension n satisfying Assumption 6.1. Let
`

B̄, P̄
˘

be the dual intersection complex of X̄ Ñ S and let x P Z be a singular

point contained in the minimal stratum X̄τ , τ P P̄ (note that since x is singular,

1 ď dim τ ď n ´ 1). Then the étale local model ˜̄Xτ,x in the neighbourhood of x

is an affine toric variety defined by the cone over the convex hull

∆τ :“ Conv

˜

q
ď

i“0

p∆τ,i ˆ teiuq

¸

95Note that by Proposition 3.41, under these assumptions X̄ Ñ S is special if and only if

the generic fibre of X̄ Ñ S is smooth.
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as in (3.33) by [GS2, Theorem 2.6 and Corollary 2.18]. Here ∆τ,i are integral

polytopes in a lattice N (not necessarily of maximal dimension), ei for 0 ď i ď q

are the standard generators of the second factor of N 1 :“ N‘Zq`1 and the convex

hull is taken in N 1
R. Moreover, [GS2, Theorem 2.6 and Corollary 2.18] imply that

∆τ,0 :“ τ is a cell of dimension 1 ď dim τ ď n ´ 1 (with its integral structure),

q :“ n ´ dim τ , and ∆τ,i, 1 ď i ď q are the monodromy simplices associated to

τ (see [GS7, Definition 1.60]) that are certain Minkowski summands of τ . The

map π : ˜̄Xτ,x Ñ A1 – Spec krNs is induced by the dual of e0 and we equip ˜̄Xτ,x

with the divisorial log structure with divisor π´1p0q as usual.

The condition that the generic fibre of X̄ Ñ S is smooth implies (see [GS2,

Proposition 2.2]) that

∆τ,g :“ Conv

˜

q
ď

i“1

p∆τ,i ˆ teiuq

¸

is a standard simplex. Note that we have

∆τ – Conv ppτ ˆ te0uq Y ∆τ,gqq . (6.1)

In what follows, we will mostly consider local models with τ P P̄ rn´1s. We

assume that the local models with τ P P̄ rks, 1 ď k ď n ´ 2 are determined by

the local models with τ P P̄ rn´1s.

Assumption 6.2. For cells τ 1, τ P P̄ with τ 1 Ď τ, 1 ď dim τ 1 ă dim τ ď n´1,

we assume that the local model at a singular point x1 with minimal stratum X̄τ 1

is given by the cone over the unique face Fτ 1 of ∆τ such that Fτ 1 X pτ ˆ te0uq “ τ 1

and Fτ 1 X ∆τ,g ‰ ∅ (using the description of (6.1)).

Remarks 6.3. (1) If n “ 3, Assumption 6.2 is satisfied. Indeed, in this

case, we have dim τ “ 2, dim τ 1 “ 1, and Assumption 6.2 follows from

the construction in the proof of [GS2, Theorem 2.6] and the analysis of

the local models with dim τ 1 “ 1 of Sections 4.1.1 and 4.2.2.

(2) If n ě 4, Assumption 6.2 is not always satisfied, and one can have more

complicated local models with τ P P̄ rks, 1 ď k ď n ´ 2. This follows

from the behaviour of the singular locus, see [GS1, Example 1.62].

We will now construct resolutions of a special toric degeneration X̄ Ñ S of CY

threefolds satisfying Assumption 6.1 and sketch the approach in higher dimen-

sions. This work is related to [K4, Section 4.1.1], which constructed resolutions

of the local models ˜̄Xτ,x in general (these resolutions do not patch to a global

resolution of X̄ Ñ S), and to [R2, Section 5.5] (in German), which constructed
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a partial resolution of a toric log CY space (i.e. of the central fibre X̄0 of a toric

degeneration).

6.1.1. Resolutions in relative dimension n “ 3 assuming all σ P P̄max

are standard simplices. Suppose that X̄ Ñ S is a special toric degeneration

of relative dimension 3 satisfying Assumption 6.1. Let us first consider the case

that all the maximal cells σ P P̄max are standard simplices (this corresponds to

the case of Section 4.1 for special toric degenerations of K3-s).

First, we need to understand how to resolve the local models. Let x be a

singular point contained in the minimal stratum X̄τ for τ P P r2s a codimension

1 cell. Then our assumption on the maximal cells implies that τ is a standard

triangle. Moreover, we have q “ 1 so ∆τ,g “ ∆τ,1 is a Minkowski summand of

τ . However, the only possible Minkowski summands of a standard triangle are

a point or the triangle itself. If ∆τ,g is a point, the corresponding local model

(given by the cone over the ∆τ of (6.1)) is log smooth. So we need to consider

the case that ∆τ,g – τ . Using Lemma 4.7, one can check that this local model

can be resolved by blowing up any two of the three divisors corresponding to the

vertices of τ . See Figure 6.1 for the corresponding subdivisions of the local model

(the subdivisions are given in blue, and the vertices corresponding to the blown

up divisors are highlighted in red). Note that the local models for the edges of τ

are as in Figure 4.1 (see Remark 6.3(1)) and are subdivided accordingly by the

blowups.

τ

∆τ,g

v2 v3

v1

Local

model

τ

∆τ,g

v2 v3

v1

After one

blowup

τ

∆τ,g

v2 v3

v1

After two

blowups

Figure 6.1. Resolution of the local model ˜̄Xτ,x for τ a standard

triangle.
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The singular locus of the local model ˜̄Xτ,x of Figure 6.1 is a union of three

lines ℓ1,2 Ď Dv1 Y Dv2 , ℓ13 Ď Dv1 Y Dv2 , ℓ23 Ď Dv2 Y Dv3 intersecting at a point.

The exceptional locus of the blowup is the union of a P1-bundle over the strict

transform of ℓ13 with exceptional curve Ev1 , a P1-bundle over the strict transform

of ℓ23 with exceptional curve Ev2 , and a P1-bundle over the strict transform of ℓ12
with exceptional curve Ev1 ´Ev2 . See Figure 6.2 for a sketch of the central fibre

of ˜̄Xτ,x and the central fibres of the blowups of Figure 6.1.

ℓ12

ℓ13

ℓ23

Dv1 Dv2

Dv3

Local

model

ℓ12

ℓ13

ℓ23

Dv1 Dv2

Dv3

Ev1

After one

blowup

ℓ12

ℓ13

ℓ23

Dv1 Dv2

Dv3

Ev1

Ev1 ´ Ev2
Ev2

After two

blowups

Figure 6.2. Blowing up the local model ˜̄Xτ,x.

Similarly to the analysis of Section 4.1, blowing up a component D̄v, v P P̄ r0s

of the central fibre X̄0 of X̄ gives a small partial resolution X1 Ñ X̄ that is trivial in

the local models for the codimension 3 strata X̄σ, σ P P̄max (given by the cones

over σ P P̄max). In codimension 2, the blowup is described via the local models

for τ P P̄ r2s with v Ď τ of Figure 6.2 (after one blowup) and the behaviour in

codimension 1 follows from Remark 6.3(1). Note that the singular locus of D̄v is

a connected union of curves Cρ Ď X̄ρ for ρ P P̄ r1s with v Ď ρ. Blowing up D̄v

introduces a P1-bundle over the strict transform of
Ť

Cρ with exceptional curve

Ev. This globalizes the first blowup of Figure 6.2.

As usual, we define the dual intersection complex pB1,P 1q of X1 g1

Ñ S as

pg1q
´1
tropp1q for g1

trop : ΣpX1q Ñ Rě0 the tropicalization of g1 of Construction 3.20.

The fact that all the maximal cells σ P P̄max are standard simplices implies

that pB1,P 1q –
`

B̄, P̄
˘

as polyhedral manifolds. Further, pB1,P 1q possesses the

structure of an affine manifold with singularities via Construction 3.57.

A similar analysis applies for further blowups of irreducible components

D̄v1 , v1 P P̄ r0s of X̄0. In the case that a component corresponding to a ver-

tex of τ P P̄ r2s (with v1 Ď τ) has already been blown up, we use the local model



222 6. GENERALIZING TO HIGHER DIMENSIONS

of Figure 6.2 after two blowups to describe the behaviour in codimension 2. In

this case, the singular locus of D̄v1 is smaller than in the analysis above. The

blowup still introduces a P1-bundle over the singular locus.

In Figure 6.3, we give the transformation of the singular locus (in blue) of a

cell τ “ xv1, v2, v3y P P̄ r2s corresponding to first blowing up D̄v1 and then blowing

up D̄v2 . Note that, similarly to the analysis of Section 4.1, at the level of the

affine manifolds, the blowup of a component D̄v, v P P̄ r0s can be visualized as

pulling the singular loci of the cells of P adjacent to v into v.

v2 v3

v1

Codim

one cell τ

v2 v3

v1

Blowing

up D̄v1

v2 v3

v1

Blowing

up D̄v2

Figure 6.3. Transformation of a cell τ P P̄ r2s under blowing up

components.

Blow up all the irreducible components of the central fibre X̄0 of X̄ Ñ S in

any order. By the analysis above, this gives a resolution π : X Ñ X̄ to a log

smooth degeneration X Ñ S. Here the log structure on X is the divisorial log

structure given by D “ D1 ` ¨ ¨ ¨ ` Dm where Di, 1 ď i ď m are the irreducible

components of the central fibre X0. The exceptional locus of π : X Ñ X̄ is the

union of P1-bundles with exceptional curves
␣

Ev | v P P̄ r0s
(

Y
␣

Ev ´ Ev1 | ρ “ xv, v1
y P P̄ r1s

(

(it is possible that all the singularities of some D̄v are resolved before we blow up

D̄v in which case there is no Ev). Similarly to Section 4.1, π is a small morphism.

The singularities of the affine structure on the dual intersection complex pB,Pq

of X Ñ S are contained in cells of codimension 2, and one may view the resolution

tropically as a composition of transformations as in Figure 6.3. Note that we have

pB,Pq –
`

B̄, P̄
˘

as polyhedral manifolds.

Propositions 4.4 and 4.5 of Section 4.1.3 admit a direct generalization.
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Proposition 6.4. (1) X Ñ S is minimal log CY and D is simple normal

crossings. The dual intersection complex pB,Pq of X Ñ S satisfies

Assumption 3.48.

(2) The resolution π : X Ñ X̄ satisfies the assumptions of Proposition 3.101.

Proof. (a) is similar to Proposition 4.4 using the local models of Figure 6.1

to check that D is simple normal crossings in codimension ě 2. (b) is similar

to Proposition 4.5 using the fact that for any v P P̄ r0s we have Ev ¨ Dv “ ´1,

Ev ¨ Dv1 “ 1 for any v1 P P̄ r0s that is connected to v by an edge ρ P P̄ r1s, and

Ev ¨ Dv1 “ 0 for all the other v1 P P̄ r0s. □

6.1.2. Resolutions of the local models in the easily decomposable case.

One can generalize the analysis of Section 4.2 to special toric degenerations of

relative dimension 3 satisfying Assumption 6.1. To do that one needs to restrict

the types of σ P P̄max to natural generalizations of the types (1-4) in Figure 4.5

(one might be able to take a larger class) and analyze the corresponding local

models for τ P P̄ r2s. We do not provide further details and instead consider the

general case, arguing similarly to Section 4.3.

First, we need to understand how to resolve the local models ˜̄Xτ,x in general.

Let x be a singular point contained in the minimal stratum X̄τ for τ P P r2s

a codimension 1 cell. Since
`

B̄, P̄
˘

is simple by Assumption 6.1, we can use

the classification of the singular loci of [GS1, Example 1.62] (here one should

understand the singular locus of
`

B̄, P̄
˘

to mean the smallest subset ∆ such that

the affine structure on
`

B̄, P̄
˘

extends to Bz∆). This classification, along with

the fact that ∆τ,g “ ∆τ,1 is a standard triangle and a Minkowski summand of τ ,

implies that there are two cases. The first case is that τ has two parallel edges

ρ1, ρ2 P P̄ r1s and the singular locus of τ is as in Figure 6.4(1). The second case

is that τ has three edges ρ1, ρ2, ρ3 P P̄ r1s that are parallel to the corresponding

edges of some standard triangle and the singular locus of τ is as in Figure 6.4(2).

Recall that the precise location of the singular locus does not matter as long as

it respects the cell structure.

In the case of Figure 6.4(1), ∆τ,g “ ∆τ,1 is the line segment connecting the

points p0, 0q and p0, 1q (i.e. a standard simplex of dimension 1). In the case of

Figure 6.4(2), ∆τ,g “ ∆τ,1 is a standard triangle. This describes the local models
˜̄Xτ,x via (6.1).
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τ

ρ1

ρ2

(1)

τ

ρ1

ρ3

ρ2

(2)

Figure 6.4. Types of singular loci of τ P P̄ r2s.

We will now construct a subdivision of τ (or some rescaling of τ) and an

induced subdivision of ∆τ that resolves the local model ˜̄Xτ,x. We consider a

special case first.

Definition 6.5. Let τ P P̄ r2s be a cell of codimension 1 (contained in a

lattice N – Z2). For any edge ρ P P̄ r1s with ρ Ď τ and a point y P NR, denote

by nρ,y any line such that:

(1) nρ,y passes through y and intersects the line lρ generated by ρ.

(2) The primitive generator of nρ,y and the primitive generator of ρ generate

the lattice N .

We call such a nρ,y an integral normal.

Definition 6.6. We say that τ is easily decomposable if there exists a point

y P Intpτq with irrational coordinates and a choice of integral normals such that:

(1) If τ is as in Figure 6.4(1), nρ1,y X lρ1 P Intpρ1q and nρ2,y X lρ2 P Intpρ2q.

(2) If τ is as in Figure 6.4(2), nρ1,y X lρ1 P Intpρ1q, nρ2,y X lρ2 P Intpρ2q, and

nρ3,y X lρ3 P Intpρ3q.

Suppose that τ P P̄ r2s is easily decomposable. We first do a partial subdivi-

sion as in Figure 6.5 for the types of τ in Figure 6.4. Such subdivisions always

exist for suitable rescalings kτ of τ with k P Zą0 large enough (note that we have

∆kτ,1 – ∆τ,1 under the rescalings). We denote by a blue point the point y of

Definition 6.6 and draw the integral normals as dashed lines. We require that

every edge of τ subdivided by our subdivision is a union of three (not two) edges

of the subdivision. Again, this can clearly be achieved by a suitable choice of y
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in Definition 6.6 and a large enough rescaling factor k. The idea behind this sub-

division is to create a tubular neighbourhood of the singular locus of τ composed

of standard squares (and a standard triangle in the case of Figure 6.5(2)).

τ

ρ1

ρ2

τ2

τ1

σ1 σ2 σ3 σ4 σ5 σ6

(1)

τ

ρ1

ρ3

ρ2τ2

τ1 τ3

σ1 σ2 δ σ1
2 σ1

1

σ2
1

σ2
2

σ2
3

(2)

Figure 6.5. Subdivisions of easily decomposable τ P P̄ r2s.

Notation 6.7. We confuse ∆τ,1 and the polyhedra of Figure 6.5 with the

corresponding subsets of ∆τ . We will follow similar conventions for cells of ∆τ,1

and further subdivisions of τ .

The subdivisions of τ of Figure 6.5 lift to subdivisions of ∆τ as follows. In the

case of Figure 6.5(1), let v1 and v2 be the two endpoints p0, 0q and p0, 1q of ∆τ,1.

We subdivide ∆τ (following the notations of Figure 6.5(1)) into Convpv1, τ1q,

Convpv2, τ2q, and Convp∆τ,1, σiq for 1 ď i ď 6. In the case of Figure 6.5(2),

let v1, v2 and v3 be the vertices p0, 0q, p0, 1q, and p1, 0q of ∆τ,1 respectively.

Then we subdivide ∆τ (following the notations of Figure 6.5(2)) into Convpv1, τ1q,

Convpv2, τ2q, Convpv2, τ3q, Convpxv1, v2y, σiq for i “ 1, 2, Convpxv2, v3y, σ
1
jq for j “

1, 2, Convpxv3, v1y, σ2
kq for k “ 1, 2, 3, and Convp∆τ,1, δq. The same construction

can be done in general.

Note that the cells τ with the subdivisions of Figure 6.5 are not polyhedral

manifolds (with boundary) in the sense of Definition 3.1. For instance, in Figure

6.5(1), the intersection of τ1 and σ1 is not a cell of τ1. To fix this, we choose integral

points in the interiors of τi (this can always be done after a rescaling) and do star

subdivisions as in Figure 6.6. If τi is subdivided into τij, 1 ď j ď l, we lift this

to a subdivision of ∆τ by subdividing Convpvi, τiq into Convpvi, τijq, 1 ď j ď l.
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τ

ρ1

ρ2
σ1 σ2 σ3 σ4 σ5 σ6

(1)

τ

ρ1

ρ3

ρ2
σ1 σ2 δ σ1

2 σ1
1

σ2
1

σ2
2

σ2
3

(2)

Figure 6.6. Refined subdivisions of easily decomposable τ P

P̄ r2s.

The subdivisions of Figure 6.6 give rise to partial resolutions that are log

smooth in the neighbourhoods of strata corresponding to Convpvi, τijq.
96 We

note that the subdivisions do not change the singular locus in the sense that the

singular loci of the polytopes in the subdivision of τ can be understood as the

dashed lines in Figure 6.5.

We still need to resolve the singularities of Convp∆τ,1, σiq in the case of Fig-

ure 6.6(1) and of Convpxv1, v2y, σiq, Convpxv2, v3y, σ
1
jq, Convpxv3, v1y, σ2

kq, and

Convp∆τ,1, δq in the case of Figure 6.6(2). Note that Convp∆τ,1, δq in the case of

Figure 6.6(2) is as in Figure 6.1 and all the other convex hulls are AGLp3,Zq-

equivalent to

∆σ – Conv ppσ ˆ te0uq Y ∆σ,1q

for σ a standard square (i.e. the convex hull of p0, 0q, p1, 0q, p0, 1q, and p1, 1q)

and ∆σ,1 the line segment connecting p0, 0q and p0, 1q. One can resolve the cor-

responding local model by subdividing ∆σ with 2 hyperplane sections, similarly

to the subdivisions of Figure 6.1. We give a possible subdivision in Figure 6.7.

As in the case of Figure 6.1, the subdivision of Figure 6.7 corresponds to a

sequence of blowups of the irreducible components corresponding to the vertices

of σ. Namely, the chosen subdivision corresponds to blowing up the divisor

corresponding to v4 and then blowing up the divisor corresponding to v2.

96Indeed, the toric variety X defined by the cone over Convpvi, τijq splits as a product

X – Y ˆ A1 where Y is the toric variety defined by the cone over the face τij of Convpvi, τijq.

The map X Ñ A1 is just the trivial fibration Y ˆ A1 Ñ A1, which is clearly log smooth.
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τ

∆τ,1

v1 v2

v4 v3

Local model

τ

∆τ,1

v1 v2

v4 v3

Resolution

Figure 6.7. Resolution of the local model ˜̄Xσ,x for σ a standard

square.

In Figure 6.8, we give the transformation of the singular locus (in blue) of σ

corresponding to the subdivision of Figure 6.7. Again, at the level of the affine

manifolds, the blowup of an irreducible component corresponding to vi can be

visualized as pulling the singular locus into vi.

v1 v2

v3v4

σ before

resolution

v1 v2

v3v4

σ after

resolution

Figure 6.8. Transformation of σ corresponding to Figure 6.7.

There are 6 possible resolutions of the local model corresponding to Figure

6.7. They correspond to choosing a different order of blowups of the irreducible

components or, tropically, to taking the singular locus in Figure 6.8 to be one

of the xv1, v2y, xv1, v3y, xv4, v2y, xv4, v3y and subdividing the square by one of

the diagonals (if the singular locus is itself a diagonal, the subdivision has to



228 6. GENERALIZING TO HIGHER DIMENSIONS

coincide with it). In particular, one can always arrange any choice of diagonals

subdividing the two square faces of ∆σ that intersect ∆σ,1.

Let us return to the partial resolutions of the (possibly rescaled) local mod-

els with an easily decomposable τ we constructed above. To resolve the local

model ˜̄Xτ,x to a log smooth degeneration in the case of Figure 6.6(1), we just

subdivide the Convp∆τ,1, σiq for 1 ď i ď 6 as in Figure 6.7. The subdivisions of

Convp∆τ,1, σiq and Convp∆τ,1, σi`1q for 1 ď i ď 5 have to be compatible, but it is

clear from the above that this can be arranged. In the case of Figure 6.6(2), we

choose a subdivision of Convp∆τ,1, δq as in Figure 6.1 and choose the subdivisions

of the convex hulls AGLp3,Zq-equivalent to the convex hull of Figure 6.7 as in

Figure 6.7. Again, this should be compatible on the intersections of cells of the

subdivision, but this can be arranged. The fact that the corresponding resolution

is log smooth follows from the fact that all the cells in the subdivisions of Figures

6.1 and 6.7 are standard simplices. The general construction is similar.

The singular locus of the subdivision of (a rescaling of) τ can be recovered from

the singular loci of Figures 6.1 and 6.7 and depends on the particular subdivisions

chosen. For example, continuing with the setup of Figure 6.6, the resulting sub-

divisions and singular loci of τ can look as in Figure 6.9. Note that the singular

loci are connected.

τ

ρ1

ρ2

(1)

τ

ρ1

ρ3

ρ2

(2)

Figure 6.9. Final subdivisions and singular loci of easily decom-

posable τ P P̄ r2s.

6.1.3. Resolutions of the local models in general. Let x be a singular point

contained in the minimal stratum X̄τ for τ P P r2s a codimension 1 cell (we no

longer assume that τ is easily decomposable). By the same analysis as in Section

6.1.2, the singular locus of τ is of one of the two types in Figure 6.4. Still, in
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the case of Figure 6.4(1), ∆τ,g “ ∆τ,1 is the line segment connecting the points

p0, 0q and p0, 1q. In the case of Figure 6.4(2), ∆τ,g “ ∆τ,1 is a standard triangle.

We want to produce a subdivision of τ and lift it to a subdivision of ∆τ . Since

we no longer assume that τ is easily decomposable, the subdivision will be more

involved.

First, we do partial subdivisions similar to Figure 6.6, see Figure 6.10. Here

we choose new τ -s to illustrate the concept (it is easy to check that they are

not easily decomposable). We still require that every edge of τ subdivided by

our subdivision is a union of three (not two) edges of the subdivision. The only

difference with Figure 6.6 is that we no longer require that σi, σ
1
j, σ

2
k are standard

squares and allow them to be general parallelograms.

It is clear that for all τ , such subdivisions exist for suitable rescalings kτ of τ

with k P Zą0 large enough. Indeed, in the case of Figure 6.10(1), we can choose

length-one segments on ρ1 and ρ2 (after a rescaling by 3 if one of the edges is

length 1 or 2) and connect them as in Figure 6.10(1) creating a parallelogram

σ. Possibly after an additional rescaling (and a choice of the “new” σ inside

the rescaling of the “old” σ), we can ensure that the other two polygons τ1 and

τ2 of the subdivision have interior points. Then we can do a star subdivision

of τ1 and τ2 into triangles τ1j and τ2j, and subdivide the parallelogram σ as in

Figure 6.10(1). In the case of Figure 6.10(2), we can choose a standard triangle

δ contained in τ with edges parallel to ρ1, ρ2, ρ3 and connect the edges of the

triangle to length-one segments in the corresponding edges (again, possibly after

some rescalings). This subdivides τ into δ, parallelograms σ, σ1, σ2 (with obvious

notations), and 3 polygons τ1, τ2, τ3 one of which can be non-convex. Despite this

non-convexity, it is easy to see that after an additional rescaling (and a choice of

the “new” δ, σ, σ1, σ2 inside the rescaling of the “old” δ, σ, σ1, σ2) we can ensure

that τi, 1 ď i ď 3 admit star subdivisions into triangles τij as in Figure 6.10(2).

We perform these star subdivisions and subdivide the parallelograms σ, σ1, σ2 as

in Figure 6.10(2). This gives the required subdivisions.

We lift the subdivisions of τ of Figure 6.10 to subdivisions of ∆τ in the same

way that we lifted the subdivisions of τ of Figure 6.6 in Section 6.1.2 (with the

only difference that σi, σ
1
j, σ

2
k are no longer standard squares). Using the same

notations as in Section 6.1.2, the subdivisions of Figure 6.10 give rise to partial

resolutions that are log smooth in the neighbourhoods of strata corresponding to

Convpvi, τijq. We still need to resolve the singularities of Convp∆τ,1, σiq in the case

of Figure 6.10(1) and of Convpxv1, v2y, σiq, Convpxv2, v3y, σ
1
jq, Convpxv3, v1y, σ

2
kq,

and Convp∆τ,1, δq in the case of Figure 6.10(2). Again, Convp∆τ,1, δq in the case
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ρ2
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τ

ρ1

ρ3

ρ2

δ
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σ2
2
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Figure 6.10. Subdivisions of general τ P P̄ r2s.

of Figure 6.10(2) is as in Figure 6.1. The other convex hulls are AGLp3,Zq-

equivalent to

∆σ – Conv ppσ ˆ te0uq Y ∆σ,1q

for σ a parallelogram and ∆σ,1 the line segment connecting p0, 0q and p1, 0q.97

Therefore, we need to find resolutions of such local models. The general idea is

to rescale σ to some kσ, subdivide kσ into standard squares and triangles, and

resolve the local models for the standard squares as we did in Section 6.1.2. Of

course, to resolve the local model ˜̄Xτ,x, the rescaling will have to be done on the

whole τ , as we explain later.

Suppose that a parallelogram σ is AGLp2,Zq-equivalent to the convex hull of

p0, 0q, p1, 0q, pp, qq and pp ` 1, qq for some p, q P Zą0 with pp, qq “ 1 (the parallel-

ograms of our subdivisions of τ satisfy this requirement). We will show how to

resolve the local model defined by the cone over ∆kσ for a suitable rescaling kσ

of σ. Namely, we require that k P Zą0 is such that k ě p` 3. First, we subdivide

kσ as in Figure 6.11 (we ignore some interior lattice points of σ and kσ in the

pictures).

97Note a different choice of representation for ∆σ,1 compared to Figure 6.7. Our choice

here will make it more convenient to draw pictures.
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p0, 0q

pp, qq

p1, 0q

pp ` 1, qq

σ

p0, 0q

pp, qq

p1, 0q

pp ` 1, qq

pk, 0q

pp ` k, qq

pkp, kqq pkpp ` 1q, kqq

kσ1

...

kσk

kσ

Figure 6.11. Subdivision of kσ.

The subdivision of Figure 6.11 lifts to a subdivision of ∆kσ into Convp∆σ,1, kσiq,

1 ď i ď k. We now need to subdivide each of the kσi and lift the subdivisions to

∆kσi – Convp∆σ,1, kσiq for 1 ď i ď k. We show how to subdivide kσ1 in Figure

6.12 (clearly, every kσi is AGLp2,Zq-equivalent to kσ1 and we will use the same

subdivision for them). We may choose η1 and ηq as we wish (again, we require

that every edge of kσ1 subdivided by the subdivision is a union of three edges

of the subdivision). The assumption that k ě p ` 3 is necessary to obtain this

subdivision.

p0, 0q

pp, qq

pk, 0q

pp ` k, qq

...

...

ηq
pp ` 1, q ´ 1q

pp ` 1, 1q

pp ` 2, q ´ 1q

pp ` 2, 1q

η1

Figure 6.12. Subdivision of kσ1.

Note that all the ηj, 1 ď j ď q in Figure 6.12 are AGLp2,Zq-equivalent to

standard squares. The subdivision of kσ1 of Figure 6.12 lifts to a subdivision

of ∆kσ1 – Convp∆σ,1, kσiq as in the case of Figure 6.6(1). Namely, if v1 and v2
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are the vertices of ∆σ,1 corresponding to the lattice points p0, 0q and p1, 0q, we

subdivide ∆kσ1 by Convpv1, τ1iq for τ1i the triangles “to the left of ηj, 1 ď j ď q”

in Figure 6.12, Convpv2, τ2iq for τ2i the triangles “to the right of ηj, 1 ď j ď q”

in Figure 6.12, and Convp∆σ,1, ηjq, 1 ď j ď q.

Now each Convp∆σ,1, ηjq, 1 ď j ď q can be subdivided as in Figure 6.7.

Similarly to Section 6.1.2, we can ensure this is compatible on the intersections

of cells. This gives a resolution of the local model corresponding to ∆kσ1 . By

performing similar subdivisions of ∆kσi for 1 ď i ď k (again, ensuring that they

are compatible on the intersections ∆kσi X ∆kσi`1
for 1 ď i ď k ´ 1), we obtain a

resolution of the local model corresponding to ∆kσ.

Construction 6.8. To obtain a subdivision of a rescaling Lτ (for all L P Zą0

sufficiently large) of a general τ P P̄ r2s and lift it to a subdivision of ∆Lτ one can

proceed as follows:

(1) Obtain a subdivision of τ as in Figure 6.10 (possibly after doing a rescal-

ing) and a lifting to a subdivision of ∆τ as explained after Figure 6.10.

(2) Rescale the whole subdivision of τ to a subdivision of Lτ so that all the

Lσi (in the case of Figure 6.10(1)) or Lσi, Lσ
1
j, Lσ

2
k (in the case of Figure

6.10(2)) can be subdivided as in Figures 6.11 and 6.12 (i.e. so that the

condition k ě p ` 3 is satisfied for all of them).

(3) Subdivide all the Lσi (or the Lσi, Lσ
1
j, Lσ

2
k) as in Figure 6.11 into Lσil (or

into Lσil, Lσ
1
jl, Lσ

2
kl) and do a refinement to a subdivision of Lτ as follows.

Suppose that we have a triangle Lτij with an edge ρ and the subdivision

of Lσi (or one of the Lσi, Lσ
1
j, Lσ

2
k) subdivides ρ into ρ1, . . . ρL. Let vρ

be the vertex of Lτij that is not contained in ρ. Then we subdivide τij
into Convpvρ, ρlq, 1 ď l ď L.

(4) The subdivision of (3) lifts to ∆Lτ by subdividing Convp∆τ,1, Lσiq (or

Convpxv1, v2y, Lσiq, Convpxv2, v3y, Lσ1
jq, and Convpxv3, v1y, Lσ

2
kq) into

Convp∆τ,1, Lσilq (or into Convpxv1, v2y, Lσilq, Convpxv2, v3y, Lσ
1
jlq, and

Convpxv3, v1y, Lσ
2
klq) and subdividing Convpvi, τijq into

Convpvi,Convpvρ, ρlqq, 1 ď l ď L

using the same notations as in (3).

(5) In the case of Figure 6.10(2), note that Lδ is easily decomposable and

subdivide it as in Figure 6.6(2). We denote by δ1 the standard triangle

of Figure 6.6(2) contained in Lδ. This subdivision lifts to a subdivision

of Convp∆τ,1, Lδq in the same way as we lift in Figure 6.6(2) (or Figure

6.10(2)).
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(6) Subdivide the Lσil (or Lσil, Lσ
1
jl, Lσ

2
kl) as in Figure 6.12 so that the

subdivisions are compatible with each other and with the subdivision

of Lδ (in the case of Figure 6.10(2)). We can ensure compatibility

by choosing the appropriate η1 and ηq in each case. These subdi-

visions lift to subdivisions of Convp∆τ,1, Lσilq (or Convpxv1, v2y, Lσilq,

Convpxv2, v3y, Lσ
1
jlq, and Convpxv3, v1y, Lσ2

klq) as explained after Figure

6.12. Compatibility ensures that these subdivisions (along with the sub-

division of Convp∆τ,1, Lδq in the case of Figure 6.10(2)) give a subdivision

of ∆Lτ .

(7) Subdivide the polyhedra of the subdivision of ∆Lτ containing the stan-

dard squares (and containing δ1 in the case of Figure 6.10(2)) as in Figure

6.7 (and Figure 6.1). Again, this should be done compatibly, but simi-

larly to Section 6.1.2, this can be arranged. This gives the subdivision

of Lτ and a lifting to a subdivision of ∆Lτ .

The subdivision of ∆Lτ gives rise to a log smooth resolution of the corresponding

local model ˜̄XLτ,x given by the cone over ∆Lτ . Log smoothness follows from the

fact that all the cells in the subdivisions of Figures 6.1 and 6.7 are standard sim-

plices, and all the other cells in the subdivision of ∆Lτ are of the form Convpvi, τ
1q

for τ 1 Ď Lτ a cell in the subdivision of Lτ (also see the footnote after Figure 6.6).

Remark 6.9. In the notations of Construction 6.8, let Lτrel be the union of

all the cells in the subdivision of Lτ that subdivide the standard squares obtained

after step (6) of Construction 6.8 (and δ1 in the case of Figure 6.10(2)). We note

some flexibility of Construction 6.8:

(1) In step (6) of Construction 6.8 one can allow subdivisions more general

than those of Figure 6.12, i.e. one can vary not just η1 and ηq in Figure

6.12 but also of all the ηi, 2 ď i ď q´1 (to the degree that the form of the

subdivision in Figure 6.12 allows). Similarly, in step (5) of Construction

6.8, one can allow more general subdivisions of Lδ. This modifies the

location of Lτrel.

(2) Construction 6.8 gives an explicit subdivision of the connected com-

ponents of LτzLτrel into triangular cells. However, one can allow any

general subdivision of these connected components (into convex cells

and inducing the given subdivision of BpLτrelq), in particular, allow non-

triangular cells.
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One can lift these more general subdivisions to subdivisions of ∆Lτ in the same

way as in Construction 6.8. This still gives rise to log smooth resolutions of the

corresponding local models ˜̄XLτ,x given by the cones over ∆Lτ .

6.1.4. Admissible resolutions in relative dimension n “ 3. We are ready

to define admissible resolutions of a special toric degeneration X̄ Ñ S of CY

threefolds satisfying Assumption 6.1.

Suppose that we have obtained a resolution π : X Ñ X̄ to a log smooth X Ñ S.
First, we generalize the notation of Section 4.3.1 for the local models and their

resolutions. For every τ P P̄ rks, 1 ď k ď 3 and every x P X̄τ we have an étale

local model at x given by a toric variety ˜̄Xτ,x. This local model is defined by the

cone over the ∆τ of (6.1) in the case that x P Z is a singular point and by the cone

over τ in the case that x R Z is non-singular. Since ˜̄Xτ,x is an étale local model

for X̄, we have a variety Ūτ,x equipped with étale maps Ūτ,x Ñ X̄ and Ūτ,x Ñ ˜̄Xσ.

We let Uτ,x :“ Ūτ,x ˆX̄ X be the basechange of Ūτ,x Ñ X̄ by π : X Ñ X̄. For any

morphism πτ,x : X̃τ,x Ñ ˜̄Xτ,x, we let Ũτ,x,πτ,x :“ Ūτ,x ˆ ˜̄Xτ,x
X̃τ,x be the basechange

of Ūτ,x Ñ ˜̄Xτ,x by πτ,x. The following is a direct generalization of Definition 4.25.

Definition 6.10. We say that a resolution π : X Ñ X̄ of a special toric

degeneration X̄ Ñ S of CY threefolds satisfying Assumption 6.1 to a log smooth

degeneration X Ñ S is toric if for every τ P P̄ rks, 1 ď k ď 3 and every x P X̄τ

there exists a toric blowup πτ,x : X̃τ,x Ñ ˜̄Xτ,x such that Uτ,x – Ũτ,x,πτ,x and π is

trivial at every point of X̄ not contained in a codimension 1, 2, or 3 stratum of

X̄0.

We say that a toric resolution π : X Ñ X̄ is integral if for every τ P P̄ rks, 1 ď

k ď 3 and every x P X̄τ the toric blowup πτ,x : X̃τ,x Ñ ˜̄Xτ,x induces an integral

subdivision of:

(1) If x is a non-sigular point, the cone over τ .

(2) If x is a singular point, the cone over ∆τ .

Moreover, we require that the subdivisions of (1) are obtained by taking the cone

over an integral subdivision of τ , the subdivisions of (2) for ∆τ , τ P P̄ r2s are as in

Construction 6.8 or Remark 6.9 (with τ corresponding to the Lτ of Construction

6.8). We also require that for cells τ 1, τ P P̄ with τ 1 Ď τ , the subdivision of τ 1

agrees with the one induced by the subdivision of τ . Here and later, we assume

that the cells of any subdivision don’t self-intersect and that an intersection of

any two cells is also a cell.
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We say that a toric and integral resolution is homogeneous if for every τ P

P̄ rks, 1 ď k ď 3 and x, y P X̄τ singular points, the subdivisions of (2) corre-

sponding to the blowups πτ,x : X̃τ,x Ñ ˜̄Xτ,x and πτ,y : X̃τ,y Ñ ˜̄Xτ,y are the same.

Note that the same is true for non-singular points by the definition of an integral

resolution above. Further, if τ 1, τ P P̄ are cells of dimension 1 and 2 respectively,

τ 1 Ď τ , and X̄ Ñ S is not log smooth on X̄τ 1 , we require that the subdivision of

∆τ 1 is the one induced by the subdivision of ∆τ by restricting to the face Fτ 1 of

∆τ (see Remark 6.3(1)). Note that the same is true for the subdivisions of the

cones over τ 1 and τ .

We can now define strongly admissible resolutions as follows.

Definition 6.11. We say that a resolution π : X Ñ X̄ of a special toric

degeneration X̄ Ñ S of CY threefolds satisfying Assumption 6.1 is strongly ad-

missible if it is a toric, integral, and homogeneous resolution admitting a π-ample

PA-generated divisor D1 “
ř

vPPr0s avDv such that av ě 0 if Dv is the strict trans-

form of an irreducible component of X̄0 (the last condition can always be achieved

by adding a positive multiple of D to D1, see Corollary 3.106).

Remarks 6.12. (1) Definition 6.11 is more general than the correspond-

ing Definition 4.29 that we gave in the case of toric degenerations of K3-s.

Indeed, in the case of special toric degenerations of K3-s, the results of

Section 4.4 imply that the extended intrinsic mirror X̌ Ñ SpeczkrP sJ can

be defined via the collection DJ of scattering diagrams of Construction

4.61 (so Conjecture 1.7 holds all toric, integral, and homogeneous reso-

lutions of a special toric degeneration of K3-s, see Remark 4.64(1)). It

is reasonable to expect the same to be true in higher dimensions. If one

wishes to define X̌ Ñ SpeczkrP sJ via (3.65) (using Proposition 3.109),

one can require a strongly admissible resolution to satisfy conditions (1)

and (2) of the corresponding Definition 4.29. Alternatively, one can re-

strict to strongly admissible resolutions with the divisor
ř

vPPr0s avDv

simple normal crossings and such that av ą 0 for all v P P r0s (this

clearly ensures that the assumptions of Proposition 3.109 are satisfied).

We show that such strongly admissible resolutions always exist (after a

basechange) in Proposition 6.18 below.

(2) We still require the technical condition that av ě 0 if Dv is the strict

transform of an irreducible component of X̄0 since we want to have a

tropical way to construct strongly admissible resolutions, see Proposition
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6.15 below (this is the natural analogue of Proposition 4.27 and Corollary

4.28 in the case of special toric degenerations of K3-s).

Note that the resolutions of Section 6.1.1 are strongly admissible. We define

admissible resolutions as in the case of special toric degenerations of K3-s (see

Definition 4.31).

Definition 6.13. We say that a resolution π : X1 Ñ X̄ of a special toric

degeneration X̄ Ñ S of CY threefolds satisfying Assumption 6.1 is admissible

if it factors as X1 Ñ X Ñ X̄ with X Ñ X̄ strongly admissible and X1 Ñ X a

logarithmic modification.

Remarks 6.14. (1) For special toric degenerations of relative dimension

n ě 4 satisfying Assumptions 6.1 and 6.2, the definition of a strongly

admissible resolution should be similar to Definition 6.11 provided that

we have a suitable analogue of Construction 6.8 and Remark 6.9. The

analogue should give rise to, for every τ P P̄ rn´1s and every singular

point x P X̄τ , a toric blowup πτ,x : X̃τ,x Ñ ˜̄Xτ,x resolving the local model

(that does not depend on the choice of a singular point x P X̄τ ). The

definition of an admissible resolution is then as in Definition 6.13.

(2) If a special toric degeneration does not satisfy Assumption 6.2, one only

needs to modify the compatibility condition in the definition of a homoge-

neous resolution. For special toric degenerations not satisfying Assump-

tion 6.1, we still expect the definition of a strongly admissible resolution

to follow the same lines. The condition that the resolution is toric should

be replaced by a condition that there exist certain blowups of the local

models of Remark 3.40(3) (provided by condition (3) of Definition 3.39

of a special toric degeneration) that satisfy a similar compatibility condi-

tion with the resolution. The local models at the singular points x, x1 P Z

with x1 the specialization of x should also be compatible (corresponding

to the compatibility requirements in the integral and homogeneous con-

ditions of Definition 6.11). These requirements should allow one to glue

the blowups of the local models to a log smooth resolution, generalizing

Proposition 4.27. The definition of an admissible resolution is then as in

Definition 6.13.

We have an analogue of Proposition 4.27 and Corollary 4.28 that allows us to

construct strongly admissible resolutions of X̄ Ñ S tropically.
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Proposition 6.15. There is a one-to-one correspondence

tpB,Pq, α P PApBqu ðñ
␣

π : X Ñ X̄, D1
(

where:

(1) X̄ Ñ S is a special toric degeneration of CY threefolds satisfying As-

sumption 6.1 with dual intersection complex
`

B̄, P̄
˘

.

(2) pB,Pq is an integral subdivision of
`

B̄, P̄
˘

such that the induced sub-

division of every τ P P̄ r2s is as in Construction 6.8 or Remark 6.9 (or

arbitrary if X̄ Ñ S is log smooth on X̄τ) and for every ρ P P̄ r1s and

τ, τ 1 P P̄ r2s with ρ Ď τ, τ 1, the standard squares of the subdivisions of τ

and τ 1 adjacent to ρ intersect in an edge ρ1 Ď ρ, ρ1 P P r1s. We require

that the cells of the subdivision don’t self-intersect and that an intersec-

tion of any two cells is also a cell (i.e. pB,Pq satisfies Assumption

3.48).

(3) π : X Ñ X̄ is a strongly admissible resolution to a log smooth and min-

imal log CY degeneration X Ñ S with a π-ample PA-generated divisor

D1 “
ř

vPPr0s avDv such that av ě 0 if Dv is the strict transform of an

irreducible component of X̄0.

(4) α P PApBq is such that:

(a) αpvq ě 0 for all v P P̄ r0s.98

(b) The restriction α|σ of α to any σ P P̄max is strictly convex (on the

induced subdivision of σ).

(c) The restriction α|ρ of α to any ρ P P̄ r1s such that X̄ Ñ S is not

log smooth on X̄ρ has a well-defined minpα|ρq Ď ρpZq (see Notation

4.18). Further, minpα|ρq is one of the vertices of the edge ρ1 P P r1s

of a standard square of Construction 6.8 or Remark 6.9 subdividing

ρ.

(d) Consider an edge ρ1 P P r1s of a standard square in the subdivision

of a cell τ P P̄ r2s of Construction 6.8 or Remark 6.9. Suppose

further that ρ1 is parallel to the edge (or edges) of τ connected to ρ

by standard squares. Then α has different values at the two vertices

of ρ1 (so the restriction α|ρ1 of α to ρ1 has a well-defined minpα|ρ1q Ď

ρ1pZq)

(e) Suppose that τ P P̄ r2s is as in Figure 6.10(2) and let δ1 be the stan-

dard triangle of Construction 6.8 or Remark 6.9. Let v1, v2, v3 be the

98This is a technical condition that is necessary to ensure that the ideal sheaves defining

the blowups in the étale local models glue to an ideal sheaf on X̄.
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vertices of δ1. Then αpv1q ă αpv2q ă αpv3q for some rearrangement

of v1, v2, v3.

Under the correspondence, we have divpαq “ D1 via (3.60). Moreover, the dual

intersection complex of X Ñ S is isomorphic to pB,Pq as a polyhedral mani-

fold. Identifying the dual intersection complex of X Ñ S with pB,Pq under the

isomorphism, the affine structure on pB,Pq extends to the complement of the

singular locus

∆ “

$

&

%

xminpα|ρ1q,minpα|ρ2qy

ˇ

ˇ

ˇ

ˇ

ˇ

ρ1, ρ2 P P r1s two parallel edges as in (4)(c)
or (4)(d) of the same standard square in the

subdivision of a cell τ P P̄ r2s

,

.

-

ď

ď

#

xv1, v2y

ˇ

ˇ

ˇ

ˇ

ˇ

τ P P̄ r2s as in Figure 6.10(2),
δ1 the standard triangle of τ ,
and v1, v2, v3 as in (4)(e)

+

. (6.2)

Proof. We argue similarly to the proofs of Proposition 4.27 and Corollary

4.28.

The subdivision pB,Pq and the PA-function α P PApBq define the blowups

in the local models and the corresponding ideal sheaves. The analysis of the local

models in codimension 3 is similar to Step 1 in the proof of Proposition 4.27

using conditions (4)(a) and (4)(b). For every σ P P̄max we obtain a toric blowup

πσ,X̄σ
: X̃σ,X̄σ

Ñ ˜̄Xσ,X̄σ
of the local model ˜̄Xσ,X̄σ

defined by an ideal sheaf Iσ,X̄σ

supported on codimension 1, 2, and 3 toric strata of B ˜̄Xσ,X̄σ
. The analysis of the

local models in codimension 1 is similar to Step 2 in the proof of Proposition 4.27

using conditions (4)(a) and (4)(c). For every ρ P P̄ r1s and x P X̄ρ we obtain a

toric blowup πρ,x : X̃ρ,x Ñ ˜̄Xρ,x of the local model ˜̄Xρ,x defined by an ideal sheaf

Iρ,x supported on the toric stratum corresponding to ρ.

The analysis of the local models in codimension 2 is similar to Step 2 in the

proof of Proposition 4.27 but is more involved. Let τ P P̄ r2s and x P X̄τ .

Assume that x is a singular point. Then conditions (4)(c), (4)(d), and (4)(e)

determine the subdivision of ∆τ . Indeed, the subdivision of ∆τ away from the

polyhedra containing the cells of τrel (using the notation of Remark 6.9) is already

determined by Construction 6.8 or Remark 6.9. So we need to explain how to

subdivide Convpρ, ηq for η a standard square and ρ Ď ∆τ,1 the corresponding edge

of ∆τ,1 and how to subdivide Convp∆τ,1, δ
1q for the standard triangles ∆τ,1, δ

1 in

the case of Figure 6.10(2). We use the unique subdivision of Convpρ, ηq as in

Figure 6.7 such that its restriction to η is the given subdivision of η and the

corresponding singular locus in Figure 6.8 is given by xminpα|ρ1q,minpα|ρ2qy for

ρ1, ρ2 as in (6.2). We use the unique subdivision of Convp∆τ,1, δ
1q as in Figure
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6.1 such that the corresponding singular locus in Figure 6.3 is given by xv1, v2y as

in (6.2). The fact that the involved PA-functions are restrictions of the globally

defined α P PApBq implies that the defined subdivisions agree on the common

faces and define a subdivision of ∆τ as in Construction 6.8 or Remark 6.9. The

subdivision gives rise to a toric blowup πτ,x : X̃τ,x Ñ ˜̄Xτ,x of the local model ˜̄Xτ,x.

Let α|0τ,x be the extension by 0 of α|τ to ∆τ . Here by an extension by 0,

we mean that α|0τ,x is the PA-function that takes the same values as α|τ at the

points corresponding to the integer points of τ and takes value 0 at the points

corresponding to the integer points of ∆τ,1. Now conditions (4)(c), (4)(d), (4)(e)

are equivalent to strict convexity of α|0τ,x with respect to the described subdivision

of ∆τ . This follows by considering the subdivisions of Figure 6.7 and Figure 6.1.

As in Step 2 in the proof of Proposition 4.27, α|0τ,x gives rise to an ideal sheaf

Iτ,x on ˜̄Xτ,x inducing the subdivision of ∆τ . Moreover, by an argument similar

to the one in Step 2 in the proof of Proposition 4.27, the fact that α|0τ,x is the

extension by 0 implies that Iτ,x is supported on the union of the toric stratum

corresponding to τ and the codimension 1 toric strata containing the stratum

corresponding to τ .

If x is a non-singular point, the subdivision of the cone over τ is determined

by the subdivision of τ . This gives rise to a toric blowup πτ,x : X̃τ,x Ñ ˜̄Xτ,x of

the local model ˜̄Xτ,x. The corresponding ideal sheaf Iτ,x is constructed as in the

non-singular case, and the statements on the support still hold.

Now we can glue the ideal sheaves Iτ,x for every τ P P̄ rks, 1 ď k ď 3 and

every x P X̄τ by an argument as in Step 3 in the proof of Proposition 4.27, setting

Ū to be the complement of codimension 1, 2, and 3 strata of X̄0. The fact that

we can define a descent datum for the ideal sheaves IŪτ,x
and IŪ (defined as in

Step 3 in the proof of Proposition 4.27) follows from:

(1) The correspondence between the ideals in the local toric models and the

support functions.

(2) The fact that pα|σq|τ “ pα|0τ,xq|τ for every τ Ď σ with τ P P̄ r1sYP̄ r2s, σ P

P̄max and every x P X̄τ .

(3) The fact that pα|0τ,xq|Fτ 1 “ α|0τ 1,x1 for every τ 1, τ P P̄ cells of dimension 1

and 2 respectively with τ Ď τ 1 (see Remark 6.3(1)), and x and x1 singular

points with minimal strata X̄τ 1 and X̄τ respectively.

(4) The vanishing statements on Iσ,X̄σ
for σ P P̄max, Iτ,x for τ P P̄ r2s and

Iρ,x for ρ P P̄ r1s.
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Here claims (2) and (3) hold since both α|ρ and α|σ arise as the restrictions of a

globally defined α P PApBq. We obtain an ideal sheaf I on X̄ and let π : X Ñ X̄

be the blowup of I.
The fact that π : X Ñ X̄ is toric and integral and X Ñ S is minimal log

CY follows as in Step 4 of the proof of Proposition 4.27. π : X Ñ X̄ is ho-

mogeneous by construction and condition (3) in the previous paragraph. As we

mentioned above, conditions (4)(c), (4)(d), (4)(e) are equivalent to strict convex-

ity of α|0τ,x with respect to the described subdivision of ∆τ . As in Step 3 of the

proof of Proposition 4.19, condition (4)(c) is equivalent to strict convexity of the

corresponding α|0ρ. Then the fact that divpαq is ample if and only if α satisfies

conditions (4)(b), (4)(c), (4)(d), (4)(e) follows by an argument as in Step 3 of

the proof of Proposition 4.19. The structure of the singular locus follows from

the described subdivisions of ∆τ , τ P P̄ r2s and the analysis of the local models

of Figures 6.3 and 6.8. The rest follows as in the proof of Corollary 4.28. □

We can now use Proposition 6.15 to deduce an existence result for strongly

admissible resolutions.

Theorem 6.16. Let X̄ Ñ S be a special toric degeneration of CY threefolds

satisfying Assumption 6.1. Then there exists an LX̄ P Zą0 such that for every

L P Zą0 with L ě LX̄ the basechange X̄1 Ñ S of X̄ Ñ S by R Ñ R, t ÞÑ tL (where

t is the uniformizer of R) admits a strongly admissible resolution π : X1 Ñ X̄1.

Proof. Let
`

B̄, P̄
˘

be the dual intersection complex of X̄ Ñ S. For every

τ P P̄ r2s such that X̄ Ñ S is not log smooth on X̄τ , we let Lτ P Zą0 be such that

for every L P Zą0 with L ě Lτ , the rescaling Lτ of τ admits a subdivision as in

Construction 6.8. For every σ P P̄max we let Lσ P Zą0 be such that for every

L P Zą0 with L ě Lσ, the rescaling Lσ of σ has an interior point.99 We let

LX̄ :“ max
␣

Lτ , Lσ | τ P P̄ r2s, σ P P̄max
(

.

Fix an L P Zą0 with L ě LX̄ and let X̄1 Ñ S be the basechange of X̄ Ñ S by

R Ñ R, t ÞÑ tL.

Let
`

B̄1, P̄ 1
˘

be the dual intersection complex of X̄1 Ñ S. By the correspon-

dence of Proposition 6.15, it is enough to find an integral subdivision pB1,P 1q of
`

B̄1, P̄ 1
˘

satisfying condition (2) of Proposition 6.15 and an α1 P PApB1q satisfy-

ing condition (4) of Proposition 6.15. We will obtain pB1,P 1q and α1 P PApB1q

by arguing similarly to the proof of Proposition 4.37.

99The fact that σ is an integral polytope of dimension 3 and the classification of lattice

polytops of dimension 3 without interior lattice points (see [AWW, Theorem 2.2] and [AKW,

Theorem 1]) implies that we can choose Lσ ď 4.
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We define the integral subdivision pB1,P 1q of
`

B̄1, P̄ 1
˘

as follows. First, we

subdivide every τ P P̄ 1r2s as in Construction 6.8 (or trivially if X̄1 Ñ S is log

smooth on X̄τ ) ensuring that for every ρ P P̄ 1r1s and τ, τ 1 P P̄ 1r2s with ρ Ď τ, τ 1,

the standard squares of the subdivisions of τ and τ 1 adjacent to ρ intersect in an

edge ρ1 Ď ρ of the subdivision. This is possible since in Construction 6.8(1) we can

choose any length 1 segments on the edges for the subdivision of Figure 6.10 and

in Construction 6.8(6) we can choose appropriate η1 and ηq in the subdivisions

of Figure 6.12. This gives an integral subdivision pB,P 1
Bq of the codimension 1

skeleton pB, P̄ 1
Bq of P̄ 1 (here P̄ 1

B “ P̄ 1r0s Y P̄ 1r1s Y P̄ 1r2s). To lift it to an integral

subdivision pB1,P 1q of
`

B̄1, P̄ 1
˘

, choose an interior integral point xσ for every

σ P P̄ 1max and subdivide σ into Convpxσ, τ̃q for every τ̃ Ď τ Ď σ with τ̃ P P 1r2s

B

and τ P P̄ 1r2s (this is similar to Step 2 in the proof of Proposition 4.37). This

defines an integral subdivision pB1,P 1q of
`

B̄1, P̄ 1
˘

which satisfies condition (2)

of Proposition 6.15 by construction.

We now want to find an α1 P PApB1q satisfying condition (4) of Proposition

6.15. By an argument as in Steps 2 and 3 in the proof of Proposition 4.37,

it is enough to define a PA-function α1
B on pB,P 1

Bq that satisfies the natural

analogues of conditions (4)(c), (4)(d), (4)(e) of Proposition 6.15. Let pB,P2
B q be

a partial subdivision of pB, P̄ 1
Bq such that every cell τ P P̄ 1r2s

B is subdivided as after

Construction 6.8(3). For every τ P P̄ 1r2s

B , let τ 1
rel be the union of parallelograms

(and a rescaling Lδ of the standard triangle δ in the case of Figure 6.10(2)) in the

subdivision of τ after Construction 6.8(3). Note that τrel Ď τ 1
rel using the notations

of Remark 6.9. By an argument as in Step 4 in the proof of Proposition 4.19, it

follows that it is enough to:

(1) Define a PA-function α2
B on pB,P2

B q such that α2
Bpvq “ 0 for v P P̄ 1r0s

B ,

and the restriction pα2
Bq|τ of α2

B to any τ P P̄ 1r2s

B is strictly convex (on

the induced subdivision of τ).

(2) For every cell τ P P̄ 1r2s

B , define a strictly convex PA-function ατ 1
rel

on the

subdivision of τ 1
rel induced by Steps (4-7) of Construction 6.8 such that:

(a) ατ 1
rel

satisfies the natural analogues of conditions (4)(d) and (4)(e)

of Proposition 6.15.

(b) ατ 1
rel

pvq “ 0 for any v P P 1r0s such that v P Bτ 1
rel.

(c) ατ 1
rel

has ατ 1
rel

pvρq “ ´2, ατ 1
rel

pv1
ρq “ ´3 for any ρ P P̄ 1r1s

B with ρ X

τrel ‰ ∅ and any chosen ordering of vertices vρ, v
1
ρ of the intersection

of ρ with the standard square of τrel (this condition ensures that the

PA-functions ατ 1
rel

can be patched to a PA-function on Y
τPP̄

1r2s

B

τ 1
rel).
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It is not difficult to check explicitly that one can construct PA-functions α2
B and

ατ 1
rel

as in (1) and (2) respectively. By an argument as in Step 4 in the proof

of Proposition 4.37, this amounts to checking that certain systems of linear in-

equalities have solutions. In the case of α2
B, the system is given by inequalities

between the values of α2
B at the vertices of the parallelograms in the subdivision

of every τ P P̄ 1r2s

B after Construction 6.8(3) (note that this includes the vertices

of the rescaling Lδ of the standard triangle δ in the case of Figure 6.10(2)). In

the case of ατ 1
rel
, the system is given by inequalities between the values of ατ 1

rel
at

the vertices of the standard squares in the induced subdivision of τ 1
rel after Steps

(4-7) of Construction 6.8 (note that this includes the vertices of the standard

triangle δ1 of Construction 6.8(5) in the case of Figure 6.10(2)). □

One can also obtain admissible resolutions with D1 simple normal crossings.

We can partially generalize Corollary 4.44 as follows.

Corollary 6.17. Let X̄ Ñ S be a special toric degeneration of CY threefolds

satisfying Assumption 6.1 and admitting a strongly admissible resolution. For

any strongly admissible resolution π : X Ñ X̄, there exists a further logarithmic

modification π1 : X̃ Ñ X with the combined X̃ Ñ X Ñ X̄ an admissible resolution

with D̃ :“ pπ1q´1D simple normal crossings.

Proof. Let pB,Pq be the dual intersection complex of X Ñ S. A classical

result of Knudsen, Mumford, and Waterman [KKMS, Theorem 4.1] states that

every polyhedral complex C admits a rescaling LC for some L P Zą0 such that

LC admits a unimodular triangulation, i.e. a subdivision with all the maximal

cells standard simplices. Therefore, for some L P Zą0, pB,Pq admits a subdi-

vision pB̃, P̃q such that all the cells σ̃ P P̃max are rescalings of the standard

simplex by 1
L
. Recall that there is a one-to-one correspondence between logarith-

mic modifications of X Ñ S and subdivisions of pB,Pq and let π1 : X̃ Ñ X be

the logarithmic modification corresponding to pB̃, P̃q. Then the dual intersec-

tion complex of the combined X̃ Ñ S is isomorphic to pB̃, P̃q and the condition

on the maximal cells σ̃ P P̃max implies that D̃ is simple normal crossings (note

that X̃0 is not reduced). □

Unlike Corollary 4.44, we can’t ensure that the resolution X̃ Ñ X̄ in Corollary

6.17 is strongly admissible (see Remark 4.41). However, one can guarantee the

existence of a strongly admissible resolution with a simple normal crossings divisor

by performing an additional basechange of X̄ Ñ S.

Proposition 6.18. Let X̄ Ñ S be a special toric degeneration of CY threefolds

satisfying Assumption 6.1 and admitting a strongly admissible resolution. There
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exists an Lsnc P Zą0 such that the basechange ḡ1 : X̄1 Ñ S of X̄ Ñ S by R Ñ

R, t ÞÑ tLsnc (where t is the uniformizer of R) admits a strongly admissible

resolution π1 : X1 Ñ X̄1 with the divisor D2 :“ pπ1 ˝ ḡ1q´1p0q simple normal

crossings.

Proof. Let π : X Ñ X̄ be a strongly admissible resolution and let pB,Pq be

the dual intersection complex of X Ñ S with a function α P PApBq satisfying the

assumptions of condition (4) of Proposition 6.15. Again, by [KKMS, Theorem

4.1], there exists a rescaling pB,LsncPq of pB,Pq that admits a subdivision

pB̃, ČLsncPq with all σ̃ P ČLsncP
max

standard simplices. Note that we may still view

pB,LsncPq as a subdivision of the corresponding rescaling
`

B̄, LsncP
˘

of
`

B̄, P̄
˘

.

Further, as explained in [KKMS], the subdivision admits an α1 P PApB̃q that is

strictly convex on the induced subdivision of every σ P LsncPmax and it is easy

to check that it can be chosen to satisfy α1pvq “ 0 for any v P P̄ r0s. Then by an

argument similar to Step 4 of Proposition 4.19, α1 P PApB̃q and α P PApBq give

rise to an α̃ P PApB̃q that is strictly convex on the induced subdivision of every

σ̄ P LsncP
max

.

It suffices to check that the subdivision pB̃, ČLsncPq of
`

B̄, LsncP
˘

satisfies

condition (2) of Proposition 6.15 and α̃ P PApB̃q satisfies condition (4) of Propo-

sition 6.15. Indeed, since
`

B̄, LsncP
˘

can be seen as the dual intersection complex

of the basechange X̄1 Ñ S of X̄ Ñ S by R Ñ R, t ÞÑ tLsnc , the correspondence of

Proposition 6.15 would give rise to a strongly admissible resolution π1 : X1 Ñ X̄1.

The condition that D2 is simple normal crossings would follow from the fact that

all σ̃ P ČLsncP
max

are standard simplices.

To check that the subdivision pB̃, ČLsncPq of
`

B̄, LsncP
˘

satisfies condition

(2) of Proposition 6.15 note that since for every τ P P̄ r2s the cells ντrel P P r2s

forming the subdivision of τrel (using the notation of Remark 6.9) are standard

triangles, the induced subdivision of Lsncτrel is given on every Lsncντrel by the

standard subdivision of a rescaling of a standard triangle (i.e. the subdivision is

by the lines parallel to the edges of the triangle). Now it is easy to check that

one can choose a new pLsncτqrel of the form required by Remark 6.9 to lie inside

the rescaling Lsncτrel. Further, one can choose α1 P PApB̃q to be such that for

every rescaling Lστrel of a standard square στrel of τrel, α
1|Lστrel

satisfies the natural

analogues of conditions (4)(d) and (4)(e) of Proposition 6.15. This implies that

the corresponding α̃ P PApB̃q satisfies condition (4) of Proposition 6.15. □

Remark 6.19. Note the difference between the statements of Theorem 6.16

and Proposition 6.18. In the first case, we allow a basechange using any L P Zą0

sufficiently large, whereas in the second case, the basechange uses a fixed Lsnc P



244 6. GENERALIZING TO HIGHER DIMENSIONS

Zą0. The reason is purely combinatorial. It is known that for every polyhedral

complex C there exists an LC P Zą0 such that for every L P Zą0 with L ě LC ,

the rescaling LC admits a unimodular triangulation, see [L2]. However, it is only

conjectured (see the discussion of [HHY, Section 1.4]) that the same statement

is true if one additionally requires that for every L P Zą0 with L ě LC there

exists a PA-function α1
L that is strictly convex on the induced subdivision of

every σ P LC max.

6.1.5. Resolutions in relative dimension n ě 4. Suppose that X̄ Ñ S is

a special toric degeneration of relative dimension n ě 4 satisfying Assumptions

6.1 and 6.2. If all the maximal cells σ P P̄max are standard simplices, then

the discussion of Section 6.1.1 generalizes directly. One can also generalize the

analysis of Section 4.2 to special toric degenerations of relative dimension n sat-

isfying Assumptions 6.1 and 6.2 by restricting the types of σ P P̄max to natural

generalizations of the types (1-4) in Figure 4.5.

In general, one needs to understand how to resolve, for every τ P P̄ rn´1s and

every singular point x P X̄τ , the local toric model ˜̄Xτ,x (if we wanted to remove

Assumption 6.2, we would also have to consider local models with τ P P̄ rks, 1 ď

k ď n ´ 2, see Remark 6.3(2)).

Definition 6.20. Let n ě 2. We say that an integral polytope τ Ď Zn´1 is

a standard pm, kq-cubimplex for some m P Zě0, k P Zě1 with m` k “ n´ 1 if it

is AGLpn´ 1,Zq-equivalent to σm ˆ ∆k Ď Zm ˆ Zk for σm the standard m-cube

(i.e. the convex hull of tpε1, . . . , εmq | εi “ 0, 1 for 1 ď i ď mu in Zm) and ∆k

the standard k-simplex. Note that a standard pn´ 2, 1q-cubimplex is a standard

pn ´ 1q-cube.

If n “ 2, the standard p0, 1q-cubimplex is a line segment of length 1. If

n “ 3, the standard p0, 2q-cubimplex is a standard triangle and the standard

p1, 1q-cubimplex is a standard square. If n “ 4, the standard p0, 3q-cubimplex

is a standard 3-simplex, the standard p1, 2q-cubimplex is a triangular prism, and

the standard p2, 1q-cubimplex is a standard 3-cube.

It is straightforward to show that if τ P P̄ rn´1s is a standard pm, kq-cubimplex,

then ∆τ – Conv ppτ ˆ te0uq Y ∆τ,gq for ∆τ,g “ ∆τ,1 a standard k-simplex using

the description of (6.1). Further, one can also generalize Figures 6.1 and 6.7 to

obtain subdivisions of ∆τ into standard n-simplices. This gives rise to log smooth

resolutions of the local toric models ˜̄Xτ,x. One can also generalize Figures 6.3 and

6.8 to describe the transformations of the singular loci of τ corresponding to these

resolutions.
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Conjecture 6.21. Consider a cell τ P P̄ rn´1s and suppose that

∆τ – Conv ppτ ˆ te0uq Y ∆τ,gq

for ∆τ,g a standard k-simplex. Then for all L P Zą0 sufficiently large, there

exists a subdivision of Lτ into pn´ 1q-simplices and standard pm, k1q-cubimplices

for 1 ď k1 ď k (if k “ n ´ 1 then there is exactly one p0, kq-cubimplex in the

subdivision) such that no pm, k1q-cubimplex intersects cells of Lτ (considered as

a polyhedral manifold with boundary) of dimension less than k1.

Further, let Lτrel be the union of all the pm, k1q-cubimplices (for 1 ď k1 ď k)

in the subdivision. Then there exists a choice of a singular locus ZLτ on Lτ

respecting the cell structure such that Lτrel is a tubular neighbourhood of ZLτ and

for every pm, k1q-cubimplex τ 1 in the subdivision, the singular locus of τ 1 is given

by ZLτ X τ 1.

Note that Conjecture 6.21 holds trivially if τ P P̄ rn´1s is a standard pm, kq-

cubimplex. It is also easy to check that it holds for a rescaling of a standard pm, kq-

cubimplex. Conjecture 6.21 is trivial for n “ 2 and Steps (1-6) of Construction

6.8 prove that Conjecture 6.21 holds for n “ 3. In general, we expect Conjecture

6.21 to follow by an inductive argument. Indeed, for n “ 4, Steps (1-6) of

Construction 6.8 imply, by an argument as in the construction of the integral

subdivision pB1,P 1q in the proof of Theorem 6.16, that for every τ P P̄ r3s one can

construct a subdivision of BpLτq as required by Conjecture 6.21. The fact that one

can construct a subdivision of Lτ restricting to this subdivision of BpLτq (possibly

after rescaling by some k P Zą0 and choosing a new subdivision of BpkLτq of this

form) should follow from the fact that ∆τ,g “ ∆τ,1 is the monodromy simplex

associated to τ (in particular, it is a Minkowski summand of τ) and from [GS1,

Definition 1.60] of the simplicity of
`

B̄, P̄
˘

(satisfied by Assumption 6.1).

Suppose that τ P P̄ rn´1s satisfies Conjecture 6.21. Then the subdivision

of Lτ of Conjecture 6.21 lifts to a subdivision of ∆Lτ by directly generalizing

the lifting of Construction 6.8. To obtain a log smooth resolution, it remains,

similarly to Construction 6.8(7), to subdivide the polygons of the subdivision of

∆Lτ containing the standard pm, k1q-cubimplices (for 1 ď k1 ď k). We subdivide

them using the natural generalization of Figures 6.1 and 6.7 (as usual, this should

be done compatibly). This gives both the subdivision of Lτ and a lifting to a

subdivision of ∆Lτ defining a toric blowup πτ,x : X̃τ,x Ñ ˜̄Xτ,x resolving the local

model.

Suppose that X̄ Ñ S is a special toric degeneration of relative dimension

n ě 4 satisfying Assumptions 6.1 and 6.2, such that every τ P P̄ rn´1s with
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X̄ Ñ S not log smooth on X̄τ satisfies Conjecture 6.21. Then Definition 6.11 of a

strongly admissible resolution and Definition 6.13 of an admissible resolution di-

rectly generalize to this case, see Remark 6.14(1). Moreover, it is straightforward

to generalize Proposition 6.15 giving a tropical way to construct strongly admis-

sible resolutions, Theorem 6.16 giving an existence result for strongly admissible

resolutions and Propositions 6.17 and 6.18 giving admissible and strongly ad-

missible (after a further basechange) resolutions with a simple normal crossings

central fibre.

6.2. Scattering and the minimal relative Gross-Siebert locus

Let X̄ Ñ S be a special toric degeneration of relative dimension n ě 3 satisfy-

ing Assumption 6.1 and Assumption 6.2 (if n ě 4). By the discussion of Section

6.1, we can construct strongly admissible resolutions of X̄ Ñ S (assuming Con-

jecture 6.21 if n ě 4).

Suppose that we want to prove Conjecture 1.7 for X̄ Ñ S. As in the proof of

Theorem 4.73, Proposition 1.8 implies that it is enough to prove it for strongly

admissible resolutions, and Proposition 3.96 implies that it is enough to prove it

for well-chosen monoids. So we may fix a strongly admissible resolution π : X Ñ X̄

and a well-chosen monoid P . Let J :“ P zK be the complement of the face

containing the curve classes contracted by π as before. By the discussion at the

start of this chapter, we need to provide a collection of scattering diagrams DJ :“

tDJk`1 , k ě 0u giving rise to the extended intrinsic mirror X̌ Ñ SpeczkrP sJ ,

generalizing the results of Section 4.4.

6.2.1. Canonical scattering modulo J. Let
`

B̄, P̄
˘

be the dual intersection

complex of X̄ Ñ S and pB,Pq be the dual intersection complex of X Ñ S. First,
consider the collection D̄ “

␣

D̄k, k ě 0
(

of the algorithmic scattering diagrams

on
`

B̄, P̄
˘

. Recall from Theorem 3.35 that D̄ is determined (up to combinatorial

equivalence) by D̄0 “ D̄ptq whose only walls are the slabs pτ , fτ q with support

τ P ˜̄P rn´1s and the attached initial slab function fτ .
100 Moreover, since

`

B̄, P̄
˘

is simple (in the sense of [GS1, Definition 1.60]) by Assumption 6.1, the initial

slab functions are fixed and independent of the gluing data.

Proposition 6.22 ([GHS, Lemma A.1.1]). Let τ P ˜̄P rn´1s be a slab with

τ Ď τ P P̄ rn´1s and let v be the vertex of τ contained in τ . Let

∆̄pτ, vq :“
!

mτ τ 1 | τ 1
P ˜̄P 1rn´1s, τ 1

Ď τ
)

100Here we switch the notation for elements of P̄rn´1s (resp. ˜̄Prn´1s) from ρ (resp. ρ) to

τ (resp. τ) to align with the notations of Section 6.1.



6.2. SCATTERING AND THE GROSS-SIEBERT LOCUS 247

be the set of monodromy vectors of closed paths in Wρz∆̄ as in [GHS, Appendix

A.1] (since
`

B̄, P̄
˘

is simple, ∆̄pτ, vq is the set of vertices of an elementary

simplex). Then fτ “
ř

mP∆̄pτ,vq
zm.

Now, note that pB,Pq is an integral subdivision of
`

B̄, P̄
˘

(see Proposition

6.15(2)). The construction of a PL-isomorphism Φ : pB,Pq Ñ
`

B̄, P̄
˘

, linear

on the maximal cells of P, is a direct generalization of Construction 4.36 (using

Constructions 4.6 and 4.23). In particular, for every x P Intpσq, σ P Pmax we can

identify the monomials via the canonical isomorphism P`
x – P̄`

Φpxq
. The following

conjecture generalizes Proposition 4.53 and Construction 4.54 of the scattering

diagram DJ in the case that n “ 2.

Conjecture 6.23. The decorated wall types given by Construction 3.89 of the

canonical scattering diagram modulo J for X Ñ S satisfy the following conditions:

(1) Let τ be a decorated wall type with total curve class A P K and Wτ ‰ 0.

Then the support of the corresponding wall bτ given by Construction

3.89 is a cell τ 1 P P rn´1s. Moreover, if τ 1 P P rn´1s subdivides a cell

τ P P̄ rn´1s, then dimpτ X ∆̄q “ n ´ 2.

(2) Let τ 1 P P rn´1s be a cell of pB,Pq subdividing a cell τ P P̄ rn´1s with

dimpτX∆̄q “ n´2. Then there are countably many decorated wall types τ

with total curve class A P K and Wτ ‰ 0 producing walls tbτ 1,b | b P Zą0u

supported on τ 1 via Construction 3.89. The infinite product

fbτ 1 :“
ź

bPZą0

fbτ 1,b
P pkrP s{JqrrΛτ 1ss (6.3)

of the wall functions is polynomial, i.e. fbτ 1 P pkrP s{JqrΛτ 1s.

(3) Let A be a choice of polarization on X̄ Ñ S and let h : P Ñ N, β ÞÑ

π˚A ¨ β be the map of Conjecture 1.7. Then we have hpfbτ 1 q “ fτ for

some choice of a slab τ P ˜̄P rn´1s with τ Ď τ P P̄ rn´1s and fτ as in

Proposition 6.22 (using the identification of monomials).

Assuming (1),(2),(3) are satisfied, we let bτ 1 :“ pτ 1, fbτ 1 q for any τ 1 P P rn´1s and

set

DJ :“ tbτ 1 | τ 1
Ď τ, τ 1

P P rn´1s, τ P P̄ rn´1s, dimpτ X ∆̄q “ n ´ 2u.

By an argument as in the proof of Proposition 4.55, DJ is a well-defined consistent

scattering diagram.

We will now discuss how we expect Conjecture 6.23 to follow. Consider the

case of Section 6.1.1, i.e. assume that n “ 3 and all the σ P P̄max are standard

simplices. Let τ P P̄ r2s be a standard triangle with dimpτ X ∆̄q “ 1 and note
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that it may be viewed as a cell of P r2s since pB,Pq –
`

B̄, P̄
˘

as polyhedral

manifolds. Let τ be as in Conjecture 6.23(3) and write fτ as fτ “ 1 ` zm1 ` zm2

where m1,m2 are the non-zero vertices of ∆̄pτ, vq. Then we expect that fbτ 1 “

1`tEv1´Ev2zm1 `tEv2zm2 where Ev1 and Ev2 (for v1, v2, P P̄ r0s with v1, v2 Ď τ) are

the exceptional curves of the first and second blowup resolving the local model
˜̄Xτ,x (permuting m1 and m2 if necessary). Now, note that we have

fbτ 1 “ 1 ` tEv1´Ev2zm1 ` tEv2zm2 “ expplogp1 ` tEv1´Ev2zm1 ` tEv2zm2qq “

“ exp

¨

˚

˝

ÿ

a1,a2PN,
a1`a2ą0

p´1qa1`a2´1

a1 ` a2

ˆ

a1 ` a2
a1

˙

ta1pEv1´Ev2 q`a2Ev2za1m1`a2m2

˛

‹

‚

“

“
ź

a1,a2PN,
a1`a2ą0

exp

ˆ

p´1qa1`a2´1

a1 ` a2

ˆ

a1 ` a2
a1

˙

ta1pEv1´Ev2 q`a2Ev2za1m1`a2m2

˙

.

We expect that this is precisely the infinite product of (6.3) giving rise to fbτ 1 .

Specifically, we conjecture the following:

Conjecture 6.24. Suppose that n “ 3 and all the σ P P̄max are standard

simplices. Let τ P P̄ r2s be a standard triangle with dimpτ X ∆̄q “ 1. Let Ev1 and

Ev2 (for v1, v2, P P̄ r0s with v1, v2 Ď τ) be the exceptional curves of the first and

second blowup resolving the local model ˜̄Xτ,x. Let v P P̄ r0s be the third vertex of τ

(distinct from v1, v2) and let m1 P Λτ and m2 P Λτ be the primitive generators of

xv, v1y and xv, v2y respectively that point out of v. Then the decorated wall types

τ with total curve class A P K and Wτ ‰ 0 producing walls supported on τ are

as follows.

Let a1, a2 P N with a1 ` a2 ą 0. Then there is a decorated wall type τa1,a2
producing a wall supported on τ with

kτa1,a2Wτa1,a2
“

p´1qa1`a2´1

a1 ` a2

ˆ

a1 ` a2
a1

˙

(6.4)

Further, the underlying graph Ga1,a2 of τa1,a2 has two vertices ṽ0, ṽ1, one edge

xṽ0, ṽ1y, and a leg Lout attached to ṽ0. We have σpṽ0q “ Cxv1, v2y and σpṽ1q “

Cv1. Let m12 P Λτ be the generator of xv1, v2y pointing from v1 to v2. We

have upLoutq “ ´a1m1 ´ a2m2 and upxṽ0, ṽ1yq “ ´a1m12. Finally, we have

Apṽ0q “ a2Ev2 and Apṽ1q “ a1pEv1 ´ Ev2q. We give a sketch (in blue) of the

corresponding family of tropical curves in pB,Pq in Figure 6.13 (the image of ṽ0
is free to move inside the edge).
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v1 v2

v

m1 m2

´a1m12

´a1m1 ´ a2m2

a1pEv1 ´ Ev2q a2Ev2

Figure 6.13. The family of tropical curves in pB,Pq correspond-

ing to τa1,a2 .

In the notations of Conjecture 6.24, let Cv2 be the unique curve of class Ev2
that intersectsXτ and let Cv1 be the unique curve of class Ev1 ´Ev2 that intersects

Cv2 (see Figure 6.2). The decorated wall type τa1,a2 corresponds to a stable map

C Ñ X0. Here C consists of two rational curves C0, C1 (corresponding to ṽ0, ṽ1)

and the map is an a1-fold cover of Cv1 on C1 and an a2-fold cover of Cv2 on C2.

By the discussion above and Construction 3.89 of the canonical scattering

diagram, Conjecture 6.24 implies Conjecture 6.23 in the case that n “ 3 and all

the σ P P̄max are standard simplices. The fact that the only wall types τ with

total curve class A P K and Wτ ‰ 0 producing walls supported on τ P P r2s are

the τa1,a2 should follow from a tropical analysis (generalizing the argument in the

proof of Proposition 4.53). The fact that (6.4) holds should follow by a suitable

gluing formula, generalizing [G3, Theorem 8.15]. Note that we are in the case of

toric gluing strata, so one should be able to use the convolution-style formula of

[W, Corollary 1.6]. In any case, the gluing formula will reduce the computation

of kτa1,a2Wτa1,a2
to the computation of kτ1a1,a2Wτ1

a1,a2
, where τ 1

a1,a2
is the sub-wall

type of τa1,a2 obtained by splitting at ṽ0. Note that we have kτ1a1,a2 “ a1.

Now τ 1
a1,a2

can be viewed as a decorated wall type τ̃ 1
a1,a2

of a punctured

map to a log CY surface D̃v1 :“ pDv1 , BDv1q (using the notation of Observa-

tion 3.67). Further, τ̃ 1
a1,a2

has positive contact order a1 with the component of

BDv1 that intersects the exceptional P1-bundle with exceptional curve Ev1 , so

it can be viewed as a type of an ordinary logarithmic map. It also has an in-

duced curve class Ãτ̃1
a1,a2

that we can write as Ãτ̃1
a1,a2

“ a1pEv1 ´ Ev2q. We have

M pX, τ 1
a1,a2

q » M pD̃v1 , τ̃
1
a1,a2

q by [G3, Theorem 6.1], so degrM pX, τ 1
a1,a2

qsvirt “

degrM pD̃v1 , τ̃
1
a1,a2

qsvirt. Therefore, we have Wτ1
a1,a2

“ Nτ̃1
a1,a2

where Nτ̃1
a1,a2

is the

virtual count corresponding to τ̃ 1
a1,a2

. We conjecture that Nτ̃1
a1,a2

“
p´1qa1´1

a21
. More

generally, we conjecture the following.
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Conjecture 6.25. Let XΣ be a toric variety and let pX,Dq be a log CY

variety obtained by blowing up a sequence of hypersurfaces Hi Ď Dρi with YHi

connected for some toric divisors Dρi corresponding to rays ρi P Σ. Let E be the

exceptional curve of the last blowup. For every a P N, there is a unique decorated

wall type τ̃a with total curve class aE. Moreover, the corresponding virtual count

is Nτ̃a “
p´1qa´1

a2
.

If XΣ is a toric surface, then by the comparison of the logarithmic and relative

invariants of [AMW] and the fact that pX,Dq is a Looijenga pair, Conjecture

6.25 follows from [GPS, Proposition 5.2]. In higher dimensions, if one blows

up only one hypersurface and D is simple normal crossings, the setup falls into

that of [AG]. Conjecture 6.25 should follow from [AG, Theorem 6.1] in this

case (see the discussion at the end of [AG, Section 7]). In general, Conjecture

6.25 should follow by generalizing the results of [AG] to the case when D is not

simple normal crossings and the hypersurfacesHi are not disjoint, and performing

a similar analysis.

The whole discussion directly generalizes to the case when n ě 4 and σ P

P̄max are standard simplices. For general σ P P̄max, let τ P P̄ rn´1s and suppose

that k “ n ´ 1 in Conjecture 6.21. Then there is exactly one p0, kq-cubimplex

δ1 P P rn´1s in the subdivision of τ which is just the pn ´ 1q-simplex. So the

same reasoning applies to showing Conjecture 6.23 for δ1. For the other cells

in the subdivision of τ , Conjecture 6.23 should follow by analyzing the local

models for those cells and by inductively reducing the computation of the relevant

virtual invariants to those contributing to the fbδ1 of (6.3) by using a suitable

gluing formula. Similarly, if k ă n ´ 1 in Conjecture 6.21, one needs to analyse

the pn ´ 1 ´ k, kq-cubimplices subdividing τ P P̄ rn´1s first and then proceed

inductively.

6.2.2. Canonical scattering modulo Jk`1, k ě 0 and Conjecture 1.7 in

higher dimensions. We have defined DJ in Conjecture 6.23. Now, we also need

to define scattering diagrams DJk`1 , k ě 1.

Conjecture 6.26. There exist finite consistent scattering diagrams DJk`1,

k ě 1 such that:

(1) DJk`1 is compatible with DJk (in the sense of Definition 3.9) for k ě 1.

(2) For every k ě 1 and l ě 1, the scattering diagram DJk`1 agrees with the

scattering diagram DJk`1`ml of Construction 3.89 modulo Jk`1 ` ml.

Conjecture 6.26 should follow by generalizing the results of [GHKS, Section

5.3] and Section 4.4.2 to higher dimensions. We expect the generalization to follow
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the same lines, i.e. the notion of slab twig of Definition 4.50 should generalize

to mean the wall types contributing to DJ . Then one can define slab types

by grouping wall types that differ by the (generalized) slab twigs similarly to

Definitions 4.58 and 4.59. After this, the scattering diagrams DJk`1 , k ě 1 can

be defined in the same way as in Definition 4.61. Consistency of DJk`1 , k ě 1

follows as in Step 1 in the proof of Proposition 4.62 and the hard part is to check

that DJk`1 , k ě 1 are finite, generalizing Steps 2-4 in the proof of Proposition

4.62.

Assuming Conjectures 6.23 and 6.26, we can define the extended intrinsic mir-

ror X̌ Ñ SpeczkrP sJ as the inverse limit of the families X̌D
Jk`1

Ñ Spec krP s{Jk`1

for k ě 0. Note that, as in Remark 4.64(1), Conjecture 6.26(2) implies that

the extended intrinsic mirror of (3.65) is well-defined and isomorphic to X̌ Ñ

SpeczkrP sJ . We can reduce Conjecture 1.7 to Conjectures 6.21, 6.23, and 6.26.

Proposition 6.27. Let X̄ Ñ S be a special toric degeneration of relative

dimension n ě 3 satisfying Assumption 6.1 and Assumption 6.2 (if n ě 4).

Suppose that Conjecture 6.21 holds for X̄ Ñ S (we have proved this for n “ 3)

and Conjectures 6.23 and 6.26 hold for any strongly admissible resolution X Ñ X̄.

Then Conjecture 1.7 holds for X̄ Ñ S.

Proof. We need to generalize the results of Section 4.5. Construction 4.65

generalizes directly to give a collection of scattering diagrams D “ tDk, k ě 0u

on pB,Pq such that the inverse limit over X̌Dk
Ñ Spec krts{ptk`1q for k ě 0

is isomorphic to the basechange of the extended intrinsic mirror family X̌ Ñ

SpeczkrP sJ (defined via Conjectures 6.23 and 6.26) by h : P Ñ N, β ÞÑ π˚A ¨ β.

Construction 4.68 also admits a direct generalization which gives, for every

scattering diagram D̄ on
`

B̄, P̄
˘

, a scattering diagram D̄1 on
`

B̄, P̄ 1
˘

(where P̄ 1

is the obvious refined polyhedral decomposition on B̄ such that pB,Pq –
`

B̄, P̄ 1
˘

as polyhedral complexes) that is equivalent to D̄.

To generalize Construction 4.69, we need to define a scattering diagram ΦpDkq1

on
`

B̄, P̄ 1
˘

. First, we define the images of codimension 0 walls as in Construction

4.69. Suppose that b P Dk is a slab with b Ď τ 1 P P rn´1s for τ 1 Ď τ P P̄ rn´1s and

let Φ̄pbqi, 1 ď i ď m be the connected components of Φpbqz∆. Let τ P ˜̄P rn´1s

be a slab of τ such that hpfbτ 1 q “ fτ (see Conjecture 6.23(3)) and let τ i P ˜̄P rn´1s

be the slabs of τ containing Φ̄pbqi for 1 ď i ď m respectively. Then we introduce

m slabs as follows:

Φ̄pbq
i :“

`

Φ̄pbq
i, zmτiτfΦpbq

˘

P ΦpDkq
1, 1 ď i ď m
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(here we set mτ τ :“ 0). This defines a scattering diagram ΦpDkq1 on
`

B̄, P̄ 1
˘

.

Then we also have an equivalent scattering diagram ΦpDkq on
`

B̄, P̄
˘

similarly

to Construction 4.69.

Propositions 4.71 and 4.72 generalize directly to show that for every k ě 0,

the scattering diagram ΦpDkq is consistent and equivalent toDk. Now Conjecture

1.7 follows by an argument as in the proof of Theorem 4.73. □

6.2.3. A generalization of Conjecture 1.7 to the minimal relative Gross-

Siebert locus. We conclude by explaining how to generalize Theorem 5.35 (the

main result of Chapter 5) to higher dimensions. The desire to have such a gener-

alization is another reason that we restrict to the case of simple
`

B̄, P̄
˘

. Indeed,

the local rigidity condition is not empty for n ě 3, so for general
`

B̄, P̄
˘

the space

of toric log CY spaces with intersection complex
`

B̄, P̄
˘

is not well-behaved. In

particular, it may be singular, see [GS1, Example 4.28]. So, in general, there

is no good analogue of [GHS, Theorem A.2.4] (or [GHS, Theorem A.4.2]) con-

structing the universal toric degeneration mirror varied in projective gluing data

(or projective gluing data and free parameters of the initial slab functions). This

means that in the general case, we can’t hope to generalize Conjecture 1.7 further

than removing the dependence on polarization A by using the universal monoid

Q (which would give an analogue of Proposition 5.12).

If X̄ Ñ S is a special toric degeneration satisfying Assumption 6.1,
`

B̄, P̄
˘

is simple. In this case, Theorem 5.35 reduces to Corollary 5.36, so we need to

generalize Corollary 5.36.

Conjecture 6.28. Let X̄ Ñ S be a special toric degeneration of relative di-

mension n ě 3 satisfying Assumption 6.1 and Assumption 6.2 (if n ě 4), and sup-

porting some polarization A. We further require that A1pX0,Zq “ A1pX0,Zqnum.

Then (possibly after a finite basechange) there exists a strongly admissible res-

olution π : X Ñ X̄ to a minimal log CY degeneration X Ñ S. Suppose that

Conjecture 6.21 holds for X̄ Ñ S (we have proved this for n “ 3) and Conjec-

tures 6.23 and 6.26 hold for π : X Ñ X̄. Let P be a well-chosen monoid and let

J :“ P zK be the complement of the face containing the curve classes contracted

by π as before. Arguing as in Section 5.1.1, we may set P :“ Kgp ‘Q for Q the

universal monoid of [GHS, Appendix A.2] and the intrinsic mirror

X̌ Ñ SpeczkrP sJ “ Spec krKgp
sJQK

is well-defined.

(1) Let τ P P̄ rn´1s and let k ď n´1 be as in Conjecture 6.21. Choose a fixed

pn´1´k, kq-cubimplex subdividing τ P P̄ rn´1s (unique if k “ n´1) and
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let δ1
τ P P rn´1s be a fixed cell subdividing the pn ´ 1 ´ k, kq-cubimplex.

Then the fbδ1
τ
of Conjecture 6.23(2) is of the form

fbδ1
τ

“ 1 `
ÿ

mP∆̄pτ,vqzt0u

tEτ,mzm

for some curve classes Eτ,m P Kgp. Moreover, Kgp splits as Kgp “

Egp ‘ Ggp for

Egp :“
@

Eτ,m , ´Eτ,m | τ P P̄ rn´1s, m P ∆̄pτ, vqzt0u
D

and some finitely generated free abelian group Ggp.

(2) Define hGS : Kgp ‘ Q “ Egp ‘ Ggp ‘ Q Ñ Egp ‘ Q by sending Ggp Ñ

0 and by the identity on Egp and Q. We call the basechange X̌ Ñ

Spec krEgpsJQK of the extended intrinsic mirror X̌ Ñ Spec krKgpsJQK
by hGS the (numerical) minimal relative Gross-Siebert locus. Then X̌ Ñ

Spec krEgpsJQK is independent of the choice of δ1
τ P P rn´1s in (1).

(3) The correspondence of Corollary 5.36 directly generalizes to a correspon-

dence between X̌ Ñ Spec krt˘EmsJQK and the subfamily ˇ̄X1
P Ñ Spec k1

PJQK
of the universal toric degeneration mirror ˇ̄XP Ñ Spec kPJQK of [GHS,

Theorem A.2.4]. Here kP is the universal ring parametrizing projec-

tive gluing data and k1
P Ď kP is the subring generated by s̄ for s as

follows. For every τ P P̄ rn´1s, let τ P ˜̄P rn´1s be the slab of τ as in

Conjecture 6.23(3) for τ 1 “ δ1
τ (for any choice of δ1

τ P P rn´1s in (1)).

Choose a set mτ,i, 1 ď i ď n´ 1 of primitive generators of Λτ such that

mτ,i, 1 ď i ď dim ∆̄pτ, vq are the generators of ∆̄pτ, vq. Then s is given

by, for σ P P̄max adjacent to τ P P̄ rn´1s, the homomorphisms:

sστ : Λσ Ñ kˆ,

$

&

%

mτ,i ÞÑ c´1
ρ,i , 1 ď i ď dim ∆̄pτ, vq

mτ,i ÞÑ 1, dim∆pτ, vq ă i ď n ´ 1

ξ ÞÑ 1

sστ 1 : Λσ Ñ kˆ, m ÞÑ 1

where ξ is the normal generator pointing into σ as in (3.12), τ 1 Ď τ P

P̄ rn´1s is any slab of τ P P̄ rn´1s distinct from τ , and cρ,i P kˆ for

1 ď i ď dim ∆̄pτ, vq are fixed constants.

We expect that the proof of Conjecture 6.23 will require an analysis of the

curve classes contracted by π and yield explicit expressions for the fbτ 1 of (6.3). In

particular, the analysis will imply conditions (1) and (2) of Conjecture 6.28. The

extension of Conjecture 1.7 to Conjecture 6.28(3) should then be a straightforward

generalization of the arguments of Chapter 5.





APPENDIX A

Toric degeneration mirror to a Batyrev

degeneration in Pn

We discuss how to construct the toric degeneration mirror ˇ̄X∆,TD to the

Batyrev degeneration

X̄∆ :“

#

tfn`1 `

n
ź

i“0

xi

+

Ď Pn ˆ Spec kJtK

(in particular, it is a toric degeneration) with the natural projection to SpeckJtK.
Here fn`1 is a general homogeneous polynomial of degree n ` 1 and ∆ is the

polytope defining Pn, n ě 3. Following Chapter 2, we will use the polarization

by ´KP∆
to construct the toric degeneration mirror.

We will give a direct generalization of Proposition 2.6(1) (the case of a Batyrev

degeneration of elliptic curves) to n “ 3 (the case of a Batyrev degeneration of

K3-s), providing a direct connection between the toric degeneration mirror ˇ̄X∆,TD

and the dual Batyrev degeneration X̄
ηptq
∆˚ of (2.5). For n ě 4, one can’t construct

the toric degeneration mirror ˇ̄X∆,TD by referring to the reconstruction algorithm

of [GS3, Proposition 3.9] (see Theorem 3.35) since the local rigidity condition is

not satisfied. However, we conjecture that one can still perform the algorithm

and that Proposition 2.6(1) generalizes to this setting. We work in the notations

of Chapter 2 (except for having a bar in the notation for toric degenerations in

line with the rest of the thesis).

It is easy to see that the Cox coordinate description of X∆˚
1
of Figure 2.2

generalizes to arbitrary dimension. That is the degeneration

X̄
ηptq
∆˚ “ tηptqs ` s0 “ 0u Ď P∆˚ ˆ Spec kJtK

of (2.5) has the Cox coordinate description of Figure A.1 (with n ´ 1 copies of

Zn`1).

Constructing the toric degeneration mirror ˇ̄X∆,TD is more challenging. The

dual intersection complex
`

B̄, P̄
˘

of X̄∆ Ñ Spec kJtK can be identified with B∆˚

255
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»

—

—

—

—

—

—

—

—

—

—

—

–

x0 x1 x2 x3 x4 . . . xn

Z 1 1 1 1 . . . 1 1

Zn`1 0 1 2 1 . . . 1 1

Zn`1 0 1 1 2 . . . 1 1
...

...
...

...
...

. . .
...

...

Zn`1 0 1 1 1 . . . 2 1

Zn`1 0 1 1 1 . . . 1 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

s0 “

n
ź

i“0

xi

s “

n
ÿ

i“0

xn`1
i

Figure A.1. Cox coordinate description of X̄
ηptq
∆˚ .

with the natural polyhedral decomposition and integral structure. Let the singu-

lar locus Γ101 be the union of all simplices in the barycentric102 subdivision ˜̄P of

P̄ not containing a vertex or intersecting the interior of a maximal cell. Then

B̄zΓ carries an affine structure as usual (see [G1, Definition 2.10]).

We first compute the monodromy around the components of Γ. Let v and v1

be two vertices of B̄ – B∆˚ and let σ and σ1 be two maximal cells containing v

and v1 respectively. Let γ be a simple loop based at v, passing successively into

Intσ, through v1, into Intσ1, and back to v. We have ∆˚ Ď N – Zn. By choosing

an integral basis pe1, . . . , enq of N , we may assume that v “ e1, v
1 “ e2, and

σ “ xe1, . . . , eny , σ1
“ xe1, . . . , en´1,´e1 ´ ¨ ¨ ¨ ´ eny .

Now the MPA function φ´KP∆
has value 1 at all the vertices of B̄ – B∆˚ and

a calculation shows that it is defined by k “ e1 ` ¨ ¨ ¨ ` en P N˚ on σ and

k1 “ e1 ` ¨ ¨ ¨ ` en´1 ´ nen P N˚ on σ1. Identifying Λv with N{xvy – pē2, . . . , ēnq,

by [G1, Proposition 2.13] the monodromy Tγ : Λv Ñ Λv takes form (compare

with (3.1)):

Tγpmq “ m ` xk1
´ k,my pv1

´ vq “ m ´ xpn ` 1qēn,my ē2. (A.1)

So the monodromy matrix is the pn´ 1q ˆ pn´ 1q matrix Id´pn` 1qI1,n´1 where

I1,n´1 is the matrix with 1 in the p1, n ´ 1q position and zeroes elsewhere.

101In Section 3.2.3, we denote the singular locus by ∆̄.
102Unlike Section 3.2.3, we don’t require that Γ contains no rational point. By the discussion

of [GHS, Appendix A.1], the barycentric choice gives rise to an isomorphic family.
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We would like to apply the recipe of [GS3] to construct the toric degeneration

mirror ˇ̄X∆,TD Ñ Spec kJtK from
`

B̄, P̄
˘

. Since
`

B̄, P̄
˘

is not simple (see [GS1,

Definition 1.60]), the existence of a toric log CY structure on ˇ̄X0 (the central

fibre of ˇ̄X∆,TD) is not automatic, and we need to specify103 normalized initial

slab functions fρ with no poles for every slab ρ P ˜̄P rn´1s that satisfy for any

ρ, ρ1 Ď ρ P P̄ rn´1s the equation

fρ1 “ z
mρ1ρfρ (A.2)

as in (3.9) where mρ1ρ is the monodromy variable corresponding to v1 ´v in (A.1).

Using the same choices as above, suppose that v Ď ρ Ď σ. Then we may assume

that Λρ Ď Λv is given by pē3, . . . , ēnq and let

fρ “ 1 ` zpn`1qē3 ` ¨ ¨ ¨ ` zpn`1qēn . (A.3)

Now (A.1) implies that this choice is consistent with (A.2). So ˇ̄X0 carries a toric

log CY structure.

Suppose that n “ 3 (i.e. X̄∆ Ñ Spec kJtK is the toric degeneration of Example

1.4). Since
`

B̄, P̄
˘

is of dimension 2, ˇ̄X0 is locally rigid (see [GS3, Definition

1.26]). So by the reconstruction algorithm of [GS3] (see Theorem 3.35)
`

B̄, P̄
˘

gives rise to the toric degeneration mirror ˇ̄X∆,TD Ñ Spec kJtK along with a very

ample line bundle L on ˇ̄X∆,TD. Note that B̄pZq consists of the vertices v P P̄ r0s

that give rise to theta functions ϑ0, ϑ1, ϑ2, ϑ3, the canonically defined sections

forming a basis of L. We can generalize Proposition 2.6(1).

Proposition A.1. Let n “ 3. There is a rational map ˇ̄X∆,TD Ñ X̄
ηptq
∆˚ given

by xi ÞÑ ϑi, 0 ď i ď 3 in the Cox coordinates (for a certain choice of ηptq P kJtK).

Proof. Similarly to the proof of Proposition 2.6(1), it is enough to show that

the toric degeneration mirror is given by

ˇ̄X∆,TD “
␣

ηptqpϑ4
0 ` ϑ4

1 ` ϑ4
2 ` ϑ4

3q ` ϑ0ϑ1ϑ2ϑ3 “ 0
(

Ď P3
ˆ Spec kJtK. (A.4)

We argue similarly to [GHS, Example 6.0.3] (on the discrete Legendre dual

side), see there for more details. Namely, we use the symmetries of the dual

intersection complex B̄ – B∆˚ of X̄∆ to restrict the form of the equation for the

toric degeneration mirror.

We can view the central fibre ˇ̄X0 of the mirror family (see Section 3.1.5 for

the construction) as given by tϑ0ϑ1ϑ2ϑ3 “ 0u Ď P3. Now the fact that L is

very ample implies that ˇ̄X∆,TD embeds into P3
kJtK as a hypersurface of degree 4.

103See the discussion of Section 3.2.4.
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So there is a single equation of degree 4 satisfied by all the ϑi that restricts to

ϑ0ϑ1ϑ2ϑ3 “ 0 at t “ 0.

We observe that B̄ – B∆˚ (and thus ˇ̄X∆,TD) has a large symmetry group.

First, B̄ – B∆˚ has an action given by permuting the vertices that preserves the

initial structure. This action lifts to an action on L permuting the ϑi. So the

equation for ˇ̄X∆,TD Ď P3
kJtK has to be a symmetric polynomial in ϑi.

There is also an action of multiplication by 4-th roots of unity. Indeed, note

that the local system Λ bZ Z4 has no monodromy, so it is trivial. Fix an iso-

morphism between ΛbZ Z4 and a constant sheaf with stalk pZ4q
2 by choosing an

isomorphism Λx – Z2 at any x P B̄zΓ. Now any character χ : pZ4q
2 Ñ kˆ gives

rise to a well-defined action on monomials via

χ : P Ñ Λ Ñ Λ bZ Z4 – pZ4q
2

Ñ kˆ

(here P is the local system of (3.10) defining the monomials). Because of the

form of the initial walls of the algorithmic scattering diagram D̄, the scattering

diagram is left invariant under this action, so χ acts on ˇ̄X∆,TD. One can lift this

action to an action on L in such a way that χpϑ0q “ ϑ0. Now the action on the

other ϑi is determined. Let vi be the vertex corresponding to ϑi. Then using the

local fan structure at v0 we can choose the coordinates pē2, ē3q as before so that

v1 “ ē2, v2 “ ē3, v3 “ ´ē2 ´ ē3.

The lifted action of χ is given by (viewing pē2, ē3q as the basis for pZ4q
2)

χpϑ0q “ ϑ0, χpϑ1q “ χpē2q ¨ ϑ1, χpϑ2q “ χpē3q ¨ ϑ2, χpϑ3q “ χp´ē2 ´ ē3q ¨ ϑ3.

A degree 4 symmetric polynomial equation in ϑi that restricts to ϑ0ϑ1ϑ2ϑ3 “ 0

at t “ 0 and is invariant under the action of Hom ppZ4q2,kˆq described above is

necessarily of the form

ηptqpϑ4
0 ` ϑ4

1 ` ϑ4
2 ` ϑ4

3q ` ϑ0ϑ1ϑ2ϑ3 “ 0

for some ηptq P kJtK. □

The correspondence of Theorem 5.35 allows restricting the equation of the

(extended) intrinsic mirror to a small resolution of X̄∆ in the case n “ 3.

Observation A.2. Note from (A.3) that ˇ̄X∆,TD in Proposition A.1 is the

toric degeneration mirror to the toric degeneration of Example 1.4 constructed

using the initial slab functions

fρ “ 1 ` w4
ρ, fρ1 “ 1 ` w´4

ρ ,
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where wρ “ zmρ for mρ an integral generator of Λρ. It is easy to see that the

argument in the proof of Proposition A.1 directly generalizes to the universal

setting of Section 5.4.3. In particular, for the universal choice of slab functions as

in (5.8), the action given by permuting the vertices preserves the initial structure.

Therefore, the universal toric degeneration mirror ˇ̄Xsr

D̄r Ñ Spec kraρ,i, c
˘1
ρ sJQK of

Construction 5.30 is given by an equation similar to (A.4) of the form
␣

ηpϑ4
0 ` ϑ4

1 ` ϑ4
2 ` ϑ4

3q ` ϑ0ϑ1ϑ2ϑ3 “ 0
(

Ď P3
ˆ Spec kraρ,i, c

˘1
ρ sJQK

for some η P kraρ,i, c
˘1
ρ sJQK. Theorem 5.35 implies that the minimal relative

Gross-Siebert locus of the extended intrinsic mirror to a small resolution of the

toric degeneration of Example 1.4 (see Sections 3.5 and 4.1) is also given by an

equation similar to (A.4) of the form
␣

ηpϑ4
0 ` ϑ4

1 ` ϑ4
2 ` ϑ4

3q ` ϑ0ϑ1ϑ2ϑ3 “ 0
(

Ď P3
ˆ Spec krt˘Eρ,ksJQK

for some η P krt˘Eρ,ksJQK.
It follows from (3.69) that the intrinsic mirror is actually defined over

Spec krtEρ,ksJQK in this case since the resolution is small. The intrinsic mirror

over SpeckrtEρ,ksJQK is given by the same equation as it is given by it generically

on the dense torus Spec krt˘Eρ,ksJQK Ď Spec krtEρ,ksJQK.

Suppose now that n ě 4. In this case, it is easy to check that ˇ̄X0 is not locally

rigid. Indeed, the monodromy computation of (A.1) implies that ˇ̄X0 does not

satisfy condition (i) of [GS3, Definition 1.26] for n ě 4. It also does not satisfy

condition (ii) of [GS3, Definition 1.26] for n “ 4 (but satisfies it for n ě 5). We

conjecture that Proposition 2.6(1) can still be generalized to this setting.

Conjecture A.3. Let n ě 4. One can run the reconstruction algorithm of

[GS3] (see Theorem 3.35) using the initial slab functions of (A.3) to obtain a

toric degeneration mirror ˇ̄X∆,TD Ñ Spec kJtK. Consequently, ˇ̄X∆,TD is given by

ˇ̄X∆,TD “

#

ηptq
n
ÿ

i“0

ϑn`1
i `

n
ź

i“0

ϑi “ 0

+

Ď Pn ˆ Spec kJtK

for some ηptq P kJtK and there is a rational map ˇ̄X∆,TD Ñ X̄
ηptq
∆˚ given by xi ÞÑ ϑi

in the Cox coordinates.

Provided that one can construct ˇ̄X∆,TD Ñ Spec kJtK, the second part of Con-

jecture A.3 follows as in the proof of Proposition A.1 by using symmetries of the

dual intersection complex B̄ – B∆˚. Local rigidity guarantees that one always

has unique choices in the reconstruction algorithm of [GS3]. We do not expect

this to be the case here. Rather, we expect that one can always make natural
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choices yielding ˇ̄X∆,TD Ñ Spec kJtK. Note that the map ˇ̄X∆,TD Ñ X̄
ηptq
∆˚ recovers

the classical construction of Greene and Plesser [GP] for n “ 4.

Remark A.4. Even assuming that Conjecture A.3 holds, we can’t directly

generalize the argument of Observation A.2 to n ě 4 using Conjecture 6.28 since

the dual intersection complex
`

B̄, P̄
˘

of X̄∆ is not simple. However, in this

particular case, one should be able to check that the space of toric log CY spaces

with intersection complex
`

B̄, P̄
˘

is well-behaved, state the analogue of Theorem

5.35 in higher dimensions, and do the same argument.



APPENDIX B

Log structures for canonical families

Suppose that we are in the setup of [GHS] (see Section 3.1) working over a

ring A, using monoid Q and a monoid ideal I0 Ď Q. Fix an ideal I with
?
I “ I0

and suppose that DI is a consistent scattering diagram on pB,Pq. Then DI

gives rise to a family X̌DI
Ñ SpecArQs{I by [GHS, Theorem 4.3.2]. We are

going to construct log structures on X̌DI
and SpecArQs{I, and an enhancement

of X̌DI
Ñ SpecArQs{I to a log morphism log smooth away from codimension

2. Since both toric degeneration mirrors of Section 3.2 and intrinsic mirrors of

Section 3.3 fall into this framework, this will make the toric degeneration and

intrinsic mirrors log smooth morphisms away from codimension 2.

We endow SpecArQs{I with the canonical log structure defined by the global

chart Q Ñ ArQs{I, q ÞÑ zq. It is enough to give a log structure MX̌o
DI

on X̌o
DI

and a log morphism pX̌o
DI
,MX̌o

DI

q Ñ SpecArQs{I (with the underlying morphism

of schemes the usual X̌o
DI

Ñ SpecArQs{I) that is log smooth away from codi-

mension 2. Indeed, X̌DI
zX̌o

DI
is codimension 2 in X̌DI

and given a log structure

MX̌o
DI

on X̌o
DI

we can define the log structure MX̌DI
on X̌DI

as MX̌DI
:“ j˚MX̌o

DI

for j : X̌o
DI

ãÑ X̌DI
the canonical inclusion of [GHS, Theorem 4.3.2(c)] (we have

j˚OX̌o
DI

– OX̌DI
since X̌DI

satisfies Serre’s S2 condition by [GHS, Proposition

2.1.6]). Then the log morphism pX̌o
DI
,MX̌o

DI

q Ñ SpecArQs{I extends to a log

morphism pX̌DI
,MX̌DI

q Ñ SpecArQs{I that is log smooth away from the union

of a codimension 2 subset of X̌o
DI

and X̌DI
zX̌o

DI
, which is a codimension 2 sub-

set of X̌DI
. By the same argument, it is enough to give a log structure MX̌o1

DI

on a subset X̌o1

DI
of X̌o

DI
with X̌o

DI
zX̌o1

DI
of codimension 2 and a log smooth mor-

phism pX̌o1

DI
,MX̌o1

DI

q Ñ SpecArQs{I (with the underlying morphism of schemes

the restriction of X̌o
DI

Ñ SpecArQs{I to X̌o1

DI
).

From the proof of [GHS, Proposition 2.4.1], Xo
DI

is constructed by gluing

together SpecRb along SpecRu for choices of slabs b Ď ρ P P̃ rn´1s for every

ρ P P rn´1s and choices of chambers u Ď σ P Pmax for every σ P Pmax. Fix a

slab b and consider the subset

tZ` “ Z´ “ fb “ 0u Ď SpecpArQs{IqrΛρsrZ`, Z´s{pZ`Z´ ´ fb ¨ zκρq “ SpecRb.

261
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It defines a subset of Xo
DI

of codimension 2 via the canonical inclusion SpecRb ãÑ

Xo
DI

(see [GHS, Proposition 2.4.1]) that we still denote by tZ` “ Z´ “ fb “ 0u.

Let

X̌o1

DI
:“ X̌o

DI

I

ď

bĎρPP̃rn´1s

tZ` “ Z´ “ fb “ 0u

and note that X̌o1

DI
can be constructed similarly to the construction of Xo

DI
in

[GHS, Proposition 2.4.1] by using appropriate localizations of Rb and Ru. We

will construct a fine saturated log structure on X̌o1

DI
and a log smooth morphism

to SpecArQs{I.

Away from the subsets tZ` “ Z´ “ 0uXX̌o1

DI
Ď SpecRb, the fine saturated log

structure is induced by the log structures on SpecRu defined via the global charts

hu : Q Ñ Ru, q ÞÑ zq. Moreover, for every SpecRu, we can define a log morphism

SpecRu Ñ SpecArQs{I (with the underlying morphism of schemes defined by

the natural inclusion ArP s

J
Ñ Ru) via the global chart Id : Q Ñ Q, q ÞÑ q that

fits into the commutative diagram:

Q Ru

Q ArQs

I

hu

Id (B.1)

The log morphism SpecRu Ñ SpecArQs{I is log smooth by Kato’s criterion (see

[K1, Theorem (3.5)]) since Id : Q Ñ Q is injective.

In the neighbourhood of a subset tZ` “ Z´ “ 0u X X̌o1

DI
Ď SpecRb, the fine

saturated log structure is induced by the log structure on SpecpRbqfb defined as

follows. Let P :“ Q ‘N N2 be the pushout via the maps N Ñ Q, 1 ÞÑ κρ and

N Ñ N2, 1 ÞÑ p1, 1q. We will write the elements of P as triplets rq, pa, bqs for

q P Q, pa, bq P N2 (some of them correspond to the same equivalence classes in

P ). The global chart hb : P Ñ pRbqfb , rq, pa, bqs ÞÑ zqZa
`Z

b
´f

´b
b defines a fine

saturated (since P is a finitely generated and saturated monoid) log structure on

SpecpRbqfb (one needs to check that hb is well-defined on the equivalence classes of

triplets rq, pa, bqs). Moreover, for every SpecpRbqfb , we can define a log morphism

SpecpRbqfb Ñ SpecArQs{I (with the underlying morphism of schemes defined by

the map ArP s

J
Ñ pRbqfb that is the natural inclusion in Rb followed by localization)

via the global chart π : Q Ñ P, q ÞÑ rq, p0, 0qs that fits into the commutative
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diagram:

P pRbqfb

Q ArQs

I

hb

π (B.2)

Again, the log morphism SpecpRbqfb Ñ SpecArQs{I is log smooth by Kato’s

criterion since π : Q Ñ P is injective.

To define a fine saturated log structure on X̌o1

DI
and a log smooth morphism

to SpecArQs{I it is enough to check that the gluing in the proof of [GHS,

Proposition 2.4.1] respects the log structures of (B.1) and (B.2). Fix a chamber

u Ď σ P Pmax and a slab b Ď ρ P P̃ rn´1s with ρ Ď σ. We have a commutative

diagram as follows:

Q ‘ Z pRuqχb,upfbq

P “ Q ‘N N2 pRbqfb

h1
u

gρ χb,u

hb

Here hb is the chart of (B.2), χb,u is induced by the localization homomorphism of

(3.19), gρ : Q‘NN2 Ñ Q‘Z is given by rq, pa, bqs ÞÑ pq` bκρ, a´ bq (one needs to

check that gρ is well-defined on the equivalence classes of triplets rq, pa, bqs), and

h1
u : Q ‘ Z Ñ pRuqχb,upfbq is given by pq, aq ÞÑ zqzaξ. Moreover, the log structure

on SpecpRuqχb,upfbq defined by h1
u agrees with the one induced by hu since zaξ is

invertible in pRuqχb,upfbq. So the log structures of (B.1) and (B.2) are compatible

and the gluing in the proof of [GHS, Proposition 2.4.1] defines a fine saturated

log structure MX̌o1

DI

on X̌o1

DI
and a log morphism pX̌o1

DI
,MX̌o1

DI

q Ñ SpecArQs{I.

This morphism is log smooth by Kato’s criterion since in the neighbourhood

of every point of X̌o1

DI
we have a chart for the morphism of the form (B.1) or

of the form (B.2). By the discussion above, we have a canonical extension to

a log morphism pX̌DI
,MX̌DI

q Ñ SpecArQs{I log smooth away from the subset

X̌DI
zX̌o1

DI
of codimension 2. Note that MX̌DI

is only fine saturated on X̌o1

DI
Ď X̌DI

.

Suppose that we have a collection of scattering diagrams DI0 :“
!

DIk`1
0
, k ě 0

)

such that DIk0
is compatible with DIk´1

0
for k ě 1. As usual,

it gives rise to an inverse system of families X̌D
Ik`1
0

Ñ SpecArQs{Ik`1
0 for k ě 0.

We define the log structure on the inverse limit X̌DI0 Ñ Spec zArQsI0 by taking

the inverse limit in the category of log schemes. In particular, this defines log

structures on the toric degeneration mirrors of (3.27) and the (extended) intrinsic

mirrors of (4.9).
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Remark B.1. In the presence of non-trivial gluing data s on pB,Pq (see

Section 5.4.1 and [GHS, Section 5.2]) the construction of an enhancement of

X̌s
DI

Ñ SpecArQs{I to a log morphism log smooth away from codimension 2

is similar, replacing the localization homomorphisms χb,u with the localization

homomorphisms χsb,u twisted by s (see Section 5.4.1).

Observation B.2. It is easy to check explicitly that with the above definition

of log structures on canonical families, all the basechanges considered in Chapters

4, 5, and 6 are also basechanges in the category of log schemes.
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