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Abstract

Statistically spherical expanding turbulent premixed flames are computed using un-

steady Reynolds-Averaged Navier-Stokes (URANS) approach. Mean reaction rate is

closed using strained and unstrained flamelet models and an algebraic model. The

flamelets are parametrised using the scalar dissipation rate in the strained flamelet

model. It is shown that this model is able to capture the measured growth rate of

methane-air turbulent flame ball, which is free of thermo-diffusive instability. The

spherical flames are observed to accelerate continuously. The flame brush thickness

grows in time and the role of turbulent diffusion on this growth seems secondary com-

pared to the convection due to the fluid velocity induced by the chemical reaction.

The spherical flames have larger turbulent flame speed, the leading edge displacement

speed st, compared to the planar flames for a given turbulence and thermo-chemical

condition. The computational results suggest st/s0L ∼ Re
n
t with 0.57 ≤ n ≤ 0.58, where

Ret is the turbulence Reynolds number and s0L is the unstrained planar laminar flame

speed, for both spherical and planar flames.

Keywords: Turbulent Premixed Flames, Spherical Flames, Scalar Dissipation Rate, Turbulent Flame

Speed
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1 Introduction

Expanding statistically spherical flame in turbulent environment is a canonically im-

portant configuration and its investigation is helpful to understand combustion in prac-

tical devices such as the spark ignited internal combustion engine, modern stratified

charge engines and accidental explosions of fuel vapour cloud. Although it is a classi-

cal problem our current understanding is not fully satisfactory.

When a combustible mixture cloud is ignited at the centre, a laminar flame kernel

is initiated and it develops into a turbulent spherical flame. During this evolution, the

flame front is stretched due to its time varying curvature and flow straining. In addi-

tion to these effects on the flame front, the flame brush experiences stretch due to its

curvature in this geometry. It is well known that the stretch rate influences the laminar

flame structure and its propagation speed (Law and Sung, 2000), and these concepts

are used to deduce laminar burning velocity and Markstein length scale (Bradley et al.,

2009) for combustible mixtures from experiments.

Practical combustion systems involve turbulence invariably and hence turbulent

spherical flames have been studied using various experimental configurations such as

fan-stirred bombs involving stationary turbulence (Andrews et al., 1975; Abdel-Gayed

et al., 1984; Bradley et al., 1994; Lawes et al., 2012), bombs with decaying grid turbu-

lence (Checkel and Thomas, 1994) and wind tunnels with grid turbulence (Hainsworth,

1985; Renou et al., 2002) to address the influence of turbulence on spherical flame

propagation. Beretta et al. (1983) and Hainsworth (1985) have shown that the tur-

bulent spherical flames initially expand as the laminar flame and then it is exposed

gradually to a wide range of length and time scales of turbulence resulting in flame

wrinkling thereby leading to an increase in the burning velocity which is larger than

the laminar value (Abdel-Gayed et al., 1987). Additional flame wrinkling can arise in
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thermo-diffusively unstable flames (of reactant mixtures with negative Markstein num-

ber). The flame wrinkling was shown to increase with pressure and for mixtures with

negative Markstein numbers (Haq et al., 2002). The tendency to higher flame wrin-

kling resulting in faster flame propagation and high flame front curvature for mixtures

with low Lewis number (thermo-diffusively unstable mixtures) is also known (Renou

et al., 2000).

As a spherical flame brush expands its thickness increases, due to turbulent dif-

fusion, with significant amount of unburnt gas inside the flame brush (Beretta et al.,

1983; Abdel-Gayed et al., 1988). This poses a challenge to define the turbulent burn-

ing velocity since its definition relies on a correct choice of an associated flame radius.

One way to define this radius is to equate the volume of unburnt gas inside the flame

brush to that of burnt gas outside the flame brush (Bradley et al., 2003). The mass burn-

ing velocity defined using this radius is equal to the velocity of turbulent entrainment

of unburnt gas into the flame brush. The flame propagation model using this entrain-

ment concept has been developed in several past studies (Blizard and Keck, 1974;

Tabaczynski et al., 1980; Groff, 1987; Bradley et al., 1994). Alternatively, flame area

enhancement due to turbulence has also been considered using a vortex tube model

(Ashurst et al., 1994) and an exponential growth of flame surface area (Ashurst, 1995)

to study expanding spherical flames. These studies treated the flame surface to be a

passive surface which is not fully satisfactory. An analogy to the theory of laminar

spherical flames has also been used to study turbulent flame ball growth rate involving

a turbulent Markstein number (Lipatnikov and Chomiak, 2004). These studies have

helped us to develop some understanding of spherical flame propagation within the

scope allowed by the assumptions used in their development.

Numerical simulations of spherical flames have been performed using Direct Nu-

merical Simulations (DNS), Large-Eddy Simulations (LES) and Reynolds-Averaged
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Navier-Stokes (RANS) methodologies in the past. The DNS studies were initially

aimed to address ignition related issues (Baum and Poinsot, 1995; Poinsot et al., 1995)

using a single irreversible reaction in two-dimensional turbulence. Some of these

limitations were relaxed in later DNS studies on spherical flames (Kaminski et al.,

2000; Jenkins and Cant, 2002; Jenkins et al., 2006; Klein et al., 2006, 2008; Albin and

D’Angelo, 2012; Thévenin et al., 2002; Thévenin, 2005; van Oijen et al., 2005) and

these studies predominantly addressed flame surface density (FSD) related modelling

issues. LES, in which the large energy containing scales are resolved but the flame

front is modelled, has recently been used to study ignition and propagation of turbu-

lent spherical flames (Nwagwe et al., 2000; Tabor and Weller, 2004; Fureby, 2005;

Colin and Truffin, 2011; Lecocq et al., 2011). Combustion models based on sub-grid

scale wrinkling factor (Nwagwe et al., 2000; Tabor and Weller, 2004; Fureby, 2005)

and FSD transport equation (Colin and Truffin, 2011) have been used in conjunction

with simplified chemistry to compute spherical flames. These studies showed a good

comparison to the experimental data. Recently, a combustion modelling approach

combining the FSD and presumed probability density function (pdf) concepts have

been used (Lecocq et al., 2011) to calculate the spherical flame propagation in weak

turbulence (Renou et al., 2000).

In RANS, the averaged governing equations are solved along with models for tur-

bulent stresses and fluxes, and mean reaction rate. The RANS calculations of spher-

ical turbulent flames of Hainsworth (1985) were done by Schmid et al. (1998) using

a turbulent flame speed closure. A similar approach was also used by Lipatnikov

and Chomiak (2000) to study turbulent spherical flames in various configurations. A

transported joint velocity-scalar pdf approach was used by Pope and Cheng (1986) to

compute the spherical flames of Hainsworth (1985) and showed a very good agreement

with the measurements.
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In this work, the RANS methodology is used to study the propagation of turbulent

premixed spherical and planar flames. The reaction rate is modelled using the strained

flamelet model (Kolla and Swaminathan, 2010), where the flamelets are parametrised

using scalar dissipation rate of a progress variable. The progress variable is defined

as c = (T − Tu)/(Tb − Tu), where Tb and Tu denote the burnt and unburnt mixture

temperature respectively. The Favre-averaged scalar dissipation rate is defined as ε̃c =

ραc(∇c′′ · ∇c′′)/ρ, where c′′ is the Favre fluctuation of c with the molecular diffusivity

αc. More detail of this modelling approach is described in the next section. The main

objectives of this work are twofold: first to validate the applicability of the strained

flamelets approach for turbulent spherical flames and to compare its performance with

other flamelet based combustion models; second to contrast the flame propagation

mechanisms in spherical and planar cases and to elucidate the underlying physics.

This paper is organised as follows. The governing equations, reaction rate model

and numerical setup are discussed in the next section. The experimental test case for

validation and various computational cases considered are described in Section 3. The

simulation results are presented and discussed in Section 4. The main conclusions of

this study are summarised in the last section.

2 Numerical Setup

2.1 Governing equations and modelling

The unsteady RANS (URANS) approach is used to simulate spherical turbulent explo-

sions in premixed methane-air mixtures. These flames are assumed to be spherically

symmetric resulting in considerable simplification as it allows us to retain only the

radial terms of the governing equations written in (r, θ, φ) coordinates.

6



The Favre-averaged equations for the mass and radial momentum conservation are

∂ρ

∂t
+
1
r2
∂r2ρũr
∂r

= 0, (1)

∂ρũr
∂t
+
1
r2
∂

∂r
[
r2 ρũ2r

]
= −
∂p
∂r
+
1
r2
∂

∂r

[
r2

(
τrr − ρu′′r 2

)]

−

(
τθθ − ρu′′θ

2 + τφφ − ρu′′φ
2
)

r
, (2)

where τrr, τθθ and τφφ denote the normal components of the viscous stress tensor in the

respective directions. The centrifugal forces per unit volume arising from the Reynolds

stresses in θ and φ directions are ρu′′θ
2/r and ρu′′φ

2/r respectively, which do not vanish

even in the spherically symmetric case. Thus, they must be retained because their

contributions are significant in the earlier period of flame development (small r).

The uncertainties related to turbulence modelling is minimised by using the k-ε

equations given by

∂ρ k̃
∂t
+
1
r2
∂

∂r
[
r2 ρ ũrk̃

]
=
1
r2
∂

∂r

{
r2

[(
µ +

µt

Sck

)
∂k̃
∂r

]}
− ρu′′r 2

(
∂ũr
∂r

)

−
(
ρu′′θ

2 + ρu′′φ
2
) ũr
r
− u′′r
∂p
∂r
+ p′∇ · u′′ − ρε̃, (3)

∂ρ ε̃

∂t
+
1
r2
∂

∂r
[
r2(ρ ũrε̃)

]
=
1
r2
∂

∂r

{
r2

[(
µ +

µt

Scε

)
∂ε̃

∂r

]}
−Cε1

ε̃

k̃

[
ρu′′r 2

(
∂ũr
∂r

)

+

(
ρu′′θ

2 + ρu′′φ
2
) ũr
r
− u′′r
∂p
∂r

]
−Cε2ρ

ε̃2

k̃
, (4)

where µ and µt represent the molecular and eddy viscosities respectively. The model

constants are Cε1 = 1.44, Cε2 = 1.92 and Sck = Scε = 1. The second and third terms

appearing on the RHS of Eq. (3) represent the production of k̃ by the gradients of
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mean velocity. The next two terms respectively represent the effects of mean pressure

gradient and pressure-dilatation. The dissipation of k̃ is represented by the last term of

Eq. (3).

The Reynolds stresses are modelled using the eddy-viscosity hypothesis as

ρu′′r 2 = −2µt
∂ũr
∂r
+
2
3
µt

[
1
r2
∂

∂r
(
r2ũr

)]
+
2
3
ρk̃, (5)

ρu′′θ
2 = ρu′′φ

2 = −2µt
ũr
r
+
2
3
µt

[
1
r2
∂

∂r
(
r2ũr

)]
+
2
3
ρk̃. (6)

If one uses an anisotropic turbulence model then ρu′′θ
2 and ρu′′φ

2 will be different. The

pressure work and pressure-dilatation terms are often neglected or combined with the

diffusive term in reacting flow simulations and these are modelled explicitly in this

study. The pressure-dilatation is modelled as p′∇ · u′′ = 0.5 c̃
(
τs0L

)2
ω̇ (Zhang and

Rutland, 1995). The u′′ in the pressure work term is modelled (Libby, 1985) as

u
′′ = ũ

′′c′′τ/ (1 + τc̃), where the turbulent scalar flux ũ
′′c′′ is modelled using the

classical gradient transport. It is well known that this scalar flux can be counter gra-

dient in premixed flames, which can be included in simulations using second order

closures. However, the gradient model is used in this study for the sake of simplic-

ity and its validity can be evaluated from the experimental comparisons to be shown

later in section 4.1. Furthermore, it is well known that gradient flux dominates when

u′/s0L ≥ 4 (Veynante et al., 1997; Swaminathan et al., 1997; Kalt et al., 1998; Frank

et al., 1999) and the flames considered in this study have u′/s0L > 4 as one shall see

later in section 3.2. Although it is ideal to include the pressure-dilatation effect in both

k̃ and ε̃ equations it is included only in k̃ equation following many previous studies

(Bray et al., 1985; Jones, 1994; Kolla and Swaminathan, 2010). The effects of these

terms may be small for open flames (Swaminathan and Bray, 2011).

The mean thermo-chemical state of the mixture is obtained using the progress vari-
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able equation:

∂ρ c̃
∂t
+
1
r2
∂

∂r
(
r2ρ ũrc̃

)
=
1
r2
∂

∂r

[
r2

(
ραc
∂c̃
∂r
− ρu′′r c′′

)]
+ ω̇, (7)

where ω̇ is the mean rate of production of c̃ per unit volume, which is modelled using

the strained flamelet model explained in section 2.2. This model requires the progress

variable variance, c̃′′2, and thus its transport equation

∂ρ c̃′′2
∂t
+
1
r2
∂

∂r
(
r2ρũrc̃′′2

)
=
1
r2
∂

∂r


r

2




(
µ +
µt

Scc

)
∂c̃′′2
∂r







− 2ρu′′r c′′
∂c̃
∂r
− 2ρε̃c + 2ω̇′′c′′, (8)

is also included in the simulation. Its source term is obtained using ω̇′′c′′ = ω̇c − ω̇c̃.

The dissipation rate, ε̃c, is closed using the model described in the next subsection.

The mean density is calculated using the equation of state, ρ = ρu/ (1 + τc̃).

2.2 Reaction rate model

The mean reaction rate, ω̇, is modelled using the strained flamelet model, which is

described briefly here and elaborate detail can be found in Kolla and Swaminathan

(2010). The flamelets, which are freely propagating laminar flame and those estab-

lished in opposing flows of reactant and product, are parametrised using ε̃c. The mean

reaction rate is given by

ω̇ =

∫ 1

0

[∫ N2

N1
ω̇(ζ,ψ) P(ψ|ζ) dψ

]
P(ζ) dζ, (9)

where ζ and ψ are the sample space variables for c and the instantaneous scalar dis-

sipation rate, N, respectively. The flamelet reaction rate, ω̇(ζ,ψ), and the integration
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limits N1 and N2 are obtained using results of fully burning and almost extinguished

flamelets. An arbitrarily complex chemical kinetic mechanism can be used in the

flamelet calculation.

The presumed shapes for the pdfs, P(ζ) and P(ψ|ζ), are specified using the β and

lognormal functions respectively. The β function requires c̃ and c̃′′2, and the lognormal

form for P(ψ|ζ) requires the conditional mean and variance of the natural logarithm of

the conditional scalar dissipation rate, i.e., ln(N |ζ). These dissipation related quantities

are obtained following the method described by Kolla and Swaminathan (2010). For

given values of c̃, c̃′′2 and ε̃c, one can build a table for ω̇ and other required quantities

using the laminar flame solutions as per Eq. (9). This look-up table is referred during

turbulent flame simulations to obtain ω̇ and ω̇c required to close Eqs. (7) and (8).

The mean and variance required for the look-up are obtained from the respective

transport equations. Many models available for ε̃c are discussed by Chakraborty et al.

(2011) and the model of Kolla et al. (2009) is used in this study because it is simple

and satisfies the realisability condition (ε̃c ≥ 0). This model written as

ε̃c (
1
β′

[
(2K∗c − τC4)

s0L
δ0L
+C3

ε̃

k̃

]
c̃′′2, (10)

was obtained by balancing the leading order terms of a transport equation for ε̃c derived

by Swaminathan and Bray (2005). The various model parameters are: β′ = 6.7, K∗c =

0.85τ (for hydrocarbon-air mixtures), C3 = 1.5
√
Ka/(1 +

√
Ka) and C4 = 1.1/(1 +

Ka)0.4. These parameters are specified to satisfy certain physical aspects of turbulence-

flame interaction (Kolla et al., 2009; Kolla and Swaminathan, 2011) and so they cannot

be changed arbitrarily. The Karlovitz number is defined as Ka ≡
(
u′/s0L

)3/2
(δ/Λ)1/2,

where u′ =
√
2k̃/3 , Λ = u′3/ε̃ and δ0L = δ[2(1 + τ)0.7].

The dissipation rate model in Eq. (10) includes the effects of curvature induced
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stretch on flamelets and various important effects of turbulence and its interaction with

chemical reaction and molecular diffusion. The parameter β′ represent the flamelet

curvature induced effects. However, a spherical flame brush also experiences stretch

due to its mean curvature, which is absent in a planar case. This particular effect is

not included in Eq. (10) and thus an additional correction can be included based on the

analysis of Chakraborty et al. (2010). This revised model written as

ε̃c (
1
β′

{[
2K∗c − τC4

(
1 −
αu

s0L
∇ · n

)] s0L
δ0L
+C3

ε̃

k̃

}
c̃′′2, (11)

is obtained through a leading order balance analysis, similar to Kolla et al. (2009),

using the models proposed by Chakraborty et al. (2010). The normal vector in Eq. (11)

is defined as n = −∇c̃/|∇c̃|. The major difference between the models in Eqs. (10)

and (11) is the contribution of flame brush curvature∇ ·n. Note that the revised model

in Eq. (11) is unconditionally realisable for explosion but the realisability condition

imposes a minimum radius for implosion. Both models in Eqs. (10) and (11) are used

in this study to understand the extent of influence of∇ · n.

The strained flamelet model is also compared to two other models. One of them is

the algebraic model (Bray, 1979):

ω̇ =
2

2Cm − 1
ρε̃c and ω̇′′c′′ = (Cm − c̃) ω̇, (12)

with Cm ≈ 0.7 (Swaminathan and Bray, 2005) and either of Eqs. (10) or (11) can be

used for ε̃c in Eq. (12) and this equation does not involve complex chemical kinetics.

The other one is unstrained flamelet model:

ω̇ =

∫ 1

0
ω̇o(ζ) P(ζ) dζ and ω̇′′c′′ =

∫ 1

0
ζω̇0(ζ)P(ζ) dζ − ω̇c̃, (13)
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where ω̇o is the unstrained flamelet reaction rate obtained from the planar unstrained

laminar flame calculation involving complex chemistry. Unlike the strained flamelet

model, the look-up table for this model is two-dimensional involving c̃ and c̃′′2.

2.3 Computational approach and parameters

The governing equations along with the various models discussed in the previous two

subsections are solved using finite-volume methodology. The power law scheme was

used to discretise spatial gradients and an implicit first order backward Euler method

is used for time stepping. The pressure-velocity coupling is through the SIMPLER

approach of Patankar (1980).

The flamelets required for the look-up table construction are calculated using PRE-

MIX (Kee et al., 1985) and OPPDIF (Lutz et al., 1997) codes. The GRI-Mech 3.0 (Smith

et al., 2000) is used for combustion kinetics of methane-air mixture. The look-up ta-

ble has ω̇ as a function of c̃, c̃′′2 and ε̃c and a tri-linear interpolation is used to obtain

ω̇ for the computed values of c̃, c̃′′2 and ε̃c at a given grid point during the URANS

calculation.

The computational domain length varies from 0.2 to 1 m, depending on the ratio of

turbulence integral length scale Λ to the Zeldovich thickness δ, so that the simulated

statistically planar and spherical flames remain within the domain for the simulation

period. The number of grid points are chosen so that there are at least 10 points in-

side min(Λ, δt), where δt ≡ 1/|∂c̃/∂r|max is the turbulent flame brush thickness, for a

uniform grid spacing. The size of time-step is chosen to be 0.1 µs, which ensures the

resolution of reaction, diffusion and convection time scales and satisfies the numerical

stability conditions for the chosen grid, turbulence and thermo-chemical conditions.

The values of k̃ and ε̃ chosen for the unburnt mixture are specified over the entire

computational domain initially. The initial spatial variation of c̃ having 0 in the unburnt
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and 1 in the burnt mixtures is chosen after few tests to minimise the initial transients for

the given turbulence and thermo-chemical conditions in order to save computational

time required to attain a “steady propagation” state. The initial ũ, ρ and p are specified

to be consistent with the initial c̃ variation. It is straightforward to specify the boundary

conditions for the planar flames as has been done in many earlier studies (Corvellec

et al., 1999, 2000; Swaminathan and Bray, 2005; Kolla and Swaminathan, 2010). The

following boundary conditions apply for a flame propagating radially outward in an

unconfined domain:

ũr(0, t) =
∂c̃
∂r

∣∣∣∣∣
(0,t)
=
∂k̃
∂r

∣∣∣∣∣∣
(0,t)
=
∂ε̃

∂r

∣∣∣∣∣
(0,t)
=
∂c̃′′2

∂r

∣∣∣∣∣∣∣
(0,t)

= 0. (14)

For the unburnt mixture (r = r1)

∂ũr
∂r

∣∣∣∣∣
(r1,t)
=
∂k̃
∂r

∣∣∣∣∣∣
(r1,t)
=
∂ε̃

∂r

∣∣∣∣∣
(r1,t)
= 0, c̃′′2(r1, t) = c̃(r1, t) = 0, p(r1, t) = p∞. (15)

The values of turbulent kinetic energy, k̃, and its dissipation rate, ε̃, obtained using the

chosen value of u′ and Λ are used to specify their initial conditions.

3 Test Flames

The numerical models described in the previous section are used to study the influence

of turbulence and thermo-chemical conditions on the evolution of expanding spherical

flames. The simulation results will also be used to elucidate the difference in the

propagation of planar and spherical flames. Before discussing the conditions of these

flames considered here, an experimental case used to validate the numerical models is

described briefly.
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3.1 Validation case

The spherical flames established in wind tunnel turbulence by Hainsworth (1985) are

considered for model validation purpose. This wind tunnel turbulence generated us-

ing perforated plates was homogeneous and isotropic at the spark location, and the

methane-air mixture having equivalence ratios of Φ = 1.1 and 0.8 were considered.

For the reasons to be discussed in subsection 4.1, Φ = 1.1 mixture is considered for

this study and its thermo-chemical characteristics along with the experimental condi-

tions at ignition are given in Table 1. The flame was ignited using a spark downstream

of the perforated plate and it was convected downstream by the mean flow as it evolves

in an approximately spherical shape. Temporal changes of position and radius of this

flame were recorded using high speed schlieren movies and it has been suggested that

this flame is representative of combustion in spark-ignition engines (Pope, 1987). This

flame was also considered in earlier computational studies (Pope and Cheng, 1986;

Schmid et al., 1998; Lipatnikov and Chomiak, 2000).

Table 1: Experimental conditions for Φ = 1.1 flame of Hainsworth (1985)

s0L = 0.43 m/s u′ = 1.93 m/s
δ0L = 0.0408 cm Λ = 0.838 cm
δ = 0.00565 cm p0 = 0.1 MPa

r f ,0 = 0.15 cm T0 = 298 K
τ = 5.25

3.2 Flames for further analysis

Spherical flames propagating outwardly in nearly homogeneous isotropic turbulence

field in an unconfined space are considered. The boundary conditions discussed ear-

lier in subsection 2.3 describe this problem. The influences of combustion on turbu-

lence are also included in the simulation by solving the k̃-ε̃ equation. A stoichiomet-
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ric methane-air mixture at 298 K and atmospheric pressure is considered for these

flames. Since this mixture has unity Lewis number, the influence of turbulence on

the flame propagation can be studied without the added complexity of differential dif-

fusion, which could amplify the stretch induced effects. Furthermore, this mixture

was considered in an earlier study addressing the turbulence effects on the propagation

of statistically planar flames (Kolla and Swaminathan, 2010). Thus, the behaviour

of spherical flames can be compared directly to the planar flame results to under-

stand the geometry effects. The thermo-chemical characteristics of this mixture are,

s0L = 0.4 m/s, δ0L = 0.41 mm, τ = 6.48 and δ = 0.047 mm.

The turbulent combustion conditions of 8 flames simulated in this study are shown

in Figure 1. Two different values for the stretch factor, as defined by Abdel-Gayed

et al. (1987), K = 0.157
(
u′/s0L

)2
Re−0.5t = 0.157 and 1 are considered. The turbulence

Reynolds number is defined as Ret = u′Λ/ν. The flames with the smaller stretch factor

value have the Karlovitz number, Ka =
(
u′/s0L

)2
Re−0.5t , of unity and they are located at

the upper limit of the corrugated flamelets regime. The other case with larger K value

is in the thin reaction zones regime as in Figure 1. These particular values for K are

chosen so that the combustion conditions remain the same for the current spherical and

planar flames of Kolla and Swaminathan (2010). For the three flames with K = 0.15,

the values of u′/s0L are 5, 6 and 8, and these values are 12, 16, 18, and 20 for the other

cases with K = 1. It is also to be noted that the experimental flame of Hainsworth

(1985) is in the corrugated flamelets regime for the conditions noted in table 1.

4 Results and discussion

The computational results of these spherically expanding flames under a wide range

of turbulence conditions are analysed in this section. Validation of the computational
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models are discussed first. Then, the influence of turbulence on the propagation of

spherical flames are explored using the seven flames and they are compared with the

corresponding planar flames to understand the geometry effects.

4.1 Model Validation

Figure 2a shows the temporal variation of the flame brush radius measured using

high speed schlieren techniques for Φ = 1.1 mixture in two sets of experiments

(Hainsworth, 1985). Since the schlieren images show the burnt side and marks the

regions with strong density gradients, the flame radius reported in the experiment is

taken to be the leading edge of the flame brush (Bradley et al., 2000, 2011). For com-

parison purposes, the location at which c̃ = 0.05 is taken to be the leading edge in the

simulated flames. As one expects, this radius grows with time as in Figure 2a, where

the radius is normalised using its initial value, r f ,0 in table 1, and the time is normalised

using the laminar flame time or chemical time, tc = δ0L/s0L, (see table 1). The bottom

two curves, marked for laminar flames, represent the evolution of the initial flame ker-

nel if it evolves as a laminar spherical flame. This laminar evolution can be computed

simply by considering the mass conservation, dm/dt = ρu sL A, for the burnt gas mass,

m, inside the kernel having a surface area of A. This simplifies to dr f /dt = (ρu/ρb)sL

for a spherical kernel. If one takes sL = s0L ignoring the stretch effects on the laminar

flame propagation then r f grows linearly with t and this line passes through the ex-

perimental data for t+ ≤ 2, suggesting that the initial evolution is laminar and it may

be uninfluenced by the stretch effects induced by flow straining and curvature. This

is supported by the result shown for stretched laminar flame in Figure 2a (the bottom

most curve). The stretch effects are included in the above mass conservation equa-

tion by expressing sL = s0L − κL, where κ = 2(d ln r f /dt) is the stretch rate and L is

the Markstein length scale for the chosen mixture. This length scale is computed as
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0.89 mm using Eq. (2.109) of Poinsot and Veynante (2005) which is very close to the

value reported by Bradley et al. (1996). The comparison of unstretched and stretched

laminar flame results to the experimental data suggests the following. It was clearly

noted by Hainsworth (1985) that the mixture of Φ = 1.1 is thermo-diffusively stable

and there is no cell formation on the flame surface. Hence, the increase in the burning

rate is purely due to turbulence. As the initial laminar flame grows, it is exposed to pro-

gressively wider range of scales which would increase the surface area through flame

wrinkling which results in increased burning rate as has been noted in earlier studies

(Beretta et al., 1983; Hainsworth, 1985). It is possible that this increase is compen-

sated by the stretch induced negative effect, resulting in a growth rate similar to that

of freely propagating spherical laminar flame for about t+ ≤ 2. Beyond this time, the

effects of flame wrinkling produced by the turbulence overwhelms the stretch effect

producing a smooth departure from the freely propagating spherical laminar flame as

seen in Figure 2a.

When the flame kernel is much smaller than the turbulence integral length scale, it

will simply be convected by the large scale eddy and the flame-turbulence interaction

is limited to very small part of a wide spectrum of turbulence scales and thus the RANS

combustion modelling may not hold. This leads to some ambiguity in using the turbu-

lent combustion modelling to simulate the transition from laminar to turbulent growth

using the URANS approach. This has been recognised by Pope (1987) and so, a joint

velocity-scalar pdf approach was chosen by Pope and Cheng (1986) to simulate this

experimental flame from t+ = 0, showing a good comparison with measurements over

the whole period of the experiment. Thus, the experimentally measured flame radius at

t+ ≈ 2.5 obeying this condition is chosen as the initial flame radius for the simulation.

This flame radius departs from the laminar result by about 5% as shown in Figure 2a.

To be consistent with the conditions of turbulence at t+ ≈ 2.5 in the experiment, a cold
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flow simulation starting with the conditions in table 1 was run up to t+ ≈ 2.5 (corre-

sponding to about 2.4 ms) and the data from this cold flow simulation were used as

initial conditions for the turbulent flame calculations reported in Figure 2a. Thus, the

turbulent flame results start from t+ ≈ 2.5 in this figure.

The URANS approach along with the k-ε model was also used in earlier studies

employing an empirical mean reaction rate model based on turbulent flame speed clo-

sure (Schmid et al., 1998) and a time dependent mean reaction rate closure with a

laminar-like source (Lipatnikov and Chomiak, 2000). The later study also excluded

momentum equation in the analysis.

The difficulties noted above due to the relative size of the flame and turbulence

integral length scale and further reasonings given below have limited us to choose

only Φ = 1.1 flame from the experiments of Hainsworth (1985) for this study. Also,

the lean methane-air mixture is thermo-diffusively unstable (weakly) and combustion

modelling must take this effect duly. It is unclear at this time how to include these

effects into RANS combustion modelling. As shown in Figure 1, the conditions of the

experimental flames are in the corrugated flamelets regime and whether one can ignore

the thermo-diffusive instabilities, however weak they may be, and their influence on

flame propagation is an open question.

The turbulent flame results are shown for three different combustion models in

Figure 2a. The algebraic model in Eq. (12) over predicts the flame growth as one

would expect because this model assumes fast chemistry resulting in faster burning.

The unstrained flamelet model in Eq. (13) includes finite rate chemistry effects but

assumes the flame front to be a freely propagating laminar flame and thus excludes the

local stretch effects on the flame front. Thus, the flame growth rate is over predicted

by this model also, but the level of over prediction is reduced by a small amount from

the algebraic model case. The values of r f computed using the strained flamelet model
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given by Eq. (9) agrees well with the measured values as shown in Figure 2a for the

following reason. In premixed flames, the local balance among reaction, diffusion and

fluid dynamic effects determines the local scalar gradient magnitude which is directly

related to the scalar dissipation rate. The stretch effects from turbulence are due to

straining and curvature and both of these will directly influence the scalar gradient.

Thus, using the scalar gradient to parametrise the flamelets seems prudent for spherical

flames also as it has been shown earlier for planar flames (Kolla and Swaminathan,

2010). The relative behaviour of the three combustion models shown here for the

statistically spherical flame is similar to the observation of Kolla and Swaminathan

(2010) for statistically planar flames. Also, the use of equation (11) to include the

curvature of the flame brush shows negligible effect on the growth of the flame as in

Figure 2a and for this reason we shall use Eq. (10) for further analyses of spherical

flames to be discussed below, unless mentioned otherwise.

There is some uncertainty in choosing the initial flame radius for the computations

as noted earlier. Thus, the variation of normalised propagation speed,
(
dr f /dt

)
/s0L,

with the normalised radius is also shown in Figure 2b. The computational results are

about 12% larger than the values derived from the experimental results and this level

of difference is acceptable. A best fit cubic curve for the two set of experimental data

for t > 2.4 ms given in Figure 2a is used to calculate dr f /dt for the experimental result.

4.2 Spherical and planar flames comparison

The flame geometry effect on the propagation and consumption speeds of turbulent

premixed flames is investigated in this section using the results of spherical and planar

flames simulated in this study. The planar flame results computed in this study were

observed to be very close to those reported by Kolla and Swaminathan (2010). All the
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flames investigated in this section are simulated for a period of about 8 ms. Typical

time evolution of these two, planar and spherical, flames is shown in Figure 3 by

plotting the spatial variation of c̃ at various times. The spatial position, x′, shown in

this figure is a Galilean transformed, x′ = x − ũbt, because the burnt side velocity, ũb,

is different in the planar and spherical cases. This allows a direct comparison between

these two flames. The burnt side velocity is zero in the spherical case and it is negative

in the planar case.

The initial variation is shown by dashed lines and the profiles are shown for a

period of 8 ms (t+ ≈ 7.8) at an interval of 2 ms. These flames have u′/s0L = 6 and K =

0.15, and the same thermochemical parameters since they are stoichiometric CH4-air

mixture. These flames propagate from left to right in Figure 3 and they are computed

in the cartesian and spherical coordinate systems respectively. This flame pair is used

to demonstrate the flame geometry effects since the relative behaviours shown and

discussed in this section hold for other cases considered, unless noted otherwise.

Figure 3 shows that the numerical resolution used is excellent. This figure shows

the planar flame reaches a nearly steady propagation speed after some initial transients

but the spherical flame does not seem to suggest a steady value for its propagation

speed (shown in Figure 3b by increasing gap between the consecutive iso-contour

profiles). As the spherical flame grows outwardly the leading surface area increases

resulting in increased burning rate, which can be seen clearly by plotting the temporal

variation of the propagation speed of an iso-value, c̃ = c1. This speed is extracted from

the computed time variation of the spatial position x (c1) or r (c1) through

dx(c1)
dt
· n = ũ · n + sd, (16)

where ũ is the fluid velocity and sd is the displacement speed of the iso-level in its
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normal, n, direction due to its relative movement created by combined effects of mean

reaction rate, turbulent flux and molecular diffusion. The effect of molecular diffusion

can be neglected in high Reynolds number turbulent flows and the displacement speed

can then be written as

sd =
1
r2
∂

∂r

[
r2

(
µt

Scc
∂c̃
∂r

)] / (
ρ

∣∣∣∣∣
∂c̃
∂r

∣∣∣∣∣

)

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸
sTd

+ ω̇

/(
ρ

∣∣∣∣∣
∂c̃
∂r

∣∣∣∣∣

)

︸!!!!!!!!︷︷!!!!!!!!︸
srd

, (17)

using the mean progress variable equation, Eq. (7). It is understood that all the quan-

tities on the right hand side of Eq. (17) must be evaluated at c̃ = c1. A corresponding

equation can also be written in the Cartesian system. The displacement speed of the

leading edge, sd (c̃ = 0.05) is referred as the turbulent flame speed in the latter part of

this section. The equality in Eq. (16) is verified using the computational results since

the three terms can be evaluated individually.

Figure 4 shows the temporal variation of the propagation speed with respect to

the burnt mixture computed from dx′/dt for the iso-levels. The results are shown for

three iso-levels, c̃ = 0.05, 0.5 and 0.8. The cases with low and high turbulence level are

shown respectively in Figure 4a and 4b. This propagation speed is normalised using the

unstrained planar laminar flame speed and the time is normalised using the respective

integral time scale of the turbulence in the reactants, te. This normalised time is related

to t+ through t∗ = t+ (tc/te). After going through some initial transients for t+ ∼ 2 to

2.5 all the iso-levels converge to a nearly constant propagation speed which depends

on the value of u′/s0L for the planar flames and a small decrease with t∗ suggests the

persistence of the initial transients. On the other hand, this propagation speed increases

with t∗ and different iso-levels are travelling at different speeds in spherical flames. The

larger value seen in the early period for the planar flames is because of high ũb. The

continuous growth in the spherical cases is because of the continuous increase in the
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burning surface area. Further discussion on this point is postponed until section 5.

The iso-levels with lower c̃ values are moving quicker compared to those with

higher values in the spherical cases. This relative behaviour can be seen clearly by

plotting the variation of the propagation speed in Eq. (16) across the flame brush at a

given instant. This variation is shown in Figure 5a for both planar and spherical flames

at t = 5 ms. The results are shown for two combustion conditions, u′/s0L = 20 & K = 1

and u′/s0L = 6 & K = 0.15. A gradual decrease of the normalised propagation speed

across the spherical flame brush is seen and this decrease is about 9 to 12% depending

on the value of u′/s0L (larger decrease for higher u′/s0L). It is to be noted that the values

of the propagation speed are divided by 2 for u′/s0L = 20 cases to fit within the scale

shown in Figure 5a. The statistically planar flames (open symbols) do not show any

decrease across their flame brushes, except for the sharp change near the burnt side,

which is for an obvious reason. The large scatter seen at c̃ = 0 is due to sharp variation

of sd over a small range of c̃ near the unburnt side of the flame brush.

Typical variations of the two components, ũ/s0L and sd/s0L, across the flame brush

are shown in Figure 5b for the u′/s0L = 6 case at t = 5 ms . The results for planar and

spherical flames are shown respectively with dashed and solid lines and using the cor-

responding symbol in Figure 5a. The displacement speed is calculated using Eq. (17).

The following observations can be made from this figures. (1) The normalised ũ and

sd have the same sign in the spherical case whereas they have opposite sign in the

planar case. This implies that the fluid and c̃ iso-level move in the opposite directions

in the planar flames unlike in the spherical flames. (2) The values of sd/s0L and ũ/s0L

near the leading edge of the spherical flame is much larger than in the planar flame.

On the burnt side the planar flames have larger values. It is to be noted that the fluid

velocity shown here is because of heat release effects since ũ (c̃ = 0) and the velocity

gradient at the burnt side are specified to be zero for the planar flames as noted earlier
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in subsection 2.3. Thus, the flow acceleration across the flame brush gives a large flow

velocity on the burnt side of the planar flame brush as it is well known and this is clear

in Figure 5b. In the spherical case, the burnt mixture and the unburnt mixture at large

radial distance are at rest and thus the flame induced velocity has to decay to zero on

both sides of the flame brush. These behaviours, especially on the unburnt side, is

unclear in Figure 5b. Thus, the spatial variation of (ũ/s0L) at t = 5 ms is shown in

Figure 6, where the distance is normalised using the turbulence integral length scale,

Λ. The peak flow velocity occurs near the leading edge of the spherical flame brush

and it decays to zero as r−2 in the unburnt mixture. Also, the flame brush thickness

as marked roughly in Figure 6 is relatively smaller for the spherical case compared to

the planar flame. The time evolution of the flame brush thickness normalised by the

laminar flame thermal thickness, δt/δ0L, is plotted in Figure 7. The dashed lines shown

in this figure represent the evolution of flame brush thickness defined using
√
c̃′′2 pro-

file as predicted by Taylor’s theory of turbulent diffusion of a passive scalar (Taylor,

1935). The solid line denotes a thickness, δ√
c̃′′2
, over which the c rms value drops to

10% of its maximum value. This thickness is obtained using the computed c̃′′2 and

0.4δ√
c̃′′2
is shown in Figure 7. These results will be discussed fully in section 5. The

planar flame reaches a steady value, dictated by the turbulence and thermochemical

conditions, after t+ ≈ 2.6, whereas there is no such steady state value for the spherical

flame and its thickness keeps growing with time, which is well known in the literature.

This relative behaviour is the same in other flames investigated in this study.

From the results discussed so far, it is seems that this continuous growth is because

the burnt side of the flame brush is advancing slowly compared to the leading edge.

This difference can be seen clearly in Figure 4 for c̃ = 0.05 and 0.8 (also see Figure 5a).

It is obvious from the discussion above that the fluid velocity at the leading edge is

larger as shown in Figs. 4 to 6 and it acts together with the displacement speed in the
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spherical case. Based on these results, a simple schematic diagram can be drawn as

shown in Figure 8 to represent the difference in the physical mechanisms influencing

the propagation of statistically planar and spherical flames. Note the difference in

directions of flow, ũ, and flame displacement, sd, speeds between the spherical and

planar cases.

4.2.1 Behaviour of sd

From the discussion in the previous section, it is evident that δt will influence the flame

displacement speed. As noted in Eq. (17), the sd has two, reaction and turbulent flux,

components and their typical variations across the flame brush are shown in Figure 9

for two instances, t+ = 4.88 in Fig. 9a and 8 in Fig. 9b. The reaction rate contribution

can be written as (srd/s0L) = ω̇
+(1 + τ c̃)/|∂c̃/∂r+|. Thus, the behaviour of (srd/s0L) with

c̃ is expected to be approximately linear according to (1 + τ c̃) since the variations of

ω̇
+ and |∂c̃/∂r+| with c̃ would be similar. This observation explains the variations of

(srd/s0L) shown in Figure 9. The difference between the planar and spherical flames

predominantly comes from 1/|∂c̃/∂r+| which is related to δt shown in Figure 7. The

planar flame is thicker at t+ = 4.88 and thus (srd/s0L) is larger compared to the spherical

flame and the values of this displacement speed is about the same at t+ = 8 because δt

is nearly equal for these two flames.

The difference in the mean reaction rate variation is observed to be small in Fig-

ure 10 and this relative behaviour is also observed in other flames considered for this

study. Also, the inset shows that the maximum value of the normalised mean reaction

rate varies very little over the wide range of turbulence conditions of both planar and

spherical flames considered in this study. The values of ω̇+max differ by a very small

amount between the planar and spherical flames. These behaviours of ω̇+ is observed

to hold after the initial transient. The reduced sensitivity of ω̇+ to the turbulence level
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and the flame geometry has also been reported in a direct numerical simulation study

(Dunstan et al., 2012) by considering oblique and planar turbulent premixed flames

established in a range of turbulence conditions.

The turbulent flux contribution, sTd , to (sd/s0L) decreases across the flame brush as

shown in Figure 9, which is an expected behaviour for the planar flames. To under-

stand its behaviour in spherical flames and for the difference seen near the leading

edge, one can expand the first term of Eq. (17). This will identify an extra term of

2µt(∂c̃/∂r)/(r Scc) in spherical flames, which will increase as c̃ increases in outwardly

propagating flames. Since (∂c̃/∂r) is negative for these flames, this extra term con-

tributes negatively leading to a decrease of sTd as c̃ increases. The flux contribution

near the leading edge is larger in the spherical case because of the additional increase

in ∂2c̃/∂r2 resulting from the flame geometry. Thus, the difference in the sd of spheri-

cal and planar flames comes predominantly from the turbulent scalar flux. This is seen

clearly in Figure 9, specifically at the leading edge. The influence of turbulence on the

leading edge displacement speed and the consumption speed is discussed in the next

subsection.

4.2.2 Turbulent flame speed comparison

The displacement speed of flame brush leading edge is defined as the turbulent flame

speed, st. This quantity is of interest for theoretical investigation of turbulent flames

and the influence of flame geometry on this quantity is of considerable interest for the

turbulent combustion modelling (Driscoll, 2008). It has been suggested recently that

st is weakly sensitive to the flame geometry among freely propagating planar, strained

planar and rod stablished oblique turbulent premixed flames (Dunstan et al., 2012). It

must be noted that there is no “stationary value” for st in the spherical flames as for

the planar flames.
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The variation of st/s0L with the turbulence Reynolds number is shown in Fig-

ures 11a and 12a, and its variation with u′/s0L is shown as the inset. The turbulent flame

speed of the spherical flames is always larger than the corresponding planar flame value

for a given turbulence condition by about 10 to 20% and the higher value is due to the

turbulent scalar flux contribution at the leading edge as noted in the previous subsec-

tion. The results in the inset clearly suggests an approximate relation st ∼ u′ when the

value of the stretch factor, K is kept constant. This relation was noted by Bray (1990)

in his theoretical analysis using the Bray-Moss-Libby model. The increase in st with

u′ is sharp for the high Damköhler number cases (low K) and the values of the slopes,

obtained using the best linear fit, are about 6.3 and 5.1 respectively for the spherical

and planar cases. These values become three times smaller for the cases with high

stretch, however the relative difference in st between the spherical and planar flames

remains almost the same. The computed variations with Ret shown in Figures 11a

and 12a suggest a relation st/s0L ( BRent with 0.57 ≤ n ≤ 0.58 . The curves of least

square fits shown in the figure for both the spherical and planar flames suggest that

B = 0.20 for the spherical and 0.18 for the planar flames. The approximate square

root dependence on the turbulence Reynolds number observed here is similar to that

reported by Chaudhuri et al. (2012) for the propagation speed of spherical and Bunsen

flames of methane-air mixtures which are thermo-diffusively stable and do not include

Darrieus-Landau instability. The approximate square root dependence observed in this

study is consistent with the classical analysis of Damköhler for the thin reaction zones

combustion through a hypothesis st ∼
√
Dt/tc , where Dt is the turbulent diffusivity,

which is similar to s0L ∼
√
D/tc , where D is the molecular diffusivity, in the laminar

flame theory (Peters, 1999). The results of this study suggests that the flame geometry

does not impart influence on this scaling relation for turbulent flames.

Figures 11b and 12b show the consumption speed variation at t+ = 4.88 and 8
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respectively. This speed is defined as

sc =
1
ρu

∫ 1

0

ω̇

|∂c̃/∂r|
dc̃ =

∫ 1

0

srd
(1 + τc̃)

dc̃. (18)

The later part is obtained using srd defined in Eq. (17) and thus the consumption speed

is the reactive component of the density weighted displacement speed integrated across

the flame brush. As noted in the previous subsection, the difference between the planar

and spherical flames comes predominantly through ∂̃c/∂r and the mean reaction rate

is less influenced by the flame geometry. This gives the variation of sc/s0L with Ret

similar to st/s0L, however the magnitude of sc is smaller than st as shown in Figures 11

and 12. The difference in the consumption speeds of the planar and spherical flames

at t+ = 8 is very small since the flame brush thickness is nearly equal as shown in

Figure 7.

5 Discussion

The results discussed in the previous sections suggest that the flame brush leading

edge displacement speed, the turbulent flame speed, is larger for the spherical flames

compared to planar flames. The propagation speed, which is the sum of fluid velocity

and the displacement speed, of the leading edge grows continuously with time in the

spherical flames while it reaches a nearly constant value in the planar flames. The

increasing difference between the propagation speeds of the leading and trailing edges

in the spherical flames yields a continuous growth of its flame brush thickness. This

growth is usually attributed to turbulent diffusion in the past studies, which is different

from the physical explanation given above. The aim of this section is to shed more

light on these observations.
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The Kolmogorov-Petrovskii-Piskunov (KPP) analysis applied to multi-dimensional

premixed flames in high Reynolds number turbulent flow gave an expression for the

turbulent flame speed as (Kolla et al., 2010)

st = 2

√
νt

ρuS cc

(
∂ω̇

∂̃c

)

c̃=0
+

(
νt

R S cc

)

c̃=0
(19)

where νt is the turbulent eddy viscosity and R is the radius of the leading edge. Fig-

ure 10 shows that the quantity
(
∂ω̇/∂̃c

)
c̃=0
in the planar and spherical flames are almost

identical and the influence of flame brush curvature, R−1, is responsible for the larger

value of st observed in figures 11 and 12. One expects that this contribution will de-

crease as R becomes very large and st of the spherical flame to reach the planar flame

value eventually. This limiting behaviour is not observed in the simulation studied

here because of their finite domain size and computational time. One requires very

much larger computational domain than those considered in this study, which will be

addressed in future.

The Favre averaged fluid velocity at the leading edge of a turbulent spherical flame

is larger than at its trailing edge as shown in Figure 8. The maximum value of this

velocity will increase with time because of a continuous increase in mass burning rate

resulting from the growth of the leading surface area. This increase, indeed observed in

this study, results in a continuous acceleration of the leading edge of spherical flames

unlike in the planar flames. Thus, a transition from turbulent deflagration to a detona-

tion can occur eventually if the conditions are right. This transition is aggravated if the

spherical flame propagates in a closed vessel under appropriate conditions.

The spatial or temporal variation of flame brush thickness has been studied in

many earlier investigations and the results are summarised by Lipatnikov and Cho-

miak (2002, 2005) and an increase in the thickness with time or distance has been
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observed in these studies. Furthermore, Lipatnikov and Chomiak (2005) showed that

the evolution of the measured flame brush thickness is well predicted by Taylor’s the-

ory of turbulent diffusion for a passive scalar (Taylor, 1935). This theory predicts a

linear growth in t for the rms displacement of a fluctuating passive scalar iso-surface

when t is smaller than the turbulent eddy turn over time, te, and this growth becomes
√
t when t is very much larger than te. Analyses using direct numerical simulation data

of turbulent ”V” flames offered good support for this (Minamoto et al., 2011; Dun-

stan et al., 2011) theory, suggesting that the turbulent diffusion plays a predominant

role on the growth of the flame brush thickness. This applicability of this theory to

the spherical flames studied here is tested in Figure 7, which is typical for the flames

studied here. As noted earlier in section 4.2, the solid line denotes the temporal varia-

tion of δ√
c̃′′2
, a thickness over which

√
c̃′′2 drops to 10% of its maximum value. This

variation is similar to δt as shown in Figure 7. The values predicted by the Taylor’s

theory are also shown in that figure. The gap in the theoretical curve is intentional

to mark some transition from linear to square root dependence. This result suggests

that the variations of δt and δ√
c̃′′2
does not follow the turbulent diffusion theory except

for a very short initial period. The relative gap between the theoretical curve and δt

increases with time. These observations suggest that the growth of δt in the spherical

flame is controlled by the propagation mechanisms governed by chemical reaction,

convection and turbulent diffusion. The role of turbulent diffusion for the growth of δt

seems secondary compared to the convection due to the fluid velocity induced by the

chemical reaction.
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6 Conclusions

Spherically expanding and statistically planar turbulent premixed flames of methane-

air mixtures are simulated using URANS approach. The mean chemical reaction rate

is modelled using the strained and unstrained flamelet models and an algebraic model

of Bray (1979). The unstrained flamelet model uses c̃ and c̃′′2 to parameterise the

flamelets and the strained flamelet model (Kolla and Swaminathan, 2010) uses the

mean scalar dissipation rate, ε̃c, in addition to c̃ and c̃′′2 to parameterise the flamelets.

The values of c̃ and c̃′′2 are obtained by solving their transport equations and the mean

dissipation rate is obtained using two algebraic models. These models are obtained by

balancing the leading order terms of the closed transport equation for the mean scalar

dissipation rate. One of this algebraic model was proposed in an earlier study (Kolla

et al., 2009) for statistically planar flames and the second model includes the effects of

mean curvature. The turbulence is modelled using the k-ε equations.

These models are first validated by computing a spherical methane-air flame in-

vestigated experimentally in an earlier study (Hainsworth, 1985). A good comparison

between the computed and measured flame ball growth rate is observed for the strained

flamelet model and the other two combustion submodels yield a faster growth.

Statistically planar and spherical flames, fourteen flames in total, experiencing low

and high turbulence stretch rates are computed using strained flamelet model and these

flames are analysed in detail to understand the influence of geometry on their propa-

gation. For the conditions investigated in this study, including curvature corrections in

the algebraic model for ε̃c did not influence the flame propagation. Detailed analyses

of the computed flames showed that the advancement of the leading edge is aided by

the local fluid velocity in the spherical case. In the planar flames, the directions for

the fluid flow and the advancing leading edge are opposite. The planar flame showed
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a steady propagation once a balance between the local flow and displacement speeds

is achieved for a given turbulence conditions. The spherical flames accelerated con-

tinuously because of the compounded effects of flow and leading edge displacement.

This continuous acceleration cause the heat release induced induced convective effects

to be dominant for the growth of the flame brush thickness.

The flame geometry is observed to influence the magnitude of turbulent scalar flux

at the leading edge, spherical flames showing larger magnitude compared to the planar

flames for a given turbulence and thermo-chemical conditions. The mean reaction rate

is found to be less influenced by the flame geometry. Thus, the influence of flame

geometry on the turbulent flame speed, leading edge displacement speed, is observed

to result from the contribution of the turbulence scalar flux. The turbulent flame speed,

st, of the spherical flames is observed to be 10 to 20% higher than the corresponding

planar flame values for the conditions investigated in this study. For a constant value

of turbulence stretch rate, st ∼ u′ as noted by Bray (1990) and this scaling is observed

for both planar and spherical flames. The values of st, normalised by the laminar

flame speed, for the fourteen flames computed in this study scales as Rent with 0.57 ≤

n ≤ 0.58. This scaling is consistent with the classical analysis of Damköhler. The

consumption speed also shows a similar scaling with Ret. The results presented in this

work encourages the use of strained flamelet model to simulate turbulent combustion

in modern spark-ignition engines, which involve expanding flame balls.
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Figure 8: Schematic diagrams showing the propagation mechanism in a statistically
planar and spherical flames. Dashed and solid arrows represent the flow and iso-level
displacement directions respectively.
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Figure 10: Variation of normalised mean reaction rate across the flame brush for both
planar and spherical flames, with u′/s0L = 6 and K = 0.15 at (a) t+ = 4.88 and (b)
t+ = 8, and the inset shows the variation of ω̇+max with (u′/s0L) for the various flames
considered in this study, where ω̇+ = ω̇δ0L/(ρu s0L).
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Figure 11: Planar (open symbols) and spherical (closed) flame speeds for the cases
simulated in this study are plotted against the turbulence Reynolds number. The inset
shows the variation with u′/s0L. All flame speeds are taken at t+ = 5.86 (t = 6 ms)
in (a) normalised turbulent flame speed and (b) normalised consumption speed. The
symbols correspond to those shown in Figure 1.
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Figure 12: Planar (open symbols) and spherical (closed) flame speeds for the cases
simulated in this study are plotted against the turbulence Reynolds number. The inset
shows the variation with u′/s0L. All flame speeds are taken at t+ = 8 (t = 8.2 ms)
in (a) normalised turbulent flame speed and (b) normalised consumption speed. The
symbols correspond to those shown in Figure 1.
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