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Summary

The basic unit of eukaryotic chromatin is the nucleosome core, which contains
147 base pairs of DNA wrapped around an octamer of core histone proteins.
Linker histones bind through their globular domain at the nucleosome dyad
and to internucleosomal DNA through their C-terminal basic tail. The Saccha-
romyces cerevisiae linker histone homologue, Hho1p, contains two domains, GI
and GII, that have sequence similarity to the globular domain of the canonical
linker histone H1.

The individual domains of Hho1p differ in their structural and func-
tional properties, for example in 10 mM sodium phosphate GI is folded while
GII exists as two species: folded and “unfolded”. In Chapter 2 the structure of
the second globular domain of Hho1p, GII, is further investigated. NMR studies
indicate residual structure in the “unfolded” form of GII, especially at the start
of helices I and III.

Chapter 3 considers the structural roles of Hho1p within chromatin.
Semi-quantitative Western blotting is used to measure the abundance of Hho1p
relative to nucleosomes in yeast. Analysis of reconstituted nucleosome arrays
containing NGIL (Hho1p with the second globular domain removed) are indis-
tinguishable from those containing full-length Hho1p, in gel-based assays and
by analytical ultracentrifugation, suggesting the GII domain may not have a ma-
jor role in chromatin compaction.

Chapter 4 focuses on the interaction of Hho1p with chromatin proteins.
Chemical cross-linking and gel filtration indicate that Hho1p does not inter-
act significantly with the putative HMGB1 homologues Hmo1p and Nhp6ap
in vitro. Hho1p and Htz1p, the yeast histone H2A.Z subtype, do not appear
to interact directly in co-immunoprecipitation and chemical cross-linking as-
says, while chromatin immunoprecipitation studies show no evidence of co-
localisation across the ADH2 and PHO5 genes. Hho1p and Sir2p cross-link in
solution, but purification difficulties precluded further investigation.

The effect of phosphorylation on the interaction of Hho1p and related
truncation proteins with DNA and chromatin are investigated in Chapter 5.
Phosphorylation reduces their affinity for linear DNA, but has different effects
on the binding to four-way junction DNA for Hho1p and NGIL, compared with
LGII (the linker region and GII domain of Hho1p). Phosphorylation has no ob-
vious effect on the affinity of these proteins for chromatin in sucrose gradient
centrifugation assays. NMR spectroscopy studies show that the linker region
is mostly unstructured, with a short region showing some α-helical character.
Phosphorylation of the linker domain changes its structural character.
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ESI-TOF electrospray ionisation time-of-flight
FRAP fluorescence recovery after photobleaching
GFP green fluorescent protein
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HSQC heteronuclear single quantum coherence
IPTG isopropyl β-D-thiogalactopyranoside
kDa kilo Dalton
N-terminal amino-terminal
NP-40 tergitol-type NP-40 (nonyl phenoxypolyethoxylethanol)
OD600 optical density measured at 600 nm
PCA perchloric acid
qPCR quantitative polymerase chain reaction
rDNA ribosomal DNA
RNAP RNA polymerase
rpm revolutions per minute
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SGA synthetic gene analysis
TBE tris-boric acid-EDTA
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TCA trichloroacetic acid
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1 unit (U) of thrombin: the amount of enzyme required to cleave > 90% of
100 µg of a test GST fusion protein when incubated in 1x PBS at 22 ◦C for 16 h.
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1 General Introduction

1.1 Chromatin

Chromatin contains approximately equal masses of DNA and small, highly con-

served, basic histone proteins that bind the DNA. Packaging the DNA in chro-

matin allows the genetic material to be condensed from a length of about 2.2 m

into a nucleus with a diameter of 10 µm. Different regions of the genome have

various compaction levels that can be dynamic. Actively transcribed regions

have a more open chromatin structure, euchromatin, while transcriptionally

silent regions contain more compacted heterochromatin. As well as genetic in-

formation contained within the DNA sequence, chromatin also carries epige-

netic information contained in DNA methylation, chemical modification of the

histone proteins and inclusion of different histone subtypes.

1.1.1 The nucleosome

Digestion of chromatin by a DNA endonuclease, such as micrococcal nuclease,

occurs in stages (Figure 1.1a) (Thomas, 1984). First nucleosomes are produced,

containing about 200 base pairs (bp) of DNA, a linker histone (Section 1.3) and

an octamer of core histone proteins. Further digestion of the DNA produces

chromatosomes that contain 166 bp DNA (Simpson, 1978), and digestion may

pause at this point in what is known as a “chromatosome stop”. Yet more diges-

tion releases the linker histone and removes another 20 bp of DNA, producing
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– H1

Nucleosome
~200 bp DNA
+ histone octamer
+ histone H1

Chromatosome
166 bp DNA
+ histone octamer
+ histone H1

Nucleosome core 
146 bp bp DNA
+ histone octamer

(a)

Figure 1.1 Structure of the nucleosome.  (a) Schematic of the stages of micrococcal 
nuclease digestion of chromatin.  The histone tails are not shown and the histone 
octamer is represented as a disc.  Adapted from Thomas (1984).  (b)  Two views of the 
crystal structure of the nucleosome core at 2.8 Å resolution.  146 bp of DNA is wrapped 
1.65 times around an octamer of histone proteins (H2A:yellow; H2B: red; H3:  blue; 
H4:green).  From Luger et al. (1997).  (c)  A histone fold domain, with a helix-turn-helix 
motif at each end (left), and a dimer of two histones in a “handshake” motif (right).  
Adapted from Ramakrishnan (1997).  

(b)

(c)

N

CHelix-turn-
helix

Helix-turn-
helix
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the nucleosome core particle.

The nucleosome is the fundamental unit of chromatin. It contains an

octamer of core histone proteins surrounded by 146 bp of DNA, wrapped 1.65

times around the octamer (Figure 1.1b) (Thomas and Kornberg, 1975; Finch

et al., 1977; Luger et al., 1997). The octamer is formed from an (H3)2(H4)2

tetramer flanked by two H2A.H2B dimers. The tetramer is stabilised through

a four-helix bundle between the two histone H3s, and the octamer is stabilised

through four-helix bundles between histones H2B and H4 (Luger et al., 1997).

The histone molecules themselves contain domains with helix-turn-helix his-

tone folds and interact with other histone molecules in a “handshake” motif

(Figure 1.1c) (Arents et al., 1991; Ramakrishnan, 1997). The wrapping of the

DNA around the histone octamer is stabilised through contacts with the un-

structured tails of the core histones (Ausio et al., 1989). The amino-terminal

(N-terminal) tails of histones H3 and H4 become structured upon binding to

DNA (Baneres et al., 1997).

To wrap around the nucleosome core, the DNA is intensively twisted

and curved (Luger et al., 1997; Richmond and Davey, 2003). There is some de-

gree of sequence preference for octamer binding, as short runs of d(A T) at 10 bp

intervals promote bending in the DNA minor groove where it faces towards the

nucleosome core (Satchwell et al., 1986; Travers, 1987). Due to the structural

requirements of the nucleosomal DNA, the affinity of the octamer for various

DNA sequences can differ by up to 1000-fold. This was determined by the

exchange of nucleosomes onto DNA sequences from linker histone-depleted

chromatin, and the relative amounts of nucleosome formed on DNA sequences

compared with competitor DNA in reconstitution reactions (Thastrom et al.,

1999). Nucleosome affinity is dependent on the stacking energy and flexibility

of the local DNA (Virstedt et al., 2004), leading to the suggestion of a “nucle-
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osome positioning code” that could facilitate processes such as transcription

factor binding, transcription initiation, and chromatin remodelling (Segal et al.,

2006).

The most basic level of chromatin is referred to as “beads on a string” or

the 10 nm filament. It consists of nucleosomes separated by linker DNA, which

varies in length with tissue-type and species (van Holde, 1989). The 10 nm fila-

ment compacts the DNA by approximately six-fold in length.

1.1.2 Higher-order chromatin structure

Further compaction involves chromatin folding into higher-order structures.

Euchromatic regions of the genome are relatively loosely compacted, allowing

proteins to bind and act on the DNA, whereas heterochromatic regions are con-

densed to a greater extent and are mainly inaccessible to DNA binding proteins.

Formation of higher-order chromatin structures involves inter-

nucleosomal interactions. Important contacts occur between the histone H4

N-terminal tail and the H2A/H2B acidic patch, observed in the nucleosome

core particle crystal structure (Luger et al., 1997) and shown to exist in chro-

matin (Dorigo et al., 2003). Acetylation of the histone H4 tail at lysine 16 can

disrupt this contact and inhibit compaction of chromatin, but not to such a

great extent as the removal of linker histone (Robinson et al., 2008).

The first level of higher-order chromatin structure is the “30 nm fi-

bre”, a transcriptionally inactive superstructure of nucleosomes (Thoma et al.,

1979). The structure of this fibre is debated, with various models proposed (Fig-

ure 1.2a). The models vary in the relative orientation of, and connections be-

tween, the nucleosomes, the path of the linker DNA, the location of linker his-

tone, the number of nucleosomes per turn of the fibre and the dimension of the

- 5 -



CHAPTER 1

Figure 1.2 Higher-order chromatin structure.  (a) Two views of models for the pack-
ing of nucleosomes in “30 nm fibres”.  The linker DNA is indicated in yellow.  The 
models are as follows (i) Solenoid model:  a one-start helix of nucleosomes, con-
nected by bent linker DNA  (ii) Two-start supercoiled model:  a helix of two adjacent 
stacks of nucleosome with straight linker DNA  (iii)  Two-start twisted model:  a struc-
ture containing the linker DNA and histone H1 at the centre of the fibre.  From Dorigo 
et al. (2004).  (b)  The crystal structure of the tetranucleosome.  The two stacks of 
nucleosomes (N1, N2 and N1’, N2’) are rotated with respect to each other.  Linker DNA 
connecting N1 to N2’, and N2 to N1’ is bent (LB, LB’), but that connecting N2’ to N2 
is straight (LS).  From Schalch et al. (2005).    

(a)
(i) (ii) (iii)

(b)

LB’LB

LS N1’

N2’N2

N1
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fibre produced (reviewed by Staynov, 2008).

Initial electron microscopy studies of extracted chromatin showed con-

densation to fibres with approximately 30 nm diameter, upon increasing the

ionic strength, and led to a solenoid model being proposed (Finch and Klug,

1976). The solenoid model describes one strand of nucleosomes that coil into

a helix with about six nucleosomes per turn. The adjacent nucleosomes are

connected through bent linker DNA and linker histone is required to stabilise

the fibre structure. In contrast, other groups have proposed two-start models

in which there is a zig-zag arrangement of the nucleosomes and straight linker

DNA. These two-start models are further divided into helical-ribbon models,

where the two strands coil (Worcel et al., 1981; Woodcock et al., 1984), and

crossed-linker models, where the two strands twist causing the linker DNA to

be at the centre of the fibre (Bednar et al., 1998).

Evidence for two-start “30 nm fibre” comes from in vitro chromatin re-

constitution assays. Nucleosome arrays, both with and without linker histone,

were reconstituted using core histones with site-specific mutations to cysteine

(H4-V21C/H2A-E64C). This allowed cross-linking of the chromatin structure,

and was followed by digestion with an endonuclease (Dorigo et al., 2004). The

number of nucleosomes joined through cross-linking was shown to correspond

with theoretical values for two-start, rather than one-start fibres, and full di-

gestion of the arrays was confirmed by reducing the cross-links with DTT. The

crystal structure of a tetranucleosome is also consistent with a two-start model,

although it does not contain linker histone (Figure 1.2b) (Schalch et al., 2005).

One caveat to these experiments is that they both use a 167 bp nucleosome re-

peat length. These short nucleosome repeat lengths are rare, having only been

shown for Saccharomyces cerevisiae (S. cerevisiae) and cerebral cortex neurons

(Thomas and Furber, 1976; Thomas and Thompson, 1977). Other tissues and
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species have longer nucleosome repeat lengths.

Electron microscopy data from reconstituted chromatin, containing

chicken histone H5 and various nucleosome repeat lengths, indicate a solenoid

structure for the “30 nm fibre” (Robinson et al., 2006). Chromatin with 177–

207 bp nucleosome repeat lengths form fibres with about 33 nm diameter and

11 nucleosomes per helical turn, whereas longer repeat lengths produce 44 nm

fibres and 15 nucleosomes per helical turn. The number of nucleosomes ob-

served in a given length of solenoid fibre is much larger than that suggested

in the original solenoid model (6 or 7 nucleosomes per helical turn; Finch and

Klug, 1976) leading to a solenoid model containing interdigitated nucleosomes.

Nucleosome arrays with 197 bp repeat lengths appear as “puddles” in the ab-

sence of linker histone (Figure 1.3a; Routh et al., 2008). The presence of mag-

nesium ions in the buffer promotes disordered nucleosome interactions. As

histone H5 is added the fibres become more compact and regular, forming

34 nm fibres with an interdigitated solenoid structure. Co-operativity in the

compaction of these nucleosome arrays indicates that folding requires the pres-

ence of linker histones in contiguous regions.

Nucleosome arrays with 167 bp nucleosome repeat length, on the other

hand, have a different topology (Figure 1.3b; Routh et al., 2008). These ar-

rays can bind up to one histone H5 for approximately every two nucleosome

cores before precipitation occurs, as determined by densitometry of nucleo-

some arrays containing radio-labelled H5 (one phosphorylation reaction per

1500 linker histones). Nucleosome arrays with 167 bp repeat lengths show two-

start “ladders” in the absence of linker histone. Upon addition of histone H5

the “ladders” twist, resulting in a 21 nm fibre. There is no co-operativity in the

compaction of these nucleosome arrays upon addition of linker histone. This

suggests compaction is primarily driven by inter-nucleosomal contacts, rather

- 8 -
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Figure 1.3 Chromatin higher-order structure is determined by nucleosome repeat 
length and linker histone content.  Schematics of the folding of nucleosome arrays 
upon addition of linker histone H5, based on electron micrograph images.  (a) The 
unfolded 197 bp arrays show a disordered ‘puddle’ arrangement.  Addition of linker 
histone causes formation of a 34 nm fibre, consistent with an interdigitated solenoid 
structure.  (b) The unfolded 167 bp repeat arrays show a two-start ‘ladder’ structure 
similar to that seen in the crystal structure of the tetranucleosome (Figure 1.2).  Addi-
tion of linker histone causes formation of a ‘thin’ 21 nm coiled fibre.  Adapted from 
Routh et al. (2008).  

+ H5 21 nm 
fibre‘ladder’

+ H5
‘puddle’

34 nm
fibre 

(a)   197 bp repeat length

(b)   167 bp repeat length
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than by the linker histone, probably due to the constraints of having such short

linker DNA. The role of linker histones in higher-order chromatin compaction

is discussed further in Section 1.3.2.4.

In nature, nucleosome repeat lengths along a filament are less regular

than within these reconstituted systems (within the overall average nucleosome

repeat length); the chromatin is also dynamic. This raises the possibility that a

variety of “30 nm fibre” structures could occur within chromatin, with the local

structure depending on linker histone variants and content, and nucleosome

repeat lengths, as well as chromatin remodelling complexes (Wu et al., 2007).

Two-start chromatin fibres may occur in regions of linker histone depletion,

which has been shown to reduce nucleosome repeat lengths in chromatin (Fan

et al., 2005). However, nucleosome repeat lengths are more commonly too long

to support two-start chromatin fibres and an interdigitated solenoid fibre may

form.

Higher levels of organisation than the “30 nm fibre” also occur, with

the most compacted form of chromatin occurring in metaphase chromosomes.

The progression from “30 nm fibre” to metaphase chromosome occurs through

looping of the fibre on to chromosome “scaffolds” of non-histone proteins,

via scaffold-associated region DNA sequences (Laemmli et al., 1992; Ottaviani

et al., 2008). This chromatin scaffold is coiled into a helix, and the helix further

packed to form the highly condensed chromatin structure of metaphase chro-

mosomes (Boy de la Tour and Laemmli, 1988).

1.2 Epigenetics

Epigenetics has been defined as “nuclear inheritance which is not based on

differences in DNA sequence” (Holliday, 1994). This may include the post-

- 10 -
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translational chemical-modifications of core and linker histones, DNA methyla-

tion and inclusion of different histone subtypes. The effects of such chromatin

modifications are discussed below.

1.2.1 Core histone post-translational chemical-modifications

Chemical modification of histone proteins has been known for many years

(Murray, 1964). Since then a wide variety of post-translational modifications

of core histones have been identified including: acetylation, ADP-ribosylation,

methylation, phosphorylation, sumolyation and ubiquitination (reviewed by

Kouzarides, 2007), as well as biotinylation, carbonylation and glycosylation

(Hymes et al., 1995; Wondrak et al., 2000; Liebich et al., 1993). The chemical

modifications mostly occur on the N-terminal tails of the core histones, al-

though the carboxy-terminal (C-terminal) tails of histones H2A and H2B have

ubiquitination sites at lysines 119 and 120 respectively (Goldknopf and Busch,

1977; Thorne et al., 1987). More recently modifications in the histone fold do-

mains have been reported, at histone H3 on lysines 56 and 79 (Ng et al., 2002;

van Leeuwen et al., 2002). Figure 1.4 summarises the known core histone chem-

ical modifications identified in human (adapted from Ray-Gallet et al., 2005),

and the most studied modifications are discussed below.

Acetylation is regulated by histone acetyl transferases and histone

deacetylases, and occurs on lysine residues, decreasing the positive charge and

altering the electrostatic interactions of the histone tails. This, in turn, modifies

the inter-nucleosomal contacts and loosens higher-order structure, promoting

transcriptional activity (Tse et al., 1998). As such, acetylated core histones are

generally associated with transcriptionally active chromatin regions and they

are enriched at the 5′ end of coding regions (Liu et al., 2005; Schneider et al.,

2006). An exception is acetylation of lysine 12 of histone H4, which is associ-
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ated with regions of heterochromatin (Turner et al., 1992). Acetylated core his-

tones also have roles in DNA replication and repair (Han et al., 2007; Celic et al.,

2006). Bromodomain-containing proteins bind specifically to acetylated lysine

residues in order to bring about these functional roles (Winston and Allis, 1999).

Methylation can occur on lysine and arginine residues by transfer of a

methyl group from S-adenosyl methionine (Kim and Paik, 1965). Lysine methy-

lation is performed by many methyltransferases that can act specifically on

mono-, di- or tri-methylated residues (reviewed in Kouzarides, 2007), while ly-

sine demethylases remove specific methylation marks. A number of arginine

methyltransferases are known, but only one arginine demethylase has been

identified to date (Chang et al., 2007). Methylated lysine residues are recog-

nised by chromodomain-containing proteins (Jacobs et al., 2001), as well as

proteins containing plant homeodomains (Shi et al., 2006) or chromo-like do-

mains such as Tudor or MBT domains (Kim et al., 2006). These proteins tend to

associate specifically with mono-methylated residues or di- and tri-methylated

residues. Methylation has roles in a variety of processes. For example, histone

H3K9 methylation recruits heterochromatin protein 1 to the promoters of eu-

chromatic repressed genes (Schultz et al., 2002); H3K27 methylation is involved

in X chromosome inactivation (Plath et al., 2003); and H4K20 has roles in hete-

rochromatin formation and transcriptional repression via L3MBTL1 (Nishioka

et al., 2002; Kalakonda et al., 2008) as well as in gene imprinting (Pannetier et al.,

2008). In unicellular organisms H3K4, an activatory methylation mark, is more

prevalent that in higher eukaryotes (Garcia et al., 2007), probably because a

much higher proportion of unicellular genomes are transcriptionally active.

Phosphorylation of core histones is regulated by serine and threonine

kinases and phosphatases, and is generally associated with sites of DNA dam-

age and repair. For example, phosphorylated histone H2AX, a histone H2A sub-
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type, is required to recruit repair factors at sites of DNA double-strand breaks,

while its dephosphorylation facilitates the completion of DNA repair (Chowd-

hury et al., 2005). Phosphorylated residues are bound by 14–3–3 proteins (Fu-

rukawa et al., 1993).

Histone H2A ubiquitination is also thought to have roles in DNA repair

(Bergink et al., 2006). Ubiquitination of histones H2A and H2B is regulated by

ubiquitylases and deubiquitylases, although the process is not well understood.

It has been suggested that the large size of the modification may have structural

effects on chromatin (Moore et al., 2002). Histone H2A ubiquitination is associ-

ated with transcriptional repression (De Napoles et al., 2004), and histone H2B

ubiquitination with transcriptional activation (Zhu et al., 2005).

Each core histone post-translational modification is suggested to con-

tribute to a biological effect, by recruiting effector proteins, and leads to modi-

fication of processes such as transcription activation, chromatin condensation,

DNA replication and DNA repair. This theory is known as the “histone code”

(Strahl and Allis, 2000; Jenuwein and Allis, 2001). Single chemical modifica-

tions may be sufficient to cause a biological effect or they may act in combina-

tion with other modifications through “cross-talk”. For example, histone H4K20

methylation is dependent on the methylation of histone H3K9 (Kourmouli et al.,

2004). In addition, some modifications may have context-specific effects. For

example, methylation of histone H3K9 has been shown to activate transcription

in some regions although it is usually a repressive mark (Vakoc et al., 2005).

1.2.2 Core histone subtypes

There are protein subtypes of core histones H2A, H2B and H3 that allow chro-

matin specialisation (Franklin and Zweidler, 1977 and reviewed by Kamakaka
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and Biggins, 2005). The major core histone protein subtypes are expressed in

S phase and involved in chromatin assembly, but other “replacement” sub-

types can be incorporated into chromatin independently of DNA replication

(Wu et al., 1982).

There are several “replacement” subtypes of histone H2A. Histone H2A-

Bbd and macroH2A are present only in vertebrates. Histone H2A-Bbd is en-

riched in transcriptionally active regions (Chadwick and Willard, 2001a), while

macroH2A1 and macroH2A2 are enriched in the inactive X chromosome (Chad-

wick and Willard, 2001b). H2AX has roles in DNA repair (Ward and Chen, 2001

and Section 1.2.1). H2A.Z has a variety of roles, for example, facilitating the

folding of nucleosomal arrays but inhibiting the formation of highly condensed

chromatin structures (Fan et al., 2002). H2A.Z also functions in the regulation

of nucleosome turnover at barrier elements between heterochromatin and eu-

chromatin (Dion et al., 2007).

Histone H2B has a testis- and sperm-specific subtype, called TSH2B

(Zalensky et al., 2002). Histone H3.3, a “replacement” H3 subtype is associated

with transcriptionally active regions (Ahmad and Henikoff, 2002), while CENP-

A is the histone H3 subtype found in centromeric nucleosomes (Palmer et al.,

1991). No subtypes of histone H4 have been reported.

1.2.3 DNA methylation

DNA is methylated on the cytosine of CpG dinucleotides by DNA methyltrans-

ferases, using S-adenosyl methionine as the methyl group donor. The level of

DNA methylation varies between species, with Saccharomyces cerevisiae hav-

ing none (Binz et al., 1998). It is only present in Drosophila melanogaster dur-

ing early stages of development (Lyko et al., 2000), but is more prevalent in
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mammals. The specificity of the DNA methylases is enhanced by small inter-

fering RNA molecules (Kawasaki and Taira, 2004) or protein factors (Brenner

et al., 2005). DNA methylation has roles in mammalian development (Okano

et al., 1999) and is associated with regions of transcriptional repression, except

in invertebrates where it is an activating mark (reviewed in Cedar, 1988; Field

et al., 2004). It can function in repression by preventing the binding of tran-

scription factors (Watt and Molloy, 1988) or through association of methyl bind-

ing domain-containing proteins, which recruit co-repressor complexes (Jones

et al., 1998; Nan et al., 1998). There is co-operation between DNA methylation,

histone H3K9 methylation and heterochromatin protein 1 to reinforce silent

chromatin domains (reviewed by Fuks, 2005).

1.3 Linker histones

Linker histones are small, highly basic, lysine-rich proteins that have a highly

conserved “winged-helix” globular domain (Ramakrishnan et al., 1993). This

globular domain is flanked by basic N- and C-terminal tails, which show con-

siderable variety in length and sequence.

Linker histones are not essential for the viability of lower eukaryotes,

such as S. cerevisiae, Aspergillus nidulans and Ascobolus immersus, although

linker histone deletion mutants may show a reduced life span (Ushinsky et al.,

1997; Downs et al., 2003; Ramon et al., 2000; Barra et al., 2000). Linker his-

tones are, however, essential for the viability of higher eukaryotes. For example,

mice that are null for three linker histone subtypes die during embryogenesis

although mouse embryonic cell lines can be propagated and contain 50% of

the normal H1 levels (Fan et al., 2005). Mice null for two of the six linker histone

subtypes are viable but there are compensatory effects restoring the wild-type
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ratio of linker histone to core nucleosome (Fan et al., 2003).

1.3.1 The role of linker histones in transcriptional regulation

and epigenetics

1.3.1.1 Linker histone variants

There is a wide range of species- and tissue-specific linker histone variants,

which are regulated through differentiation and cell cycle-specific expression

(Khochbin, 2001). The linker histone variants differ in mass, amino acid compo-

sition and sequence. The globular domains are relatively conserved compared

with the basic tails, which vary in sequence and length.

The human linker histones have been studied extensively. To date

eleven linker histone variants have been identified in humans (reviewed in Hap-

pel and Doenecke, 2009). Linker histones H1.1, H1.2, H1.3, H1.4 and H1.5 are

ubiquitously expressed in somatic cells. H1x is also expressed ubiquitously

but accumulates during the G1 phase of the cell cycle. Histones H1t, H1T2,

HILS1 and H1oo are expressed specifically in germ cells (H1t is also expressed in

spleen cells). Histone H1.0 (H1◦) is expressed in terminally differentiated cells.

Linker histone variants have different affinities for DNA and chromatin,

possibly caused by the differences in their C-terminal tails (De Lucia et al., 1994;

Th’ng et al., 2005). In fluorescence recovery after photobleaching (FRAP) exper-

iments, carried out by Th’ng et al., the length of the C-terminal tail correlated

with affinity for chromatin in vivo, although an exception was H1.0, which has

the shortest tail but moderate affinity. This could be explained, as the H1.0 tail

has the highest density of basic residues, which would increase its association

to DNA compared to a similar length, less basic tail. The variants were grouped

as follows: low affinity (H1.1, H1.2), moderate affinity (H1.0, H1.3) and high
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affinity (H1.4, H1.5). An in vitro study produced a slightly different result. This

study determined linker histone variant affinity for chromatin in the presence

of scaffold-associated region DNA to prevent precipitation: low affinity (H1.0),

moderate affinity (H1.2, H1.5) and high affinity (H1.3, H1.4, H1.0) (Orrego et al.,

2007).

Linker histone variants are located in different chromatin regions. The

use of green fluorescent protein (GFP)-tagged linker histones in FRAP experi-

ments demonstrated that histones H1.0, H1.1, H1.2 and H1.3 are enriched in

euchromatin, while histones H1.4 and H1.5 are enriched in heterochromatin

(Th’ng et al., 2005). The variants also have different effects on gene expression.

Removal of a specific variant in mice caused particular effects on structure-

dependent transgene expression (Alami et al., 2003). This indicates that the ar-

rangement of linker histone variants within chromatin could allow fine-tuning

of both chromatin structure and transcription.

A specialised linker histone variant used widely (and in this Thesis) is

the erythrocyte-specific histone H5, which is exclusively found in birds, fish,

amphibians and reptiles (Neelin et al., 1964). Histone H5 is different from the

other chicken linker histones, having shorter N- and C-terminal tails and a dif-

fering globular domain sequence. It is similar to mammalian histone H1.0, al-

though it has a higher arginine content and differences in the loop between

helices II and III in the globular domain (see Section 1.3.2.1). The higher argi-

nine content of histone H5 may account for its greater affinity for DNA (Clark

and Thomas, 1988), four-way junction DNA (Varga-Weisz et al., 1994), and chro-

matin, relative to other linker histones (Kumar and Walker, 1980).
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1.3.1.2 Post-translational modifications of linker histones

Like core histones, linker histones have a role in the “histone code”, with post-

translational chemical modifications modulating their DNA and protein inter-

actions, and affecting processes such as chromatin compaction levels and tran-

scription. Many post-translational modifications of linker histones are known

(reviewed in Happel and Doenecke, 2009). The first to be identified was phos-

phorylation (Balhorn et al., 1972) and further modifications reported include

acetylation, methylation, N6-formylation and ubiquitination, in a variety of

species including mammals, chicken and Drosophila (Wisniewski et al., 2007;

Snijders et al., 2008; Villar-Garea and Imhof, 2008). A summary of the known

linker histone posttranslational modifications for humans are shown in Fig-

ure 1.5 (Wisniewski et al., 2007).

The best-studied post-translational modification of linker histones is

phosphorylation. It is a common modification, occurring at up to five sites on

each of the five major human subtypes plus H1x (Wisniewski et al., 2007). The

majority of these phosphorylation sites have cyclin-dependent kinase (CDK)

consensus motifs, S/TPXR/K (Garcia et al., 2004). Linker histone subtypes are

differentially phosphorylated, both relative to each other (Sarg et al., 2006), and

throughout the cell-cycle (Bradbury et al., 1974; Hohmann et al., 1976; Gurley

et al., 1995).

Initially it was thought that linker histone phosphorylation had a role in

chromatin condensation, because phosphorylation levels increase during mi-

totic chromosome condensation (Yasuda et al., 1981). Also, dephosphorylation

of linker histone (and histone H3) in cells arrested at metaphase causes decon-

densation of the chromosomes (Th’ng et al., 1994). However phosphorylated

histone H1 is associated with chromatin decondensation at active replication

foci (Alexandrow and Hamlin, 2005). The apparent inconsistency between the
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effect of H1 phosphorylation during M-phase and at active foci could be ex-

plained by the removal of linker histone at M-phase being required to allow

other molecules to compact the chromosomes, e.g. condensins. Indeed, on a

molecular level, phosphorylation reduces the affinity of linker histone for DNA,

especially the affinity of the C-terminal tail (Green et al., 1993; Hendzel et al.,

2004), and FRAP experiments indicate that linker histones have a higher chro-

matin exchange rate when they are phosphorylated (Lever et al., 2000; Contr-

eras et al., 2003).

Linker histone phosphorylation is associated with regulation of gene

expression. Phosphorylated linker histones are enriched in active chromatin

in vivo (Chadee et al., 1995). Gene activation is suggested to cause phosphory-

lation of the linker histone, reducing its affinity for the nucleosomes and allow-

ing chromatin remodelling-complexes to modify nucleosome positions (Horn

et al., 2002) opening up the chromatin for transcription initiation.

Acetylation and methylation occur at several sites in human, mouse

and chicken linker histones (Wisniewski et al., 2007; Snijders et al., 2008). Acety-

lation can occur at sites within the globular domain that are important for DNA

binding, as well as in the N- and C-terminal tails (Wisniewski et al., 2007).

Deacetylation of lysine 26 in human linker histone has a role in SirT1-mediated

heterochromatin formation (Vaquero et al., 2004). This residue can also be

methylated, and then acts as a binding site for heterochromatin protein 1 and

results in transcriptional repression (Daujat et al., 2005). However. this interac-

tion does not occur if the neighbouring serine residue is phosphorylated, pro-

viding an example of a “phospho-switch” within the “histone code”.

Other post-translational modifications of linker histones have been ob-

served, but their mode of action is not fully understood. For example histone

H1 can be ubiquitinated, adding 76 amino acids to the protein, which would
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be expected to have a structural effect within chromatin (Moore et al., 2002).

In Drosophila a reduction in H1 ubiquitination reduces the expression from

Dorsal-dependent genes (Pham and Sauer, 2000). Poly(ADP)-ribosylation of

linker histones also causes relaxation of the chromatin structure (Poirier et al.,

1982) and plays a role in maintaining the DNA methylation pattern (Zardo et al.,

1997).

Reducing histone H1 content in mouse embryonic stem cells, and to-

tal suppression of histone H1 genes in Arabidopsis thaliana, lead to changes in

DNA methylation within specific genomic regions (Fan et al., 2005; Wierzbicki

and Jerzmanowski, 2005). However, the connection between linker histones

and DNA methylation is currently unclear. In some assays histone H1 binds

preferentially to methylated DNA (McArthur and Thomas, 1996) and causes

stronger inhibition of transcription from methylated chromatin templates

(compared to unmethylated) (Levine et al., 1993). However, other assays show

no preference of histone H1 for methylated DNA, either alone or in nucleo-

somes (Campoy et al., 1995; Nightingale and Wolffe, 1995).

There are two non-enzymatic modifications known for linker histones.

N6-formylation, which is thought to arise from oxidative DNA damage, occurs at

lysines in all three domains of histone H1 and is thought to impede the function

of linker histones by preventing acetylation or methylation at these residues

(Jiang et al., 2007b). Deamidation of asparagines and glutamine residues (to

aspartic acid and glutamic acid respectively) has also been observed (Snijders

et al., 2008) and is thought to affect protein structure and stability (Lindner et al.,

1998).

- 22 -



CHAPTER 1

1.3.1.3 Linker histones and core histone post-translational modification

The relationship between linker histones and core histone post-translational

modifications is not well understood. Core histone acetylation reduces the

affinity of linker histones for nucleosomes and their ability to compact chro-

matin (Perry and Annunziato, 1991; Ridsdale et al., 1990). It also causes an in-

crease in the dynamics of linker histones within chromatin (Misteli et al., 2000).

Conversely, linker histones have been shown to inhibit core histone acetylation

within nucleosomes, both in vitro and in vivo (Herrera et al., 2000), suggesting

there may be a feedback mechanism between linker histone binding and core

histone acetylation.

Histone H1-depleted mouse embryonic stem cells also show a four-fold

reduction in acetylation of histone H4K12 (Fan et al., 2005). This is suggested to

compensate for linker histone depletion by increasing the net positive charge

on the H4 tail, neutralising the charges on the DNA to a greater extent, and

creating a more compact chromatin structure. The histone H1-depleted cells

also show a two-fold reduction in histone H3K27 tri-methylation. Cytoplasmic

retention of a linker histone subtype in Caenorhabditis elegans causes a reduc-

tion in histone H3K9 and H3K27 methylation, and an increase in the activatory

H3K4 methylation mark, causing desilencing of a silenced transgene (Jedrusik

and Schulze, 2007).

1.3.1.4 Gene-specific effects of linker histones

Linker histones have long been considered to be general repressors of transcrip-

tion (Schlissel and Brown, 1984; Weintraub, 1984). However, although linker hi-

stones are partially depleted at actively transcribed genes they are not absent

(Nacheva et al., 1989; Kamakaka and Thomas, 1990; Krishnakumar et al., 2008).
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Linker histones can be removed entirely in lower eukaryotes (Ramon

et al., 2000), or levels reduced in higher eukaryotes (Fan et al., 2005), without

global effects on transcription. This suggests they might only affect the tran-

scription from a subset of genes to which they bind. For example, in mouse

embryonic stem cells with 50% depletion of linker histones there are very few

changes in gene-expression compared with wild-type cells (Fan et al., 2005).

Only 38 gene targets had changes in expression of more than two-fold, and

these showed both increases and decreases in expression. However, half of the

somatic linker histone variants were still present indicating that the lack of a

global effect on transcription could be due to the removal of only a subset of

the linker histone variants. S. cerevisiae is viable when linker histone is com-

pletely absent and yet this still results in only gene-specific effects on transcrip-

tion (see Section 1.5.4), suggesting that the gene-specific effects of linker his-

tones seen by Fan et al. may not be down to the retention of a subset of the

linker histone variants. Gene-specific effects of linker histones are not surpris-

ing, given the different binding of linker histone variants to euchromatin and

heterochromatin regions (Section 1.3.1.1) and modification to linker histone

action through post-translational modification of both linker and core histones

(Sections 1.3.1.2 and 1.3.1.3).

Modification of linker histone binding to nucleosomes affects the reg-

ulation of transcription, both through its role in nucleosome positioning and

through competition with other transcription factors (Section 1.3.2.3). For ex-

ample, linker histone binding occludes the binding of USF and GAL4-AH tran-

scription factors to nucleosomes (Juan et al., 1994). This was later shown to

be due to reduction of the transient exposure of DNA binding sites on the nu-

cleosome surface, rather than direct steric interference (Juan et al., 1997). An-

other role of linker histone-dependent chromatin condensation in transcrip-
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tional regulation, in principle, could be the bringing together of distal regula-

tory DNA elements.

1.3.2 The role of linker histones in chromatin structure

1.3.2.1 The structure of linker histones

Histone H5 is an avian erythrocyte-specific linker histone that was used in the

initial structural studies of the linker histone globular domain (Figure 1.6 and

Ramakrishnan et al., 1993). The H5 globular domain shares structural similar-

ity with sequence-specific DNA-binding proteins, such as HNF-3γ, and is very

similar to the globular domain of histone H1, although there are differences in

the loop between helices II and III (Figure 1.6; Cerf et al., 1994).

The linker-histone globular domain consists of three α-helices and a

three-stranded β-sheet. The domain contains two DNA-binding sites (Fig-

ure 1.6; Goytisolo et al., 1996), clusters of basic residues, that are highly con-

served (Figure 1.7; Wells and McBride, 1989; Wells and Brown, 1991). Mutation

of one DNA binding site abolishes the ability of linker histone globular domains

to bind to chromatin correctly and to assemble tramline complexes through

binding of two DNA molecules simultaneously (Goytisolo et al., 1996; Brown

et al., 2006).

1.3.2.2 Linker histone binding in the nucleosome

Linker histones are generally present in approximately stoichiometric amounts

relative to nucleosomes. For example, liver nuclei contain 0.8 molecules of

linker histone molecules per nucleosome and chicken erythrocyte chromatin

has about 1.3 linker histones (H1 and H5) for each core nucleosome (Bates and
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FIgure 1.6 Structure of the globular domains of chicken linker histones H1 
and H5.  The putative DNA binding residues are marked as follows: site I (red), 
site II (blue).  (a) X-ray crystal structure of chicken histone H5 (Ramakrishnan 
et al., 1993) (b) NMR structure of chicken histone H1, using residue numbering 
for the globular domain (Cerf et al., 1994).  Images were generated using Swiss 
PDB viewer and pdb files: 1HST (H5) and 1GHC (H1).     
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Thomas, 1981). Embryonic stem cells, however, contain only about 1 linker hi-

stone per 2 nucleosomes (Woodcock et al., 2006).

Linker histones bind asymmetrically to the nucleosome, near the DNA

dyad. H5 makes contacts through DNA binding site I to chromatosomal DNA,

and through the second DNA binding site to the nucleosome dyad (Figure 1.8a;

Zhou et al., 1998). Linker histone H1 was also shown to bind at the nucleosome

dyad in a DNase I protection assay (Staynov and Crane-Robinson, 1988) and,

more recently, modelling of a histone H1 subtype suggested it binds to a nu-

cleosome core in a very similar manner to histone H5 (Figure 1.8b and Brown

et al., 2006). When a linker histone binds to the nucleosome core in this way its

C-terminal tail is located at the point where DNA enters and exits the nucleo-

some. This allows the C-terminal tail to bind the linker DNA forming stem-loop

structures (Figure 1.8c; Bednar et al., 1998; Sivolob and Prunell, 2003).

1.3.2.3 Linker histone binding to DNA in chromatin

Binding of linker histone to chromatin occurs through the globular domain (Al-

lan et al., 1980; Zhou et al., 1998) and the isolated globular domain is sufficient

to bind chromatin and protect chromatosome-length DNA from nuclease di-

gestion (Allan et al., 1980). The role of the linker histone N-terminal basic tails

is unclear but they are thought to have a role in the positioning of the globu-

lar domain (Allan et al., 1986). The basic C-terminal tails have roles in chro-

matin binding and condensation (Allan et al., 1986; Hendzel et al., 2004); they

are thought to act as poly-cations neutralising the charges of the linker DNA.

The C-terminal tail of vertebrate histone H1 has been shown to adopt α-helical

confirmation upon binding to DNA (Roque et al., 2005).

Linker histone binding to DNA in chromatin is strongly affected by the

presence of the C-terminal basic tail, the removal of which reduces the affinity
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Figure 1.8 Binding of linker histone to the chromatosome.  (a) A schematic of the 
position of GH5 on a chromatosome.  Nucleosome dyad, red; Chromatosomal DNA, 
green; Nucleosomal DNA, yellow.  From Zhou et al. (1998).  (b) Two views of a molecu-
lar model of linker histone binding to the chromatosome.  Chromatosomal and nucleo-
somal DNA, blue; nucleosome dyad, yellow; globular domain of histone H1, red.  From 
Brown et al. (2006).  (c) Models of entry and exit of DNA from the nucleosome in the 
absence and presence of linker histone.  Addition linker histone causes the formation 
of various stem-loop in the DNA with differing cross-overs of the entry and exit DNA, 
of which one is shown.    From Bednar et al. (1998).  

(a)

(b)

+ H1

(c)
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for chromatin (De et al., 2002; Hendzel et al., 2004). Deletion of the N-terminal

tail shows only a modest effect on chromatin binding. Hendzel and colleagues

(2004) demonstrated that the S/TPKK phosphorylation sites in the C-terminal

tail are particularly important for linker histone binding, as the substitution of

threonine 152, which is in such a site, with glutamic acid had almost the same

effect as truncating the tail at residue 151.

Linker histones bind cooperatively to linear DNA molecules in low con-

centrations of sodium chloride (Renz and Day, 1976; Clark and Thomas, 1988),

producing an H1-rich and H1-poor species when added to DNA at an input

ratio of less than 0.6 (Clark and Thomas, 1986). They show a preference for

binding AT-rich DNA (Renz and Day, 1976) (such as scaffold-associated regions

(Izaurralde et al., 1989) and the AT element of simian virus 40 DNA (Hendrick-

son and Cole, 1994)), cis-platin-damaged DNA (Yaneva et al., 1997) and other

distorted DNA structures, such as four-way junctions (Varga-Weisz et al., 1994).

Linker histones have long been known to bind chromatin fragments dy-

namically (Caron and Thomas, 1981; Thomas and Rees, 1983). These observa-

tions have been supported by more recent studies using FRAP experiments in

living cells. Histone H1 exchanged between chromatin regions continuously

with residence times of several minutes, although the vast majority was bound

at all times (Lever et al., 2000; Misteli et al., 2000). As well as the linker his-

tone variant and the post-translational modifications of both linker histones

and core histones (Section 1.3.1), the presence of site-specific (such as HNF-3

and MeCP2) (reviewed in Zlatanova et al., 2000 or global competitors (such as

HMGB, HMGN, and HMGA proteins) (Catez et al., 2004) also affect the associa-

tion of linker histone with chromatin.

Linker histones affect chromatin structure through nucleosome posi-

tioning. If underlying nucleosome positions are specified in the DNA sequence
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the linker histones do not over-ride this but, when there are alternative posi-

tions available, they affect the relative distribution of nucleosomes (Meersse-

man et al., 1991). Linker histones inhibit short-range nucleosome mobility in

vitro (Pennings et al., 1994), and depletion of linker histone in mouse embry-

onic stem cells reduces the nucleosome repeat length (Fan et al., 2005).

1.3.2.4 Linker histones and higher-order chromatin structure

Linker histones are required for maximal compaction of chromatin and stable

formation of a regular “30 nm fibre” (Figure 1.3; Thoma et al., 1979; Hizume

et al., 2005). Upon increasing ionic strength linker histone-depleted chromatin

folds into structures that approach H1-mediated compaction levels, however

the fibres lack order (Thoma et al., 1979; Yao et al., 1991). Depletion of three

linker histone variants from mouse embryonic stem cells and analysis of the

chromatin using electron microscopy showed that the chromatin was less com-

pact than wild-type chromatin and had an irregular distribution of open 10 nm

filament and more compact structures throughout the polynucleosomes (Fan

et al., 2005). Depletion of histone H1 also causes elongation of metaphase chro-

mosomes, preventing proper segregation of chromosomes during anaphase

(Maresca et al., 2005).

As mentioned above (Section 1.3.2.3), the C-terminal domain of linker

histones binds linker DNA through non-specific electrostatic interactions,

causing charge-neutralisation. However, it functions in chromatin condensa-

tion through specific tail subdomains. Regions required for the formation of the

stem-loop linker DNA structure (Figure 1.8c; Lu and Hansen, 2004) and the sta-

bilisation of chromatin condensation (Bharath et al., 2002) have been identified

and contain S/TPKK motifs. The positioning of these subdomains within the C-

terminal tail, as well as the S/TPKK motifs themselves, determine tail function-
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ality to a greater extent than the specific sequence of the subdomains (Bharath

et al., 2002; Lu et al., 2009).

1.4 Yeast chromatin

The model organism S. cerevisiae is a unicellular budding yeast that is used in

research because it is easily genetically manipulated. The basic cellular pro-

cesses, such as replication, cell division and metabolism are conserved from

yeast to mammals.

S. cerevisiae (hereafter called yeast) contains core histone proteins that

are highly homologous with those of higher eukaryotes (Wells and McBride,

1989). It has two identical copies of histones H3 (Hht1p, Hht2p) and H4 (Hhf1p,

Hhf2p) and two very similar subtypes of histones H2A (Hta1p, Hta2p) and H2B

(Htb1p, Htb2p). Yeast also contains a H2A.Z homologue called Htz1p, which

is enriched in nucleosomes at promoter regions and is involved in transcrip-

tional regulation by preventing the spread of silent heterochromatin (Li et al.,

2005; Meneghini et al., 2003). Nuclease digestion of yeast chromatin demon-

strates that it is packaged into nucleosomes in a similar manner to higher eu-

karyotes (Thomas and Furber, 1976). Yeast chromatin is able to condense and

form “30 nm fibres”, resembling those in higher eukaryotic chromatin, suggest-

ing either the presence of a linker histone-like molecule or a subtly different

fibre structure (Lowary and Widom, 1989). For a long time the presence of a

yeast linker histone was debated, but the HHO1 gene product has now been

identified as a bone fide linker histone (Landsman, 1996; Section 1.5). Hho1p

chromatin levels are much lower than metazoan linker histones (Section 1.5.2;

Chapter 3) and, as yet, there have been no other yeast linker histone variants

identified, raising the question of whether the function of Hho1p in yeast chro-
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matin is different from that of linker histones in metazoan chromatin.

Although there are similarities between yeast chromatin and that of

higher eukaryotes there are also differences. The nucleosome repeat length

in yeast (165 bp) (Thomas and Furber, 1976) is much shorter than that of

higher eukaryotes, which mostly vary from 170–260 bp (van Holde, 1989).

The majority of higher eukaryotic species and tissues have nucleosome re-

peat lengths around 188–196 bp, with chicken erythrocytes having 207 bp re-

peat length (Compton et al., 1976) and sea urchin sperm having 240 bp repeat

length (Spadafora et al., 1976). There are also differences between putative

nucleosome-positioning motifs determined for yeast, for which the 10 bp pe-

riodic AT-dinucleotides extend beyond the nucleosome core sequence, unlike

those for chicken and Drosophila nucleosomes (Cui and Zhurkin, 2009).

A global assessment of yeast core histone post-translational modifica-

tions identified acetylation and methylation (Jiang et al., 2007a). Yeast chro-

matin is highly acetylated (Davie et al., 1981; Waterborg, 2000) but further stud-

ies are required to determine how other modifications in yeast compare with

those in other organisms. Yeast-like chromatin, with short nucleosome repeat

lengths, has been used to determine structural information about the nucle-

osome core (Luger et al., 1997; White et al., 2001) and higher-order structures

(Schalch et al., 2005; Routh et al., 2008), however it remains to be determined

whether yeast chromatin is a true model for that of higher eukaryotes. Central

to this question is whether the non-canonical Hho1p linker histone functions

in the same way as canonical linker histones.
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1.5 The yeast linker histone

Whether S. cerevisiae contained a linker histone was unclear for a long time.

As the nucleosome repeat length is so short, extensive binding of a linker his-

tone would result in there being no linker DNA between nucleosomes. Also the

yeast chromatin is mostly transcriptionally active, so it was thought that yeast

may not require a linker histone (Davie et al., 1981; Waterborg, 2000). Early in-

vestigations were unable to identify a linker histone in yeast chromatin extracts

(Moll and Wintersberger, 1976; Thomas and Furber, 1976), while a candidate

H1-like protein (Sommer, 1978) was later shown to also be HMG-like and mito-

chondrial (Weber and Isenberg, 1980; Certa et al., 1984). However, anti-mouse

histone H1 antibodies did suggest the presence of a linker histone-like protein

in salt extracts from yeast (Srebreva et al., 1987).

It was not until the S. cerevisiae genome was sequenced (Goffeau et al.,

1996; Bussey et al., 1997) that a putative histone H1 orthologue was identified.

Various linker histone sequences were compared with the yeast genomic se-

quence using local alignment searches against DNA in all six reading frames.

One open reading frame with sequence homology to the globular domain of

linker histones was identified and named HHO1 (Histone H One 1) (Lands-

man, 1996; Ushinsky et al., 1997). The systematic name of the gene is YPL127C.

The HHO1 gene encodes Hho1p, a protein of 258 amino acids and a calculated

molecular weight of about 28 kDa. The overall identity of Hho1p sequence com-

pared to other linker histones was assessed at 40–57% (Ushinsky et al., 1997).

Comparison of Hho1p protein with itself identified a second region with se-

quence homology to a linker histone globular domain (Landsman, 1996) mak-

ing it structurally distinct from canonical linker histones (see Figure 1.9a; Sec-

tion 1.3.2.1). The first “globular” domain, GI, is flanked by a basic N-terminal

tail similar to those of canonical linker histones. There is a basic linker re-
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gion between GI and the second “globular” domain, GII, that resembles the

C-terminal tail of canonical linker histones in terms of its composition, being

proline- and lysine-rich, but does not contain S/TPKK phosphorylation motifs.

There is no C-terminal extension beyond GII. The biochemistry of the isolated

“globular” domains is discussed in Section 1.5.5.

Initially it was unclear whether Hho1p functions as a true linker hi-

stone. Early evidence supporting the putative linker histone role of Hho1p

demonstrated that it has similar electrophoretic and chromatographic prop-

erties to other linker histones (Patterton et al., 1998), and that Hho1p and the

core histones are the only genes transcribed during S phase (Spellman et al.,

1998). Hho1-GFP fusion protein localises to the nuclei of yeast cells (Ushinsky

et al., 1997), and a fusion protein of Hho1p with two copies of human influenza

hemagglutinin (HA) is acid-extracted from the nuclear fraction along with core

histones (Freidkin and Katcoff, 2001). Hho1p is able to bind reconstituted core-

dinucleosomes (Patterton et al., 1998) and confer a “chromatosome stop” of

about 167 bp during digestion of chromatin by micrococcal nuclease (Patter-

ton et al., 1998; Ali and Thomas, 2004). Like canonical linker histones (Section

1.3.2.3), Hho1p binds preferentially to non-linear DNA structures, such as su-

percoiled DNA (Ono et al., 2003) and four-way junction DNA (Ali and Thomas,

2004).

A yeast strain deleted for the HHO1 gene is viable and has no detectable

defect in cell growth, replication, mating or sporulation (Ushinsky et al., 1997;

Escher and Schaffner, 1997; Patterton et al., 1998). An HHO1 knock-out mutant,

in a W303 background strain, showed a decreased lifespan (number of budding

events) (Downs et al., 2003), while a similar assay in an S288C strain did not (Li

et al., 2008). The viability of hho1-null yeast strains contrasts with the situation

in more complex, higher eukaryotes, which require a number of linker histone
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variants for their development (Section 1.3; Fan et al., 2001, 2003).

To date, Hho1p is the only linker histone identified with non-canonical

domain structure. A linker-histone protein has yet to be identified in Schizosac-

charomyces pombe, while the basic “linker histone-like” protein in Tetrahymena

thermophila has no globular domain (Shen and Gorovsky, 1996) and cannot be

considered a true linker histone.

1.5.1 Structural studies of Hho1p

Model structures for the GI and GII domains of Hho1p were produced using the

crystal structure of the H5 globular domain (GH5) as a threading guide (Baxe-

vanis and Landsman, 1998). The sequences of the Hho1p “globular” domains

are compatible with the formation of the winged-helix motif, characteristic of

canonical linker histone globular domains, and NMR studies confirmed that

both isolated domains have structural similarity to GH5 (Figure 1.9b; Ono et al.,

2003; Ali et al., 2004). The GII domain exists in slow equilibrium between two

species: one folded and one “unfolded”. The equilibrium shifts to the folded

form in the presence of high concentrations of tetrahedral anions, such as phos-

phate or perchlorate, which may mimic the presence of DNA (Ali et al., 2004).

The GI and GII domains of Hho1p show structural differences, compared with

GH5, in the loop connecting helicies II and III (Ali et al., 2004). In GI it is longer

and forms a short helix, whereas in GII it is slightly longer again but lacks the he-

lix. The Hho1p domains also differ in the conservation of the basic residues in

the DNA binding sites (Figure 1.9c). Both domains lack one of the basic residues

in site I, while there are a further two residues in site II absent from the GII do-

main. Mutant forms of the GII domain were produced by replacing the loop

region between helices II and III with that of GI (to give GII-L), introducing the

two “missing” site II basic residues, or containing both modifications (Sander-
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son et al., 2005). The loop domain was shown to be the cause of the instability of

the GII domain, while introduction of the “missing” site II residues destabilised

the protein.

Circular dichroism (CD) studies suggest that the N-terminal tail and

linker regions of Hho1p are unstructured in aqueous solution (Ali and Thomas,

2004), and do not gain significant structure in the presence of sodium perchlo-

rate anions (Osmotherly, 2006). NMR studies of the first two domains of Hho1p

(the N-terminal tail and the GI domain, called NGI) also showed that the N-

terminal tail is very flexible and unstructured (Ono et al., 2003). Addition of

linear DNA to the sample did not cause any chemical shift changes, although

peaks corresponding to three regions of the protein showing spectral broaden-

ing. This was attributed to weak, non-specific binding of the DNA.

1.5.2 Location of Hho1p in yeast chromatin

A genome-wide chromatin immunoprecipitation assay analysed on microarray

chips (ChIP-chip) indicated that the abundance of Hho1p in yeast chromatin

is much lower than that of the core histones, or the histone H2A variant Htz1p

(Zanton and Pugh, 2006). The published measurements for the abundance of

Hho1p in yeast range from 1 molecule per about 4 nucleosomes (Downs et al.,

2003), to 1 per 37 nucleosomes (Freidkin and Katcoff, 2001). This is significantly

lower than in higher eukaryotes and is discussed further in Section 3.1.

Despite its relatively low abundance, Hho1p is widely associated with

the genome. The ChIP-chip assay indicates a relative exclusion of Hho1p from

promoter regions of genes, especially at active genes (Zanton and Pugh, 2006).

Hho1p is reported to associate with various regions including open reading

frames, intergenic regions, centromeric regions, subtelomeric regions, regions
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distal from telomeres, inducible genes, the ribosomal DNA (rDNA) locus and

silent mating type loci (Ali, 2001; Downs et al., 2003; Veron et al., 2006). A pref-

erence of Hho1p for binding at rDNA loci was reported in a Southern blotting

experiment (Freidkin and Katcoff, 2001). No enrichment in or exclusion from

silent mating type loci or telomeres was identified in a chromatin immunopre-

cipitation (ChIP) study (Yu et al., 2009).

More recently the observed enrichment of Hho1p at rDNA loci was con-

tradicted by the results of a genome-wide association study of Hho1p. This

study showed an even distribution of Hho1p throughout the yeast chromatin

during both exponential growth and in stationary phase (Schäfer et al., 2008).

However comparison between the two growth conditions indicated that chro-

matin binding increased at the six loci tested, upon entry into stationary phase,

although the cellular levels of Hho1p remained constant. Re-entry into expo-

nential growth caused dissociation of Hho1p within two hours. Most yeast in-

vestigations are carried out on exponentially growing cells, when only a propor-

tion of the Hho1p molecules will be associated with yeast chromatin, and this

may explain why there are so few observations of global Hho1p function.

1.5.3 Effect of Hho1p on chromatin structure

Deletion of the HHO1 gene has no effect on the nucleosome repeat length of

yeast chromatin (Patterton et al., 1998) or the nucleosome positioning in an

array of stoichastically positioned nucleosomes (Puig et al., 1999). This is in

contrast to mice embryonic stem cells, which showed both global loosening of

chromatin structure and a decrease in nucleosomal repeat length upon deple-

tion of linker histone to about 50% of wild-type levels (Fan et al., 2005). A recent

publication reported Hho1p-dependent compaction of chromatin in stationary

phase yeast, but not in exponentially growing cultures, suggesting Hho1p has a
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global role in chromatin compaction at specific times (Schäfer et al., 2008). For

both growth phases, chromatin fragments were prepared from wild-type and

hho1-null yeast strains and centrifuged through sucrose gradients. The more

compact chromatin structures sediment more rapidly.

Hho1p suppresses homologous recombination (Downs et al., 2003)

suggesting that Hho1p is involved in maintaining local chromatin structure, re-

ducing the accessibility of the DNA to factors involved in recombination. At the

rDNA locus, deletion of Hho1p increases recombination events (Li et al., 2008)

and causes loosening of chromatin structure (Levy et al., 2008). This results in

an increase in accessibility of rDNA to psoralen, an inter-strand cross-linker,

and retardation in a gel-mobility-shift assay. Hho1p is also required for the

establishment of silenced chromatin structures containing the HML silenced

mating type loci, although it is not required to maintain this structure (Yu et al.,

2009). The expression of genes that are transcriptionally-dependent on chro-

matin structure was unaltered in yeast strains either over-expressing or deleted

for Hho1p (Escher and Schaffner, 1997). Thus, Hho1p may have specific and

subtle functions in the regulation of chromatin compaction, even though the

global effect is too subtle to be measured in most conditions.

1.5.4 Effect of Hho1p on transcription

There is conflicting evidence about the role of Hho1p in transcription regula-

tion. In studies of the expression of reporter genes in wild-type and hho1-null

strains, transcription from an in situ URA3 reporter gene with a minimal PHO5

promoter is not regulated by Hho1p (Patterton et al., 1998) whereas expression

from an exogenous CYC1-lacZ reporter is Hho1p-dependent (Ushinsky et al.,

1997).
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Whole genome microarray analyses of transcription changes following

deletion of the HHO1 gene demonstrate no general increase in the expression

levels, indicating Hho1p is not a general repressor of transcription. One study

showed a general but modest decrease in expression, with 27 out of over 6200

genes showing a reduction in mRNA levels of greater than 2-fold (Hellauer et al.,

2001). The Hho1p-dependent genes were not of any particular function or

class. Other microarray studies identified a small number of genes whose tran-

scription increased and a small number whose transcription decreased upon

deletion of HHO1 (Freidkin and Katcoff, 2001; Levy et al., 2008). The Hho1p-

dependent genes varied between the studies, possibly due to different growth

conditions or microarrays used. The studies do, however, suggest a role for

Hho1p in gene-specific transcription. Freidkin and Katcoff (2001) saw no pref-

erential binding of Hho1p to Hho1p-dependent genes, indicating that the tran-

scription regulation may not occur through direct binding of Hho1p. An addi-

tional finding in this study was that Hho1p regulates its own transcription. A

yeast strain expressing a mutant form of Hho1p containing the promoter and

first 149 nucleotides showed no detectable phenotype but resulted in a sub-

stantial increase in levels of the truncated HHO1 transcript.

A further microarray study identified a number of genes from which,

upon heat shock, Hho1p dissociates but there is no gene activation (Zanton and

Pugh, 2006). In contrast, a negative-correlation between Hho1p binding and

gene expression was shown in a wild-type yeast strain, both during exponential

growth and at stationary phase (Schäfer et al., 2008). However, in an hho1-null

strain the rank order of gene expression, compared with wild-type cultures, was

retained, indicating that the association of Hho1p at these genes had no effect

on their transcription level. This strongly suggests that the binding of Hho1p at

a gene may be an effect of transcriptional activity of that gene, rather than being
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involved in the regulation, and that Hho1p may be displaced from chromatin by

the transcription machinery (Schäfer et al., 2008).

There is a differential effect of Hho1p on transcriptional silencing at the

heterochromatic regions of the yeast genome. One study of Hho1p action used

a yeast strain containing a mutant histone H4 (Y88G) (Yu et al., 2009). This mu-

tation disrupts the binding of histone H4 to the H2A/H2B dimer, within the

octamer. It causes temperature- and DNA damage-sensitivity as well as dis-

rupted transcriptional silencing, but has no effect on gross chromatin structure

(Santisteban et al., 1997). When Yu et al. (2009) deleted the HHO1 gene in the

H4 Y88G strain, the defects in transcriptional silencing in telomeric and mating

type loci of the H4 mutation were partially suppressed. An HHO1 knock-out

strain shows no change in transcription of reporter genes inserted into silent

mating type loci or telomeres in wild-type yeast strains (Escher and Schaffner,

1997; Patterton et al., 1998; Yu et al., 2009). This indicates that Hho1p may have

a role in transcriptional silencing at heterochromatic regions, but at a level too

subtle to be identified in a wild-type background.

Hho1p can inhibit the spread of silenced chromatin from heterochro-

matic regions, although it does not considerably decrease silencing within het-

erochromatin itself (Veron et al., 2006). This is in contrast to the linker histones

in humans, which are recruited to sites of heterochromatin formation (Vaquero

et al., 2004). Thus, although Hho1p is involved in the formation of compact

chromatin structures that have reduced recombination (as described above), it

also has a role in preventing the formation of transcriptionally silent chromatin

structures.

At the rDNA locus the situation is even less clear. Hho1p is required for

RNA polymerase (RNAP) I transcription of ribosomal RNA components from

native rDNA and has been shown to reduce RNAP II transcription of a gene em-

- 42 -



CHAPTER 1

bedded in the rDNA (Levy et al., 2008). However another group used a simi-

lar reporter system and saw no change in RNAP II transcription of the reporter

gene upon deletion of HHO1 (Li et al., 2008). The conflicting results for RNAP II

transcription at the rDNA require further investigation to determine the specific

conditions or regions of the rDNA that have Hho1p-dependent effects.

This apparent contradiction between the roles of Hho1p in chromatin

structure (Section 1.5.3), as well as the disparity with metazoan linker histone

function described above, may result from the majority of the yeast genome be-

ing transcriptionally active. This requires chromatin (outside of the heterochro-

matic regions) to be protected from the very compact chromatin structures that

cause transcriptional silencing. However, yeast may benefit from more modest

compaction of the chromatin that reduces recombination events, preserving

genome integrity without affecting gross chromatin structure.

1.5.5 Bi-functionality of Hho1p?

The presence of two domains in Hho1p with similarity to the H5 globular do-

main raises the question of whether it is a bi-functional linker histone. As

illustrated in Figure 1.9, both Hho1p globular domains lack one basic (non-

conserved) residue in DNA binding site I, while the GII domain also lacks two

of the site II residues. Thus the GII domain may not have been expected to

function as a linker histone globular domain, capable of binding close to the

nucleosome dyad and conferring chromatosome protection.

In vitro, however, both isolated GI and GII domains of Hho1p bind to

linear DNA, four-way junction DNA and chromatin, with GII having higher

affinity presumably because it is more basic (Ali and Thomas, 2004). This sug-

gests that the intrinsically disordered GII domain may fold in the presence of
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DNA and that Hho1p could in principle act as a bi-functional linker histone,

if GII also folds in the context of the full-length protein. The isolated GI do-

main protects chromatosome-length DNA in a micrococcal nuclease digestion

of bulk chromatin (Ali and Thomas, 2004). The GII domain also produces a

“chromatosome stop” but requires more specific reaction conditions, presum-

ably because GII is less stably folded that GI (Sanderson et al., 2005). This

demonstrates that the structural instability of GII is more important than its

more basic nature in this assay.

It is not known whether both GI and GII domains of Hho1p are folded

and functional within the yeast cell. In the context of the full-length protein

each domain binds a four-way junction DNA molecule independently (Schäfer

et al., 2005), indicating that Hho1p can be bi-functional in vitro. As mentioned

in Section 1.5.3, Hho1p suppresses homologous recombination in yeast (Downs

et al., 2003). The isolated GI and GII domains are not functional in this as-

say (Dr Jessica Downs, personal communication), however a truncation mu-

tant (NGIL) does suppress homologous recombination indicating that the GII

domain is not required for this function (Harvey and Downs, 2004). If the GII

domain is engineered to be flanked by the basic N-terminal and linker regions

(NGIIL) it can also function in this assay (Osmotherly, 2006), indicating that

both “globular” domains are potentially functional and bind chromatin in vivo.

Domain deletion studies demonstrate that the isolated GII domain is

sufficient to restore the transcriptional silencing of a reporter gene in the rDNA

locus of an HHO1 deletion strain, unless the N-terminal tail is also present (Levy

et al., 2008). If the N-terminal tail is present then both “globular” domains are

required to restore wild-type transcription regulation. The mechanism of this

system is not clear. Linker histone N-terminal tails are thought have roles in po-

sitioning of globular domains at the nucleosome dyad (Allan et al., 1986), and

- 44 -



CHAPTER 1

this appears to inhibit the function of the GII domain. However if the full-length

Hho1p is present the N-terminal tail could position GI, leaving GII free to func-

tion in transcriptional silencing. The action of the GI domain, in the absence

of the N-terminal tail was not tested. In another study, the GII domain was dis-

pensable for suppression of the various phenotypic defects of the histone H4

Y88G mutant strain described in Section 1.5.3 (Yu et al., 2009). These studies

suggest that the homologous GI and GII domains of Hho1p may have indepen-

dent functions in vivo.

In view of the potential bi-functionality of Hho1p a bridging model has

been described in which the linker histone binds to two nucleosome cores

simultaneously (Ali and Thomas, 2004; Sanderson et al., 2005; Schäfer et al.,

2005). Both GI and GII domains recognise the DNA conformation at the nu-

cleosome dyad, mimicked by four-way junction DNA, which is where the glob-

ular domain of histone H5 binds (Section 1.3.2.2). The linker domain of Hho1p

is long enough to bridge the distance between two core nucleosomes within

chromatin (based on the tetranucleosome crystal structure (Schalch et al., 2005)

which had a nucleosome repeat length equivalent to that in yeast) even if the

entire linker assumed an α-helical conformation (Schäfer et al., 2005). If the

“globular” domains bound adjacent nucleosome cores this would allow the ba-

sic linker domain to associate with any linker DNA. Mechanistically, if the folded

GI domain bound a nucleosome core and the linker domain associated with

linker DNA then the unbound GII domain would be located close to another

nucleosome core, which could promote its concomitant folding and binding. It

is also possible for the GII domain to bind chromatin first, promoting the bind-

ing of the GI domain.

In an alternative model the two domains bind within one nucleosome,

to two symmetry-related sites at opposite sides of the DNA dyad. Binding of
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Hho1p in this manner would cause the linker domain to form an extended hair-

pin loop that associates with the linker DNA, partially neutralising it (Schäfer

et al., 2005). Only one of these two potential globular domain binding sites is

bound by canonical histone H1 although the second, lower-affinity site can be

occupied if excess linker histone is added (Nelson et al., 1979).

Hho1p may also bind chromatin in the same way as a canonical tripar-

tite linker histone (Figure 1.8), with the GII domain remaining unfolded and

acting as an extension to the linker domain. In principle either “globular” do-

main could bind the nucleosome core and leave the other free to interact with

other protein factors, however it is more likely that the GI domain is bound as

it would be positioned by the N-terminal tail. At present it is not clear which

binding mechanism occurs for Hho1p and further investigation is required.

1.5.6 Roles of Hho1p in yeast

In summary of the literature reviewed, I offer two possible roles for Hho1p in

yeast chromatin. Firstly, Hho1p has a protective role. Transcriptional down-

regulation (for example, upon entry into stationary phase) increases the pro-

portion of Hho1p molecules bound to chromatin, facilitating chromatin com-

paction. The compaction may not be great enough to modify the biochemistry

of bulk chromatin, however local and subtle changes occur reducing recombi-

nation events. This compaction helps to maintain the integrity of the genome

during periods of semiquiescence.

Secondly, Hho1p ensures that the yeast chromatin can be readily tran-

scribed. Association of Hho1p with chromatin is displaced by the transcription

machinery both upon re-entry into exponential growth and within the rDNA

locus, indicating that Hho1p does not condense chromatin enough to prevent
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transcription. This is an important function in yeast, as the majority of the

genome is transcriptionally active at any one time. Hho1p also prevents the

spreading of transcriptionally silent chromatin through its action at barrier ele-

ments and is required for efficient RNAP I transcription at the rDNA.

The two roles of Hho1p may appear contradictory, however the roles

complement each other producing a finely balanced chromatin regulation, pre-

serving the integrity of the genome but ensuring that transcription can be easily

reinstated.

1.6 Introduction to work presented in this Thesis

It is important to understand how yeast chromatin may differ from that of

higher eukaryotes because yeast is a widely used model organism. Many yeast

cellular processes are conserved in higher eukaryotes; however, yeast chro-

matin may not be a good model for that of higher eukaryotes if Hho1p has dif-

ferent roles from metazoan linker histones. Therefore work described in this

Thesis aims to characterise Hho1p further, both at a structural and functional

level. In Chapter 2 the structure of the second “globular” domain of Hho1p, GII,

is further investigated to consider the role of residual structure in this unsta-

ble domain. Homologues of histone H1 interacting-partners are investigated to

determine whether they interact with Hho1p (Chapter 4).

It is also important to study how Hho1p binds to chromatin to allow the

understanding of chromatin condensation in yeast. Chapter 3 considers the

structural roles of Hho1p within chromatin, comparing the structural proper-

ties of chromatin arrays containing Hho1p or canonical linker histones.

The basic tail of canonical linker histones has important roles in DNA

and chromatin binding. It is unstructured in solution but can gain secondary
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structure when bound to DNA. It is subject to phosphorylation in vivo. The

equivalent region in Hho1p, in terms of amino acid composition, is the basic

linker between the GI and GII domains and the structure of this region is in-

vestigated in Chapter 5. The structural effect of phosphorylation on the linker

domain of Hho1p is also studied, as well as the effect of phosphorylation on

Hho1p interactions with DNA and chromatin.
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2 Structural investigation of GII, the

second “globular” domain of Hho1p

2.1 Introduction

As discussed in Section 1.5, the S. cerevisiae linker histone, Hho1p, contains two

domains, GI and GII, with sequence and structural similarity to the single glob-

ular domain of canonical linker histones. Ali et al. (2004) showed that the iso-

lated domains have different stabilities, the GII domain exists as two forms in

slow equilibrium and folding can be stabilised by the presence of tetrahedral

anions that are thought to mimic DNA phosphates. Figure 2.1 shows 1H-15N

HSQC spectra of the GI and GII domains of Hho1p, and the effect of sodium

phosphate concentration. GI is stably folded in 10 mM phosphate whereas at

least 250 mM phosphate is required to stabilise the folded form of GII. The shift

in the equilibrium from the two forms of GII to just the folded form, upon in-

creasing phosphate concentration, is shown by the loss of peaks from the pro-

ton resonance “random coil region” (about 8.0–8.5 ppm). The amino-acid se-

quence of the loop region connecting helices II and III (see Figure 1.9c) in GII

was shown to determine the relative stability of the folded form of the domain

(Sanderson et al., 2005).

It is known that the GII domain is able to function as a linker histone

globular domain both in vitro and in vivo, presumably gaining structure to

achieve this (Section 1.5.5). CD studies demonstrated that Hho1p had a lower

- 50 -



CHAPTER 2

10
5

11
0

11
5

12
0

12
5

10
5

11
0

11
5

12
0

12
5

8.
0

9.
0

7.
0

8.
0

9.
0

7.
0

8.
0

9.
0

7.
0

1 H
 (p

p
m

)

15N (ppm)

10
 m

M
10

0 
m

M
25

0 
m

M

G
I

G
II

Fi
g

ur
e 

2.
1 

 T
he

 e
ff

ec
t 

o
f s

o
d

iu
m

 p
ho

sp
ha

te
 c

o
nc

en
tr

at
io

n 
o

n 
th

e 
G

I a
nd

 G
II 

d
o

m
ai

ns
 o

f H
ho

1p
.  

1 H
-15

N
 H

S
Q

C
 s

p
ec

tr
a 

of
 G

I 
an

d
 G

II 
in

 b
uf

fe
rs

 c
on

ta
in

in
g 

in
cr

ea
si

ng
 c

on
ce

nt
ra

tio
ns

 o
f s

od
iu

m
 p

ho
sp

ha
te

.  
Th

e 
sp

ec
tr

a 
of

 t
he

 G
I d

om
ai

n 
ar

e 
al

m
os

t 
id

en
tic

al
 

in
 a

ll 
th

e 
co

nd
iti

on
s,

 i
nd

ic
at

in
g 

no
 c

ha
ng

e 
in

 s
tr

uc
tu

re
. 

 T
he

re
 i

s 
a 

d
ec

re
as

e 
in

 t
he

 n
um

b
er

 o
f 

p
ea

ks
 i

n 
th

e 
G

II 
sp

ec
tr

a,
 w

ith
 

in
cr

ea
si

ng
 p

ho
sp

ha
te

 c
on

ce
nt

ra
tio

ns
.  

In
 1

0 
m

M
 a

nd
 1

00
 m

M
 p

ho
sp

ha
te

 G
II 

ex
is

ts
 in

 t
w

o 
fo

rm
s,

 fo
ld

ed
 a

nd
 “

un
fo

ld
ed

”,
 in

 s
lo

w
 

eq
ui

lib
riu

m
.  

In
 2

50
 m

M
 p

ho
sp

ha
te

 t
he

 e
q

ui
lib

riu
m

 s
hi

ft
s 

to
 t

he
 s

ta
b

ly
 fo

ld
ed

 s
p

ec
ie

s,
 a

s 
in

d
ic

at
ed

 b
y 

a 
d

ec
re

as
e 

in
 t

he
 n

um
b

er
 

of
 p

ea
ks

 w
ith

in
 t

he
 “

ra
nd

om
 c

oi
l”

 r
eg

io
n 

(p
ro

to
n 

re
so

na
nc

es
 o

f a
b

ou
t 

8.
0–

8.
5 

p
p

m
). 

 F
ro

m
 S

an
d

er
so

n 
et

 a
l. 

(2
00

5)
.  

- 51 -



CHAPTER 2

percentage ofα-helix than NGIL in 10 mM sodium phosphate buffer, suggesting

the GII domain is not stably folded within Hho1p in these conditions (Ali and

Thomas, 2004). Both GI and GII domains within Hho1p are able to bind inde-

pendent four-way junction DNA molecules, in buffer conditions where the GII

domain is stably folded (Schäfer et al., 2008). However, it is currently unknown

whether the GII domain retains the ability to fold and bind DNA in the context

of the full-length protein in vivo.

In this Chapter I confirm that the degree of GII folding in the context

of Hho1p is similar to that of the isolated domain. Therefore I investigate the

“unfolded” species of isolated GII domain, to determine if it contains residual

structure relevant to the folded state and, if so, what the nature of the struc-

ture is. Residual structure is an indication that an intrinsically disordered pro-

tein has efficiently formed secondary structure, but requires specific conditions

to support the packing of this secondary structure into a stable tertiary fold.

Although the population of molecules is overall intrinsically disordered some

members of the population will have the “correct” conformation. Selection of

those molecules, for example by binding of a partner molecule, removes them

from the pool of molecules and shifts the equilibrium towards the correct con-

formation (reviewed in Tsai et al., 2001a,b).

The dynamic nature of protein folding means that some structural elu-

cidation techniques are more suitable than others for the investigation of resid-

ual structure in the GII domain. The techniques used to study intrinsically dis-

ordered proteins have been recently reviewed (Wright and Dyson, 2009). NMR

spectroscopy is used, here, to investigate residual structure in the GII domain as

it allows the study of low populations within a sample; and information about

the dynamics and structural character of the protein emsemble are possible at

a residue-specific level. If NMR is combined with paramagnetic spin labeling
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the long-range interactions of a dynamic protein can be determined at a per

residue resolution. This is in contrast to techniques such as CD and small angle

X-ray scattering (SAXS) that have much lower resolution, although they pro-

vide useful information about secondary structure and ensemble envelopes re-

spectively. Like NMR spectroscopy, X-ray crystallography can provide high res-

olution structural data, however the requirement for a homogenous crystalline

sample means that no information about the dynamics of a sample is deter-

mined, making it unsuitable to study the highly dynamic GII domain.

2.2 Materials and methods

2.2.1 Bacteria

2.2.1.1 Bacterial growth media

The bacterial growth media used in this Thesis are listed in Table 2.1

2.2.1.2 Bacterial strains

The bacterial strains used in this Thesis are listed in Table 2.2

2.2.2 Plasmids

Plasmid pET17b-HHO1 contains the cDNA for full-length Hho1p (residues 1–

258) under the control of a T7 promoter, as well as an ampicillin resistance gene

and an origin of replication.

Plasmid pET17b-GII contains the cDNA for the second globular domain

of Hho1p (residues 171–258) as well as pET17b features described above (Ali and

Thomas, 2004).
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Table 2.1: Bacterial growth media

Medium Recipe

2xYT medium: 16 g tryptone, 10 g yeast extract, 5 g NaCl per
litre

LB medium: 10 g tryptone, 5 g yeast extract, 10 g NaCl per
litre

LB-agar plates 10 g tryptone, 5 g yeast extract, 10 g NaCl, 15 g
agar per litre

M9 medium: 2 mM MgSO4, 0.1 mM CaCl2, 0.2% (w/v)
glucose, 200 ml 5x M9 salts per litre (64 g
Na2HPO4 · 7H2O, 15 g KH2PO4, 2.5 g NaCl, 5 g
NH4Cl per litre)

MOPS medium: 0.132 M K2PO4, 0.4% (w/v) glucose (or 0.1%
when using 13C-glucose), 100 ml 10x MOPS
per litre (400 mM MOPS pH 7.4, 40 mM
Tricine pH 7.4, 0.1 mM FeSO4, 95 mM NH4Cl,
2.76 mM K2SO4, 5 µM CaCl2, 5.28 mM MgCl2,
500 mM NaCl, 1 ml 10x micronutrients per litre
(0.03 mM (NH4)6(MO7)24, 4 mM H3BO3, 0.3 mM
CoCl2, 0.1 mM CuSO4, 0.8 mM MnCl2, 0.1 mM
ZnSO4)) (Neidhardt et al., 1974)

TB medium: 12 g tryptone, 24 g yeast extract, 4 ml glycerol,
100 ml [0.17 M KH2PO4, 0.72 M K2HPO4] per
litre

Table 2.2: Bacterial strains

E. coli strain Genotype Supplier

BL21(DE3) F– ompT hsdSB (rB
–, mB

–) gal
dcm rne131 (DE3)

Novagen

BL21(DE3)pLysS F– ompT hsdSB (rB
–, mB

–) gal
dcm (DE3) pLysS (CamR)

Novagen

DH5α F– φ80lacZ∆M15 ∆(lacZYA-
argF)U169 endA1 recA1 hsdR17
(rk

–, mk
+) supE44 thi-1 gyrA96

relA1 phoA λ–

Invitrogen

Rosetta(DE3) F– ompT hsdSB (rB
–, mB

–) gal
dcm (DE3) pRARE (CamR)

Novagen
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2.2.3 Expression and purification of Hho1p and the GII

domain

2.2.3.1 Expression of 15N-Hho1p

Plating the transformed cells onto LB-agar plates before growing the overnight

cultures greatly reduced the expression levels of Hho1p. Therefore expression

cultures of Hho1p or Hho1p-truncations were immediately grown in small liq-

uid cultures following transformation.

E. coli Rosetta(DE3) cells were transformed with pET17b-HHO1 using

heat shock (Sambrook et al., 1989) and grown overnight at 37 ◦C, without shak-

ing, in TB medium supplemented with 50 µg/ml carbenicillin (Melford Labo-

ratories Ltd.). 5 ml of the overnight culture was used to inoculate 10 flasks

(2 l) containing 500 ml of M9 medium, with 15N-NH4Cl as the sole nitrogen

source and supplemented with 50 µg/ml carbenicillin, and cultures were grown

at 37 ◦C with shaking at 250 rpm to an OD600 of about 0.6. Protein expres-

sion was induced with 1 mM isopropyl β-D-thiogalactopyranoside (IPTG) and

cultures were grown for a further 18 h at 18 ◦C with shaking at 50 rpm. Cells

were harvested by centrifugation at 6000 g for 10 min at 4 ◦C and washed in

10 mM sodium phosphate pH 7.0, 150 mM NaCl, 1 mM dithiothreitol (DTT),

1 mM ethylenediaminetetraacetic acid (EDTA), 0.5 mM phenylmethylsulfonyl

fluoride (PMSF). Pellets were stored at –20 ◦C.

2.2.3.2 Purification of Hho1p

The purification procedure is based on that described previously for Hho1p

(Ali and Thomas, 2004). Pellets were resuspended in buffer B (10 mM sodium

phosphate pH 7.0, 1 M NaCl, 1 mM DTT, 1 mM EDTA, 0.5 mM PMSF) sup-

plemented with 1 µg/ml leupeptin (Sigma-Aldrich), 1 µg/ml aprotinin (Sigma-
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Aldrich), 0.156 mg/ml benzamidine (Sigma-Aldrich), 1 µg/ml pepstatin A

(Sigma-Aldrich). Cells were lysed by two passes through a French press at

1000 psi and cell debris was removed by centrifugation at 35000 g for 30 min

at 4 ◦C. The cell extract was filtered through a 0.2 µm membrane (Millipore) and

diluted 10-fold in buffer A (10 mM sodium phosphate pH 7.0, 1 mM DTT, 1 mM

EDTA, 0.5 mM PMSF).

The diluted filtrate was loaded on to a HiTrap SP Sepharose HP cation-

exchange column (GE Healthcare), which had been pre-equilibrated with buffer

A. Bound proteins were eluted with a 10-column-volume linear gradient from

buffer A to buffer B and fractions containing Hho1p, as identified by absorbance

at 280 nm and SDS/18%-PAGE (Section 2.2.4.1), were collected. Ammonium

sulphate was added slowly, while stirring the sample on ice, to a final con-

centration of 2.5 M and the resulting suspension was clarified by centrifuga-

tion at 6000 g for 20 min at 4 ◦C. The supernatant was loaded on to a HiTrap

Phenyl Sepharose HP hydrophobic-interaction column (GE Healthcare), which

had been pre-equilibrated with buffer C (10 mM sodium phosphate pH 7.0,

1 mM DTT, 1 mM EDTA, 2.5 M ammonium sulphate). Bound proteins were

eluted with an eight-column-volume linear gradient from buffer C to buffer A,

and fractions containing Hho1p, identified as described above, were collected.

The collected fractions were pooled and dialysed overnight against

buffer A at 4 ◦C. If further purification of Hho1p was required the dialysed sam-

ple was loaded on to a Resource S cation-exchange column (GE Healthcare),

which had been pre-equilibrated in buffer A, and bound proteins were eluted

with a 50-column-volume linear gradient from buffer A to buffer B. The pooled

fractions containing pure Hho1p were then dialysed as above. The purified

Hho1p samples were concentrated at 4 ◦C using a 10 kDa cut-off Vivaspin 2

concentrator (Sartorius) and flash frozen in aliquots for storage at –80 ◦C.
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2.2.3.3 Expression of 15N-GII and 13C,15N-GII

E. coli BL21(DE3) cells were transformed with pET17b-GII using heat shock,

and grown overnight, with 250 rpm shaking, at 37 ◦C in LB medium supple-

mented with 50 µg/ml carbenicillin. 5 ml of the overnight culture was used to

inoculate 10 flasks (2 l) containing 500 ml of MOPS medium, with 15N-NH4Cl

as the sole nitrogen source (plus 0.5 g/l 13C-glucose as the sole carbon source

when applicable) and supplemented with 50 µg/ml carbenicillin. Cultures were

grown at 37 ◦ C with shaking at 250 rpm to an OD600 of about 0.6. Protein ex-

pression was induced with 1 mM IPTG and cultures were grown for a further

3 h. Cells were harvested and stored as described for Hho1p in Section 2.2.3.1.

2.2.3.4 Purification of the GII domain

The GII domain was purified using the same procedure as for Hho1p, (Section

2.2.3.2; Ali and Thomas, 2004). The pure GII samples were concentrated in a

Vivaspin 2 concentrator with a 3 kDa cut-off.

2.2.4 Protein characterisation

2.2.4.1 SDS/polyacrylamide gel-electrophoresis

Vertical slab gels were run as described (Thomas and Kornberg, 1978). Unless

otherwise stated, the gels contained 18% (v/v) polyacrylamide. Briefly, pro-

tein samples were denatured by boiling in SDS loading buffer (50 mM Tris-HCl

pH 6.8, 100 mM DTT, 2% (w/v) sodium dodecyl sulfate (SDS), 0.1% (w/v) bro-

mophenol blue, 10% (v/v) glycerol), loaded on to the gels and run at 35 mA in

Tris/glycine buffer (140 g/l glycine, 30 g/l Tris base, 5 g/l SDS). Proteins were

fixed in the gels (45% (v/v) methanol, 10% (v/v) glacial acetic acid) and vi-
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sualised by staining with Coomassie Brilliant Blue R250 (0.5 g/l in 45% (v/v)

methanol, 10% (v/v) glacial acetic acid) and destaining (5% (v/v) methanol,

7.5% (v/v) acetic acid).

2.2.4.2 Amino acid analysis

Accurate protein concentrations were determined by Mr Peter Sharratt (Protein

and Nucleic Acid Chemistry Facility, Department of Biochemistry, University of

Cambridge) using an Alpha II Plus Automatic Analyser (Pharmacia LKB).

2.2.4.3 Mass spectrometry

Electrospray ionisation time of flight (ESI-TOF) mass spectronomy was per-

formed by Dr Len Packman (Protein and Nucleic Acid Chemistry Facility).

2.2.5 NMR spectroscopy

All NMR experiments were recorded by Dr Katherine Stott (Department of Bio-

chemistry, University of Cambridge). Experiments were recorded on DRX500

or DRX600 spectrometers equipped with triple-resonance HCN probe heads

and actively-shielded z-gradients. Data were processed using the AZARA suite

of programs (v2.8, c©1993–2010 Wayne Boucher and Department of Biochem-

istry, University of Cambridge) and assignments were made using Analysis v2.1

(Vranken et al., 2005).

2.2.5.1 NMR sample conditions

NMR experiments on 15N-Hho1p were carried out at 288 K on protein at about

500 µM in 10 mM sodium phosphate pH 7.0, 1 mM DTT, 1 mM EDTA, 0.5 mM
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PMSF, 10% (v/v) 2H2O. Data acquisition for GI and GII has been previously de-

scribed (Sanderson et al., 2005).

NMR experiments on 15N-GII and 13C,15N-GII were carried out on pro-

teins at about 1.4 mM and 2 mM respectively. Experiments were recorded at

273 K in 10 mM sodium phosphate pH 7.0, 1 mM DTT, 1 mM EDTA, 0.5 mM

PMSF, 10% (v/v) 2H2O. For the urea titration the protein sample was adjusted

with a stock solution containing 10 mM sodium phosphate pH 7.0, 1 mM DTT,

1 mM EDTA, 9 M urea, to final concentrations of 1, 2 and 4 M urea. The sam-

ple containing 4 M urea was therefore diluted 1.8-fold compared to the original

sample. ATSL-labelled sample was prepared as described (Section 2.2.5.5).

2.2.5.2 Chemical shift deviations from random coil

13Cα chemical shift deviations from random coil, corrected for sequence context

(Schwarzinger et al., 2001), were measured using Analysis (Section 2.2.5). The

spectra were referenced against 4,4-dimethyl-4-silapentane-1-sulphonic acid.

Because the chemical shift reference data were acquired at a much higher tem-

perature than used in this study there is a systematic shift in values from zero.

For percentage helix calculations the baseline was calculated using the

mean value for residues 2–5 and 85–87, for which the resonances of the two

species are converged, giving a baseline of -0.80883 ppm. A resonance may be

defined as 100% α-helix if it has a shift deviation of 3.1 ppm (Spera and Bax,

1991).

2.2.5.3 Heteronuclear NOE measurements

{1H}15N NOE values were obtained at 600 MHz with either 4 s of 1H saturation

using a 120◦ pulse train or a 4 s delay prior to the first 15N pulse (Farrow et al.,
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1994). The {1H}15N NOE values were calculated using the following formula:

{1H}15NNOE =
Isat
Iunsat

2.2.5.4 Chemical-shift difference measurements

Normalised changes in amide chemical shift (Zuiderweg, 2002) were measured

using Analysis (Vranken et al., 2005) and analysed using Microsoft Excel. The

following formula was used to combine differences in chemical shift with ap-

propriate scaling:

∆δ =
√

(∆δN × 0.15)2 + (∆δH)2

2.2.5.5 ATSL-labelling of the GII domain

Cysteine 61 of the GII domain was labelled with (1-acetoxy-2,2,5,5-tetramethyl-

δ-3-pyrroline-3-methyl) methanethiosulfonate (ATSL) (Toronto Research

Chemicals), by adding it to the protein sample (approximately 1 mM sample

in 10 mM sodium phosphate pH 7.0, 1 mM EDTA, 0.5 mM PMSF) at a 5-fold

molar excess (from a 1.7x stock). The reaction was carried out under argon at

25 ◦C for 3 h. The sample was buffer exchanged into 10 mM sodium phosphate

pH 7.0, 1 mM EDTA using a Vivaspin concentrator with 3 kDa cut-off and 2H2O

was added to 10% (v/v).
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2.3 Results

2.3.1 The GII domain of Hho1p exists as a folded and an

“unfolded” species in the context of the full-length

protein

Transformed E. coli BL21(DE3) cells must be inoculated straight into liquid

medium, rather than selecting transformants on antibiotic and agar plates, to

achieve appreciable expression of full-length Hho1p (data not shown). Us-

ing this protocol 15N-Hho1p was produced and a 1H-15N HSQC spectrum was

recorded (Figure 2.2)

Comparing this spectrum of the full-length protein with spectra for the

isolated domains (Sanderson et al., 2005), indicated that peaks overlap to a large

extent (Figure 2.3). Therefore, the domains within the full-length protein are in

chemical environments similar to those of the isolated domains. Extra residues

occur in the unfolded region at around 8.5 ppm proton shift, due to the N-

terminal tail and linker residues. The boxes highlight peaks that occur in both

the Hho1p and the “unfolded” GII spectra, but which do not occur in the folded

GII spectrum. There are no peaks that occur in both the Hho1p and folded GII

spectra but not in the “unfolded” GII spectrum.

These data indicate that GII domain exists in an equilibrium between

the folded and “unfolded” species in the context of the full-length protein in

10 mM sodium phosphate buffer, as for the isolated domain. As the protein

context of the GII domain does not appear to change its structural character

this suggests further study of the isolated GII domain would be relevant for un-

derstanding the domain in the context of full-length Hho1p.
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Figure 2.2  1H-15N HSQC spectrum of 15N-labelled Hho1p.  (a)  SDS/18%-
PAGE of 15N-labelled Hho1p (lane 2).  Lane 1, protein molecular weight mark-
ers.  (b)  1H-15N HSQC spectrum of 15N-Hho1p, recorded at 500 MHz at 288 K 
in 10 mM phosphate buffer at pH 7.  
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2.3.2 Sequence-based disorder prediction indicates that the

helices of the GII domain of Hho1p are less ordered

than those in the GI domain

Comparison of sequence-based disorder predictions, using the VL3E DisProt

Predictor of Intrinsically Disordered Regions (Peng et al., 2005) indicated that

regions with low predictions of disorder in GII were similar to those in GI, al-

though the GII regions were predicted to be more strongly disordered (Fig-

ure 2.4). For both domains the predicted disorder values for helices II and III

were much lower than for helix I. It should be noted that the input window for

this program is 15 residues, meaning the predictions for helices II and III of GI

and GII could be affected by the different loop structures between helices II and

III (in GI and GII) (Ali et al., 2004), as well as by the different sequences of the

helices themselves.

Given how structurally unstable the GII domain is, relative to the GI do-

main (Ali et al., 2004), it was unexpected for the disorder prediction to be so

similar. It is known that only a proportion of the GII domain has stable tertiary

structure in 10 mM sodium phosphate buffers but a GII molecule, although dis-

ordered, may preferentially populate helical conformations, reflected in the dis-

order prediction values.

2.3.3 NMR assignments of the “unfolded” GII domain of

Hho1p

To study the “unfolded” form of the GII domain, 15N-GII and 13C,15N-GII were

produced (Figure 2.5a). The conditions in which NMR spectra were recorded

were optimised using 1H-15N HSQC spectra, so that the linewidths and intensity
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Figure 2.4  Structure and disorder predictions for the GI and GII domains of 
Hho1p.  (a)  Ribbon diagrams of GI and GII structures (Sanderson et al., 2005).  (b)  
Graph showing the disorder prediction for the GI and GII domain sequences as 
determined by VL3E DisProt Predictor of Intrinsically Disordered Regions (Peng et 
al., 2005).  A value of 1 indicates disordered regions, and a value of 0 completely 
ordered regions.  Secondary structure diagrams are to scale and highlight the 
difference in the loops between helices II and III (Sanderson et al., 2005).  Helices 
II and III are the most ordered regions of both domains, but GI is more ordered than 
in GII in both helicies.  The GI loop has one less residue that the GII loop, causing 
a break in the graph (marked with an asterisk)
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Figure 2.5  NMR spectroscopy of the GII domain of Hho1p in conditions 
where peaks from the “unfolded species” dominate.  (a)  SDS/18%-PAGE 
of 15N-labeled GII.  (b)  1H-15N HSQC spectrum of 15N-GII, recorded at 
600 MHz at 273 K in 10 mM sodium phosphate buffer at pH 7.  
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of peaks due to the “unfolded” species were optimised in preference to those

of the folded form (Figure 2.5b). HNCA, HNCACB, HN(CO)CA, HN(CO)CACB,

HNN and HN(C)N experiments were used to sequentially assign the folded and

“unfolded” species of GII. The magnetisation transfers for the experiments are

shown in Figure 2.6.

The HNN and HN(C)N experiments were as described (Panchal et al.,

2001). They are based on the HNCA and HN(CO)CA experiments but have an

extra transfer to the nitrogen atoms with the result that the HNN has connec-

tivity between the HN
i and Ni, i+1 and i–1. The relatively slow relaxation of un-

folded proteins means that the extra transfer does not cause an unacceptable

loss of sensitivity in these systems. The experiments exploit two 15N dimen-

sions (which is the dimension with the greatest intrinsic dispersion of reso-

nances in unfolded proteins) making them an excellent tool for assigning the

“unfolded” form of the GII domain. Both the “unfolded” and folded species

within the sample were assigned. Assignment was achieved through sequential

steps along the backbone, using the triple-resonance experiments and HNN-

based experiments to establish connectivity to about equal extents. The fol-

lowing percentages of resonances were assigned for the “unfolded” species: N

(96.4%), HN (96.4%), Hα (89.8%), Cα (97.7%) and Cβ (97.6%). (See Appendix A for

the resonance list of the “unfolded” species). The folded species was assigned in

a similar manner but also used the published assignment for GII at 288 K and in

250 mM sodium phosphate as a guide (Ali et al., 2004). The following percent-

ages of resonances were assigned for the folded species: N (96.4%), HN (96.4%),

Cα (96.6%) and Cβ (94.0%).

- 67 -



CHAPTER 2

Figure 2.6  Magnetisation transfers of NMR experiments used in this 
Thesis.  Green, observed atoms; Blue, atoms through which magnetisation is 
transferred, but which are not observed.  (a)  H-N HSQC  (b)  H-C HSQC  (c)  
HNCA  (d)  HN(CO)CA  (e)  HNCACB  (f)  HN(CO)CACB  (g)  HNN  (h)  HN(C)N  
(i)  HNCO  (g)  HBHA(CBCACO)NNH

(g)  HNN

(h)  HN(C)N

(i)  HNCO

(j)  HBHA(CBCACO)NNH
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2.3.4 The GII domain of Hho1p contains regions of residual

structure

The Cα shift deviation from random coil values was measured for both the

folded and “unfolded” GII species. It is well established that there is a corre-

lation between secondary chemical shifts (deviations from random-coil values)

and the secondary structure environment in which they are located (Wishart

et al., 1991). It is also known that the sequence context of residues modifies

the chemical shift of random coil resonances. Therefore, for unfolded or par-

tially unfolded proteins it is important to use sequence-context corrected ran-

dom coil values to calculate the chemical shift deviations from random coil

(Schwarzinger et al., 2001).

The Cα shift deviations from random coil values are, as expected, much

smaller for the “unfolded”, compared with the folded, form (Figure 2.7a). How-

ever some small but contiguous deviations occur around residues 8–18 and

50–68 for the “unfolded” resonances, indicating the presence of some residual

structure. These deviations occur down-field, towards higher ppm values, and

so are indicative of α-helical character (Wishart et al., 1991). Fully α-helical res-

onances show a shift deviation of 3.1 ± 1.0 ppm (Spera and Bax, 1991). The

resonances defined to be within the helices of GII in previous NMR studies (Ali

et al., 2004) were adjusted for the baseline and the percentage of α-helix was

calculated. As expected the folded species within this sample showed an aver-

age more than 100% helical character (using this particular definition) over the

three defined helices. The mean values of helical character for the “unfolded”

form of GII were 25%, 5% and 21% for helices I, II and III, respectively, although

there was variation across each helical region (Figure 2.7a). It is clear that there

is considerable α-helical character in the regions corresponding to helices I and

III of the GII domain in the “unfolded” species. This indicates that there is ei-
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ther a subpopulation of GII molecules containing α-helices at these regions, or

that the molecules contain α-helices a proportion of the time.

Heteronuclear nuclear Overhauser effect ({1H}15N NOE) experiments

were used to study the picosecond-nanosecond dynamics of the two GII species

(Figure 2.7b). {1H}15N NOE experiments measure the dynamics that are faster

than, and independent of, the overall tumbling of a molecule; therefore they can

identify secondary structure elements. The error bars for the “unfolded” species

are smaller than those for the folded species because the “unfolded” peaks dis-

play a higher signal-to-noise ratio in the conditions used. The majority of the

“unfolded” residues have {1H}15N NOE values smaller than 0.6, indicating a dy-

namic structure with little or no stable secondary structure. However residues

in the regions corresponding to helices I (residues 9–20) and III (residues 49–64)

approach this value. These regions of reduced dynamics correlate with regions

of positive Cα shift deviations from random coil and thus indicate the regions of

residual structure.

2.3.5 Urea reduces, but does not abolish, residual structure

in the GII domain of Hho1p

A urea titration was carried out on the GII sample to determine if structural

character was lost, implying the presence of residual structure. Figure 2.8a

shows the 1H-15N HSQC spectra of 13C,15N-GII in buffers containing 0, 1, 2 and

4 M urea. 1 M urea was sufficient to shift the equilibrium entirely to the “un-

folded” form of GII, shown by the complete disappearance of the peaks due

to the folded form at urea concentrations >0 M. The proton resonances shift

down-field as urea is added, indicating a loss of helical character (Wishart et al.,

1991), confirming residual structure in the sample in non-denaturing buffer
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Figure 2.7  Comparison of the folded and “unfolded” forms of GII in 10 mM 
sodium phosphate.  (a)  Cα shift deviations from random coil for the two species of 
the GII domain, corrected for sequence context (Schwarzinger et al., 2001).  There is 
a contiguous increase in the deviation around residues 8-18 and 50-59.  The true 
baseline appears to be around -0.8 ppm, because this experiment was carried out at 
a very different temperature to that used to produce the random coil values 
(Schwarzinger et al., 2001).  The secondary structure of the folded form is indicated.  
(b)  Heteronuclear NOE values for the unfolded species are below 0.6; however 
regions corresponding to helices I and III approach this value.  
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Figure 2.8  Urea titration into the GII domain of Hho1p.  (a)  1H-15N HSQC spec-
trum of 13C15N-GII, recorded at 500 MHz at 273K in 10 mM sodium phosphate 
pH 7.  The samples contain urea, as indicated:  none (black), 1 M (blue), 2 M 
(green), or 4 M (red).  (b)  Graphical representation of the size of the peak shifts 
upon addition of urea from 0 to 4 M.  The secondary structure of the folded form 
of GII is indicated.    The largest shifts occur around residues 11−17.  
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conditions. The combined peak shift differences were measured using the Anal-

ysis program (Vranken et al., 2005). A plot of peak shift differences between the

GII domain in no urea and 4 M urea indicates that peaks due to residues 11–

17 consistently shift further than the rest of the peaks (Figure 2.8b). The data

in Figure 2.7 show that this is one of the regions showing α-helical character in

non-denaturing buffer, and suggests that the residual structure in this region is

vastly reduced in the presence of urea.

{1H}15N NOE values decreased across most of the GII domain as the

concentration of urea was increased (Figure 2.9). This indicates that GII be-

comes more dynamic as urea was added, suggesting that residual structure was

being lost. The regions that contain residual structure in 0 M urea (residues

9–20 and 50–60) continue to have the highest {1H}15N NOE values in 4 M urea,

indicating that there may be residual structure in these regions that is persistent

even in these denaturing conditions.

2.3.6 Contacts between helices I and III may be important in

the packing of the GII domain of Hho1p

In principle, paramagnetic relaxation enhancement (PRE) could be used to

identify interactions between residual secondary structure and tertiary ele-

ments within the dynamic GII domain. This would be investigated, in buffers

containing 10 mM sodium phosphate, by determining which peaks due to

the folded form were attenuated upon attachment of a paramagnetic tag

(such as S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methane-

sulfonothioate; MTSL) at a single location on the GII domain. The experi-

ment was considered to be straightforward due to the presence of one cysteine

residue within the GII domain at position 61 (corresponding to residue 231 of
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Figure 2.9  Heteronuclear NOE measurements for the GII domain of 
Hho1p in sodium phosphate buffer containing various concentrations of 
urea.  Decreasing {1H}15N NOE values upon addition of urea indicates that GII 
is becoming more dynamic.  This suggests there is residual structure in the 
GII domain in 10 mM sodium phosphate buffers when urea is not present.  
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Hho1p).

Unfortunately, when the diamagnetic control tag (ATSL) was attached

to the cysteine residue, the equilibrium shifted entirely to the “unfolded” form

of GII (Figure 2.10a,b) meaning that no information could be gained about the

dynamic equilibrium. However, although the PRE technique could not be used

to study the folding of the GII domain, the effect of the modification suggests

that the region containing cysteine 61 is involved in the packing of secondary

elements or stability of the folded species. Cysteine 61 occurs towards the C-

terminal end of helix III in the structured form of GII and is buried between

helices I and III (Figure 2.10c). Evidently the addition of the ATSL-tag at cysteine

61 disrupts the packing between these helices and preventing the formation of

the folded species.

2.4 Discussion

2.4.1 The GII domain exists as a folded and an “unfolded”

species, both as an isolated domain and in the context

of full-length Hho1p

NMR studies of 15N-labelled full-length Hho1p indicate that the GI and GII

domains retain the structural character of the isolated domains (Figure 2.3).

Therefore, information gained from studies of the isolated domains can be

applied to the regions within the full-length protein. Hho1p is a less attrac-

tive NMR subject than the isolated domains because the expression yields are

lower and the samples degrade upon storage at 4 ◦C. More importantly, the

larger number of residues and the presence of the unstructured regions (the N-

terminal tail, the linker domain and the “unfolded” GII species), means Hho1p
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Figure 2.10  Attaching ATSL to the GII domain at cysteine 61 causes the equilib-
rium to shift to the “unfolded” species in 10 mM sodium phosphate buffer.  
(a)  ESI-TOF mass spectrometry of GII-ATSL (13C,15N-labelled) following treatment with 
100 mM DTT for 10 minutes to remove the tag from some of the sample.  The 
observed masses indicates there is one label per protein molecule.  (b)  1H-15N HSQC 
spectra of 13C,15N-GII (black) and 13C,15N-GII-ATSL (red), recorded at 600 MHz at 27 3K 
in 10 mM sodium phosphate buffer at pH 7.0.  The ATSL-labeled sample has lost the 
dispersed resonances corresponding to the folded form of GII.  (c)  Two views of the 
structure of the GII domain, with the side chain of cysteine 61 marked in red.  The 
backbone and selected sidechains of helices I and III and strand II are marked in 
green, blue and yellow respectively.  Cysteine 61 is towards the C-terminal end of helix 
III and is buried within the side chains of residues in helices I and III and strand II.  
Images were created using SwissPDB viewer (1USS.pdb).   
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spectra show greater peak overlap than the spectra of the isolated domains.

2.4.2 The “unfolded” form of the GII domain of Hho1p

contains regions of residual structure and may fold

through interactions between these regions

Optimisation of the NMR conditions for the “unfolded” species of GII in 10 mM

sodium phosphate buffer, by lowering the temperature, allowed the resonances

for this species to be assigned. Cα shift deviations from random coil values and

study of the backbone dynamics through {1H}15N NOE measurements demon-

strate regions of residual structure around residues 8–18 and 50–68 in the “un-

folded” GII species, approximately where helices I and III occur in the folded

form (Figure 2.7). Helices I and III have a much stronger helical character than

helix II (25%, 21% and 5% respectively), despite the DisProt VL3E prediction

suggesting that helices II and III should be more ordered than helix I (Fig-

ure 2.4b). The difference between the predicted and observed levels of order

could be due to transient packing of helices within the “unfolded” GII domain.

Helix I is predicted by the DisProt VL3E program to have low levels of intrin-

sic order, but packing with helix III could promote helix formation in helix I.

A lack of transient packing interactions involving helix II could explain why its

order prediction approaches that of helix III but only a small degree of helical-

character was actually observed.

Residual structure in GII is confirmed by the ability to increase back-

bone dynamics by the addition of urea to the sample, presumable due to de-

struction of helical content (Figure 2.9). The presence of residual structure sug-

gests that the GII domain is able to form secondary structure, but specific con-

ditions are required to support packing of these elements into the tertiary struc-
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ture. The residual structure in the GII domain explains how the folded and “un-

folded” species exist in a dynamic equilibrium and allows rapid folding of the

GII domain.

The addition of an ATSL-label at cysteine 61 causes the equilibrium to

shift to the “unfolded” form (Figure 2.10), also suggesting a delicate equilibrium

between the folded and “unfolded” GII species, which is disrupted by the bulky

tag. This implies that the contacts between helices I and III, which show the

strongest helical character in the “unfolded” GII, may be important in the pack-

ing of the GII domain. The residue in helix III of the GI domain that corresponds

to cysteine 61 of GII is a glycine. This, along with the ATSL experiment, implies

that the helical packing does not support a bulky group at this location.

Despite being partially unstructured in 10 mM sodium phosphate

buffers the GII domain is able to protect chromatosomes from micrococcal nu-

clease (MNase) digestion in particular conditions (Sanderson et al., 2005). This

implies that the equilibrium of GII species may move towards the folded form

in the presence of DNA. Within the context of the full-length protein GII is rel-

atively unstructured and exists as a dynamic ensemble of species (Figure 2.3).

If the GI domain bound chromatin then the local DNA concentration would in-

crease. This could allow selection of the the folded form of GII, producing a

bi-functional linker histone (Section 1.5.5). This bi-functionality could explain

why Hho1p is less abundant in chromatin than canonical linker histones (Bates

and Thomas, 1981; Freidkin and Katcoff, 2001; Downs et al., 2003).
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2.5 Summary

• Full-length Hho1p can be expressed in minimal medium and in quantities

sufficient for NMR studies.

• The globular domains within full-length Hho1p have similar structural

characters to the isolated domains.

• The “unfolded” GII domain species contains regions of residual structure

around the residues corresponding to helices I and III of the folded do-

main.

• The residual structure is partially removed by the addition of urea, with

the chemical shifts indicating a loss of alpha-helical character, especially

around the residues corresponding to helix I.

• Adding a chemical tag to cysteine 61 disrupts the equilibrium between the

“unfolded” and folded species of the GII domain. This demonstrates that

packing between the helices I and III is important in the folding of the GII

domain of Hho1p.
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3 Hho1p acts within chromatin in a similar

manner to canonical linker histones

3.1 Introduction

It is known that Hho1p binds throughout the S. cerevisiae genome (Downs et al.,

2003; Ali, 2001), but it is unclear whether it is evenly distributed throughout the

genome (Schäfer et al., 2008) or enriched at certain loci (Freidkin and Katcoff,

2001). Also contested is the abundance of Hho1p relative to core nucleosomes

in the yeast cell. The published values range from one Hho1p molecule per 4

nucleosomes (Downs et al., 2003) to 1 per 37 nucleosomes (Freidkin and Kat-

coff, 2001). Both of these assays used yeast strains containing a tagged version

of Hho1p, which could affect the expression or chromatin association of the

protein. Furthermore, Freidkin and Katcoff estimated the number of nucleo-

somes in a yeast cell to be around 74,000, which is considerably higher than

more recent measurements, indicating they underestimated the Hho1p : nu-

cleosome ratio.

More recently, sequencing DNA immunoprecipitated by histone H3-

and H4-antibodies has determined the number of nucleosomes in a yeast cell

to be around 53,000 (Mavrich et al., 2008). The number of Hho1p molecules

in a yeast cell has been measured at about 6500 (Ghaemmaghami et al., 2003).

This study created TAP-tag fusion proteins that were expressed from the en-

dogenous promoters and quantified by immunodetection, using an endoge-
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nous protein as a loading control. These numbers would suggest a ratio of

one Hho1p molecule for about every 8 nucleosomes. Finally, previous work in

this laboratory measured the yeast cellular levels of Hho1p and nucleosome as

about equal. In this assay untagged Hho1p and chicken erythrocyte chromatin

were used to create standard curves, allowing quantification of the immunode-

tection of Hho1p and histone H4 in yeast whole-cell extract (Ali, 2001). Further

investigation of the Hho1p to nucleosome ratio is required to determine which

of the reported measurements is most accurate, since this will affect how we

consider the role of Hho1p within chromatin.

Among the Hho1p binding models, described in Section 1.5.5, are two

models that could explain why the reported Hho1p : nucleosome ratios are

lower than for histone H1 : nucleosome levels in metazoans. If only one glob-

ular domain of Hho1p binds to a nucleosome core, the second globular do-

main might perhaps sterically interfere with the binding of another Hho1p

molecule to the adjacent core nucleosomes. Alternatively Hho1p may bridge

between two adjacent nucleosome cores, effectively halving the number of

Hho1p molecules required to saturate the chromatin.

The potential for Hho1p to bridge two nucleosomes may allow a mech-

anism for condensation of the yeast chromatin. The yeast genome contains

nucleosome-free regions (Bernstein et al., 2004; Lee et al., 2004) but otherwise

the nucleosome repeat length is around 165 bp (Thomas and Furber, 1976).

This is the length of DNA required for a chromatosome (i.e. there is no linker

DNA present between the chromatosomes) raising the question of whether the

chromatin could be further condensed. Analytical ultracentrifugation and elec-

tron microscopy indicate condensation of reconstituted chromatin with 167 bp

nucleosome repeat length, upon addition of sub-stoichiometric amounts of

linker histone H5 (Routh et al., 2008). Hho1p was shown to affect the com-
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paction of yeast chromatin both at the rDNA locus and a region outside the

rDNA (Levy et al., 2008). Psoralen cross-linking demonstrates the accessibil-

ity of DNA by intercalating with DNA and causing reduced gel mobility. The

psoralen accessibilty was lower in an hho1-null strain than in a wild-type yeast

strain. Global compaction of yeast chromatin in stationary phase also appears

to be mediated by Hho1p, as wild-type yeast chromatin was seen to sediment

more rapidly through sucrose gradients than that from an hho1-null strain

(Schäfer et al., 2008). In contrast, the nucleosome repeat length in yeast bulk

chromatin does not change upon deletion of the HHO1 gene and there was no

difference in the in vivo micrococcal digestion pattern in individual genes (Puig

et al., 1999; Patterton et al., 1998). Taken together this indicates that Hho1p can

affect chromatin structure albeit only at particular times or locations in vivo;

presumably the effect is too subtle to be seen in assays on bulk chromatin. This

may explain the observation that Hho1p can inhibit homologous recombina-

tion without producing a detectable effect on the global chromatin structure

(Downs et al., 2003).

In this Chapter I aim to provide a definitive measurement of the Hho1p

to nucleosome ratio in S. cerevisiae cells. Standard curves of non-tagged re-

combinant Hho1p and Hhf2p were used to allow semi-quantitative immunode-

tection of the proteins in whole-cell extract from a wild-type yeast strain. The

wild-type yeast strain ensures natural Hho1p levels, while using non-tagged re-

combinant yeast proteins should ensure that antibody binding is consistent be-

tween the protein in the cell extract and the samples used to produce the stan-

dard curves. In addition, contacts made to core histones by Hho1p and canoni-

cal linker histones are compared. The compaction of reconstituted nucleosome

arrays containing Hho1p and tripartite linker histones is also investigated.

- 83 -



CHAPTER 3

3.2 Materials and methods

3.2.1 Yeast

3.2.1.1 Yeast growth medium

The yeast growth medium used in this Thesis is listed in Table 3.1

Table 3.1: Yeast growth medium

Medium Recipe

YPAD medium: 10 g yeast extract, 20 g peptone, 20 g glucose,
48 mg adenine hemisulphate per litre

3.2.1.2 Yeast strains

The yeast strains used in this Thesis are listed in Table 3.2

Table 3.2: Yeast strains

S. cerevisiae strain Genotype (–/–) Supplier

HHO1-TAP MATa his3∆1 leu2∆0
met15∆0 ura3∆0 HHO1-
TAP::HIS

Open Biosys-
tems

HTZ1-TAP MATa his3∆1 leu2∆0
met15∆0 ura3∆0 HTZ1-
TAP::HIS

Open Biosys-
tems

W303-1B MATα {leu2-3,112 trp1-1
can1-100 ura3-1 ade2-1
his3-11,15} [phi+]

Gift from Dr
J. Downs,
University of
Sussex

3.2.2 Plasmids

Plasmid pET28b-HHF2 contains the cDNA for a full-length core histone H4

gene from S. cerevisiae, and was a gift from Dr Carl Wu (Center for Cancer Re-
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search, U.S. National Institutes of Health). The coding sequence is native, with-

out modifications or tags (Shen et al., 2003).

Plasmid pET17b-NGIL contains the cDNA for the N-terminal region (N-

terminal tail, GI domain and linker region; residues 1-170) of Hho1p under the

control of a T7 promoter, and an ampicillin resistance gene (Ali and Thomas,

2004).

The DNA arrays are contained in pUC18-based plasmids, and were pro-

vided by Dr Andrew Routh (MRC Laboratory of Molecular Biology, Cambridge).

pUC18-167x25 and pUC18-197x25 are based on the Widom “601” DNA nucleo-

some positioning sequence (Lowary and Widom, 1998) and contain DNA repeat

lengths of 167 and 197 bp respectively. The plasmids have been constructed as

described previously (Routh et al., 2008) except that each array contains 25 tan-

dem copies of the particular DNA sequence.

3.2.3 Proteins

3.2.3.1 Expression and purification of the yeast core histone H4, Hhf2p

E. coli Rosetta(DE3) cells were transformed with pET28b-HHF2 using heat

shock (Sambrook et al., 1989). Following overnight growth on LB-agar plates at

37 ◦C colonies were picked and grown overnight, shaking, at 37 ◦C in LB medium

supplemented with 25 µg/ml kanamycin and 25 µg/ml chloramphenicol (both

from Melford Laboratories Ltd.) (see Section 2.2.1.1 for media recipes).

Ten flasks (2 l) containing 450 ml 2xYT medium, supplemented with

the antibiotics above, were each inoculated with 5 ml of overnight culture and

grown at 250 rpm at 37 ◦C. When an OD600 of about 0.6 was reached expression

was induced with 1 mM IPTG and cultures grown for a further 4 h. Cells were

harvested by centrifugation at 5000 g for 15 min at 20 ◦C (to reduce cell lysis),
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then resuspended in 50 mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM EDTA, 1 mM

benzamidine, and the cell suspension was flash frozen and stored at –20 ◦C.

The cell suspension was thawed and the buffer supplemented with

1 µg/ml leupeptin, 1 µg/ml aprotinin, 0.156 mg/ml benzamidine, 1 µg/ml pep-

statin A and 0.5 mM PMSF. Cells were lysed by passing twice through a French

press at 1000 psi and inclusion bodies (containing Hhf2p) were collected by

centrifugation at 35000 g for 10 min at 4 ◦C. The pellet was crushed and washed

twice with TW buffer (wash buffer as described above, supplemented with 1%

(v/v) Triton X100) and twice with wash buffer. The pellet was resuspended in

DNase buffer (50 mM Tris-HCl pH 7.5, 2.5 mM MgCl2, 0.5 mM CaCl2), and then

DNase I (Sigma-Aldrich-Aldrich) was added to 2 µg/ml and the sample was in-

cubated at 37 ◦C for 1 hour.

Inclusion bodies were collected by centrifugation as before and ex-

tracted by crushing the pellet in 50 mM Tris-HCl pH 8.8, 6 M guanidine hy-

drochloride, 25 mM DTT, incubation for 45 min at 25 ◦C, with agitation, and

centrifugation at 35000 g for 10 min at 4 ◦C. The supernatant was taken and the

pellet re-extracted. The supernatants were then combined and filtered through

a 0.2 µm membrane (Millipore). The guanidine hydrochloride was removed

by passing the sample over a HiPrep 26/10 desalting column (GE Healthcare),

which had been pre-equilibrated with urea buffer (10 mM sodium phosphate,

8 M urea, 1 mM EDTA, 1 mM DTT, pH adjusted to 6).

Purification of Hhf2p was followed by SDS/18%-PAGE (Section 2.2.4.1).

Fractions of sufficient purity were flash frozen and stored at –80 ◦C. Accurate

protein concentrations were determined by automated amino acid analysis

(Section 2.2.4.2).
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3.2.3.2 Expression and purification of Hho1p and NGIL proteins

Hho1p was expressed in TB medium (Section 2.2.1.1) using the conditions de-

scribed in Section 2.2.3.1. NGIL was expressed in LB medium (Section 2.2.1.1),

supplemented with 50 µg/ml carbenicillin, using the same conditions as GII

(Section 2.2.3.3), except it was expressed in BL21(DE3)pLysS cells (Section

2.2.1.2). Both proteins were purified as described for Hho1p (Section 2.2.3.2)

except that NGIL was concentrated in a Vivaspin 2 concentrator with a 5 kDa

cut-off (Sartorius).

3.2.4 Extraction of chromatin and linker histones from

chicken erythrocytes

Chicken erythrocyte materials (nuclei, medium-length linker histone-depleted

chromatin, core histone octamers, linker histones and 147 bp competitor DNA)

were prepared as described (Thomas, 1998).

3.2.4.1 Isolation of chicken erythrocyte nuclei

5 ml of frozen chicken erythrocytes were thawed and lysed at 37 ◦C in 75 ml su-

crose buffer A (15 mM Tris-HCl pH 7.5, 0.34 M sucrose, 15 mM NaCl, 60 mM

KCl, 0.5 mM spermidine hydrochloride (Sigma-Aldrich), 0.15 mM spermine hy-

drochloride (Sigma-Aldrich), 15 mM 2-mercaptoethanol) containing 2.5 mM

EDTA pH 8.0 and 0.5% (v/v) NP-40 (Hewish and Burgoyne, 1973). Lysed cells

were filtered through two layers of muslin and the nuclei collected from the

filtrate by centrifugation at 2000 g for 5 min at 4 ◦C. The pellet of nuclei was

washed with sucrose buffer A until the supernatant was no longer pink and re-

suspended in sucrose buffer A containing 0.25 mM PMSF. The absorbance of
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the nuclear suspension was measured at 260 nm in 1 M NaOH and the volume

of nuclei was adjusted with sucrose buffer A to give A260 of 50.

3.2.4.2 Preparation of medium-length chromatin by micrococcal nuclease

digestion

The temperature of the nuclei (at A260 = 50) was raised to 37 ◦C and CaCl2 was

added to 1 mM. Micrococcal nuclease (Worthington: 15 U/µl stock) was added

at 2 µl per ml nuclei and the suspension was incubated for 3 min with swirling

to produce medium-length chromatin. Digestion was stopped by addition of

0.1 M EDTA pH 8.0 to 10 mM and chilling the nuclei on ice.

Nuclei were collected by centrifugation at 2000 g for 10 min at 4 ◦C and

the pellet drained well. The nuclei were lysed in 0.2 mM EDTA, in a volume at

least equal the starting volume of nuclei, by incubation on ice for 2 h. Nuclear

debris was removed by centrifugation at 2000 g for 5 min at 4 ◦C and the soluble

chromatin in the supernatant taken. The typical yield was 1 ml of chromatin at

A260 = 20 from 1 ml nuclei. (A260 = 10 corresponds to 1 mg/ml chromatin)

3.2.4.3 Size-fractionation of chromatin through sucrose gradients

5–30% sucrose gradients (30 ml) containing 10 mM Tris-HCl pH 7.5, 1

mM EDTA, 0.5 mM PMSF were prepared and allowed to settle for 2 h at 4 ◦C.

A maximum of 3 ml or 100 A260 units of soluble chromatin was layered on to

the gradients and fractionated by centrifugation at 16000 rpm in a Beckman

SW28 rotor for 16 h at 4 ◦C. The rotor was allowed to decelerate without brak-

ing to avoid disturbing the gradients. Gradients were fractionated and about

0.2 A260 unit samples were taken for analysis. Proteins were precipitated with

25% Trichloroacetic acid (TCA: Fisher Scientific) on ice for 20 min. The proteins
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were collected by centrifugation at 17000 g for 15 min at 4 ◦C and, for sam-

ples that contained sucrose, the TCA precipitation was repeated. Protein pel-

lets were washed in acetone containing 10 mM HCl and then in acetone alone.

Samples were analysed by SDS/20%-PAGE, and fractions containing chromatin

were dialysed against buffer A (Section 2.2.3.2).

3.2.4.4 Salt-stripping of linker histones from chicken erythrocyte

chromatin

Soluble chromatin was prepared (Section 3.2.4.2) and NaCl added to 0.65 M

from a 2 M stock, quickly with constant swirling to avoid precipitation of the

chromatin. The chromatin was fractionated in sucrose gradients, as in Section

3.2.4.3, but the gradients also contained 0.65 M NaCl. Centrifugation conditions

for medium-length stripped chromatin were 22400 rpm in a Beckman SW28

rotor for 15 h at 4 ◦C. Gradients were fractionated and analysed as above and

the fractions containing H1,H5-depleted chromatin were pooled and dialysed

against buffer A (Section 2.2.3.2). Chromatin concentration was measured by

absorbance at 260 nm.

3.2.4.5 Preparation of core histone octamers from linker histone-depleted

chicken erythrocyte chromatin

Hydroxyapatite resin (1 ml per 20 A260 units chromatin) (Sigma-Aldrich) was

pre-equilibrated with 10 mM sodium phosphate pH 7.0, 3 M KCl, 1 mM EDTA,

1 mM DTT. The linker histone-depleted chromatin was adjusted to 3 M KCl,

from a 5 M stock, and was incubated with the hydroxyapatite resin for 30 min

at 4 ◦C. The supernatant, containing core histone octamers, was removed and

the resin washed twice in the buffer. Supernatant and wash fractions were com-

bined and immediately concentrated in a Vivaspin concentrator with a 10 kDa
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cut-off. Using KCl in the buffers allows the octamer concentration to be deter-

mined by automated amino acid analysis (Section 2.2.4.2) (Mr: 108486 Da)

3.2.4.6 Isolation of linker histones H1 and H5 from chicken erythrocytes

Linker histones were isolated from either chicken erythrocyte chromatin (Sec-

tion 3.2.4.2) or nuclei (Section 3.2.4.1). Perchloric acid (PCA) was added to the

chromatin or nuclei to a final concentration of 5% (v/v) and the sample was

stirred on ice for 15 min. Precipitated proteins were collected by centrifuga-

tion at 10000 g for 10 min at 4 ◦C and the supernatant, on ice, was immediately

brought to pH 7.0 with triethanolamine. The neutralised supernatant was dial-

ysed against buffer A and the linker histones were further purified using a Hi-

Trap SP Sepharose HP cation-exchange column as described (Section 2.2.3.2).

The histone H1 (several variants) elutes at lower concentrations of NaCl than

H5 (about 550 mM and 700 mM respectively).

3.2.4.7 Isolation of 147 base pair competitor DNA from linker

histone-depleted chicken erythrocyte chromatin

A trial digestion was carried out using 10 A260 units of linker histone-depleted

chromatin (Section 3.2.4.4) and 30 U micrococcal nuclease at 37 ◦C in 10 ml

digestion buffer (10 mM Tris-HCl pH 7.5, 1 mM DTT, 1 mM CaCl2). Samples

(0.04 A260) were taken at various time points (from 4 to 48 min) and the DNA

extracted. The samples were diluted to 350 µl with water, 50 µl 10% (w/v) SDS

was added and mixed well, then 100 µl 5 M NaCl was added and the sample

mixed again. Proteins were extracted twice using phenol:chloroform:isoamyl

alcohol (25:24:1 (v/v)). The DNA was precipitated from the aqueous phase with

at least 3 volumes of absolute ethanol and incubation at –80 ◦C for 1 hour. DNA

was collected by centrifugation at 20000 g for 30 min at 4 ◦C and the pellet was
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washed with 70% (v/v) ice-cold ethanol. DNA was analysed in 19 cm long 7%-

polyacrylamide gels containing 0.3x TBE (Section 3.2.6.2).

Bulk chromatin digestion was carried out using conditions identified in

the trial digestion to produce predominantly core particles containing about

147 bp DNA. The digested chromatin was passed through sucrose gradients

(Section 3.2.4.3) by centrifugation at 28000 rpm in a Beckman SW28 rotor for

27 h at 4 ◦C and fractionated and analysed as described (Section 3.2.4.3). Frac-

tions containing core particles were dialysed against 10 mM Tris-HCl pH 7.5,

1 mM EDTA, 1 mM DTT and 0.5 mM PMSF before concentration in a Vivaspin

concentrator with 10 kDa cut-off. The DNA was then extracted as described for

the trial digestion samples, except that the final DNA pellet was dissolved in TE

buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA).

3.2.5 Isolation of yeast nuclei

Yeast nuclei were prepared using a protocol based on several previously pub-

lished methods (Lowary and Widom, 1989; Thomas and Furber, 1976; Winters-

berger et al., 1973).

A culture of yeast W303 cells (Section 3.2.1.2) was grown to an OD600

of approximately 1, in 50 ml YPAD (Section 3.2.1.1) at 30 ◦C with shaking at

260 rpm. The cells were harvested by centrifugation at 2000 g for 5 min at

20 ◦C, resuspended in 40 ml pre-incubation buffer (50 mM potassium phos-

phate pH 7.5, 1 M sorbitol, 10 mM MgCl2, 30 mM 2-mercaptoethanol, 0.5 mM

PMSF) and incubated for 30 min at 30 ◦C with shaking at 300 rpm. Cells were

collected by centrifugation at 3000 g for 5 min at 20 ◦C.

The cells were resuspended in 40 ml spheroplasting buffer (25 mM

potassium phosphate pH 7.5, 25 mM sodium succinate pH 5.5, 1 M sorbitol,

- 91 -



CHAPTER 3

10 mM MgCl2, 10 mM 2-mercaptoethanol, 0.5 mM PMSF) supplemented with

20 mg Zymolyase 20-T (Seikagaku). The cell suspension was incubated at 30 ◦C

with shaking at 260 rpm for 45-60 min, and the resulting spheroplasts collected

by centrifugation at 3000 g for 5 min at 4 ◦C. The spheroplasts were washed

twice with spheroplasting buffer.

Spheroplasts were resuspended in lysis buffer (20 mM potassium phos-

phate pH 7.5, 18% (w/v) Ficoll 400 (Sigma-Aldrich), 0.5 mM MgCl2, 0.5% (v/v)

NP-40, 1 mM PMSF, 1 µg/ml leupeptin, 1 µg/ml aprotinin, 0.156 mg/ml ben-

zamidine, 1 µg/ml pepstatin A) at 4 ◦C. Unlysed spheroplasts and cells were

collected by centrifugation at 4000 g for 10 min at 4 ◦C. The supernatant (con-

taining mitochondria, vacuoles and membrane fragments) was taken and the

nuclei were collected by centrifugation at 30000 g for 20 min at 4 ◦C. The su-

pernatant was removed carefully from the top. The nuclei were washed in the

buffer required for the subsequent experiments, for example 10 mM sodium

phosphate pH 8.0 for the cross-linking reactions.

3.2.6 DNA characterisation

3.2.6.1 Agarose gel-electrophoresis

Unless otherwise stated, 0.9% (w/v) agarose gels containing 0.3x TBE (26.7 mM

Tris base, 0.6 mM EDTA, 26.7 mM boric acid) were used. Glycerol was added to

5% (v/v) to the samples and a lane containing gel loading buffer (0.3X TBE, 5%

(w/v) glycerol, 0.04% (w/v) bromophenol blue, 0.04% (w/v) xylene cyanol FF)

was used to follow the progress of electrophoresis. Gels were run in 0.3x TBE at

10 V/cm. The DNA was visualised by staining with ethidium bromide, destain-

ing in deionised water and illumination with 254 nm UV light.
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3.2.6.2 Native PAGE

Unless otherwise stated 7% (w/v) polyacrylamide gels containing 0.3x TBE (Sec-

tion 3.2.6.1) were run at 10 V/cm. Samples were prepared and the DNA was

visualised as for agarose gels (Section 3.2.6.1).

3.2.7 Western blotting

3.2.7.1 Antibodies

Rabbit anti-Hho1 and anti-H1 polyclonal antibodies were raised in house. Rab-

bit anti-H3 polyclonal antibody was raised against a synthetic peptide from

within residues 100 to the C-terminus of human histone H3 (Abcam: ab1791).

Rabbit anti-H4 polyclonal anti-H4 polyclonal antibody was raised against a

synthetic peptide from within residues 1-100 of human histone H4 (Abcam:

ab7311).

The secondary antibody was a donkey anti-rabbit IgG horseradish

peroxidase-conjugated (HRP) antibody (GE Healthcare).

3.2.7.2 Protein transfer and immunodetection

Proteins were separated by SDS/PAGE (Section 2.2.4.1) and transferred elec-

trophoretically to nitrocellulose membrane (GE Healthcare) at 250 mA at 4 ◦C

for 3 h in SDS transfer buffer (25 mM Tris base, 192 mM glycine, 20% (v/v)

methanol, 0.1% (w/v) SDS). The membrane was blocked overnight at 4 ◦C on

a rocking platform with 4% (w/v) dried skimmed-milk powder (MarvelTM) in

TBS-T (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% (v/v) Tween 20), and then

incubated with a primary antibody (Section 3.2.7.1) at the appropriate dilution

in TBS-T/milk for 2 h at 25 ◦C or overnight at 4 ◦C with rocking. The membrane
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was washed in TBS-T (3x 15 min), incubated with the secondary antibody at

1:5000 dilution in TBS-T/milk for 1 hour with rocking at 25 ◦C, then washed in

TBS-T as above, and bound HRP-conjugated antibody was detected with en-

hanced chemiluminescence Western blotting reagents (GE Healthcare) and ex-

posure to X-ray film (Konica Minolta).

3.2.7.3 Nitrocellulose membrane stripping

In order to re-probe the nitrocellulose membranes they were first stripped by

incubation for 30 min at 50 ◦C with agitation in 50 mM Tris-HCl pH 6.8, 10 mM

2-mercaptoethanol, 2% (w/v) SDS. Membranes were rinsed well with dH2O,

washed in TBS-T (3x 15 min), and then re-probed (Section 3.2.7.2).

3.2.8 Chemical cross-linking

Chemical cross-linking was carried out essentially as described (Thomas, 1989)

using 5 µM protein samples (the equimolar mixture contained 5 µM of each

protein) in 10 mM sodium phosphate pH 8.0, 1 mM EDTA and 1 mM DTT, un-

less otherwise stated. An 11x dimethyl suberimidate (DMS: Pierce) stock solu-

tion was made in 100 mM triethanolamine and immediately added to the sam-

ples to the final concentration indicated. Samples were incubated at 25 ◦C for

the indicated time and the reaction quenched by the addition of hot SDS load-

ing buffer (Section 2.2.4.1). Samples were analysed by SDS/18%-PAGE (Section

2.2.4.1) and Western blotting with the indicated antibodies (Section 3.2.7).
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3.2.9 Reconstitution of nucleosome arrays

3.2.9.1 Purification of DNA arrays

E. coli DH5α cells (Section 2.2.1.2) in five flasks (2 l) containing 500 ml LB

medium (Section 2.2.1.1) plus 50 µg/ml carbenicillin was used to propagate

pUC18-167x25 or pUC18-197x25 plasmids (Section 3.2.2). The plasmids were

purified using a maxi-prep protocol involving equilibrium centrifugation in

CsCl-ethidium bromide gradients (Sambrook et al., 1989). The ethidium bro-

mide was removed with water-saturated butanol, and the DNA precipitated

with 1/10 volume of 3 M NaAc pH 5.2, and three volumes of cold absolute

ethanol at –80 ◦C for 1 hour. The DNA was collected by centrifugation at 20000 g

for 30 min at 4 ◦C and washed with cold 70% (v/v) ethanol. The dry pellet was

dissolved in dH2O.

Plasmids were digested with Eco RV, Dra I, Dde I and Hae II (all from

NEB) in NEB buffer 3 and BSA at 37 ◦C overnight (120 units of each enzyme

per mg plasmid DNA respectively). The long DNA arrays were separated from

the shorter plasmid fragments by sequential precipitation with 5–8% PEG 6000

(Sigma-Aldrich) in 0.5 M NaCl. A stock solution of 30% PEG 6000 and 2.5 M

NaCl was used to produce a final concentration of 5% PEG in the DNA solution,

incubated on ice for 10 min and the precipitated DNA was collected by centrifu-

gation at 25000 g for 10 min at 4 ◦C. The supernatant was taken, the PEG con-

centration adjusted to 5.1% and the precipitation repeated. The process was

repeated for PEG concentrations of 5.2%, 5.3%, 5.4%, 5.5%, 6.5%, 5.7%, 5.8%,

5.9%, 6.0% and 8.0%. Each pellet of precipitated DNA was dissolved in H2O and

analysed in 0.9% (w/v) agarose gels containing 0.3x TBE (Section 3.2.6.1). The

samples containing the DNA arrays were precipitated as described above.
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3.2.9.2 Reconstitution of nucleosome arrays by continuous salt dialysis

Chromatin was reconstituted using a continuous salt dialysis method described

previously (Huynh et al., 2005). The point of stoichiometric octamer binding to

positioning sequences in the DNA array was first determined through an oc-

tamer titration and assessment of reconstitution using gel-mobility-shift assay

in 1% (w/v) agarose gels containing 0.3x TBE (Section 3.2.6.1).

Samples for reconstitution contained 1.2 pmol 25-mer DNA array

(30 pmol octamer sites), sufficient chicken erythrocyte octamers to bind at each

positioning sequence, 6 pmol 147 bp competitor DNA (crDNA) and the indi-

cated molar ratio of linker histone in binding buffer (2.2 M NaCl, 10 mM Tris-

HCl pH 7.5, 1 mM EDTA, 5 mM DTT, 0.5 mM PMSF, 1 mM benzamidine). The

samples were incubated on ice for 30 min and then transferred to dialysis “but-

tons” (the cap of a 0.6 ml microfuge tube holds the sample, which is covered

with dialysis membrane and sealed with a ring cut from the body of the tube).

The buttons were placed in a dialysis bag containing 50 ml binding buffer and

this was dialysed overnight at 4 ◦C against 5 litres of 10 mM Tris-HCl pH 7.5,

1 mM EDTA, 1 mM DTT. Reconstitution was assessed in gel-mobility-shift as-

says, typically with 0.2 pmol chromatin per lane using 0.9% (w/v) agarose gels

containing 0.3x TBE (Section 3.2.6.1).

3.2.9.3 Fixing reconstituted nucleosome arrays with glutaraldehyde

To preserve the compaction state of the nucleosome arrays as they pass through

the agarose gels the arrays were gently fixed. Glutaraldehyde (50% (v/v): Sigma-

Aldrich) was added from a 1% stock to a final concentration of 0.1% (v/v) and

samples were incubated on ice for 10 min before loading on to agarose gels (Sec-

tion 3.2.6.1).
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3.2.9.4 Folding of nucleosome arrays

Reconstituted chromatin samples (in “buttons”) were dialysed for 36–40 h at

4 ◦C against 10 mM triethanolamine pH 7.5, 1 mM MgCl2. Gels were fixed with

glutaraldehyde (Section 3.2.9.3) before running through agarose gels (Section

3.2.6.1).

3.2.9.5 Ava I digestion of nucleosome arrays

Chromatin for Ava I (NEB) digestion was reconstituted as in Section 3.2.9.2 ex-

cept there was no EDTA in the buffers. The buffer conditions were adjusted to

50 mM NaCl and 2 mM MgCl2, Ava I was added (typically 17000 U per pmol nu-

cleosome array) and the samples were incubated at 37 ◦C for the indicated time.

The digestion was stopped by the addition of EDTA to 10 mM and samples were

kept on ice before analysis in agarose gels (Section 3.2.6.1).

3.2.9.6 Analytical ultra-centrifugation

Analytical ultra-centrifugation (AUC) experiments were carried out in collab-

oration with Dr Andrew Routh (MRC Laboratory of Molecular Biology, Cam-

bridge).

Sedimentation coefficients were determined using a Beckman XL-A

centrifuge with scanner optics (absorbing at 260 nm) and a Beckman AN60 ro-

tor. Sedimentation runs were carried out at 19000 rpm for 2 h at 5 ◦C. Sedi-

mentation coefficients were determined by a time-derivative method (Stafford,

1992), and differential apparent sedimentation coefficient distribution, g(s*)

was calculated using the Dcdt+ data analysis program (v 2.05) (Philo, 2006). The

sedimentation coefficients were corrected for buffer composition and temper-

ature using the factors determined previously (Routh et al., 2008).

- 97 -



CHAPTER 3

3.3 Results

3.3.1 Hho1p is less abundant than metazoan linker histones

In order to measure the relative levels of Hho1p and nucleosomes in yeast cells,

without using tagged proteins or estimations of nucleosome content, a semi-

quantitative protocol was devised. A range of amounts of recombinant Hhf2p

(i.e yeast histone H4) and Hho1p were analysed by Western blotting using poly-

clonal anti-H4 and anti-Hho1 antibodies. Densitometry of these blots pro-

duced standard curves that were used to measure the amounts of the proteins

in a wild-type yeast whole-cell extract (Figure 3.1). The standard curves were

fitted to a linear trend line, and only blots where both standard curves have R2

values greater than 0.925 were used. Table 3.3 shows the data produced and the

calculations for the molar ratio of core histone octamers (assumed to be half the

molar amount of Hhf2p) to Hho1p. There is about one molecule of Hho1p for

every 5–10 nucleosome cores in yeast. There is variation of a factor of 2 between

the samples but, despite repeating the experiment many times, a more precise

measure could not be achieved (data not shown). The R2 values for blots 1 and 2

were slightly higher (mean value: 0.975) than those of blots 3 and 4 (mean value:

0.960), indicating that the Hho1p may be present at around one molecule per

every six nucleosomes.

Table 3.3: Ratio of core nucleosome to Hho1p in yeast cells

Amount (ng) Amount (pmol) Molar ratio
Blot Hhf2p Hho1p Hhf2p Hho1p octamer to Hho1p

1 52.3 12.0 4.6 0.4 5.4
2 62.5 10.7 5.5 0.4 7.1
3 65.4 9.9 5.8 0.4 8.0
4 77.2 9.1 6.8 0.3 10.3

Mean 64.4 10.4 5.7 0.4 7.7
Std. Dev. 10.2 1.2 0.9 0.0 2.1
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Figure 3.1  Determining the ratio of Hho1p to nucleosomes in yeast whole-cell 
extract through semi-quantitative Western blots.  (a)  Example of a blot probed 
with anti-H4 and then anti-Hho1 antibodies.  Lanes 1-7 contain 50, 75, 100, 125, 150, 
175, 200 ng recombinant Hhf2p respectively; lanes 6 and 7 were not used for the stan-
dard curve as densitometry indicated that the signal was saturated.  Lanes 8-14 con-
tain 5, 7.5, 10, 12.5, 15, 17.5, 20 ng recombinant Hho1p respectively.  Lane 15 con-
tains whole cell extract from 1 OD600 S. cerevisiae W303.   (b)  Example of standard 
curves produced from densitometry of the Western blots in (a).  R² values above 0.925 
indicate the data are a good fit for the linear trend lines indicated.  
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3.3.2 Comparison of cross-linked products of chromatin

containing Hho1p or canonical linker histones

Chemical cross-linking of linker histone-stripped chicken erythrocyte (CE)

chromatin pre-incubated with equimolar amounts of chicken erythrocyte hi-

stone H1 or recombinant Hho1p produced similar patterns of products (Fig-

ure 3.2). Both chicken histone H1 and Hho1p cross-linked with chromatin pro-

duce a product of the size expected for a linker histone dimer, and Western

blotting confirms that these products contain linker histone. The product of

higher mobility than the putative dimer band is likely to contain Hho1p plus a

core hisone. Perchloric acid (PCA), which is widely used to extract linker his-

tones, could not separate the cross-linked products containing just linker his-

tones from those also containing core histones.

Yeast cells were treated to produce spheroplasts. The nuclei were ex-

tracted (Figure 3.3a; Section 3.2.5) and cross-linked with DMS. The cross-

linking was followed by Western blotting, with anti-Hho1 antibody (Fig-

ure 3.3b). The products produced were of a similar size to those produced upon

cross-linking of Hho1p bound to chicken erythrocyte chromatin. The dimer

band is not as pronounced upon cross-linking nuclei, probably because Hho1p

is present at less than 1 : 1 ratio to the nucleosomes in yeast nuclei whereas

Hho1p was equimolar in the linker histone-depleted chicken erythrocyte chro-

matin bound with Hho1p. An anti-H3 blot indicates that none of the product

bands around the size of the possible dimer band contain H3, and similar re-

sults were produced using an anti-H4 antibody (data not shown). However as

antibodies were unavailable for core histones H2A and H2B, it is not known that

the putative dimer band contains only Hho1p. It should also be noted that the

cross-linking may destroy some of the epitopes recognised by the antibodies,

therefore absence of signal does not necessarily mean absence of the antigen
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(a)

(b)

Figure 3.2  Cross-linking of linker histone-depleted chicken erythrocyte chroma-
tin bound with linker histones.  (a)  SDS/18%-PAGE showing samples before (-) and 
after (+) treatment with 1 mg/ml DMS for 30 minutes.  Similar sized products are 
formed for samples containing H1 (extracted from chicken erythrocytes) and recombi-
nant Hho1p (lanes 9, 11) (LH: linker histone).  Bands of the size expected for linker 
histone dimers are indicated with an arrow.  Lane 3 contains protein molecular weight 
markers.  (b)  Western blots using anti-H1 and anti-Hho1.  A similar pattern of linker 
histone-containing bands is produced for chromatin bound by H1 and Hho1p (lanes 9 
and 11).  Putative linker histone dimer bands are indicated for both samples. 
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(a)

(b)

Figure 3.3  Cross-linking of S. cerevisiae nuclei shows a ladder of Hho1p-
containing products.  (a)  SDS/18%-PAGE showing the preparation of yeast nuclei 
through spheroplasting and differential centrifugation.  Bands corresponding to the 
expected sizes of core histones are enriched in the nuclear fraction (lane 9).  Lane 1 
contains protein molecular weight markers.  (b)  Western blots of yeast nuclei before 
(-) and after (+) treatment with 1 mg/ml DMS for 30 minutes.  The yeast nuclei (lane 4) 
show a similar ladder of cross-linked products to Hho1p-bound to chicken erythro-
cyte chromatin (Figure 3.2b lanes 9, 11).  A product that corresponds to the expected 
size of a Hho1p dimer is indicated.  Some residual H3 signal is seen on the α-Hho1 
blot (lanes 3, 4).  
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in the cross-linked products; however polyclonal antibodies were used to min-

imise this. Again, PCA extraction did not enrich for the Hho1p-only products

(data not shown).

3.3.3 Hho1p-containing nucleosome arrays are structurally

similar to those containing canonical linker histones

In order to study the compaction levels of chromatin containing various linker

histone contents, reconstituted nucleosome arrays were used. The components

used in these assays are shown in Figure 3.4. NGIL is a truncation mutant of

Hho1p, which has the second globular domain removed. A stepwise decreasing

salt-dialysis protocol was used to load octamer (isolated from chicken erythro-

cytes) on to the DNA arrays in the presence of mixed sequence competitor DNA

(crDNA) (Figure 3.5). The DNA arrays contained 25 copies of the Widom “601”

octamer positioning sequence with either 167 or 197 bp repeat lengths. 167 bp

was used because it is similar repeat length to that measured for yeast chro-

matin (Thomas and Furber, 1976), while the longer linker DNA in the 197 bp

repeats (essentially the “canonical” repeat length of about 200 bp) would em-

phasise any array compaction. Once the amount of octamer required to bind at

equimolar ratio to the positioning sequences in the DNA arrays was determined

these conditions were used for the further linker histone titrations.

Initially the reconstituted nucleosome arrays were run immediately in

agarose gels (Figure 3.6), causing any compaction of the arrays to be lost. There-

fore any gel shifts upon the addition of linker histone would be due to the

change in mass of the array, allowing the binding of linker histone into the ar-

ray to be determined. All of the linker histones caused the nucleosome arrays

to be retarded in the gel, indicating binding of the linker histones. The arrays
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containing chicken erythrocyte histone H1 precipitated at lower linker histone

input ratios than those containing Hho1p or NGIL. H1-containing arrays are

completely precipitated in lane 7 and 8 for 167 and 197 bp repeat lengths re-

spectively, while neither of the Hho1p- or NGIL-containing arrays were precip-

itated in the same conditions, suggesting that H1 has a higher affinity for the

nucleosome arrays. The 197 bp repeat nucleosome arrays were more soluble

than the 167 bp repeat arrays.

By gently fixing the nucleosome arrays with glutaraldehyde before

analysing them in the gels, the compaction state of the nucleosome arrays could

be studied (Figure 3.7). The arrays were compacted by addition of linker his-

tone, as indicated by their faster mobility in the gels with increased linker hi-

stone content, with the effect being much more obvious for the arrays with

197 bp repeat length. The arrays containing histone H1 were compacted more

strongly than those containing Hho1p and NGIL, which barely shift. This is

likely to be partially due to the higher affinity of histone H1 for the nucleo-

some arrays, meaning more H1 than Hho1p or NGIL would be bound within

the chromatin for a given input ratio. However the Hho1p- and NGIL- contain-

ing nucleosome arrays were beginning to precipitate in lanes 7 and 8, indicating

that no further compaction of these arrays would be expected upon addition

of linker histone. There is no appreciable difference between the Hho1p- and

NGIL-containing nucleosome arrays, suggesting the second globular domain of

Hho1p is not required for compaction of the array.

Dialysing nucleosome arrays into buffers containing magnesium chlo-

ride causes the arrays to fold into the “30 nm fibre state” (Huynh et al., 2005).

Following folding arrays were fixed to preserve their structure during elec-

trophoresis (Figure 3.8). Compaction of the linker histone-free arrays (lanes 1)

can be seen by comparing their sizes relative to the DNA markers in Figures
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3.7 and 3.8. Addition of linker histones in the folded arrays had little effect on

the nucleosome array gel-mobility. Only addition of histone H1 to nucleosome

arrays with 197 bp repeat length caused noticeable compaction of the folded ar-

rays. This suggests that Hho1p has no appreciable effect on the gross structure

of the “30 nm fibre” formed in buffers containing magnesium chloride.

As it was not possible to clearly show differences between the folded

nucleosome arrays reconstituted with the different linker histones by elec-

trophoretic mobility shift assays, analytical ultracentrifugation was used to

compare the arrays quantitatively, in collaboration with Dr Andrew Routh (MRC

Laboratory of Molecular Biology, Cambridge). The 167 bp repeat length DNA

arrays were used as this is the nucleosome repeat length of yeast (Thomas and

Furber, 1976). Histone H5 was used, rather than chicken erythrocyte histone

H1, to allow comparison with earlier data produced by Dr A. Routh (personal

communication). Figure 3.9a shows an example of the raw data that is pro-

duced as the boundary of the chromatin samples moves along the cell during

centrifugation. In most cases the transformed data indicated that there were

two species in the chromatin samples: a larger, well-defined species and a more

varied species, which is likely due to fragmentation and aggregation of the ar-

rays (Figure 3.9b). The sedimentation coefficients of the more defined species

for each array were plotted against the input ratio of linker histone, and distinct

trend lines for each linker histone were identified by fitting the data to a linear

function. However the large variation in the data suggests that the differences

may not be significant (Figure 3.9c). This lack of a significant difference be-

tween the compaction of the folded nucleosome arrays containing the various

linker histones is consistent with the results observed in the gel-mobility-shift

assay (Figure 3.8).

To probe the structure of the nucleosome arrays digestion with Ava I
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Figure 3.9  Analysis of folded nucleosome arrays by analytical ultracentrifuga-
tion.  (a)  Example of the raw data produced during analytical ultracentrifugation 
showing the boundary of the nucleosome arrays moving from left to right during con-
secutive scans.   (b)  Example of the transformed data showing two species.  One spe-
cies is tightly defined with an s*(20,w) of about 85.  The other species shows a broader 
distribution of smaller species that appear to be aggregating.  (c)  Sedimentation coef-
ficients of folded 167 bp repeat 25-mer nucleosome arrays containing linker histones 
as indicated.  The individual data points are plotted.  H5 from chicken erythrocyte 
nuclei was used as a positive control to allow comparison with data from Dr A. Routh 
(personal communication).     
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restriction endonuclease was used as there is a recognition site between each

repeat of the positioning sequence in the DNA array (see Figure 3.5). Nucleo-

some arrays containing chicken erythrocyte histone H1 or H5 precipitated in

the buffer conditions required for Ava I activity. This is likely due to the 2 mM

MgCl2 in the buffer, which has been previously shown to cause precipitation

of reconstituted nucleosome arrays containing histone H5 (Huynh et al., 2005).

Therefore digestion of the arrays containing an input ratio of one molecule per

nucleosome of Hho1p or NGIL was compared to that with no linker histone, or

just the DNA array alone.

Figure 3.10 shows time courses for Ava I digestion of these arrays. The

DNA array produced a ladder of products as the array was digested, while the

nucleosome arrays produced less distinct intermediate products, probably be-

cause the nucleosomes reduce the accessibility of Ava I to the recognition sites.

A band corresponding to 167 bp DNA (an individual repeat of the array) in-

creases upon Ava I digestion for all arrays. This indicates that Ava I is able to

displace both linker histone and octamer from the DNA array in these condi-

tions. Chromatin containing Hho1p may protect the intact array from Ava I di-

gestion for longer than chromatin containing either NGIL or no linker histone

(the intact arrays persist for at 120, 40 and 40 minutes respectively).

To look for evidence of bridging by Hho1p the nucleosome arrays used

above were digested to completion using Ava I (Figure 3.11a). If Hho1p were

bridging between two nucleosomes it may cause dinucleosomes to be pro-

tected from Ava I digestion. The size of products for the Hho1p-containing,

NGIL-containing and no linker histone arrays are equivalent, giving no indi-

cation of bridging two nucleosomes by Hho1p. Fixing the arrays gently with

0.1% glutaraldehyde on ice before digestion for various times (samples fixed for

10 min are shown in Figure 3.11b) caused larger products to remain after Ava I
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nuc?
DNA

di-nuc?

nuc?
DNA
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Figure 3.10 Hho1p may protect nucleosome arrays from digestion by Ava I.  
Time courses are used to compare the relative protection of the Ava I sites in the 
indicated nucleosome and DNA arrays (167 bp repeat length, 25-mer arrays) 
during partial Ava I digestion.  Linker histones are present at an equimolar input 
ratio to nucleosome core.  Samples are run in 0.9% agarose gels containing 0.3x 
TBE.  Lanes 1 and 10 contain DNA size markers.  The intact Hho1p-containing 
arrays persists longer upon Ava I digestion (lane 7) than chromatin without linker 
histone or containing NGIL (lanes 4).  
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digestion, presumably due to histone tails being cross-linked to DNA and other

nucleosomes, but there were no obvious differences in the products from the

different arrays.

3.4 Discussion

3.4.1 Hho1p is present at about 1 molecule per 5–10

nucleosomes and may form dimers upon cross-linking

of yeast chromatin

To understand the roles of Hho1p within yeast chromatin it is important to

know its abundance. Previous measurements have made use of yeast strains

with tagged proteins in the genome or have estimated the number of nucleo-

somes in a yeast cell, producing ratios that vary from one in four nucleosomes

(Downs et al., 2003) to one in 37 nucleosomes (Freidkin and Katcoff, 2001). Us-

ing semi-quantitative Western blotting, a ratio of about one Hho1p per every

5–10 nucleosomes was obtained and the quality of data suggest that Hho1p

may be present at the more abundant end of that range (Figure 3.1; Table 3.3).

This estimate is compatible with the genome-wide association of Hho1p seen

by Schäfer and colleagues (2008), in which a ChIP-chip assay showed that all of

the yeast open reading frames (about 6400) were bound by Hho1p.

Hho1p, like histone H1, may form dimers upon cross-linking both in

vitro, when bound to chicken erythrocyte chromatin, and within yeast nuclei.

The intensity of the putative Hho1p dimer band produced was lower for cross-

linking in yeast nuclei compared to that in chicken erythrocyte chromatin con-

taining one molecule of Hho1p per nucleosome (Figures 3.2 and 3.3). This is

consistent with the ratio of Hho1p to nucleosome being lower than one to one,
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as determined in Section 3.3.1.

3.4.2 Hho1p increases the compaction of reconstituted

nucleosome arrays; the second globular domain does

not seem to be required

Studying the role of Hho1p in chromatin structure was challenging, as com-

parison with canonical linker histones was complicated by differences in their

affinity for the nucleosome arrays (Figure 3.6). The affinities of Hho1p and NGIL

for the nucleosome arrays were not appreciably different in this assay. This is

slightly surprising due to previous observations of binding to DNA-cellulose,

which showed 50% elution of protein at about 430 mM, 400 mM and 280 mM

NaCl (for H1, Hho1p and NGIL respectively) (Ali and Thomas, 2004). Hho1p

increases the compaction of nucleosome arrays slightly, but so does NGIL, in-

dicating the second globular domain is not required (Figure 3.7). However,

chicken erythrocyte histone H1 compact the reconstituted nucleosome arrays

more strongly than both the Hho1p proteins. When Hho1p or NGIL were in-

cluded in the folded nucleosome arrays there was no obvious increase in the

compaction, while inclusion of chicken erythrocyte histone H1 only caused

visible compaction in the nucleosome arrays with 197 bp repeat length (Fig-

ure 3.8). To determine if these observations were due to the low resolution

of gel-shift-mobility assays, the folded nucleosome arrays with 167 bp repeat

lengths were also compared using analytical centrifugation. The nucleosome

arrays were prone to fragmentation, and the sedimentation coefficients mea-

sured did not form a tight trend with the linker histone input ratio. Therefore,

it would be advisable to repeat these analytical ultracentrifugation experiments

using longer nucleosome arrays, which appear to be more stable (Dr A. Routh,
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personal communication) and have been shown to compact significantly upon

inclusion of histone H5 (Routh et al., 2008).

Probing the structure of the reconstituted nucleosome arrays with Ava

I restriction endonuclease allowed the Hho1p- and NGIL-containing arrays to

be distinguished, as arrays containing Hho1p may be more resistant to Ava I

digestion (Figure 3.10). The GII domain may cause occlusion of the Ava I site

either by binding at the site itself (in the linker DNA) or binding an adjacent nu-

cleosome to the GI domain. It is unlikely that the GII domain would bind the

linker DNA because the isolated GII domain binds a nucleosome dyad and pro-

vides chromatosome protection (Sanderson et al., 2005). No evidence of nucle-

osome bridging by Hho1p was detected by digesting with Ava I to completion

(Figure 3.11). However this may be because the Ava I was able to displace the

linker histone and octamer, releasing 167 bp length DNA of an individual re-

peat of the nucleosome positioning sequence plus linker DNA. One alternative

explanation for the difference in Ava I partial digestion of Hho1p- and NGIL-

containing nucleosome arrays could be that the full-length protein, with two

globular domains, has a greater affinity for the chromatin than NGIL. This may

be expected because each molecule of Hho1p has two DNA binding domains,

however the binding of Hho1p and NGIL to chromatin appeared to be simi-

lar in the gel-mobility-shift assays (Figure 3.6). Therefore, nucleosome bridging

by Hho1p is the most likely of these explanations and further efforts should be

made to look for its occurrence.
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3.5 Summary

• Hho1p is present at around one molecule per 5 to 10 nucleosomes. This

is within the range of values previously published and is consistent with

a relatively low cellular level (relative to core histones) but presence on

every open reading frame in the yeast genome.

• The pattern of products produced by cross-linking Hho1p- and H1-

containing chromatin is similar. Similar sized Hho1p-containing prod-

ucts are also produced by cross-linking yeast nuclei, but with a lower level

of the putative linker histone dimer, consistent with substoichiometric

amounts of Hho1p in yeast chromatin.

• Hho1p binds reconstituted nucleosome arrays with lower affinity than

canonical linker histones. Despite this making comparison of the nucle-

osome arrays more difficult, Hho1p appears to cause less compaction of

the arrays before they start precipitating, than histone H1.

• The second globular domain of Hho1p does not appear to be required

for compaction of nucleosome arrays but may increase the resistance of

an intact 25-mer nucleosome array to Ava I digestion. This tentatively

suggests Hho1p may bridge between nucleosomes, protecting the linker

DNA.
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4 Hho1p interactions with chromatin

proteins

4.1 Introduction

Reported Hho1p interactions come mainly from high-throughput studies that

have looked for either genetic interactions (Collins et al., 2007; Wilmes et al.,

2008) or physical interactions (Krogan et al., 2006; Tarassov et al., 2008). How-

ever these interactions do not necessarily occur directly between Hho1p and

the other protein component. For example, an interaction between Hho1p

and Srm1p (also called Prp20p) was identified by immunoprecipitation of yeast

whole-cell extract using a Srm1-protein A bait complex (Dilworth et al., 2005).

A number of chromatin-associated proteins were immunoprecipitated, includ-

ing all four core histones. This suggests an entire chromatosome could have

been immunoprecipitated and that the interaction between Hho1p and Srm1p

may not be direct. There is currently no published report of a direct interaction

between Hho1p and a non-histone protein in vitro, however the literature does

provide some suggestions for candidate Hho1p-interacting partners. Metazoan

linker histones have been shown to interact with high mobility group (HMG)

box proteins (Shooter et al., 1974; Carballo et al., 1983) and a homologue of the

S. cerevisiae protein Sir2p (SirT1) (Vaquero et al., 2004), while Hho1p is known

to share functions with Sir2p and Htz1p suggesting they may co-localise and/or

functionally interact to bring about these shared functions (detailed below).
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The domain structures of these proteins are shown in Figure 4.1.

There are several yeast proteins that contain HMG box domains. Rox1p

binds with sequence-specificity (Balasubramanian et al., 1993), while Abf2p is

mitochondrial (Diffley and Stillman, 1991), and Nhp10p (also called Hmo2) has

been identified as part of the INO80 chromatin remodelling complex (Morrison

et al., 2004), which is directly involved in DNA repair. Spp41p and Ixr1p are

large proteins with only a small proportion containing similarity to an HMG box

domain. Therefore none of the proteins discussed so far are considered to be

HMGB1 homologues. Hmo1p and Nhp6ap are potential HMGB1 homologues,

however, and were investigated in this Chapter.

Hmo1p contains a region with homology to the B box of HMGB1 and

a region that has been suggested to be A-box-like (Lu et al., 1996). It contains

a weakly acidic region C-terminal to the B box, flanked by a further basic tail.

Hmo1p is found at rDNA loci and appears to alter the accessibility of individual

rDNA genes to RNA polymerase I transcription (Gadal et al., 2002). As Hho1p

is also known to be present and have functions at rDNA loci (Levy et al., 2008)

there may be a direct interaction with Hmo1p. However a more recent paper

has shown that Hmo1 is associated with the actively transcribed rDNA regions,

which are largely devoid of nucleosomes (Merz et al., 2008). As Hho1p is known

to bind the nucleosome dyad it suggests Hmo1p and Hho1p could occur within

different parts of the rDNA, without directly interacting.

Nhp6ap contains just one HMG box, but is the most adundant HMG-

box protein in yeast (Kolodrubetz and Burgum, 1990). It contains an HMG

B-like domain and is highly homologous to, and functionally redundant with,

Nhp6bp. Collectively they are called Nhp6p. Nhp6p binds to DNA without

sequence-specificity and causes sharp bending of the DNA (Paull and Johnson,

1995). It binds nucleosomes in vitro and has roles in recruitment of chromatin
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Figure 4.1  Cartoons indicating the domain structure of proteins used in 
this Chapter.   Domains sharing structural and/or functional homology are the 
same colour.  Basic linkers and tails are light blue, acidic linkers and tails are red.  
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remodelling complexes (Formosa et al., 2001; Szerlong et al., 2003). Nhp6ap is

thought to be the homologue of metazoan HMGB1, which interacts with his-

tone H1 through its acidic C-terminal tail (Cato et al., 2008). Nhp6ap, however,

does not contain this acidic region suggesting that any interaction with Hho1p

would occur in a different manner. An interaction between Hho1p and Nhp6ap

was reported in a split-ubiquitin screen (Xue and Lehming, 2008). This study

also saw an interaction between Hho1p and Nhp6bp, which did not occur in

pull-down assays. The interaction between Hho1p and Nhp6ap has not been

verified in vitro, therefore further investigation is required.

Sir2p is an NAD-dependent histone deacetylase that is involved in si-

lencing transcription at rDNA loci, silent mating type loci and telomeres (Imai

et al., 2000). It is also involved in regulation of recombination and lifespan of

the yeast (Gottlieb and Esposito, 1989; Kaeberlein et al., 1999). Hho1p is also

enriched on rDNA (Freidkin and Katcoff, 2001) and has roles in silencing and

recombination, suggesting that Hho1p and Sir2p may function in similar path-

ways. When the SIR2 gene is deleted, Hho1p association at rDNA loci is re-

duced (Li et al., 2008), suggesting Sir2p has a role in Hho1p localisation. Sir2p

acts as part of the RENT complex in its roles at rDNA loci (Huang and Moazed,

2003). Another component of the RENT complex, Fob1p, interacts with Hho1p

as shown through affinity-capture mass spectrometry using a Fob1-TAP tagged

strain (Huang et al., 2006). The C. elegans homologues function together to

propagate a specialised subtelomeric chromatin state but were not seen to di-

rectly interact (Wirth et al., 2009). The human homologues of Hho1p and Sir2p,

histone H1 and SirT1, interact through the N-terminus of SirT1 (Vaquero et al.,

2004). Thus, Sir2p is a strong candidate to have a direct interaction with Hho1p.

Htz1p is an S. cerevisiae histone H2A subtype and a homologue of his-

tone H2A.Z. It has roles in nucleosome positioning and preventing the spread
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of silenced chromatin (Guillemette et al., 2005; Meneghini et al., 2003). Hho1p

also has roles in barrier elements, and this is partially dependent on the pres-

ence of Htz1p (Veron et al., 2006). Interactions between Hho1p and Htz1p have

been detected in a protein-fragment complementation assay and by affinity-

capture mass spectrometry; however it is unknown if the interaction is direct

(Tarassov et al., 2008; Lambert et al., 2009). Further investigation is required to

determine if this interaction is direct and occurs in vitro.

In the work described in this Chapter, interactions of Hho1p with

chromatin proteins are sought. Chemical cross-linking and gel filtration are

used to look for interactions between Hho1p and Hmo1p, Nhp6ap or Sir2p

in vitro. The interaction between Hho1p and Htz1p, is studied using co-

immunoprecipitation and chemical cross-linking assays. qPCR studies looks

for co-localisation of Hho1p and Htz1p at positions across the ADH2 and PHO5

genes. Unfortunately, only the interaction between Hho1p and Sir2p was ob-

served, and investigation of this interaction was hampered by difficulties in

sample preparation.

4.2 Materials and methods

4.2.1 Plasmids

Plasmid pET11a-NHP6A contains the cDNA of the full-length S. cerevisiae

NHP6A gene and was kindly provided by Prof Reid Johnson (University of Cali-

fornia, Los Angeles) (Paull and Johnson, 1995).

Plasmid pGex4T-HTZ1 contains the cDNA of the S. cerevisiae HTZ1

gene with an N-terminal glutathione-S-transferase (GST) tag. The GST-fusion

protein is thrombin cleavable, leaving five amino acids at the N-terminus of the
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Htz1p. Plasmid pGex4T-HTZ1 was a gift from Dr Mark Churcher (MRC Labora-

tory of Molecular Biology, Cambridge).

Plasmid pGex4T-1-SIR2 (pDM111a) contains the cDNA of the S. cere-

visiae SIR2 gene with an N-terminal GST tag. Cleavage with thrombin leaves

five amino acids at the N-terminus of Sir2p. Plasmid pGex4T-1-SIR2 was a gift

from Prof Danesh Moazed (Harvard Medical School, Boston) Tanny et al. (1999).

4.2.2 Proteins

4.2.2.1 HMGB1

Purified recombinant rat HMGB1 was provided by Miss Laura Cato (Depart-

ment of Biochemistry, University of Cambridge).

4.2.2.2 Hmo1p

Purified recombinant Hmo1p was provided by Miss Varsha Jagadesham (De-

partment of Biochemistry, University of Cambridge).

4.2.2.3 Expression and purification of Nhp6ap

Nhp6ap was expressed using the same conditions as GII (Section 2.2.3.3). E.

coli cell extract was produced using the protocol described for Hho1p (Section

2.2.3.2). Contaminating proteins were precipitated by slowly adding ammo-

nium sulphate to a final concentration of 2.5 M while stirring on ice. The re-

sulting suspension was clarified by centrifugation at 6000 g for 20 min at 4 ◦C.

The supernatant was loaded onto a HiTrap Phenyl Sepharose HP hydrophobic-

interaction column, which had been pre-equilibrated with buffer C (Section

2.2.3.2). Bound proteins were eluted with a 12-column-volume linear gradi-
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ent from buffer C to buffer A and fractions containing Nhp6ap, as assessed by

absorbance at 280 nm and SDS/18%-PAGE (Section 2.2.4.1), were collected.

The fractions were dialysed overnight against buffer A at 4 ◦C and

loaded on to a Resource S cation-exchange column, which had been pre-

equilibrated in buffer A. Bound proteins were eluted with a 50-column-volume

linear gradient from buffer A to buffer B (Section 2.2.3.2). The fractions con-

taining pure Nhp6ap were pooled and dialysed as above. The purified Nhp6ap

sample was concentrated at 4 ◦C using a 3 kDa cut-off Vivaspin 2 concentrator

and flash frozen in aliquots for storage at –80 ◦C.

4.2.2.4 Expression and purification of Htz1p

E.coli BL21(DE3) cells (Section 2.2.1.2) were transformed with pGex4T-HTZ1

and grown at 37 ◦C with shaking at 260 rpm in LB medium (Section 2.2.1.1) sup-

plemented with 50 µg/ml carbenicillin. When the OD600 reached about 0.6, ex-

pression of GST-Htz1 was induced with 0.5 mM IPTG and cultures were grown

for a further 3 h. Cells were harvested by centrifugation at 5000 g for 10 min at

4 ◦C. Cells are washed in 10 mM sodium phosphate pH 8.0, 140 mM NaCl and

the pellets were stored at –20 ◦C.

Cells were thawed and resuspended in 10 mM sodium phosphate

pH 8.0, 1 M NaCl, 1 mM DTT, 0.5 mM PMSF, 1 µg/ml leupeptin, 1 µg/ml apro-

tinin, 0.156 mg/ml benzamidine, 1 µg/ml pepstatin, lysed by passage through a

French press twice at 1000 psi, and cell debris was then removed by centrifu-

gation at 35000 g for 30 min at 4 ◦C. The cell extract was filtered through a

0.2 µm membrane (Millipore) and bound to Glutathione Sepharose 4B media

(GE Healthcare), pre-equilibriated in GST wash buffer (10 mM sodium phos-

phate pH 8.0, 140 mM NaCl), for 1 h at 25 ◦C. The GT-beads with bound proteins

were washed thoroughly with GST wash buffer, thrombin (50 U) was added and
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the sample was incubated overnight at 4 ◦C.

The cleaved Htz1p remained bound to the Sepharose beads, and

needed guanidine hydrochloride for elution. The GST and other contaminants

were removed from the beads by incubating in urea buffer (8 M urea, 20 mM

sodium phosphate pH 8.0, 1 mM DTT) for 15 min, at 25 ◦C, followed by two fur-

ther washes of the beads with urea buffer. Htz1p was then eluted from the beads

by incubating for 1 h at 25 ◦C with 6 M Gu-HCl, 20 mM Tris-HCl pH 7.5, 10 mM

DTT. The beads were washed with guanidine hydrochloride buffer and the

eluted fractions were dialysed first against 10 mM Tris-HCl pH 7.5, 1 M Gu-HCl,

5 mM 2-mercaptoethanol and 0.2 mM PMSF and then again against 5 mM 2-

mercaptoethanol and 0.2 mM PMSF. Htz1p was concentrated in a CentriplusRC

concentrator (Millipore) with a 3 kDa cut-off, which contains a cellulose-based

membrane as Htz1p binds to polyethersulfone membrane.

4.2.2.5 Expression and purification of Sir2p

E. coli BL21(DE3) cells (Section 2.2.1.2) containing pGex4T-1-SIR2 were grown

in LB medium (Section 2.2.1.1), supplemented with 50 µg/ml carbenicillin, at

37 ◦C and 250 rpm until the OD600 reached about 0.6. Following induction with

1 mM IPTG the temperature was reduced to 16 ◦C and the cultures were grown

overnight. Cells were harvested by centrifugation at 5000 g for 10 min at 4 ◦C

and washed with ice-cold binding buffer (10 mM sodium phosphate pH 8.0,

350 mM NaCl). The pellets were stored at –20 ◦C.

E. coli cell extract was produced using the protocol described for Hho1p

(Section 2.2.3.2) except that the buffer used was at pH 8.0. GST-Sir2 was bound

to GT-beads, which had been pre-equilibrated in binding buffer, for 1 h at 25 ◦C

and washed three times with binding buffer. Thrombin digestion, using 50 U

enzyme, was carried out overnight on the bead-bound sample at 4 ◦C. The
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cleaved Sir2p was released into the supernatant, and the beads were washed

in binding buffer. The supernatant and washes were concentrated at 4 ◦C in a

Vivaspin 2 concentrator with a 10 kDa cut-off. Aliquots were flash frozen and

stored at –80 ◦C.

4.2.3 Chemical cross-linking

Chemical cross-linking was carried out as described in Section 3.2.8. For cross-

linking with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC: Pierce) the

samples were prepared in 10 mM sodium phosphate buffer at pH 7.0. A 3x stock

solution of EDC was prepared in 10 mM sodium phosphate pH 7.0.

4.2.4 Western blotting

Western blots were carried out as described in Section 3.2.7.

4.2.4.1 Antibodies

Anti-Hho1 and donkey anti-rabbit IgG HRP-conjugated antibodies are de-

scribed in Section 3.2.7.1. Rabbit anti-Htz1 antibody was raised against a syn-

thetic peptide of residues 117-134 of the S. cerevisiae Htz1p (Upstate). Anti-Sir2

(y-80) is a rabbit polyclonal antibody raised against residues 1–80 of S. cerevisiae

Sir2p (Santa Cruz Biotechnology).

4.2.5 Analytical gel filtration

For the Hho1p and Nhp6ap experiment a Superdex 75 10/300 GL gel filtra-

tion column (GE Healthcare) was pre-equilibrated in 10 mM sodium phos-

phate pH 7.0, 150 mM NaCl, 1 mM DTT and 1 mM EDTA. For Hho1p and
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Sir2p a Superdex 200 10/300 GL gel-filtration column (GE Healthcare) was pre-

equilibrated in 10 mM sodium phosphate pH 8.0, 175 mM NaCl and 1 mM

EDTA.

Samples were prepared containing one or both proteins at 10 µM or

17 µM (for the Nhp6ap and Sir2p experiments respectively), in the same buffer,

and incubated on ice for 30 min. The elution of proteins from the Superdex

column was followed by absorbance at 280 nm.

4.2.6 Co-immunoprecipitation

4.2.6.1 Anti-Hho1 immunoprecipitation

Cultures of wild-type W303 yeast (Section 3.2.1.2) were grown in YPAD (Sec-

tion 3.2.1.1). Cells were harvested by centrifugation at 2000 g for 5 min at 4 ◦C,

washed in ice cold PBS (4.3 mM Na2HPO4, 1.47 mM KH2PO4, 137 mM NaCl,

2.7 mM KCl, adjusted to pH 7.4), and then resuspended in ice cold RiPA buffer

(10 mM sodium phosphate pH 7.0, 140 mM NaCl, 1 mM EDTA, 0.5% (v/v)

NP-40, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) SDS) supplemented with

1 µg/ml leupeptin, 1 µg/ml aprotinin, 0.156 mg/ml benzamidine, 1 µg/ml pep-

statin A. Cells were lysed and chromatin sheared on ice with pulses of sonica-

tion at 60% amplitude (15x 10 sec). Cell debris was removed by centrifugation

at 16000 g for 5 min at 4 ◦C.

The whole-cell extract was pre-cleared with Protein A Sepharose beads

(Zymed) for 1 h at 4 ◦C and the beads were removed by centrifugation at 3000 g

for 1 min at 4 ◦C. At this point an input sample was taken and the rest of the su-

pernatant was divided between the negative control (pre-immune serum) and

positive immunoprecipitation (anti-Hho1 serum) reactions. The samples were

incubated for 4 h at 4 ◦C and bound on to Protein A-Sepharose beads by incu-
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bating overnight at 4 ◦C.

The beads were collected by centrifugation at 3500 g for 1 min at 4 ◦C

and washed twice successively in each of the following ice cold buffers: RiPA

buffer, PBS and TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). Proteins were

eluted from the beads by incubation at 25 ◦C for 10 min in 50 mM Tris-HCl

pH 8.0, 10 mM EDTA, 1% (w/v) SDS. The elution was repeated and the super-

natants combined.

4.2.6.2 HTZ1-TAP immunoprecipitation

Immunoprecipitation was carried out as in Section 4.2.6.1 with the following

modifications. The yeast strain used was HTZ1-TAP (Section 3.2.1.2). The neg-

ative control used Protein A Sepharose beads and the positive immunoprecipi-

tation used IgG sepharose beads (GE Healthcare), which were incubated in the

whole-cell extract at 4 ◦C for 18 h.

4.2.7 Chromatin immunoprecipitation assay

The ChIP assay was carried out in collaboration with Dr Edwige Hiriart (MRC

Laboratory of Molecular Biology, Cambridge).

4.2.7.1 Culture growth, cross-linking and whole-cell extract

HTZ1-TAP and HHO1-TAP yeast strains (Section 3.2.1.2) were grown in YPAD

medium (Section 3.2.1.1) at 30 ◦C and 220 rpm. Yeast cells were cross-linked for

10 min at 25 ◦C by adding 1 mM EDTA, 140 mM NaCl and 1% (v/v) formalde-

hyde. Cross-linking was stopped by addition of 125 mM glycine with swirling

for 5 min at 25 ◦C. Cells were harvested by centrifugation at 2000 g for 5 min at

4 ◦C and washed in ice cold PBS (Section 4.2.6.1).
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Pellets were resuspended in RiPA buffer (Section 4.2.6.1) supplemented

with 1 µg/ml leupeptin, 1 µg/ml aprotinin, 0.156 mg/ml benzamidine, 1 µg/ml

pepstatin A. Cells were lysed by “bead blasting” for four 15-second pulses at

55% power and the lysate sonicated for six 10-second pulses. Cell debris was

removed by centrifugation at 16000 g for 5 min at 4 ◦C and the supernatant was

taken.

4.2.7.2 TAP-tag precipitation

Whole-cell extracts were pre-cleared with Protein A Sepharose beads for 30 min

at 4 ◦C, and the beads removed by centrifugation at 3000 g for 1 min at 4 ◦C.

Samples were removed for “input” and the rest of the sample was divided be-

tween a negative control (using Protein A Sepharose beads) and positive im-

munoprecipitation (using IgG Sepharose beads). The samples were incubated

for 3 h at 4 ◦C and the beads collected by centrifugation at 3000 g for 1 min at

4 ◦C.

Beads were washed twice successively in each of the following buffers:

RiPA buffer (Section 4.2.6.1), RiPA buffer with 0.5 M NaCl, ChIP wash buffer

(10 mM Tris-HCl pH 8.0, 0.25 M LiCl, 0.5% (v/v) NP-40, 0.5% (w/v) sodium de-

oxychloate, 1 mM EDTA) and TE buffer (Section 4.2.6.1). Chromatin was eluted

from the beads by incubation for 10 min at 25 ◦C with elution buffer (Section

4.2.6.1). Beads were collected by centrifugation at 16000 g for 2 min at 25 ◦C

and the elution was repeated. Samples were taken and analysed by Western

blotting (Section 3.2.7) using an anti-TAP antibody (Open Biosystems).
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4.2.7.3 Purification of DNA

Formaldehyde cross-links in the input and precipitated samples were reversed

by addition of NaCl to 200 mM and incubation at 65 ◦C overnight. The samples

were deproteinised by addition of 100 µg proteinase K (BDH) for 1.5 h at 37 ◦C.

DNA was then extracted using phenol:chloroform:isoamyl alcohol and precip-

itated with absolute ethanol as described in Section 3.2.4.7. The DNA pellets

were dissolved in TE buffer (Section 4.2.6.1).

4.2.7.4 PCR analysis

The primers used for these analyses are listed in Table 4.1.

Table 4.1: Primers used for PCR analyses of Hho1p and Htz1p localisation

Gene Position Sequence

ADH2 –1 F 5′-CAGAGGAGAGCATAGAAATGGGGTT-3′

R 5′-AGTAAGAGTATTTCGAGTGTGAAAAAAGTC-3′

+1 F 5′-AATAGAATATCAAGCTACAAAAAGCATAC-3′

R 5′-CCGTTGGATTCGTAGAAGATAAT-3′

+5 F 5′-AATTGTTTACCTCGCTCGG-3′

R 5′-AGCCTTAACGACTGCGCTA-3′

PHO5 A F 5′-TGTTCCTTGGTTATCCCATCGC-3′

R 5′-GCAATTATTACTTGGATGCCCTCC-3′

H F 5′-CCTAAACTTTTTGACCACCGCTG-3′

R 5′-TGATTTCACAAGAGAACCCTGGAC-3′

J F 5′-GGGAAACTCAAAGAACTGGCATC-3′

R 5′-ACTCTCCGAGGGGAATTGTACC-3′

The input, a ten-fold dilution of the input, the negative ChIP and pos-

itive ChIP samples for each of strains were used a templates in PCR reactions

using each of the primer sets. DNA was amplified using Taq DNA polymerase

(Bioline). The PCR products were analysed in 2% (w/v) agarose gels containing

0.5x TBE (44.4 mM Tris base, 1 mM EDTA, 44.4 mM boric acid) (Section 3.2.6.1).
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4.3 Results

4.3.1 Searching for Hho1p-interacting partners

Anti-Hho1 immunoprecipitation was used to enrich Hho1p from yeast whole-

cell extract or nuclear extract, however no other proteins co-purified with

Hho1p that were visible on Coomassie-stained SDS/polyacrylamide gels (data

not shown). This could be because the Hho1p/antibody interaction out-

competed any interactions between Hho1p and other yeast proteins, or be-

cause that there are no strongly interacting partners for Hho1p. Also, GST-

Hho1p was used for pull-down assays in yeast whole-cell and nuclear extracts,

immobilising by means of glutathione-agarose beads, but again no interacting

partners were identified on Coomassie-stained SDS/polyacrylamide gels (data

not shown).

Through collaboration with Prof Charles Boone’s laboratory (University

of Toronto), genetic interactions with Hho1p were sought using a proteome-

wide synthetic gene analysis (SGA) data set (Tong et al., 2004). This assay uses

a deletion array of yeast strains and scores the growth defects of progeny pro-

duced by crossing these with yeast containing a second mutation (Tong and

Boone, 2006). A computer-based scoring system estimates the relative growth

rate of an individual colony, comparing the double mutant strains to wild-type

controls. This determines if there is a genetic link between the two mutated

genes. Hho1p had not been screened against the deletion array, however it had

been brought up in other screens (data not shown). Unfortunately the scores

from these screens were too weak to have been reported as potential interac-

tions (in the Saccharomyces Genome Database) and so these candidates were

not investigated further.

In order to attempt to identify potential candidates for Hho1p-
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interacting partners I focussed on proteins whose metazoan homologues in-

teract with histone H1, and those that share functions with Hho1p (discussed

in Section 4.1).

4.3.2 Investigation of Hho1p interaction with HMG box

proteins, Hmo1p and Nhp6ap

Initially the interaction of Hho1p with HMGB1 was compared with that of hi-

stone H1 with HMGB1, which requires the C-terminal tail of HMGB1 (Fig-

ure 4.2). The acidic tail of HMGB1 was required for cross-linking of Hho1p

and HMGB1 with DMS. Cross-linked products are formed for Hho1p with full-

length HMGB1 (lane 13) but not with the AB′ form of HMGB1, which lacks the

acidic tail (lane 17) (see Figure 4.1 for domain structure). This reduces the likeli-

hood that Hho1p will interact with Hmo1p or Nhp6ap as they don’t contain any

strongly acidic regions.

Hmo1p formed a smear of products when cross-linked with either DMS

or EDC (Figure 4.3a and b respectively; lanes 8). This self-association of Hmo1p

had been previously reported in a yeast two-hybrid assay (Dolinski and Heit-

man, 1999). Addition of histone H1 or Hho1p to the reaction did not change

the pattern of cross-linked products produced (compare lanes 8 with lanes 13

and 17) suggesting that Hmo1p does not interact with either linker histone in

solution. The positive control reactions between linker histones and HMGB1

demonstrate that the cross-linking conditions were suitable to produce discrete

product bands (lanes 11 and 15).

An interaction between Hho1p and Nhp6ap was also investigated us-

ing cross-linking with DMS and EDC. Initial studies using DMS did not pro-

duce discrete cross-linked product bands (Western blots showed a smear of
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Figure 4.2  The acidic tail of HMGB1 is required for cross-linking to both 
histone H1 and Hho1p.  SDS/18%-PAGE of proteins before (-) and after (+) cross-
linking with 2 mg/ml DMS for 20 minutes at 25 °C.  Lane 9 contains molecular 
weight markers.  Histone H1 was extracted from chicken erythrocytes; the other 
proteins are recombinant.  There is some degradation of HMGB1 to AB' seen in 
lanes 5–6 and 10–13.  The cross-linked products for H1 and HMBG1 (lane 11) con-
sist of a heterodimer and heterotrimer.  The cross-linked products for Hho1p and 
HMGB1 (lane 13) may consist of a heterodimer and two homodimers, although the 
homodimers were not seen in the samples containing just one of the proteins (lanes 
4 and 6).  It is also possible that all three bands could be heterodimers, each with a 
different portion of Hho1p cross-linked to the HMGB1 molecule (e.g. GI domain, GII 
domain or both domains).  
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Figure 4.3  Hmo1p does not cross-link to histone H1s or Hho1p in solution.  (a) 
SDS/18%-PAGE of proteins before (-) and after (+) cross-linking with 2 mg/ml DMS 
for 20 minutes at 25 °C.  Lane 9 contains molecular weight markers.  Histone H1 was 
extracted from chicken erythrocytes; the other proteins are recombinant.  There is 
slight contamination of the Hmo1p samples by a protein of around 70 kDa.  Lanes 1–8 
contain the individual proteins; only Hmo1p forms cross-linked products, showing a 
smear of aggregation products.  Lanes 11 and 15 are positive controls for cross-
linking between HMGB1 and the linker histones, showing dimer products.  Lanes 13 
and 17 indicate that the presence of linker histone does not change the pattern of 
Hmo1p cross-linked products.  (b)  As in (a) but cross-linking with 24.2 mg/ml EDC 
for 20 minutes at 25 °C.  The dimer products (lanes 11 and 15) for cross-linking of 
HMGB1 with linker histone is less pronounced than in (a).  
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Hho1p-containing products, data not shown) but the amount of unmodified

Nhp6ap and, more noticeably, Hho1p decreased throughout the reaction (Fig-

ure 4.4a; compare lanes 2 and 4 with lane 9). In order to try to capture dis-

crete cross-linked products by Western blotting, the cross-linking was carried

out for shorter time-periods (Figure 4.4b). EDC cross-linker was also used to

see if the bands of cross-linked products were more discrete. Under these con-

ditions no cross-linking was seen on the Coomassie-stained gels, however the

Western blot indicated a small proportion of DMS cross-linked products that

contained Hho1p and are the size expected for an Hho1p-Nhp6ap dimer (Fig-

ure 4.4b; lanes 6–9). Unfortunately an anti-Nhp6a antibody was not available

to verify if the product also contains Nhp6ap. The amount of putative Hho1p-

Nhp6ap complex suggests the interaction is very weak. Levels are lower than

that of the Hho1p dimer product, which is known to be an insignificant propor-

tion of the sample and is not thought to be biologically relevant. The putative

Hho1p-Nhp6ap cross-linking product was not observed using EDC at pH 7 (Fig-

ure 4.4b; lanes 16–19) or disuccinimidyl suberate (DSS) at pH 7.0 or pH 8.0 (data

not shown).

Gel-filtration was also used to look for an interaction between Hho1p

and Nhp6ap in 150 mM sodium chloride (Figure 4.5). The molar extinc-

tion coefficient of Nhp6ap is higher than that of Hho1p (10810 M–1 cm–1 and

7680 M–1 cm–1 respectively) but this does not explain the large difference in the

height of the Hho1p and Nhp6ap peaks. The Hho1p peaks has a long tail and

therefore Hho1p presumably associates with the column matrix. In an equimo-

lar (input) mixture of Hho1p and Nhp6ap the major peak sometimes eluted

slightly ahead of the equivalent peak in the Nhp6ap-only sample, as shown in

Figure 4.5, however this was not consistent. It should also be noted that the as-

sociation of Hho1p with the column matrix will mean that the actual ratio of

- 137 -



CHAPTER 4

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17

Figure 4.4  Nhp6ap and Hho1p cross-link in solution with DMS but not with EDC.  
(a) SDS/18%-PAGE showing cross-linking of the proteins with 2 mg/ml DMS at 25 °C.  
Lane 10 contains molecular weight markers. No obvious cross-linked product is 
formed but both protein bands diminish over time (compare lanes 2 and 4 with lane 
9).  (b)  SDS/18%-PAGE and Western blotting with anti-Hho1 showing a shorter 
cross-linking time course with either 1 mg/ml DMS or 12.1 mg/ml EDC at 25 °C.  Lane 
10 contains molecular weight markers. A minor cross-linked product occurs in the 
presence of both proteins upon cross-linking with DMS, but not EDC.  
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Figure 4.5  Gel-filtration of Hho1p and Nhp6ap.  Elution profiles from a Superdex 
75 column run in the presence of 150 mM NaCl.  The Nhp6ap trace is blue, Hho1p 
alone is green, and the red curve is a 1:1 molar mix of both proteins.  Hho1p associ-
ates with the column matrix as indicated by the long tail of the Hho1p only peak.  
This means that the actual ratio of Hho1p to Nhp6ap, as it passes through the 
column, is lower than the input ratio.  The molar absorption coefficient of Hho1p is 
lower than that of Nhp6ap, which also contributes to the very different peak 
heights.  The mixture sample indicates the presence of some unbound Hho1p as 
determined by the characteristic tail of the elution profile.  The major peak eluted 
slightly ahead of the Nhp6ap peak (blue) in the Nhp6ap-only sample (red), although 
this was not consistent.  
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Hho1p to Nhp6ap, as it passes through the column, is lower than the input ra-

tio. Chemical cross-linking in 150 mM NaCl was identical to that in Figure 4.4.

If the salt concentration was increased to 200 mM the elution profile of Hho1p

sharpened, however the major peak of the mixture no longer eluted ahead of

that in the Nhp6ap-only sample (data not shown). The absence of a significant

interaction as judged by either gel-filtration or chemical cross-linking indicates,

at best, a very weak interaction between Hho1p and Nhp6ap that is unlikely to

be biologically relevant.

4.3.3 Investigation of Hho1p interaction with Htz1p

A direct interaction between Hho1p and Htz1p was not seen in pull-down as-

says using either GST-Hho1p or GST-Htz1p as bait (data not shown). However,

the assays were carried in salt concentrations above physiological levels (as

Hho1p directly bound the glutathione-agarose beads in lower salt conditions)

and this could have disrupted any protein-protein interactions.

Co-immunoprecipitation assays were carried out in yeast whole-cell ex-

tract, either using an Htz1-TAP tagged strain or by probing a wild-type yeast

strain with anti-Hho1 antibodies (Figure 4.6). The TAP immunoprecipitation

very clearly showed that the Htz1-TAG was immunoprecipitated, but not the

Hho1p (lanes 4 and 5). The anti-Hho1 immunoprecipitation was slightly less

clear as not all of the Hho1p was immunoprecipitated (lanes 9 and 10), how-

ever all the Htz1p remains in the unbound fraction suggesting that no co-

immunoprecipitation occurred.

Chemical cross-linking studies were carried out using Hho1p and Htz1p

(Figure 4.7). The Htz1p sample contained some contaminants (lanes 3–9), at

least some of which are probably GST-Htz1p that was carried over from the
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Figure 4.6  Hho1p and Htz1p immunoprecipitations from S. cerevisiae whole 
cell extract.  Immunoprecipitated fractions were analysed by SDS/18%-PAGE and 
Western blotting with the antibodies indicated.  The Htz1-TAP strain has a TAP-tag 
on the genomic copy of HTZ1, allowing its precipitation with IgG-sepharose.  IN:  
pre-cleared input, UN:  unbound, IP:  immunoprecipitated.  Lane 7 shows degrada-
tion of the unbound Hho1p in the negative IP control, but bands are still visible.  
There is no evidence of co-immunoprecipitation of Hho1p and Htz1p.  

IN UN IP UN IP IN UN IP UN IP

-ve IP +ve IP -ve IP +ve IP

Htz1-TAP strain
TAP IP

W303 strain
anti-Hho1 IP

αHtz1

αHho1

1 2 3 4 5 6 7 8 9 10
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purification process, as well as degradation products of this fusion protein.

Cross-linking reactions containing the Htz1p sample showed a smear of cross-

linking products in the anti-Htz1 Western blot (panel b, lanes 4 and 6–9). Small

amounts of Hho1p dimer were seen in the anti-Hho1 Western blot (panel c,

lanes 1, 2, 8 and 9). However, none of the cross-linked products contained both

Hho1p and Htz1p suggesting that Hho1p and Htz1p did not interact directly in

solution. Similar results were produced by EDC cross-linking (data not shown).

The relative association of Htz1p and Hho1p within two genes was in-

vestigated in ChIP assays, in collaboration with Dr Edwige Hiriart (MRC Labo-

ratory of Molecular Biology, Cambridge). No suitable anti-Htz1p antibody was

available to allow immunoprecipitation from wild-type yeast extracts, therefore

a HTZ1-TAP genomically-tagged yeast strain was used. As the TAP tag includes

protein A it would be immunoprecipitated by antibodies, therefore an anti-

Hho1 immunopreciption could not be carried out in the HTZ1-TAP strain. An

HHO1-TAP strain was used so that the two immunoprecipitations were carried

out using strains with the same background character.

The association of Htz1p and Hho1p with regions of the ADH2 and

PHO5 genes was assessed qualitatively (Figure 4.8). Regions corresponding to

the –1 positioned nucleosome (in the promoter) as well as the +1 and +5 posi-

tioned nucleosomes in the open reading frame of the ADH2 were investigated.

The PHO5 positions correspond to the promoter (position A), the open read-

ing frame (position H) and the region after the open reading frame (position J).

Qualitative comparison of the signals for the immunoprecipitated samples and

the input material was made (with reference to the diluted input and negative

immunoprecipitation controls) to identify the relative enrichment or depletion

of Htz1p or Hho1p at these positions (Figure 4.8b). The data were interpreted

cautiously as some of the PCR reactions, those producing the strongest signals,
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may have reached saturation.

There was more Htz1p present at each location than Hho1p and the

relative association of Htz1p and Hho1p to regions throughout the ADH2 and

PHO5 genes were different. Htz1p levels decreased over the length of the genes,

whereas the Hho1p levels were depleted throughout the genes. This is consis-

tent with a genome-wide study that saw promoter enrichment of Htz1p but not

Hho1p (Zanton and Pugh, 2006). Further PCR analyses indicated that Hho1p

was present at all these locations (producing more signal than the negative im-

munoprecipitation controls) but the signals were greatly depleted compared to

the input sample (data not shown). There is no evidence of co-localisation,

which may have been inferred if both Hho1p and Htz1p showed similar pat-

terns of localisation across the genes.

4.3.4 Investigation of Hho1p interaction with Sir2p

Chemical cross-linking studies using Hho1p and Sir2p suggested a direct inter-

action of these proteins in solution (Figure 4.9). The Sir2p sample was not very

pure, as observed in the anti-Sir2 Western blot (panel b, lane 3). Degradation

was shown to occur during expression, and reduction of expression time had

no appreciable effect on degradation the Sir2p produced. The Sir2p-only sam-

ple forms a cross-linked product that is visible on the anti-Sir2 Western blot

(marked with an asterisk; panel b, lane 4). There is a product of slightly lower

molecular weight that only occurs in the mixture samples (panel b, lanes 7–13).

This band also contains Hho1p, as shown in the anti-Hho1 Western blot (panel

c, lanes 7–13). It is difficult to determine a stoichiometry for the complex, as

the range of Sir2p degradation products have caused a broad distribution of

cross-linked products. This product is also visible in the Coomassie-stained gel

and the band extends to approximately the 116 kDa molecular weight marker,
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which suggests that multiple Hho1p molecules may bind Sir2p. Hho1p is only

contained in the Hho1p-Sir2p complex, while Sir2p is also contained in (Sir2p)n

products. This explains the differential loss of stain upon cross-linking for the

bands corresponding to Sir2p and Hho1p in panel a.

Gel-filtration was carried out in the same buffer conditions as the cross-

linking (Figure 4.10). The Hho1p peak is much sharper on this column, in the

higher concentrations of sodium chloride, compared with the gel-filtration with

Nhp6ap (Figure 4.5). The elution profile of the equimolar mixture showed a

peak that may eluted slightly earlier than the peak in the Sir2p-only sample.

The shift was very small, but consistent. The lack of a large shift in the gel fil-

tration peaks could result from Hho1p nesting within the larger Sir2p protein,

causing the apparent size of the complex to be very similar to that of Sir2p alone.

However, for this to occur the Sir2p must be in a relatively extended conforma-

tion, and a larger difference in elution volume for Sir2p and Hho1p might there-

fore be expected. Thus, no strong conclusions regarding an interaction between

Hho1p and Sir2p can be determined from this gel-filtration data.

Unfortunately purification difficulties and the instability of recombi-

nant Sir2p samples precluded further investigation of the interaction between

Hho1p and Sir2p.

4.4 Discussion

4.4.1 General searches for Hho1p-interacting partners

Identification of Hho1p-interacting partners from whole-cell or nuclear ex-

tracts proved difficult. This is partially due to the low cellular level of Hho1p.

Co-immunoprecipitation of Hho1p-interacting partners may have been inhib-
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Figure 4.10  Gel-filtration of Hho1p and Sir2p.  Elution profiles from a 
Superdex 200 column run in 175 mM NaCl.  The Hho1p trace is blue, Sir2p 
alone is green, and the red curve is a 1:1 molar mix of both proteins.  The 
mixture trace may possibly suggest a slightly earlier elution of the major spe-
cies compared to the Sir2p-alone peak, as highlighted by the vertical line.  
This shift is very small but is consistent.  

Elution volume (ml)
10.0 20.0
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ited by the antibody-Hho1p interaction out-competing other Hho1p-protein

interactions. GST-Hho1p pull-downs from yeast extracts were also unsuccess-

ful, possibly because many protein-protein interactions do not persist at higher

salt concentrations necessary because Hho1p interacts with the sepharose

beads in physiological salt conditions.

The synthetic gene analysis data did not produce any candidates for

proteins that genetically interact with Hho1p. If Hho1p was not required at

all for survival in the assay growth conditions, a deletion that caused lethality

in combination with the HHO1 deletion must also have been lethal as a single

deletion.

Proteome-wide mass spectrometry studies have identified Hho1p from

whole-cell extracts (e.g. Li et al., 2007) suggesting that an affinity-capture mass

spectrometry assay could be sensitive enough to identify interacting partners

(reviewed in Sinz, 2003). This assay involves the enrichment of Hho1p, and

its interacting partners, through co-immunoprecipitation, followed by elution

from the antibody and analysis using mass spectrometry. This assay would re-

quire the development of suitable anti-Hho1 antibodies, as the antibody used

in this Chapter may out-compete other interactions with Hho1p (Section 4.3.1).

Raising antibodies against smaller regions of the Hho1p molecule means the

antibody interactions would be less likely to occur at the binding site of the

interaction-partners, reducing the probability of Hho1p-protein interactions

being out-competed by the Hho1p-antibody interaction.
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4.4.2 Hho1p does not appreciably interact with Hmo1p,

Nhp6ap or Htz1p, but does cross-link with Sir2p in

solution

Hho1p does not interact with the HMGB1 homologues, Nhp6ap and Hmo1p.

This was somewhat expected as Hho1p, like linker histone H1, was shown to

interact with HMGB1 through its C-terminal acidic tail (Figure 4.2) and neither

Hmo1p nor Nhp6ap contains a strongly acidic region. No known yeast HMG

box-containing protein contains a strongly acidic tail. This suggests that there

may be no interaction with Hho1p that is analogous to that of metazoan histone

H1 and HMGB1.

Hmo1p is associated with rDNA loci (Gadal et al., 2002), which suggests

that it could be involved in the same processes as Hho1p. However results de-

scribed above suggest there is no direct interaction between these proteins. Al-

though DMS cross-linking did produce a consistent product that could contain

both Hho1p and Nhp6ap (Figure 4.4), it occurs at such low levels that it is un-

likely to be of biological relevance.

Nhp6ap was reported to interact with Hho1p in a large-scale protein-

fragment complementation assay (Tarassov et al., 2008). This is not necessarily

inconsistent with the lack of interaction observed in the work described here

(Figures 4.4 and 4.5) as the interaction seen in the protein-fragment comple-

mentation assay could have been indirect. The fusion proteins have 10 residue

linkers between the yeast proteins and the reporter fragments allowing “near-

neighbours” to be detected up to 82 Å apart. Verifying this protein-fragment

complementation data in a smaller-scale experiment will determine whether

the potential interaction between Nhp6ap and Hho1p is worth pursuing fur-

ther.
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Htz1p and Hho1p are both components of chromatosomes, therefore

if they occur at the same locations within the genome they might be expected

to interact. However, despite the reported interactions described in Section 4.1,

work described in this Chapter offers no evidence of either a direct interaction

between Hho1p and Htz1p or co-localisation of these proteins on the ADH2 and

PHO5 genes.

TAP-tagged yeast strains were used for the chromatin immunoprecipi-

tation study because there was no suitable anti-Htz1 antibody available for use

in co-immunoprecipitation from wild-type yeast cells. The TAP-tag contributes

an extra 21 kDa to the protein, a large proportion of the fusion protein, which

might in principle affect the localisation of the proteins. A ChIP-chip study indi-

cated that Htz1p is enriched in promoter regions (relative to intergenic regions)

while Hho1p is relatively excluded from promoters (Zanton and Pugh, 2006).

This is consistent with the data in Figure 4.8, suggesting that the TAP-tag did

not cause aberrant localisation.

Htz1p, like Nhp6ap, was suggested to be an interaction-partner of

Hho1p in the large-scale protein-fragment complementation assay (Tarassov

et al., 2008). Again, this could be because Hho1p and Htz1p are “near-

neighbours” rather than interacting directly and is not necessarily inconsistent

with the lack of a direct interaction found here.

A protein interaction partner identified for Hho1p in the work described

here is Sir2p, an NAD-dependent deacetylase that has roles in rDNA and silenc-

ing (Imai et al., 2000). Unfortunately the bacterial expression system used here

is not optimal for production of Sir2p, resulting in samples that degraded both

during expression and during storage. The sirtuin family of proteins have been

expressed more successfully using the baculovirus expression system (for ex-

ample, Cubizolles et al., 2006). Therefore the interaction between Sir2p and
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Hho1p should be investigated further using recombinant Sir2p from this alter-

native source.
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4.5 Summary

• Co-immunoprecipitation and synthetic gene analyses did not identify

protein interaction partners for Hho1p.

• Hho1p does not interact directly with Hmo1p, Nhp6ap or Htz1p, in vitro.

• Hho1p cross-links with Sir2p in vitro. A pure and stable supply of Sir2p is

required to allow further investigation of this interaction.
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5 Investigation of phosphorylation of

Hho1p — biochemistry and linker domain

structure

5.1 Introduction

S. cerevisiae is a popular model organism often used to validate proteome-

wide approaches to detect post-translational modifications. Currently the Sac-

charomyces Genome Database lists 62 literature references to “large-scale pro-

tein modification” experiments. Various modifications have been studied on

a proteomic scale, for example methylation, palmitoylation, phosphorylation,

sumoylation and ubiquitination (Pang et al., 2010; Roth et al., 2006; Li et al.,

2007; Wohlschlegel et al., 2004; Radivojac et al., 2010). However, despite this

extensive research, only three post-translational modifications have been re-

ported for Hho1p - all of which are phosphorylations: of serine 130 in the linker

domain and of serines 173 and 174 at the beginning of the second globular do-

main (Li et al., 2007; Holt et al., 2009).

Much more is known about post-translational modification of canon-

ical linker histones, which have long been known to be phosphorylated and

acetylated. More recently methylation, N-formylation and ubiquitination of

linker histones have also been identified (Figure 1.5; reviewed in Happel and

Doenecke, 2009).
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Of the known post-translational modifications of linker histones, the

most-studied modification is phosphorylation (discussed in Section 1.3.1.2).

Histone H1 phosphorylation varies throughout the cell cycle (Talasz et al.,

1996). It affects cell-cycle progression, chromatin condensation and DNA repli-

cation (Gurley et al., 1978; Roth and Allis, 1992; Alexandrow and Hamlin, 2005).

Also, phosphorylated linker histones are enriched at transcriptionally active

chromatin sites, as indicated by the co-localisation of phosphorylated H1b with

sites of RNA processing and gene activation in indirect immunofluorescence

assays (Chadee et al., 1995). Most phosphorylation occurs on S/TPKK motifs,

which are located in the C-terminal tail of histone H1 (Garcia et al., 2004; Deter-

ding et al., 2008). Sea urchin sperm H1 is unusual, having several of these motifs

in the N-terminal tail (Strickland et al., 1980).

In aqueous solution canonical linker histone C-terminal tails are largely

unstructured, but form α-helix upon binding DNA (Roque et al., 2005) and in

the presence of tetrahedral anions or trifluoroethanol (Clark et al., 1988). Phos-

phorylation of the C-terminal tail of histone H1 causes a decrease in α-helix and

an increase in β-sheet character (Roque et al., 2008).

Hho1p does not contain any S/TPKK motifs, raising the question of

whether its phosphorylation is regulated by kinases similar to those acting on

canonical linker histones. The linker domain of Hho1p has more sequence vari-

ation than the C-terminal tail of canonical linker histones, raising the question

of whether the structural character of these domains is different. There are in-

dications that the Hho1p linker domain, like the canonical C-terminal tails, is

unstructured in aqueous solution (Ali and Thomas, 2004; Osmotherly, 2006), as

CD studies demonstrate a less α-helical character in proteins containing the

linker domain, compared with the isolated GI domain, but this has yet to be

studied in detail. In this Chapter I aim to investigate the structure of, and the
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effect of phosphorylation on, the linker domain of Hho1p using NMR. The un-

modified and phosphorylated linker domains are assigned using conventional

triple-resonance experiments alongside the HNN/HN(C)N experiments which

are particularly suited for assignment of unstructured proteins. Shift deviations

from random coil, heteronuclear NOEs and temperature-dependence of pro-

ton shifts are used to determine the transient structure and fast dynamics of

the unmodified and phosphorylated domain. The degree to which the peaks

shift and the original peak is attenuated upon phosphorylation is additionally

used to determine the sites of phosphorylation.

The effect of phosphorylation on the biochemical properties of Hho1p

and various Hho1p-truncation proteins is also addressed. The domains in

which phosphorylation events by CDK2/Cyclin A occurred are determined.

Binding to linear DNA, four-way junction DNA and chromatin are used to com-

pare unmodified and phosphorylated Hho1p-truncation proteins.

5.2 Materials and methods

5.2.1 Plasmids

Plasmid pET17b-GI contains the cDNA for the GI domain of Hho1p, plus the

first 13 residues of the linker domain, (residues 38-130) under the control of a

T7 promoter, and an ampicillin resistance gene (Ali and Thomas, 2004).

Plasmid pET17b-LGII contains the cDNA for the last 40 residues of the

linker domain and the GII domain of Hho1p (residues 131-258) under the con-

trol of a T7 promoter, and an ampicillin resistance gene. This plasmid was gen-

erated by Dr Andy Sanderson (Department of Biochemistry, Cambridge).
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5.2.1.1 Cloning of pET17b-HHO1-linker

The linker domain (residues 118-170 of Hho1p) was amplified from the pET17b-

HHO1 plasmid using a forward primer with a flanking Nde I site and a start

codon at the 5′-end, and a reverse primer containing a stop codon and Xho I

site at the 3′-end. The sequences are listed in Table 5.1. The PCR reaction used

KOD hot-start DNA polymerase (Merck), 40 ◦C primer-annealing temperature,

and 30 sec extension at 72 ◦C.

Table 5.1: Primers used to clone the linker domain of Hho1p

Primer Sequence

Forward: 5′-AAACTGCATATGAAGAAATCTCCAGAAGTAAAGAA-3′

Reverse: 5′-AAGGCGACTCGAGTTACTTGGCGGTAACAGTAGGC-3′

The PCR product and pET17b-HHO1 were digested with Nde I (NEB)

and Xho I (NEB) for 3 h at 37 ◦C and the digestion products purified using a

QIAquick PCR clean-up kit (Qiagen). The digestion products were analysed in

a 1% (w/v) agarose gel containing 0.3x TBE (Section 3.2.6.1) and the bands cor-

responding to the PCR insert and linearised vector were excised and purified

using a QIAquick gel-extraction kit (Qiagen).

Vector and insert were ligated at a 5:1 molar ratio for 3 h at 25 ◦C us-

ing T4 DNA ligase (NEB). The ligation reactions were used to transform E. coli

DH5α cells (Section 2.2.1.2) and the cells were grown overnight at 37 ◦C on LB-

agar plates (Section 2.2.1.1) supplemented with 50µg/ml carbenicillin. Single

colonies were grown at 37 ◦C, with shaking at 250 rpm, overnight in 5 ml LB

medium (Section 2.2.1.1) supplemented with 50µg/ml carbenicillin. The plas-

mid DNA (pET17b-HHO1-linker) was extracted using a QIAquick miniprep kit

(Qiagen) and its sequence was verified by DNA sequencing (Section 5.2.9).
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5.2.2 Proteins

5.2.2.1 Expression and purification of Hho1p and Hho1p-truncation

proteins

Hho1p was expressed in TB medium using the conditions described in Section

2.2.3.1. GI, GII, NGIL and LGII were expressed in LB medium, supplemented

with 50 µg/ml carbenicillin, using the same conditions as GII (Section 2.2.3.3),

except that NGIL was expressed in BL21(DE3)pLysS cells. All proteins were pu-

rified as described for Hho1p (Section 2.2.3.2) except they were concentrated in

Vivaspin 2 concentrators with appropriate sized molecular weight cut-offs (Sar-

torius) (MWCO used: Hho1p, 10 kDa; GI and GII, 3 kDa; NGIL and LGII, 5 kDa).

5.2.2.2 Expression and purification of 13C,15N-linker domain of Hho1p

Plasmid pET17b-Hho1-linker (Section 5.2.1.1) was used to transform E. coli

BL21(DE3) cells (Section 2.2.1.2) and pre-cultures were grown overnight in LB

medium (Section 2.2.1.1) supplemented with 50 µg/ml carbenicillin at 37 ◦C

with shaking at 250 rpm. Ten flasks (2 l) containing 500 ml MOPS medium

(Section 2.2.1.1), with 15N-NH4Cl as the sole nitrogen source, 0.5 g/l 13C-glucose

as the sole carbon source and supplemented with 50 µg/ml carbenicillin, were

each inoculated with 5 ml pre-culture and grown at 37 ◦C and 220 rpm until the

OD600 was about 0.6. Expression of the linker domain was induced with 1 mM

IPTG and growth was continued for a further 3 h. Cells were harvested by cen-

trifugation at 6000 g for 10 min at 4 ◦C and washed in the sodium phosphate

buffer described in Section 2.2.3.1.

Cell extract, was prepared as described for Hho1p (Section 2.2.3.1), and

the Hho1p linker domain was extracted with a final concentration of 5% (v/v)

PCA for 10 min with stirring on ice. The precipitated proteins were collected by
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centrifugation at 10000 g for 10 min at 4 ◦C and the supernatant was immedi-

ately neutralised with triethanolamine before dialysis overnight at 4 ◦C against

buffer A (Section 2.2.3.2).

The sample was filtered through a 0.2 µm membrane (Millipore) and

about 2.5 mg protein was loaded onto a Mono S cation-exchange column (GE

Healthcare), which had been pre-equilibrated with buffer A. (The protein con-

centration was assessed by absorbance at 230 nm using a coefficient (ε = 15130)

determined using amino acid analysis data (Section 2.2.4.2). The bound pro-

teins were eluted over a 50-column-volume linear gradient from buffer A to

60% buffer B (Section 2.2.3.2). The fractions were analysed by SDS/20%-PAGE

(as Section 2.2.4.1, except that the gels were not fixed before staining) and

those fractions containing pure linker domain were combined. The sample was

concentrated in a Vivaspin 2 concentrator with a 3 kDa cut-off and buffer ex-

changed into 10 mM sodium phosphate pH 6.0, 1 mM EDTA, 1 mM DTT.

5.2.3 Phosphorylation of Hho1p and Hho1p-truncation

proteins

Phosphorylation was carried out using recombinant CDK2/cyclin A. This was

expressed and purified by Dr Rebecca Michael (Department of Biochemistry,

Cambridge) using plasmids pET12d cyclin A-3 and pGex3C CDK2 from Dr Tim

Hunt (Cancer Research UK, Clare Hall Laboratories, South Mimms).

For small-scale phosphorylation reactions protein samples (Hho1p, GI,

GII, NGIL and LGII) were prepared at 50 µM in 20 mM Tris-HCl pH 7.5, 10 mM

MgCl2, 5 mM ATP. CDK2/cyclin A (8 µl/ml) was added and the sample was in-

cubated at 30 ◦C for 16 h. Residual ATP was removed by buffer exchanging the

proteins into buffer A (Section 2.2.3.2) using a Vivaspin 2 concentrator with an
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appropriate molecular weight cut-off (MWCO used: Hho1p, 10 kDa; GI and GII,

3 kDa; NGIL and LGII, 5 kDa).

For large-scale phosphorylation of the linker domain NMR sample, the

linker domain was phosphorylated at 260µM in 50 mM Tris-HCl pH 7.5, 10 mM

MgCl2 and 25 mM ATP. CDK2/cyclin A (20 µl/ml) was added and the sample in-

cubated at 30 ◦C for 14 h. The sample was buffer exchanged into 10 mM sodium

phosphate pH 6.0, 1 mM EDTA, 1 mM DTT.

5.2.4 HEPES/Histidine gel-electrophoresis

HEPES/Histidine gels were run as described by (Paulson et al., 1992).

The HEPES/Histidine gels contained 10% (v/v) polyacrylamide and

the running buffer contained 12 g/l HEPES and 30 g/l L-histidine. Protein

samples (0.15 nmol of Hho1p, GI, GII, NGIL and LGII, or 2.6 nmol of the

linker domain) in buffer A (Section 2.2.3.2) or 10 mM sodium phosphate

pH 6.0, 1 mM EDTA, 1 mM DTT were incubated for 5 min at 37 ◦C in an

equal volume of HEPES/Histidine loading buffer (125 mM N-Cyclohexyl-2-

aminoethanesulphonic acid pH 9.0, 480 mg/ml urea, 10 mg/ml cysteamine hy-

drochloride, 1 mg/ml pyronine Y). Gels were stained and destained as described

for SDS/18%-PAGE (Section 2.2.4.1).

5.2.5 DNA cellulose assay

DNA cellulose (0.05 g per sample: Sigma-Aldrich) was pre-equilibrated with “no

salt buffer” (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 1 mM DTT, 15 µg/ml bovine

serum albumin (BSA: PAA laboratories)). Protein samples (Hho1p, GI, GII, NGIL

and LGII: 20 µg in 0.5 ml “no salt buffer”) were incubated with the DNA cel-

lulose for 2 h at 4 ◦C, turning end on end. The bead suspensions were then
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packed into 1 ml plastic columns, run under gravity, the flow-through collected

and the columns washed with 0.5 ml “no salt buffer”. The columns were washed

with “no salt buffer” (see above) supplemented with increasing concentration

of NaCl (100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800 or

1000 mM: 2x 0.5 ml washes for each NaCl concentration). The wash fractions

were collected, precipitated with 25% (w/v) TCA and the pellets washed as de-

scribed in Section 3.2.4.3. The samples were analysed by SDS/18%-PAGE (Sec-

tion 2.2.4.1) and densitometry of the Coomassie-stained protein bands. The

BSA in the buffers was used to normalise the amount of Hho1p-related protein

in the lanes, to account for any protein loss during the TCA precipitation step.

5.2.6 Four-way junction DNA gel-shift assay

5.2.6.1 Synthesis of four-way junction DNA

The 15 bp-arm four-way junction DNA was assembled from four 30 bp oligonu-

cleotides, as described (Webb and Thomas, 1999). The oligonucleotides used

for this four-way junction are listed in Table 5.2.

Table 5.2: Four-way junction DNA oligonucleotides

Oligonucleotide Sequence

Strand 1: 5′-GAATTCAGCACGAGTCCTAACGCCAGATCT-3′

Strand 2: 5′-AGATCTGGCGTTAGGTGATACCGATGCATC-3′

Strand 3: 5′-GATGCATCGGTATCAGGCTTACGACTAGTG-3′

Strand 4: 5′-CACTAGTC GTAAGCCACTCGTGCTGAATTC-3′

Junctions were formed by incubating equimolar amounts of the four

strands in TE buffer (Section 3.2.4.7) at 95 ◦C for five min and cooling slowly to

4 ◦C. The concentration of the labelled four-way junction was determined from

the absorbance at 260 nm. Assembly of the junction was checked by 8%-PAGE

in 0.3x TBE buffer (Section 3.2.6.2).
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5.2.6.2 Gel-shift assays with four-way junction DNA

Samples (20 µl) contained 10 mM Tris-HCl pH 7.5, 50 mM NaCl, 6% (v/v) glyc-

erol, 100 pmol four-way junction DNA and either 0, 50, 100, 150 or 200 pmol of

the proteins (Hho1p, NGIL or LGII). The samples were incubated for 30 min at

25 ◦C and analysed by 8%-PAGE in 0.3x TBE (Section 3.2.6.2).

5.2.7 Sucrose gradient assay for binding of Hho1p and

Hho1p-truncation proteins to chromatin

Linear sucrose gradients (12 ml) were poured containing 10 mM sodium phos-

phate pH 7.0, 1 mM EDTA, 0.25 mM PMSF and 5-30% sucrose. Gradients were

allowed to settle for 2 h at 4 ◦C. One A260 unit (equivalent to about 0.5 nmol

of core nucleosomes) of medium-length H1,H5-depleted chromatin (Section

3.2.4.4) was incubated with Hho1p, NGIL or LGII for 30 min on ice in 10 mM

sodium phosphate pH 7.0, 1 mM EDTA and 0.25 mM PMSF (100 µl total vol-

ume). Input samples (1/10 volume) were set aside at 4 ◦C and the rest was

layered onto the gradients. Centrifugation was carried out at 22400 rpm in a

Beckman SW40 rotor for 16 h at 4 ◦C. No braking was used to avoid disturbing

the gradients. Gradients were fractionated and about 0.2 A260 units analysed by

SDS/18%-PAGE (Section 2.2.4.1) following two rounds of 25% TCA precipitation

to remove the sucrose (Section 3.2.4.3).

5.2.8 NMR studies of the 13C,15N-labelled linker domain of

Hho1p

All NMR experiments were recorded by Dr K. Stott (Section 2.2.5).
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13C,15N-linker domain NMR experiments were carried out at 273 K on

proteins at about 2 mM in sodium phosphate buffer (Section 5.2.2.2), supple-

mented with 10% (v/v) 2H2O. Following the phosphorylation reaction (Section

5.2.3) the linker domain was concentrated and buffer exchanged back into the

sodium phosphate buffer.

Chemical shift deviations from random coil (Section 2.2.5.2), heteronu-

clear NOE experiments (Section 2.2.5.3) and changes in chemical-shift mea-

surements (Section 2.2.5.4) were carried out as described previously. Addition-

ally, changes in chemical-shifts of the Cβ resonances and peak loss upon phos-

phorylation were also measured using Analysis (Section 2.2.5) and analysed us-

ing Microsoft Excel.

The temperature-dependence of amide proton shifts (Baxter and

Williamson, 1997) was obtained from 1H-15N HSQC spectra recorded at 273,

278, 288 and 298 K. Amide proton shifts were measured using Analysis (Section

2.2.5) and analysed using Microsoft Excel. Proton shifts were fitted to a linear

function and the gradient taken as the measure of temperature-dependence.

Errors were obtained from the estimated covariance matrix (Vranken et al.,

2005), producing error values that are analogous to standard deviations.

5.2.9 DNA sequencing

DNA sequencing was carried out by Mr John Lester (DNA Sequencing Facil-

ity, Department of Biochemistry, University of Cambridge) using an Applied

Biosystems 3730xl DNA Analyser.
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5.3 Results

As yet, the in vivo post-translational modifications of Hho1p are not fully

known. To investigate this, efforts were made to extract Hho1p from yeast cells

for study using mass spectrometry. In my hands, Hho1p could not be enriched

from yeast whole-cell extract using 5% perchloric acid (PCA) extraction (as used

for canonical linker histones), salt extraction (as used by Srebreva et al. (1987)),

or affinity purification using anti-Hho1 antibody (data not shown). A 1% PCA

extract produced soluble Hho1p, however other proteins also remained soluble

and Hho1p levels were too low to allow further purification (data not shown).

Being unable to determine Hho1p post-translational modifications de

novo I searched the literature for proteomic post-translation modification stud-

ies mentioning Hho1p. One study reported phosphorylation events at a serine

in the linker domain and at two serines in the start of the GII domain, with one

more potential site also in the GII domain (Li et al., 2007). Therefore I deter-

mined to investigate the in vitro phosphorylation of Hho1p.

5.3.1 Phosphorylation of Hho1p and Hho1p-truncation

proteins by CDK2/Cyclin A

Casein Kinase II (NEB), Calmodulin-Dependent Protein Kinase II (NEB) and

Cyclin-Dependent Kinase 2-Cyclin A (recognition motifs: SXXE/D, RXXS/T and

S/TPXR/K respectively) were tested for their ability to phosphorylate full-length

Hho1p in vitro (data not shown). CDK2/Cyclin A was most efficient and was

used to phosphorylate Hho1p and a variety of Hho1p-truncation proteins (Fig-

ure 5.1). Figure 5.2 shows a HEPES/Histidine gel containing the protein samples

before and after CDK2/Cyclin A treatment, and mass spectrometry indicating

the number of phosphorylation events that occurred.
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Figure 5.2  Phosphorylation of Hho1p and Hho1p-truncation proteins using 
CDK2/Cyclin A.  HEPES/Histidine/10%-PAGE of the indicated proteins before and 
after treatment with CDK2/Cyclin A.  Each lane contains 0.15 nmol protein.  ESI-TOF 
mass spectrometry of the proteins following treatment with CDK2/Cyclin A.  The 
labelled peaks are the mass of the unmodified domain plus a multiple of about 80 Da, 
indicating the number of phosphorylation events that have occurred.  
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Neither the isolated GI nor GII domains are phosphorylated, although

some of the GI domain bound ATP. According to the proteomic data of Li and

colleagues (2007) the GII domain is phosphorylated in vivo, indicating this may

require a different kinase or greater sequence context than supplied by the iso-

lated GII domain. NGIL contains the same number of phosphorylation events

as full-length Hho1p, supporting the observation that the GII domain is not

phosphorylated by this kinase. Therefore, the data suggest that the majority

of the phosphorylation events happen in the linker domain (3 or 4 sites), while

the N-terminal tail is phosphorylated once or twice.

5.3.2 Effect of phosphorylation on the interaction of Hho1p

and domain deletion mutants with DNA and chromatin

The effect of phosphorylation on the binding of full-length Hho1p, NGIL and

LGII to DNA and chromatin was studied. (The isolated globular domains were

not studied because they were not phosphorylated by CDK2/Cyclin A). Initially

interaction with DNA-cellulose was investigated. Unmodified and phospho-

rylated forms of each protein were bound to DNA-cellulose and washed with

buffers containing increasing concentrations of sodium chloride (Figure 5.3).

Densitometry analysis indicated that the phosphorylated form of each protein

eluted at lower concentrations of salt than the unmodified version, demonstrat-

ing that phosphorylation reduces the affinity of these proteins for linear DNA.

The effect of phosphorylation is small for all the proteins, probably because the

change in net charge is small. It is not clear why a larger decrease in affinity for

DNA-cellulose is seen upon phosphorylation of Hho1p compared with NGIL.

Binding of the proteins to four-way junction DNA, which mimics the

nucleosome dyad, was studied in electrophoretic mobility shift assays (Fig-
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Figure 5.3  Effect of phosphorylation on the dissociation of Hho1p and Hho1p-
truncation proteins from DNA-cellulose with increasing concentration of NaCl.  
(a)  SDS/18%-PAGE of samples eluted from DNA-cellulose with increasing NaCl con-
centrations (0, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 
1000 mM NaCl, lanes 2-17).  Vertical lines indicate the peak fractions of the unphos-
phorylated protein.  (b)  The dissociation of the samples with increasing NaCl 
washes, as measured by densitometry of the Coomassie-stained gels in (a) and 
normalised with respect to BSA.  Error bars are +/- one standard error (n=2).   
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ure 5.4). Hho1p appears to preferentially bind two molecules of four-way junc-

tion DNA, as the higher band occurs even when the input ratio of Hho1p to

four-way junction is less than one. As the concentration of Hho1p is increased

a band corresponding to one Hho1p per DNA molecule is formed for unphos-

phorylated Hho1p, although a discrete product of this size is not formed with

phosphorylated Hho1p. At an input ratio of two Hho1p per DNA molecule the

samples precipitate. Densitometry analysis of the gel indicates that phosphory-

lation increases the affinity of Hho1p for four-way junction DNA (Figure 5.4b).

The affinity of NGIL for four-way junction DNA also increases upon phospho-

rylation. The gel-shift assay indicates that phosphorylation promotes the for-

mation of complexes containing two NGIL molecules and one DNA molecule,

compared with unphosphorylated NGIL. The story is less clear for LGII as the

bands produced are less well defined. The densitometry indicates that the affin-

ity of LGII for four-way junction DNA is reduced upon phosphorylation, while

the gel suggests that phosphorylation promotes the solubility of species con-

taining more than one LGII molecule. The differential effect of phosphorylation

upon binding of Hho1p, NGIL and LGII shows that there is a more complex ef-

fect on the proteins than simply the addition of negative charge, which would

be expected to reduce the affinity for DNA.

Phosphorylation had no effect on the binding of Hho1p, NGIL or LGII

to chromatin in a sucrose gradient binding assay (Figure 5.5). All of the proteins

remained bound to chromatin, independent of their phosphorylation state, in-

dicated by the absence of linker histone at the top of the gradient (lanes 10).

The LGII band runs at the same size as the H3/H2B band, however the absence

of LGII in the top fraction indicates that it is bound to the chromatin. All the

linker histone remained associated with the chromatin in assays containing 50

and 80 mM sodium chloride also (data not shown).
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5.3.3 Structural effects of phosphorylation on the linker

domain of Hho1p

5.3.3.1 Predicted structural character of the linker domain of Hho1p

The majority of phosphorylation events by CDK2 on Hho1p appeared to occur

in the linker region (Section 5.3.1). The VL3E DisProt Predictor of Intrinsically

Disordered Regions suggested that the linker region (in red) is almost entirely

disordered (Figure 5.6a) (Peng et al., 2005). Comparison of the disorder predic-

tion for the linker domain in the context of full-length Hho1p and the isolated

domain show some differences. This is due to the large input window for the

program (15 residues) but implies that the isolated domain may have a slightly

different character to that region in the context of the full-length protein. How-

ever, the disorder values of both are consistently above 0.9, predicting that they

are almost entirely disordered (Figure 5.6b). Secondary structure prediction

of the linker domain was carried out using the PSIPRED secondary structure

prediction method (Jones, 1999; Bryson et al., 2005). Figure 5.6c indicates α-

helix predictions for residues 5–9, 20–35 and 41–44 plus a very short β-strand

for residues 51–52. The strongest helix prediction is for residues 30–34, which

are predicted with 60% confidence. The predictions for both secondary struc-

ture and disorder could be explained if the secondary structure elements were

transient or occurred only in specific conditions.

5.3.3.2 Production of the linker domain of Hho1p

The linker domain of Hho1p was cloned into the pET17b plasmid and optimal

expression conditions were determined (Figure 5.7). Extraction trials indicated

that the linker domain was soluble in 5% PCA and the linker was purified fur-

ther over a Mono S ion exchange column (Figure 5.8). The linker domain has no
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Figure 5.6  Disorder and secondary structure prediction for the linker domain of 
Hho1p.  (a)  Disorder prediction for Hho1p as determined by the VL3E DisProt Predic-
tor of Intrinsically Disordered Regions program.  Disordered regions take a value of 1 
and completely ordered regions a value of 0 (Peng et al., 2005).  The linker region is 
highlighted in red and the high disorder prediction values suggest it is disordered.  (b)  
Comparison of disorder predictions for the linker region when calculated in the con-
text of full-length Hho1p and as an isolated domain.  (c) Secondary structure predic-
tion for the linker domain of Hho1p, using the PSIRED programme v3.0  (Jones, 1999; 
Bryson et al., 2005).  Regions of predicted α-helix are indicated by a pink cylinder and 
β-strands by yellow arrows.  The confidence in the prediction is indicated by the 
height of the blue bars.  
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1 2 3 4 5

Figure 5.7  Expression of the linker domain of Hho1p.  
SDS/20%-PAGE containing 0.2 OD600 of BL21(DE3) cells trans-
formed with pET17b-HHO1-linker, before induction (lane 2) and 
at 1, 2 and 3 hours (lanes 3-5) after induction with 1 mM IPTG.  
Lane 1, protein molecular weight markers.  
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1 2 3 4 5

Figure 5.8  Purification of the linker domain of  Hho1p.  (a)  SDS/20%-PAGE of cell 
extract samples, following extraction with the indicated concentration of PCA on ice 
for 10 minutes.  Lanes 1, 4, 6, 8, 10 and 12, insoluble material.  Lanes 2, 5, 7, 9, 11, 
13, soluble material.  Lane 3, protein molecular weight markers.  (b)  Fractionation of 
5% PCA-soluble material using a Mono S column.  FPLC trace of the elution profile 
and SDS/20%-PAGE of input, flow-through and elution fraction samples.  The frac-
tions in lanes 9, 12 and 16 of the gel are indicated on the elution trace.  Lane 3, protein 
molecular weight markers.  
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absorbance at 280 nm, but absorbs at 230 nm due to the peptide backbone. A

slightly larger contaminant absorbs at both 230 and 280 nm, allowing the elu-

tion of these proteins to be followed using the ratio of absorbance at 230 and

280 nm (Figure 5.8b: 0–18 ml, linker; 18–30 ml, contaminant). To allow separa-

tion of the linker from the slightly larger contaminant the maximum amount of

protein that can be bound to the Mono S column is about 2.5 mg.

5.3.3.3 NMR studies of the linker domain of Hho1p

A 13C,15N-linker sample was produced, using the protocol described above, and

NMR spectra were recorded at 600 MHz at 273 K (Figure 5.9). Originally it was

planned to record the experiments in a Tris buffer containing 10 mM magne-

sium chloride, so that the phosphorylation could be followed in real time. This

produced spectra with very broad and weak peaks (data not shown) so a mag-

nesium ion-free, sodium phosphate buffer was used (Section 5.2.2.2). HNCA,

HNCACB, HN(CO)CA, HN(CO)CACB, HNCO, HNN, HN(C)N and 1H-13C HSQC

experiments were used to assign the linker domain. The magnetisation trans-

fers for the experiments are shown in Figure 2.6. The 3D HNN/HN(C)N strat-

egy was applied in addition to conventional triple-resonance experiments be-

cause it uses two 15N dimensions to produce greater dispersion of unstruc-

tured resonances (Section 2.3.3 and Panchal et al., 2001). Triple-resonance and

HNN-based experiments were used, to about equal extents, to establish con-

nections along the peptide backbone. The following percentages of resonances

were assigned: N (95.9%), HN (95.9%), Hα (57.4%), C′ (97.9%), Cα (98.1%) and

Cβ (98.1%). The resonances for Ser4 and Ser48 overlapped entirely (these are

Ser120 and Ser164 in full-length Hho1p; see Figure 5.1b). See Appendix B for

the resonance list of the linker domain of Hho1p.

Shift deviations from random coil were measured for C′, Cα, Hα, HN
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Figure 5.9  NMR spectroscopy of the linker domain of Hho1p.  (a)  
SDS/20%-PAGE of the 13C,15N-labelled linker domain NMR sample.  Lane 1, 
molecular weight markers.  (b)  1H-15N HSQC spectrum of 13C,15N-linker, 
recorded at 600 MHz at 273 K in 10 mM sodium phosphate buffer at pH 6.0.  
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and N resonances. There are systematic shifts in values from zero because the

chemical shift reference data were acquired at a much higher temperature than

that used in this study. The resonances showed small deviations from sequence

context-dependent random coil NMR shifts (Schwarzinger et al., 2001), indi-

cating there are no fully structured regions in the linker domain (Figure 5.10).

However, around residues 24–38 there is a contiguous region of deviations from

the C′, Cα and HN random coil shifts. The HN values decrease and the Cα and

C′ values increase for this region (assuming true baselines of around 0.2, –0.2

and 0 respectively) which is characteristic of α-helical character (Wishart et al.,

1991). This region overlaps significantly with a region of helix predicted by the

PSIPRED method (Figure 5.6c).

The dynamics of the Hho1p linker domain were studied using het-

eronuclear NOE measurements (Figure 5.11a). All of the {1H}15N NOE mea-

surements are below 0.6, indicating a linker that is dynamic on a picosecond-

nanosecond time-scale and therefore contains with little or no stable secondary

structure.

Temperature-dependent amide proton chemical shifts are indicators

of hydrogen bonding and are shown in Figure 5.11b. As the temperature of a

sample is increased the magnitude of thermal fluctuations rises, resulting in

increased distances between atoms. This results in up-field shift of the amide

proton resonances in α-helices as they move towards their random coil values.

Those residues that are hydrogen-bonded are less susceptible to temperature-

dependent structural changes, which is reflected in smaller up-field shifts. If

a temperature-dependent amide proton shift is less negative than –4.5 ppb/K

it is considered to be stably hydrogen-bonded (Baxter and Williamson, 1997).

None of the amide proton shifts is above –4.5 ppb/K, indicating there are no

stable hydrogen bonds within the linker domain. This suggests that none of
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Figure 5.11  Analysis of the dynamics of the linker domain of 
Hho1p.  (a) Heteronuclear NOE measurements are below 0.6, indicat-
ing a broadly dynamic linker domain, although the region between 
residues 25 and 35 does have slightly higher NOE values.  (b)  Tempera-
ture dependence of amide proton chemical shifts, obtained from 15N-
HSQC spectra acquired at 273, 278, 288 and 298 K.  Values are more 
negative than –4.5 ppb/K, indicating that none of the amide protons is 
stably hydrogen-bonded (Baxter and Williamson, 1997).  
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the predicted helices (Figure 5.6c) is fully formed in the isolated linker domain.

Despite these general characteristics, the data show slight increases in {1H}15N

NOEs and amide proton shifts for the region around residues 24–38, demon-

strating that this region is slightly less dynamic than the rest of the linker. This

is in line with the chemical shift deviation data in Figure 5.10.

5.3.3.4 The linker domain of Hho1p is phosphorylated at Ser4, Ser14 and

Thr27 by CDK2/Cyclin A

The double-labelled linker sample was phosphorylated using CDK2/Cyclin A

and the product analysed in HEPES/Histidine gels and by mass spectrometry

(Figure 5.12). Only a proportion of the linker is shifted in the gel, suggesting only

partial phosphorylation, however the mass spectrometry indicates that all of

the linker domain is phosphorylated at least once. The phosphorylation could

not be taken to completion; a mixture of phosphorylation states persisted with

one, two or three phosphorylation events per molecule of linker domain.

The phosphorylated sample was used to record a 1H15N-HSQC spec-

trum at 600 MHz and 273 K (Figure 5.13a). There are a number of differences

between this and the unphosphorylated 1H15N-HSQC spectrum, suggesting

that there may be multiple phosphorylation events and potentially widespread

changes in structural character of the linker domain upon phosphorylation. Of

particular interest are the three new peaks that have appeared outside the “ran-

dom coil region” (8.0–8.5 ppm proton resonance) (Figure 5.13a). Prior to the as-

signment of the phosphorylated species (see below) it was assumed that these

peaks are likely candidates for phosphorylation sites, as three phosphorylation

events were seen in the mass spectrometry data (Figure 5.12).

Aside from these peaks, some peaks shift and some peaks attenuate and

a new peak appears. Therefore the phosphorylated species was assigned ab ini-
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1 2 3

Figure 5.12 Phosphorylation of the linker domain of Hho1p.  (a)  
HEPES/Histidine/10%-PAGE of linker domain of Hho1p before and after treatment 
with CDK2/Cyclin A.  Each lane contains about 2.6 nmol protein.  The linker domain 
stains relatively poorly with Coomassie blue, compared with the similar-sized con-
taminant.  Amino acid analysis indicated the linker is in great excess over the con-
taminant.  (b)  ESI-TOF mass spectrometry of the linker domain following treatment 
with CDK2/Cyclin A.  The peaks indicated are equivalent to the unmodified linker 
domain plus a multiple of about 80 Da, indicating the number of phosphorylation 
reactions.  All of the linker has been phosphorylated at least once, although a large 
proportion shows no change in gel mobility in (a).  
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Figure 5.13  NMR peak shifts upon phosphorylation of the linker domain of 
Hho1p.  (a) 1H-15N HSQC spectra of 13C,15N-linker and phosphorylated 13C,15N-linker 
indicating movement of the serine (green) and threonine (blue) peaks upon phos-
phorylation.  (b)   Combined chemical-shift distances in the 1H-15N HSQC spectra 
upon phosphorylation.   
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tio using HNCA, HNCACB, HN(CO)CA, HN(CO)CACB, HNCO, HNN, HN(C)N,

HBHA(CBCACO)NNH and 1H-13C HSQC experiments. The new peaks were as-

signed as if full phosphorylation had occurred. The sites of phosphorylation

were assumed not to interact, based on the lack of “doubling” of the new peaks.

This was proved correct as all of the new peaks could be accounted for by a sin-

gle phosphorylated species. Assignment was achieved through sequential steps

along the backbone, using the triple-resonance experiments and HNN-based

experiments to establish connectivity to about equal extents. The following

percentages of resonances were assigned: N (95.9%), HN (95.9%), Hα (55.6%),

C′ (97.9%), Cα (98.1%) and Cβ (98.1%). See Appendix C for the resonance list of

the phosphorylated linker domain of Hho1p.

Upon phosphorylation peak duplication occurred for 17 residues: Ser4,

Glu6, Ser14, Val24, Ser25, Thr27, Ala 28, Ser29, Lys30, Ala31, Lys32, Ala33, Ala34,

Ser35, Thr36, Lys37 and Leu38. In each case there was one peak very close

to that in the unphosphorylated linker spectrum and another peak that was

assigned as the phosphorylated form. Duplication of peaks was seen due to

the incomplete phosphorylation of the sample (Figure 5.12). The “additional”

resonances assigned to Ser4 showed no overlap with those of the Ser4,48 “un-

phosphorylated” resonance set. No “additional” resonances were observed for

Ser48. The unphosphorylated peak position for some residues is masked by

overlapping peaks in the phosphorylated 1H-15N HSQC spectrum. The follow-

ing residues are likely to have duplicated, but masked, peaks due to the distance

of the new peak from the unphosphorylated position: Lys3, Glu12, Lys18, Ala26

and Lys46.

The combined shift distances of the 1H15N-HSQC peaks upon phospho-

rylation were measured to indicate which residues of the linker domain are af-

fected most strongly by phosphorylation (Figure 5.13b). The residues which
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showed the greatest shifts in their 1H15N-HSQC peak upon phosphorylation

were Ser4, Ser14 and Thr27. The 1H resonances shift down-field, indicating

potential phosphorylation events as demonstrated in previous peptide studies

(Hoffmann et al., 1994). In addition to these peaks some of the neighbouring

peaks are also shifted, but to a smaller extent. The region from residues 24–38

also showed chemical shift differences upon phosphorylation. This region con-

tains several serine and threonine residues, so it is important to determine if the

shift differences were due to multiple phosphorylation events or to a structural

change in this region.

The Cβ resonances were then studied to determine if they could report

on the phosphorylation events. The Cβ is closer to the phosphorylation event

than the other nuclei assigned. If a chemical-shift change is induced by a struc-

tural change it is likely to affect the Cα and Cβ shifts to a similar extent, so struc-

tural effects can be screened. The 1H-13C HSQC was studied (Figure 5.14a) and

peak shifts were identified for Ser4, Ser14, Ser25, Ser29 and Thr27. The shift dif-

ferences were quantified using the triple resonance experiments as the peaks

were less overlapped (Figure 5.14b). Ser4, Ser14 and Thr27 show clear Cβ shift

differences upon phosphorylation, compared with the other residues, which

supports the assumption of phosphorylation at these sites, based on the com-

bined amide shift difference (Figure 5.13b).

As noted above, the 1H-13C HSQC also identified peak shifts for Ser25

and Ser29. The quantitative chemical-shift data indicated that the Ser25 shift

is not appreciable, compared with Ser4 and Ser14, but Ser29 showed a signifi-

cant, and positive, shift of Cβ resonance upon phosphorylation. Ser29 occurs

within the identified region of transient structure (Section 5.3.3.3), which un-

dergoes structural change upon phosphorylation, as will be detailed in Section

5.3.3.5. Briefly, Ser29 showed the largest increase in Cα resonance of all the
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Figure 5.14  Using Cβ resonances to report on phosphorylation of residues in 
the linker domain of Hho1p.  (a) 1H-13C HSQC spectra showing serine and threo-
nine Cβ resonances, with the shifts upon phosphorylation indicated.  Two carbon 
resonance axes are marked because the spectra were folded.  The  smaller values 
are the aliased frequencies and the larger values are the true frequencies.  (b) Shift in 
the Cβ chemical-shifts of the serine and threonine residues upon phosphorylation: 
serine (green); threonine (blue).   
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linker residues upon phosphorylation, almost twice that of the Cβ resonance

shift. This indicates that the residue’s environment is more changed near the

backbone of the protein than near the potential site of phosphorylation and

would be consistent with a change in secondary structure, rather than a phos-

phorylation event.

The peak duplication data can be considered quantitatively for each

residue by considering peak loss upon phosphorylation at the site of the un-

phosphorylated peak. The data for each serine and threonine residue in the

linker domain is shown in Figure 5.15a. As the “unphosphorylated” resonances

for Ser4 and Ser48 overlap, they are considered as a set. Because the chemical

shifts are affected by structural changes (detailed in Section 5.3.3.5), the data

for residues 24–38 cannot be used to infer phosphorylation events. To try to

separate Ser4 and Ser48 using peak loss data, the “nearest neighbours” were

considered (Figure 5.15b). The “nearest neighbours” are the closest residues

which were assigned in the 1H-15N HSQC with well defined peaks. Lys3 does

have some overlap in the phosphorylated spectrum but it was the only avail-

able data on the N-terminal side of Ser4. The overlap would cause an overesti-

mation of the ratio of peak volumes for this residue. The “nearest neighbours”

of Ser4 and Ser14 had less than 50% of the peak retained at the unphosphory-

lated position, including Lys3. This is in contrast to the neighbours of Thr22,

Ser23, Ser48, Thr50 and Thr52, which show almost no peak loss upon phospho-

rylation. These data suggest that Ser4 and 14 are phosphorylated, while Thr22,

Ser23, Ser48, Thr50 and Thr52 are not, supporting the observations from the

amide and Cβ chemical-shift difference data (Figures 5.13b and 5.14b).

Taken together these data demonstrate that the phosphorylated

residues in the linker domain of Hho1p are Ser4, Ser14 and Thr27 (residues 120,

124 and 143 of Hho1p respectively).
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Figure 5.15  1H-15N HSQC peak loss upon phosphorylation of the linker domain 
of Hho1p.  The ratio of peak volumes of the phosphorylated spectrum to unmodified 
spectrum for (a) each serine and threonine position assigned to the unmodified 
linker, and (b) serines 4, 14, 23 and 48, and threonines 22, 36, 50 and 52, plus their 
nearest neighbouring residues  (corrected for sample concentration).   
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5.3.3.5 Effect of phosphorylation on the structure of the linker domain of

Hho1p

C′, Cα, Hα, HN and N shift differences from random coil were measured for

the phosphorylated linker and compared with data for the unphosphorylated

species (Figure 5.16). In most cases the shift values are similar for the unphos-

phorylated and phosphorylated linker domains, although Hα is more variable.

Residues 24–36 show a larger deviation from random coil values for all nuclei

upon phosphorylation of the linker domain, and the region is divided into two

sub-regions showing different shift patterns. Residues between about 27 and

36 show amide proton resonances that shift up-field upon phosphorylation

(residues 30–36) while the Cα and C′ resonances shift down-field (residues 27–

36). This could indicate a gain of α-helical character (Wishart et al., 1991; Spera

and Bax, 1991). Residues between 24 and about 27 show resonances that shift

in the opposite direction, indicating a loss of helical structure at this subregion.

The dynamics of the phosphorylated linker domain were studied using

heteronuclear NOE measurements and temperature-dependent amide proton

chemical shifts (Figure 5.17). As for the unphosphorylated domain, all of the

{1H}15N NOE measurements remain below 0.6 upon phosphorylation, indicat-

ing that no fully structured regions are formed. However there is a significant

increase in the {1H}15N NOE values for residues 3–6, 13–19 and 25–31 com-

pared with the unphosphorylated species. The region of the predicted α-helix

discussed above (residues 24–38) matches with one of the regions of decreased

mobility identified by the {1H}15N NOE analysis (residues 25–31). There is no

other indication of a change in structure around residues 3–6 and 13–19, al-

though this includes phosphorylated serine residues 4 and 14. The amide pro-

ton shifts remain below –4.5 ppb/K, indicating that no stable hydrogen bonds

are formed upon phosphorylation (Baxter and Williamson, 1997). The values do
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Figure 5.16  Shift deviations from random coil for the unphosphorylated and 
phosphorylated linker domain of Hho1p.  C', Cα, Hα, HN and N nuclei chemical shift 
deviations from random coil, corrected for sequence context (Schwarzinger et al., 
2001).  Ser4, Ser14 and Thr27 are marked with vertical lines.  The true baselines are 
offset from zero because these experiments were recorded at much lower tempera-
tures than the random coil values.  The region of transient structure identified previ-
ously (residues 24–36) shows changes in chemical shift deviations upon phosphory-
lation.    
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Figure 5.17  Analysis of the dynamics of the unphosphorylated and phosphory-
lated linker domain of Hho1p.  (a) Heteronuclear NOE measurements remain below 
0.6 following phosphorylation, indicating the linker domain remains mostly unstruc-
tured.  Residues 3–6, 13–19 and 25–31 have significantly higher NOE values in the 
phosphorylated form indicating a reduction in fast (ps-ns) dynamics.  (b)  Tempera-
ture dependence of amide proton chemical shifts, obtained from 15N-HSQC spectra 
acquired at 273, 278, 288 and 298 K.  Values are more negative than –4.5 ppb/K, 
indicating none of the amide protons is stably hydrogen-bonded (Baxter and 
Williamson, 1997).  There is a contiguous stretch of increased values around residues 
25–35.     
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however increase slightly, especially over residues 20–36, but they are all within

one standard error of the value for the unphosphorylated linker, and any differ-

ence in hydrogen bonding between the unphosphorylated and phosphorylated

linker domain is therefore small and transient.

The experiments in Figures 5.16 and 5.17 demonstrate that the region

of weak structure gains α-helical character at residues 27–36, but loses α-helical

character in the residues immediately preceding this upon phosphorylation of

the linker domain.

5.4 Discussion

Difficulties in extraction of Hho1p from yeast whole-cell or nuclear extracts hin-

dered investigation of its post-translational modifications. This is an important

question to address in order to understand if Hho1p is modified in similar ways

to canonical linker histones (Section 1.3.1.2). The study by Li and colleagues

(2007) successfully identified phosphorylation of Hho1p by mass spectrometric

analysis of yeast whole-cell extract, suggesting that a similar procedure could be

used to identify further Hho1p post-translational modifications in a proteome-

scale study.

5.4.1 Phosphorylation of Hho1p by CDK2/Cyclin A occurs

mainly in the linker domain

CDK2/Cyclin A phosphorylation of Hho1p, in vitro seemed a good starting

point to investigate the effect of phosphorylation on the properties of Hho1p

and the structure of the linker domain, as yeast contains a functional CDK2 ho-

mologue, Ime2p (Szwarcwort-Cohen et al., 2009). The CDK2/Cyclin A-treated
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Hho1p is phosphorylated at more sites than were identified by Li and colleagues

(2007). This could be because that study used α-factor arrested yeast cells, and

phosphorylation states are known to vary with cell cycle and growth phase. This

suggests that other kinases would produce a different pattern of phosphory-

lation events in Hho1p. These should be identified and the action on Hho1p

studied, in order to elucidate the effect of all the naturally occurring phospho-

rylation events on Hho1p.

It should be noted that the phosphorylation events in the GII domain,

identified by Li et al. were not observed for in vitro CDK2/Cyclin A phosphory-

lation of the isolated domain. The study by Holt at al. (2009) indicates that the

phosphorylation of Ser174 is Cdk1-dependent. Analysis of various Hho1p re-

gions suggested that the majority of phosphorylation events by CDK2/Cyclin A

occur in the originally-defined linker region (residues 131–170). This corre-

sponds to residues 15–54 of the linker domain used for structural work in this

Chapter, which was phosphorylated only once (Thr27). At least two further

phosphorylations occur in the context of the LGII protein (Figure 5.2), and it

is unclear whether they occur in the originally-defined linker region or GII do-

main. In contrast, the phosphorylation of linker residues Ser4 and Ser14 (iden-

tified in Section 5.3.3.4) are contained in the GI protein, which doesn’t show

any phosphorylation by CDK2/Cyclin A (Figure 5.2), although Ser14 is the C-

terminal residue of the GI protein and therefore may not be expected to be mod-

ified. This indicates that the phosphorylation of Hho1p and Hho1p-truncation

proteins by CDK2/Cyclin A is context-dependent and demonstrates that fur-

ther work is required to valid all of the CDK2/Cyclin A phosphorylation sites in

Hho1p. Section 5.3.3.4 suggests that both amide and Cβ chemical shift differ-

ences report on phosphorylations (Figures 5.13 and 5.14).
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5.4.2 Phosphorylation affects the biochemistry of Hho1p and

Hho1p-truncation proteins

Phosphorylation affects the affinity of Hho1p and Hho1p-truncation proteins

for DNA. For linear DNA, phosphorylation reduces the affinity of the protein

for the DNA. This could be because phosphorylation adds negative charge to a

protein, making it less basic and reducing electrostatic affinity for DNA. Alter-

natively there could be a change in the structure of the protein upon phospho-

rylation, which could also affect affinity for DNA. Work described in this Chap-

ter indicates there are some changes in structure of the linker domain upon

phosphorylation, which have the potential to cause a considerable change in

binding affinity.

Understanding the effect of phosphorylation on the affinity of Hho1p

and Hho1p-truncation proteins for four-way junction DNA is more complex,

with Hho1p and NGIL affinities increasing but LGII affinity appearing to de-

crease upon phosphorylation. This suggests that the interaction of LGII with

four-way junction DNA may be controlled by the electrostatic association or

that phosphorylation may destabilise the GII domain. There must be a struc-

tural effect of phosphorylation on Hho1p and NGIL to cause both the different

effect to LGII, and the different effect of phosphorylation on binding to linear

or four-way junction DNA. Further investigation is required to understand the

specific phosphorylations that contribute to the different effects of phosphory-

lation on the properties of NGIL and LGII.

The chromatin binding assay was not able to distinguish between the

unphosphorylated and phosphorylated proteins but, given that phosphoryla-

tion did affect DNA binding, this is probably due to the low resolution of this

technique. Creation of yeast strains containing various GFP-tagged Hho1p re-

- 195 -



CHAPTER 5

gions in place of the genomic copy of the HHO1 gene could allow FRAP to be

used to compare the chromatin-binding properties quantitatively. In a similar

manner to Lever et al. (2000) the effect of treating the cells with kinase inhibitors

could provide insight into how phosphorylation modifies the dynamics of the

Hho1p regions in chromatin.

5.4.3 The linker domain of Hho1p is mainly unstructured, but

may have some helical character around residues

24–38

As predicted by the VL3E DisProt Predictor of Intrinsically Disordered Regions

the isolated linker domain of Hho1p is mostly unstructured. The PSIPRED pre-

diction method suggests several regions of α-helical structure, with the region

around residues 30–34 being predicted with most confidence (Figure 5.6c).

The conclusions from the NMR data support theα-helix prediction for a

region containing residues 24–38. Data in Figure 5.10 indicate a contiguous re-

gion of small chemical shift deviations from sequence-corrected random coil

values. This indicates that the linker domain of Hho1p is not stably folded,

but shows regions of transient structure or folding. The direction of the HN,

Cα and C′ deviations indicate α-helical character in this region. Temperature-

dependent amide proton shifts indicated that no stable hydrogen bonds occur

within the linker domain (Figure 5.11), so none of the predicted helices are fully

stable. However the values for residues 24–38 are less negative than those for the

surrounding sequence, indicating a less dynamic structure at this region, with

the potential for transient bonding to stabilise a structural element. {1H}15N

NOE values for the linker domain indicate that it is dynamic on a picosecond-

nanosecond timescale, i.e. that the residues move independently and faster
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than the overall tumbling of the domain (Figure 5.11). Regions around residues

10 and 30 show an increase in {1H}15N NOE values relative to the rest of the

linker domain, indicating that these regions are also less flexible and may con-

tain transient structure.

Thus, the linker domain of Hho1p is a dynamic molecule in aqueous

solution, with little or no structure at most regions. However the region around

residues 24–38 has reduced fast dynamics and increased structural character,

with both chemical shift deviations from random coil and the PSIPRED pro-

gram predicting α-helical character.

5.4.4 Phosphorylation of the linker domain by CDK2/Cyclin A

occurs at three sites

The linker domain residues that are phosphorylated in vitro by CDK2/Cyclin A

are Ser4, Ser14 and Thr27. These were initially identified by their large

combined chemical-shift distances upon linker domain phosphorylation (Fig-

ure 5.13). More conclusive data comes from considering the difference in Cβ

resonances upon phosphorylation (Figure 5.14). There was also significant peak

loss at the “unphosphorylated” resonances of Ser4 and Ser14 and their “nearest

neighbours”, indicating that a large proportion of the molecules were modified

(Figure 5.15). The most dramatic peak loss in the 1H-15N HSQC spectra upon

phosphorylation occurs for Ser14, indicating that this residue is likely to be fully

phosphorylated. It is of note that this is the phosphorylation event (equivalent

to residue 130 of Hho1p) identified in yeast extracts by Li and colleagues (2007).

It is interesting to note that the regions that surround the phosphory-

lation events all show an increase in {1H}15N NOE values upon phosphoryla-

tion (Figure 5.17). The changes around Thr27 may be due to the increase in
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secondary structure at this region. However, there is no appreciable change in

temperature-dependent amide proton chemical shifts, or shift deviation from

random coil in the regions around Ser4 and Ser14, yet these also show increases

in {1H}15N NOE upon phosphorylation. Therefore, the change in picosecond-

nanosecond dynamics at these regions may be a direct effect of the phosphory-

lation event, and not necessarily an indication of wider structural change.

Ser4 and Ser14 are both followed by a proline in the linker sequence;

this is also true for Ser48, which is not phosphorylated. None of the thre-

onine residues are followed by a proline. The optimal sequence context for

CDK2 phosphorylation is S/TPXR/K (refined from the data in Songyang et al.,

1994), but sub-optimal residues at position 4 are also recognised (Stevenson-

Lindert et al., 2003). It could perhaps be argued that the sequence context

of Ser4 and Ser14 (SPEVKK and SPKPK respectively) are closer to the optimal

sequence than that of Ser48 (SPTVTAK) because they contain lysine residues

within one residue of position 4 of the consensus sequence. The proximity of

Ser48 to the C-terminus of the linker domain may also reduce the binding of

the kinase at this position, depending on what contacts are required for CDK2

binding relative to its catalytic site. None of the threonine residues have an op-

timal CDK2 recognition motif, including Thr27, which is phosphorylated. It is

clear however, that there is specificity of phosphorylation of the linker domain

by CDK2/Cyclin A, as only three of the twelve serine and threonine residues are

phosphorylated, even though none of the residues is in the optimal sequence

context.
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5.4.5 Phosphorylation of the linker domain by CDK2/Cyclin A

changes the helical character of residues 24–38

Phosphorylation affected the structure of residues other than those directly

modified. The changes were small and localised to the region containing

residues 24–38, which had the most structural character in the unphospho-

rylated linker and showed peak duplication of all residues. The subregion of

residues following Thr27 gained more α-helical character and became less dy-

namic upon phosphorylation, as seen in the shift deviation from random coil

and {1H}15N NOE values (Figures 5.16 and 5.17). However there was little effect

on the temperature-dependent amide proton chemical shifts, suggesting that

no stable α-helices were formed. The other residues at the start of this region

show little change in their fast dynamics and a loss of α-helical character upon

phosphorylation.

Thr27, which is phosphorylated by CDK2/Cyclin A, is located in the in-

terior of this region of potential α-helix at approximately the boundary between

the two subregions. The effect of phospho-serine onα-helix structures has been

determined, and usually results in destabilisation of the helix when located in

the helix interior (Andrew et al., 2002). However, if a basic residue occurs within

the helix at a position that can interact with the phosphorylated residue a salt

bridge can form, stabilising the helix (Errington and Doig, 2005). In the linker

domain there is a lysine residue at the i+3 position to Thr27, and the side-chains

of Lys30 could interact with the phospho-threonine if they were in an α-helix. A

salt bridge between phosphorylated Thr27 and Lys30, could cause the stabilisa-

tion identified for the transient α-helical structure around residues 27–38, while

destabilising the transient structure that immediately precedes the threonine

residue in the unphosphorylated species.
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Identification of the kinase that phosphorylates Hho1p in vivo will be

important to verify the biological relevance of the effects of phosphorylation

studied in this Chapter. Also, phosphorylation of Ser4 and Thr27 have not yet

been identified for Hho1p in vivo. It is especially important to verify whether

Thr27 phosphorylation occurs naturally, because it occurs within the region of

transient structure in the linker domain and is therefore likely to affect the prop-

erties of Hho1p.

5.4.6 Comparison of the effect of phosphorylation on the

linker domain of Hho1p and the C-terminal tail of

histone H1

A similar structural investigation to that described in this Chapter has been

carried out on the C-terminal tail of chicken erythrocyte linker histone H1.11L

(Dr K. Stott, L. Cato, Dr J. O. Thomas, unpublished data). Both the histone H1

tail and Hho1p linker are mainly unstructured (Figure 1.9) but the linker do-

main has greater sequence complexity than the H1 tail. The H1 C-terminal tail

does not contain a region of transient structure similar to that identified for the

Hho1p linker domain in this Chapter, but has been shown to adopt α-helical

conformation upon binding to DNA (Roque et al., 2005).

Phosphorylation events occur at the three S/TPKK sites within the his-

tone H1 tail and these residues show the greatest change in shift deviation for

the Cα, HN and N nuclei, with smaller changes in the neighbouring residues.

The changes were less pronounced and more localised than for Thr27 in the

Hho1p linker domain. The histone H1 tail showed little change in dynamics

upon phosphorylation, with only the phosphorylated residues and neighbour-

ing residues being affected. This was also true for the Hho1p linker domain
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at the sites of phosphorylation, although the effect was longer-range around

Thr27 due to the induced α-helix in this region.

A major difference between the effect of phosphorylation on the Hho1p

linker domain and the histone H1 C-terminal tail is that the former domain

shows a change in α-helical character in the region 24–38. The gain of α-helical

character in this sub-domain is in contrast to the situation for the histone H1

C-terminal tail, which, in another study, showed a slight loss of α-helix upon

phosphorylation (Roque et al., 2008). The different effects of phosphorylation

could occur because Hho1p linker does not contain T/SPKK sequences, which

tend to form β-turn motifs in crystal structures (Suzuki, 1989). The difference

in the structural effect of phosphorylation suggests that phosphorylation may

have a different function, or at least a different mechanism of function, for the

two types of linker histone. Therefore it is important that the region of transient

structure in the Hho1p linker domain be further investigated to understand its

role in the function of Hho1p, and the function of Hho1p compared with canon-

ical linker histones.
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5.5 Summary

• CDK2/Cyclin A phosphorylates Hho1p in vitro. The majority of phospho-

rylation events appear to occur in the linker domain, and phosphorylation

is context-dependent.

• Phosphorylation reduces the affinity of Hho1p, NGIL and LGII for linear

DNA.

• Phosphorylation increases the affinity of Hho1p and NGIL, and may de-

crease the affinity of LGII, for four-way junction DNA.

• Phosphorylation showed no effect on the binding of Hho1p, NGIL and

LGII to chromatin in sucrose gradient sedimentation assays.

• The linker domain of Hho1p can be expressed in minimal medium

and purified on an NMR-scale. It can be phosphorylated in vitro by

CDK2/Cyclin A.

• Ser4, Ser14 and Thr27 of the Hho1p linker domain are phosphorylated by

CDK2/Cyclin A. Ser14 is phosphorylated to the greatest extent, and is the

phosphorylation event that has been identified for yeast in vivo.

• Residues 24–36 of the linker domain contains some residual structure,

which changes upon phosphorylation. Residues 27–36 increase in α-

helical character, while residues 24–26 lose α-helical character.
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6 Concluding remarks

This Thesis aims to further our knowledge of the yeast linker histone, Hho1p,

in terms of its structure and function within chromatin. Uniquely among linker

histones, Hho1p contains two domains, GI and GII, with sequence homology

to the globular domain of H5, as well as an unstructured N-terminal tail and

a linker domain. Hho1p has similar properties to canonical linker histones in

vitro (Section 1.5) and both isolated GI and GII domains appear to be functional

linker histone globular domains (Section 1.5.5). This has led to the suggestion

that Hho1p could act as a bifunctional linker histone, possibly bridging two nu-

cleosomes.

There is currently no direct evidence for nucleosome bridging by Hho1p

in vivo or in vitro. It is known that the length of the linker domain is suffi-

cient to allow bridging, and both globular domains, in the context of a full-

length Hho1p molecule, are able to bind independent four-way junction DNA

molecules (Schäfer et al., 2005). Work presented in this Thesis was unable to

conclusively demonstrate bridging in low resolution assays that compared the

digestion of nucleosome arrays containing Hho1p or NGIL (Chapter 3). To di-

rectly address the question of nucleosome bridging, chromatin structure needs

to be studied at greater resolution. For example, reconstituted chromatin has

been studied using atomic force microscopy (AFM), demonstrating a solenoid

structure in which the individual nucleosomes can be observed (Liu et al.,

2001). AFM would be a complementary high-resolution technique to the more

widely used electron microscopy studies (Section 1.1.2), as samples can be stud-
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ied in aqueous conditions (although affixed to a surface).

Linker histones are required for the maximal and ordered compaction

of chromatin into the “30 nm fibre” (Section 1.3.2.4). No obvious requirement

of the GII domain for the compaction of nucleosome arrays by Hho1p was ob-

served using gel-shift assays (Chapter 3). This argues against a nucleosome

bridging role for Hho1p, which would predict that about half the input ratio

of Hho1p would be required to cause equivalent compaction compared with

an NGIL-containing array. However, because gel-shift assays are low resolution

and indicated very little compaction of both Hho1p- and NGIL-containing ar-

rays, AUC should be used to look for more subtle differences between Hho1p-

and NGIL-dependent compaction of “unfolded” nucleosome arrays.

For nucleosome bridging to be a valid model, the GII domain must be

able to fold in the context of full-length Hho1p. NMR studies in Chapter 2 sug-

gest that the structural properties of the GII domain are context-independent.

Therefore, studies that demonstrate the isolated GII domain can function as a

linker histone globular domain, both in vitro and in vivo (Section 1.5.5), can be

extended to the GII domain within full-length Hho1p. Thus, the nucleosome

bridging model remains a possibility and should be pursued further in order to

understand Hho1p and its role in yeast chromatin.

Our understanding of the stability of the GII domain is extended by

work in Chapter 2, which demonstrates that secondary structure elements are

present in the “unfolded” species. Therefore the instability of the GII domain

results from less stable packing of the secondary structure elements into the

folded species, rather than the formation of the secondary structure elements

per se. Domain-swap mutants (of the GI loop into the GII domain) had previ-

ously identified the loop between helices II and III as the cause of the instability

of the GII domain (Sanderson et al., 2005), suggesting the GII loop may disrupt
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helix packing. A further domain-swap experiment could be carried out to test

this, substituting the loop of GII into the GI domain and determining if the helix

packing of the GI domain is disrupted.

While it is known that Hho1p is less abundant than core histones in

yeast, the published ratios vary (Section 3.1). I reassessed this question in Chap-

ter 3, determining a ratio of one Hho1p molecule for every 5–10 nucleosomes

in the yeast W303 strain. A recent paper, however, has increased the complexity

of this question. Schäfer et al. (2008) saw an increase in Hho1p binding to chro-

matin upon entry into stationary phase, while the cellular level of Hho1p re-

mained constant. This indicates that measurement of cellular Hho1p levels rel-

ative to core histones does not equate to the functional ratio of Hho1p bound to

nucleosomes in yeast chromatin. To determine the functional ratio, the abun-

dance of Hho1p and core histone should be measured for isolated yeast chro-

matin extracts, so the unbound Hho1p is removed. Measuring Hho1p to nu-

cleosome stoichiometry in this manner, at different stages of the cell-cycle and

in different growth phases, will produce a more complete picture of Hho1p to

nucleosome stoichiometry in yeast.

Further work is required to elucidate the protein interactions of Hho1p.

The interaction with Sir2p, described here, is the first reported evidence of a di-

rect interaction partner of Hho1p in vitro (Chapter 4). This interaction was not

pursued here due to difficulties in producing Sir2p in the bacterial expression

system, however baculovirus-expressed Sir2p has been successfully produced

(Cubizolles et al., 2006). Once a suitable sample of Sir2p is produced, it could

be used to determine if Hho1p interacts with the N-terminus of Sir2p, in a simi-

lar manner to the interaction between the human homologues, histone H1 and

SirT1 (Vaquero et al., 2004). Unlike the metazoan homologues, H1 and HMGB1,

Hho1p and Nhp6ap or Hmo1p do not interact in vitro (Chapter 4). This appears
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to be due to the absence of a strongly acidic region in the HMG box proteins, as

Hho1p interacts with the acidic tail of HMGB1 in a similar manner to metazoan

histone H1 (Cato et al., 2008). Because the interaction of Hho1p with HMGB1

is similar to that of H1 with HMGB1, this suggests that it is valid to search for

candidate Hho1p-interacting partners based on the interactions of metazoan

linker histones.

Phosphorylation is known to reduce the affinity of linker histone for

DNA and increase its exchange rate on chromatin (Green et al., 1993; Hendzel

et al., 2004). The N-terminal tail of linker histones has been implicated in the

correct placement of the H1 globular domain at the nucleosome dyad (Allan

et al., 1986). Hho1p and NGIL, but not LGII, show increased affinity for four-way

junction DNA upon phosphorylation (Chapter 5), suggesting phosphorylation

of the N-terminal tail of Hho1p may facilitate the positioning of Hho1p on the

DNA molecule. The different effect of phosphorylation on Hho1p, NGIL and

LGII binding to four-way junction DNA also raises the possibility that phospho-

rylation could be used to change Hho1p from a bi- to mono-functional linker

histone, with phosphorylation causing regions in the LGII domains to be less

tightly associated with the chromatin while the protein remains anchored by

regions in the NGIL domains.

The gain in α-helix upon phosphorylation of the Hho1p linker domain

(Chapter 5) will shorten the length of the domain that can contact DNA in chro-

matin and may reduce the affinity of the protein for DNA. This is consistent with

the observed decrease in affinity of LGII for linear and four-way junction DNA

but is not consistent with the increased affinity of NGIL for four-way junction

DNA (Chapter 5). The different effect of phosphorylation on these two linker-

containing proteins suggests that regions outside of linker residues 27–38 are

also be affected by phosphorylation.
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An extension of work presented in this Thesis would be to study the

effect of phosphorylation on the ability of Hho1p to compact reconstituted nu-

cleosome arrays. Gross structural changes could be investigated by gel-shift-

mobility assays, while AUC would allow quantitative study of more subtle ef-

fects. It would be important to ensure the amount of unmodified and phos-

phorylated linker histone bound in each array-type was equal by adjusting for

their different affinities for chromatin. Routh et al. (2008) quantified the relative

amount of H5 bound in reconstituted chromatin arrays by using H5 samples

that had been radiolabelled on less than one in 1500 molecules.

Work presented in this Thesis highlights ways in which Hho1p differs

from canonical linker histones (compaction of nucleosome arrays, protein in-

teractions and transient structure in the linker domain). This increases the

number of known differences between yeast and metazoan chromatin (Section

1.4). Thus, caution is required when using yeast as a model organism to study

chromatin, and more work is required to understand exactly how yeast chro-

matin differs from that of higher eukaryotes.
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A - NMR resonances of the “unfolded”
species of the GII domain of Hho1p

Residue HN N Hα Cα Cβ

2 Ala 8.78 126.47 4.33 52.00 18.79
3 Ser 8.61 115.67 4.45 57.77 63.33
4 Ser 8.61 118.66 4.80 56.04 62.56
5 Pro 63.10 31.60
6 Ser 8.58 115.23 4.48 58.07 63.15
7 Ser 8.50 117.83 4.44 58.21 63.15
8 Leu 8.40 123.33 4.41 55.22 41.83
9 Thr 8.30 13.58 4.29 61.74 69.51
10 Tyr 8.42 122.36 4.40 59.19 38.09
11 Lys 8.24 121.11 4.05 57.01 32.54
12 Glu 8.21 120.12 4.09 57.07 29.66
13 Met 8.42 121.06 4.29 56.12 31.88
14 Ile 8.22 121.65 3.98 61.32 37.38
15 Leu 8.22 124.42 4.28 55.44 41.66
16 Lys 8.28 120.51 4.26 56.30 32.42
17 Ser 8.20 115.43 4.42 57.95 63.27
18 Met 8.33 122.78 4.81 53.01 31.89
19 Pro 62.81 31.62
20 Gln 8.77 120.51 4.32 54.98 29.06
21 Leu 8.58 123.58 4.31 54.79 41.83
22 Asn 8.73 119.07 4.73 52.71 38.26
23 Asp 8.43 120.21 4.55 53.80 40.38
24 Gly 8.60 108.47 3.94,3.94 45.21
25 Lys 8.36 120.01 4.30 56.16 32.17
26 Gly 8.72 109.56 3.99,3.99 45.00
27 Ser 8.46 115.39 4.47 58.01 63.26
28 Ser 8.60 117.60 4.47 58.12 63.08
29 Arg 8.46 122.67 4.29 55.75 30.27
30 Ile 8.35 122.74 4.11 60.70 38.01
31 Val 8.54 126.64 4.05 61.78 32.25
32 Leu 8.59 127.22 4.35 54.44 41.87
33 Lys 8.50 122.75 55.86 32.64
34 Lys 55.71 32.77
35 Tyr 8.55 122.31 4.54 57.66 38.39
36 Val 8.18 124.11 3.97 61.41 32.77
37 Lys 8.50 125.53 4.15 56.15 32.56
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Residue HN N Hα Cα Cβ

38 Asp 8.57 122.13 4.60 53.94 40.67
39 Thr 8.24 114.09 4.23 61.62 69.14
40 Phe 8.47 121.71 4.59 57.92 38.84
41 Ser 8.35 116.63 4.39 58.10 63.16
42 Ser 8.52 117.94 4.44 58.34 63.06
43 Lys 8.40 122.57 4.29 56.06 32.27
44 Leu 8.24 122.15 4.30 54.74 41.78
45 Lys 8.51 122.30 55.91 32.44
46 Thr 8.35 114.85 4.38 61.28 69.42
47 Ser 8.52 117.42 4.47 57.96 63.35
49 Asn 8.50 119.99 4.65 53.07 38.16
50 Phe 8.35 120.00 4.50 57.92 38.84
51 Asp 8.32 121.25 4.48 54.55 40.15
52 Tyr 8.14 119.63 4.39 58.52 37.66
53 Leu 7.97 121.54 4.10 55.16 41.44
54 Phe 8.07 119.56 4.45 58.06 38.87
55 Asn 8.29 119.37 4.64 52.90 38.29
56 Ser 8.33 115.94 4.29 58.56 62.93
57 Ala 8.29 124.82 4.29 52.42 18.51
58 Ile 8.02 119.45 4.04 60.85 37.86
59 Lys 8.46 125.61 4.26 55.86 32.46
60 Lys 8.52 123.00 4.28 55.90 32.58
61 Cys 8.59 121.29 4.49 58.22 27.64
62 Val 8.51 122.47 4.12 62.09 32.17
63 Glu 8.75 124.44 4.29 56.17 29.75
64 Asn 8.74 119.61 4.68 52.99 38.28
65 Gly 8.58 108.79 3.93,3.93 45.11
66 Glu 8.35 119.73 4.30 55.93 29.91
67 Leu 8.42 122.66 4.36 54.68 41.75
68 Val 8.36 122.37 4.07 61.78 32.15
69 Gln 8.71 125.71 4.60 52.97 28.39
70 Pro 62.50 31.75
71 Lys 8.70 121.61 4.32 55.82 32.74
72 Gly 8.48 109.81 4.18,4.01 44.06
73 Pro 62.75 31.66
74 Ser 8.75 116.08 4.45 58.18 63.40
75 Gly 8.58 110.31 3.94,3.94 44.87
76 Ile 8.13 120.05 4.11 60.71 38.03
77 Ile 8.47 126.46 4.10 60.50 37.88
78 Lys 8.64 126.77 4.29 55.65 32.54
79 Leu 8.55 124.15 4.33 54.52 41.94
80 Asn 8.70 120.00 4.67 52.62 38.31
81 Lys 8.55 122.18 4.26 55.92 32.54
82 Lys 8.51 122.55 4.24 55.93 32.46
83 Lys 8.59 123.51 4.30 55.84 32.52
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Residue HN N Hα Cα Cβ

84 Val 8.43 122.74 4.05 61.74 32.46
85 Lys 8.66 126.29 4.31 55.66 32.63
86 Leu 8.67 125.00 4.41 54.54 41.95
87 Ser 8.57 117.19 4.53 57.78 63.39
88 Thr 8.00 120.30 4.15 62.84 70.11
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B - NMR resonances of the linker region of
Hho1p

Residue HN N Hα C′ Cα Cβ

2 Lys 124.71 176.46 56.67 33.44
3 Lys 8.78 124.00 176.81 56.41 33.54
4 Ser 8.74 119.73 4.77 57.00 63.24
5 Pro 176.99 63.42 32.50
6 Glu 8.68 121.54 176.74 56.63 30.61
7 Val 8.54 123.23 4.08 176.36 62.54 33.02
8 Lys 8.70 126.49 176.61 56.46 33.26
9 Lys 8.67 123.92 176.90 56.42 33.44
10 Glu 8.70 122.76 176.70 56.58 30.63
11 Lys 8.63 122.33 176.82 56.64 33.30
12 Glu 8.67 122.94 176.62 56.59 30.67
13 Val 8.58 122.43 4.24 176.47 62.46 33.12
14 Ser 8.71 121.29 56.68 63.36
15 Pro 4.47 177.01 63.16 32.35
16 Lys 8.64 123.13 4.59 54.56 32.58
17 Pro 177.15 63.19 32.57
18 Lys 8.70 121.99 177.02 56.65 33.29
19 Gln 8.65 122.03 4.33 175.85 55.72 29.99
20 Ala 8.68 126.23 4.31 177.89 52.63 19.55
21 Ala 8.66 123.75 4.38 178.38 52.80 19.49
22 Thr 8.39 113.35 4.38 174.89 62.02 70.16
23 Ser 8.54 118.16 4.54 174.90 58.51 64.03
24 Val 8.47 121.98 4.18 176.89 62.81 33.00
25 Ser 8.61 119.41 4.46 175.13 58.74 63.84
26 Ala 8.70 126.45 4.39 178.77 53.40 19.40
27 Thr 8.29 113.13 4.26 175.12 62.77 69.82
28 Ala 8.40 126.21 4.35 178.64 53.26 19.28
29 Ser 8.51 115.11 4.40 175.38 59.10 63.78
30 Lys 8.49 123.29 4.32 177.05 56.88 33.18
31 Ala 8.39 124.57 4.28 178.45 53.09 19.25
32 Lys 8.46 120.83 177.12 56.69 33.28
33 Ala 8.50 125.21 178.10 52.89 19.34
34 Ala 8.51 123.05 178.44 52.90 19.31
35 Ser 8.51 114.85 4.51 175.43 58.70 63.90
36 Thr 8.41 116.40 4.36 174.79 62.39 69.90
37 Lys 8.43 123.71 176.69 56.61 33.24
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Residue HN N Hα C′ Cα Cβ

38 Leu 8.43 123.61 4.37 177.06 54.93 42.66
39 Ala 8.51 126.56 4.61 50.70 18.27
40 Pro 4.44 177.16 63.01 32.26
41 Lys 8.62 121.90 176.95 56.51 33.35
42 Lys 8.61 123.65 176.64 56.52 33.35
43 Val 8.58 124.08 4.09 176.30 62.57 33.11
44 Val 8.62 126.65 4.11 176.19 62.35 33.06
45 Lys 8.71 126.98 176.61 56.41 33.77
46 Lys 8.67 124.16 176.73 56.50 33.54
47 Lys 8.72 123.92 176.81 56.41 33.55
48 Ser 8.74 119.73 4.77 57.00 63.24
49 Pro 177.21 63.43 32.51
50 Thr 8.55 116.04 4.31 174.85 62.58 70.02
51 Val 8.54 124.07 4.15 176.43 62.46 33.21
52 Thr 8.53 119.80 4.33 174.26 62.15 70.10
53 Ala 8.59 127.93 4.36 176.99 52.77 19.55
54 Lys 8.20 126.14 4.16 57.96 33.91
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C - NMR resonances of the phosphorylated
linker region of Hho1p

Residue HN N Hα C′ Cα Cβ

2 Lys 176.15 56.59 33.48
3 Lys 8.78 124.65 176.49 56.23 33.63
4 Ser 9.15 121.47 56.82 64.53
5 Pro 176.92 63.38 32.38
6 Glu 8.69 121.71 176.76 56.74 30.50
7 Val 8.52 123.06 4.24 176.26 62.45 32.91
8 Lys 8.70 126.49 176.57 56.37 33.37
9 Lys 8.66 124.01 176.80 56.34 33.50
10 Glu 8.70 122.80 176.49 56.68 30.50
11 Lys 8.61 122.34 176.40 56.67 33.24
12 Glu 8.77 123.92 176.55 56.49 30.51
13 Val 8.58 122.49 4.08 176.43 62.51 33.09
14 Ser 9.16 123.67 56.37 64.61
15 Pro 4.46 176.91 63.35 32.43
16 Lys 8.61 122.57 4.67 53.92 32.94
17 Pro 177.20 63.13 32.47
18 Lys 8.72 121.91 176.93 56.61 33.37
19 Gln 8.65 122.00 4.33 175.83 55.69 29.88
20 Ala 8.67 126.12 4.31 177.86 52.61 19.41
21 Ala 8.65 123.69 4.39 178.34 52.73 19.49
22 Thr 8.38 113.22 4.38 174.83 61.96 70.05
23 Ser 8.52 118.11 4.55 174.59 58.43 63.93
24 Val 8.44 121.70 4.10 176.46 62.27 32.99
25 Ser 8.65 120.35 4.51 174.69 58.15 63.99
26 Ala 8.81 126.83 4.35 178.88 53.36 19.28
27 Thr 8.96 115.34 4.24 175.53 63.36 71.99
28 Ala 8.69 125.90 4.34 179.47 53.86 19.08
29 Ser 8.68 115.25 4.30 176.08 60.46 63.09
30 Lys 8.31 122.52 4.29 177.50 57.30 32.81
31 Ala 8.19 123.45 4.39 178.81 53.41 18.93
32 Lys 8.33 120.08 177.43 56.99 33.00
33 Ala 8.36 124.34 178.32 53.15 19.14
34 Ala 8.39 122.40 178.58 53.07 19.25
35 Ser 8.42 114.43 4.50 175.50 58.87 63.75
36 Thr 8.33 116.16 4.36 174.81 62.48 69.75
37 Lys 8.36 123.47 176.68 56.63 33.11
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Residue HN N Hα C′ Cα Cβ

38 Leu 8.38 123.27 4.37 177.02 54.92 42.59
39 Ala 8.48 126.40 4.61 50.67 18.14
40 Pro 177.09 62.97 32.28
41 Lys 8.62 121.84 176.94 56.53 33.33
42 Lys 8.60 123.58 176.61 56.48 33.34
43 Val 8.56 123.96 4.24 176.26 62.53 33.08
44 Val 8.60 126.50 4.23 176.16 62.37 33.00
45 Lys 8.71 126.93 176.70 56.36 33.42
46 Lys 8.74 124.10 176.71 56.47 33.48
47 Lys 8.71 123.83 176.79 56.36 33.52
48 Ser 8.74 119.63 4.27 57.03 63.17
49 Pro 4.45 177.18 63.38 32.43
50 Thr 8.55 115.99 4.31 174.81 62.51 69.91
51 Val 8.54 124.03 176.40 62.39 33.09
52 Thr 8.52 119.79 4.33 174.23 62.10 69.98
53 Ala 8.59 127.93 4.30 176.96 52.74 19.45
54 Lys 8.20 126.14 4.16 57.92 33.80
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