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Summary 

Fusion genes in breast cancer 

Elizabeth Batty 

Fusion genes caused by chromosomal rearrangements are a common and important feature in 
haematological malignancies, but have until recently been seen as unimportant in epithelial 
cancers. The discovery of recurrent fusion genes in prostate and lung cancer suggests that 
fusion genes may play an important role in epithelial carcinogenesis, and that they have been 
previously under-reported due to the difficulties of cytogenetic analysis of solid tumours. In 
particular, breast cancers often have complex, highly rearranged karyotypes which have proved 
difficult to analyse using classical cytogenetic techniques. 

 

The aim of this project was to search for fusion genes in breast cancer by using high-resolution 
mapping of chromosome rearrangements in breast cancer cell lines. Mapping the chromosome 
rearrangements was initially done using high-resolution DNA microarrays and fluorescence in-
situ hybridisation, but moved to high-throughput sequencing as it became available. Interesting 
candidate genes identified from the mapped chromosome rearrangements were investigated 
on a larger set of cell lines and primary tumours. 

 

The complete karyotypes of two breast cancer cell lines were constructed using a combination 
of microarrays, fluorescence microscopy, and high-throughput sequencing. A number of 
potential fusion genes were identified in these two cell lines. Although no expressed fusion 
genes were found, the complete karyotypes gave insight into the number and mechanisms of 
chromosome rearrangement in breast cancer, and identified interesting candidate genes which 
may be of importance in tumourigenesis. Two genes which were fused in other breast cancer 
cell lines, BCAS3 and ODZ4, were disrupted by chromosome rearrangements and identified as 
interesting candidate genes in tumorigenesis.  

 

A bioinformatic pipeline to process high-throughput sequencing data was set up and validated, 
and shown to more accurately predict fusion genes than other methods, and can be used to 
investigate further cell lines and tumours for recurrent fusion genes. The pipeline was used to 
analyse data from 3 other breast cancer cell lines and predict chromosomal rearrangements 
and fusion genes, several of which were found to be expressed. Of the fusions predicted in the 
cell line ZR-75-30, 7 expressed fusion genes were identified, and may have functional 
significance in breast cancer. 
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1.1 Introduction 

Cancer is caused by the accumulation of genetic changes in genes which control cell 

death and proliferation, but the number of changes which are necessary to progress to 

malignancy, which genes or pathways they affect, and the different mechanisms of 

genetic change are a subject of much debate.  

 

1.2 Genes and pathways altered in cancer 

Hanahan and Weinberg (2000) described six key processes which must be deregulated 

in the cell for progression to malignancy, and suggest that the large numbers of genes 

implicated in cancer represent different ways to evade the anti-cancer defences of the 

cell. As I am primarily interested in breast cancer, I have looked at how breast tumours 

may exhibit genetic changes which contribute to the deregulation of these six processes. 

The first process which must be overcome is the dependence on external growth factors 

to signal the cell to proliferate. This can be overcome by the cell generating its own 

growth factors, or by altering the requirements of the growth factor receptors and their 

downstream pathways. An example of this process in breast cancer is the amplification 

and overexpression of the ERBB2 receptor in breast cancer (Slamon et al., 1987), which 

may act by making the cell hypersensitive to small amounts of growth factors. 

The cell must also ignore the antiproliferative signals which attempt to block cell 

proliferation. At the G1 – S phase transistion of the cell cycle, the cell decides whether 

to continue to proliferate, or whether to stop dividing and become quiescent or 

differentiate. The RB tumour suppressor gene is important in the control of this 

transition, and changes in the RB pathway in breast cancer may remove the block on cell 

proliferation. RB expression is lost in 20-35% of breast tumours (Bosco and Knudsen, 

2007). In tumours which retain RB expression, it may be inactivated by phosphorylation 

by cyclin/CDK complexes, and the amplification of CCND1 in breast cancer may 
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contribute to aberrant phosphorylation. Estrogen also upregulates the promoter of 

CCND1, and anti-estrogenic therapies may act by inihibiting cell cycle progression 

(Foster et al., 2001).  

Tumour cells must also evade apotosis, either by deregulating the machinery which 

senses the signals which trigger apoptosis, or by turning off the pathways which respond 

to these signals and cause the cell to die. TP53 is a sensor of DNA damage, and 

upregulates other pro-apoptotic genes. In breast cancer, the TP53 gene is one of the 

two most commonly mutated genes, and its downstream targets are also commonly 

mutated (Pharoah et al., 1999). 

The cell may also have to evade the signals which limit their multiplicative potential and 

become immortal. As the telomeres of chromosomes become shorter with each cell 

division, telomere length acts as a break on unlimited replication, as the telomeres 

become lost and the ends of the chromosomes fuse, usually leading to cell death. 

Tumours often evade this check by upregulating the expression of telomerase - in breast 

cancer, telomerase activity was found in over 90% of breast tumours (Hiyama et al., 

1996). 

For a tumour to progress and grow to greater size, it must recruit new blood vessels to 

supply oxygen and nutrients to the tumour, and it must deregulate the mechanisms 

which control angiogenesis and vasculogenesis in the cell,  by upregulating the inducers 

of angiogenesis or downregulating the suppressors. Whether this is achieved by 

alteration of the genes involved in angiogenesis pathways, or whether angiogenesis is 

upregulated in the tumour as part of the natural response to hypoxia is unclear, and 

molecules which regulate angiogenesis are produced not only by the cancerous cell but 

by the normal cells surrounding the tumour (Carmeliet and Jain, 2000). Regardless of 

whether the mechanism is genetic or a part of normal homeostatic processes, pro-

angiogenic genes are a common drug target in cancer (Banerjee et al., 2007). In breast 

cancer, the amplification and overexpression of ERBB2 can increase angiogenesis and 
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expression of VEGF (Kumar and Yarmand-Bagheri, 2001), and VEGF inhibitors are a 

target of antiangiogenic agents in breast cancer (Banerjee et al., 2007). 

The final barrier to tumour progression is to acquire the capability for invasion and 

metastasis. The genetic changes which lead to invasion and metastasis are not well 

known, and one explanation for the difficulty in understanding these changes is that 

genetic changes which specifically lead to invasion and metastasis do not exist. Bernards 

and Weinberg (2002) argue that a change which leads to metastasis, unlike the changes 

which lead to tumour growth and immortality, does not confer an advantage to the 

primary tumour and would remain rare. This implies that the changes which enable 

metastasis are already present in the tumour, and confer some early selective 

advantage as well as the ability to metastasize later in tumour progression. This is 

supported by evidence from gene expression profiling, which shows that breast primary 

tumours and their distant metastases show similar expression patterns, suggesting that 

the dominant clone in the primary tumour may have already acquired the capability for 

metastasis long before it occurs (Weigelt et al., 2003). A further argument suggests that 

metastasis occurs by the chance event of a malignant cell escaping into the vasculature 

and finding a site suitable for growth, without any additional genetic changes (Edwards, 

2002). However, this argument remains controversial, and further research is needed to 

give a definitive answer. 

 

1.2.1 How many genetic changes are needed to progress to cancer? 

It was noted as early as 1957 that tumours progressed through different stages to 

metastasis in a stepwise manner (Foulds, 1957), and that this was consistent with a 

tumour which emerged from a single cell and progressed by acquiring more genetic 

changes. Although early modelling of the age distribution of cancer suggested that four 

to twelve mutational events would be necessary to cause cancer (Armitage and Doll, 

1954), this assumed that the mutational events were independent. Later work suggests 



Chapter 1  Introduction 

5 

 

that a better model is a two-stage theory of carcinogenesis, where the first stage gives 

the cell a selective advantage, and makes it more likely to accumulate the mutation or 

mutations necessary to progress to a second stage (Armitage and Doll, 1957). A detailed 

analysis of this two-stage model suggests that three rate-determining events were 

needed for cancer to arise (Stein and Stein, 1990). 

This model also suggests that while most cancers follow this two-stage pattern, some 

cancers, such as retinoblastoma, have single-stage kinetics. This was explained by work 

on the occurrence of retinoblastoma by Knudson, which suggested that a “two-hit” 

model was in effect, and both copies of the RB gene must be lost for retinoblastoma to 

occur. A predisposition to retinoblastoma was due to an inherited mutation which 

knocked out one copy of the gene, requiring only a somatic mutation in the other copy 

to cause cancer rather than two mutations in the same cell (Knudson, 1971). The 

germline mutation of RB serves as the first event, and a further somatic mutation allows 

the tumour to progress to the second stage. 

Further evidence for a multi-step model of carcinogenesis comes from studies of 

colorectal carcinoma by Fearon and Vogelstein (1990). They used the model system of 

colorectal tumours, which were known to progress from benign adenomas to 

carcinomas to metastatic disease, to suggest that tumours began with a mutation in a 

single cell, which acquired more mutations as the disease progressed, and that while the 

genetic changes often occurred in a similar order in different tumours it was the overall 

number of mutations which was important for progression. Their early estimate, based 

on evidence from colorectal cancer progression as well as mathematic models of cancer 

progression, was that three to seven hits were necessary for malignancy. This figure was 

based on a few known mutations such as KRAS and TP53, and low-resolution data which 

could only identify loss of heterozygosity over whole chromosome arms as a putative 

mechanism for deletion of a particular tumour suppressor gene (Vogelstein and Kinzler, 

1993). 
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Finding the mutations important for tumour initiation and progression is more difficult 

due to the presence of non-functional “passenger” mutations which occur by chance 

and are carried through successive rounds of clonal expansion. This problem is 

especially prevalent in genome-wide studies which do not look at specific candidate 

genes found by functional studies or linkage analysis. Sjöblom et al. (2006) found that 

the number of coding mutations in a series of breast tumours and cell lines is higher 

than the background rate of mutation would suggest, and statistical methods are 

needed to distinguish important “driver” mutations from passengers by finding genes 

which are found mutated in a higher proportion of tumours than would be expected by 

chance. Using this method, Sjöblom et al. predict that up to 20 of the somatic mutations 

found in breast tumours may be driving mutations, with another 80 mutations which 

are passengers, a much higher figure than previously reported, although these 

calculations rely on an accurate assessment of the background rate of mutation (Forrest 

and Cavet, 2007), and may suffer from a high false discovery rate (Getz et al., 2007). A 

study of mutations in a greater number of tumour types but looking only at protein 

kinase mutations showed a wide variation in the mutation rates between tumour types, 

suggesting that a background rate of mutation would be difficult to estimate (Greenman 

et al., 2007). Greenman et al. do not predict a number of driver mutations per tumour, 

but estimate that 119 of their 518 sequenced genes contain a driving mutation, leading 

them to a similar conclusion to Sjöblom et al. - the number of driver mutations is larger 

than previously estimated. Mathematical modelling supports the experimental evidence 

and suggests that this large number of driving mutations indicates that while there are 

certain common pathways which are mutated and give a large selective advantage, such 

as TP53 and APC, the majority of driving mutations will confer only a small selective 

advantage, and that the stochastic nature of these mutation contributes to the 

heterogeneity of cancer (Beerenwinkel et al., 2007).  

Recent studies of complete cancer genomes are consistent with the idea that there are 

many driving mutations. The earliest complete breast cancer sequence was of a 

metastasis and reported 32 non-synonymous mutations in coding sequences, none of 
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which were in genes reported as candidate cancer genes by Sjöblom et al (Shah et al., 

2009).  11 of the 32 mutations could be found in the primary tumour, and 6 of these 

mutations were present at low levels in the primary tumour, suggesting heterogeneity 

of somatic mutations in the primary tumour. The only complete coding sequences of 

both a breast primary tumour and metastasis which is so far complete reports 50 

mutations in coding regions, with a ratio of synonymous to non-synonymous mutations 

similar to that which would be expected by chance, suggesting that the majority of 

coding mutations are not strongly selected for and are not driving mutations (Ding et al., 

2010). The complete sequence of a melanoma cell line (Pleasance et al., 2010a) found 

292 coding mutations, with a similar lack of selection for non-synonymous mutations, 

and over 33,000 mutations in non-coding regions of the genome, and  similar figures 

were obtained for a small-cell lung cancer with 134 coding mutations and over 22,000 

non-coding mutations (Pleasance et al., 2010b).  

Although studies have focused on the number of mutations needed to progress to 

cancer, genes can be altered by other mechanisms such as copy-number alteration. A 

study of copy-number changes focusing only on major copy-number changes (defined as 

deletion of all copies, or amplification to >11 copies) showed on average 17 genes 

altered by major copy number changes per tumour (Leary et al., 2008).  Stephens et al. 

(2009) generated the most comprehensive study of somatic rearrangements in 24 

breast cancer samples and found large differences in the number and type of 

rearrangements present, from a tumour with only a single rearrangement to tumours 

with hundreds of tandem duplications present in the genome. The rearrangements 

were enriched for those affecting genes, although it is not clear whether this is due to 

the rearrangements being selected for, or due to the mechanism of genome 

rearrangements favouring coding regions. 

These studies are beginning to uncover the number and depth of the changes present in 

cancer genomes, but the complete picture is still not clear. The most comprehensive 

study of rearrangements in breast cancer yet published estimates they detected only 
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50% of the changes present in each sample (Stephens et al., 2009), and studies of 

somatic mutation may miss small indels, which were difficult to detect with the 

alignment methods used in these studies (Li and Durbin, 2009). To observe the overall 

picture of the number of changes needed for progression will require an integrated 

analysis combining mutation, copy-number alteration, identification of fusion genes and 

epigenetic changes to identify key pathways altered in cancer (Teschendorff and Caldas, 

2009). 

 

1.2.2 The role of genomic instability 

Cells must accumulate a number of genetic changes in order to progress to cancer; the 

question of whether these changes can arise given the normal human mutation rate or 

whether there must be an underlying genetic instability to explain the number of 

mutations is still subject to debate. It has been suggested that genomic instability may 

not be a requirement for tumour development, but a secondary effect of mutations 

whose primary effect is to protect against apoptosis (Bodmer, 2008) or carcinogens 

(Bardelli et al., 2001). Even if genomic instability is not a requirement, carcinogenesis 

may proceed more quickly when the genome is unstable, especially if the number of 

changes required for progression is large and the genomic instability arises early 

(Beckman and Loeb, 2006).  

Tumours demonstrate a number of mechanisms of genomic instability, which affect the 

genome at different levels, ranging from single nucleotide changes to rearrangement of 

chromosome and the gain and loss of chromosome arms and whole chromosomes. 

Patterns of genomic instability were first seen in colorectal tumours, where a small 

proportion of tumours with a near-normal karyotype display microsatellite instability, 

due to defects in genes in the mismatch repair pathways. Other colorectal tumours have 

an aneuploid karyotype and show loss and gain of whole chromosomes as well as loss of 

heterozygosity (Lengauer et al., 1997).  
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Many breast tumours display genomic instability. 47% of breast tumours have aneuploid 

karyotypes (Teixeira et al., 2002), while BRCA1 and BRCA2 can suppress genome 

instability, and BRCA1 and BRCA2-deficient cells exhibit chromosomal instability 

(Venkitaraman, 2002).  

 

1.3 Breast cancer 

Breast cancer exhibits considerable molecular heterogeneity, with many different genes 

associated with the disease and few recurring mutations, and unlike other common 

epithelial tumours, no single pathway has emerged as the dominant pathway in breast 

cancer tumorigenesis. 

 

1.3.1 Genes commonly altered in breast cancer 

Studies of somatic mutations in breast cancer support the model that there are few 

commonly mutated genes, and many genes which are mutated much less frequently. 

Two genes stand out as often mutated in breast cancer across all subtypes: TP53 and 

PIK3CA.  

PIK3CA has been reported to be mutated in 8-40% of breast tumours, and may be a 

relatively early event in tumorigenesis (Miron et al., 2010). The mutations cluster 

around exon 9 and exon 20, and result in increased kinase activity (Samuels et al., 2005). 

Wood et al. (2007), in a screen of coding mutations in 20,000 genes, found mutations in 

a number of genes in pathways involved in PIK3CA signalling. These mutations are often 

mutually exclusive, suggesting that only one mutation is needed to disrupt the pathway 

sufficiently to drive tumourigenesis (Velculescu, 2008).  

TP53 is a tumour suppressor gene mutated in 20-40% of breast tumours (Pharoah et al., 

1999). It plays an important role in the cellular response to stress, and acts by inducing 
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cell cycle arrest and apoptosis. Most cancers have lost TP53 activity by point mutation, 

with few deletions or frameshifts (Vousden and Lu, 2002). The mutant forms of TP53 are 

often more stable than the wild-type and found at high levels in the cell, and may act as 

dominant-negative inhibitors when they form complexes with the wild-type protein. 

Tumours with high expression of HER2 and accumulation of TP53 have considerably 

decreased overall survival (Yamashita et al., 2004). Similarly to PIK3CA, even in TP53 

wild-type tumours, regulators and targets of TP53 are often mutated – MDM2, which 

stabilises TP53 and is downregulated in response to stress, is amplified in up to 6% of 

breast tumours (Al-Kuraya et al., 2004). Tumours with mutations in the breast cancer 

susceptibility genes BRCA1 and BRCA2 are more likely to have TP53 mutations 

(Greenblatt et al., 2001), and show a different spectrum of mutations than in sporadic 

cancers, suggesting that the inactivation of particular functions of TP53 may be 

important in BRCA-deficient tumours (Venkitaraman, 2002). 

 

1.3.2 Breast cancer susceptibility genes 

Known breast cancer susceptibility alleles can be divided into three classes, based on 

the penetrance of the alleles (Turnbull and Rahman, 2008). BRCA1 and BRCA2 are high-

penetrance genes, and carriers of a mutant allele have a greater than tenfold increased 

risk of breast cancer.  BRCA1 and BRCA2 are involved in the DNA damage response, and 

many of the disease-associated mutations result in loss of function (Gudmundsdottir 

and Ashworth, 2006). Between them these two genes represent 15-20% of the excess 

familial risk. TP53 is also mutated in Li-Fraumeni syndrome, which gives a high risk of 

developing several types of cancer, but the number of families with Li-Fraumeni 

Syndrome is rare and account for only a small part of the increased familial breast 

cancer risk. 

Four alleles are known which give a 2-4X relative risk of breast cancer and are classed as 

intermediate-penetrance alleles. All four genes (CHEK2 (Meijers-Heijboer et al., 2002), 



Chapter 1  Introduction 

11 

 

BRIP1 (Seal et al., 2006), ATM (Renwick et al., 2006) and PALB2 (Rahman et al., 2007)) 

are involved in the DNA damage response, and have roles in the same pathways as 

BRCA1 and BRCA2. Eight low-penetrance variants that give a relative risk of <1.5 are 

currently known from genome-wide associate studies (Easton et al., 2007; Cox et al., 

2007; Stacey et al., 2007). Most of these variants do not lie within protein-coding genes, 

and it is not known how they cause increased breast cancer risk. 

 

1.4 Classification of breast cancer 

Breast cancer appears to be a heterogenous disease which shows wide variation in gene 

expression, point mutations and structural variation. Tumours can be classified based on 

histopathological grade, immunohistochemical staining, and lately gene expression 

profiling, which groups tumours into subtypes based on gene expression levels, and may 

distinguish between histologically similar tumours which are molecularly different 

(Rouzier et al., 2005). Gene expression profiling suggests that the different subtypes of 

breast cancer vary widely, harbouring different gene alterations and responding 

differently to therapy, and the different subtypes may even be distinct diseases 

(Herschkowitz et al., 2007). 

Sørlie et al. (2001) carried out gene expression profiling and used the results to cluster 

tumours. This approach grouped tumours into two classes largely based on ER status, 

and each class was divided into three subtypes. Of the ER negative tumours, the ERBB2+ 

subgroup shows high expression of ERBB2 and other genes present in the ERBB2 

amplicon, while the basal subgroup expresses basal-type cytokeratins, laminins and 

fatty acid binding proteins, and the normal-like subgroup shows high expression of basal 

epithelial genes and low expression of luminal epithelial genes. The ER positive/luminal 

tumours were split into at least two subgroups, with luminal A tumours showing the 

highest expression of the ER-related genes, and the luminal B subtype could be further 

separated into luminal B and luminal C by expression in the luminal C group of a set of 
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genes of unknown function but which are also highly expressed in the basal and ERBB2+ 

subtypes. The basal and ERBB2+ subtypes were also correlated with poor prognosis and 

mutations in TP53. 

Subsequent studies have replicated some of the initial classification, and further 

molecular classifications have been suggested. The divide between ER positive and ER 

negative tumours is consistent and the two groups have distinct gene expression 

profiles (Gruvberger et al., 2001). The luminal A and luminal B subgroups have been 

found to have differences in proliferation, histological grade and prognosis, with luminal 

B having a poorer prognosis (Weigelt et al., 2010), but the initial separation of luminal B 

into two further subgroups is not always repeated in subsequent studies. This suggests 

that the distinction between the different luminal subgroups is less clear than the divide 

between other subgroups, and the luminal group represents a continuum of gene 

expression which can be arbitrarily divided into different subgroups (Wirapati et al., 

2008). In the ER negative category, the basal-like and ERBB2+ classes are highly 

reproducible (Rouzier et al., 2005), but the normal-like category may be an artefact of 

high normal tissue contamination of tumours (Parker et al., 2009). Other groupings of 

ER negative tumours have been suggested, such as the ‘claudin-low’ subtype, which 

shows low expression of the genes involved in cell-cell adhesion (Herschkowitz et al., 

2007), and a subtype showing low genomic instability, discovered using integrated gene 

expression and copy number profiling (Chin et al., 2007).  

 

1.4.1 Breast cell lineages 

A question underlying the classification of breast cancers is whether the different 

subtypes reflect a difference in the cell types which give rise to them, or whether the 

subtypes are independent of the cell of origin.  

The human mammary epithelium probably contains two general lineages, the luminal 

cells and the myoepithelial cells (Stingl and Caldas, 2007). A population of 
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undifferentiated basally-positioned cells may represent the mammary gland stem cell, 

and gives rise to progenitor cells which may be multilineage, or produce luminal or 

myoepithelial cells only. These stem and progenitor cells are thought to be important as 

the initial cells which give rise to tumours, as any mutation in the progenitor will be 

passed to the daughter cells, which will acquire further mutations through subsequent 

rounds of cell division (Cairns, 2002).  

Some evidence for tumours arising from different progenitor cells has been found. Cell 

lines with a luminal gene expression pattern show no cells with basal characteristics, 

suggesting that a luminal progenitor cell gave rise to the tumour (Stingl and Caldas, 

2007).  Tumours induced using the same combination of oncogenes gave rise to 

tumours with different phenotypes, suggesting the cell type of the precursor influences 

the type of tumour produced (Ince et al., 2007). 

Although the exact number of breast cancer subtypes varies between the approaches, it 

is clear that a number of different subtypes exist, with different gene expression and 

patterns of chromosomal rearrangement, and few genetic changes have been found 

which are common to all subtypes. Whether this is due to a difference in the cell of 

origin, or whether the tumours originate from the same cell type but follow a different 

mutational path is not yet clear, but there is some evidence to suggest that breast 

cancer is not one disease but a set of heterogenous diseases which arise from the same 

tissue, and further research into the development of the mammary gland may help to 

determine which of the two possibilities is correct.  

 

1.5 Cytogenetics of breast cancer 

Classical cytogenetic analysis of breast cancer is difficult due to the technical difficulties 

of obtaining good karyotypes. The results are often dependent on the culture 

techniques used (Teixeira et al., 2002), may be biased towards those malignant tumours 

that divide better in culture. The karyotypes produced are often complex and difficult to 
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interpret. A further difficulty arises from the heterogeneity of individual tumours, as 

analysis of a single sample may not give an accurate picture of the tumour karyotype.  

The studies of the cytogenetics of breast tumours which have attempted to overcome 

these technical difficulties show very heterogenous karyotypes within breast cancers, 

ranging from near-diploid with few chromosome alterations, to tumours with complex 

highly-rearranged karyotypes (Teixeira et al., 2002). Among the near-diploid tumours, 

certain rearrangements were often present as the sole chromosome aberration, such as 

deletion of 3p13-14, which may delete the candidate tumour suppressor gene FHIT, and 

a der(1;16)(p10;q10) rearranged chromosome.  

While the karyotype of an individual tumour provides only information on the state of 

the karyotype at that time and not the evolutionary history of the tumour, studies of 

large numbers of tumours and the different clones within a tumour provide an overall 

picture of the karyotypic evolution of breast cancer. By looking at the number of 

chromosomes and the number of rearrangements across a series of breast cancers, 

Dutrillaux et al. (1991) suggest that chromosomes are lost early on, due to whole 

chromosome loss and unbalanced rearrangements, followed by endoreduplication of 

the whole genome and further chromosome loss and rearrangement.  The presence of 

hyperploid sidelines in near-diploid tumours supports this pathway, as does the trend 

towards increasing number of rearrangements as chromosome number decreases, 

confirmed by Texiera et al. (2002). Although many tumours follow this pathway, it is not 

the only way for a breast cancer karyotype to evolve, as seen by the presence of near-

diploid tumours which have not follow the pathway of chromosome loss and 

endoreduplication.  

Higher-resolution array CGH studies have validated the results from earlier cytogenetic 

studies. Regions of the genome which are commonly gained, lost, and amplified in 

breast cancer can be defined at higher resolution than chromosome banding provides, 

and a number of recurrent amplicons have been found, including regions on 8p12, 
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11p13, and 17q21, as well as regions of frequent low copy number gain or loss 

(Fridlyand et al., 2006).  

A set of copy number subtypes have been defined according to patterns and frequency 

of copy number change, although different studies have produced slightly different 

subtypes. One subtype includes those with the simplest karyotype of gain of 1q and loss 

of 16q, which occur in ER positive tumours with low histological grade, and were seen 

by Fridyland et al. (2006). A second subtype includes low-level gains and losses with 

occasional peaks of amplification, and are seen by both Fridyland et al. (2006) and Hicks 

et al. (2006), who found 60% of tumours fall into this “simplex” subtype. Tumours with 

complex karyotypes with frequent gains and losses, in which few regions of the genome 

are present at normal copy number, were found in both studies, and were termed 

“sawtooth” tumours by Hicks et al. (2006). The tumours tend to be ER negative and 

have a significantly worse outcome than tumours in the other subtypes (Fridlyand et al., 

2006). Hicks et al. also identify a fourth group of tumours displaying a “firestorm” 

pattern of amplification, with clustered, narrow peaks of high-level amplification in a 

relatively simple karyotype. 11q and 17q are among the regions most often found in 

“firestorm” amplifications. 

Much research has focused on finding the genes which drive amplifications in breast 

cancer. A well-studied example is the amplification of 17q12, which leads to 

overexpression of the ERBB2 gene, which is correlated with poor prognosis, and has 

been successfully targeted for chemotherapy (Järvinen and Liu, 2003). The targets of 

other amplicons are less clear. 

Amplification of 17q23 is found in up to 20% of breast tumours (Bärlund et al., 2000) 

and is associated with poor prognosis. While 17q23 is gained in a number of different 

tumour types, high-level amplification is only seen in breast tumours (Andersen et al., 

2002). The consensus region of amplification covers over 5Mb and a number of genes 

have been implicated as the drivers of amplification, including APPBP2, RAD51C, 

THRAP1, and PPM1D (Bärlund et al., 2000; Monni et al., 2001; Lambros et al., 2010), 
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mainly by correlation of mRNA overexpression with copy number gain. It is possible that 

no single gene is the driver of amplification, but rather that a number of genes at the 

core of the amplicon are the target of amplification (Parssinen et al., 2007), and that 

high-level amplification is required for significant overexpression. An alternate 

hypothesis looks for the minimal region of amplification on high resolution arrays and 

suggests a minimal region of 250Kb centred around the microRNA mir-21 (Haverty et al., 

2008). 

8p11-12 is another region of common amplification in breast cancer, found in 10-25% of 

tumours (Garcia et al., 2005). Early studies suggested FGFR1 as a candidate to be the 

driving oncogene in this region (Ugolini et al., 1999), but while FGFR1 is overexpressed 

at the mRNA level when amplified, additional FGFR1 protein is not seen in cell lines with 

amplification, and inhibition of FGFR1 does not slow the growth of cell lines (Ray et al., 

2004). Refinement of the minimal region of amplification using higher resolution array 

CGH suggests that FGFR1 is outside the minimal region, and suggests a 1.5Mb region of 

minimal amplification with ZNF703, ERLIN2, BRF2 and RAB11FIP1 as candidate driving 

oncogenes (Garcia et al., 2005). Other studies have suggested that rather than one 

simple amplicon, the 8p11-12 region contains four separate regions of amplification, 

one of which overlaps with the 1.5Mb region of Garcia et al. (Gelsi-Boyer et al., 2005), 

which is contradicted by the findings of Haverty et al. (2008) who used high-resolution 

Affymetrix arrays to narrow the region of minimal amplification to 400Kb containing, 

among other genes, BRF2, RAB11FIP1, and ZNF703. 

11q13 is found amplified in around 19% of breast cancers, but it is rarely found 

amplified alone, and is often found co-amplified with other commonly amplified regions 

such as 8p12 and 17p12 (Letessier et al., 2006). CCND1 is the best supported candidate 

driving oncogene, as it is within the most frequently amplified region, and CCND1 

overexpression promotes mammary tumours in mice (Wang et al., 1994).  

Co-amplification of different regions in the same tumour suggests that genes in different 

amplicons may collaborate to drive tumourigenesis. FGFR1/CCND1 co-amplification 
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results in poorer prognosis than when the genes are amplified separately, as does 

ERBB2/MYC co-amplification (Cuny et al., 2000). The amplified regions are often 

physically associated and arranged in complex structures (Paterson et al., 2007). 

Although no correlation between genes amplified on 8p and 11q has been found, 

expression of CCND1 on 11q13 may induce expression of ZNF703 on 8p12 (Kwek et al., 

2009). Another hypothesis is that a translocation between chromosomes 8 and 11 is an 

early event which is then amplified, and that a fusion gene at the translocation junction 

may be the driving event (Paterson et al., 2007), but as yet this hypothesized fusion 

gene has not been found, and the amplicons are often physically separated. 

 

1.5.1 Mechanisms of chromosome amplification 

A number of mechanisms have been proposed to explain how chromosome 

amplification occurs. If the amplification is at a distant site to the original gene, the 

proposed mechanism involves duplication of the gene and excision of the duplicated 

copy, which replicates extrachromosomally and reintegrates into the DNA at a different 

site (Schwab, 1999). A common example of this method of replication is the MYCN locus 

in neuroblastoma, where double minute chromosomes containing multiple copies of the 

MYCN locus can be seen in tumours. The amplified copies of MYCN in cell lines are more 

often found as homogenously staining regions, which are more common in cell lines 

than tumours (Benner et al., 1991), but the site of integration of the MYCN amplification 

is never at the locus on chromosome 2 where MYCN is normally found (Schwab et al., 

2003; Storlazzi et al., 2010). 

For amplifications where the extra material resides where the single-copy gene would 

normally be found, different mechanisms of amplification has been proposed, of which 

the breakage-fusion-bridge cycle is the best known (Schwab, 1999). The initiating event 

is a double chromatid break which is repaired to form a fusion (Figure 1.1). During 

anaphase this forms a bridge between sister chromatids, which must be broken to allow 
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cell division to continue. If the break is not in the same place as the original break and 

fusion occurred, the daughter products will have either a duplication or a deletion. 

Further rounds of this breakage-fusion-bridge cycle will result in further amplification of 

material. The signature of this mechanism is that the amplified genes are inverted 

(Schwab, 1999).   
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Figure 1.1. Breakage-fusion-bridge cycles as a mechanism of oncogene amplification. A 
break occurs in both chromatids, which fuse and resolve unequally to give two possible 
daughter products, one with a deletion and one with a duplication. The red gene will be 
duplicated and one of the copies will be inverted. 
  



Chapter 1  Introduction 

20 

 

Another mechanism for chromosome rearrangement is the replication fork stalling and 

template switching (FoSTeS) model proposed by Lee et al. (2007). This occurs when the 

lagging single strand of DNA during replication forms a secondary structure, blocking the 

progress of the replication fork, which then switches to another template with 

microhomology. Depending on the position of the other replication fork, this can cause 

a duplication, but does not explain high-level amplifications, unlike the breakage-fusion-

bridge cycle which will continue until the chromosome acquires a telomere (Hastings et 

al., 2009). 

 

1.6 Chromosome translocations 

Chromosome aberrations have been seen in cancer for many years. Abnormal 

segregation of chromosomes was seen by Boveri in the in the early 1900s and proposed 

to be a cause of malignancy, and in the 1950s it was shown that nearly all tumour cell 

lines had chromosome aberrations (Rowley, 2001) but these chromosome abnormalities 

were assumed to be a result of chromosome instability as the events did not appear to 

recur in different tumours from the same origin, and not an important event in their 

own right.  

The first recurrent chromosome abnormality in a human cancer was found in 1960, with 

the discovery of the Philadelphia chromosome in chronic myeloid leukaemia. The nature 

of the translocation was not discovered until chromosome banding techniques showed 

it was a reciprocal translocation of chromosome 22 to chromosome 9 , which produced 

a fusion of the BCR locus on chromosome 22 to the ABL tyrosine kinase on chromosome 

22 (Shtivelman et al., 1985). This creates a fusion of the two genes which leads to mRNA 

and protein containing domains from both BCR and ABL, under the control of the BCR 

promoter. The fused protein product was shown to have tyrosine kinase activity and to 

induce leukaemia when expressed in mouse bone-marrow cells (Daley et al., 1990). 

Imatinib, a specific inhibitor of the BCR-ABL fusion, is used to treat leukaemia patients 
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(Deininger et al., 2005). The BCR-ABL fusion is also found in acute lymphoblastic 

leukaemia, with a different breakpoint which includes less of the BCR protein in the 

fused product (Hermans et al., 1987), with even greater tyrosine kinase activity than in 

CML. The success of the BCR-ABL fusion as an effective therapeutic target linked to a 

specific cancer led to a search for other chromosomal aberrations which could produce 

similar specific therapeutic targets. 

Although the BCR-ABL fusion was the first to be seen cytogenetically, the genes involved 

in another recurrent translocation in cancer were discovered first. The karyotypes of 

cells taken from Burkitt's lymphoma showed an extra band on chromsome 14, while one 

was missing from the end of chromosome 8 (Zech et al., 1976). When the oncogene 

MYC was located to chromosome 8, it was shown that the coding region of MYC was 

juxtaposed with the promoter region of the immunoglobulin heavy chain (IGH) (Dalla-

Favera et al., 1982; Taub et al., 1982). This does not create a direct fusion of the two 

genes as is the case for BCR-ABL, but changes the expression levels and pattern of MYC, 

which leads to tumorigenesis (ar-Rushdi et al., 1983). Translocations causing fusions 

between oncogenes and members of the immunoglobulin family are a hallmark of B-cell 

lymphomas, and have been discovered in mantle cell lymphoma (CCND1-IGH) and 

follicular lymphoma (BCL2-IGH) at high frequency, and at lower frequencies in other 

lymphomas (Kuppers, 2005). 

Subsequently, hundreds of other recurrent (present in 1% or more cases) gene fusions 

of both types have been discovered in common haematological malignancies (Mitelman 

et al., 2007), although fusions which produce a fusion protein are more common than 

promoter insertions (Rowley, 2001).  

Until recently, fusion genes caused by recurrent chromosome aberration were thought 

to be a feature of haematological and soft tissue cancers, but not of solid tumours, 

where other mechanisms such as deletion and point mutation were thought to be more 

important, and recurrent chromosomal aberrations were rarely seen. This may be due 

to tissue-specific mechanisms causing chromosome rearrangements, such as 
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recombination in haematopoetic progenitor cells which then give rise to leukaemias 

(Albertson et al., 2003), but there is some evidence that this stems from the difficulties 

of performing cytogenetic analysis on epithelial tumours rather than from a lack of 

recurrent gene fusions. Additionally, the prevalence of recurrent rearrangements in 

haematological malignancies may have been overestimated due to selection bias for 

patients reported in the literature due to a cytogenetic abnormality (Mitelman et al., 

2005). The actual proportion of malignancies with recurrent rearrangements may be as 

high in epithelial tumours as in haematological malignancies, but represent a large 

number of rare rearrangements without the common rearrangements seen in 

leukaemias (Mitelman et al., 2004). 

There are several technical difficulties which make it more difficult to find fusion genes 

in solid tumours. Karyotyping solid tumours is more difficult due to poor chromosome 

morphology, and the karyotypes are often so complex they cannot be characterized 

completely (Mitelman et al., 2004). Obtaining metaphases is difficult as the carcinoma 

cells may not divide, and contaminating normal cells or minor clones may grow better 

than the dominant clone (Persson et al., 1999).  Further evidence that the lack of 

reported fusion genes was a technical artefact and not a difference between the two 

types of tumour is that the fusion genes which were reported in rare epithelial cancers 

often included the same genes involved in haematological fusions. The ETV6-NTRK3 

fusion found in secretory breast cancer (Tognon et al., 2002) is also seen in congenital 

fibrosarcoma (Knezevich et al., 1998) and acute myeloid leukaemia (Eguchi et al., 1999).  

Some fusion genes were known in rare epithelial cancers. Fusions of RET are found in 

papillary thyroid cancer, with the most common fusion being caused by inversions of 

chromosome 10 which fuse the 3’ end of RET to 5’ portion of H4 although there are a 

number of other 5’ partners. Fusions of NTRK1 to a number of partners (Alberti et al., 

2003) and an AKAP9-BRAF fusion produced by an intrachromosomal inversion have also 

been reported (Ciampi et al., 2005). The AKAP9-BRAF fusion was found more often in 

radiation-induced cancers while sporadic thyroid carcinoma often carried a BRAF point 
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mutation, and RET fusions are also more common in radiation-induced cancers, 

suggesting the mechanisms of gene activation are linked to environmental factors. A 

fusion of BRAF and KIAA1549, which shows constitutive kinase activity, has also been 

found in 66% of pilocytic astrocytomas, a common paediatric brain tumour (Jones et al., 

2008). 

The first recurrent fusion to be discovered in a common epithelial cancer was the fusion 

of TMPRSS2 to members of the ETS transcription factor family in prostate cancer 

(Tomlins et al., 2005). Previously, fusion genes had been found using cytogenetics or by 

transfection assays, but this fusion was discovered using a bioinformatic approach, 

working on the assumption that a gene fusion should result in overexpression of an 

oncogene in a subset of cases, and that the two genes involved in the fusion would both 

be overexpressed. Applying this Cancer Outlier Profile Analysis to prostate cancer gave 

two strong candidates, ERG and ETV1, and overexpression of these two genes was 

mutually exclusive, suggesting they played a similar role in prostate cancer 

development. 5' RACE on ERG and ETV1 transcripts showed fusions to the prostate-

specific androgen-sensitive gene TMPRSS2. TMPRSS2-ETV4 fusions have also been found 

(Tomlins et al., 2006). Fusions of TMPRSS2 and members of the ETS family have been 

found in up to 80% of prostate cancers (Tomlins et al., 2007). Although TMPRSS2 fusions 

appeared to be driving the majority of ERG overexpression, many prostate cancers had 

ETV1 overexpression without a fusion to TMPRSS2, and ETV1 was found fused to a 

number of different 5’ partners, including the housekeeping gene HNRPA2B1, the 

androgen-induced gene SLC45A3, and the androgen-repressed gene c15orf21 (Tomlins 

et al., 2007). These 5’ partners do not contribute coding sequence to the fusion, but 

place ETV1 under the control of promoter and enhancer elements of distant genes. 

Prostate cancer fusions demonstrate another reason why fusion genes may have been 

difficult to find in common epithelial cancers. The BCR-ABL fusion is atypical in being 

present in the majority of cases of CML (Mitelman et al., 2005), and fusions in other 

cancers are often found at lower frequency. Additionally, fusion genes which involve the 
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same gene fused to a range of partners are well known, such as the fusions of EWS to 

multiple members of the ETS family in Ewing’s sarcoma (Arvand and Denny, 2001), but 

the ETV1 fusions in prostate involve a number of 5’ partners from different gene 

families, including both androgen-induced and androgen-repressed genes, prostate-

specific partners and ubiquitously expressed genes, and looking for fusions which 

involve such a wide range of partners with no commonality could be more difficult than 

looking for fusions which involve genes from the same family or pathway.  

A fusion between EML4 and ALK was subsequently discovered in around 10% of non-

small cell lung cancer by searching a retroviral cDNA library for inserts which would 

transform mouse fibroblast cells (Soda et al., 2007). ALK was already known to form 

fusions with NPM in anaplastic lymphoma (Morris et al., 1994), and the kinase domain is 

retained in both fusions. A KIF5B-ALK fusion has also been found in NSCLC and shows 

transforming potential (Takeuchi et al., 2009). The EML4-ALK fusion was also found by a 

study of phosphorylation of tyrosine kinases in NSCLC, which also found a fusion of 

SLC34A2 to ROS (Rikova et al., 2007).   

Gene fusions have been discovered in breast cancer cell lines and tumours but so far 

none have been shown to be recurrent. The cell line MDA-MB-175 has a fusion of ODZ4 

to NRG1 (Liu et al., 1999), and FHIT has a fusion to MACROD2 in BrCa-MZ-02 (Popovici et 

al., 2002), although this is associated with a lack of FHIT protein rather than a fusion 

product.  Howarth et al. (2008) found two fusion genes in a study of three cell lines, 

TAX1BP1-AHCY, and RIF1-PKD1L1. Recent high-throughput sequencing studies have 

found a number of other fusions – Hampton et al. (2009) found four expressed fusion 

genes in MCF7, including the previously discovered BCAS4-BCAS3 fusion (Bärlund et al., 

2002), and suggest that the fusions may be suppressing wild-type expression of the 

genes by dominant-negative effects. Stephens et al. (2009) found 21 expressed fusion 

genes in a study of 24 breast cancer cell lines and tumours, none of which were 

recurrent. 
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Although the prevailing view has previously been that fusion genes in epithelial cancers 

are rare and unimportant, this is being increasingly challenged by the number of fusion 

genes which are being identified in common tumours. It is likely that the fusion genes in 

epithelial cancers are not like the common, recurrent fusions found in leukaemia, but 

will involve individually rarer fusions which act on genes in the same pathway, or fusions 

where the fusion partners differ but all have the same effect on the important gene in 

the fusion, and to find these rarer fusions will require large-scale studies of cancer 

genetics which can only be achieved through high-resolution microarray and sequence 

analysis. 

 

1.7 Research techniques  

 

1.7.1 Karyotyping 

Early karyotype analysis was hampered by an inability to accurately distinguish different 

chromosomes. The discovery that treatment with trypsin and staining with Giemsa 

produced a banding pattern which allowed all human chromosomes to be identified 

enabled the detection of structural aberrations such as translocations, deletions, and 

inversions. However, even high-resolution G-banding could only provide a resolution of 

~3Mb at best, with ~6Mb being more usual, and any aberrations which did not have a 

clear banding pattern were impossible to identify (Smeets, 2004). 

 

1.7.2 Flurorescence in-situ hybridisation 

Fluorescence in-situ hybridisation (FISH) is a method of visualising the location of DNA 

using a fluorescently-labelled probe which binds to the target DNA. The probe consists 

of genomic DNA which hybridizes to the target region of the genome. The DNA is either 
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directly labelled with a fluorophore, or a reporter molecule such as biotin is 

incorporated into the DNA and fluorescently-labelled antibodies are used to visualize it. 

It was developed as an alternative to the visualization of nucleic acids by radiolabelled 

probes, as fluorescent labelling offers better resolution and are safer to use, and 

multiple fluorophores can be used to visualize more than one sequence at a time 

(Levsky and Singer, 2003). FISH was first performed in 1982 (Van Prooijen-Knegt et al., 

1982), with a probe hybridized to metaphase chromosomes.  

Metaphase FISH has a resolution of around 3Mb (Raap, 1998). An advantage of FISH 

over traditional cytogenetics is that it can be performed on interphase nuclei, with a 

resolution of up to 100kb, and fibre-FISH using DNA fibres attached to a slide can 

resolve probes down to 1kb apart (Ersfeld, 2004). This allows FISH to be used to resolve 

even small-scale genomic rearrangements.  

 

1.7.3 Chromosome painting and spectral karyotyping 

The development of chromosome flow sorting allowed whole human chromosomes to 

be amplified, labelled and used as FISH probes. Spectral karyotyping (Schröck et al., 

1996) is a technique which uses combinations of different fluorophores to label all 24 

human chromosomes. The combination of fluorophores present at each pixel of the 

image is measured using an interferometer and used to classify each chromosome. SKY 

and the similar M-FISH technique can easily identify the chromosomes involved in 

translocations, including small pieces of chromosomes and homogenously staining 

regions which cannot be identified by G-banding. However, the resolution of SKY is 

around ~10Mb and translocations smaller than this cannot be identified, and small 

chromosome pieces can be misidentified due to overlap of fluoroscence. As SKY is based 

on chromosome painting, internal deletions, duplications, and inversions cannot be 

detected. 
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1.7.4 Comparative genomic hybridisation 

Comparative genomic hybridization (Kallioniemi et al., 1992) is another technique for 

using fluorescently-labelled DNA to determine tumour karyotypes. Tumour and normal 

reference DNA are labelled with two different fluorophores, and hybridized together to 

a normal metaphase spread. The amount of labelled DNA which binds to each locus is 

relative to the abundance of the locus in the two samples, and deletions and 

amplifications change the ratio of the two signals at each locus. By analysing the ratio of 

the two signals at each locus, the patterns of gain and loss along each chromosome can 

be plotted.  

 

1.7.5 Array comparative genomic hybridisation 

Array comparative genomic hybridisation improves the resolution of CGH by hybridizing 

the labelled reference and tumour DNA to a microarray of DNA probes and measuring 

the ratio for each probe in one experiment. Initial experiments used BAC clones (Pinkel 

et al., 1998), but later arrays have used smaller inserts from cosmids and fosmids, and 

modern array CGH uses short oligonucleotides, with the limit of resolution being 

determined by the spacing of the oligonucleotides on the array. Oligonucleotides can 

also be designed to avoid repeats, reducing the noise caused by hybridisation to 

repetitive regions (Beaudet and Belmont, 2008). The sensitivity of oligonucleotide 

hybridisation also allows them to be used for large-scale SNP calling. Oligonucleotides 

are designed specifically to hybridise to the different SNP alleles (Kennedy et al., 2003), 

and can be used to find areas of uniparental disomy and loss of heterozygosity. Bignell 

et al. (2004) demonstrated the use of arrays originally designed to detect SNPs to detect 

genotype and copy number at once. High-density commercial arrays such as the 

Affymetrix SNP6.0 array include up to 2 million probes for simultaneous genotyping and 

detection of copy number aberrations at high resolution. 
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1.7.6 Sequencing 

A limitation of array-based techniques for mapping chromosome rearrangements is that 

the sequences which are juxtaposed at the breakpoints are not known. Sequencing-

based approaches overcome this limitation by using a paired-end approach to sequence 

both sides of a breakpoint. 

End-sequence profiling was used to map chromosome rearrangements by creating BAC 

libraries from a genome and sequencing from the ends of the BACs to identify 

rearrangements, as the end sequences of a BAC containing a chromosome 

rearrangement will align to the genome in the wrong position or orientation (Volik et al., 

2003). Copy number can also be determined from the density of the end-sequences 

across the genome, although the resolution is determined by the size of the BAC 

fragments. 

High-throughput paired-end sequencing uses the same principle as end-sequence 

profiling but the sequenced DNA fragments are much smaller and give a 

correspondingly higher resolution than end-sequence profiling (Campbell et al., 2008). 

At high levels of coverage, sequencing can also be used to identify point mutations and 

small insertions and deletions in the genome (Pleasance et al., 2010a); (Pleasance et al., 

2010b). 

Transcriptome sequencing can be used to find the consequences of chromosome 

rearrangement such as fusion genes or internal rearrangements by finding transcripts 

which align to two different genes, and may be produced by a genomic rearrangement. 

Transcriptome sequencing may find fusion genes which would not be detected by 

genome sequencing, as they are produced by read-through transcripts produced from 

neighbouring genes, such as the SLC45A3-ELK4 fusion found in prostate cancer which 

has no detectable DNA rearrangement (Maher et al., 2009). 
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1.7.7 Cell lines 

Cell lines derived from tumours are commonly used in the laboratory to overcome the 

difficulties with the use of primary tumours. Cell lines offer unlimited material for study, 

are free of stromal contamination, and can be replaced from fresh stocks if they become 

contaminated (Burdall et al., 2003). Common concerns about the use of cell lines 

include problems of genetic drift, the use of ‘false’ cell lines contaminated with other 

cell lines (MacLeod et al., 1999), and cell lines which are not from the supposed tissue of 

origin, such as MDA-MB-435, commonly thought to be a breast cancer cell line which is 

in fact derived from the M14 melanoma cell line (Rae et al., 2006). Furthermore, as 

breast cell lines are often derived from post-treatment metastases or pleural effusions, 

not primary breast tumours, they may not be representative of the disease as a whole 

but model primarily the later-stage aggressive disease.  

A study of the HCC series of breast cancer cell lines showed excellent concordance 

between primary tumours and the cell lines established from them, including cell 

morphology, ploidy, expression of ER and PR, and loss of heterozygosity (Wistuba et al., 

1998). There was also no correlation between the length of time in culture of the cell 

lines and the concordance with the primary tumour, and studies of colorectal and 

ovarian cancer cell lines have found that a stable karyotype is maintained over many 

generations (Roschke et al., 2002).  

Comparisons between CGH on cancer cell lines and primary tumours showed that the 

chromosome gains and losses found in the cell lines are a good model for those found in 

real tumours (Greshock et al., 2007). Some specific rearrangements are more often 

found in cell lines, such as loss of chromosome 18 (Neve et al., 2006) and amplification 

of the MYC locus (Greshock et al., 2007), and the subset of breast cancer with simple 

1q/16 rearrangements is under-represented in cell lines. In general, breast cancer cell 

lines recapitulate events commonly found in primary tumours, such as patterns of high-

level amplification (Neve et al., 2006), and the pattern of chromosome loss followed by 
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endoreduplication known to occur in many breast tumours (Dutrillaux et al., 1991) is 

recapitulated in breast cancer cell lines (Morris et al., 1997).  

 

1.8 Hypothesis 

The importance of fusion genes in leukaemias and lymphomas has been known for 

many years, but the importance and the prevalence of fusion genes in solid tumours has 

been underestimated due to the difficulty of finding them. Using breast cancer cell lines 

as a model, the aim of this project was to investigate chromosomal rearrangements and 

find any fusion genes which may occur, and to investigate the recurrence and 

importance of any fusion genes in other cell lines and tumours. This involved mapping 

all the chromosomal rearrangements in breast cancer cell lines using high-resolution 

techniques, which can be validated against our existing knowledge of the 

rearrangements, and use the resulting karyotypes to provide insight into the 

cytogenetics of breast cancer. 



 
 

Chapter 2 
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2.1 Cell culture 

2.1.1 Sources 

The origin of the cell lines used is given in Table 2.1. 

Cell line Supplier Reference 

MDA-MB-134 O’Hare Cailleau et al., 1978 

HCC1143 ATCC Gazdar et al., 1998 

HCC1806 ATCC Gazdar et al., 1998 

HCC2218 ATCC Gazdar et al., 1998 

VP229/VP267 McCallum McCallum and Lowther, 1996 

ZR-75-30 O’Hare Engel et al., 1978 

HB4a O’Hare Stamps et al., 1994 

Table 2.1. Origin of cell lines. O’Hare: cell lines were a kind gift from Professor MJ O’Hare, 
(LICR/UCL Breast Cancer Laboratory, University College Medical School, London, UK). 

HB4a is a cell line derived from normal human breast epithelium by immortalization with SV40 

large T-antigen (Smeets et al., 1994) which has been shown by gene expression profiling to have 

similar gene expression to normal human breast epithelium (Git et al,. 2008). 

2.1.2 Culturing cells 

Ampoules of cells frozen in liquid nitrogen were thawed at 37°C, centrifuged to remove residual 

DMSO, and resuspended in warm culture medium in a 25cm2 flask. Once the adherent cells were 

confluent they were washed with 2ml of Versene, then 2ml of Versene with trypsin (0.5mg/ml 

except for HCC1806 which was 1mg/ml) was added and incubated at 37°C for 2 – 5 minutes until 

cells detached. 2ml of media was added to the flask, and the cell suspension was centrifuged at 

1600g for 3 minutes to pellet the cells. The cells were resuspended in the appropriate volume of 

media for the new flask (6ml for a T75, 12ml for a T150). 

All cells were grown with 100U/ml penicillin and 100μg/ml streptomycin and cultured at 37°C with 



Chapter 2  Materials and methods 

33 
 

5% CO2, except MDA-MB-134 which was cultured in 7.5% CO2. 

Cell line Growth type Medium Additives 

MDA-MB-134 Adherent 50:50 DMEM-F12 15% FBS 

HCC1143 Adherent RPMI 10% FBS 

HCC1806 Adherent RPMI 10% FBS 

HCC2218 Suspension RPMI 10% FBS 

VP229/VP267 Adherent MCDB-201 2% FBS + 1% ITS 

ZR-75-30 Adherent 50:50 DMEM-F12 10% FBS + 1% ITS 

HB4a Adherent 50:50 DMEM-F12 10% FBS 

Table 2.2. Cell line growth conditions. 

To freeze cells, the cells were pelleted as above, and resuspended in 1.5ml of media with 10% 

DMSO in 2ml cryotubes. Tubes were frozen slowly at -80°C and stored in liquid nitrogen. 

2.2 RNA extraction 

The media was changed 12 hours before harvesting cells at 70% confluence. For adherent cell 

lines, 7.5ml (for a T75) or 15ml (for a T150) Trizol reagent (Invitrogen) was added and the cells left 

at room temperature for at least 5 minutes before the cells were harvested using a cell scraper and 

transferred to a Falcon tube. For suspension cells, the cells were centrifuged at 1600g for 3 

minutes and the supernatant removed, and the pellet resuspended in the appropriate volume of 

Trizol. 1.5ml of chloroform was added, and the cells were vortexed and centrifuged at 2000g at 4°C 

for 15 minutes. The top layer was retained and mixed with 4ml of isopropanol, and centrifuged at 

2000g at 4°C for 15 minutes. The pellet was washed twice in 70% ethanol, and either stored under 

ethanol at -80°C, or resuspended in 200µl of RNase-free water for immediate use. 
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2.3 Protein extraction 

Cells were trypsinised and the pellet washed with PBS, then lysed by adding 1ml of RIPA buffer 

(50mM Tris HCl (pH 8), 150 mM NaCl, 1% NP-40 (v/v), 0.5% sodium deoxycholate (w/v), 0.1% SDS 

(w/v), 0.5 mM EDTA, Complete Protease Inhibitor Cocktail (Roche, used according to the 

manufacturer’s instructions)) and mixing well. Cells were placed on ice for 20 minutes, then 

centrifuged at 16000g at 4°C for 10 minutes, and the supernatant retained. 

 

2.4 DNA extraction 

Cells were trypsinised and 1ml of DNAzol reagent (Invitrogen) added, and the cells were lysed with 

a P1000 pipette. 0.5ml of 100% ethanol was added and mixed by inversion, and left at room 

temperature for 3 minutes. The precipitated DNA was spooled around a pipette tip and transferred 

to a clean tube, and washed twice with 1ml of 95% ethanol. The DNA was resuspended in 250μl of 

water and quantified on the NanoDrop spectrophotometer. 

 

2.5 cDNA synthesis 

The DNA-free kit (Ambion) was used to remove DNA contamination. 10μg of total RNA extracted 

as above was treated with 1μl of rDNase I and the rDNase was removed with the DNAse Removal 

Reagent . First strand cDNA synthesis was performed using the SuperScript III First-Strand Synthesis 

Kit (Invitrogen). 5μg of DNase-treated RNA was mixed with 50ng of random hexamer primers and 

1μl of 10mM dNTPs and incubated at 65°C for 5 minutes, then cooled on ice. 2μl of 10X RT buffer, 

4μl of 25mM MgCl2, 2μl of 0.1MDTT, 40U RNaseIN (Promega) and 200U SuperScript III were added, 

incubated at 25°C for 10 minutes then 50°C for 50 minutes, and the reactions were stopped by 

incubating at 85°C for 5 minutes. The cDNA was stored at -20°C until needed. 

 

2.6 PCR 

Primers to amplify specific regions of genomic DNA or cDNA were designed using Ensembl 

(www.ensembl.org) and Primer3 (Rozen and Skaletsky, 2000) (http://frodo.wi.mit.edu/primer3/).  

http://www.ensembl.org/
http://frodo.wi.mit.edu/primer3/
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All standard PCR (for target regions under 2kb) was carried out using HotMaster Taq polymerase 

(VWR) with the following reaction mix: 2.5μl of 10X HotMaster buffer, 1μl of 10mM dNTPs, 1μl 

each of 100mM forward and reverse primer, 1U Taq, 1μl of 50ng/μl DNA in a 25μl volume. Cycling 

conditions were 95°C for 5 minutes, then 35 cycles of 95°C for 30 seconds, 60°C for 30 seconds, 

72°C for 1 minute per kb of target, and finally 72°C for 10 minutes. Long range PCR for targets up to 

10kb was performed using Elongase polymerase mix (Invitrogen) and a reaction mix containing 1μl 

10mM dNTPs, 1μl each of 10μM forward and reverse primer, 2μl of 50ng/μl DNA, 1U of Elongase 

polymerase mix and 10μl of a mix of buffer A and B optimised for the best Mg2+ concentration , 

made up to 50μl. Cycling conditions were 94°C for 30 seconds, followed by 35 cycles of 94°C for 30 

seconds, 60°C for 30 seconds, 68°C for 1 minute per kb of target, and finally 68°C for 10 minutes. 

10μl of product was visualised on a 0.8-2% agarose gel with 0.05% ethidium bromide. 

 

2.7 Real-time PCR 

Gene-specific primers were designed as above. The reaction was carried out in a 10μl volume 

containing 1X SybrGreen PCR Master Mix (Applied Biosystems), 1μl each of 2.5mM forward and 

reverse primer, and 1μl of 50ng/μl cDNA. Cycling was carried out using an ABI Prism 7900HT RT-

PCR machine (Applied Biosystems) and the cycling conditions were 50°C for 2 minutes and 95°C for 

ten minutes, then 40 cycles of 95°C for 15 seconds, 60°C for one minute, and a final dissociation 

step of 95°C for 15 seconds and 60°C for 15 seconds. Primer pair efficiency was calculated using a 

standard curve from cDNA dilutions, and primers with an amplification efficiency of 1.8 or higher 

were used. In the experiments in Chapter 3, GAPDH was used as a control cDNA, and expression of 

the cDNA of interest was normalised to the value of GAPDH in each cell line. In the experiments in 

Chapter 5, 3 genes (GAPDH, UBC, and RPL13a) were used as control cDNAs, and expression of the 

cDNA of interest was normalised to the mean of all three genes. 

 

2.8 Sequencing 

PCR products under 1kb were purified using the QIAquick PCR Purification Kit (Qiagen) according 

to manufacturer’s instructions and capillary sequencing of the products was performed by the 

DNA Sequencing Facility, Department of Biochemistry. Longer PCR products were first cloned in a 
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pCR-XL-TOPO vector using the TOPO XL PCR Cloning Kit (Invitrogen). The plasmid DNA containing 

the insert was extracted using the HiSpeed Plasmid Midi-Prep Kit (Qiagen) and sequenced as 

above. 

 

2.9 Flow sorting of chromosomes 

Flow sorting of chromosomes was performed according to standard methods (Ng and Carter, 

2006). The cells were subcultured 1:2 the day before sorting to synchronise the cells. Colcemid was 

added to a final concentration of 0.1µg/ml 6 hours before the cells were harvested. Adherent cells 

were harvested by banging the flask, and the medium removed to a 50ml Falcon tube. The cells 

were pelleted by centrifuging at 250g for 5 minutes, the pellet resuspended in 5ml of PBS, and 

incubated at room temperature for 10 minutes.  

Cell swelling was monitored by mixing 10μl of cell suspension with 10μl of Turk’s solution. The cell 

suspension was spun down at 250g for 5 minutes and resuspended in 1-3ml of polyamine isolation 

buffer. After incubation on ice for 10 minutes and vortexing for 20 seconds, a small sample of the 

preparation was stained with propidium iodide (5mg/ml) and observed under a fluorescence 

microscope to see whether the chromosomes had clumped together, and vortexed until the 

chromosomes were free. The chromosome suspension was transferred to a 15ml tube and 

centrifuged for 1 minute at 173g, and the supernatant transferred to a fresh 15ml tube. Hoechst 

33258, MgSO4.7H20, and Chromomycin A3 were added to the suspension to a final concentration 

of 1μg/ml, 10mM and 80μg/ml respectively, and incubated at 4°C overnight. The next day the 

suspension was centrifuged for 2 minutes at 250g and the supernatant removed to a new tube. 

Sodium sulphite to a final concentration of 250mM was added one hour before the chromosomes 

were sorted. Aliquots of 500 or 2000 chromosomes were sorted on a MoFlo (Cytomation 

Bioinstruments) and analysed using Summit software (Beckman Coulter) to count the number of 

events in each chromosome fraction. 

 

2.9.1 Genomiphi amplification of sorted chromosomes 

Aliquots of sorted chromosomes (volume ~20μl) were precipitated by adding 0.5μl Pellet Paint co-

precipitant (Merck), 1.5μl of 2.5M sodium acetate pH 5.5, and 50μl ethanol, incubating at -20°C 
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overnight, and centrifuging at 16000g for 20 minutes at 4°C. The pellet was washed in 70% ethanol 

and air-dried, then resuspended in 1μl TE. Chromosomes were amplified using the GenomiPhi DNA 

Amplification Kit (GE Healthcare) according to the manufacturer’s protocol and purified using 

MicroSpin G50 columns.  

 

 

2.10 Metaphase preparation from cell lines 

The cells were split the day before sorting to synchronise the cells. For standard metaphase 

preparations, colcemid was added to a final concentration of 0.1µg/ml 20 hours after the cells 

were split and incubated for 90 minutes. To produce extended chromosome preparations, cells 

were treated with BrdU, EtBr and colcemid: 

 

Cell line BrdU (40µg/ml) EtBr(5µg/ml) Colcemid(0.1µg/ml) 

HCC1806 16.5 hours 1.5 hours None 

MDA-MB-134 20 hours 1.5 hours 0.75 hours 

 

After incubation, cells were trypsinised and centrifuged at 1600g for 3 minutes to pellet the cells. 

The supernatant was removed, leaving ~500µl of medium on the pellet, and the cells were 

resuspended using a P1000 pipette. 20ml of 0.075M KCl warmed to 37°C was added drop by drop 

to the cells with agitation, and the cells incubated at 37°C for 15 minutes. 10-20 drops of ice cold 

freshly prepared 3:1 fix (3 parts methanol to 1 part acetic acid) were added, and the cells 

centrifuged at 1600g for 3 minutes. The supernatant was removed, again leaving ~500µl of 

medium on the pellet, and the cells were resuspended using a P1000 pipette to ensure no cell 

clumps were left. 20ml of 3:1 fix was added drop by drop with agitation, and the cells were 

incubated on ice for 5 minutes, then centrifuged at 1600g for 3 minutes. The supernatant was 

removed leaving ~500µl of fix on the pellet, and the cells were resuspended using a P1000 pipette. 

The fixation step was repeated once more with 3:1 fix, and then with 3:2 fix (3 parts methanol to 2 

parts acetic acid). The ~500µl of metaphase suspension was transferred to a 2ml Eppendorf tube 
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and made up to 2ml with 3:2 fix, and stored at -20°C for at least 24 hours before use. 

 

2.10.1 Metaphase spreads 

100μl of water was placed on a glass microscope slide, and 10-20μl of metaphase suspension was 

dropped onto the slides from a height of ~40cm. The slides were checked under a light microscope 

for the presence of metaphases and the area containing metaphases was marked with a diamond 

pen. The slides were dehydrated by incubating for 3 minutes each in 70, 90 and 100% ethanol at 

room temperature, and the slides allowed to air-dry before incubating at 37°C overnight. Slides 

were stored at -20°C until needed. 

 

2.11 BAC growth and DNA extraction  

Bacterial artificial chromosomes were stored as glycerol stabs at -80°C. They were streaked onto LB 

agar with 20μg/ml chloramphenicol or 25μg/ml kanamycin and grown overnight at 37°C. A single 

colony was grown for 6-8 hours at 37°C with shaking in 5ml LB media with 20μg/ml 

chloramphenicol or 25μg/ml kanamycin . 1ml of this colony was added to 100ml of 

LB/chloramphenicol or LB/kanamycin media and grown overnight at 37°C with shaking. The 100ml 

cultures were centrifuged at 3000g for 15 minutes and the BAC DNA was extracted using the 

HiSpeed Plasmid Midi-Prep Kit (Qiagen) according to the manufacturer’s instructions. The DNA was 

precipitated by adding 1/10 volume of 3M sodium acetate pH 5.2 and 2 volumes of 100% ethanol 

before incubating overnight at 20°C. The DNA was centrifuged at 15000g for 30 minutes, and the 

pellet was air-dried and resuspended in 50μl of TE buffer and incubated at 65°C for two hours. The 

DNA concentration was determined on the NanoDrop spectrophotometer. 

 

2.12 FISH probes and hybridisation 
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2.12.1 Nick translation 

Input material was BAC DNA, Genomphi-amplified sorted chromosomes, or sorted chromosomes 

amplified by 3 rounds of DOP-PCR. Sorted normal human chromosomes were provided by Patricia 

O’Brien and Professor Malcolm Ferguson-Smith, Department of Veterinary Medicine, University of 

Cambridge. 500ng – 1µg DNA was nick translated in a 25μl reaction volume containing 2.5μl of nick 

translation buffer, 1.9μl of low-C dNTPs (0.1M dATP, dGTP, dTTP, 0.03M dCTP), 0.7μl of labelled 

dUTPs , 0.7μl of DNAse I and 1μl of DNA polymerase I. dUTPs were labelled with Digoxigenin-11, 

Spectrum Orange, or Biotin. The reaction was incubated at 14°C for 2 hours. 4μl of the reaction 

was run on a 1.5% agarose gel to check the product, and the reaction was stopped with 2.5μl of 

EDTA and incubated at 65°C for ten minutes.  

 

2.12.2 Hybridisation 

7μl of each probe or chromosome paint was precipated overnight at -20°C with 3μl of CoT-1 DNA, 

1μl of glycogen and 300μl of ethanol. The probe mixture was centrifuged at 15000g for 30 minutes 

and the pellet allowed to air dry before being resuspended in 20μl of hybridization buffer (50% DI 

formamide, 10% dextran sulphate, 1X Denhardt’s solution (Sigma), 2XSSC, 23mM Na2HPO4, 17mM 

NaH2PO4) and left at 37°C for 30 minutes. Finally, the mixture was incubated at 70°C for ten 

minutes, cooled on ice for 2 minutes, and incubated at 37°C for one hour. 

Prepared metaphase spreads were incubated overnight at 37°C. The slides were denatured for 1 

minute in denaturation solution (70% deionised formamide, 2XSSC) heated to 70°C and placed in 

ice-cold 70% ethanol for 5 minutes. The slides were washed in a series of 70, 90 and 100% ethanol 

for 3 minutes each and allowed to air-dry before incubation at 37°C for ten minutes. 

18μl of the probe mixture was pipetted onto a slide and covered with a clean coverslip, then 

sealed with rubber cement. The slides were placed in a humid box and hybridized at 37°C 

overnight.  

 

2.12.3 Detection 

The rubber cement was removed from the slides with tweezers and the coverslips removed by 
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soaking in 2xSSC. The slides were washed twice for 5 minutes each in a solution of 50% formamide 

and 1xSSC at 42°C and twice for 5 minutes each in a solution of 1xSSC at 42°C, then once for 5 

minutes in a solution of 4xSST. The slides were blocked with 100μl 3% BSA in 4xSST for 30 minutes 

and washed briefly in 4xSST. Antibody layers were prepared by adding 1μl of antibody per slide to 

200μl of 1% BSA in 4xSST, incubating in the dark for 10 minutes, and centrifuging for 10 minutes at 

15000g. Digoxigenin labelled probes were detected with sheep FITC anti-digoxigenin. Diotin-

labelled probes were detected with a layer of Cy5-labelled streptavidin, a layer of biotinylated anti-

streptavidin (Vector Laboratories), and a final layer of Cy5-labelled streptavidin. Each antibody 

layer was incubated for 30 minutes at 37°C and the slides were washed 3 times in 4xSST with 0.5% 

BSA. After all antibody layers were complete, 20μl of Vectashield with DAPI (Vector Laboratories) 

was placed on a clean coverslip, and the slide is inverted onto the coverslip and allowed to dry in 

the dark before being sealed with nail varnish. The slides were analysed on a Nikon Eclipse E800 

Fluorescence microscope using Cytovision software (Applied Imaging) and stored at 4°C while not 

in use.  

 

2.13 Array painting 

1Mb genomic arrays produced by the Cancer Research UK DNA Microarray Facility and tiling path 

arrays (a gift from Dr K. Ichimura, as described in Ichimura et al., 2006) were used for array 

painting. Genomiphi-amplified chromosomes were labelled with Cy3 and reference DNA (a pool of 

normal female DNA) was labelled with Cy5. Custom NimbleGen arrays used for high-resolution 

array painting were designed by Dr Karen Howarth and hybridised by Roche-NimbleGen. The 

whole-genome array CGH data was produced by Dr Graham Bignell and the Cancer Genome 

Project, Wellcome Trust Sanger Institute, using the human SNP6.0 array (Affymetrix). 

 

2.13.1 Labelling 

Labelling was carried out using a BioPrime Labelling Kit (Invitrogen). 450ng of Genomphi-amplified 

sorted chromosome DNA was mixed with 60μl 2.5X Random Primer Solution in a 150μl reaction. 

The DNA was heated to 100°C for ten minutes and cooled on ice, and 15μl 1X dNTPs, 1.5μl Cy3 or 

Cy5 labelled dCTP (Amersham) and 3μl exo-Klenow polymerase were added while on ice. The 
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reaction was incubated at 37°C overnight and stopped with 15μl of stop buffer. The 

unincorporated nucleotides were removed with a Micro-Spin G50 cleanup column (Amersham) 

and the Cy3/Cy5 incorporation was measured on the NanoDrop. 

 

2.13.2 Hybridisation  

The Cy3 and Cy5 labelled DNA was mixed with 80μl human CoT1 DNA, 44μl 3M sodium acetate (ph 

5.2), 6μl yeast tRNA and 1ml 100% ethanol, mixed well, and precipitated at -20°C overnight. A 

hybridisation chamber was prepared by adding a strip of Whatman paper soaked in 2xSSC/20% 

formamide solution. The precipitated DNA was spun for 15 minutes at 15000g to pellet the DNA, 

the pellet was washed with 500μl 80% ethanol, and the supernatant was removed. The dry pellet 

was resuspended in 50μl array hybridisation buffer (50% formamide, 10% dextran sulphate, 0.1% 

Tween 20, 2X SSC, 10mM Tris buffer pH 7.4) pre-heated to 70°C. The sample was denatured for 10 

minutes at 70°C, then incubated for one hour at 37°C in the dark. The sample was pipetted onto 

the array slide and covered with a coverslip, then placed in the prepared hybridiation chamber at 

37°C for 24 hours. 

 

2.13.3 Washing 

The slide was washed in PBS with 0.05% Tween 20 to remove the coverslip, then washed in a fresh 

solution of PBS/0.05% Tween 20 for 10 minutes at room temperature with shaking. The slide was 

transferred to 1X SSC/50% formamide pre-heated to 42°C and incubated for 30 minutes at 42°C 

with shaking, then washed in fresh PBS/0.05% Tween 20 for 10 minutes at room temperature with 

shaking. The slide was dried by centrifugation at 750g for 2 minutes, and stored in a dark box until 

ready to scan. 

 

2.13.4 Scanning  

The slides were scanned on an Axon 4000B scanner using GenePix Pro 6.0 software (Molecular 

Devices), using constant PMT gain settings of 1000 for the Cy5 channel and 800 for the Cy3 

channel. The median signal (minus background) for each channel for each probe was used, and any 



Chapter 2  Materials and methods 

42 
 

probe where the signal in the Cy5 channel was not twice the signal from the Drosophila control 

probes was rejected. The log2 ratio of the test (Cy3) to the reference (Cy5) signal was plotted and 

used to call chromosome losses and gains. 

 

2.14 Western blotting 

 

2.14.1 Blotting 

Total protein extracts prepared as above were mixed 1:1 with β-mercaptoethanol and denatured at 

99°C for 2 minutes then cooled on ice. 10μl of each sample was loaded onto a 12% Tris-acetate gel 

(Invitrogen) and run at 125V for 90 minutes. The gel was trimmed and soaked in transfer buffer, 

and transferred onto a PVDF membrane for 2 hours at 250mA at 4°C. The membrane was blocked 

overnight in blocking buffer (1X TBS with 0.1% Tween 20 and 5% milk powder) at 4°C. 

 

2.14.2 Detection 

The membrane was washed 3 times for 5 minutes each in 1X TBS/0.1% Tween 20. Primary 

antibody (diluted 1:1000-1:10000 in blocking buffer) was added and incubated for at least 1 hour, 

and washed 3 times for 5 minutes each in 1X TBS/0.1% Tween 20. Secondary antibody (diluted 

1:10000 in blocking buffer) was added and incubated for at least 1 hour at room temperature. 

Detection was performed using the ECL Plus Western Blotting Detection System (GE Healthcare) 

according to manufacturer’s instructions. 

 

2.15 High-throughput sequencing 

DNA sequencing libraries were prepared by Drs Jessica Pole and Ina Schulte in the lab from 

genomic DNA extracted as above or from Genomiphi-amplified DNA using Paired-End DNA Sample 

Prep Kit or Mate-Pair Library Prep Kit (Illumina) according to the manufacturer’s instructions. 

Sequencing was performed on an Illumina GAIIx sequencer at the Cancer Research UK Cambridge 

Research Institute. 
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3.1 Introduction 

Fusion genes are well-known in haematological malignancies. Recurrent fusion genes was first 

discovered in chronic myeloid leukaemia (Shtivelman et al., 1985) and Burkitt’s lymphoma ) 

(Dalla-Favera et al., 1982; Taub et al., 1982), and fusion genes which lead to fusion proteins 

have subsequently been found in many other common haematological malignancies (Mitelman 

et al., 2007). Some recurrent fusion genes have been identified in solid tumours, such as the 

TMPRSS2-ERG fusion in prostate cancer (Tomlins et al., 2005), but at the start of my project, 

only 3 fusion genes had been found in breast cancer – a fusion of ODZ4 to NRG1  in the cell line 

MDA-MB-175 (Liu et al., 1999), a fusion of FHIT to a cDNA later identified as MACROD2 in BrCa-

MZ-02 (Popovici et al., 2002), and a fusion of BCAS4 to BCAS3 in MCF7 (Bärlund et al., 2002). All 

of these fusions were found in cell lines, and none were known to be recurrent. However, the 

recurrent fusions of TMPRSS2 to members of the ETS transcription factor family had recently 

been shown in prostate cancer (Tomlins et al., 2005), suggesting that recurrent gene fusions are 

present in epithelial cancers, and that there may be recurrent fusions in breast cancer which 

had yet to be discovered. 

Work by Dr Karen Howarth in the lab had mapped many of the chromosome rearrangements in 

three breast cancer cell lines to look for fusion genes. Two fusion genes had been found in the 

breast cancer cell line HCC1806, RIF1-PKD1L1 and TAX1BP1-AHCY (Howarth et al., 2008). The 

SKY karyotype of this cell line includes a der(7)t(8;7;17) chromosome, and array painting of this 

derivative chromosome to a 1Mb array showed a break in BCAS3 which was joined to part of 

chromosome 7. A break in BCAS3 was interesting as it was already known to take part in a 

fusion in breast cancer, and a recurrent fusion would be one of the very few recurrent fusions 

in common epithelial cancers. 

The BCAS4-BCAS3 fusion was discovered by investigating chromosome amplification in the cell 

line MCF7. This line shows amplification of 17q23 and 20p13, which are two of the commonly 

amplified regions in breast cancer, with amplification of 17q23 found in around 20% of breast 

cancers, and 20p13 in between 12 and 39% of cancers (Bärlund et al., 2002). Expression analysis 
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of the genes in the amplicon in MCF7 identified an expressed sequence tag as the most 

overexpressed transcript in this region (Monni et al., 2001).  

Further investigation of this novel EST was performed, and showed that the full-length cDNA  

(now called BCAS3, for breast carcinoma amplified sequence 3), was not only overexpressed in 

MCF7 but fused to another novel gene on 20p13, BCAS4 (Bärlund et al., 2002). The BCAS4-

BCAS3 fusion joins exon 1 of BCAS4 to exons 23 and 24 of BCAS3, and alters the open reading 

frame of BCAS3, resulting in a truncated protein which ends after 21bp of BCAS3 exon 23. 

Other studies of BCAS3 have suggested a possible functional role in breast carcinogenesis. High 

expression of BCAS3 in breast cancer has been associated with tamoxifen resistance (Gururaj et 

al., 2006), and its expression is induced by estrogen receptor alpha (Gururaj et al., 2007).  

As it was part of one of the few known fusions in breast cancer, I decided that the break in 

BCAS3 was worthy of further investigation. To determine whether BCAS3 was part of a fusion 

gene in HCC1806, I first needed to determine the other breakpoints on the derivative 

chromosome to high resolution to determine the potential fusion partner. I would then 

investigate any possible BCAS3 fusion in HCC1806, and look for any signs of a recurrent break or 

fusion in other breast cancer cell lines and primary tumours. 

3.2 Results 

3.2.1 High-resolution array painting 

At the start of my project, most of the breakpoints in HCC1806 were known only to low 

resolution based on a 1Mb BAC array, which had 3000 probes spaced at roughly 1Mb intervals. 

For most breakpoints, this was not high enough resolution to determine the exact gene at the 

breakpoint. To find the breakpoints at higher resolution and determine which genes were 

broken, the der(7)t(8;7;17) was hybridized to a custom Nimblegen array (array designed by Dr 

Karen Howarth). The Nimblegen array was designed around the breakpoints already known 

from 1Mb and tiling path array painting, and covers small regions at high resolution. Figure 3.1 

shows the 1Mb array painting for the three chromosomes, and the high-resolution Nimblegen 

array results for the regions around the breakpoints. On chromosome 17, the breakpoint was 
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between 56,164,500 and 56,172,000bp, which is within BCAS3 as expected, between exons 4 

and 5 (Figure 3.2). This retains the 3’ end of the gene, which is the same end of the gene as is 

retained in the known MCF7 fusion (Figure 3.3). 
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Figure 3.1. 1Mb array painting and Nimblegen array painting for the der(7)t(8;7;17) 
chromosome from HCC 1806. A – chromosome 7, showing a break at 27,670,000bp and a 400kb 
deletion between 110,858,500 and 111,278,500bp. B – chromosome 8, showing a break at 
116,586,500bp. C – chromosome 17, showing a break at 56,170,000bp. 
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On chromosome 7, there was a breakpoint between 27,669,500 and 27,671,500bp, which is 

just outside the promoter of HIBADH and 50kb from the gene TAX1BP1, and a deletion between 

110,858,500 and 111,278,500bp which deletes part of IMMP2L and DOCK4 (Figure 3.4). On 

chromosome 8, the breakpoint was between 116,585,500 and 116,588,500bp, which is in the 

gene TRPS1 (Figure 3.5). (See Chapter 4 for investigation of the TRPS1-TAX1BP1 fusion.)
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3.2.2 FISH mapping of the derivative chromosome 

Although the individual breakpoints were known to high resolution, the arrangement of the 

chromosomes was not completely resolved, and the possible fusion partners of BCAS3 could 

not be determined from the array data alone. Chromosome 7 was known to be joined to 

chromosomes 8 and 17 from the SKY karyotype, but only one breakpoint on chromosome 7 was 

seen from the array painting. One possibility was that chromosome 7 was fused to another 

chromosome at or very close to the telomere, which would not be seen on the array painting as 

there were few probes in regions near the telomere (Figure 3.6A). A second possibility was that 

the small deletion was not an interstitial deletion but part of a more complex rearrangement 

involving an inversion and a deletion, which would mean one of the breakpoints from the 

deletion was joined to another chromosome (Figure 3.6B). The orientation of the chromosome 

7 fragment with respect to the other 2 chromosomes was not clear, and from the array painting 

it could not be determined whether the known breakpoint was joined to chromosome 17 or 

chromosome 8.  

 

Figure 3.6. Possible orientations of the chromosome fragments in the der(7)t(8;7;17) 
chromosome based on 1Mb array painting. A – the unknown break on chromosome 7 could be 
a near-telomeric fusion. B – the unknown break could be part of a more complicated 
rearrangement involving inversion and a deletion, possibly the known deletion on chromosome 
7.  
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To determine the arrangement of the chromosome fragments a series of FISH experiments was 

performed.  A probe close to the known breakpoint on chromosome 7 was hybridised to a 

HCC1806 metaphase with chromosome 17 paint (Figure 3.7). The probe did not co-localise with 

chromosome 17, but was found at the other end of the derivative chromosome, showing that 

the known chromosome 7 breakpoint was joined to chromosome 8. 

 

 

Figure 3.7. FISH on HCC1806 metaphase to determine orientation of chromosome 7 fragment. 
Chromosome 17 paint labeled with Spectrum Orange is shown in blue.  RP4-781A18 on 
chromosome 7 is shown in green. RP4-781A18 is near the known breakpoint on chromosome 7 
at 27.7Mb, and is present on the opposite end of the derivative chromosome from the 
chromosome 17 paint, showing that the known breakpoint is joined to chromosome 8 and not 
chromosome 17. The red signal is a mismapped probe. 
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To determine whether there had been a deletion and inversion, a FISH experiment was 

designed with probes near the telomere and the deletion on chromosome 7 (Figure 3.8). The 

probe near the telomere was not seen on the derivative chromosome, indicating that there had 

been a deletion or breakpoint near the telomere. The probe next to the deletion was present 

but was not close to the chromosome 17 fragment, indicating that there had not been the 

inversion on chromosome 7 hypothesized in Figure 3.6B. 
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Figure 3.8. FISH to investigate a possible inversion on chromosome 7 in the der(7)t(8;7;17). A – 
the chromosome fragments known to be in the derivative chromosome in some orientation, 
and the location of the FISH probes used on chromosome 7. RP11-518I12 is close to the 
telomere of chromosome 7, and RP11-563O5 is next to the small deletion at 111Mb. B – FISH 
on HCC1806 metaphase. Spectrum orange chromosome 17 paint is shown in blue. RP11-518I12 
is shown in red, and RP11-563O5 is shown in green. The chromosome in the lower right shows 
the normal arrangement of the green and red probes on the telomere of chromosome 7. On 
the derivative chromosome the green telomeric probe is absent, indicating a deletion near the 
telomere. The red probe at 111Mb is in the expected position and not juxtaposed with the 
chromosome 17 paint, indicating that there has not been an inversion. 
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3.2.3 Fine mapping and sequencing of the breakpoint 

 
The results of the FISH experiments suggested that the chromosome 17 fragment was joined to 

the chromosome 7 fragment near the telomere of chromosome 7, but that some material had 

been lost from the telomeric region. The der(7)t(8;7;17) had previously been hybridised to a 

chromosome 7 tiling path array by Dr Karen Howath, but the loss of material from the telomere 

had not been detected. The analysis of the tiling path arrays was designed to reduce noise by 

routinely removing all probes which did not meet a set threshold for signal relative to a set of 

Drosophila control probes on the array, and re-analysis of the chromosome 7 tiling path 

showed that a number of probes near the telomere of chromosome 7 had been removed 

during this noise reduction process as the signal for the normal reference DNA fell below the 

signal threshold. When there probes were included, there was a deletion at the telomere which 

had been previously overlooked (Figure 3.9A) and that the breakpoint was between 

155,560,009 and 155,669,524bp. There were no genes at this breakpoint, and the nearest gene 

was SHH (chromosome 7, 155,288,319-155,297,728), which was over 300kb from the 

breakpoint, suggesting that BCAS3 was not part of a gene fusion (Figure 3.9B). 
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Figure 3.9. A - Tiling path array for chromosome 7 of the der(7)t(8;7;17). As well as the 
previously detected breakpoint at 27Mb, a further breakpoint at 155.5Mb can be seen. B – 
diagram of the deleted region on chromosome 7. 
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To confirm the result of this mapping which BCAS3 was not fused to another gene, I cloned and 

sequenced the breakpoint junction. Using the breakpoint positions from the tiling path array 

painting, and from whole genome SNP6 arrays which had become available since the start of 

the project (SNP6.0 data kindly provided by Dr Graham Bignell and colleagues at the Sanger 

Institute Cancer Genome Project, later published as Bignell et al., 2010), the breakpoint on 

chromosome 7 could be mapped to between 155,709,517 and 155,715,189bp. The breakpoint 

on chromosome 17 was already known to be between 56,164,500 and 56,172,000bp. Primers 

were designed at 1kb intervals in the breakpoint regions, and long range PCR using 

combinations of these primers was carried out to amplify a junction product. A product of 

around 2kb was obtained using primers from 155,713,659bp on chromosome 7 and 

56,166,019bp on chromosome 17. The product was cloned and sequenced to show the exact 

breakpoint was at 155,714,224bp on chromosome 7 and 56,165,019bp on chromosome 17, 

with a 1bp overlap between the sequences (Figure 3.10).  The final arrangement of the 

der(7)t(8;7;17) chromosome is shown in Figure 3.11. 
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AAGGAGATGAGACACATCTGGTGAACACAGGTGACAGACATGGAGAAGTGAAAATGCTGTACCAAAAT
ATATTCTTCAATATGGTATTAAATATGGTATTTTAACAAATTTCTACGTATTAAATATTAATAGCATGATTT
GAGATCAGGAGAGCTAAGGTACATTATGCTAAATAACATTAAGGTAGAATAGTGAGACCAATATAGACT
GAATCATTCATTCATCAATTTATTCATTCAACAAGCATCTCTTTGGATTAACTATCATTTATTGAGTGCCAA
TTATTATATACTATCAAATATACAATTATACATTTAACAAATATACAATTTATATATTGTTGCCTGGTTAGA
TAAATATGTTATTAACCTTATTTTAAAACGAAACTCAGATTTAGTAAATTTGTATAGCTAATAAGCATANT
CCATTTTCTTTTCTACTA 

Figure 3.10. Junction sequence for 7;17 junction of the der(7)t(8;7;17) chromosome. The bases 
highlighted in blue are from chromosome 7, 155,714,171 to 155,714,224bp on the positive 
strand. The bases highlighted in red are from chromosome 17, 56,165,019 to 56,165,424bp on 
the positive strand. The base highlighted in green is a 1bp overlap between the sequences. The 
12 bases shown in black are a 12bp insertion into chromosome 17.  

 

 
 

Figure 3.11. The correct arrangement of chromosome fragments in the der(7)t(8;7;17) 
chromosome in HCC1806. The nearest genes to the breakpoints are shown. Although genes are 
broken at the breakpoints on chromosome 8 and 17, they are joined to non-genic regions on 
chromosome 7, and no fusions can be found. 
 

 

3.2.4 BCAS3 in other cell lines and tumours 

Microarray data from Chin et al. (2007) suggested that there was also a break in BCAS3 in the 

breast cancer cell line SUM52. This was confirmed using FISH probes upstream and 

downstream of BCAS3, and showed that there was one extra copy with just the 5’ end of the 

gene retained, and 5 extra copies of the 3’ end of the gene (Figure 3.12).  
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Figure 3.12. FISH with probes 5’ and 3’ to BCAS3 on a SUM52 metaphase. A – diagram showing 
probe location. RP11-947H19 is located 100kb upstream of the start of BCAS3, and RP11-160D4 
is located 30kb downstream of the end of BCAS3. B – results of hybridization to SUM52 
metaphase. RP11-947H19 is shown in red and RP11-160D4 is shown in green.There are two 
intact copies of BCAS3, with five copies where only the 3’ end is retained (individual green 
signals), and one copy where only the 5’ end is retained (individual red signals). 

 
To further investigate whether BCAS3 was fused in any of the cell lines, I performed real time 

PCR using 3 sets of primers from the beginning, middle and end of the gene to look for any cell 

lines which differentially expressed part of the gene. The results are shown in Figure 3.13. The 

normal human breast cell line HB4a was used as a control. HMT3552 is another normal human 

breast cell line. 
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Figure 3.13. Real time PCR for 3 different exons in BCAS3 on a panel of cell lines. All the values 
are normalized to HB4a, a normal breast epithelial cell line. 
 

There are four lines which show twofold or higher overexpression of any part of BCAS3 relative 

to HB4a: SUM52, BT549, SUM44, and SkBr3. SUM52 shows fifteen times higher expression of 

the first exon of BCAS3 compared to HB4a, with lower expression of the two primer pairs in 

exons 9 and 23. There are more copies of the 3’ end than the 5’ end of BCAS3 in SUM52, but 

this result suggests that the extra copies of the 3’ end are not affecting expression of the gene. 

Whole genome SNP6.0 data for BT549 does not show any chromosome rearrangements in 

BCAS3. The highest resolution array data available for SUM44 and SkBr3 is a custom 30k Agilent 

array (data kindly provided by Dr Suet-Feung Chin), which shows no unbalanced 

rearrangements in BCAS3 in either cell line at the resolution of the array. HCC1806 does not 

show overexpression of any exons of BCAS3. Notably, MCF7, which has the original BCAS4-

BCAS3 fusion gene, does not show overexpression of BCAS3. Overexpression of the primer pair 

in exon 23 would be expected as it is found in the BCAS4-BCAS3 fusion transcript. 
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As BCAS3 was broken in multiple cell lines, I decided to look for breaks in a set of tumours. 6 

probes were chosen, 3 overlapping probes each upstream and downstream of BCAS3. Each set 

of probes was pooled and hybridized to a normal metaphase to ensure they gave a single 

strong signal, and then hybridized to a tissue microarray containing cores from 141 breast 

tumours (tissue microarray kindly provided by Dr Suet-Feung Chin, who also performed the 

hybridization) (Figure 3.14).  

 

Figure 3.14. Locations of BAC probes used for TMA FISH. The upstream and downstream probes 
are just outside the BCAS3 gene, and the three probes on each side overlap to give a single 
signal on an interphase nuclei. The upstream probes are RP11-105G8, RP11-381A5, and RP11-
947H19. The downstream probes are RP11-160D4, RP11-466D9, and RP11-180G7. 
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Each of the tumour cores was scored according to number of signals seen for each pool of 

probes. Of the 141 tumours, 107 could be successfully scored. 97 of the cores showed a normal 

result, with overlapping signals from the two sets of probes. A further 7 tumours showed 

amplification of both sets of probes, indicating the whole of BCAS3 was amplified. Only 3 

tumours showed split probes, indicating that there was a break in the gene, and all 3 tumours 

had extra copies of the 5’ end of BCAS3 only. No tumours showed isolated signals from only the 

3’ end of the gene. 

A Western blot was performed to analyse the BCAS3 protein, initially in 3 cell lines, HB4a, 

HCC1806, and MCF7 (Figure 3.15). Unfortunately the only available antibody to BCAS3 gave 

multiple nonspecific bands and could not be used for any further analysis. 

 

Figure 3.15. A Western blot of BCAS3 on 3 cell lines. HB4a is immortalized normal breast 
epithelium, HCC1806 and MCF7 have known breaks in BCAS3. Multiple non-specific bands were 
observed in all cell lines. The BCAS3 protein is 101kDa. 
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3.3 Discussion 

Although BCAS3 is broken in HCC1806, it does not form part of a gene fusion. The break in 

BCAS3 on the der(7)t(8;7;17) removes the 5’ end of the gene and may inactivate it, but there 

are three complete copies of BCAS3 present on other chromosomes in HCC1806, so the 

inactivation of one copy is unlikely to have an effect, and the expression of BCAS3 in HCC1806 is 

not decreased compared to the normal breast cell line. The nearest gene to the broken copy of 

BCAS3 is SHH, but there are no known enhancer elements near the breakpoint which could 

affect SHH expression. 

In total, 8.2% of the tumours showed amplification of BCAS3, close to the figure of 9.4% 

reported by Bärlund et al. (2002). This is consistent with the knowledge that around 20% of 

breast tumours show amplification of 17q23, as BCAS3 is just outside the minimal region of 

amplification as defined by Pärssinen et al. (2007) and would not be expected to be amplified in 

all tumours showing 17q23 amplification. The 3 tumours showing amplification of the 5’ end of 

BCAS3 also support this interpretation – as BCAS3 is a large gene just outside the minimally 

amplified region, some breaks in this gene would be expected, and may represent cases where 

the amplification ends inside BCAS3. As it was the 3’ end of BCAS3 which was fused to BCAS4 in 

MCF7, if a similar fusion was present in any of the tumour on the tissue microarray, split signals 

which retained the 3’ end of BCAS3 would be expected, and that was not seen in any of the 

tumours.  

Analysis of the tiling path array for chromosome 7 showed a deletion at the telomere which 

had not previously been detected, as the standard filtering procedure had removed the deleted 

probes. A section of the chromosome where a number of probes had been lost at any region 

other than the telomeres would be noticed, but a small deletion near the telomeres was not 

immediately seen. This suggests that the standard protocol developed for array quality control 

may cause other real breakpoints to be missed, particularly telomeric breakpoints. 
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Although BCAS3 appeared to be a good candidate for a recurrent fusion gene in breast cancer, 

it does not appear that it is important as a fusion gene. Subsequent work by Dr Ina Shulte has 

found a fusion of the 5’ end of BCAS3 to HOXB9 in the cell line ZR-75-30, but this proved to be 

out of frame. While there does not appear to be an important recurrent fusion of BCAS3, it is 

recurrently broken, both in cell lines and tumours which show amplification of 17q, and in cell 

lines which do not show chromosome 17 amplification. This may be simply due to chance, as it 

is a large gene which may be broken by chance, especially as it is near the edge of a common 

amplicon, or it may be that overexpression of a truncated form of BCAS3 including the 5’ end 

can affect BCAS3 activity. 
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4.1.1 Introduction 

The first cell line I completely analysed for chromosome rearrangements was HCC1806. 

HCC1806 is described as a cell line derived from an acantholytic squamous carcinoma of 

the breast (Gazdar et al., 1998). It has a heavily rearranged hyper-diploid karyotype 

(Figure 4.1), with a median of 51 chromosomes and no normal copies of chromosomes 

2, 3, 4, 6, 7, 10, 12, 14, and 21. It is ER, PR and HER2 negative, and has a deletion of the 

potential tumour suppressor gene FHIT (Sevignani et al., 2003). 

 

 

Figure 4.1. SKY karyotype of HCC1806 (Mira Grigorova, unpublished). A typical 
metaphase is shown – the consensus karyotype of HCC1806 is 51(49-53), X, -X, 1x1, 
der(1;5)(p10;q10), -2, der(2)t(2;5;2)dup(2), del(2)t(2;12), der(2?)t(2;14), der(3)del(3), 
der(3)t(3;22)(p12;?), der(3)t(3;20)(p12;?), der(3)t(3;19), der(4)t(4;6)(p15;p12), 
der(4)t(1;4)(q11;p15), 5x1, der(5;10)t(p10;p10), der(6)t(4;6)(p15;p12), der(6)t(1;6p), 
der(6)del(6)(q10-qter), -7, der(7?)t(2;7), der(7)t(8;7;17), 8x1, der(8)del(8)(p12-pter), 9x1, 
der(9)t(9;12)(p21; p12?), -10, der(10)t(6;10)(?;p11), i(10q), 11x1, der(11)t(3;11), -12, 
der(12)t(12;13)(p12;?), der(12)t(12;22)(q13-14;q13), der(12)del(12)(q13-qter), 13x1, 
der(13)t(13;2;7), der(13)t(13;11;13), -14, der(14)t(6;14)(?;p11.2), 15x1, 
isodic(15)t(15;10), der(15)del(15), 16x1, der(16)t(16q11.1;3p11;11p11-pter), 17x1, 
i(17q)t(3;17)/i((17q)t(3/;17;15), 18x1, 19x1, der(19)t(8;19), der(19)t(18;19), 
der(19)t(22;19;22), der(19)t(7;19;10), der(19)del(19), 20x2, -21, der(21)t(3;21), 22x1, 
der(22)t(21;22), der(22)t(12;22)(q13;q13) 
 

Previous work analysed all the breakpoints at low resolution using 1Mb array painting, 

with higher-resolution tiling path and custom oligonucelotide arrays used to analyse 
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primarily the balanced breakpoints (Howarth et al., 2008). HCC1806 was chosen as a 

good cell line for this analysis as it had a small chromosome number, making it easier to 

flow sort each chromosome, and it had a large number of reciprocal balanced 

translocations, which we were specifically interested in. Many of the unbalanced 

breakpoints had not been analysed at higher resolution than the 1Mb array painting, 

which gives breakpoints to a resolution of 3-4Mb, which is normally not enough to 

identify the genes which are broken and any fusions or rearrangements which may 

result. Using higher-resolution whole genome array CGH from the Affymetrix SNP 6.0 

platform (Bignell et al., 2010), I aimed to complete the karyotype of HCC1806 to a high 

resolution, including the deletions and amplifications too small to be seen on previous 

arrays, and to investigate all the possible gene fusion events resulting from 

rearrangements. 

 

4.1.2 Previous work 

Previous work on HCC1806 in the lab was carried out by Dr Karen Howarth. Flow 

karyotypes of a chromosome preparation from HCC1806 cells were used to separate the 

chromosomes and each aberrant chromosome was hybridized separately to a 1Mb 

array. Flow sorting produced 51 separate chromosome fractions, labelled A to o (Figure 

4.2) (Howarth et al., 2008).  
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Figure 4.2. Flow karyotype of HCC1806 chromosomes. The chromosomes are sorted by 
separating the different fractions based on the staining intensity of Hoechst 33258 and 
Chromomycin A3. The 51 fractions are labelled A to o (Howarth et al., 2008). 
 

A number of the fractions contained more than one derivative chromosome, as they co-

localize on the flow karyotype due to the two derivative chromosomes being 

approximately the same size and with similar GC composition. There is one case in 

which the two derivative chromosomes in the same fraction contained pieces of the 

same chromosome, meaning that the mapped breaks could not be assigned to a single 

chromosome, but in all other cases the two co-sorted chromosomes did not contain 

pieces of the same chromosome. As the chromosome pieces involved in each derivative 
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chromosome were known from the SKY karyotype, the breaks could be assigned to one 

of the derivative chromosomes.  

 

Each fraction was labelled and hybridized to a 1Mb array; as 3 consecutive probes were 

considered necessary to call a change in copy number, the breakpoints could be 

mapped to a resolution of around 1Mb but rearrangements smaller than 3Mb would not 

affect 3 consecutive probes and were not identified.  In total, 1Mb array painting 

revealed 93 breakpoints in HCC1806, of which 21 rearrangements were balanced to 

1Mb resolution. Tiling path arrays which had probes every ~100Kb were available for 

chromosomes 6, 7 and 22, and 14 breakpoints on chromosomes 6, 7, and 22 were 

mapped to higher resolution using these arrays.  A further 22 breakpoints, including all 

the balanced breakpoints, were mapped using custom Nimblegen oligonucleotide arrays 

designed to give probes every 200bp in the breakpoint regions. It was not practical to 

map all the breakpoints on the custom Nimblegen arrays, so the balanced breaks were 

prioritized as they would not be detected using whole genome array CGH even at high 

resolution. 

 

Many of the breaks that were mapped to high-resolution with the Nimblegen arrays 

were within genes. Two fusion products were identified, both at balanced 

rearrangements: TAX1BP1-AHCY and RIF1-PKD1L1 (Howarth et al., 2008).  

 

4.2 Results 

4.2.1 High-resolution breakpoints from SNP6 arrays 

A total of 71 unbalanced breakpoints were not mapped at a high enough resolution by 

Howarth et al. (2008) to identify the genes broken. To map these breakpoints, I used 

whole genome array CGH data from the Affymetrix SNP6.0 platform, kindly provided by 

Dr Graham Bignell and colleagues from the Cancer Genome Project, Wellcome Trust 

Sanger Institute (later published as (Bignell et al., 2010). This data was used to map at 

high resolution all the unbalanced breakpoints in HCC1806 which were previously 
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known only to 1Mb or tiling path resolution, and to confirm the mapping previously 

performed using the Nimblegen arrays. 

 

The Affymetrix SNP array 6.0 includes over 1,800,000 25bp probes. 900,000 probes 

detect SNPs, 200,000 copy number probes detect regions of copy number variation, 

while a further 700,000 probes are evenly spaced across the genome. This gives a 

median probe separation of 700bp. In addition, the SNP probes provide information on 

the genotype, allowing determination of regions of heterozygosity.  

 

4.2.2 Determining the breakpoints 

The provided segmentation of the whole genome SNP6.0 array using circular binary 

segmentation (Venkatraman and Olshen, 2007) was unreliable and missed several 

known breakpoints (Figure 4.3). Instead, the breakpoints were estimated by eye. 259 

possible unique breakpoints were identified, without reference to the array painting in 

order to prevent selection bias towards already-known breakpoints. The size of the 

estimated interval containing the breakpoint varied according to the number of probes 

in the region of interest and the noise around the breakpoint, but the median size was 

20kb.  
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Figure 4.3. Incorrect segmentation of SNP6.0 arrays by circular binary segmentation. A 
plot of the SNP6.0 array for part of chromosome 1 with segmentation performed by 
circular binary segmentation. The position of the break is known from array painting to 
be at 15.5Mb, which is incorrectly assigned by the SNP6.0 segmentation. 

 

4.2.3 Comparison of array painting and the SNP6.0 array 

The whole genome SNP6.0 array was matched to our existing array painting data. 75 of 

the 259 breakpoints corresponded to breaks already identified by array painting. 

Comparison of the breakpoint regions called by eye on the SNP6 data with breakpoints 

which were known to tiling path or oligonucleotide array resolution showed that the 

SNP6 regions always agreed with the previous data, suggesting that the breakpoints 

called by eye are reliable. 

 

The majority of the balanced breakpoints could not be seen as a copy number change 

on the whole genome SNP6.0 data, as they were balanced to the resolution of the array. 

There were three exceptions where the breakpoints could be seen as they were not 

perfectly balanced: the balanced breaks at 16p21.1 and 3p21.1 in the chromosome 

fractions L and I, and the balanced break at 7p15 in the fractions L and M. These breaks 

appeared perfectly balanced to 1Mb resolution, but with the higher resolution whole 
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genome SNP6.0 data a small copy number gain of between 100-200kb could be seen at 

the position of each breakpoint (Figure 4.4). This gain could be caused by a duplication 

of material at the breakpoint, with the region of copy number gain being present on 

both derivative chromosomes, or it could represent a small duplication on one of the 

products, or an unrelated duplication on another copy of that chromosome. Subsequent 

work by Dr Karen Howarth confirmed using FISH and PCR that the duplicated material is 

present at the breakpoint on chromosomes from both fractions, and does not represent 

a tandem duplication on one of the translocation products. 

 

 

 

 

 

 

 

 



Chapter 4  The complete karyotype of HCC1806 

 73 

 

 

Figure 4.4. Breakpoint duplications from SNP6.0 arrays. The plots show the SNP6.0 array 
for HCC1806. A – part of chromosome 16, B – part of chromosome 3. The copy number 
changes marked in red are at the location of a balanced translocation, and represent 
duplicated sequences present in both products of the reciprocal translocation. 
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There was one other balanced break which can be seen on the whole genome SNP 6.0 

data, which is the balanced break at 6p22.  This break was found in three chromosome 

fractions (B, V and Z). The chromosome fragment from 6pter to 6p22 was found in two 

fractions (V and Z) and the reciprocal fragment was only found in fraction B. This gave 

an extra copy of one side of balanced break, which can be seen as a copy number step 

on the whole genome SNP6.0 array. 

 

The only unbalanced breaks seen in the array painting data which were not present on 

the whole genome SNP6.0 array  were the chromosome 15 and 17 breaks in 

chromosome fraction Q. Chromosome fraction Q contains a der(17)t(3;17;15)  which is 

likely to be a further rearrangement of the der(17)t(3;17) chromosome in chromosome 

fraction X, as the chromosome 3 and 17 breaks were in the same locations (Figure 4.5). 

The absence of a copy number step corresponding to the der(17)t(3;17;15) in the SNP6 

array data may represent a difference between the sample of HCC1806 used in our 

experiments and that used for the whole genome SNP6.0 array, suggesting the 

der(17)t(3;17;15) rearrangement may have occurred in culture, or it is possible that the 

breaks are actually balanced and that the reciprocal fragments have been lost in our 

sample and retained in the sample used for the SNP6.0 array. The predicted copy 

number from the SNP6.0 array is consistent with two copies of the der(17)t(3;17) and no 

copies of the der(17)t(3;17;15). 
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Figure 4.5. Related derivative chromosomes in HCC1806. The der(17)t(3;15;17) in 
chromosome fraction Q shares breaks on chr17 and chr3 with the der(17)t(3;17) in 
chromosome fraction X, and is assumed to be a further rearrangement of the same 
chromosome.  The SNP6.0 copy number is consistent with their sample of HCC1806 
having two copies of the der(17)t(3;17) and no copies of the der(17)t(3;17;15). 
 

4.2.4 Identification of previously undetectable copy number changes 

The breakpoints identified on the whole genome SNP6.0 array were used to find gains 

and losses which were not identified on the 1Mb array painting. As three consecutive 

clones at the same level were considered necessary to be sure of a break on the 1Mb 

array painting, any copy number gains or losses which spanned three probes or fewer 

would not have been called as a breakpoint from the 1Mb array.  The exact resolution of 

the array depends on the exact spacing of the probes in that region, but any gains or 

losses under 5Mb are likely to have been overlooked on the 1Mb array painting. I 
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identified previously-undescribed gains and losses by looking for any increase or 

decrease in copy number where neither of the boundaries were a known translocation 

and the region was under 5Mb. The SNP6 array showed 24 copy number gains, with a 

size range from 91kb to 2.11Mb and a median size of 1.01Mb, and 23 copy number 

losses ranging from 103kb to 4.5Mb with a median size of 577kb. An example of a loss 

found on chromosome 9 which was not called by array painting can be seen in Figure 

4.6. 

 

Figure 4.6. Example of a deletion identified from the SNP6.0 array. Whole genome 
SNP6.0 data for part of chromosome 9 is shown in gray, with the 1Mb array painting for 
chromosome fraction R overlaid in red. A deletion can be seen between the arrows at 
around 123 and 124Mb, which was not detected as 3 consecutive probes were not 
called as deleted. The sequence of the BAC at the left hand edge of the deletion 
probably overlaps the edge of the breakpoint. 
 

4.2.5 Assembly of the complete karyotype 

Using the SKY karyotype, array painting, and whole genome SNP6.0 array, a complete 

picture of the derivative chromosomes was constructed. Several assumptions were 

made in assembling the karyotype. First, I assumed that telomere fusions would be rarer 

than non-telomere fusions, and so two broken chromosomes are likely to join at the 

breakpoints rather than at the telomeres. A fusion at the telomeres would also leave 

two broken ends without telomeres. I further assumed that the karyotype that involves 
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the fewest chromosome rearrangements to produce a derivative chromosome is 

correct, and a break that appears at the same location in two derivative chromosomes is 

joined to the same other chromosome, as it is more likely that the break has arisen once 

and undergone further rearrangement than for the same break to have arisen twice. For 

example, chromosome fraction O contains a der(20)t(3;20) chromosome, and 

chromosome fraction M contains a der(20)t(3;20;7) chromosome, and as the breaks on 

chromosome 3 and chromosome 20 are in the same locations in both derivative 

chromosomes I assumed they were joined to each other in both chromosomes and the 

der(20)t(3;20;7) had undergone a further translocation with chromosome 7. As the 

higher resolution CGH allowed the breakpoint intervals to be called to higher resolution 

this assumption is likely to be correct. 

 

4.2.6 Discrepancies between array painting and whole genome SNP6.0 array 

After the whole genome SNP6.0 was matched to the array painting, while the overall 

agreement was good there were still some breakpoints which could not be accounted 

for as either known breakpoints from the array painting, or small gains and losses that 

would be too small to see on the array painting due to the low resolution. I investigated 

some of these discrepancies in order to determine if they represented a true 

discrepancy between the two data sources. 

 

One of the discrepancies I investigated was extra breaks on chromosome 2 (Figure 4.7). 

HCC1806 does not have a normal copy of chromosome 2, but there are 6 derivative 

chromosomes which contain pieces of chromosome 2, which were sorted into 5 

different chromosome fractions. When the whole genome SNP6.0 data and the array 

painting were compared for chromosome 2, there were several breaks which were not 

part of small rearrangements and did not agree with any of the breaks previously called 

from the 1Mb array painting.  
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One such break was seen as a step down in copy number on the SNP6.0 data at 75Mb. 

This region of chromosome 2 was present on only the der(2)t(5;2;5) chromosome found 

in fraction A. A closer inspection of the 1Mb array painting data showed that the break 

at 75Mb appeared to be present on the array but had been missed (Figure 4.7). This 

may be due to the magnitude of the changes seen in array painting, as the change in 

log2 ratio between the regions of chromosome 2 which are not present in the derivative 

and those which are present at one copy is much greater than the shift between one 

and two copies present. 
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Figure 4.7. 1Mb array painting of chromosome 2 in chromosome fraction A (above) 
compared to the whole genome SNP6.0 array for chromosome 2 (below). The green 
lines show the breakpoints which were originally called from the 1Mb array painting and 
the matching breakpoints in the SNP6.0 data. The red line at 75Mb marks an additional 
breakpoint which was called from the SNP6.0 data and not previously known, and shows 
that the breakpoint can be found in the 1Mb array painting and was overlooked due to 
the smaller shift in hybridisation intensity from 1 to 2 copies than from 0 to 1 copy. 
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Another discrepancy involved several breakpoints on the q arm of chromosome 2 

(Figure 4.8). In addition to a breakpoint at 150Mb known from the array painting, there 

was a break at 178Mb, a small amplification between 178 and 180Mb, and a break at 

200Mb. The only chromosomes containing this region of chromosome 2 were the 

der(2)t(5;2;5) found in chromosome fraction A, and a der(7)t(2;7) found in chromosome 

fraction G. 

 

On closer inspection of the 1Mb array painting, the extra breaks on the q arm of 

chromosome 2 could be seen to be at least one extra copy of chromosome 2 in 

chromosome fraction G from 178Mb to the qter (Figure 4.8). It was shown by FISH that 

there is an extra copy of that region of chromosome 2, with an amplification of the 178-

180Mb region on one copy only (Figure 4.9). This amplification was seen on the array 

painting, but as there were only two probes in this region, it was not called as a copy 

number change. A further FISH experiment showed that although it is unclear from the 

array painting whether there is a break at 200Mb, there is an extra copy of the region 

between 180Mb and 200Mb on both chromosomes (Figure 4.10).  
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Figure 4.8.  1Mb array painting of chromosome 2 in chromosome fraction G compared 
to the whole genome SNP6.0 array for chromosome 2. The green line marks the 
breakpoint which was called from the 1Mb array painting. This break is balanced so not 
break is seen on the whole genome SNP6.0. The solid red lines show breaks which were 
seen on the SNP6.0 array but not previously seen on the 1Mb array painting, but they 
can been seen as a smaller shift on the array painting and may have been overlooked. 
The dashed red line shows a breakpoint on the SNP6.0 array which does not seem to 
have an associated shift on the 1Mb array painting. 



Chapter 4  The complete karyotype of HCC1806 

 82 

 

 

Figure 4.9. FISH to confirm breakpoint and amplification of extra chromosome 2 
fragment in chromosome fraction G. A – whole genome SNP6.0 array for a portion of 
chromosome 2, with the two BAC probes used for FISH marked in red and green. B - 
FISH on interphase and metaphase nuclei shows chromosome 2 paint in blue, BAC RP11-
65L3 in green and BAC RP11-67G7 in red. The FISH shows that there are 2 chromosomes 
with paired red and green signals, which are the known chromosomes from fractions A 
and G, and a chromosome with a single red signal and multiple green signals, which is an 
extra chromosome also present in fraction G and has an amplification of the region with 
the green probe. 
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Figure 4.10. FISH to investigate extra chromosome 2 fragment in chromosome fraction 
G. A – whole genome SNP6.0 array for a portion of chromosome 2, with the two BAC 
probes used for FISH marked in red and green. B - FISH on interphase and metaphase 
nuclei shows chromosome 2 paint in blue, BAC RP11-15J24 in green and BAC RP11-
59L22 in red. The FISH shows that there are 2 chromosomes that show two red signals 
and one green signal. 
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4.2.7 Systematic search for fusion genes 

By assembling the complete karyotype of HCC1806, all the breakpoints were known to 

high resolution, and, in most cases, which breakpoints were joined together. It was 

possible that there was extra complexity at the breakpoints, such as a balanced 

inversion which would not be detected using either of the array platforms. With higher 

resolution array CGH, the genes at many of the unbalanced breakpoints are now known 

where previously there were several candidate genes, although there are still several 

breakpoints where the breakpoint cannot be mapped to a single gene.  

By identifying the genes which are broken at each breakpoint, possible gene fusions 

could be predicted. 

 

Fusion genes can be produced by chromosome translocations in two main ways. They 

can produce fusion genes directly by breaking a gene on each chromosome, which form 

a fusion gene on the translocated chromosome involving the 5’ end of one gene and the 

3’ end of the second gene (figure 4.11). They can also cause a fusion product when only 

one gene is broken by removing the transcription termination and poly(A) addition site 

of the gene, which causes transcription to continue into an intact downstream gene and 

produce a fused transcript (figure 4.12). I refer to these as “readthrough” fusions. The 

TAX1BP1-AHCY fusion previously identified in HCC1806 (Howarth et al., 2008) is a 

readthrough fusion. 
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Figure 4.11. Translocation between two chromosomes directly forming a fusion gene. 
This produces a fusion gene with the 5’ end of the green gene and the 3’ end of the blue 
gene. If this is a balanced, reciprocal translocation, the reciprocal fusion gene may also 
be present. 
 

 

 

Figure 4.12. Translocation between two chromosomes where only one gene is broken to 
form a readthrough fusion. With the transcription end site of the green gene removed, 
this could produce a fusion containing the 5’ end of the green gene and the whole of the 
blue gene (apart from the first exon, which would not normally have a splice acceptor 
site). This could alter the regulation of the blue gene, as it is under the control of a 
different promoter. 
 

To investigate the fusions, PCR primers were designed according to the example in 

Figure 4.13. A pair of primers was designed to each gene to test expression of the gene 

in HCC1806 and in the normal breast cell line HB4a. By using a combination of the 

forward and reverse primers from different primer pairs, any fusion transcript would 

give a product only in HCC1806, and would not be present in the normal cell line. 



Chapter 4  The complete karyotype of HCC1806 

 86 

 

 

Figure 4.13. Primer design for amplification of fusion products on cDNA. A - The MGAM 
gene is broken in HCC1806 between exon 29 and exon 38 (breakpoint region defined by 
red dotted lines). PCR primers were designed between exon 28 and exon 29. B - The 
DPP6 gene is broken between exons 1 and 2. PCR primers were designed between exon 
2 and exon 3. C - The hypothetical MGAM-DPP6 fusion protein would include the 5’ 
exons from MGAM and the 3’ exons from DPP6.  By using the forward primer from 
MGAM and the reverse primer from DPP6, a product will only be produced if the fusion 
transcript is present, and a normal cell line not containing the translocation can be used 
as a control.  
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4.2.8 New fusions identified by high-resolution arrays 

7 new candidate fusion genes were identified from higher resolution mapping of 

breakpoints (Table 4.1). 

 

5’ gene Chromosome 3’ gene  Chromosome Chromosome fraction 

FOXP4 6 HSP90 4 B, E 

MGAM 7 DPP6 7 G 

TMTC4 13 SUGT1L1 13 J, P 

LMO1 11 NAG 2 K 

TRPS1 8 TAX1BP1 7 L 

CST4 20 EPHA3 3 M, O 

BC022036 9 STAB2 12 R 

Table 4.1. Potential fusion genes caused by translocations and large deletions. 
Chromosome fractions are defined in Howarth et al. (2008). 
 

The results of the PCR for the fusion genes caused by translocations and large deletions 

are shown in Figure 4.14. No fusion transcripts were amplified; the genes LMO1,  HSP90 

and CST4 showed expression in HB4a but not in HCC1806, indicating that expression has 

been lost, either by disruption of the gene at a breakpoint, or by some other mechanism 

such as promoter methylation. LMO1 is known to be recurrently translocated in T-cell 

leukaemia in the common t(11;14)(p13;q11) translocation (Boehm et al., 1991), and is 

thought to play a role in leukaemogenesis (Tremblay et al., 2010).  Many of the genes 

did not show expression in either HB4a or HCC1806, and the lack of a fusion product 

may be due to lack of expression of the 5’ gene. 
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Figure 4.14. PCR for fusion genes caused by translocations in HCC1806. All PCRs were 
carried out using HCC1806 cDNA. 
 

Row Column Primers  Row Column Primers 

1 1 Ladder  3 1 Ladder 

1 2 FOXP4  3 2 BC022036 

1 3 HSP90  3 3 STAB2 

1 4 FOXP4/HSP90  3 4 BC022036/STAB2 

1 5 MGAM  3 5 TRPS1 

1 6 DPP6  3 6 TAX1BP1 

1 7 MGAM/DPP6  3 7 TRPS1/TAX1BP1 

2 1 Ladder  4 1 Ladder 

2 2 LMO1  4 2 SUGT1L1 

2 3 NAG  4 3 TMTC4 

2 4 LMO1/NAG  4 4 SUGT1L1/TMTC4 

2 5 CST4  4 5 Negative control 

2 6 EPHA3     
2 7 CST4/EPHA3     
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4.2.9 Fusion genes caused by small deletions 

Using the whole genome SNP6.0 array data, 23 small deletions which were not 

previously picked up by the 1Mb array painting were identified. Some of these small 

deletions were at regions known to have copy number variation in the normal 

population (Redon et al., 2006), and were assumed to be found in the germline, but 

many of the deletions remove parts of genes and could potentially produce fusion 

products, as shown in Figure 4.15. The 12 possible fusion genes are shown in Table 4.2. 

The results of the PCR for fusion genes caused by small deletions are shown in Figure 

4.16. No fusion transcripts were amplified. 
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Figure 4.15. An intrachromosomal deletion can cause a fusion gene between the 5’ end 
of the green gene and the 3’ end of the blue gene. The other ends of the genes are lost. 
 

 

Gene 1 Gene 2  Chromosome 

DISC1 KIAA1383 1 

HK2 REG3G 2 

GPR39 MGAT5 2 

NAP5 BC045801 2 

MTDH VPS13B 8 

CTNLN ADAMTS1L1 9 

C5 TTLL1 9 

HCCA2 OR52B2 11 

SBF2 GALNTL4 11 

USP31 ERN2 16 

ATAD5 SUZ12 17 

CHEK2 PITPNB 22 

Table 4.2. Potential fusions from small deletions 
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Figure 4.16. PCR for fusions caused by small deletions 
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Key for Figure 4.16: 

Row Column Primers  Row Column Primers 

1 1 Ladder  4 1 Ladder 

1 2 DISC1  4 2 C5 

1 3 KIAA1383  4 3 TTLL1 

1 4 DISC1/KIAA1383 fusion  4 4 C5/TTLL1 fusion 

1 5 HK2  4 5 HCCA2 

1 6 REG3G  4 6 OR52B2 

1 7 HK2/REG3G fusion  4 7 HCCA2/OR52B2 fusion 

2 1 Ladder  5 1 Ladder 

2 2 GPR39  5 2 SBF2 

2 3 MGAT5  5 3 GALNTL4 

2 4 GPR39/MGAT5 fusion  5 4 SBF2/GALNTL4 fusion 

2 5 NAP5  5 5 UPS31 

2 6 BC045801  5 6 ERN2 

2 7 NAP5/BC045801 fusion  5 7 UPS31/ERN2 fusion 

3 1 Ladder  6 1 Ladder 

3 2 MTDH  6 2 ATAD5 exon 6 

3 3 VPS13B  6 3 ATAD5 exon 14 

3 4 MTDH/VPS13B fusion  6 4 SUZ12 

3 5 CTNLN  6 5 ATAD5 exon 6/SUZ13 fusion 

3 6 ADAMTS1L1  6 6 ATAD4 exon 14/SUZ12 fusion 

3 7 CTNLN/ADAMTS1L1 fusion  7 1 Ladder 

    7 2 PITPNB 

    7 3 CHEK2 exon 2 

    7 4 CHEK2 exon 10 

    7 5 PITPNB/CHEK2 exon 2 fusion 

    7 6 PITPNB/CHEK2 exon 10 fusion 
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4.2.10 Fusion genes caused by tandem duplication 

Small duplications may also produce fusion genes (Jones et al., 2008). 23 small 

duplications were seen in the SNP6 array CGH. These may be tandem duplications or 

they may be an insertion of an extra copy elsewhere in the genome. As it could not be 

determined from the array CGH which of these possibilities was correct, it was assumed 

for the purposes of predicting fusion genes that all of these duplications were tandem 

duplications.  The potential fusion genes would then depend on the orientation of the 

genes at the breakpoint and the location and orientation of the inserted fragment. The 

possibilities are shown in Figures 4.17-4.19 and the predicted fusion genes are shown in 

Table 4.3. Figure 4.20 shows the PCR results. In one case, there were 3 possible genes 

for one end of a fusion due to a poorly-resolved breakpoint, and all 3 were tested. No 

fusion transcripts were found. 

Gene 1 Gene 2  Chromosome 

EPHB2 MYOM3 1 

EPHB2 FUSIP1 1 

EPHB2 PNRC2 1 

MYOM3 EPHB2 1 

FUSIP1 EPHB2 1 

PNRC2 EPHB2 1 

AFF3 BC156887 2 

BC156887 AFF3 2 

c6orf105 PHACTR1 6 

PHACTR1 c6orf105 6 

LAMA2 ARHGAP18 6 

ARHGAP18 LAMA2 6 

CATSPERB TC2N 14 

SMURF2 CCDC46 17 

GPC3 HS6ST2 23 

Table 4.3. Potential fusion genes resulting from small tandem duplications 
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Figure 4.17. The possible fusion genes produced by a tandem duplication which breaks 
two genes on the same strand.A - a head-to-tail duplication which produces a fusion of 
the 5’ end of the blue gene to the 3’ end of the green gene. B - a head-to-head 
duplication which produces no fusion products. C - the other possible head-to-head 
duplication which also produces no fusion products.  
 



Chapter 4  A complete karyotype of HCC1806 

 95 

 

Figure 4.18. The possible fusion genes produced by a tandem duplication which breaks 
two genes on opposite strands, duplicating the 3’ ends of both genes. A - a head-to-tail 
duplication which produces no fusion product. B - a head-to-head duplication which 
produces a fusion of the 5’ end of the green gene with the 3’ end of the blue gene. C - 
the other possible head-to-head duplication which produces a fusion of the 5’ end of 
the blue gene and the 3’ end of the green gene. 
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Figure 4.19. The possible fusion genes produced by a tandem duplication which breaks 
two genes on opposite strands, duplicating the 5’ ends of both genes. A - a head-to-tail 
duplication which produces no fusion product. B - a head-to-head duplication which 
produces a fusion of the 5’ end of the green gene with the 3’ end of the blue gene. C - 
the other possible head-to-head duplication which produces a fusion of the 5’ end of 
the blue gene and the 3’ end of the green gene. 
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Figure 4.20. PCR for fusions produced by tandem duplications. All PCR was on HCC1806 
cDNA. 

Row Column Primers  Row Column Primers   Row Column Primers 

1 1 Ladder  3 1 Ladder   5 1 Ladder 

1 2 EPHB2 pair a  3 2 ARHGAP18 pair a   5 2 c6orf105/PHACTR1 

1 3 EPHB2 pair b  3 3 ARHGAP18 pair b   5 3 PHACTR1/c6orf105 

1 4 MYOM3 pair a  3 4 CATSPERB   5 4 LAMA2/ARHGAP18 

1 5 MYOM3 pair b  3 5 TC2N   5 5 ARHGAP18/LAMA2 

1 6 FUSIP1  3 6 SMURF2   5 6 CATSPERB/TC2N 

1 7 PNRC2  3 7 CCDC46   5 7 SMURF2/CCDC46 

1 8 AFF3 pair a  3 8 GPC3   5 8 GPC3/HS6ST2 

1 9 AFF3 pair b  3 9 HS6ST2     

2 1 Ladder  4 1 Ladder     

2 2 BC156887 pair a  4 2 EPHB2/MYOM3     

2 3 BC156887 pair b  4 3 EPHB2/FUSIP1     

2 4 c6orf105 pair a  4 4 EPHB2/PNRC2     

2 5 c6orf105 pair b  4 5 MYOM3/EPHB2     

2 6 PHACTR1 pair a  4 6 FUSIP1/EPHB2     

2 7 PHACTR1 pair b  4 7 PNRC2/EPHB2     

2 8 LAMA2 pair a  4 8 AFF3/BC156887     

2 9 LAMA2 pair b  4 9 BC156887/AFF3     
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4.3 Discussion 

HCC1806 is described as derived from an acantholytic squamous cell carcinoma of the 

breast (Gazdar et al., 1998). Acantholytic squamous cell carcinoma is a rare form of 

breast cancer, which accounts for only 0.05% of all breast neoplasms. Although 

acantholytic squamous cell carincomas are rare, a small percentage of invasive ductal 

carcinomas show regions of squamous cell metaplasia (Fisher et al., 1983), so HCC1806 

may be a rare variant of a true ductal carcinoma. CGH studies which have been carried 

out on small numbers of acantholytic squamous cell carcinomas suggest that they show 

some chromosome rearrangements which are characteristic of both breast cancer, and 

squamous cell tumours from other regions (Aulmann et al., 2005). 

 

The combination of array painting and whole genome SNP6.0 array data made it 

possible to identify potential fusion genes caused by translocations which could not 

have been identified using one method alone. The high-resolution SNP6.0 data 

identified the genes at breakpoints, but the array painting was needed to determine 

which breaks are found together on a derivative chromosome and may be joined to 

each other. Some of this information could be inferred from the SKY karyotype, but the 

problems of resolution and overlap of chromosomes at breakpoints make it difficult to 

determine the exact arrangement from the SKY data alone. 

 

No further fusion transcripts could be detected in HCC1806. This could be a true 

negative result and reflect that there are few fusion genes in this cell line and the two 

known fusions are the only fusion genes. The number of fusion genes found in cell lines 

and tumours in the Stephens et al. study (2009) ranged from zero to eleven, suggesting 

that if HCC1806 really has only two fusion genes then this is within the range found in 

breast cancers. However, this study did not look for readthrough fusion genes, and may 

underestimate the number of fusions in each cell line (see chapter 6 for details of 

fusions not found in the cell line HCC1187).  
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Alternatively, there may be other fusion genes present in HCC1806 which were not 

found using the methods I have employed. Although these methods have been 

successfully used to find fusion genes before, including the two known fusions in 

HCC1806, they may miss fusion genes which are expressed at very low levels which 

cannot be detected using standard PCR. The assumption is that fusion genes which are 

barely expressed are unimportant, but they may act as dominant negative inhibitors of 

one gene in the fusion even at low levels. Fusion genes that have unusual splicing 

patterns and do not include any of the exons tested by PCR would also be missed, as 

would some fusion genes that included novel exons. Most of the genomic junctions at 

breakpoints in HCC1806 have not been sequenced. It is possible that the breakpoints 

are more complex than they appear and may contain ‘genomic shards’ (Bignell et al., 

2007; Campbell et al., 2008), small pieces of DNA which have been inserted at the 

breakpoint. These pieces are often smaller than a kilobase and would not be seen on 

the SNP6.0 array, but in rare cases could affect any fusion gene produced by a 

chromosome rearrangement. Another possibility is that there is an inversion at the 

breakpoint, like the known inversion at a breakpoint in the breast cancer cell line T47D 

(Pole et al., 2006), which are copy number neutral and would not be identified using 

microarrays. 
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5.1 Introduction 

MDA-MB-134 is a breast cancer cell line derived from a pleural effusion obtained from a patient 

with metastatic breast cancer (Cailleau et al., 1974). It is a hypodiploid line with a median of 44 

chromosomes. There is a subclone which has endoreduplicated and subsequently lost 

chromosomes, with a median of 66 chromosomes. The main rearrangements are two copies of 

a large marker chromosome with amplification of chromosome 8 and 11, and the 

der(15)t(15:17) and der(18)t(16:18) translocations (Figure 5.1) (Davidson et al., 2000). 

 

Figure 5.1. SKY karyotype of MDA-MB-134 (Davidson et al., 2000). 

 

The aim of the work was to map all the chromosome rearrangements in MDA-MB-134 to high 

resolution, and search for gene fusions or other rearrangements which affect gene expression 

and function.  Chromosome 8 and 11 amplifications  are common in breast cancer (Lafage et al., 

1992; Lemieux et al., 1996; Bautista and Theillet, 1998; Paterson et al., 2007), and 8p12 and 

11q13 are found co-amplified in 8.2% of cases (Letessier et al., 2006). MDA-MB-134 is a model 

for chromosome 8 and 11 amplification and has a simple karyotype with few other 

translocations, suggesting that the rearrangements in the amplicon are important driving 

events in carcinogenesis, and they will be easier to analyse in a cell line with a low level of other 

rearrangements. 
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5.1.1 Previous work 

The large homogenously staining region of the marker chromosome was shown to contain 

sequences from chromosomes 8p11-12 and 11q13 arranged in a complex structure (Lafage et 

al., 1992). Microdissection of the hsr and hybridization to normal metaphases suggested that 

sequences from 8p12 and 11q13 were co-amplified, with a block of amplified DNA from 8q24 

between the co-amplified regions (Guan et al., 1994). Further FISH suggested a rearrangement 

between the centromere of chromosome 11 and the juxtacentromeric region of chromosome 8 

(Lemieux et al., 1996). A mostly complete copy of 8q forms the short arm of the marker 

chromosome, with a deletion of MYC, and there is no amplification of the copy of MYC located 

between the co-amplified regions.   

Array CGH shows amplification of 8p12 and 11q13 with few other copy number changes. The 

amplicon on 8p12 is large and spans 7Mb of chromosome 8 (from 34.7 to 41.5Mb) and includes 

FGFR1 and ZNF703, while the chromosome 11 amplicon is smaller and contains two separate 

regions of amplification, one covering CCND1 and the other containing EMSY and GARP 

(Paterson et al., 2007). FISH shows that the amplicon has a complex interdigitated structure, 

with two blocks of 8p12 and 11q13 amplification separated by a region from 8q, and the 

chromosome with the amplification is present in two copies (Figure 5.2). Overlapping signals 

from chromosome 8 and 11 are seen, but the complete arrangement of the amplicon could not 

be derived using FISH. 
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Figure 5.2. Schematic of the chromosome 8 and 11 amplifications in MDA-MB-134. There is a 
single copy of normal 8 and 11, and two copies of the der(11) marker chromosome with two 
regions of intermingled 8p12/11q13 separated by  a single copy of material from 8q24. 
(Adapted from Paterson et al. 2007). 
 
5.2 Results 

5.2.1 Assembling a complete karyotype of MDA-MB-134 

The aim was to use array painting to characterize the chromosomal rearrangements which 

could be seen on the SKY karyotype. The SKY karyotype suggested there were three rearranged 

chromosomes – the der(15)t(15:17),  der(18)t(16:18), and two copies of the der(8)t(8;11), 

which previous work suggested were identical to the resolution of FISH and SKY and would be 

in the same position in the flow karyotype. 

Comparison of the chromosome fractions of MDA-MB-134 to the chromosomes sorted from a 

normal human cell line showed six fractions in an abnormal position on the flow sort (Figure 
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5.3). These fractions may contain the rearranged chromosomes, or they may be outlying 

regions of the normal chromosome fractions, as the fractions are not as tightly sorted as the 

normal comparison. Fractions A and B were both collected as it was not possible to determine 

which was the der(8)t(8;11) and which was the normal chromosome 1 from their position on 

the flow sort. Fraction F was collected as, while it is common for two different homologues of 

chromosome 21 to form separate fractions, as can be seen in the normal flow sort (Figure 3A), 

it could not be determined from the flow sort whether it was a different homologue of 

chromosome 21 or one of the rearranged chromosomes. Fractions C, D and E were collected as 

they were in an unexpected position, and may be either rearranged chromosomes or outliers 

from the normal fractions. 
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Figure 5.3. Flow karyotyping of abnormal chromosomes in MDA-MB-134A: Flow karyotype of 
chromosomes from the normal cell line GM11321B with chromosome fractions labelled 
(normal karyotype courtesy of Bee Lin Ng, Wellcome Trust Sanger Institute). B: Flow karyotype 
of chromosomes from MDA-MB-134. The six labelled fractions look to be in an abnormal 
position on the graph compared to the normal chromosomes, and may be the fractions 
containing chromosomes with translocations. 
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To determine which of the six candidate fractions contained the rearranged chromosomes, they 

were reverse chromosome painted to normal metaphases. The sorted chromosomes were 

amplified using the Genomphi DNA Amplification Kit, and hybridised to normal metaphase 

spreads.            

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

Four of the candidate chromosome fractions contained normal chromosomes. Fraction B was 

chromosome 1, fraction D and fraction E were outlying regions of the fractions for 

chromosomes 9-12 (which co-localise) and chromosome 7 respectively, and fraction F was an 

extra fraction for 21 caused by the different homologues of the chromosome sorting into 

separate fractions. Fractions A and C contained two of the expected derivative chromosomes – 

fraction A was the large t(8;11) chromosome and fraction C was the der(15)t(15;17) (Figure 

5.4). 
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Figure 5.4. Reverse chromosome painting of sorted chromosome fractions to normal (DRM) 
metaphases. A – chromosome fraction A,  showing signal on chromosomes 8 and 11. B – 
chromosome fraction C showing signal on chromosomes 15 and 17. 
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The der(18)t(16;18) was not found in any of the candidate abnormal fractions. It was possible 

that the size of the rearranged chromosome caused it to co-localise on the flow karyotype with 

a normal chromosome. If this was the case, the count of the number of events in that 

chromosome fraction would be higher than expected, as three rather than two chromosomes. 

Figure 5.5A shows the count of events in each chromosome fraction. The trend towards more 

events in the fractions for the shorter chromosomes is due to more of the shorter 

chromosomes being retained during the preparation for flow sorting, but even accounting for 

that trend the fraction for chromosome 14 showed an unusually high number of events for a 

fraction which should contain 2 chromosomes – over 2200 events when 1400 would be 

expected. This suggested that the der(18)t(16;18) chromosome may be contained in the 

chromosome 14 fraction, and reverse chromosome painting showed that it hybridized to the 

whole of chromosome 14, the p arm of chromosome 16, and the q arm of chromosome 18 

(Figure 5.5B). 

 

 

 

Figure 5.5. Locating the der(16)t(16;18) chromosome in MDA-MB-134. A - a graph showing the 
counts of each chromosome fraction in MDA-MB-134 during chromosome sorting, showing an 
more than the expected number of chromosomes in the chromosome 14 fraction . The 
trendline shows that more of the longer chromosomes are lost during the preparation for 
sorting. B - reverse painting of the chromosome 14 fraction to normal (DRM) metaphases, 
showing signal on chromosomes 14, 16, and 18. 
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5.2.2 Array painting of rearranged chromosomes 

The breakpoints on the three rearranged chromosomes were further mapped by array painting 

of the sorted chromosome fractions. The arrays used were 1Mb BAC arrays with 3,439 probes 

spread across the genome, giving a probe approximately every megabase, and 90 probes at 

higher density between 30.9 and 41.4Mb on chromosome 8, giving a probe on average every 

120Kb across this region. Amplified sorted chromosomes were labeled and hybridized to arrays 

against labeled normal female DNA, and the ratio of the signals was used to find regions which 

were present or absent in the sorted chromosome compared to normal. The aim of using array 

painting instead of whole genome CGH was that the breakpoints could be unambiguously 

assigned to the rearranged chromosome as only the chromosomes present in each 

chromosome fraction are hybridized to the array. 

As reverse chromosome painting showed that two of the sorted fractions contained only the 

derivative chromosome, while the t(16;18) co-localised with chromosome 14, which is not 

known to be involved in the rearrangement, the breakpoints could be unambiguously assigned 

to a particular derivative chromosome.  

Array painting of the fraction containing the der(15)t(15;17) showed the breakpoints on each 

chromosome to be centromeric (Figure 5.6). The t(15;17) is formed of 15q joined to 17q. The 

array has no probes on the p arm of chromosome 15, but the whole of the q arm was retained, 

so the breakpoint is likely centromeric. 
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Figure 5.6. Array painting of MDA-MB-134 chromosome fraction C. Plots show the log2 ratio of 
the hybridization of the test chromosome fraction against a normal reference genome versus 
the distance along the genome or chromosome. From top to bottom: whole genome plot, 
chromosome 15, chromosome 17. The array has no probes on the p arm on chromosome 15. 
The array is known to have a number of misidentified BACs, which probably account for the 
probes which do not show the expected signal. Each probe is duplicated on the array, and both 
copies are plotted separately on these graphs.  
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Array painting of the fraction containing the der(18)t(16;18) (as well as chromosome 14) 

showed that the breakpoint on chromosomes 16 and 18 was also centromeric (Figure 5.7). 

 

Figure 5.7. Array painting of MDA-MB-134 fraction 14. Plots show the log2 ratio of the 
hybridization of the test chromosome fraction against a normal reference genome versus the 
distance along the genome or chromosome. From top to bottom: whole genome plot, 
chromosome 16, chromosome 18. The whole genome plot shows signal from chromosome 14, 
as it co-localises with the derivative chromosome during flow sorting and cannot be separated. 
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Array painting showed that the translocations involve whole chromosome arms but could not 

determine whether the chromosome arms were joined at centromeres, telomeres, or had more 

complicated rearrangements which did not affect the copy number. To determine the 

orientation of the translocated fragments, FISH was performed using probes near the 

centromeres of the chromosome fragments (Figures 5.8 and 5.9).The derivative chromosomes 

were joined at the centromeres in both the 15;17 and 16;18 translocations, and did not show a 

telomeric fusion.  
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Figure 5.8. FISH to show orientation of chromosome fragments. Chromosome 17 paint labelled 
with Spectrum Orange (blue). Probe on 15q12 is RP11-570N16, labelled with Digoxygenin 
(green). Probe on 17q11.2 is RP11-403E9, labelled with Biotin (red). A is a normal (DRM) 
metaphase, B is an MDA-MB-134 extended chromosome preparation metaphase. Arrow shows 
the der(15)t(15;17) chromosome is formed of 15q and 17q chromosome fragments joined at 
the centromeres. There is no telomeric fusion. 
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Figure 5.9. FISH to show orientation of chromosome fragments. Chromosome 18 paint labelled 
with Spectrum Orange (blue). Probe on 18q11.1 is RP11-280C8 labelled with Digoxygenin 
(green). Probe on 16p11.2 is RP11-2C24 labelled with Biotin (red). A is a normal (DRM) 
metaphase, B is an extended MDA-MB-134 metaphase. The green signal is on 18q near the 
centromere, and the red signal is on 16q near the centromere. 
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Array painting of the t(8;11) derivative chromosome allowed the amplified regions and 

breakpoints to be determined to higher resolution than through previous FISH and microarray 

studies (Figure 5.10).  Using the criterion that a minimum of two adjacent probes showing a 

change in hybridisation ratio are needed to confirm a gain or loss, the 8p amplification 

appeared to have two separate regions of gain, from 30,945,723-31,288,495Mb and from 

34,631,328-40,796,500Mb. The positions were taken from the start and end points of the BAC 

probes which are gained, but as the probes were spaced at megabase intervals the breakpoints 

could only be determined approximately. There was an extra copy of the whole of 8q, with two 

deletions between 109,137,354-122,721,235Mb and 134,255,043-139,307,409Mb. 
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Figure 5.10. Array painting of MDA-MB-134 fraction A. Plots show the log2 ratio of the 
hybridization of the test chromosome fraction against a normal reference genome versus the 
distance along the genome or chromosome. From top to bottom: whole genome plot, 
chromosome 8, chromosome 11. The signal from chromosome 1 and chromosome 7 seen in 
the whole genome plot is contamination of the flow-sorted chromosome fraction. The boxes 
mark the amplicons on chromosomes 8 and 11.  
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Chromosome 11 showed a gain of most of 11p from the start to 42,018,028Mb, and the q arm 

had gained a region between the centromere and 62,403,825Mb. The amplicon on 11q showed 

a higher log2 ratio of signals, indicating more copies of this region had been gained, and the 

amplicon could be divided into two regions, 68,278,585-70,789,798Mb, and 73,676,966-

78,791,818Mb. There may also be further rearrangements within the amplicon which could not 

be confirmed at this resolution, as two adjacent probes could not be called as gained or lost.  

 
The extent of the amplification was subsequently confirmed using data from Affymetrix SNP6.0 

arrays (Bignell et al., 2007), which has probes on average every 700bp and allows breakpoints 

to be called to much higher resolution. The low-resolution array painting agreed with the SNP6 

data (Figure 5.11), except for the small amplicon around 31Mb on chromosome 8, which was 

called from two BAC probes and may be due to mismapped BACs . However, further 

rearrangements suggested by single probe changes on the 1Mb array could be confirmed on 

the higher resolution array, including a further high-level amplification on chromosome 8 

between 21,375,101 and 21,983,001Mb. This amplification includes FGF17, which is 

overexpressed in prostate cancer and associated with poor prognosis (Heer et al., 2004). A 

summary of the chromosome rearrangements found on chromosomes 8 and 11 is shown in 

figures 5.12 to 5.14. 
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Figure 5.11. Comparison of 1Mb array painting data (in red) and whole-genome SNP6.0 data (in 
black). Data has been scaled to allow comparison of the two data sets. A – MDA-MB-134 
chromosome 8. The two arrays agree on the extent of the 8p amplification, and there is an 
additional amplification at 21.3-21.9Mb (indicated by the arrow) which is represented on the 
1Mb array by a single BAC. Each BAC is present in duplicate on the array, so the 2 points in the 
amplification represent the same BAC. B – MDA-MB-134 chromosome 11, showing agreement 
between the two arrays on the amplification. 
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Figure 5.12. Amplifications on chromosome 8 in MDA-MB-134 found using array painting and 
confirmed by SNP6.0 arrays. A – Ideogram of chromosome 8. The red boxes mark the amplified 
regions found in the t(8;11) chromosome in MDA-MB-134. B – the genes found in the smaller 
amplified region 21.3-21.9Mb. C – the genes found in the larger amplified region 34.6-40.7Mb, 
including ZNF703 and FGFR1. 
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Figure 5.13. Deletions on chromosome 8 in MDA-MB-134 found using array painting and 
confirmed by SNP6.0 arrays. A – Ideogram of chromosome 8. The red boxes mark the deletions 
found in the t(8;11) chromosome in MDA-MB-134. B – the genes found in the larger deleted 
region 109.1-122.7Mb. C – the genes found in the smaller deleted region 134.2-139.3Mb. 
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Figure 5.14. Amplifications on chromosome 11 in MDA-MB-134 found using array painting and 
confirmed by SNP6.0 arrays. A – Ideogram of chromosome 11. The red boxes mark the 
amplifications found in the t(8;11) chromosome in MDA-MB-134. B – the genes found in the 
larger amplified region, 68.3-70.8Mb, including CCND1. C – the genes found in the smaller 
amplified region, 73.7-78.8Mb. 
 

 

5.2.3 High-throughput sequencing 

Array-based approaches to mapping the amplifications allowed me to resolve the positions of 

the breakpoints to high resolution, but could not tell which breakpoints are joined together, 

which is essential to find rearrangements which may cause fusion genes. 

High-throughput paired-end sequencing overcomes many of the limitations of array-based 

mapping of structural variation.  It can be used to map many of the structural variants in a cell 

line in a single experiment, depending on the sequence coverage obtained. High-throughput 
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sequencing gives millions of short sequence reads from across the genome in one experiment 

by sequencing small fragments of the genome in a massively parallel process. Paired-end 

sequencing gives reads from both ends of the fragment, which can be aligned to a human 

reference genome.  Any fragments which contain a genomic rearrangement can be easily 

identified as they will cause a change in the size or orientation of the fragment relative to the 

reference genome, and can be easily identified. As the fragment straddles the rearrangement, 

both sides of the rearrangement can be identified, as well as the orientation of the DNA. 

Identification of rearrangements is not dependent on copy number changes, allowing balanced 

rearrangements to be identified. 

For paired-end sequencing using the Illumina GAII platform, genomic DNA is fragmented and 

size-selected for the desired fragment size, which can be up to 800bp (Figure 5.15). Adaptors 

are ligated to each end of the fragments and amplified with 20 cycles of PCR. A sample from the 

fragment library is placed onto the flow cell where the adaptors adhere to a ‘lawn’ of primers. 

Each fragment is amplified on the flow cell surface to produce a cluster of identical single-

stranded DNA strands. For each cycle of sequencing, four fluorescently-labelled nucleotides and 

DNA polymerase are added to the flow cell. Each nucleotide has a reversibly-blocked 3’-OH 

group so that only one base is incorporated at each step. The flow cell is imaged, then the 

nucleotides are unblocked and another round of sequencing can take place.  Each base pair is 

called from the images with an associated quality score. For paired-end sequencing, each 

cluster is re-amplified and a second round of sequencing proceeds from the adaptor ligated to 

the other end of the fragments. This gives paired reads where the first read is from one end of 

the fragment, and the second read from the opposite end of the fragment (Mardis, 2008). 
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Figure 5.15. The Illumina high-throughput sequencing strategy. A – library preparation. The genomic 
DNA is fragmented and size-selected to give a population of small fragments, which have specific 
adaptors ligated to either end. B – cluster formation. Single-strand DNA fragments are bound to the flow 
cell surface, and cycles of bridge amplification create clusters of up to a million fragments. C – DNA 
polymerase and labelled nucleotides are added to the flow cell, and one fluorescently-labelled base is 
incorporated. The remaining nucleotides and polymerase are washed off, and an image of the whole 
flow cells is taken. The 3’-OH block and fluorescent label are removed from the incorporated nucleotide, 
and further rounds of synthesis take place. D – The images produced from the flow cell are used to call 
the base pairs incorporated into each fragment. 
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5.2.4 Paired-end read high-throughput sequencing of MDA-MB-134 

A library of genomic fragments from MDA-MB-134 was prepared by Dr Jessica Pole and 18 

million paired-end reads were sequenced using the Illumina GAII sequencer by the Genomics 

Facility of the Cancer Research UK Cambridge Research Institute.  37bp was sequenced from 

each end of the ~450bp genomic fragments and aligned to the human reference genome by the 

Bioinformatics Facility.  Pairs where either end did not map uniquely to the genome were 

discarded, and are likely to be fragments produced from repeat regions where the sequences 

match multiple regions of the genome. For a set of reads which were exact duplicates of each 

other only one read was retained, as these were thought to be either PCR duplicates caused by 

amplification of the same fragment during the PCR amplification step of the library preparation, 

or optical duplicates caused by the same cluster being read as two clusters during the imaging 

step of sequencing. (See Chapter 6 for more detail of the bioinformatics used to process the 

sequencing data.)  

I analysed the 12 million uniquely-mapping non-duplicated paired reads left after this filtering 

process to find structural variants and copy number changes. Although each paired read is only 

74bp of sequence, a rearrangement anywhere in the fragment between the reads will be 

detected from the end sequences, giving around 1X diploid genome coverage.  At this level of 

coverage, around 25% of the single-copy rearrangements in the genome would be detected as 

we require 2 independent reads to support any rearrangement. The amplified regions will 

represent proportionally more of the fragment library, as they are at a higher copy number and 

there are 2 copies of the der(8)t(8;11) chromosome, so the coverage will be higher in the 

amplified regions and more of the rearrangements in these regions will be detected. 

 

5.2.5 Detection of structural variants  

The 12 million reads were analysed for paired reads which appeared to suggest a structural 

variants in the genome of MDA-MB-134. 47,446 paired reads were called as possible reads 

across structural variants as they mapped to an unexpected location or orientation and were 
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sequenced from fragments which contain a genomic rearrangement. To reduce the number of 

false positive structural variants which were called due to biological or bioinformatic artefacts, 

such as sequencing errors, chimeric fragments created during the library preparation process, 

or misaligned reads, two reads were required to call a structural variant from the possible 

reads. 679 structural variants supported by 2 or more independent paired reads were 

predicted, using 2,234 of the possible reads. The remaining reads not used to support a 

structural variant were presumed to be artefacts or reads where only a single read supporting a 

structural variant was found. 

The structural variants were divided into 5 categories based on the probable type of 

rearrangement which could be inferred from the reads (Table 5.1). (See Chapter 6 for details of 

how the types of structural variant were inferred.)  

52 variants mapped to regions of known copy number variation found in the human 

population, based on the data in Conrad et al. (2010). There is no matching normal cell line for 

MDA-MB-134 which would confirm these are germline rearrangements, but it is likely that they 

are not somatic rearrangements, and they were removed from further analysis.  

Category of structural variant Number 

Interchromosomal translocation 16 

Deletions larger than 10kb 6 

Deletions between 1kb and 10kb 73 

Deletions smaller than 1kb 485 

Insertion 15 

Inversion 14 

Inverted tandem repeat 3 

 
Table 5.1. Structural variants in MDA-MB-134, after removal of structural variants in regions of 
common copy number variation but before any further filtering 
 
Of the 612 remaining structural variants, over 90% were intrachromosomal rearrangements 

under 10Kb, and 80% were under 1Kb.  It is likely that some of the small rearrangements were 

false positives caused by the thresholds chosen to find structural variants. Any read pair with a 
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fragment size larger than 3 standard deviations from the median was called as a possible 

abnormal read, which will incorrectly call some reads as aberrant when they are in the 

expected 0.3% of reads which fall outside this size threshold, and any region with two reads 

which fall into the tail of the distribution may be called as a small deletion. Raising the 

threshold to call an abnormal read would reduce the number of false positives but remove 

some real small deletions.  

5.2.6 Validation of structural variants 

As my interest was primarily in the structure of the amplicon, I decided to concentrate on 

validating the rearrangements between chromosomes and the intrachromosomal 

rearrangements larger than 10kb, which amounted to 42 structural variants. The reads 

supporting the predicted structural variants were re-aligned to the reference genome using 

BLAT (Kent, 2002), which is a more sensitive but slower alignment tool, and reports multiple 

possible alignments while the faster Maq alignment reports only the best possible alignment 

that it has found, which may not always be correct. 7 of the predicted structural variants were 

removed as the reads were in repeat regions including centromeres, or had other good 

alignments which suggested the pair were a normal read and not a structural variant. 

The 35 selected structural variants (Table 5.2) were validated using PCR. As the median size of 

the fragments in the library was 454bp, the position of the breakpoints was known to ~500bp 

resolution. Primers were designed to amplify the breakpoints in genomic DNA from MDA-MB-

134. A pool of normal human female DNA was used as a control.



 

 
 

Type of 
structural 
variant 

Supporting 
reads 

Chromosome  Breakpoint 
region start 

Breakpoint 
region end 

First 
read 

strand 

Chromosome  Breakpoint 
region start 

Breakpoint 
region end 

Second read 
strand 

Deletion 2 8 32,799,124 32,799,329 + 8 32,810,825 32,811,014 - 

Deletion 12 8 34,902,273 34,902,554 + 8 35,015,339 35,015,607 - 

Deletion 3 8 39,350,844 39,350,989 + 8 39,506,397 39,506,530 - 

Deletion 2 8 106,144,206 106,144,375 + 8 139,083,092 139,083,275 - 

Deletion 3 11 63,284,923 63,285,214 + 11 79,554,718 79,554,997 - 

Deletion 4 11 76,836,485 76,836,687 + 11 77,033,372 77,033,540 - 

Deletion 2 X 52,908,480 52,908,487 + X 55,695,862 55,695,898 - 

Inversion 4 7 70,058,671 70,058,799 + 7 70,076,473 70,076,605 + 

Inversion 2 7 70,064,185 70,064,483 - 7 70,076,820 70,077,102 - 

Inversion 7 8 36,017,686 36,017,889 + 8 36,548,255 36,548,465 + 

Inversion 16 8 41,650,073 41,650,447 - 8 42,088,880 42,089,260 - 

Inversion 2 8 41,773,851 41,774,164 + 8 133,032,657 133,032,959 + 

Inversion 4 11 63,285,646 63,286,004 - 11 79,551,488 79,551,832 + 

Inversion 2 11 63,289,773 63,289,783 + 11 78,702,800 78,702,823 + 

Inversion 5 11 66,697,611 66,697,896 - 11 70,224,114 70,224,384 - 

Inversion 2 11 70,656,229 70,656,305 - 11 76,410,016 76,410,063 + 

Inversion 3 11 70,765,883 70,765,964 + 11 77,329,765 77,329,838 + 

Inversion 5 11 73,044,828 73,045,170 - 11 77,572,905 77,573,291 + 

Inversion 2 11 74,811,880 74,812,025 - 11 78,266,004 78,266,155 + 

Inversion 5 11 74,812,741 74,812,993 - 11 76,838,302 76,838,571 - 

Inversion 3 11 76,418,909 76,419,129 - 11 76,984,735 76,984,919 - 

Inversion 2 16 21,501,819 21,501,842 + 16 22,617,924 22,617,940 + 

Inversion 2 16 33,148,642 33,148,677 - 16 33,201,522 33,201,815 + 

Translocation 2 2 41,905,754 41,905,954 + 4 66,096,540 66,096,761 - 

Translocation 3 8 42,088,497 42,088,709 + 11 68,454,146 68,454,386 - 

Translocation 2 8 124,072,313 124,072,368 - X 136,263,026 136,263,099 - 

Translocation 11 11 69,633,071 69,633,448 + 8 38,665,641 38,665,965 + 

Translocation 8 11 70,783,301 70,783,583 + 8 21,981,233 21,981,523 + 

Translocation 9 11 74,001,145 74,001,470 + 8 36,546,068 36,546,354 - 

Translocation 7 11 74,001,293 74,001,424 - 8 36,548,943 36,549,081 - 



 

 
 

 
Table 5.2. Table 2. Predicted structural variants larger than 10Kb in MDA-MB-134. Structural variants have been filtered to remove 
common copy number variants and variants which had a normal mapping suggested by BLAT alignment. The read strand refers to 
the alignment of the reads in the read pairs to the genome – the expected strands for a normal read pair were the first read on the 
positive strand and the second read on the negative strand. (See Chapter 6 for more details on the expected strands for paired-end 
reads.) 

Translocation 7 11 74,819,515 74,819,840 + 8 21,375,639 21,375,999 - 

Translocation 25 11 75,535,691 75,536,039 - 8 34,784,458 34,784,809 - 

Translocation 2 11 76,086,980 76,087,112 + 8 39,756,523 39,756,660 - 

Translocation 3 12 106,727,070 106,727,245 + 7 110,840,421 110,840,624 - 

Translocation 5 17 63,921,789 63,921,813 + 8 35,511,422 35,511,471 - 
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Of the 35 selected variants, 4 variants could not be validated by PCR as no bands were 

produced using two different primer pairs designed to amplify these regions. Of the 31 

remaining variants, 7 produced a PCR product using the control normal female DNA as well as 

MDA-MB-134 DNA, and were presumed to be common polymorphisms. 

The 24 validated variants not present in the pooled normal DNA are shown in Table 5.3. All but 

one of the rearrangements involve chromosomes 8 and 11. This was the expected result based 

on the low numbers of copy number changes seen elsewhere in the genome on the Affymetrix 

SNP6.0 and array painting data, and the low sequence coverage of the genome. Using copy 

number data from the high-throughput sequencing, a further 9 unbalanced rearrangements 

were detected by segmentation which have no paired reads supporting them. 5 of these 

changes were single-copy deletions, and the other 4 rearrangements were small gains. These 

rearrangements may be missed due to low copy number, or because they fall in repeat regions 

and the reads spanning the junction cannot be aligned (see Chapter 7 for further discussion of 

the problems of finding junctions which fall in repeat regions). 

The one validated structural variant which did not involve chromosomes 8 and 11 suggested an 

8;X translocation.  The break on chromosome X was around 136,263,000, and a break at this 

location can be seen on a copy number plot generated from the normal paired-end reads 

(figure 5.16A). Chromosome painting showed that that 20Mb of distal Xq has been translocated 

onto one copy of the marker chromosome (figure 5.16B). This rearrangement was not seen in 

the SKY karyotype, although it could have been missed as it is a small piece of chromosome X or 

may have been thought to be caused by chromosome overlap. It was also not present in the 

SNP 6.0 data, suggesting the rearrangement is present in our sample of MDA-MB-134 and may 

have been a late event in the evolution of the cell line. 

 

 

 



 

 
 

Type of structural 
variant 

Supporting 
reads 

Chromo
some  

Breakpoint 
region start 

Breakpoint 
region end 

Strand Chromosome  Breakpoint 
region start 

Breakpoint 
region end 

Strand 

Deletion 12 8 34,902,273 34,902,554 + 8 35,015,339 35,015,607 - 

Deletion 2 8 106,144,206 106,144,375 + 8 139,083,092 139,083,275 - 

Deletion 3 11 63,284,923 63,285,214 + 11 79,554,718 79,554,997 - 

Deletion 4 11 76,836,485 76,836,687 + 11 77,033,372 77,033,540 - 

Inversion 7 8 36,017,686 36,017,889 + 8 36,548,255 36,548,465 + 

Inversion 16 8 41,650,073 41,650,447 - 8 42,088,880 42,089,260 - 

Inversion 2 8 41,773,851 41,774,164 + 8 133,032,657 133,032,959 + 

Inversion 4 11 63,285,646 63,286,004 - 11 79,551,488 79,551,832 + 

Inversion 5 11 66,697,611 66,697,896 - 11 70,224,114 70,224,384 - 

Inversion 2 11 70,656,229 70,656,305 - 11 76,410,016 76,410,063 + 

Inversion 3 11 70,765,883 70,765,964 + 11 77,329,765 77,329,838 + 

Inversion 5 11 73,044,828 73,045,170 - 11 77,572,905 77,573,291 + 

Inversion 2 11 74,811,880 74,812,025 - 11 78,266,004 78,266,155 + 

Inversion 5 11 74,812,741 74,812,993 - 11 76,838,302 76,838,571 - 

Inversion 3 11 76,418,909 76,419,129 - 11 76,984,735 76,984,919 - 

Translocation 3 8 42,088,497 42,088,709 + 11 68,454,146 68,454,386 - 

Translocation 2 8 124,072,313 124,072,368 - X 136,263,026 136,263,099 - 

Translocation 11 11 69,633,071 69,633,448 + 8 38,665,641 38,665,965 + 

Translocation 8 11 70,783,301 70,783,583 + 8 21,981,233 21,981,523 + 

Translocation 9 11 74,001,145 74,001,470 + 8 36,546,068 36,546,354 - 

Translocation 7 11 74,001,293 74,001,424 - 8 36,548,943 36,549,081 - 

Translocation 7 11 74,819,515 74,819,840 + 8 21,375,639 21,375,999 - 

Translocation 25 11 75,535,691 75,536,039 - 8 34,784,458 34,784,809 - 

Translocation 2 11 76,086,980 76,087,112 + 8 39,756,523 39,756,660 - 

Table 5.3. Validated structural variants larger than 10Kb in MDA-MB-134. All variants were validated by PCR and sequencing.The 
read strand refers to the alignment of the reads in the read pairs to the genome – the expected strands for a normal read pair were 
the first read on the positive strand and the second read on the negative strand.  
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Figure 5.16. FISH to investigate an unexpected structural variant between chromosome 8 and 
chromosome X. A – copy number plot from whole-genome SNP6.0 array for chromosome X of 
MDA-MB-134, showing no copy number step on the q arm. B – copy number plot from high-
throughput sequencing for chromosome X of MDA-MB-134, showing a copy number step 
around 136Mb. C - FISH confirming 8;X translocation in MDA-MB-134. Chromosome 8 spectrum 
orange-labelled paint is blue, chromosome X FITC-labelled paint is green. One normal 8 and two 
normal X chromosomes can be seen, along with two der(11) marker chromosomes, one of 
which shows a translocation with chromosome X. 
 
5.2.7 Sequencing of structural variant junctions 

All of the validated variants were Sanger sequenced to confirm their positions and to find the 

exact sequence at the junctions. All the breakpoints were found in the expected positions, with 

the exact breakpoints being within a library insert size of the position of the reads spanning the 

breakpoint (Table 5.4).  

Figures 5.17-5.19 show all the validated structural variants in the genome, plotted against the 

copy number data obtained from sequencing. Many of the breakpoints match the copy number 

steps, although there are several structural variants which do not appear to be associated with 

a copy number change, such as the junction between 74,811,827 and 78,266,347Mb on 

chromosome 11 which only shows a copy number step on one side of the junction, and these 

may be balanced breakpoints where there is no copy number change to be detected.  

There are also copy number steps which are not associated with a structural variant. This could 

be due to lack of coverage, as few breaks at low copy number would be detected at the current 

coverage levels in MDA-MB-134, or they may represent breaks in repeat regions, as if the 

region is highly repetitive any sequence from that region will be rejected as they will be a 

perfect match to more than one location in the genome. 

Of the junction sequences of the 24 variants, 9 showed no homology at the breakpoint, 14 

showed homology of between 1 and 4bp, 1 variant had 13bp of homology, and 1 showed an 

insertion of 1bp at the breakpoint (Table 5.4). 



 

 
 

Type of structural variant Chromosome  Breakpoint Chromosome  Breakpoint Overlap/insertion Length Sequence 

Translocation 11 74,819,892 8 21,375,631 Overlap 1 GT 

Translocation 11 69,633,489 8 38,666,031 Overlap 1 T 

Translocation 8 42,088,756 11 68,454,008 None 0 None 

Translocation 11 74,001,087 8 36,548,912 Overlap 4 AGGT 

Inversion 11 76,418,750 11 76,984,724 Overlap 1 A 

Translocation 8 124,072,213 X 136,262,830 Overlap 4 CCCT 

Translocation 11 70,783,703 8 21,981,574 Overlap 2 GT 

Translocation 11 74,001,597 8 36,546,065 Insertion 1 T 

Translocation 11 75,535,675 8 34,784,454 Overlap 3 TTG 

Translocation 11 76,087,332 8 39,756,483 None 0 None 

Inversion 11 74,811,827 11 78,266,347 Overlap 1 C 

Inversion 11 74,812,675 11 76,838,258 Overlap 1 T 

Deletion 11 76,836,832 11 77,033,295 None 0 None 

Deletion 8 34,902,627 8 35,015,270 None 0 None 

Inversion 8 36,017,999 8 36,548,613 Overlap 1 T 

Inversion 8 41,650,072 8 42,088,882 Overlap 2 GT 

Inversion 8 41,774,211 8 133,033,042 None 0 None 

Deletion 8 106,144,619 8 139,083,096 None 0 None 

Deletion 11 63,285,330 11 79,554,711 None 0 None 

Inversion 11 66,697,564 11 70,224,058 Overlap 1 T 

Inversion 11 70,655,988 11 76,410,171 None 0 None 

Inversion 11 70,766,233 11 77,329,957 Overlap 13 TTCTTTTTGGAGA 

Inversion 11 73,044,824 11 77,573,265 None 0 None 

Inversion 11 63,285,642 11 79,551,886 Overlap 3 AAA 

Table 5.4. The exact breakpoints and junction homology of the 24 validated structural variants in MDA-MB-134.
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Figure 5.17. Structural variants in MDA-MB-134 plotted on a circular genome. 
Interchromosomal rearrangements are plotted in green, while intrachromosomal 
rearrangements are shown in blue. The plot was generated using the Circos software 
(Krzywinski et al., 2009). 
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Figure 5.18. Structural variants in MDA-MB-134 showing chromosomes 8 and 11 only. The blue 
lines mark intrachromosomal rearrangements, and the green lines and interchromosomal 
rearrangements. The histogram in red shows copy number segments predicted using the 
DNACopy program. The figure was generated using Circos (Krzywinski et al., 2009).
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Figure 5.19. Structure of the 8;11 amplicon in MDA-MB-134. The plots show loess-corrected 
copy number from high-throughput sequencing, with the upper plot showing the amplified 
regions of chromosome 8, and the lower plot showing the amplified regions of chromosome 11. 
The dotted red lines mark the breakpoints of validated structural variants, with the blue and 
green lines showing the interchromosomal and intrachromosomal rearrangements. (See 
Chapter 6 for details of how the loess correction of copy number was performed.) 
 

5.2.8 Potential fusion genes found by high-throughput sequencing 

The potential fusion genes at each breakpoint could be predicted using high-throughput 

sequencing, as the breakpoints could be determined to high enough resolution that the genes 

at both sides of the breakpoint could be identified.  
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All of the structural variants were used to test for potential fusion genes, readthrough fusion 

genes, and internal exon deletions in MDA-MB-134. This included the small rearrangements 

which were not selected for PCR validation, as only a few of these rearrangements affected 

exons. The majority of the structural variants did not affect genes, or were small 

rearrangements which only rearranged introns.  

 4 fusion genes were predicted (Table 5.5), of which 3 were part of the 8;11 amplicon. Primer 

pairs were designed which would amplify each gene separately, to see if it was expressed, and 

in combination would amplify a fusion product (Figure 5.20). The results of the PCR to detect 

fusion genes are shown in Figures 5.21 and 5.22. No fusion products were detected, but three 

genes were expressed in MDA-MB-134 but not in the human immortalized breast epithelial cell 

line HB4a. These three genes, ODZ4, SHANK2, and UNC5D, are all in the amplified regions on 

chromosome 8 and 11. 

8 readthrough fusions were predicted (Table 5.6), of which 6 were part of the 8;11 amplicon.  

No readthrough fusions were found. The results of the PCR are shown in Figure 5.23. KLHL35, 

which also forms a potential fusion gene with ODZ4, forms a potential readthrough fusion with 

AQP11, but no expression of this readthrough was detected, and it appears to be a separate 

event to the rearrangement which causes KLHL35 and ODZ4  to be fused (Figure 5.24). 

14 structural variations were predicted to cause deletions of 1 or more exons from a gene 

(Table 5.7).  All these deletions are small deletions under 10Kb, and in contrast to the predicted 

fusion genes and readthrough fusions, none of the rearrangements are part of the 8;11 

amplicon. PCR primers were designed to either side of the deletion to test for shorter 

transcripts in MDA-MB-134, which would indicate a possible deletion of exons (Figure 5.25). No 

such transcripts were detected. 



 

 
 

Type of 
structural 
variant 

Read Chromosome  Breakpoint 
region start 

Breakpoint 
region end 

Read strand Genes Predicted fusion 

Insertion First read 11 74811880 74812069 - KLHL35 5' of KLHL35 into 3' of ODZ4 

 Second read 11 78266004 78266199 + ODZ4  

Translocation First read 17 63921789 63921857 + ARSG 5' of ARSG into 3' of UNC5D 

 Second read 8 35511422 35511515 - UNC5D  

Inversion First read 8 41773851 41774208 + ANK1 5' of EFR3A into 3' of ANK1 

 Second read 8 133032657 133033003 + EFR3A  

Inversion First read 11 66697611 66697940 - FBXL11 5' of SHANK2 into 3' of FBXL11 

 Second read 11 70224114 70224428 - SHANK2  

 
Table 5.5. Gene fusions in MDA-MB-134 predicted from structural variants called from paired-end sequencing. The read strand 
refers to the alignment of the reads in the read pairs to the genome. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

Type of 
structural 
variant 

Read Chromosome  Breakpoint 
region start 

Breakpoint 
region end 

Read 
strand 

Broken 
gene 

Readthrough 
partner 

Predicted fusion gene 

Translocation First read 11 70783301 70783627 + EPB49 SHANK2 EPB49 is broken and may read 
through into SHANK2 

 Second read 8 21981233 21981567 +    

Translocation First read 11 76086980 76087156 + ADAM2 LRRC32 ADAM2 is broken and may read 
through into LRRC32 

 Second read 8 39756523 39756704 -    

Insertion First read 11 70656229 70656349 - ACER3 NADSYN1 ACER3 is broken and may read 
through into NADSYN1 

 Second read 11 76410016 76410107 +    

Translocation First read 12 106727070 106727289 + IMMP2L PRDM4 IMMP2L is broken and may read 
through into PRDM4 

 Second read 7 110840421 110840668 -    

Deletion First read 7 30501892 30501945 + GGCT NOD1 GGCT is broken and may read 
through into NOD1 

 Second read 7 30502611 30502711 -    

Inversion First read 11 74812741 74813037 - KLHL35 AQP11 KLHL35 is broken and may read 
through into AQP11 

 Second read 11 76838302 76838615 -    

Inversion First read 11 74812741 74813037 - PAK1 SERPINH1 PAK1 is broken and may read 
through into SERPINH1 

 Second read 11 76838302 76838615 -    

Inversion First read 8 41650073 41650491 - ANK1 AP3M2 ANK1 is broken and may read 
through into AP3M2 

 Second read 8 42088880 42089304 -    

 
Table 5.6. Readthrough gene fusions in MDA-MB-134 predicted from structural variants called from paired-end sequencing. The 
read strand refers to the alignment of the reads in the read pairs to the genome.
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Figure 5.20. Fusion gene PCR strategy. The green and blue arrows represent genes, while the 
red jagged line represents a breakpoint in the gene. PCR primers were designed which would 
amplify the normal cDNA from each gene, and in combination would amplify only a fusion 
product. 
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Figure 5.21. PCR to detect fusion transcripts in MDA-MB-134. No fusion transcripts were 

detected. See next page for key to PCR reactions. 
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Upper row   Lower row  

Well Primers cDNA  Well Primers cDNA 

1 GapDH None  1 ANK1 Reference 

2 GapDH Reference  2 ANK1 HB4a 

3 GapDH HB4a  3 ANK1 MDA-MB-134 

4 GapDH MDA-MB-134  4 EFR3A/ANK1 HB4a 

5 ARSG Reference  5 EFR3A/ANK1 MDA-MB-134 

6 ARSG HB4a  6 SHANK2 Reference 

7 ARSG MDA-MB-134  7 SHANK2 HB4a 

8 UNC5D Reference  8 SHANK2 MDA-MB-134 

9 UNC5D HB4a  9 FBXL11 Reference 

10 UNC5D MDA-MB-134  10 FBXL11 HB4a 

11 ARSG/UNC5D HB4a  11 FBXL11 MDA-MB-134 

12 ARSG/UNC5D MDA-MB-134  12 SHANK2/FBXL11 HB4a 

13 EFR3A Reference  13 SHANK2/FBXL11 MDA-MB-134 

14 EFR3A HB4a     

15 EFR3A MDA-MB-134     
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Figure 5.22. PCR to detect fusion transcripts in MDA-MB-134. No fusion transcripts were 
detected. 
 

Well Primers cDNA 

1 GapDH None 

2 GapDH Reference 

3 Blank Blank 

4 Blank Blank 

5 KLHL35 Reference 

6 KLHL35 HB4a 

7 KLHL35 MDA-MB-134 

8 ODZ4 Reference 

9 ODZ4 HB4a 

10 ODZ4 MDA-MB-134 

11 KLHL35/ODZ4 HB4a 

12 KLHL35/ODZ4 MDA-MB-134 
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Figure 5.23. PCR to test for predicted 

readthrough fusions in MDA-MB-134. A key 

to the wells can be found on the following 

page. No fusion transcripts were detected.  
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Row Column Primers cDNA 
 

Row Column Primers cDNA 

1 1 EPB49 Reference 
 

5 1 GGCT Reference 

1 2 EPB49 MDA-MB-134 
 

5 2 GGCT MDA-MB-134 

1 3 SHANK2 Reference 
 

5 3 NOD1 Reference 

1 4 SHANK2 MDA-MB-134 
 

5 4 NOD1 MDA-MB-134 

1 5 EPB49/SHANK2 Reference 
 

5 5 GGCT/NOD1 Reference 

1 6 EPB49/SHANK2 MDA-MB-134 
 

5 6 GGCT/NOD1 MDA-MB-134 

2 1 ADAM2 Reference 
 

6 1 KLHL35 Reference 

2 2 ADAM2 MDA-MB-134 
 

6 2 KLHL35 MDA-MB-134 

2 3 LRRC32 Reference 
 

6 3 AQP11 Reference 

2 4 LRRC32 MDA-MB-134 
 

6 4 AQP11 MDA-MB-134 

2 5 ADAM2/LRRC32 Reference 
 

6 5 KLHL35/AQP11 Reference 

2 6 ADAM2/LRRC32 MDA-MB-134 
 

6 6 KLHL35/AQP11 MDA-MB-134 

3 1 ACER3 Reference 
 

7 1 ANK1 Reference 

3 2 ACER3 MDA-MB-134 
 

7 2 ANK1 MDA-MB-134 

3 3 NADSYN1 Reference 
 

7 3 APM32M Reference 

3 4 NADSYN1 MDA-MB-134 
 

7 4 APM32M MDA-MB-134 

3 5 ACER3/NADSYN1 Reference 
 

7 5 ANK1/APM32M Reference 

3 6 ACER3/NADSYN1 MDA-MB-134 
 

7 6 ANK1/APM32M MDA-MB-134 

4 1 IMMP2L Reference 
 

8 1 PAK1 Reference 

4 2 IMMP2L MDA-MB-134 
 

8 2 PAK1 MDA-MB-134 

4 3 PRDM4 Reference 
 

8 3 SERPINH1 Reference 

4 4 PRDM4 MDA-MB-134 
 

8 4 SERPINH1 MDA-MB-134 

4 5 IMMP2L/PRDM4 Reference 
 

8 5 PAK1/SERPINH1 Reference 

4 6 IMMP2L/PRDM4 MDA-MB-134 
 

8 6 PAK1/SERPINH1 MDA-MB-134 

     
9 1 GapDH Reference 

     
9 2 GapDH MDA-MB-134 

     
9 3 GapDH Reference 
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Figure 5.24. Two possible KLHL35 fusions predicted in MDA-MB-134. A – fusion predicted 
between KLHL35  and ODZ4. B – readthrough fusion predicted between KLHL35 and AQP11. 
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Type of structural variant Chromosome  Deletion start Deletion end Gene 

Deletion 11 411136 411904 ANO9 

Deletion 11 3081376 3082009 OSBPL5 

Deletion 11 7673249 7674173 OVCH2 

Deletion 11 92742021 92743103 CCDC67 

Deletion 12 131707143 131707992 P2RX2 

Deletion 15 87669090 87669745 POLG 

Deletion 15 91316598 91317352 CHD2 

Deletion 16 1387181 1387880 C16orf28 

Deletion 17 37743398 37744175 STAT3 

Deletion 19 55820546 55821085 SYT3 

Deletion 2 85746607 85747410 SFTPB 

Deletion 20 62066274 62068265 ZNF512B 

Deletion 6 158468017 158469427 SERAC1 

Deletion 7 157080659 157081216 PTPRN2 

Table 5.7. Internal gene deletions in MDA-MB-134 predicted from deletions called from paired-

end sequencing. 
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Figure 5.25. PCR to look for internal deletions of genes in MDA-MB-134. Each PCR was 
performed using genes spanning the deletion. The first PCR in each pair is on universal 
reference cDNA, and the second is on MDA-MB-134 cDNA to look for a different size product, 
which would indicate a possible transcript with exons deleted. 
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5.2.9 ODZ4 as a potential fusion gene 

The candidate fusion gene KLHL35-ODZ4 was of particular interest. ODZ4 (also known as DOC4 

or TEN4) was part of one of the few gene fusions known before the start of my project, as it is 

fused to NRG1 in the breast cancer cell line MDA-MB-175 (Liu et al., 1999). ODZ4 is part of the 

teneurin family of signaling molecules, which can function as transmembrane receptors and 

also transcription factors (Tucker and Chiquet-Ehrismann, 2006). ODZ1 overexpression has been 

implicated in mouse mammary tumorigenesis by MMTV-insertion experiments (Theodorou et 

al., 2007). ODZ4 has not been proposed as one of the important genes in the 11q amplicon in 

breast cancer as it is outside the minimal region of amplification.  From the SNP6.0 data from 

the Cancer Genome Project (Bignell et al., 2010), breaks in ODZ4 can be seen in the cell lines 

HCC1599, MRK-nu-1, and MCF7. The genome of MCF7 has been mapped by paired-end 

sequencing (Hampton et al., 2009), but no fusions of ODZ4 were found. A diagram of the known 

breaks in ODZ4 is shown in Figure 5.26. 
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ODZ4 was seen to be expressed in MDA-MB-134 but not in the normal immortalized breast cell 

line HB4a. To investigate whether ODZ4 was expressed in other breast cancer cell lines, a 

primer pair designed to amplify exons 4 and 5 was tested on a panel of cell lines. In this semi-

quantitative assay, out of 28 breast cancer cell lines, 5 showed expression of ODZ4 (Figure 

5.27). ODZ4 was also expressed in the non-cancer breast cell line HMT3552, but not detectably 

in HB4a. Of the cell lines with known breaks, MDA-MB-134 and MDA-MB-175 showed 

expression while HCC1599 and MCF7 did not. No data was available for MRK-nu-1. HCC1419, 

HCC1500, and PMC42 also showed expression of ODZ4.  

Quantitative real-time PCR was performed on ODZ4. Primers were designed to amplify exon 8, 

which is part of the fusion gene in MDA-MB-175, and exon 21, which is not part of the fusion 

gene, and tested on a panel of cell lines. The results are shown in figure 5.28, with expression 

compared to the universal human reference cDNA, containing cDNA from a pool of different 

cell lines.  

HB4a and HMT3552 both express ODZ4 at low but detectable levels. The lack of expression 

seen in HB4a using semi-quantitative methods was likely to be due to the expression levels 

being at the limit of detection for standard PCR. The cell lines BT-474, HCC1500, PMC42 and 

SUM52 showed a low level of upregulation of both exons of ODZ4 compared to the control cell 

line HB4a. Semi-quantitative PCR suggested that HCC1500 would have a higher expression level 

than was seen by quantitative PCR, which may be due to the standard PCR using different 

samples of cDNA which had not been normalized to any housekeeping genes. 

MDA-MB-134 and MDA-MB-175 showed higher overexpression of ODZ4 than any other cell 

lines. MDA-MB-175 was the only cell line which showed higher expression of exon 8 than exon 

21, and this may be due to the fusion of ODZ4, which includes exon 8 but not exon 21. 
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Figure 5.27. PCR using primers for ODZ4 exons 4-5 on a panel of breast cancer cell lines. 
Row 1: HMT3552 (positive), HB4a, SUM44, SUM52, BT20, BT474, BT549, MCF7 
Row 2: HCC38, HCC1143, HCC1419 (positive), HCC1500 (positive), HCC1569, HCC1599, 
HCC1806, HCC1937. 
Row 3: MDA-MB-134 (positive), MDA-MB-175 (positive), MDA-MB-231, MDA-MB-361, MDA-
MB-415, MDA-MB-468, ZR-75-1, ZR-75-30. 
Row 4: VP229, VP267, PMC42 (positive), Patu-1, Suit-2, Mia-paca-2, DU4475, SKBr3 
Row 5: T47D, universal reference cDNA (positive control), negative control. 
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Figure 5.28. Real-time PCR on two sets of primers in ODZ4. Expression for each cell line was 

normalised to three housekeeping genes (GAPDH, UBC, and RPL13a), and the expression for 

each cell line was plotted relative to the expression of the universal reference cDNA. 

5.3 Discussion 

The karyotype of MDA-MB-134 has now been investigated using low-resolution array painting, 

high-resolution SNP6.0 arrays, and high-throughput sequencing. A comparison of the three 

methods shows good concordance between the three methods for determining the structure of 

amplicons.  

The 1Mb array painting offers the lowest resolution data, but it is the only method which allows 

the structure of the amplified chromosome to be determined directly from the chromosome 

without the possibility of breaks on other copies of the chromosome being included as part of 

the amplification. While it appears that the breaks on chromosomes 8 and 11 in MDA-MB-134 

are confined to the two amplified chromosomes, in cell lines and tumours with a more 
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complicated pattern of amplification, spread across multiple different derivative chromosomes, 

whole-genome approaches could lead to confusion when trying to assemble complicated 

amplicons. The higher resolution data also suggests that requiring 3 consecutive clones gained 

or lost to call a copy number change in the 1Mb array painting was conservative, as there were 

regions with 1 or 2 clones showing a copy number change which appears to be real. 

A limitation of microarray-based approaches is that it is difficult to quantify regions of high and 

low copy number in one experiment without the probes at high copy number becoming 

saturated (Williams and Thomson, 2010). High-throughput sequencing should be unaffected by 

this problem as the copy number is obtained directly from the number of reads. A comparison 

of the copy number data obtained from the SNP6.0 array and from high-throughput sequencing 

suggests that the structure of the amplicon has more copy number changes than are called 

from the SNP6.0 data as the array becomes saturated at high copy number (Figure 5.29). 
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Figure 5.29. Comparison of segmented copy number for MDA-MB-134 chromosome 8. A – 
SNP6.0 array data, with segments predicted by the PICNIC algorithm (Greenman et al., 2010) 
shown in red. B – Illumina sequencing copy number data for the same region, with segments 
predicted by DNACopy shown in red. The vertical green lines mark known breakpoints 
confirmed by PCR and capillary sequencing. In A, the amplification appears to be 7-fold, with a 
shift from 2 copies to 14 copies (the SNP6.0 data is taken from the endoreduplicated sideclone 
of MDA-MB-134, which is why distal 8p is present at 2 copies rather than 1). In B, the 
amplification appears to be 16-fold. 
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The search for fusion genes in MDA-MB-134 was disappointing, as 12 fusion genes were 

predicted and none were found to be expressed. This was particularly disappointing as two of 

the predicted fusions involved genes known to be fused in epithelial cancers. An expressed in-

frame fusion of SHANK2 is known in a melanoma cell line (Berger et al., 2010). The potential 

fusion partner in MDA-MB-134 is EPB49, also known as dematin, which encodes a cytoskeletal 

protein which has been implicated in prostate tumorigenesis. Truncated forms of EPB49 have a 

dominant negative effect and cause cytoskeletal abnormalities and altered cell shape 

(Lutchman et al., 1999), raising the possibility that a fusion of EPB49 could also act as a 

dominant negative inhibitor of the wild-type protein. 

ODZ4 was another known fusion partner predicted to be fused in MDA-MB-134. Although no 

fusion transcript was detected, ODZ4 was substantially upregulated in MDA-MB-134 compared 

to the normal control cell lines. ODZ4 lies outside the highly amplified region, which suggests 

another mechanism causes overexpression rather than an increase in expression due to 

increased copy number. ODZ4 is also overexpressed in BT-474, for which high-resolution SNP6.0 

data is also available (data provided by the Cancer Genome Project (Bignell et al., 2010)). 

Although there are rearrangements on chromosome 11, there is no copy number change in 

ODZ4. SNP6.0 data is not available for PMC42, HCC1500, or SUM52, the other cell lines which 

overexpress ODZ4, but data from a custom oligonucleotide array containing 30,000 probes 

suggests that SUM52 may have an amplification of ODZ4, while PMC42 and HCC1500 do not 

show a copy number change. (Data kindly provided by Dr Suet-Feung Chin, Cancer Research UK 

Cambridge Research Institute.) This suggests that multiple mechanisms may cause ODZ4 

expression, including copy number gain and expression as part of a fusion gene. Additionally, 

PMC42 has been suggested as a good model of normal breast epithelium despite originating 

from a breast cancer, as it has similar mRNA and miRNA expression profiles to HB4a (Git et al., 

2008), but it has higher expression of ODZ4 than the cell lines derived from normal breast 

epithelium. 
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6.1 Introduction 

The primary aim of the high-throughput sequencing I performed on cancer cell lines was 

to identify structural variants in the cancer genome. I chose to perform paired-end 

sequencing, which sequences a short read from either end of a fragment of a known 

size, rather than single end sequencing, which produces only one sequence read from 

each piece of fragmented DNA. Paired-end sequencing is a better method for detecting 

structural variants than single-end sequencing, as sequencing from either end of a DNA 

fragment will detect a rearrangement occurring anywhere in the fragment. This gives a 

much higher level of coverage for rearrangements for the same amount of actual 

sequence from a single-end read, where rearrangements will only be detected if there is 

a read across the rearrangement. 

Finding the structural variants in a tumour genome usually relies on comparing the 

tumour genome to a reference genome by aligning all the sequences from the tumour 

to the reference genome and detecting any variation. This is easier than assembling the 

tumour genome from scratch as it is difficult to assemble a human genome from current 

short sequence reads (Medvedev et al., 2009).  Paired-end reads from a structural 

variant in the cancer genome will produce an identifiable signature depending on the 

type of rearrangement, and these signatures can be detected and used to find the 

underlying structural rearrangement. The read coverage across the genome can also be 

used to detect unbalanced structural variants, as a change in copy number will cause a 

change in the number of reads across that region of the genome. 

Although the idea of sequencing the end of genomic fragments to find structural 

variants has been used in the past (Volik et al., 2003), this was limited by the capacity of 

capillary sequencing and produced small numbers of sequences from large DNA 

fragments. High-throughput sequencing produces orders of magnitude more sequence 

reads than previous approaches, and while some bioinformatics software was available 

to analyse high-throughput sequencing data, at the time this project was started there 

was no software available which would use paired-end sequencing data to predict 
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structural variants and copy number changes, and any effect they had on genes. I 

developed a bioinformatic analysis pipeline using a combination of available software 

packages and some custom software which would process the raw sequence data and 

generate copy number and structural variation information. The steps in the pipeline 

are shown in Figure 6.1. 
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Figure 6.1. Outline of the pipeline used to process high throughput sequencing data  
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6.2 Alignment of high-throughput sequencing reads 

The process of DNA alignment for high-throughput sequencing involves comparing a 

short sequence read to a reference genome and determining the most likely position 

within the genome that produced the sequence. Sequence alignment algorithms 

specifically designed for high-throughput sequencing perform differently to those 

optimized for other applications, as they can make certain assumptions – for instance, 

we can assumed that all matches will be perfect or near-perfect, which is not true of 

alignment algorithms designed to find alignments between different species (Flicek and 

Birney, 2009). Sequence alignment in general involves a trade-off between the 

sensitivity of the alignment and the speed of the algorithm, as a faster algorithm may 

not find a more distant alignment, or may misalign some sequences. Designing 

algorithms specifically for high-throughput sequencing allows them to perform quickly 

enough to cope with a high volume of data without too much of a trade-off in accuracy. 

To get the raw sequences, the image analysis (FIRECREST) and base calling modules 

(BUSTARD) of the standard Illumina pipeline were used. The sequence alignment 

program MAQ (Li et al., 2008) was then used to align the paired-end reads. MAQ was 

one of the first algorithms developed specifically to handle high volumes of short 

sequence reads, and adapts the seed and extension method used by earlier algorithms. 

BLAST is an early example of this approach – short exact hits or ‘seeds’ within the 

sequence are found, and then each seed is extended into a longer alignment (Altschul et 

al., 1990). This allows for fast searching by initially searching for only the short seed 

sequences and  then searching for longer alignments only where a short match has 

already been found, narrowing the search space.  PatternHunter (Ma et al., 2002) 

improved this method through the use of non-contiguous seeds, which were shown to 

increase the sensitivity of matches as they are less affected by a mutation at a single 

base pair. MAQ uses the first 28bp of each to read to create six non-contiguous seeds, 

which increases the match sensitivity, and speeds up the searching by creating six hash 

tables, one for each seed. The hash table is created by taking the base pairs at each 
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position in the seed and using a hash function to generate an integer value based on 

them. The reads can then be ordered according to this integer and grouped together in 

memory. The same hash function is then applied to a 28bp subsequence of the 

reference sequence, which also generates an integer which can be used to look up the 

indexed reads which gave the same integer. If a hit is found then the match is extended 

beyond 28bp to see if it matches the whole length of the sequence. This is repeated 

over the six hash tables for all possible 28bp subsequences of the reference genome to 

find the best match. 

 To find the best match for a sequence in the genome, MAQ searches for the ungapped 

match with the lowest mismatch score, which is defined as the quality scores of the 

bases that are mismatched. For greater speed, MAQ only considers hits with two or 

fewer mismatches in the first 28 positions of the read. Each alignment is assigned a 

quality score, which is a measure of the probability that the alignment reported by MAQ 

is the correct alignment. For each quality score, Q: 

 

A quality score of 30 indicates a 1 in 1000 chance that the read is incorrectly mapped. 

If MAQ finds multiple alignments with equally good quality scores, it will return one 

alignment at random and give a quality score of 0, allowing these alignments to be 

easily identified and filtered out. I used a quality threshold of 35 to decide whether to 

retain a read pair for further processing, which removes low quality alignments which 

may be misaligned, and also removes any reads that do not have a single unique match 

as non-uniquely mapping reads will give spurious results if used for structural variant 

calling.  

Multiple read pairs that map to identical positions in the genome are likely to be 

duplicates of the same fragment created during the PCR amplification step. After the 

reads had been aligned with MAQ, the first step was to identify reads that were likely to 

be PCR duplicates and remove all but one of the identical read pairs. 



Chapter 6  Bioinformatics of high-throughput sequencing of breast cancer 

164 

 

6.2.1 Calling normal and aberrant reads 

A normal read was defined as a pair of reads which aligned to the genome with the 

expected size and orientation (Figure 6.2). The expected size was determined from the 

size distribution of the DNA fragments in the library. Anything within 3 standard 

deviations of the median was considered inside the normal range, as the library size 

distribution is approximately normally distributed. The expected orientation is with the 

read aligned to the positive strand in a lower position on the chromosome, and the read 

aligned to the negative strand in a higher position on the chromosome. 

Any read pair that did not meet the criteria for a normal read was called as an 

aberrantly mapping read. Aberrantly mapping reads are candidates to be reads from 

DNA fragments that contain a structural difference from the reference human genome. 
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Figure 6.2. A - a normal read pair aligned to the reference genome. The blue read is in 
the lower position on the chromosome and aligns to the positive strand, while the red 
read is in the higher position on the chromosome and aligns to the negative strand. B - 
the library size distribution of a typical small insert library showing the range of 
fragment sizes which are considered as normal fragments. (Example taken from ZR-75-
30 cell line library.) 



Chapter 6  Bioinformatics of high-throughput sequencing of breast cancer 

166 

 

6.2.2 Processing mate-pair data 

There are two types of paired-end library. Standard small-insert libraries have a 

fragment size of up to 800bp. Mate-pair libraries use longer fragments which are 

circularized, ligated, and fragmented a second time to produce a library with a larger 

insert size than can be achieved using standard small-insert libraries. 

Mate-pair libraries need to be processed differently, as a normal read from a mate-pair 

library will have a different size and orientation than a standard small-insert library 

(Figure 6.3). In a mate-pair library, the paired reads are taken from the ends of a longer 

DNA fragment. As long DNA fragments cannot be directly sequenced on the Illumina 

platform, longer fragments are circularized and the junction labelled with biotin. A 

smaller fragment containing the ligated junction is cut out and these junction fragments 

are pulled out using avidin-labelled beads. The junction fragments are similar in size to 

the fragments from a standard small-insert library and are sequenced in the same way 

as a standard library. As the DNA has been circularized, when the sequence reads from 

the ends of the small fragments are aligned to the genome, they will align in the 

opposite orientation to the normal fragments of a small-insert library (Figure 6.3). The 

size range for a normal fragment is also larger, as the size distribution of the fragments 

in a mate-pair library is wider than for a small insert library.  
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Figure 6.3. Construction of mate-pair libraries. After circularization, ligation and 
fragmentation of the libraries, there are two populations of short fragments in the 
library. The desired small fragments have reads shown as yellow arrows. A population of 
unwanted fragments will also be present in the library due to imperfect selection for the 
biotin-labelled fragments. The reads from these fragments are shown in green, and have 
opposite orientations to the desired reads. 
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6.3.1 Clustering and structural variant calling 

To call a structural variant, two or more independent high-quality reads which 

supported the structural variant were needed in order to minimize artefactual 

predictions, on the basis that chimeras produced during the library preparation or 

misaligned reads are much less likely to occur twice in the same location than two real 

reads across a structural variant. 

To find multiple read pairs which covered the same structural variant, the reads were 

clustered (Figure 6.4). The read pairs were first sorted so that the first read in the pair 

came first in the genome, and then the read pairs were sorted into order by 

chromosome, position, and strand they aligned to. If there were multiple read pairs 

where all the first reads in the pairs were on the same chromosome, aligned to the 

same strand, and the distance between them was less than the upper limit of the library 

size range, they were clustered together. The clustering process was repeated for the 

second reads in the pairs. Only read pairs where both of the reads from all the pairs 

were in the same regions are used to call the structural variants (Figure 6.5). These 

reads are assumed to be spanning the same breakpoint, and the true position of the 

breakpoint lies no further than the upper limit of the library insert size from the position 

of the read in the cluster which was furthest from the breakpoints. 
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Figure 6.4. Clustering of reads to call structural variants. Paired reads are clustered if 
they map to the same strand and the difference in their positions is smaller than the 
maximum library insert size. The position of the breakpoint must lie less than the 
maximum library insert size from the end of the read furthest to the breakpoint. 
 

 

Figure 6.5. Clustering of reads to call structural variants. Only the reads shown in green 
support this structural variant, as both reads in the pair support the variant. The reads 
shown in blue would not be used to support the structural variant as only one of the 
reads in a pair supports the structural variant.   
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The structural variants were classified based on read strands and positions (Figure 6.6), 

and named based on the most likely chromosomal rearrangement which can be inferred 

from the reads. 

A DIF is called when the two reads in a pair map to different chromosomes. It is most 

likely to be an interchromosomal translocation or insertion. A DEL is called when the 

two reads in a pair map further apart than the maximum library size, and the read which 

maps to the lower position is on the positive strand, and the read in the higher position 

is on the negative strand. It is most likely to be a deletion, but it could also be an 

insertion of material normally found at a higher position on the chromosome, with no 

loss of DNA. An INS is called when the read which maps to the lower position is on the 

negative strand, and the read which maps to the higher position is on the positive 

strand. It is mostly likely to represent an insertion. Head-to-tail tandem duplications will 

also be in this class, and as the paired reads cover only one side of the insertion it 

cannot be distinguished from a larger insertion.  An INV is called when both reads in the 

pairs map to the same strand, indicating one side of the breakpoint has been inverted. 

An ITR is called when both reads in the pair map to the same position and the same 

strand, and it is a special variant of the INV class caused by a head-to-head tandem 

duplication.  

Just as the strands for a normal read pair are reversed for mate-pair libraries, the 

expected strands when calling structural variants must also be reversed (Figure 6.7). A 

probable deletion is called from a read pair where the read in the lower position is 

aligned to the negative strand, and the read in the higher position is aligned to the 

positive strand. A probable insertion is called from a read pair where the read in the 

lower position is aligned to the positive strand, and the read in the higher position is 

aligned to the negative strand. Probable inversions and inverted tandem repeats will 

have both reads aligned to the same strand.  
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Figure 6.6. Structural variant calling of small-insert library. For each type of structural 
variant, the upper diagram shows the arrangement of the abnormal chromosome, and 
the lower diagram shows how the read pair would align to the reference genome. 
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Figure 6.7. Structural variant calling from mate-pair library. For each type of structural 
variant, the upper diagram shows the arrangement of the abnormal chromosome and 
the reads produced from a mate-pair library, and the lower diagram shows how the 
read pair would align to the reference genome. 
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Structural variant calling is more difficult from mate-pair libraries because the biotin 

selection step of the library preparation is not perfect, and some of the unbiotinylated 

fragments will also be retained. These small fragments, which do not cross the 

circularization junction, will be retained after size selection (Figure 6.3), and they can be 

seen as a second peak in a graph of the library size distribution (Figure 6.8). These 

fragments are similar to the fragments produced from a small-insert library, and will 

align to the same strands as for a small-insert library – the read in the lower position will 

align to the positive strand, and the read in the higher position will align to the negative 

strand. This gives the small fragments the same read orientation as insertions in the 

mate-pair library, and they could cause a spurious insertion to be called. Requiring two 

or more hits to call a structural variant reduces the likelihood of calling these insertions, 

as the small fragments make up a smaller percentage of the library than the desired 

junction fragments, and the probability of getting two reads across the same region is 

lowered. The read pairs which appear to be from the small fragments can also be 

filtered out – this will remove a small number of real insertions along with the false 

positives. As much larger numbers of small insertions were called from unfiltered mate-

pair libraries than from small-insert libraries, it was likely that many of them were 

spurious insertions, and the small fragments were filtered out before any further 

analysis was done. 
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Figure 6.8. Fragment size distribution from the mate-pair library of the cell line ZR-75-
30. The histogram shows the percentage of fragments of each size. The blue bars show 
the size distribution for the fragments where the reads map in the expected orientation 
for the biotinylated fragments from a mate-pair library. The red bars how the size 
distribution of the smaller non-biotinylated fragments which were not removed during 
library preparation. 
 

6.4 Fusion gene prediction 

Once a list of well-supported structural variants was produced from the short 

sequences, the next step was to look for any potential fusion genes which may result 

from these structural variants. 

The list of structural variants was first checked against a list of known human copy 

number variations (Conrad et al., 2010) and any which matched were considered to be 

normal human variation and not acquired in the tumour. 
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The set of structural variants with known common copy number variations removed was 

used to predict potential fusion genes. The fusions were predicted computationally at 

the DNA level by using the Ensembl Application Programming Interface to retrieve all 

the genes which overlap the breakpoint region of a structural variant, and predicting 

whether a fusion transcript could be formed based on the direction of the reads and the 

strands of the genes (Figures 6.9 and 6.10). As well as rearrangements where two genes 

are broken and fused, we considered rearrangements which break only one gene and 

remove the 3' end including the transcription stop site, which could result in 

transcription continuing into a downstream gene until it reaches the stop site of the 

downstream gene. As a breakpoint could break two genes on different strands, it is 

possible for more than one fusion gene to be predicted for each structural variant. As 

the breakpoints are not resolved to base-pair level, if the gene is broken inside an exon 

it was not possible to predict whether or not an in-frame transcript would be produced. 

Although it is theoretically possible to predict whether an intronic break will produce an 

in-frame fusion, alternate splicing and cryptic exons are found in fusion genes (Howarth 

et al., 2008), which complicates the prediction of fusions. 

Structural variants can also cause genes to be internally rearranged, deleting or 

duplicating exons. As the majority of structural variants are small deletions entirely 

within introns, which are expected to have no effect on the coding sequence of the 

gene, the number of exons deleted is also returned by the script, so that the deletions 

which may affect genes can be easily prioritised over those which do not delete any 

coding regions.  
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Figure 6.9. Fusion gene prediction from small-insert library. The strands of the read 
alignments allow the orientation of the chromosomes and genes to be determined, and 
predict whether a gene fusion will be formed. Depending on the orientation of the 
genes, a fusion gene may be predicted, there may be no possible fusion, or there may 
be a potential readthrough fusion. As a single breakpoint may break two genes on 
different strands, more than one possible gene fusion or readthrough is possible at each 
junction. 
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Figure 6.10. Fusion gene prediction from mate-pair library. The gene prediction is similar 
to for the small-insert library , but the orientations of the chromosome and genes are 
reversed relative to the aligned strands of the reads. 
 

 



Chapter 6  Bioinformatics of high-throughput sequencing of breast cancer 

178 

 

6.4.1 Validation of predicted fusion genes 

To validate the computational prediction of fusion genes, I used independent structural 

variation data sets from the cell lines MCF7 (Hampton et al., 2009) and HCC1187 

(Stephens et al., 2009a). In their paper, Hampton et al. predicted that MCF7 had 10 

possible in-frame fusions caused by breakpoints occurring in the introns of 2 genes, and 

they found that 4 of these were present at the cDNA level. I took their published data 

set, which contained all the structural variants they found in MCF7, and put the data 

into my fusion gene prediction script. The script successfully found all 10 fusions that 

Hampton et al. predicted, as well as 4 other potential fusions, 3 internal deletions and 

41 potential readthrough fusions.  

Stephens et al. (2009) found a number of fusions and internal rearrangements in the cell 

line HCC1187. They found 6 expressed fusion genes, 2 of which were in-frame fusions 

and 4 out-of-frame fusions. I put their data set of structural variants into my fusion gene 

prediction script, and all 6 of the expressed fusions were found, along with 5 other 

predicted fusions not mentioned in their paper. At least one of the fusions I predicted 

(PUM1-TRERF1) is known to be expressed (Dr Karen Howarth, unpublished). They also 

looked for internal gene rearrangements and exon deletions, and found 5 expressed in-

frame internal gene rearrangements and 7 internal rearrangements which were not 

checked for expression. All of these internal rearrangements were predicted 

computationally by my script, along with 8 other internal gene rearrangements. One of 

the 8 rearrangements not found by Stephens et al. (2009) is a tandem duplication of 

RAD51L1, which is known to be expressed (Susanne Flach, unpublished work in the lab). 

This validation shows that my method of fusion prediction not only successfully finds 

known fusion genes in other data sets, but predicts fusion genes which have been 

missed by other methods of fusion gene prediction. 

The fusion prediction script was then used to predict fusion genes using a data set of 

paired end reads from cell lines and tumour samples. In the cell line ZR-75-30, 20 

potential fusion genes were predicted. In collaboration with Dr Ina Schulte I looked for 
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expression of the fusion genes and found 7 expressed fusion genes, of which 3 produced 

in-frame transcripts (Table 6.1) . 

Type of structural variant 5' Gene 3' Gene Expressed? In-frame? 

Insertion PCTK3 NFASC No No 

Translocation GRIP2 BCL11A No No 

Inversion PREX2 TSNARE1 No No 

Translocation HYLS1 TIMM23 No No 

Translocation STRN3 PLCE1 No No 

Translocation FSIP1 BAZ2A No No 

Translocation CBX3 c15orf57 No No 

Translocation TRAPPC9 STARD3 No No 

Translocation NDRG1 HOXB4 No No 

Translocation TRAPPC9 SPAG5 No No 

Translocation PPM1D TRAPPC9 No No 

Inversion TAOK1 CA10 No No 

Insertion SSH2 PLXDC1 No No 

Inversion ZMYM4 OPRD1 Yes No 

Translocation COL14A1 SKAP1 Yes Yes 

Translocation APPBP2 PHF10L1 Yes Yes 

Inversion TAOK1 PCGF2 Yes Yes 

Deletion UPS32 CCDC49 Yes No 

Inversion BCAS3 HOXB9 Yes No 

Deletion TIAM1 NRIP1 Yes Yes 

Table 6.1. Predicted fusion genes in the ZR-75-30 cell line. 

 

In the paired cell lines VP229 and VP267, taken from a patient at different stages of 

disease, there were 27 fusions which were predicted to be in both cell lines. 3 were 

found to be expressed, of which 2 were out of frame, and 1 was in frame (Scott 

Newman and Susanne Flach, unpublished) (Table 6.2). 
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Type of structural variant 5' Gene 3' Gene Expressed? In-frame? 

Insertion NRG3 c10orf11 No No 

Translocation GRIK1 CPXM2 No No 

Deletion OR52N1 TRIM5 No No 

Insertion NRG3 SAMD8 No No 

Translocation PDLIM1 ZBBX Yes No 

Inversion ACADSB ADAM12 No No 

Translocation PDLIM1 TNIK No No 

Inversion FAM125B SPTLC1 Yes No 

Translocation NRG3 GRIP1 No No 

Translocation DLG5 KCNMB2 No No 

Translocation MYNN NRG3 No No 

Inversion AL356155.1 SORCS1 No No 

Inversion ROR2 NEK6 No No 

Deletion ZFAND2a c7orf50 No No 

Translocation CPLX1 DUSP14 No No 

Inversion UBTD1 SLIT1 No No 

Inversion PBX3 ROR2 No No 

Translocation MDS1 KCNMA1 Yes Yes 

Deletion FNBP1 FAM129B No No 

Inversion FAM129B NEK6 No No 

Insertion APOBEC3G APOBEC3D No No 

Translocation DPY19L2 DPY19L2P2 No No 

Inversion AATF AC113211.2 No No 

Translocation c10orf11 c17orf63 No No 

Translocation c17orf63 c10orf11 No No 

Translocation ADK KCNMB2 No No 

Translocation UBR4 ZFP37 No No 

Table 6.2. Predicted fusion genes in both of the paired cell lines VP229 and VP267. 
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6.5 Copy number variation 

The read pairs which map normally were used to find copy-number alterations.  The 

number of sequence reads within a given interval which align to the genome should be 

proportional to the copy number, and the resolution is limited only by the read 

coverage across the genome. To get accurate copy-number from sequencing, the data 

must be corrected for the repeat content and GC percentage across the genome.  

 

6.5.1 Correcting for mappability 

Repetitive regions of the genome will have fewer aligned reads than unique regions as 

fragments produced from repeat regions during library preparation are likely to align 

perfectly to multiple regions of the genome, and will be discarded during data 

processing. To account for this ‘mappability’ of the genome, the start positions of all the 

genomic locations where a 35bp read would give a single match were simulated. This list 

of mappable starts was used to divide the genome up into windows which each contain 

the same number of mappable starts, giving windows of variable size. Highly repetitive 

regions of the genome give larger windows. 

The sequence reads were binned into the windows across the genome, and the number 

of reads in each window should be proportional to the copy number. 

 

6.5.2 Correcting for GC content 

The library preparation protocols for the Illumina Genome Analyzer are known to 

introduce bias and produce greater numbers of reads from regions with high GC content 

(Dohm et al., 2008). This bias was reduced by lowering the melting temperature during 

the gel extraction of the library preparation protocol, which has been shown to 

considerably reduce the GC bias (Quail et al., 2008). To examine the GC content bias in 
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our data, the GC percentage for each window was retrieved using the Ensembl 

Application Programming Interface, and plotted against the number of reads in each 

window (Figure 6.11). This showed a bias in our data at both ends of the scale, with 

fewer reads in windows with either a high or a low GC content. Although a bias towards 

fewer reads in regions of low GC content was previously seen (Dohm et al., 2008), the 

corresponding drop-off in read number at high GC was not seen by previous studies. 

This may be because the effect was masked by the larger GC bias produced during the 

library preparation, as they had not followed the improved protocol described above, or 

because their data was generated from bacterial genomes, and there were few regions 

with high enough GC content for the effect to be seen. This bias is also seen as a ‘wave’ 

in the uncorrected copy number data when plotted alongside the GC percentage of the 

genome (Figure 6.12). 

The GC bias was noted to be similar to the GC ‘wave’ seen by Marioni et al. (2007) in 

array CGH data, and a similar method of loess correction was used to normalise the 

data. A loess curve was fitted to the a plot of GC content against the number of reads 

per window, and the values predicted from the loess curve were used to normalize the 

number of reads per window (Figure 6.13). This produced better copy number data as 

judged by eye. 
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Figure 6.11. The number of reads in a window plotted against GC percentage of the 
window to show the bias against reads at both low and high GC percentages. Data 
shown is from MDA-MB-134, chromosome 1. Most of chromosome 1 is present in two 
copies, with a small region present at higher copy number. 
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Figure 6.12. Copy number plots for MDA-MB-134 chromosome 1 showing GC content 
bias. A - the number of reads in each window across MDA-MB-134 chromosome 1, 
corrected for mappability but not GC percentage. B - the GC percentage of each 
window. C - the GC percentage and reads per window plotted on the same graph. 
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Figure 6.13. Correction of copy number data for GC content bias. A - Number of reads 
per window across MDA-MB-134 chromosome 1, uncorrected for GC content. B - 
Number of reads per window across MDA-MB-134 chromosome 1 after loess correction 
for GC content bias. 
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6.4.4. Segmentation and copy number analysis 

Segmentation in the context of copy number data refers to the process of 

computationally determining breakpoints and copy number alterations from a dataset 

of copy number information. A number of segmentation methods have been previously 

developed, primarily for analysing array CGH data. The SegSeq algorithm (Chiang et al., 

2009) is currently the only segmentation method designed specifically for high-

throughput sequencing, but it relies on the use of a matched normal sample to call 

breakpoints, and was therefore unsuitable for my purposes. Instead I used DNAcopy 

(Olshen et al., 2004; Venkatraman and Olshen, 2007), which uses circular binary 

segmentation to call breakpoints. DNAcopy has been shown to perform better than 

other segmentation methods on both simulated and real CGH data (Lai et al., 2005; 

Willenbrock and Fridlyand, 2005). 

 DNAcopy allows the user to set different parameters which determine how the 

segmentation is performed, and allow the algorithm to be “tuned” for better 

performance on a particular dataset (for example, to reduce false positives from data 

with a low signal-to-noise ratio) (Lai et al., 2005). There is little available information on 

how to best choose parameters for segmentation, although a study on the GLAD 

algorithm concluded that the choice of parameters had minimal effect on their data set 

(Rigaill et al., 2008). DNAcopy had been previously used to segment breast cancer cell 

line CGH data using the default parameters (Venkatraman and Olshen, 2007), and I 

changed only one parameter from the default, which was to use an “undo” method to 

remove breakpoints detected due to local trends in the data, as is recommended by the 

authors of the method. The parameters were tested by comparing the segments 

produced using different parameter sets for chromosomes from MDA-MB-134 and 

comparing them to the segmentation produced by the PICNIC algorithm from Affymetrix 

SNP6 data. The chosen parameters correctly detected known copy number changes 

without adding extra segments which did not appear to be supported by the data. The 

exception is at the centromeres where additional copy number segments may be called 
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due to incorrect mapping of reads to repeat regions.  A known weakness of the circular 

binary segmentation method is an inability to detect small regions of copy number 

change in the middle of chromosomes (Olshen et al., 2004), but DNAcopy successfully 

segments the small amplification on MDA-MB-134 chromosome 8 (Figure 6.14).  

 

Figure 6.14. Segmented copy number plot for part of MDA-MB-134 chromosome 8. A 
weakness of circular binary segmentation is the inability to detect small regions of copy 
number change, but using DNACopy the small amplification at 21.8Mb is successfully 
segmented. 
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6.6 Discussion 

The bioinformatic pipeline was validated by using data from a number of cell lines to 

assess how well it performed the analysis we required.  

The structural variant calls from MDA-MB-134 have been the most thoroughly analysed 

(see Chapter 5 for details). My analysis prioritised the validation of translocations and 

large genome rearrangements, as they were more likely to affect genes. Of the 42 large 

rearrangements predicted by the pipeline, 7 were filtered out by re-aligning the reads 

using BLAT, 4 could not be validated by PCR, and 7 were also present in a pool of normal 

female DNA, leaving 24 which could be validated and sequenced, or around 57% of the 

predicted variants.  

The 3 different ways that false positive variants were identified suggest there are 

multiple ways that the analysis could be improved. Improving the alignment steps of the 

pipeline is an easy way to remove the structural variants that are caused by 

misalignment. The variants that could not be validated by PCR are more difficult to 

address, as it is not possible to tell whether they are spurious structural variant calls, or 

whether they are true variants which fall in a region that is difficult to PCR. The variants 

that are also present in the normal female DNA do not represent a failure of the 

bioinformatic pipeline, as they are real variants which are present in the sequencing, but 

future sequencing projects will involve tumour genomes sequenced alongside the 

matched normal genome. Bioinformatic methods can be used to filter out any variants 

that appear in the normal genome. The smaller predicted structural variants have not 

been validated, so the number of false positives is unknown. 

The fusion gene predictions were tested in cell lines by looking for expression of a fusion 

transcript. The number of predicted fusions which were expressed ranges from 0 out of 

4 in MDA-MB-134, 7 out of 20 in ZR-75-30, and 3 out of 27 in VP229 and VP267. These 

figures are for gene fusions only, not including readthrough fusions or internal 

rearrangements which have not yet been completely tested in any cell line except MDA-
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MB-134.  The Stephens et al. (2009b) study found a higher proportion of their predicted 

fusion genes were expressed than in my study, but their predictions missed at least one 

expressed fusion gene, suggesting that my fusion prediction pipeline may predict more 

fusion genes which prove not to be expressed, but also find real fusion genes which 

other studies would miss. They also found that fewer of their predicted fusion genes 

were expressed in amplified regions, and all of these cell lines contain highly rearranged 

amplicons which may contribute to the lower number of expressed fusions. 

The copy number segments which were predicted for MDA-MB-134 agree with both our 

previous knowledge of MDA-MB-134 from FISH and microarray studies (Paterson et al., 

2007), and the breakpoints which are known to base pair resolution fall within the 

breakpoint regions predicted by DNACopy. Although the methods used to produce copy 

number segments are accurate, a disadvantage of the methods is that the breakpoints 

cannot be determined to a higher resolution than the size of the windows used to divide 

up the reads. As sequence coverage increases, a smaller window size can be used to 

refine the breakpoints, but a better method is to use a breakpoint calling technique 

which is not reliant on fixed window size. The SegSeq algorithm uses hidden Markov 

models to predict copy number change points, and even at relatively low coverage 

(~15million 36bp reads) it can predict breakpoints to within 1kb (Chiang et al., 2009). 

The rSW-seq algorithm, which uses a Smith-Waterman approach to map breakpoints, is 

another copy number prediction algorithm developed to avoid the use of windows and 

improve resolution. While both these algorithms identify breakpoints at higher 

resolution than my window-based approach, they both require normal sequences to 

compare against the tumour sequences, and they have so far been tested using cell line 

data which will not have the problems of stromal contamination found in tumour 

samples. Using a matched normal sample and calling the differences between the 

tumour and the normal sample also removes the problem of GC content bias, as the 

biases should be the same in both samples. 
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7.1 How prevalent are fusion genes in breast cancer? 

Part of the central hypothesis of my thesis is that the prevalence of fusion genes in solid 

tumours has been underestimated, and my study of breast cancer cell lines supports this idea. 

At the start of my project, only 5 fusion genes had been found in breast cancer, all in cell lines – 

a fusion of ODZ4 to NRG1  in the cell line MDA-MB-175 (Liu et al., 1999), a fusion of FHIT to a 

cDNA later identified as MACROD2 in BrCa-MZ-02 (Popovici et al., 2002), a fusion of BCAS4 to 

BCAS3 in MCF7 (Barlund et al., 2002), and the RIF1-PKD1L1  and TAX1BP1-AHCY fusions recently 

found in HCC1806 (Howarth et al., 2008). In HCC1806, which has two known fusion genes, I 

found no further fusion genes, and in MDA-MB-134 no fusion genes were found. However, the 

predictions of fusion genes I made in the cell lines ZR-75-30 and the paired cell lines 

VP267/VP229 using high-throughput sequencing data were validated and showed that ZR-75-30 

has at least seven expressed fusion genes and VP267 and VP229 have three expressed fusions. 

This agrees with the recent data from Stephens et al. (2009), which found between zero and 

eleven expressed fusion genes per tumour or cell line. Stephens et al. estimate they would have 

found 50% of the rearrangements present in their samples, which suggests that there are 

further fusion genes they have missed due to low coverage of the genome, and this is likely to 

be true of the cell lines I have investigated by sequencing – MCF7, which has been investigated 

by both genomic sequencing (Hampton et al., 2009) and paired-end transcriptome analysis 

(Ruan et al., 2007), has 13 known expressed transcripts (Table 7.1). 

One possible explanation for why no further fusion genes were found in HCC1806 is that fusion 

genes are more likely to be found at balanced rather than unbalanced breakpoints. HCC1806 

was first selected for array painting partly because the SKY karyotype suggested that it had 

balanced translocations, and the two known fusion genes in HCC1806, RIF1-PKD1L1 and 

TAX1BP1-AHCY, both involve balanced chromosome rearrangements. No further fusion genes 

were found when I investigated the unbalanced rearrangements in this cell line. It is probable 

that balanced rearrangements, which do not cause a gain or loss of material, are selected 

because they have an effect on genes in other ways, and balanced rearrangements may 

produce fusion genes more often than unbalanced rearrangements.  
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Another question is whether the lack of fusion genes found in MDA-MB-134 was due to 

technical difficulties of finding fusion genes, or whether it is a true result. The majority of the 

rearrangements found in MDA-MB-134 were in the amplicon, which was as expected based on 

the low-coverage sequencing, which was unlikely to find all the breakpoints in non-amplified 

regions. All of the 24 validated structural variants found by paired-end sequencing in MDA-MB-

134 were part of the amplicon, and none of the 9 rearrangements outside the amplicon 

suggested by copy number changes were detected by paired-end sequencing. This is a lower 

number of rearrangements detects than might be expected, which may be due to the repetitive 

nature of the breakpoint regions (see further discussion below). No structural variants were 

found to suggest that MDA-MB-134 contains any balanced rearrangements, which may be 

more likely to produce fusion genes. Additionally, the complex nature of the amplifications in 

MDA-MB-134 may make it less likely that rearrangements in the amplicon will produce fusion 

genes, as the two fusion partners may be further rearranged by a nearby breakpoint, or may be 

missing the nearby DNA sequences needed to form a stable transcript (Stephens et al., 2009). 

A hypothesis put forward in Paterson et al. (2007) was that a fusion gene formed from co-

amplification of chromosomes 8 and 11 might drive this amplification. No fusion gene has been 

found in MDA-MB-134 to support this hypothesis. It is more likely that the driver of 

amplification is co-expression of two genes in the amplicon, as suggested by Kwek et al.  (2009).  

7.2 How important are fusion genes in breast cancer? 

In contrast to the 5 known fusion genes at the start of my project, there are now 64 known 

fusion genes across a range of breast cancer cell lines and tumours (Table 7.1). Although 

increasing numbers of fusion genes have been found, only one fusion is though to be recurrent 

in breast cancer. The EML4-ALK translocation first reported in non-small cell lung cancer (Soda 

et al., 2007; Rikova et al., 2007) has also been reported as present in 2.4% of breast tumours 

(Lin et al., 2009), although this contradicts an earlier study which found that the transcript is 

specific to NSCLC and not found in breast tumours (Fukuyoshi et al., 2008). 
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5' Gene 3' Gene In-frame? Cell line or tumour Source 

ZMYM4 OPRD1 No ZR-75-30 This study 

COL14A1 SKAP1 Yes ZR-75-30 This study 

APPBP2 PHF10L1 Yes ZR-75-30 This study 

TAOK1 PCGF2 Yes ZR-75-30 This study 

UPS32 CCDC49 No ZR-75-30 This study 

BCAS3 HOXB9 No ZR-75-30 This study 

TIAM1 NRIP1 Yes ZR-75-30 This study 

PDLIM1 ZBBX No VP267/VP229 This study 

FAM125B SPTLC1 No VP267/VP229 This study 

MDS1 KCNMA1 Yes VP267/VP229 This study 

EML4 ALK Yes 5 breast tumours Lin et al., 2009 

PLXND1 TMCC1 Yes HCC1187 Stephens et al., 2009 

RGS22 SYCP1NM Yes HCC1187 Stephens et al., 2009 

EFTUD2 KIF18B Yes HCC1395 Stephens et al., 2009 

ERO1L FERMT2 Yes HCC1395 Stephens et al., 2009 

PLA2R1 RBMS1 Yes HCC1395 Stephens et al., 2009 

CYTH1 PRPSAP1 Yes HCC1599 Stephens et al., 2009 

NFIA EHF Yes HCC1937 Stephens et al., 2009 

STRADB noP58 Yes HCC1954 Stephens et al., 2009 

INTS4 GAB2 Yes HCC2157 Stephens et al., 2009 

RASA2 ACPL2 Yes HCC2157 Stephens et al., 2009 

SMYD3 ZNF695 Yes HCC2157 Stephens et al., 2009 

ACBD6 RRP15 Yes HCC38 Stephens et al., 2009 

LDHC SERGEF Yes HCC38 Stephens et al., 2009 

MBOAT2 PRKCE Yes HCC38 Stephens et al., 2009 

SLC26A6 PRKAR2A Yes HCC38 Stephens et al., 2009 

SMF PPARGC1B Yes HCC38 Stephens et al., 2009 

RAF1 DAZL Yes PD3664a Stephens et al., 2009 

AC141586.2 CCNF Yes PD3670a Stephens et al., 2009 

SEPT8 AFF4 Yes PD3670a Stephens et al., 2009 

ETV6 ITPR2 Yes PD3688a Stephens et al., 2009 

KCNQ5 RIMS1 Yes HCC1395 Stephens et al., 2009 

HN1 USH1G Yes PD3693a Stephens et al., 2009 

AGPAT5 MCPH1 No HCC1187 Stephens et al., 2009 

CTAGE5 SIP1 No HCC1187 Stephens et al., 2009 

PLXND1 TMCC1 No HCC1187 Stephens et al., 2009 

SUSD1 ROD1 No HCC1187 Stephens et al., 2009 

EIF3K CYP39A1 No HCC1395 Stephens et al., 2009 

IL6R ATP8B2 No HCC2157 Stephens et al., 2009 
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RBM14 PACS1 No HCC2157 Stephens et al., 2009 

FBXL18 RNF216 No PD3670a Stephens et al., 2009 

ITPR2 ETV6 No PD3688a Stephens et al., 2009 

GRB7 PERLD1 No HCC2218 Stephens et al., 2009 

HDAC11 FBLN2 No PD3670a Stephens et al., 2009 

FGFR1 ZNF703 No PD3690a Stephens et al., 2009 

SSH2 SUZ12 No PD3693a Stephens et al., 2009 

RIF1 PKD1L1 Yes HCC1806 Stephens et al., 2009 

TAX1BP1 AHCY Yes HCC1806 Stephens et al., 2009 

FHIT MACROD2 Yes BrCa-MZ-02 Popovici et al., 2002 

BCAS4 BCAS3 Yes MCF7 Barlund et al., 2002 

ARGHEF2 SULF2 Yes MCF7 Hampton et al., 2009 

DEPDC1B ELOVL7 Yes MCF7 Hampton et al., 2009 

RAD51C ATXN7 Yes MCF7 Hampton et al., 2009 

SULF2 PRICKLE2 Yes MCF7 Hampton et al., 2009 

NPEPPS USP32 Yes MCF7 Hampton et al., 2009 

ASTN2 PTPRG Yes MCF7 Hampton et al., 2009 

BCAS3 RSBN1 Yes MCF7 Hampton et al., 2009 

ASTN2 TBC1D16 Yes MCF7 Hampton et al., 2009 

BCAS4 PRKCBP1 Yes MCF7 Hampton et al., 2009 

cXorf15 SYAP1 Yes MCF7 Ruan et al., 2007 

RPS6KB1 TMEM49 Yes MCF7 Ruan et al., 2007 

BRCC3 FUNDC2 Yes MCF7 Ruan et al., 2007 

NRG1 ODZ4 Yes MDA-MB-175 Liu et al., 1999 

Table 7.1. Fusion genes currently known to be expressed in breast cancer cell lines and 
tumours. 

BCAS3 is the only other gene known to be recurrently fused in breast cancer, as although a 

fusion could not be found in HCC1806 (Chapter 3), the sequencing of ZR-75-30 discovered a 

fusion of BCAS3 to HOXB9. However, this did not produce an in-frame product, and involved 

the 5’ end of the gene in the fusion as opposed to the 3’ end retained in the known fusion in 

MCF7. Similarly, investigation of ODZ4 as a potential recurrent target of fusion did not find it 

fused in any cell line other than the previously-known MDA-MB-175 fusion.  

Fusion gene recurrence has been previously used to determine whether gene fusions were 

important, but the approaches which were used in haematological malignancies may not be the 

best way to find important events in solid tumours. Already there is evidence from prostate 
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cancer that while there are important recurrent fusions such as TMPRSS2-ERG, the same genes 

are found fused to different fusion partners, and some of the variant fusions have so far been 

found in only one case (Tomlins et al., 2007). There may be no recurrent fusion genes in breast 

cancer, but as the number of known fusion genes grows, we may see fusions involving the same 

genes fused to different fusion partners, and fusion genes involving different members of the 

same pathway which have the same effect on the cell. 

7.3 How can fusion genes in breast cancer be found? 

Two different approaches have been taken in the search for fusion genes in solid tumours. One 

approach looks for a fusion transcript and then locate the genomic rearrangement which 

produces the fusion. This approach has successfully found fusion genes by several different 

methods: using expression array data to look for genes which are overexpressed and potentially 

fused (Tomlins et al., 2005; Lin et al., 2009); using retroviral expression libraries to find novel 

transforming genes (Soda et al., 2007); using proteomic approaches to look at fusion proteins 

directly (Rikova et al., 2007); and more recently by using RNA-seq to find fusion genes across 

the whole transcriptome  (Maher et al., 2009), a technique which will also find fusion genes 

that are not the result of a genomic rearrangement, such as readthrough fusions between two 

adjacent genes (Berger et al., 2010). 

The second approach searches for genomic rearrangements, and looks for the fusion genes 

which may result from the genomic rearrangement.  This is the approach I have taken.. Over 

the course of this study, the technology I used to map chromosome rearrangements in breast 

cancer moved from low-resolution array painting, to high-resolution whole genome arrays, and 

finally to high-throughput sequencing. All of these different approaches were used in turn to 

map the rearrangements in MDA-MB-134.   

Array painting is useful to determine which chromosome fragments are present in a derivative 

chromosome, and hence discover which breakpoints are joined together. Prior to high-

throughput sequencing, this was the only way to determine which chromosome breakpoints 

were joined together, and while paired-end sequencing can also determine the two sides of a 
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breakpoint, it cannot assemble the whole derivative chromosome. High-throughput sequencing 

is also unable to detect rearrangements near the centromeres and telomeres by finding the 

sequences crossing the breakpoint, as the sequences produced from these repetitive regions 

cannot be unambiguously aligned to a reference genome. The der(15)t(15;17) and 

der(16)t(16;18) chromosomes in MDA-MB-134 are an example of a rearrangement which 

would not be detected using high-throughput sequencing. However, the loss of material caused 

by the unbalanced translocation would still be seen from copy number plots taken from high-

throughput sequencing, even if the exact breakpoint is not known. It is likely that a breakpoint 

in the repetitive regions near the centromeres and telomeres is not affecting genes directly, but 

that the loss of material is the important event. 

Although the array painting in this study was carried out on low-resolution 1Mb arrays, 

individual breakpoints can be mapped using high-resolution custom Nimblegen arrays (Gribble 

et al., 2007; Howarth et al., 2008), and higher-resolution arrays such as the SNP6.0 array could 

be used for array painting as well as for whole-genome array CGH. As the SNP6.0 array has 

probes to detect genotype as well as copy number, the genotypes of different derivative 

chromosomes could be compared to give information about karyotype evolution, as 

chromosomes which evolved from the same parental copy could be identified.  

High-throughput sequencing has the potential to replace array-based methods of mapping 

chromosome rearrangements. As well as paired-end sequencing to provide information on both 

sides of a breakpoint, the sequences can be used to give high-resolution copy number 

information. Array painting could also be replaced with paired-end high-throughput 

sequencing, as it is possible to sequence sorted chromosomes individually (Chen et al., 2010). 

However, as well as the biases caused by the GC and repeat content of the data, there may be 

other, less obvious biases in the sequencing data which could affect copy number that have not 

yet been discovered. 

As noted above, a potential problem with the use of high-throughput sequencing is aligning 

sequences to repetitive regions. Although many of the copy number steps seen in MDA-MB-134 
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had structural variants associated with them, there were copy number changes which did not 

have any associated structural variants. One possible explanation for this is low coverage, but 

breakpoints at comparable copy number to the missing breaks were found with multiple 

supporting reads, and relaxing the criteria for calling a structural variant to require only one 

read across the breakpoint did not find any potential structural variants associated with these 

breakpoints. Another possibility is that the breakpoints are in a region which is highly repetitive 

and although there are paired-end reads which span the breakpoint, none of these read pairs 

had a unique mapping to the genome and were discarded. 

7.4 Mechanisms of chromosome rearrangement in breast cancer 

Analysis of the MDA-MB-134 amplicon supports the breakage-fusion-bridge cycle model of 

amplicon formation. Many of the junctions involved in the amplicon are inversions, which are a 

signature of breakage-fusion-bridge cycles of amplification. An alternative model is the 

translocation-excision-amplification model (Van Roy et al., 2006), which proposes that the 

amplified regions are first excised from chromosomes and amplified as double minute 

chromosomes, which then re-integrate into the genome (Storlazzi et al., 2010). This model 

requires a translocation between chromosomes 8 and 11 in MDA-MB-134, which does appear 

to have occurred, but in the translocation-exicision-amplification model the sequences which 

were excised from the translocated chromosome re-integrate at a different site than they were 

excised from (Corvi et al., 1994), and the amplicon in MDA-MB-134 appears to have been 

amplified in place.  

The microhomology at the breakpoints in MDA-MB-134 suggests two different mechanisms are 

involved. No homology or very short regions of microhomology, with small insertions at the 

junction, suggest non-homologous end-joining as a mechanism for double-strand break repair  

(Hastings et al., 2009), and this is seen in the majority of the junctions in MDA-MB-134.  The 

longer region of homology seen at one breakpoint suggests the alternative pathway of 

microhomology-mediated end-joining is also operative in MDA-MB-134 (McVey and Lee, 2008). 

The mechanisms that control which method of repair is used are not well known, but studies in 
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urothelial cancer suggest that cancer cells may preferentially use the more error-prone non-

homologous end-joining even when there is sufficient microhomology for microhomology-

mediated end-joining to be used (Windhofer et al., 2008). Alternatively, microhomology-

mediated end-joining may be a “back-up” mechanism used only when non-homologous end-

joining is unavailable (Lieber, 2010). 

The karyotype of HCC1806 shows a number of tandem duplications. This could be an example 

of the particular “mutator phenotype” suggested by Stephens et al. (2009), where an unknown 

mechanism probably related to DNA damage repair produces large number of tandem 

duplications. HCC1806 is consistent with the observation that these mutator phenotype 

tumours are ER and PR negative, and do not have BRCA1 or BRCA2 mutations. 

7.5 Future Directions 

7.5.1 ODZ4 

The high-throughput sequencing of MDA-MB-134 predicted that ODZ4, which is known to be 

fused to NRG1 in the breast cancer cell line MDA-MB-175, may be fused to KLHL35 in MDA-MB-

134. Although there is no expression of the predicted fusion MDA-MB-134, ODZ4 is 

overexpressed relative to the normal breast cell line, and it is more highly expressed than might 

be expected based on dosage effects, as while it is part of the amplified region on chromosome 

11 it is at the outer edge of the amplicon, and is not at high copy number. This suggests that 

there is an alternate mechanism driving the overexpression of this gene other than extra 

copies. Further studies could investigate the mechanism of ODZ4 overexpression, which may be 

unrelated to its presence in an amplified region, but could potentially be due chromosome 

rearrangements placing ODZ4 under the control of a different promoter, or near an amplified 

enhancer. Mutations in ODZ4 have also been found in pancreatic cancer (Yachida et al., 2010), 

suggesting that ODZ4 may contribute to tumorigenesis by other mechanisms which do not 

cause overexpression. 
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ODZ4 has not previously been suggested as important in 11q13 amplification, but my studies 

suggest that it may be upregulated by a combination of amplification and other mechanisms, 

and a study which looks for candidate genes using the minimal region of amplification would 

not look at ODZ4. There are a number of other criteria which have been suggested as important 

when looking for the important genes in amplification, such as correlation with clinical outcome 

and analysis of biological activity using siRNA knockdowns (Santarius et al., 2010), and further 

studies of ODZ4 could investigate its importance by methods other than looking at gene 

amplification and expression. 

7.5.2 High-throughput sequencing and bioinformatic analysis 

Methods for sequence alignment and analysis are constantly being improved, and since the 

bioinformatic pipeline described in this study was developed, it has been updated with a newer 

generation of alignment and analysis programs. Longer read lengths cannot be aligned by MAQ, 

and the primary alignment is now performed using BWA (Li and Durbin, 2009) with a more 

sensitive re-alignment step using Novoalign ( www.novocraft.com ), and using Picard for 

duplicate calling and to assess the depth of the library ( picard.sourceforge.net ). 

Wet-lab validation of the results of high-throughput sequencing is expensive and time-

consuming, and it is important to improve the bioinformatic analysis of the sequencing to 

remove as many false positive and misleading results as possible before any downstream 

analysis is done. 

One area for improvement is in the initial sequence alignment. Sequence misalignment is one 

possible cause of artefactual structural variants, and several of the structural variant calls in 

MDA-MB-134 proved to be due to sequence misalignment. As sequence coverage increases, 

the number of misaligned reads will increase, and depending on the probability of a sequence 

being misaligned, the number of artefactual structural variants called may increase faster than 

the number of real structural variants (Figure 7.1). A way to decrease the problems of 

misalignment is to use a two-stage alignment process, as has been implemented in the latest 

version of the bioinformatic pipeline described in Chapter 6. The initial alignment step uses a 

http://www.novocraft.com/
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fast but less sensitive alignment program to align the large numbers of reads produced, such as 

BWA (Li and Durbin, 2009) or Bowtie (Langmead et al., 2009), which would miss the true 

alignments of a small number of reads.  The possible aberrant reads called from this first-pass 

alignment would be realigned using a more sensitive algorithm, such as BFAST which is 

specifically designed for sensitive alignment of short reads (Homer et al., 2009). As the number 

of aberrant reads is a small percentage of the total, it is possible to use a much slower 

algorithm to re-align the aberrant reads which would be impractical to use to align the total set 

of reads. 
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Figure 7.1. Graph to show how artefactual structural variants could increase at a greater rate 
than real structural variants.  

There are also improvements that could be made to structural variant calling. The strategy I 

have used looks at each structural variant individually, and does not link variants together, such 

as two structural variants that are on either side of an insertion (Figure 7.2A).  Linking structural 

variants together can help to identify regions of insertion or inversion, rather than just one side 

of an event, but if there is a further rearrangement which has not been detected then the 

linkage will be wrong, and so this method is more useful for small rearrangements where it is 

less likely that another variant between them has been missed (Medvedev et al., 2009).  

Another improvement to structural variant calling is to use the sequences that span the 

breakpoint junction to identify the breakpoint to base pair resolution without PCR validation 

and sequencing (Figure 7.2B). A sequence that maps to two regions of the genome will not be 

aligned using current alignment algorithms, which do not look for split mapping reads because 

this would slow down the alignment. This strategy would not work with 37bp reads because 



Chapter 7  Discussion 

202 
 

they would produce too many possible alignments, but as sequence reads become longer they 

can be re-aligned to look for split mappings and find the breakpoint junctions. Split mapping of 

reads becomes more important as longer sequence reads are produced from small insert 

libraries, as more of each fragment is sequenced and there is more chance of a breakpoint 

falling within a read rather than in between the paired-end reads. 

 

Figure 7.2. Improvements to structural variant calling. A –how two pairs of reads spanning the 
two sides of an insertion would align to the reference genome. B –how a read spanning a 
breakpoint would align to the reference genome in two locations. (Diagram adapted from 
Medvedev et al (2009)).  
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7.6 Conclusion 

From the results in this study and others which have been published over the course of my 

project, it is clear that there are fusion genes in breast cancer. High-throughput genomic and 

transcriptome sequencing makes it easier to find fusion genes than by previous array and FISH 

based methods, and as the number of sequenced breast cancer genomes increases, the 

number of fusion genes found will increase as well.  The importance of fusion genes in breast 

cancer has yet to be demonstrated, as recurrent gene fusions have yet to be found, and 

functional studies will be necessary to link fusion gene to carcinogenesis, but given the 

importance of fusion genes in other cancers it seems likely that fusion genes will also be 

important in breast cancer. As the number of known fusions increases, it will be easier to find 

pathways which are recurrently involved in fusion genes, and a combined analysis of fusion 

genes along with copy-number alterations, mutations and epigenetic modifications will provide 

an overall picture of the genes which are involved in breast cancer. 
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Appendix 1 –List of primers used for PCR and sequencing 

Name Sequence Used for 

BCAS3_56.164_fwd AGATCGCTGGTAGCAAGGAA BCAS3 junction fine mapping 

BCAS3_56.164_rev ACCAAGGTGGTAAGCAGCAT BCAS3 junction fine mapping 

BCAS3_56.165_fwd GAGGTGGGAGAAATGCTTGA BCAS3 junction fine mapping 

BCAS3_56.165_rev AGCCGAGCCATAAACTGAGA BCAS3 junction fine mapping 

BCAS3_56.166_fwd CCCAGTAATGCGATCCTAGC BCAS3 junction fine mapping 

BCAS3_56.166_rev CTGCTTGAGGCCAAGAGTTC BCAS3 junction fine mapping 

BCAS3_56.167_fwd GCTCACTACAACCCCTGCTT BCAS3 junction fine mapping 

BCAS3_56.167_rev AGAGGTGAGTGGATCGCTTG BCAS3 junction fine mapping 

BCAS3_56.168_fwd TGTCTTTCAAGGGGTTGGTC BCAS3 junction fine mapping 

BCAS3_56.168_rev AGCCTCAGCAAAAGAGCAAG BCAS3 junction fine mapping 

BCAS3_56.169_fwd CTACAACCCTTGCCTCTTCG BCAS3 junction fine mapping 

BCAS3_56.169_rev GAGGCCAACAAGCAGATCAC BCAS3 junction fine mapping 

chr7-155709k-fwd CCTCTGCTTGCTGGTGTGTA BCAS3 junction fine mapping 

chr7-155709k-rev CAGGTTGAGCACCACTGTGT BCAS3 junction fine mapping 

chr7-155710k-fwd ACCCAAGCTCCCTTCTCTTC BCAS3 junction fine mapping 

chr7-155710k-rev CTTCATGAAAGCATGCTGGA BCAS3 junction fine mapping 

chr7-155711k-fwd AAGAGCCTGACACAGCCATT BCAS3 junction fine mapping 

chr7-155711k-rev TCTGTTGTTGGTCAGCCTTG BCAS3 junction fine mapping 

chr7-155712k-fwd TCTCCTTGTGAAGCGTGATG BCAS3 junction fine mapping 

chr7-155712k-rev TCTGCTGGCTCAGTAGAGCA BCAS3 junction fine mapping 

chr7-155713k-fwd AAGCCCCAGGACAAGAAAAT BCAS3 junction fine mapping 

chr7-155713k-rev GTCAAGTCCGGGGGTAGATT BCAS3 junction fine mapping 

chr7-155714k-fwd GCACCTTCTATGTGCCATCA BCAS3 junction fine mapping 

chr7-155714k-rev TTTGAATCCCCAGTGTGTTG BCAS3 junction fine mapping 

chr7-155715k-fwd TGCATTACACTGGAACGTGAA BCAS3 junction fine mapping 

chr7-155715k-rev CGATGCCAACCCACTTATTA BCAS3 junction fine mapping 

chr7-cloning-fwd GCAGAACACAAAATCACCACA BCAS3 junction cloning and sequencing 

chr7-cloning-rev TCTCCTCAGGGATGTTAATGTATG BCAS3 junction cloning and sequencing 

chr17-cloning-fwd TTTGCATTGTTGTGATAGGACAT BCAS3 junction cloning and sequencing 

chr17-cloning-rev CTCCAGTGCATTTTGCCTTT BCAS3 junction cloning and sequencing 

BCAS3-ex23-fwd GGATCCGGAACAGAACTTCA BCAS3 real-time PCR 

BCAS3-ex23-rev TTGCTGGTACCTACGGGAAG BCAS3 real-time PCR 

BCAS3-ex1-fwd ATTCCCCAAGAAGACCCAGT BCAS3 real-time PCR 

BCAS3-ex1-rev TCCTGCAGAAAAGTCGAGGAG BCAS3 real-time PCR 

BCAS3-ex9-fwd GGAGCCTGTGGAGACAACAT BCAS3 real-time PCR 

BCAS3-ex9-rev CTGTGGATGGCAACATCATC BCAS3 real-time PCR 

USP31 rev CAGAGCTAAGGTGCGAGAGC HCC1806 small deletion fusions 

ERN2 ex8 fwd GACACAGCCACCCTCTTCTC HCC1806 small deletion fusions 

ERN2 ex8 rev CTCGCTCTCCTGAGACTTGG HCC1806 small deletion fusions 
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ERN2 ex19 fwd CTTTATCGCCAGGCAAACAT HCC1806 small deletion fusions 

ERN2 ex19 rev ACTCCTTCTCCAGCCAGTCA HCC1806 small deletion fusions 

ATAD5-ex6-fwd AGCAGCTGATCCTGTCCCTA HCC1806 small deletion fusions 

ATAD5-ex6-rev CAAATGCCACAAACAACACC HCC1806 small deletion fusions 

SUZ12-fwd GAGGGGGTGGCAGTTACTC HCC1806 small deletion fusions 

SUZ12-rev AGATCTGTGTTGGCTTCTCAAA HCC1806 small deletion fusions 

ATAD5-ex14-fwd AGCACTTCCTCCCAAAACCT HCC1806 small deletion fusions 

ATAD5-ex14-rev CAGCTCCAACGTCTTTGACA HCC1806 small deletion fusions 

PITPNB fwd GGGCAGCTTTACTCTGTTGC HCC1806 small deletion fusions 

PITPNB rev ATGCAGGCACTTTGCTCTTT HCC1806 small deletion fusions 

CHEK2 ex2 fwd AACTCCAGCCAGTCCTCTCA HCC1806 small deletion fusions 

CHEK2 ex2 rev TGTCCCTCCCAAACCAGTAG HCC1806 small deletion fusions 

CHEK2 ex10 fwd CTGTTGGGACTGCTGGGTAT HCC1806 small deletion fusions 

CHEK2 ex10 rev CGTAAAACGTGCCTTTGGAT HCC1806 small deletion fusions 

AFF3-a-fwd AGAAGAGAGCTCCACGCTCA HCC1806 tandem duplication fusions 

AFF3-a-rev GCTCCCGTTCCTTTTCTTTC HCC1806 tandem duplication fusions 

AFF3-b-fwd TGAAGTCGTCTTCGGAAACC HCC1806 tandem duplication fusions 

AFF3-b-rev ACTTTGCCAGGTGCTTGAAT HCC1806 tandem duplication fusions 

BC156887-a-fwd GCAGAAGTGGGAGCCAAG HCC1806 tandem duplication fusions 

BC156887-a-rev GTCCATGGTGGGAGGTGTC HCC1806 tandem duplication fusions 

BC156887-b-fwd AGTTGGCAGCCATCAAAGTT HCC1806 tandem duplication fusions 

BC156887-b-rev CAAGCCAGAGTTGGTCATCA HCC1806 tandem duplication fusions 

CATSPERB-a-fwd CAGAGAAACGCTTTGCATGT HCC1806 tandem duplication fusions 

CATSPERB-a-rev GGAGCAAGTCCTCCTGATGT HCC1806 tandem duplication fusions 

TC2N-b-fwd CATTTGTGGTGCCCAAGTTT HCC1806 tandem duplication fusions 

TC2N-b-rev AGCGTCGACTCAAATCAGGT HCC1806 tandem duplication fusions 

EPHB2-a-fwd ATGCGGAAGAGGTGGATGTA HCC1806 tandem duplication fusions 

EPHB2-a-rev TGTTGATGGGACAGTGGGTA HCC1806 tandem duplication fusions 

EPHB2-b-fwd TGGTCTTCCTCATTGCTGTG HCC1806 tandem duplication fusions 

EPHB2-b-rev CCGATCACCTGCTCAATTTT HCC1806 tandem duplication fusions 

FUSIP1-fwd CACGTCTCTGTTCGTCAGGA HCC1806 tandem duplication fusions 

FUSIP1-rev TCAGCATCACGAACATCCTC HCC1806 tandem duplication fusions 

MYOM3-a-fwd CTGGGAGAGGACTGAGATCG HCC1806 tandem duplication fusions 

MYOM3-a-rev AGCGAAGAGGGATCCAGAAC HCC1806 tandem duplication fusions 

MYOM3-b-fwd GGACCCCAAAGACTCAGACA HCC1806 tandem duplication fusions 

MYOM3-b-rev CCTGAGACGATGCAAGTCAA HCC1806 tandem duplication fusions 

PNRC2-fwd ACTGGGTCCCTGTTTCCTTT HCC1806 tandem duplication fusions 

PNRC2-rev CACAGTGCACACAACACGAG HCC1806 tandem duplication fusions 

LAMA2-a-fwd CTCCTCCTTCTGCTGCTCTC HCC1806 tandem duplication fusions 

LAMA2-a-rev TTGCTGATGTGCCTGTGACT HCC1806 tandem duplication fusions 

LAMA2-b-fwd CCTGGAAACTGGATTTTGGA HCC1806 tandem duplication fusions 

LAMA2-b-rev GCACTTGGTCTCCCATTGAT HCC1806 tandem duplication fusions 
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ARHGAP18-a-fwd CTCTCCAGTTCCCAGGGAGT HCC1806 tandem duplication fusions 

ARHGAP18-a-rev CCTTTGCATGGCTGTTCC HCC1806 tandem duplication fusions 

ARHGAP18-b-fwd CTGGAGATCCACAGGAAAGC HCC1806 tandem duplication fusions 

ARHGAP18-b-rev TGCCTCGTCATCTCTTCCTT HCC1806 tandem duplication fusions 

HS6ST2-b-fwd CCCGGTACTTGAGTGAGTGG HCC1806 tandem duplication fusions 

HS6ST2-b-rev GCGGTTGTTGGCTAGATTGT HCC1806 tandem duplication fusions 

GPC3-a-fwd GATGCTGCTCAGCTTGGACT HCC1806 tandem duplication fusions 

GPC3-a-rev TCCATGTTCAATCGTGCTGT HCC1806 tandem duplication fusions 

SMURF2-a-fwd CGAGACGAGAGGAGGGAAA HCC1806 tandem duplication fusions 

SMURF2-a-rev GGATGTGCCGAGAGTCG HCC1806 tandem duplication fusions 

CCDC46-b-fwd GCAGCTGGTAGAGCTTGGTC HCC1806 tandem duplication fusions 

CCDC46-b-rev TTGGCCTTTTCCAGTGTCAT HCC1806 tandem duplication fusions 

c6orf105-a-fwd TTGCACACCATTTTCCAAGA HCC1806 tandem duplication fusions 

c6orf105-a-rev GTTGTTTTTGGCATGTGCAG HCC1806 tandem duplication fusions 

c6orf105-b-fwd TTTTGGCATTCTGGATCCTC HCC1806 tandem duplication fusions 

c6orf105-b-rev TACACCCAGGTACCCGTCTC HCC1806 tandem duplication fusions 

phactr1-a-fwd GGCCAGGATCTCCTTTAACC HCC1806 tandem duplication fusions 

phactr1-a-rev TCGCTTTTCTTCTTCCTCCA HCC1806 tandem duplication fusions 

phactr1-b-fwd GGTCACCAAAGCAGGACCTA HCC1806 tandem duplication fusions 

phactr1-b-rev GCCAGGGAGCTGGTGTATAA HCC1806 tandem duplication fusions 

IMMP2L-fwd GGTCACATCTGGGTTGAAGG HCC1806 large deletion fusion 

IMMP2L-rev TAAGCGCTCTGGAGGAAGAA HCC1806 large deletion fusion 

DOCK4-fwd GGTGCTGAAGGCACAAGAAT HCC1806 large deletion fusion 

DOCK4-rev CCAGACCCTTTGCTCTCTTG HCC1806 large deletion fusion 

c21.1 GGCAGCCGGTGAGGAGTTTGG MDA-MB-134 genomic junction PCR and 
sequencing 

c21.2 AGGCTGCCCCACAGAGACCC MDA-MB-134 genomic junction PCR and 
sequencing 

c26.1 GCTGGAGAGGCCGTTGTCTGG MDA-MB-134 genomic junction PCR and 
sequencing 

c26.2 CGACTGCAGTGAGGTCAGGCG MDA-MB-134 genomic junction PCR and 
sequencing 

c28.1 TGTGGCCATTCCCCTGCTGC MDA-MB-134 genomic junction PCR and 
sequencing 

c28.2 CCAAGGACAGCCCACGTGCC MDA-MB-134 genomic junction PCR and 
sequencing 

c35.1 GGCCCACTGTCCTTTAGCATGGC MDA-MB-134 genomic junction PCR and 
sequencing 

c35.2 CCTTTCTGTTCCCTTCCTCCTTCCC MDA-MB-134 genomic junction PCR and 
sequencing 

c8.1 AGAGAAGGGAAGTGGGTGTGGC MDA-MB-134 genomic junction PCR and 
sequencing 

c8.2 TTGCCTATGCTGTCTTTCTGTGACAA MDA-MB-134 genomic junction PCR and 
sequencing 

i228.1 AGGCCAGAGCCCAGGAGTGG MDA-MB-134 genomic junction PCR and 
sequencing 
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i228.2 ACTGAGAGGGGGTGAACTGGGC MDA-MB-134 genomic junction PCR and 
sequencing 

i242.1 GAGAGCAGCCCCAGGGAGGG MDA-MB-134 genomic junction PCR and 
sequencing 

i242.2 GGCTTTACCATGTTGGCGTTGAATTGG MDA-MB-134 genomic junction PCR and 
sequencing 

nc1.1 TTTAACGCCTTTTGGTGTCC MDA-MB-134 genomic junction PCR and 
sequencing 

nc1.2 TGCTCCAGAGGTGTGAACAG MDA-MB-134 genomic junction PCR and 
sequencing 

nc2.1 GTGCTGACCTTCTGGTCCAT MDA-MB-134 genomic junction PCR and 
sequencing 

nc2.2 AGTCAGTCCATCCGGTGTTC MDA-MB-134 genomic junction PCR and 
sequencing 

nc3.1 TACCCTCTCAGGTGCTGTCC MDA-MB-134 genomic junction PCR and 
sequencing 

nc3.2 CAGACTACAGGGGCTGCAAT MDA-MB-134 genomic junction PCR and 
sequencing 

nc4.1 CCAAGTGCTCCTGTCCTCTC MDA-MB-134 genomic junction PCR and 
sequencing 

nc4.2 AATGGTTGACCAGGTTCTGC MDA-MB-134 genomic junction PCR and 
sequencing 

nc5.1 AGCGCCTGGTACACAAGAAT MDA-MB-134 genomic junction PCR and 
sequencing 

nc5.2 CACTCTTTGAATTGGCGTGA MDA-MB-134 genomic junction PCR and 
sequencing 

nc6.1 ACTCCCTGTTGTGGGAACAC MDA-MB-134 genomic junction PCR and 
sequencing 

nc6.2 GAAACCATCTGGTCCAGGAA MDA-MB-134 genomic junction PCR and 
sequencing 

nc7.1 TTTTAAGCCTGTCGGAAAAG MDA-MB-134 genomic junction PCR and 
sequencing 

nc7.2 TGGCCCTGAATACTTTTTGG MDA-MB-134 genomic junction PCR and 
sequencing 

ni1.1 TGGCCCTGAATACTTTTTGG MDA-MB-134 genomic junction PCR and 
sequencing 

ni1.2 TTTCTTTTGCCCCACTGTTC MDA-MB-134 genomic junction PCR and 
sequencing 

ni10.1 CTGGAGGTCTCTGCCAGTTC MDA-MB-134 genomic junction PCR and 
sequencing 

ni10.2 ACTGCTCCCTTCTTCCTTCC MDA-MB-134 genomic junction PCR and 
sequencing 

ni11.1 CCAGAGGCAGAGGACAGAAC MDA-MB-134 genomic junction PCR and 
sequencing 

ni11.2 AATAGGGGAATTGGGGTGAG MDA-MB-134 genomic junction PCR and 
sequencing 

ni12.1 GCCCAGCCAAAATAGATTCA MDA-MB-134 genomic junction PCR and 
sequencing 

ni12.2 CAGCTTGGACTCCCTGTGAT MDA-MB-134 genomic junction PCR and 
sequencing 

ni13.1 TTTTGGACACAGAGGGAAGG MDA-MB-134 genomic junction PCR and 
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sequencing 

ni13.2 GAGTTTAGCGGCTCACACCT MDA-MB-134 genomic junction PCR and 
sequencing 

ni14.1 TTCAGCCATCTGGATTTTCC MDA-MB-134 genomic junction PCR and 
sequencing 

ni14.2 GGTTGCTTCCTGTGTTTGGT MDA-MB-134 genomic junction PCR and 
sequencing 

ni15.1 CACCACTGAGTCTGGAAGCA MDA-MB-134 genomic junction PCR and 
sequencing 

ni15.2 GTTTTGAAATGGGGGACCTC MDA-MB-134 genomic junction PCR and 
sequencing 

ni16.1 CACCTGTTCTCCCAAACGAT MDA-MB-134 genomic junction PCR and 
sequencing 

ni16.2 GGCAGAATGAAGTGGATTCAA MDA-MB-134 genomic junction PCR and 
sequencing 

ni17.1 GCCACACCAGAAGGTTGTTT MDA-MB-134 genomic junction PCR and 
sequencing 

ni17.2 CATCCACATCTGGAATGCTG MDA-MB-134 genomic junction PCR and 
sequencing 

ni18.1 TTCAGCGAGTAGGGCAGAGT MDA-MB-134 genomic junction PCR and 
sequencing 

ni18.1 TGTCTCCATCACCAGGAAAA MDA-MB-134 genomic junction PCR and 
sequencing 

ni19.1 CTTCTGCAGCTTTGGTCCAT MDA-MB-134 genomic junction PCR and 
sequencing 

ni19.2 GCTCCCTTCTCCATCCCTAC MDA-MB-134 genomic junction PCR and 
sequencing 

ni2.1 CATATTACTTTTGCTGAAGATTCTGA MDA-MB-134 genomic junction PCR and 
sequencing 

ni2.2 ACAACCACTGCAAACCATGA MDA-MB-134 genomic junction PCR and 
sequencing 

ni20.1 AGGGAGAGGAAAAGGGTCAG MDA-MB-134 genomic junction PCR and 
sequencing 

ni20.2 AACTCCCCACAAAGTTGCAC MDA-MB-134 genomic junction PCR and 
sequencing 

ni21.1 ACTTCAGCCCAGGAGTTCAA MDA-MB-134 genomic junction PCR and 
sequencing 

ni21.2 ACTCGCTTCCCGAAACACTA MDA-MB-134 genomic junction PCR and 
sequencing 

ni3.1 AGAGATGATCATGGGCAAGC MDA-MB-134 genomic junction PCR and 
sequencing 

ni3.2 TAGGCTGGCTTGGATTGC MDA-MB-134 genomic junction PCR and 
sequencing 

ni4.1 CTTCCTGTTTGGGAGTTGGA MDA-MB-134 genomic junction PCR and 
sequencing 

ni4.2 AGAGCCTGCATTTCTTGCAT MDA-MB-134 genomic junction PCR and 
sequencing 

ni5.1 TAAACAGACCCCACCCAGAG MDA-MB-134 genomic junction PCR and 
sequencing 

ni5.2 GCCATTTCCAGTTTCGATGT MDA-MB-134 genomic junction PCR and 
sequencing 
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ni6.1 TAAGTGCAGTGGCTCACACC MDA-MB-134 genomic junction PCR and 
sequencing 

ni6.2 AGGAGTGGCATTCAATGGAG MDA-MB-134 genomic junction PCR and 
sequencing 

ni7.1 TGTGGCGAAGCTTAGAGGAT MDA-MB-134 genomic junction PCR and 
sequencing 

ni7.2 CAGAGAGGTCATGGTTGTGC MDA-MB-134 genomic junction PCR and 
sequencing 

ni8.1 GATGAGCAGAGGGGGTATCA MDA-MB-134 genomic junction PCR and 
sequencing 

ni8.2 ACTCAGCATACTGCCCCACT MDA-MB-134 genomic junction PCR and 
sequencing 

ni9.1 CCAGGCAGAATGAAGAAAGC MDA-MB-134 genomic junction PCR and 
sequencing 

ni9.2 AAGTGATCTGCCCACCTCAG MDA-MB-134 genomic junction PCR and 
sequencing 

c21nested1a CAAACAGGGTAATCGGAGGA MDA-MB-134 genomic junction PCR and 
sequencing 

c21nested1b TTTTCAACAGCGGAGTAGGC MDA-MB-134 genomic junction PCR and 
sequencing 

c21nested2a CTTCCATCATGGTGATGTGC MDA-MB-134 genomic junction PCR and 
sequencing 

c21nested2b TTGGCTGCTGAGTTTCTCCT MDA-MB-134 genomic junction PCR and 
sequencing 

c35nested1a CCTTTAGCATGGCTTTCTGG MDA-MB-134 genomic junction PCR and 
sequencing 

c35nested1b TGTCTGCAATGGGGACATTA MDA-MB-134 genomic junction PCR and 
sequencing 

c35nested2a AATAATTGGCCATGCTCCTG MDA-MB-134 genomic junction PCR and 
sequencing 

c35nested2b TTCCTCCTTCCCTTTTGGTT MDA-MB-134 genomic junction PCR and 
sequencing 

new-nc7-1 CGAGCCAGGTAAGGGATGT MDA-MB-134 genomic junction PCR and 
sequencing 

new-nc7-2 ACAGGGCTTTCCTGATCAAA MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni1-1 CTGTGGTTGCCTGTCACCTA MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni1-2 ACTGGGCTTTCCATTCACTG MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni13-1 CAGCCTGTGCAAAACGAATA MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni13-2 TTTGAGGCTGCAGTGAGCTA MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni3-1 ACCATTAGTGTGGGCGAAAG MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni3-2 GATTTCTTGGCTGGCTTGA MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni5-1 TCTCCCACAAGCCTCTCACT MDA-MB-134 genomic junction PCR and 
sequencing 

new-ni5-2 TCCAGCAGTGACAACAGAGG MDA-MB-134 genomic junction PCR and 
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sequencing 

UNC5D-fwd CGAGAGCTCAGGTTTGAAGG MDA-MB-134 fusions 

UNC5D-rev CTTCCCTTCCTTGTGGGTCT MDA-MB-134 fusions 

ARSG-fwd GTCACCAGCACTGCCTTGTA MDA-MB-134 fusions 

ARSG-rev AGGCCTTGTAACGCTCCAG MDA-MB-134 fusions 

EFR3A-fwd ATCCAAAAGATGGCCTTGTG MDA-MB-134 fusions 

EFR3A-rev CAGTGCCTCCATAGCAATCA MDA-MB-134 fusions 

ANK1-fwd TGCTGCTACCAGCTTTCTGA MDA-MB-134 fusions 

ANK1-rev TGTTCCCCTTCTTGGTTGTC MDA-MB-134 fusions 

SHANK2-fwd AGACCATTGGGAGCTACGTG MDA-MB-134 fusions 

SHANK2-rev GTACTCGAAGGCCGAGAGTG MDA-MB-134 fusions 

FBXL11-fwd CCGGATCCAGACTTCACTGT MDA-MB-134 fusions 

FBXL11-rev GGCTAAACTCGAGGCTGATG MDA-MB-134 fusions 

ANO1-fwd GGCTCTGGTGCACTATGTGA MDA-MB-134 internal rearrangements 

ANO1-rev GTACTCGACGCAGTTGCTGA MDA-MB-134 internal rearrangements 

OSBPL5-fwd TCGGAGAGAGAGAACCCTGA MDA-MB-134 internal rearrangements 

OSBPL5-rev CAGCTTCATGCGGCTGTA MDA-MB-134 internal rearrangements 

OVCH2-fwd GAAGCTGCACTTCCCAGAAA MDA-MB-134 internal rearrangements 

OVCH2-rev CCTTGTCACTGTAGTTTTCAGGAT MDA-MB-134 internal rearrangements 

CCDC67-fwd GCCTAAAGGCTCAATTTTCCA MDA-MB-134 internal rearrangements 

CCDC67-rev CCATTTAGTTGAGTTTGGTAACTTTGT MDA-MB-134 internal rearrangements 

P2RX2-fwd CCCAAATTCCACTTCTCCAA MDA-MB-134 internal rearrangements 

P2RX2-rev GGTGGTGCCATTGATCTTGT MDA-MB-134 internal rearrangements 

POLG-fwd CAGCACCTTCCTGGACACC MDA-MB-134 internal rearrangements 

POLG-rev CTGTTCGAGACAGTGCTTCCT MDA-MB-134 internal rearrangements 

CHD2-fwd GCTCTTGCCAAAGGAACAAG MDA-MB-134 internal rearrangements 

CHD2-rev TTCGGATTTCTCCCTTGATG MDA-MB-134 internal rearrangements 

c16orf28-fwd GGCCATGATTGAGAAGATCC MDA-MB-134 internal rearrangements 

c16orf28-rev GCATGTCGTTGCATTTTGTA MDA-MB-134 internal rearrangements 

STAT3-fwd TCAGGATGTCCGGAAGAGAG MDA-MB-134 internal rearrangements 

STAT3-rev CGTACTCCATCGCTGACAAA MDA-MB-134 internal rearrangements 

SYT3-fwd GGTGGTGCTGGACAACCT MDA-MB-134 internal rearrangements 

SYT3-rev CCGATCACCTCGTTGTGC MDA-MB-134 internal rearrangements 

SFTPB-fwd CTAGGGCATTGCCTACAGGA MDA-MB-134 internal rearrangements 

SFTPB-rev GCATACAGATGCCGTTTGAG MDA-MB-134 internal rearrangements 

ZNF512B-fwd GTGTCCAAACTCAGGGTGCT MDA-MB-134 internal rearrangements 

ZNF512B-rev GTGTCTGCACTCAGCTGGAA MDA-MB-134 internal rearrangements 

SERAC1-fwd TCCTTCAGCAACAGTGGAAA MDA-MB-134 internal rearrangements 

SERAC1-rev CATATTTCCAATGACACGCATTA MDA-MB-134 internal rearrangements 

PTPRN2-fwd ACATGGAGGACCACCTGAAG MDA-MB-134 internal rearrangements 

PTPRN2-rev GTCAGCATGACGATCACCAC MDA-MB-134 internal rearrangements 

EPB49-fwd CCTCCCGAGATTCCAGTGT MDA-MB-134 readthrough fusions 
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EPB49-rev CGTGTTCCAGGAGGGAATAA MDA-MB-134 readthrough fusions 

SHANK2-fwd TTGAGGAGAAGACGGTGGTC MDA-MB-134 readthrough fusions 

SHANK2-rev GAAGTCCCCGGTCCTTAGTC MDA-MB-134 readthrough fusions 

POLD3-fwd CAAATGGCTGAGCTATACACTAGG MDA-MB-134 readthrough fusions 

POLD3-rev AACCTTGTGGCAGGAATGTC MDA-MB-134 readthrough fusions 

KCNU1-fwd GCCATGTAAGAAGCCTCCAC MDA-MB-134 readthrough fusions 

KCNU1-rev ACAGCTTCCAACAGGGTCAG MDA-MB-134 readthrough fusions 

ADAM2-fwd CCAGTTGATTGGATTGACGA MDA-MB-134 readthrough fusions 

ADAM2-rev CTTGAAAGGTTGCACCAACA MDA-MB-134 readthrough fusions 

LRRC32-fwd GCTGCACAACACCAAGACAA MDA-MB-134 readthrough fusions 

LRRC32-rev GCTGATCTCATTGGTGCTCA MDA-MB-134 readthrough fusions 

ACER3-fwd TCAGCCAGCTCTGCTCTGAT MDA-MB-134 readthrough fusions 

ACER3-rev GGCACAACCATGACCTCTCT MDA-MB-134 readthrough fusions 

NADSYN1-fwd GCTACGGATGTTGGGATCAT MDA-MB-134 readthrough fusions 

NADSYN1-rev GCAGGATCTTCCTGTTGAGG MDA-MB-134 readthrough fusions 

IMMP2L-fwd AGTCACAAGGGTGGGTGAAA MDA-MB-134 readthrough fusions 

IMMP2L-rev TGGTTCAAAAGCACCACATC MDA-MB-134 readthrough fusions 

PRDM4-fwd TACCCTCACCTGGAGAGCAG MDA-MB-134 readthrough fusions 

PRDM4-rev ATGAAGACTTTGGGCACCAT MDA-MB-134 readthrough fusions 

GGCT-fwd GGAGGGATAGCCACCATTTT MDA-MB-134 readthrough fusions 

GGCT-rev ATGGGGGAGCACTTTCGTA MDA-MB-134 readthrough fusions 

NOD1-fwd GCGGCGATTACAGAAAACAT MDA-MB-134 readthrough fusions 

NOD1-rev CTCTCAGCAGAAGGGCAATC MDA-MB-134 readthrough fusions 

KLHL35-fwd TACGACCCCTTCTCCAACAC MDA-MB-134 readthrough fusions 

KLHL35-rev GATGGTGTCCTCAAGGGAGA MDA-MB-134 readthrough fusions 

AQP11-fwd AGCTTTGGCACTTTCGCTAC MDA-MB-134 readthrough fusions 

AQP11-rev CCGGTGTTTTCCATATGAGG MDA-MB-134 readthrough fusions 

PAK1-fwd AGTTACCACCTCCTGCCTCA MDA-MB-134 readthrough fusions 

PAK1-rev CGAGCTACCGCTTCACTTTC MDA-MB-134 readthrough fusions 

SERPINH1-fwd AGCAGCAAGCAGCACTACAA MDA-MB-134 readthrough fusions 

SERPINH1-rev AGGACCGAGTCACCATGAAG MDA-MB-134 readthrough fusions 

ANK1-fwd GAGCTGCAGTTCAGTGTGGA MDA-MB-134 readthrough fusions 

ANK1-rev TCCAGCATGTTCACGATCTC MDA-MB-134 readthrough fusions 

AP3M2-fwd AGAAAATGTGCCTCCGGTTA MDA-MB-134 readthrough fusions 

AP3M2-rev TGGAAAACCATTGTCAAGCA MDA-MB-134 readthrough fusions 

ODZ4-ex1-fwd CGCCGAGAGAGAGAGGAG ODZ4 exons, real time 

ODZ4-ex1-rev ATCTCTCAGACACTTGGTCGG ODZ4 exons, real time 

ODZ4-ex4-fwd GACTGAAATTACCATGTGTCCAAA ODZ4 exons, real time 

ODZ4-ex4-rev AAGGAGAGGAAGCCTTACCG ODZ4 exons, real time 

ODZ4-ex6-fwd CACCGAGCATGAAAACACTG ODZ4 exons, real time 

ODZ4-ex6-rev TCCATTAACTCCCTGAACCG ODZ4 exons, real time 

ODZ4-ex8-fwd GACATTGCAGGACAACCTCA ODZ4 exons, real time 
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ODZ4-ex8-rev ATCACCAGGGTACCCACTGA ODZ4 exons, real time 

ODZ4-ex11-fwd GCCTCCCTCCTTCACATACA ODZ4 exons, real time 

ODZ4-ex11-rev TTTGGATTCAGGAATCTGGC ODZ4 exons, real time 

ODZ4-ex18-fwd AGGAGCTGGCTGTGACACTT ODZ4 exons, real time 

ODZ4-ex18-rev TGATGTCCAGAGGGTTAGGG ODZ4 exons, real time 

ODZ4-ex26-fwd GTGGTGGTGAAGGACCTTGT ODZ4 exons, real time 

ODZ4-ex26-rev GTGGACAAGTTTGGGCTGAT ODZ4 exons, real time 

ODZ4-ex29-fwd GAGACCTCCAGCAAGGATGA ODZ4 exons, real time 

ODZ4-ex29-rev AACAGCTACTACATCGGGGC ODZ4 exons, real time 

ODZ4-ex21-fwd AGCCCCAGACCTGTCCTATT ODZ4 exons, real time 

ODZ4-ex21-rev TTGGACGCGTCAATTTCATA ODZ4 exons, real time 

GAPDH_RT_fwd GCAAATTCCATGGCACCGT GAPDH, real-time control 

GAPDH_RT_rev TCGCCCCACTTGATTTTGG GAPDH, real-time control 
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Appendix 2 - BACs 

BAC clones used for FISH. All positions are from the hg18/GrCH36 build of the human genome. 

Name Chromosome Start position (bp) End position (bp) 

RP11-65L3  2 178,966,383 179,139,203 

RP11-67G7  2 182,686,311 182,851,083 

RP11-59L22  2 192,914,919 193,076,744 

RP11-15J24  2 205,174,891 205,347,264 

RP4-781A18  7 27,976,454 28,166,805 

RP11-563O5  7 114,005,319 114,175,715 

RP11-518I12  7 157,549,662 157,756,716 

RP11-381A5 17 55,638,614 55,853,525 

RP11-947H19  17 55,827,724 56,009,281 

RP11-105G8 17 55,904,414 56,060,400 

RP11-160D4  17 56,857,614 57,015,721 

RP11-466D9 17 56,954,223 57,129,790 

RP11-180G7 17 57,115,715 57,267,805 
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Appendix 3 – Manufacturers and suppliers 

Reagent Manufacturer/Supplier 

anti-BCAS3 antibody Gift from Dr Jason Carroll, CRUK Cambridge Research Institute, Cambridge, UK 

BACs Wellcome Trust Sanger Institute, UK/Invitrogen, Paisley, UK 

BioPrime labelling kit Invitrogen, Paisley, UK 

Biotin dUTP Roche Diagnostics, Basel, Switzerland 

Biotinylated anti-streptavidin Vector Laboratories Inc., Burlingame, CA, USA 

Chloramphenicol Sigma-Aldrich, Dorset, UK 

Colcemid Sigma-Aldrich, Dorset, UK 

Complete Protease Inhibitor Cocktail  Roche Diagnostics, Basel, Switzerland 

Cryotubes Fisher Scientific, Loughborough, UK 

Cy3-labelled dCTP Amersham, Epsom, UK 

Cy5-labelled dCTP Amersham, Epsom, UK 

Cy5-labelled streptavidin Amersham, Epsom, UK 

DAPI in Vectashield Vector Laboratories Inc., Burlingame, CA, USA 

Denhardt's Solution Sigma-Aldrich, Dorset, UK 

Dextran sulphate Sigma-Aldrich, Dorset, UK 

Digoxygenin-11 dUTP Roche Diagnostics, Basel, Switzerland 

DMEM-F12 GIBCO Technologies, Invitrogen, Paisley, UK 

DMSO Invitrogen, Paisley, UK 

DNA polymerase I Sigma-Aldrich, Dorset, UK 

DNA-free Kit Ambion, Applied Biosystems, Foster City, USA 

DNAse I Sigma-Aldrich, Dorset, UK 

DNAzol reagent Invitrogen, Paisley, UK 

dNTPs Invitrogen, Paisley, UK 

ECL Plus Western Blotting Detection System  GE Healthcare, Buckinghamshire, UK 

Elongase polymerase mix Invitrogen, Paisley, UK 

Eppendorf tubes Starlab, Milton Keynes, UK 

Ethanol Sigma-Aldrich, Dorset, UK 

Falcon tubes Bibby Sterilin, Stone, UK 

FBS Sigma-Aldrich, Dorset, UK 

FITC-labelled anti-digoxygenin Roche Diagnostics, Basel, Switzerland 

Formamide VWR International, Lutterworth, UK 

G50 MicroSpin columns GE Healthcare, Buckinghamshire, UK 

GenomiPhi Kit GE Healthcare, Buckinghamshire, UK 

HiSpeed Plasmid Midi-Prep Kit  Qiagen UK, Crawley, UK 

HotMaster Taq VWR International, Lutterworth, UK 

Hyperladder I Bioline, London, UK 

Isopropanol Invitrogen, Paisley, UK 
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ITS Sigma-Aldrich, Dorset, UK 

Kanamycin Sigma-Aldrich, Dorset, UK 

LB agar Hutchison/MRC Centre Media Unit 

LB broth Hutchison/MRC Centre Media Unit 

Mate-Pair Library Prep Kit  Illumina, San Diego, CA, USA 

MCBD-201 GIBCO Technologies, Invitrogen, Paisley, UK 

NaH2PO4 VWR International, Lutterworth, UK 

NaHPO4 VWR International, Lutterworth, UK 

NanoDrop spectrophotometer Labtech International, Ringmer, UK 

Paired-End DNA Sample Prep Kit Illumina, San Diego, CA, USA 

PBS Hutchison/MRC Centre Media Unit 

Pellet Paint Merck KGaA, Darmstadt, Germany 

Penicillin/streptomycin GIBCO Technologies, Invitrogen, Paisley, UK 

Pipette tips Starlab, Milton Keynes, UK 

QIAquick PCR Purification Kit  Qiagen UK, Crawley, UK 

RIPA buffer Hutchison/MRC Centre Media Unit 

RNAseIN Promega, Fitchburg, USA 

RPMI-1640 GIBCO Technologies, Invitrogen, Paisley, UK 

Rubber cement Heffers Art and Graphics Shop, Cambridge, UK  

Sodium acetate Hutchison/MRC Centre Media Unit 

Spectrum Orange dUTP Vysis UK Ltd/Abbott Laboratories, Downers Grove IL, USA  

SSC Hutchison/MRC Centre Media Unit 

SuperScript III First-Strand Synthesis Kit Invitrogen, Paisley, UK 

SYBR Green PCR Master Mix Applied Biosystems, Foster City, USA 

TE Hutchison/MRC Centre Media Unit 

Tissue microarrays Dr Suet-Feung Chin, CRUK Cambridge Research Institute, Cambridge, UK 

TOPO XL PCR Cloning Kit  Invitrogen, Paisley, UK 

Tris-acetate pre-cast gel Invitrogen, Paisley, UK 

Trizol reagent Invitrogen, Paisley, UK 

Trypsin GIBCO Technologies, Invitrogen, Paisley, UK 

Tween 20 QbioGene, Livingston, Scotland 

Versene Hutchison/MRC Centre Media Unit 

Yeast tRNA Invitrogen, Paisley, UK 

 

 

 



235 
 

Appendix 4 – Bioinformatic pipeline scripts 
 
A – Perl script to predict fusion genes 
 
# Fusion Gene Prediction 

# Takes the structural variant calls from sequencing and predicts possible 

fusion genes, readthroughs, and internal gene rearrangements 

# Uses the Ensembl API - 

http://www.ensembl.org/info/docs/api/api_installation.html for installation 

and necessary modules 

# Liz Batty emb51@cam.ac.uk 

# Last modified August 2010 

 

use warnings; 

use strict; 

use Bio::EnsEMBL::Registry; 

use Getopt::Long; 

 

# set default values 

my $matepair = 0; 

my $strands = 0; 

my $linecounter = 0; 

my $columns = 0; 

my $cnv = 0; 

my $help = 0; 

my $input = 'library.lanes.sv_calls.txt'; 

my $insertsize = 470; 

 

#uncomment one of these to use either hg18 (may2009) or hg19 website in 

hyperlinks 

#my $ensembl_site = "may2009.archive.ensembl.org"; 

my $ensembl_site = "www.ensembl.org"; 

 

 

my( $type_of_sv, 

$support_for_sv, 

$node1_chr, 

$node1_start, 

$node1_end, 

$node1_strand, 

$extra_support_1, 

$node2_chr, 

$node2_start, 

$node2_end, 

$node2_strand, 

$extra_support_2, 

$node1_cnv, 

$node2_cnv ); 

 

my $result = GetOptions ("matepair|m" => \$matepair, 

      "strands|s" => \$strands, 

      "insertsize|i=i" => \$insertsize, 

      "columns|c" => \$columns, 

      "cnv|n" => \$cnv, 

      "help|h" => \$help); 

if ($help) { 
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 print "Options are:\n--matepair\tUse for mate pair libraries where RF 

is a normal read 

--strands\tThe file uses -1 and 1 for strand directions 

--insertsize\tUse to set the insert size of the library 

--columns\tThe file has extra supporting read columns (see later version of 

Kevin's script) 

--cnv\tThe file has been checked for CNVs\n"; 

   exit; 

   } 

 

if (@ARGV) { 

 $input = $ARGV[0]; 

  } 

 

open (INPUT, $input)  || die print "failed to open input file $!"; 

 

# print correct header line to the output file 

{ 

if ($columns == 0 && $cnv == 0) { 

 print "Type of SV\tSV Support\tNode 1 chr\tNode 1 start\tNode 1 

end\tNode 1 direction\tNode 2 chr\tNode 2 start\tNode 2 end\tNode 2 

direction\tGene at node 1\tGene at node 2\tType of fusion\tDetails\n"; 

} 

 

elsif ($columns == 1 && $cnv == 0) { 

 print "Type of SV\tSV Support\tNode 1 chr\tNode 1 start\tNode 1 

end\tNode 1 direction\tExtra support\tNode 2 chr\tNode 2 start\tNode 2 

end\tNode 2 direction\tExtra support\tGene at node 1\tGene at node 2\tType of 

fusion\tDetails\n"; 

 } 

 

elsif ($columns == 0 && $cnv == 1) { 

 print "Type of SV\tSV Support\tNode 1 chr\tNode 1 start\tNode 1 

end\tNode 1 direction\tNode 2 chr\tNode 2 start\tNode 2 end\tNode 2 

direction\tNode 1 CNVs\tNode 2 CNVs\tGene at node 1\tGene at node 2\tType of 

fusion\tDetails\n"; 

 } 

 

elsif ($columns == 1 && $cnv == 1) { 

 print "Type of SV\tSV Support\tNode 1 chr\tNode 1 start\tNode 1 

end\tNode 1 direction\tExtra support\tNode 2 chr\tNode 2 start\tNode 2 

end\tNode 2 direction\tExtra support\tNode 1 CNVs\tNode 2 CNVs\tGene at node 

1\tGene at node 2\tType of fusion\tDetails\n"; 

 } 

} 

 

 

 

#make a connection to the Ensembl database 

my $registry = 'Bio::EnsEMBL::Registry'; 

$registry->load_registry_from_db( 

 -host => 'ensembldb.ensembl.org', 

 -user => 'anonymous' 

); 

 

# tells it we want to work with a slice of the human genome 

my $slice_adaptor = $registry->get_adaptor( 'Human', 'Core', 'Slice' ); 
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#read through the list of SVs 

while(<INPUT>) 

 { 

  #chomp the newline, replace the + and - with 1 and -1, and read 

into variable 

  if ($strands == 0) { 

   $_=~s/\+/1/g; 

   $_=~s/\-/-1/g; 

  } 

  chomp $_; 

 

  my $structural_variant = $_; 

 

  my $has_sv_been_printed = 0; 

 

 

  #split up the columns in the SV file 

  if ($columns == 1 && $cnv == 0) { 

   ( $type_of_sv, 

    $support_for_sv, 

    $node1_chr, 

    $node1_start, 

    $node1_end, 

    $node1_strand, 

    $extra_support_1, 

    $node2_chr, 

    $node2_start, 

    $node2_end, 

    $node2_strand, 

    $extra_support_2 ) = split('\t', $_); 

  } 

  elsif ($columns == 1 && $cnv == 1) { 

   ( $type_of_sv, 

    $support_for_sv, 

    $node1_chr, 

    $node1_start, 

    $node1_end, 

    $node1_strand, 

    $extra_support_1, 

    $node2_chr, 

    $node2_start, 

    $node2_end, 

    $node2_strand, 

    $extra_support_2, 

    $node1_cnv, 

    $node2_cnv) = split('\t', $_); 

 

  } 

  elsif ($columns == 0 && $cnv == 1) { 

   ( $type_of_sv, 

    $support_for_sv, 

    $node1_chr, 

    $node1_start, 

    $node1_end, 

    $node1_strand, 

    $node2_chr, 
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    $node2_start, 

    $node2_end, 

    $node2_strand, 

    $node1_cnv, 

    $node2_cnv) = split('\t', $_); 

 

  } 

  else { 

   ( $type_of_sv, 

    $support_for_sv, 

    $node1_chr, 

    $node1_start, 

    $node1_end, 

    $node1_strand, 

    $node2_chr, 

    $node2_start, 

    $node2_end, 

    $node2_strand, ) = split('\t', $_); 

 

  } 

   

  #skip header, if it is there 

  next if ($_=~/^Type/); 

 

  #skip LOPs 

  next if ($type_of_sv eq 'LOP'); 

 

  #skip ITRs (newer equivalent of LOP) 

  next if ($type_of_sv eq 'ITR'); 

   

  #skip over mitochondria and other haplotypes, etc 

  next if ($node1_chr eq 'M' || $node1_chr eq 'MT' || 

$node1_chr=~/"Un"/ || $node2_chr eq 'M' || $node2_chr eq 'MT' || 

$node2_chr=~/"Un"/ ); 

 

  #mate pair reads have the opposite strand 

  if ($matepair == 1) { 

 

   if ($node1_strand == 1) { 

    $node1_strand=~s/1/-1/g; 

    } 

   else { 

    $node1_strand=~s/-1/1/g; 

    } 

 

   if ($node2_strand == 1) { 

    $node2_strand=~s/1/-1/g; 

    } 

   else { 

   $node2_strand=~s/-1/1/g; 

   } 

  } 

 

 

  ####################################### 

  ## FIND THE GENES AT THE BREAKPOINTS ## 

  ####################################### 
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  my $which_node = 1; 

  my ($node1_breaks_gene, $has_sv_been_printed_in_node1, 

$node1_genearrayref) = get_broken_genes($has_sv_been_printed, 

$structural_variant, $node1_chr, $node1_start, $node1_end, $which_node); 

  $has_sv_been_printed = $has_sv_been_printed_in_node1; 

  my @node1_genearray = @$node1_genearrayref; 

 

  $which_node = 2; 

  my ($node2_breaks_gene, $has_sv_been_printed_in_node2, 

$node2_genearrayref) = get_broken_genes($has_sv_been_printed, 

$structural_variant, $node2_chr, $node2_start, $node2_end, $which_node); 

  $has_sv_been_printed = $has_sv_been_printed_in_node2; 

  my @node2_genearray = @$node2_genearrayref; 

 

 

  ################################## 

  ## PREDICT ANY FUSIONS PRODUCED ## 

  ################################## 

 

  # check if there are broken genes at both nodes, ie fusion is 

possible 

  if ( $node1_breaks_gene == 1 && $node2_breaks_gene == 1) { 

   #use a loop to test all genes at node 1 against all genes 

at node 2 

   foreach( @node1_genearray ) { 

 

    # split up the attributes of the gene from node one 

    my( $gene1_dbid, 

     $gene1_displayname, 

     $gene1_externalname, 

     $gene1_start, 

     $gene1_end, 

     $gene1_strand, 

     $gene1_stableid ) = split('\t', $_); 

 

   foreach( @node2_genearray ) { 

 

     # split up the attributes of the gene from node 

two 

     my ($gene2_dbid, 

      $gene2_display, 

      $gene2_externalname, 

      $gene2_start, 

      $gene2_end, 

      $gene2_strand, 

      $gene2_stableid) = split('\t', $_); 

 

      

 

     # test if the genes are the same - ie it is an 

internal deletion/duplication 

     if ( $gene1_stableid eq $gene2_stableid ) { 

 

       print 

"=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapiens\/Gene\/Summary?g\=$gene1

_stableid\", 
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\"$gene1_externalname\"\)\t=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapien

s\/Gene\/Summary?g\=$gene2_stableid\", \"$gene2_externalname\"\)\tINTERNAL"; 

 

       undef my @exon_already_seen; 

 

       if ($type_of_sv eq "DEL") { # only 

check for exons which are deleted, not amplified/inverted 

 

        # set boundaries of deletion 

- node 2 may be before node 1 

        my $deleted_slice; 

        if ($node1_start < 

$node2_start) { 

         $deleted_slice = 

$slice_adaptor->fetch_by_region('chromosome', $node1_chr, $node1_start, 

$node2_end); 

        } 

        else { 

         $deleted_slice = 

$slice_adaptor->fetch_by_region('chromosome', $node1_chr, $node2_start, 

$node1_end); 

        } 

 

        my $deleted_exons = 

$deleted_slice->get_all_Exons(); 

        my $are_exons_deleted = 0; 

        my $exoncounter = 0; 

        my @exon_id_list; 

        while ( my $exon = shift 

@{$deleted_exons} ) { 

         $are_exons_deleted = 1; 

         my $stable_id = 

$exon->stable_id(); 

         @exon_already_seen = 

grep($stable_id, @exon_id_list); 

         if (@exon_already_seen) 

{ 

          $exoncounter++; 

         } 

         else { 

         

 push(@exon_id_list, $stable_id); 

         } 

        } 

 

        if ($are_exons_deleted == 0) 

{ 

         print "\tNO EXONS 

DELETED"; 

        } 

 

        else { 

         print "\t$exoncounter 

EXONS DELETED"; 

        } 

       } 

      } 
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     #test for a head-on collision - ie two genes 

which could produce readthoughs 

     elsif ( $gene1_strand == $node1_strand && 

$gene2_strand == $node2_strand ) { 

       get_run_through(\@node1_genearray, 

$node1_strand, $node2_strand, $node2_start, $node2_end, $node2_chr); 

       get_run_through(\@node2_genearray, 

$node2_strand, $node1_strand, $node1_start, $node1_end, $node1_chr); 

 

     } 

 

     #test for a 3'to 5' fusion 

     elsif ( $gene1_strand != $node1_strand && 

$gene2_strand == $node2_strand ) { 

      print 

"=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapiens\/Gene\/Summary?g\=$gene1

_stableid\", 

\"$gene1_externalname\"\)\t=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapien

s\/Gene\/Summary?g\=$gene2_stableid\", \"$gene2_externalname\"\)\tFUSION\t5' 

of $gene2_externalname into 3' of $gene1_externalname"; 

     } 

 

     #test for a 5' to 3' fusion 

     elsif ($gene1_strand == $node1_strand && 

$gene2_strand != $node2_strand) { 

      print 

"=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapiens\/Gene\/Summary?g\=$gene1

_stableid\", 

\"$gene1_externalname\"\)\t=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapien

s\/Gene\/Summary?g\=$gene2_stableid\", \"$gene2_externalname\"\)\tFUSION\t5' 

of $gene1_externalname into 3' of $gene2_externalname"; 

     } 

 

     else { 

      print 

"=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapiens\/Gene\/Summary?g\=$gene1

_stableid\", 

\"$gene1_externalname\"\)\t=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapien

s\/Gene\/Summary?g\=$gene2_stableid\", \"$gene2_externalname\"\)\tNO FUSION 

PREDICTED"; 

 

     } 

    } 

   } 

 

   if ( $has_sv_been_printed == 1 ) { 

    print "\n"; 

    } 

  } 

 

 

  elsif( $node1_breaks_gene == 1 && $node2_breaks_gene == 0 ) { 

   #broken gene at node 1, want to find the gene it runs into 

   #node 2 is the test node 

   get_read_through(\@node1_genearray, $node1_strand, 

$node2_strand, $node2_start, $node2_end, $node2_chr); 
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   if ($has_sv_been_printed == 1) {print "\n";}; 

  } 

 

  elsif( $node1_breaks_gene == 0 && $node2_breaks_gene == 1 ) { 

   #broken gene at node 2, want to find the gene it runs into 

   #node 1 is the test node 

   get_read_through(\@node2_genearray, $node2_strand, 

$node1_strand, $node1_start, $node1_end, $node1_chr); 

   if ($has_sv_been_printed == 1) {print "\n";}; 

  } 

 

 

 $linecounter++; 

 } 

 

close INPUT; 

print "Processing finished!\n"; 

 

sub get_broken_genes 

{ 

 my $has_sv_been_printed = shift; 

 my $structural_variant = shift; 

 my $node_chr = shift; 

 my $node_start = shift; 

 my $node_end = shift; 

 my $which_node = shift; 

  

 #create a chromosome slice for the possible breakpoint region 

 my $node_chromslice = $slice_adaptor->fetch_by_region('chromosome', 

$node_chr, $node_end, $node_end+$insertsize); 

 

 my $node_slicestart = $node_chromslice->start(); 

 my $node_sliceend   = $node_chromslice->end(); 

 my $node_genes = $node_chromslice->get_all_Genes(); 

 undef my @node_genearray; 

 my $node_breaks_gene = 0; 

 

 while (my $gene = shift @{ $node_genes } ) { 

 

  #this loop tells it to output the break if it has not been done 

before 

  if ($has_sv_been_printed != 1) { 

 

   print "$structural_variant\t"; 

   $has_sv_been_printed = 1; 

  } 

 

   # call subroutine to get all the gene attributes and 

returned them concatenated into the array 

   @node_genearray = get_gene_attributes($node_slicestart, 

$node_sliceend, $which_node, $gene); 

   $node_breaks_gene = 1; 

 } 

 

 undef $node_genes; 

 return ($node_breaks_gene, $has_sv_been_printed, \@node_genearray); 
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} 

 

 

sub get_read_through 

{ 

   my $genearray_ref  = shift; 

   my $brokennode_strand  = shift; 

   my $testnode_strand  = shift; 

   my $testnode_start   = shift; 

   my $testnode_end   = shift; 

   my $testnode_chr   = shift; 

 

   # go and find nearest unbroken gene in correct orientation 

   foreach(@{$genearray_ref}) 

   { 

 

    # split up the attributes of the gene from the broken 

node 

    my ($brokengene_dbID, 

     $brokengene_display, 

     $brokengene_externalname, 

     $brokengene_start, 

     $brokengene_end, 

     $brokengene_strand, 

     $brokengene_stableid) = split('\t', $_); 

    #print "broken gene is $brokengene_externalname\n"; 

    if ($brokennode_strand == $brokengene_strand) { 

 

     #fetch 1000bp near test node 

     my ($testslice_start, $testslice_end); 

     

     if ($testnode_strand == 1) 

     { 

 

      $testslice_start = $testnode_start - 

1000; 

      $testslice_end = $testnode_start; 

     } 

     else 

     { 

      $testslice_start = $testnode_end; 

      $testslice_end = $testnode_end + 1000; 

     } 

      

     my $iteration_counter = 1; 

     my $found_a_gene = 0; 

     #only iterate 1000 times max- ie, will find a 

readthrough within 1Mb of the break 

     until ($found_a_gene == 1 || $iteration_counter 

== 1000) 

      { 

 

       my @nearbygenes = 

get_nearby_genes($testnode_chr, $testslice_end, $testslice_end+$insertsize); 

 

       foreach(@nearbygenes) 

        { 
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         my ($nearbygene_dbID, 

         

 $nearbygene_display, 

         

 $nearbygene_externalname, 

         

 $nearbygene_start, 

          $nearbygene_end, 

         

 $nearbygene_strand, 

         

 $nearbygene_stableid) = split ("\t", $_); 

 

         if ($nearbygene_strand 

!= $testnode_strand) 

         { 

 

           

          print 

"=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapiens\/Gene\/Summary?g\=$broke

ngene_stableid\", 

\"$brokengene_externalname\"\)\t=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_s

apiens\/Gene\/Summary?g\=$nearbygene_stableid\", 

\"$nearbygene_externalname\"\)\tREADTHROUGH\t$brokengene_externalname is 

broken and may read through into $nearbygene_externalname 

",$iteration_counter,"kb away"; 

          $found_a_gene = 

1; 

         } 

        } 

 

       if ($testnode_strand == 1) 

       { 

        $testslice_end = 

$testslice_start; 

        $testslice_start -= 1000; 

 

 

       } 

       else 

       { 

        $testslice_start = 

$testslice_end; 

        $testslice_end += 1000; 

       } 

 

       undef @nearbygenes; 

       $iteration_counter++; 

 

      } 

 

    } 

 

    else { 

     print 

"=HYPERLINK\(\"http\:\/\/$ensembl_site\/Homo_sapiens\/Gene\/Summary?g\=$broke
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ngene_stableid\", \"$brokengene_externalname\"\)\t\tNO READTHROUGH WITHIN 

1Mb"; 

    } 

   } 

 

} 

 

 

sub get_nearby_genes 

{ 

 undef my @genearray; 

 my $chr  = shift; 

 my $start  = shift; 

 my $end  = shift; 

 my $chromslice = $slice_adaptor->fetch_by_region('chromosome', $chr, 

$start, $end); 

 my $genes = $chromslice->get_all_Genes(); 

 while ( my $gene = shift @{$genes} ) 

  { 

   my $dbID     = $gene->dbID(); 

   my $display   = $gene->display_id(); 

   my $externalname= $gene->external_name(); 

   my $genestart   = $gene->start(); #positions are relative 

to the slice, not the absolute chromosomal location 

   my $geneend   = $gene->end(); 

   my $genestrand  = $gene->strand(); 

   my $stable_id = $gene->stable_id(); 

   my $geneconcat = join("\t", $dbID, $display, $externalname, 

$genestart, $geneend, $genestrand, $stable_id); 

   push (@genearray, $geneconcat); 

  } 

 

 return @genearray; 

} 

 

sub get_gene_attributes 

{ 

 

  my $start  = shift; 

  my $end  = shift; 

  my $node = shift; 

  my $gene  = shift; 

 

  my $dbID     = $gene->dbID(); 

  my $display   = $gene->display_id(); 

  my $externalname= $gene->external_name(); 

  my $genestart   = $gene->start(); #positions are relative to 

the slice, not the absolute chromosomal location 

  my $geneend   = $gene->end(); 

  my $genestrand  = $gene->strand(); 

  my $stable_id = $gene->stable_id(); 

 

  my $geneconcat = join("\t", $dbID, $display, $externalname, 

$genestart, $geneend, $genestrand, $stable_id); 

 

  push (my @genearray, $geneconcat); 
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  return @genearray; 

} 
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B – R script to window sequencing reads 
 

# Makes copy number bins for Illumina copy number analysis 

# Input is the for_cnv.txt file divided into chromosomes, and requires the 

appropriate mappable_starts directory 

# Liz Batty, last modified July 2010 

 

#how many reads to put in a bin - more reads, larger bins 

readsperbinlist <- c(100, 250, 500) 

 

#include lanes in sample name 

samplelist <- c("81777.a","83493.a","82674.a","938.a","946.a","81828.a") 

 

for (sample in samplelist) { 

 for(i in c(1:22,"X", "Y")) { 

  print(paste("processing chromosome ",i," from ",sample,sep="")) 

  #read in mappable starts for the chr 

  chrstarts <- 

read.table(file=paste("mappable_starts/chr",i,".mappable.starts", sep=""), 

header=FALSE) 

 

  #read the file of good reads for CNV analysis (per chromosome) 

  cnvreads <- 

read.table(file=paste(sample,"/",sample,".forcnv.chr",i,".txt", sep=""), 

header=FALSE) 

 

 

  for (readsperbin in readsperbinlist) { 

 

   #subset to find the bin edges, determined by readsperbin 

   #ie, if this were idealised genome, this gives bin sizes 

which would give readsperbin reads in each 

   chrstarts.short <- chrstarts[seq(1, nrow(chrstarts), 

readsperbin),2] 

 

   #adds a final bin to catch all the end of chr reads 

   bin.edges <- 

c(0,chrstarts.short,chrstarts.short[length(chrstarts.short)]+1000000) 

 

   #cuts the file up according to the bin edges 

   res <- cut( 

    as.integer(cnvreads[cnvreads[,1]==i,2]),  

    breaks=bin.edges-0.1,  

    labels=round(bin.edges[1:(length(bin.edges)-

1)]+(bin.edges[2:length(bin.edges)] - bin.edges[1:(length(bin.edges)-1)])/2) 

   ) 

    

   #write the results to output as a table 

   result <- table(res) 

     

   write.table( 

    result,  

    sep="\t",  

   

 file=paste(sample,"/",sample,".chr",i,".raw_bincounts.",readsperbin,"re

adsperbin",sep=""),  
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    row.names=FALSE,  

    col.names=FALSE,  

    quote=FALSE 

   ) 

 

  } 

 } 

} 
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C – Perl script to retrieve GC percentages 

# GC percentage fetcher 

# Takes the raw_bincounts from the copy number part of the pipeline, and gets 

the GC percentage over those bins 

# Liz Barrt last modified July 2010 

 

use warnings; 

use strict; 

use Bio::EnsEMBL::Registry; 

 

# set default values 

my $linecounter = 0; 

my $input = 0; 

 

#make a connection to the Ensembl database 

my $registry = 'Bio::EnsEMBL::Registry'; 

$registry->load_registry_from_db( 

 -host => 'ensembldb.ensembl.org', 

 -user => 'anonymous' 

); 

 

#input is copy number bins from copy_number_bins.R 

my @files = <*raw_bincounts*>; 

 

foreach(@files) 

 { 

  $input   = $_; 

  

  my ($sample, $lanes, $chr, $bincount, $reads) = split(/\./,$_); 

  my $output       

 ="$chr.$reads.gcbins.txt"; 

   

  open (INPUT, $input)  || die print "failed to open input 

file $!"; 

  open (OUTPUT, ">$output")   || die print "failed to 

open output file $!"; 

 

  print "Input file is $input\n"; 

  print "Output file will be saved as $output\n"; 

 

 

  # tells it we want to work with a slice of the human genome 

  my $slice_adaptor = $registry->get_adaptor( 'Human', 'Core', 

'Slice' ); 

 

  my $bin_start = 1; 

  #read through the list of SVs 

  while(<INPUT>) 

  { 

    print "Processing line $linecounter of $chr\r"; 

   

    #chomp the newline, replace the + and - with 1 and -

1, and read into variable 

    chomp $_; 
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    #split up the columns in the SV file 

    my( $bin_end,  

     $reads ) = split('\s', $_); 

   

   

    my $short_chr = substr $chr, 3; 

    #print "bine end is $bin_end, reads is $reads, short 

chr is $short_chr\n"; 

   

    my $chromslice = $slice_adaptor-

>fetch_by_region('chromosome', $short_chr, $bin_start, $bin_end); 

     

    #print Dumper ($chromslice); 

    my $gc_count = $chromslice->get_base_count->{'%gc'}; 

   

    print OUTPUT "$bin_start\t$bin_end\t$gc_count\n"; 

    $bin_start = $bin_end; 

    $linecounter++; 

  } 

 

 close INPUT; 

 close OUTPUT; 

 } 

 

print "Processing finished!\n"; 
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D – R script to perform GC correction and segmentation of sequencing reads, and produce 
graphs and tables 
 

# GC correction, segmentation and output of graphs from Solexa binned reads 

# Liz Batty, last modified July 2010 

# requires DNAcopy library 

 

 

library(DNAcopy) 

 

mb <- seq(0,2.5e8,5e6) 

shortmb <- seq(0,250,10) 

samplelist <- c("83493.a", "82674.a","938.a","81828.a","946.a") 

readsperbinlist <- c(100,250,500) 

 

for (sample in samplelist) { 

 for(i in c(1:22,"X")) { 

  print(paste("processing chromosome ",i," from ",sample,sep="")) 

 

  for (readsperbin in readsperbinlist) { 

   

   # read in binned reads and reformat for DNAcopy 

   chrbincount <- 

read.table(file=paste(sample,"/",sample,".chr",i,".raw_bincounts.",readsperbi

n,"readsperbin",sep=""), header=FALSE) 

   chrbincount[,3] <- 

array(i,dim=c(length(chrbincount[,1]),1)) 

   chrCNA <- CNA(chrbincount[,2], chrbincount[,3], 

chrbincount[,1], data.type="logratio", sampleid=sample) 

 

   #smooth (remove outliers) and segment the data 

   smooth.chrCNA <- smooth.CNA(chrCNA) 

   segment.chrCNA <- segment(smooth.chrCNA, verbose=1, 

undo.splits="sdundo", undo.SD=2) 

 

   #read in GC percentages (retrieved from Ensembl - see 

gcpercent.pl) and add to smoothed data 

   chrgc <- 

read.table(file=paste("gcpercent/chr",i,".",readsperbin,"readsperbin.gcbins.t

xt",sep=""), header=FALSE)  

   smooth.chrCNA[,4] <- chrgc[,3] 

   colnames(smooth.chrCNA) <- c("chr", "position", "reads", 

"gc") 

   smooth.chrCNA[,3][smooth.chrCNA[,3]==0] = NA 

 

   print("Performing loess correction") 

 

   # perform loess over chromosome data and predict correction 

factor, then correct data and plot 

   smooth.chrloess <- loess(smooth.chrCNA$reads ~ 

smooth.chrCNA$gc, span=0.3, loess.control(iterations=3)) 

   smooth.chrCNA$loesspred <- predict(smooth.chrloess, 

smooth.chrCNA$gc) 

   smooth.chrCNA$dist_from_median <- 

(smooth.chrCNA$loesspred/median(smooth.chrCNA$reads, na.rm=TRUE)) 

   smooth.chrCNA$reads[smooth.chrCNA$reads==NA] = 0 
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   smooth.chrCNA$corrected <- 

(smooth.chrCNA$reads*(1/smooth.chrCNA$dist_from_median)) 

   smooth.chrCNA$mbposition <- smooth.chrCNA$position/1000000 

  

 png(file=paste(sample,"/",sample,".chr",i,".",readsperbin,"readsperbin.

loesscorrected.png",sep=""), width=1000, height=500) 

    

   plot(smooth.chrCNA$mbposition, smooth.chrCNA$corrected,  

   pch=20,  

   xlab="Position (mb)",  

   ylab="Normalized reads",  

   sub=paste("Corrected copy number plot for chr",i," with 

",readsperbin," reads per bin",sep=""),  

   xaxt="n", 

   #ylim=c(0,500) 

   ) 

    

   axis(1,shortmb) 

   dev.off() 

 

 

   # redo the DNAcopy segmentation with corrected data 

   correctedCNA <- CNA(smooth.chrCNA$corrected, 

smooth.chrCNA$chr, smooth.chrCNA$position, data.type="logratio", 

sampleid=sample) 

 

   segment.correctedCNA <- segment(correctedCNA, verbose=1, 

undo.splits="sdundo", undo.SD=1, alpha=0.005) 

    

   #print the segments to file 

   segmentmatrix <- as.matrix(segment.correctedCNA) 

   write.table(as.matrix(segment.correctedCNA$output), 

sep="\t", 

file=paste(sample,"/",sample,".chr",i,".",readsperbin,"readsperbin.correcteds

egments.seg",sep=""), row.names=FALSE, col.names=TRUE, quote=FALSE) 

   segmentmatrix <- as.matrix(segment.correctedCNA) 

   newsegments <- segmentmatrix[2,1] 

    

   #print segments formatted for circos histogram 

   hs <- 

paste("hs",array(i,dim=c(length(segment.correctedCNA$output$loc.start))), 

sep="") 

   circos <- 

cbind(hs,segment.correctedCNA$output$loc.start,segment.correctedCNA$output$lo

c.end, segment.correctedCNA$output$seg.mean) 

   write.table( 

    circos,  

   

 file=paste(sample,"/",sample,".chr",i,".",readsperbin,"readsperbin.segm

ents.circos",sep=""),  

    quote=FALSE,  

    sep="\t",  

    na="0",  

    row.names=FALSE,  

    col.names=FALSE 

   ) 
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   #plot the segments produced from the corrected copy number 

manually - easier to change plot than for standard DNA copy plots 

  

 png(file=paste(sample,"/",sample,".chr",i,".",readsperbin,"readsperbin.

correctedsegments.png",sep=""), width=1000, height=500) 

   plot(smooth.chrCNA$mbposition, smooth.chrCNA$corrected,  

    pch=20,  

    xlab="Position (mb)",  

    ylab="Normalized reads",  

    main=paste("Corrected segmentation plot for chr",i," 

with ",readsperbin," reads per bin",sep=""),  

    xaxt="n",  

    #ylim=c(0,500) 

   ) 

   segment.correctedCNA$output$loc.start.mb <- 

segment.correctedCNA$output$loc.start/1000000 

   segment.correctedCNA$output$loc.end.mb <- 

segment.correctedCNA$output$loc.end/1000000 

   segments(segment.correctedCNA$output$loc.start.mb, 

segment.correctedCNA$output$seg.mean, segment.correctedCNA$output$loc.end.mb, 

segment.correctedCNA$output$seg.mean, lwd=2, col="red") 

   axis(1,shortmb) 

   dev.off() 

 

 

 

   #print the corrected bin values to a GFF file 

   gff <- 

paste("chr",array(i,dim=c(length(smooth.chrCNA[,1]),1)),sep="") 

   solexa <- array("solexa",dim=c(length(gff),1)) 

   samplelist <- array(sample,dim=c(length(gff),1)) 

   dots <- array(".",dim=c(length(gff),1)) 

   colorcol <- array(";color 000000",dim=c(length(gff),1)) 

   endpos <- smooth.chrCNA$position 

   startpos <- endpos[-(length(endpos))] 

   startpos <- append(startpos,1,0) 

   gffwhole <- cbind(gff, solexa, samplelist, startpos, 

endpos, smooth.chrCNA$corrected, dots, dots, colorcol)  

   write.table( 

    gffwhole,  

   

 file=paste(sample,"/",sample,".chr",i,".",readsperbin,"readsperbin.corr

ected.gff",sep=""),  

    quote=FALSE,  

    sep="\t",  

    na="0",  

    row.names=FALSE,  

    col.names=FALSE 

   ) 

  } 

 } 

} 
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Appendix 5 – Pipeline documentation 

Documentation produced for the bioinformatic pipeline described in Chapter 6. 

Processing solexa sequencing data 

 
General useful unix information 

 
cd will change directory, like under Windows. To move up a directory, use cd ..  

 

ls lists all the files in a directory. 

 

grep <pattern> <file>  searches for a particular string in a file. This is useful for finding the 

original reads from a large file.  grep -A 5 <pattern> <file> will pull out a line and the 5 lines 
following it. 

 

To read the help pages for a command, use  man command. 

 

If two commands are separated by | , the output of the first command is 'piped' into the second 
command. 

 

If a command is followed by > filename , the output will end up in that file. This is used to string 
commands together, especially when the intermediate files would be very large. 

 

gunzip unzips compressed files (extension .gz). By default this removes the compressed file and 
replaces it with the uncompressed one; to keep it, use gunzip -c input.txt.gz > 
output.txt 

cat concatenates files. If it is used with only one file, it will just output that file, so it is used as a quick 
way to pipe a file into some other command. 

 

Many of the bioinformatics programs are only available under Unix. To access them, you can run a 
virtual machine inside OSX, which is slower than running them outside the virtual machine but does 
work, although the screen can be slow to respond.  To use the virtual machine, run the program 
VirtualBox and start up the ubuntu install - the username is liz and the password is Liz. You can also 
install programs on OSX by compiling them yourself using the GCC compiler found in the Apple XCode 
developer’s tools, or getting Darwin/FinkCommander to install them from a Debian/Ubuntu package if 
one exists.  
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File formats 

 
.sh files are bash files - essentially a list of unix commands which will be run in order. Variables which are 
passed to the .sh script are stored as $1, $2, $3, etc. The line datadir=$1 reads the first variable into 
datadir, which will be used in the script whenever ${datadir} is used. 

.pl files are Perl scripts. If there is no input file specified, they use the file given as a command line 
argument. 

 

awk/gawk is a language used to quickly manipulate text files. 

 

.R is an R script. 

 

.sam files are Sequence Alignment/Map files. This is the new standard format for aligned sequences, and 
is describe in detail here:  

http://samtools.sourceforge.net/SAM1.pdf 

 

.bam files (and associated .bai files) are compressed .sam files. They are not human-readable but they 
are much smaller than .sam files. To convert SAM to BAM (and vice-versa) requires the SAMtools 
utilities http://samtools.sourceforge.net/ 

 

To reach GroupDocs from a Mac, use cd /Volumes/Edwards/GroupDocs. To reach GroupDocs under 
Linux, it needs to be mounted with the command : 

sudo mount -t cifs //datacentre/Edwards -o username=emb51,domain=h-

mrc,password=password Documents 

This will put GroupDocs in the folder Documents. 

 

Alignment 
This is the process of finding the best match in the reference genome for each read. This is usually done 
for us by the CRI. 

 

The raw sequences come as FASTQ format files, with extension fq. Usually there are two files per lane, 
one for each read in the pair, and straight off the machine they are named for lane and read in the pair - 
s1_1.fq, s1_2.fq, s2_1.fq, etc 

 

The fq format looks like 

@HWUSI-EAS100R:6:73:941:1973#0/1 

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT 

+ 

!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCCCCCC65 

 

The first line is the unique id -  machine name and run, lane on the flow cell, tile, xy coordinates on the 
tile, and /1 or /2 to indicate read in a pair. 

The second line is the sequence. 

http://samtools.sourceforge.net/SAM1.pdf
http://samtools.sourceforge.net/
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The third line is just a spacer. 

The last line is the quality score for each base in the sequence. The quality scores are in Sanger format. 
Each character is the quality score + 33 encoded as the ASCII character for that number. 

See http://en.wikipedia.org/wiki/FASTQ_format for more details. 

 

Human reference genomes for build 18 and 19 are in the human reference genome directories. They are 
formatted as FASTA files, one entry per chromosome. 

 

Alignment using MAQ 

All the cell line data on GroupDocs was aligned using MAQ. MAQ is slow, does not do proper gapped 
alignment, and only supports reads up to 63bp, but it may be the only way to align mate pair reads. (It 
may be possible to align it with BWA/Bowtie if you tell it to expect the opposite orientation I haven’t 
tested this, and it may not work for both populations in the mate pair library.) It aligns 2 million 37bp 
reads to the reference genome in about 2 hours. 

 

See MAQ manual for details of alignment ( http://maq.sourceforge.net/maq-manpage.shtml  ) but the 
basic alignment process is as follows: 

 

1. Convert FASTQ files to MAQ's binary FASTQ format (.bfa)  

2. Map reads in .bfa format to the reference sequence. This produces a .map file, which is not human-
readable. 

3. Output aligned reads as a mapview file. 

4. This outputs the reads as a mapviewpair file, which is very similar to a mapview file but puts the two 
reads in a pair on one line, and adds an extra column for later de-duplication. This column is just the 
chromosome and position for the two reads separated by colons (eg, 1:1256980:1:1345980), and is used 
to remove PCR duplicates. NOTE: Some of the very early data does not have the final column on it.  If 
the file does not have this column, use the add28.pl script. 

 

Alignment using BWA 

The current CRI pipeline aligns using BWA. This is much faster, does 108bp reads, and produces gapped 
alignment. It can align millions of reads in a few minutes. This is the alignment method used for the new 
tumour data. 

 

BWA can be found at http://bio-bwa.sourceforge.net/bwa.shtml . General alignment procedure: 

1. Index the reference genome: bwa index -p prefix -a ls <in.db.fasta>  

2. Align with command bwa aln . Each end is aligned separately. See manual for options - I have not 
played around with anything but the defaults. 

3. Generate SAM format output file bwa sampe . 

 

NOTE: BWA is quite fiddly - in particular it dislikes some reference genomes and will give an error shortly 
after starting the alignment. Bowtie is a similar alignment program which has a much more user-friendly 
manual and may be more useful. 

 

Alignment using novoalign 
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http://www.novocraft.com/main/index.php 

Novoalign is much slower than either MAQ or BWA (a million reads takes ~16 hours) but is more 
accurate. In the current CRI pipeline it is used to realign reads called as aberrant in case they are 
misalignments from BWA. 

 

Calling structural variants 
This can be broken down into the different steps: 

1. Generate stats on the file. 

2. Remove PCR duplicates. 

3. Call the abnormal reads. 

4. (optional) Re-align the abnormal reads with a slower/better alignment program. 

5. (optional) Remove the bad regions. 

6. Cluster the reads and call structural variants. 

 

Calling structural variants under the old pipeline 

This pipeline was used for all of the cell line data. All the commands are listed in the file 
maq_paired_end_postprocessing.sh  

 

1. Stats are generated using the get_stats_from_mapviewpair.pl script, which takes the 
.mapviewpair file as an input. The stats are used to find the upper limit of the library size. 

 

2. The last column of the mapviewpair file is used to remove duplicates as it contains the chromosome 
and start position for the two reads in a pair, which should be unique for all pairs. The unix command 
uniq is used for this: uniq -f 28 returns all the lines in a file which have a unique column 28. This will 
only remove duplicates which are adjacent to each other (so the file needs to be sorted first) and it will 
always return the first of the duplicates. 

 

3. The abnormal reads are called using awk. The intention is to find all the pairs where the two reads are 
farther apart than the upper limit, or have the wrong strands for the reads (ie, FR is normal, FF, RR, and 
RF are abnormal). 

 

The gawk command is: 

gawk -v UPPER=${upper} '(and($6, 2) == 0 || $5 < -UPPER || $5 > UPPER) 

&& $9 > 0' 

This uses a bitwise and to query the mapviewpair flag – see below for an explanation of the bitwise flag. 

 

4. In the old pipeline the reads are not re-aligned. 

 

5. The bad regions are removed using the script filter_mapview_by_region.pl . This needs a 
file of bad regions in the form <chromosome> <start> <end>. The existing file is based on bad regions 

found by Susie and Jess. The current file is called regions_to_mask.curated.txt, and there is 
a version updated for the new genome build called regions_to_mask.grch37.txt. 

 



Appendix 5  Pipeline documentation 

258 
 

6. The structural variants are called using sv_from_mapview.pl. The input should be the mapviewpair file 
with the abnormal read pairs in.  

The script needs two options,  -insertmax <number> which should be the upper library insert size, 
and –mappingqualmin <number> which is the minimum quality of read to use to call structural 
variants.  -bed is optional and specifies a bed file for output as well as a plain text file. 

 

Calling structural variants using the new pipeline 

This is more complicated because Kevin’s updated pipeline is more closely tied into the CRI cluster, but it 
is likely that the CRI will be able to produce most of the necessary files for us.The new tumour data has 
all been run through part of this pipeline, and we get the data already processed through step 4 . We 
have Kevin’s handover documentation which explains a lot of this pipeline – secondary_pipeline.txt and 
structural_variation_pipeline.txt. 

 

1. The stats are generated from the .bam file by a CRI script. The script is alignment_stats.pl, but it won’t 
run without the cluster.  

 

2. Duplicates are computed using samtools or Picard. Samtools is mentioned above. Picard is a similar 
sort of thing but uses a java command-line interface to manipulate .sam/.bam files. You can find it here: 

http://picard.sourceforge.net/ 

 

This produces a file called <library>.dupreport.txt which has statistics on the duplication rate 
in the library. The different statistics are explained here: 

http://picard.sourceforge.net/picard-metric-definitions.shtml#DuplicationMetrics 

Of particular interest is the Estimated Library Size, which estimates the number of unique molecules in 
the library and can give an idea of the depth of the library. 

 

3.  I do not have the exact command which produces aberrant reads under the new pipeline. However, it 
should be fairly simple to do this with gawk in the same way as the old pipeline. The two requirements 
are to pull out pairs where the reads are in the wrong orientation, and pairs where the two reads map 
further apart than the maximum library size.  

 

4. The aberrant reads are re-aligned using Novoalign, which is more sensitive. We have been re-aligning 
against the whole genome, but also against the different haplotypes, which helps remove false positives. 
The file of interest is 
${Library}.bwa_aberrant_pairs.novoalign.processed.aberrants.namesorted

.sam . 

 

5. The bad regions are not removed in the new pipeline at the CRI. I have been masking the list of bad 
regions, the centromeres, and 100kb from the telomeres, which removes a lot of SVs in those regions. 
Use the command filter_sv_by _region.pl  –regions 
regions_to_mask.grch37.txt library.aberrantpairs.sam > 

library.aberrantpairs.filtered.sam 

 

http://picard.sourceforge.net/
http://picard.sourceforge.net/picard-metric-definitions.shtml#DuplicationMetrics
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6. The structural variants are called using sv_from_sam.pl . This can find the structural variants in 
multiple libraries in one run. To tell the script what samples to expect, we construct a samplesheet, 
containing the library prefix, maximum insert size, and library name. 

Eg, for the new tumour libraries: 

CRIRUN_369:4 504 81823 

CRIRUN_306:1 621 83539 

 

The library prefix is the run number and lane, which can be found in the .sam files or the stats file, and 
tells the sv caller what sequences belong to which library. 

A simple command to call SVs using sv_from_sam.pl: 

 

cat 

81823.bwa_aberrant_pairs.novoalign.processed.aberrants.namesorted.sam 

83539.bwa_aberrant_pairs.novoalign.processed.aberrants.namesorted.sam 

| sv_from_sam.pl -samplesheet samplesheet.txt > 81823-

83539.sv_calls.txt 

 

This will concatenate the aberrant pairs from 81823 (a tumour) and 83539 (the matched normal) 
libraries. This file is then sent to the sv caller, which knows which sequences belong to which sample 
using the sample sheet. The output will have a final column showing how many reads support the SV in 
each library. Note that if you want 2 reads supporting a variant, the script does not care which library 
they come from, so it could be 1 from the tumour and 1 from the normal.  

 

Further options: 

-mappingqualmin <number> is the minimum map quality to use, default is 35. 

-edgepairs <number> is how many reads needed to call an SV, default is 2. 

-clip <number> will clip all alignments to the specified length, to deal with multiple read lengths in 
the same file. 

-outputreads <file> will output all the reads which contribute to the SVs to a .sam file. 

 

To filter the SVs, use the script sv_filter.pl . This returns only those SVs with more than N hits in the 
tumour and no hits in the normal. 

perl sv_filter.pl  -tumour <name> -normal <name> -hits <number> 

tumour-normal.svcalls.txt > filtered.svcalls.txt 

 

Calling fusion genes from structural variants 

To call fusion genes, a script retrieves the genes at each of the two nodes of a structural variant and 
predicts whether any of them are in the right orientation to form a fusion gene. 

 

This relies on the Ensembl API to retrieve the genes.  Information about the API can be found here: 

http://www.ensembl.org/info/data/api.html The script will only run if the Ensembl Perl modules are 
installed, as well as DBD::MySQL, Getopt::Long and BioPerl. 

 

http://www.ensembl.org/info/data/api.html


Appendix 5  Pipeline documentation 

260 
 

Different versions of the Ensembl Perl modules use different builds of the genome. To check which 
genome build you are using, use the ensembldbcheck.pl script, which will output the current versions, 
and also the coordinates for BCAS3 to check if it is Hg18 or Hg19/GrCH37. 

 

The file has different options to cope with different formats of input SV file, as the columns have 
changed over time. 

--columns: use if the file has extra support columns, as most of the later files do 

--cnv: use if the file has been checked against a list of CNVs, see below 

--insertsize <number>: max insert size of the library 

--strands: use if the file has -1 and 1 as strands instead of + and -. 

--matepair: use if the input is from a mate pair library – all it does is flip the strands of the reads 

 

A typical command: 

perl fusion_gene_prediction.pl –columns –insertsize 450 

81823.abcd.sv_calls.txt > 81823.breaks.txt 

 

The output is a text file, but has automatic hyperlinks for Excel. 

 

There is a script which runs a simple check to see if the nodes of the SV overlap with a list of known CNV 
regions (taken from Conrad et al.) and adds an extra column. This is cnvcheck.pl and takes the SV file as 
input, it also requires the conradcnv.txt file with the CNVs in it. Use the –columns option if the SV file 
has the extra support columns. 

 

Copy number pipeline 

The input for the copy number calling pipeline is the library.for_cnv.txt file produced by the CRI 
alignment pipeline.  This contains all the start positions of the reads. Currently there is no script to run 
this code all in one go, as it is difficult to run R from the command line in Windows, so I do it in stages 
and cut and paste the code into R. 

 

1. Chop up the for_cnv file into the individual chromosomes. This is done using the cnvchopper.pl script 

 

2. Run the code in copy_number_bins.R . This needs the directory mappable_starts, which was 
generated by Kevin and lists all the potential start positions of a read on the chromosome. This is used 
to divide up the genome into bins where we would expect the same number of reads – this is not as 
simple as dividing up the genome into equal size pieces, as fewer reads will map to repetitive regions. 
Then the actual reads are placed into the bins calculated from the genome. The output files are all 
named for the library, chromosome, and number of reads per bin used to calculate the genome bins. 

 

To run this code, put the window sizes you want in the readsperbin list: 

readsperbinlist <- c(100, 250, 500) 

 

and the names of the libraries in the samplelist: 

samplelist <- c("81777.a","83493.a","82674.a","938.a”) 
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250 is a good number for the bin size. 

 

3.  Retrieve the GC percentages for each bin across the genome. This only needs doing once for each bin 
size. The gcpercent directory contains the files for bin sizes 100 and 250. 

 Any further GC percent data can be retrieved using the gcpercent.pl script. This will retrieve the GC 
percent data for any files with raw_bincounts in the name in the directory it is run from. 

 

4.  The code in binsize_graphs.R performs a loess correction on the data using the GC percentage, 
segments it with DNAcopy, and outputs some plots, the copy number segments as .seg files and also 
formatted for Circos plots, and a .gff file of the corrected data. It needs the DNACopy R library. Again, 
the readsperbinlist and the samplelist need to include the bin sizes used and the libraries to process. 

 

SAM flags and bitwise and functions 

 

Both the mapview and SAM formats use a bitwise flag. This is a way of encoding multiple pieces of 
information in a single number, by looking at the individual bits of the number as a binary number. 

 

For instance, in the bitwise flag in a SAM file, the first three bits represent whether the read is pair, 
whether the read is mapped in a proper pair, or whether the read is unmapped.  

 

Bit 1: read is in a pair 

Bit 2: read is in a proper pair 

Bit 3: read is unmapped 

 

If all these things are true for a read, all three flags would be set.  This could be represented in binary as 
111, converting this to decimal gives us 1+2+4 = 7. 

 

If the read is in a pair, but the pair is not a proper pair and the read is unmapped, the binary 
representation is 100, and in decimal this is 1. 

 

(For another explanation, see here: http://seqanswers.com/forums/showthread.php?t=2301 ) 

 

SAM encodes eleven different bits of information in a single field. These are described in the SAM 
specification, and there is a tool to decode them here: http://picard.sourceforge.net/explain-flags.html 

 

The bitwise and function queries the individual bits.  For instance, the code and(<flag>, 4) 
would compares the two things in the brackets , in this case the bitwise flag, and the 4 bit. If both these 
were set to 1 (or true), it would return 1. If the flag is false at the 4 bit, it will return 0. In this way we can 
select only the reads where the 4 bit of the flag is set to 1, ie all the mapped reads, and reject all the 
unmapped reads. 

 

 

http://seqanswers.com/forums/showthread.php?t=2301
http://picard.sourceforge.net/explain-flags.html
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