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ABSTRACT

The process of relaxation of a unidirectional magnetic field in a highly conducting

tenuous fluid medium is considered. Null points of the field play a critical role in

this process. During an initial stage of relaxation, variations in magnetic pressure are

eliminated, and current sheets build up in the immediate neighborhood of null points.

This initial phase is followed by a long diffusive phase of slow algebraic decay of the field,

during which fluid is continuously sucked into the current sheets, leading to exponential

growth of fluid density and concentration of mass around the null points, which show a

tendency to cluster. Ultimately, this second phase of algebraic decay gives way to a final

period of exponential decay of the field. The peaks of density at the null points survive

as a fossil relic of the decay process. Numerical solution of the governing equations

provides convincing confirmation of this three-stage scenario. Generalizations to two-

and three-dimensional fields are briefly considered.

Subject headings: magnetic fields, magnetic reconnection, ISM: structure, ISM: kine-

matics and dynamics, intergalactic medium, large-scale structure of universe

1. Introduction

When a conducting fluid, initially at rest, is permeated by a non-uniform magnetic field, the

associated Lorentz force in general drives motion in the fluid. Magnetic energy is converted to

kinetic energy, which is dissipated by viscosity, and also in part to internal energy if the fluid is

compressible. If the fluid is regarded as perfectly conducting, then the field lines are frozen in the

fluid, and the topology of the field is conserved. There is thus a tendency for the magnetic field to

relax in such a way that the sum of magnetic and internal energies decreases to a minimum subject

to the constraints of the conserved topology of the field and any boundary conditions that may be

applicable.
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This process, originally conceived by Arnold (1974), has been analyzed in some detail for both

incompressible and compressible barotropic fluids (Moffatt 1985, 1987). In both cases, it was shown

that tangential discontinuities of the magnetic field (i.e. current sheets) are an almost inevitable

outcome of this relaxation process. The inevitability of current sheets in the magnetostatic equilib-

ria of any nontrivial topological field structure is the subject of Parker’s (1994) book Spontaneous

current sheets in magnetic fields, in which the relevance of the phenomenon in the context of solar

flares and coronal heating is thoroughly discussed.

Despite the importance of this field of application in solar physics, and equally in the extremely

tenuous interstellar and intergalactic media, the details of the actual process of relaxation and of

the effects of finite magnetic resistivity have remained elusive (except in the case of two-dimensional

fields in incompressible fluid, as studied by Linardatos 1993). There are two principal difficulties: (i)

conservation of field topology is difficult to incorporate adequately in three-dimensional numerical

simulations; and (ii) although the trend towards the formation of current sheets may be detected

numerically, it is virtually impossible to continue numerical simulations all the way to the singular

limit (when resistivity is set to zero).

In this paper, we consider an idealized one-dimensional model for which these difficulties can

be overcome and the relaxation process can be fully understood. The magnetic field is assumed

unidirectional, and the medium extremely tenuous so that the dynamic effects of fluid pressure can

be neglected. For simplicity, we also neglect fluid inertia1 (justifiable when the density is sufficiently

small), but we retain viscosity as the energy-dissipating mechanism. In this situation, the internal

energy and the kinetic energy of the fluid are negligible compared with the magnetic energy, and

it is therefore just this magnetic energy that seeks a minimum. The minimum-energy state is

‘force-free’ and does indeed involve current sheets, which form in the immediate neighborhood of

null points of the field. When weak resistivity effects are taken into account, the structure of these

sheets may be determined, and the resulting relatively slow decay of the global magnetic field may

then be deduced. This is essentially a ‘matched asymptotic’ calculation, in which an understanding

of the formation and structure of the current sheets is a necessary preliminary to calculating the

overall long-term evolution of the field.

The persistent erosion of the magnetic field at null points implies that the magnetic pressure

remains permanently minimal there. Fluid is therefore continuously ‘sucked in’ towards these points

by the deficit of magnetic pressure. The resulting build-up of density in the neighborhood of null

points can be quite dramatic, as will be shown in §6 – see particularly Figure 10, which shows

how the peak density can increase by a factor of 105 or more, depending on the magnitude of the

dimensionless number S (defined in Equation (13) below), the sole parameter relevant to what

emerges as a three-stage relaxation process.

As background to this investigation, we may cite the wide-ranging review by Kulsrud & Zweibel

1Fluid inertia can be included without changing the essential relaxation mechanism.
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(2008) of theories of the origin and dynamo evolution of the magnetic field in the ultra-low density

proto-galactic medium; see also Grasso & Rubinstein (2001) who present arguments in favor of a

primordial origin of magnetic fields in the cosmos, and Banerjee & Jedamzik (2004) who discuss the

evolution of cosmic magnetic fields from the very early Universe to the present era. In more recent

work, Pfrommer & Dursi (2010) and Doumler & Knebe (2010) discuss the influence of magnetic

fields upon structure formation in the Universe. The possibility that primordial magnetic fields can

trigger early structure formation is suggested by the investigations of Sethi & Subramanian (2005)

and Tashiro & Sugiyama (2006). These works lend motivation to the present study which exhibits

in fine detail how structure can emerge from a simple MHD relaxation and diffusion process.

Some of the broader considerations concerning topological jumps have been recently reviewed

by Goldstein et al. (2012), and the manner in which such jumps can be realised in soap-film

experiments (in which energy, proportional to soap-film area, is minimised) has been demonstrated

by Goldstein et al. (2010).

2. One-dimensional relaxation in a pressureless fluid

The relaxation of a magnetic field in a viscous compressible fluid is described by the magnetohy-

drodynamic equations, i.e. in standard notation,

ρ
Du

Dt
= −∇p+ j∧B+ µs∇2u+

(
1
3µs + µb

)
∇(∇ · u) , (1a)

∂ρ

∂t
+∇·(ρu) = 0 , (1b)

∂B

∂t
= ∇∧ (u∧B) + η∇2B , ∇ ·B = 0 . (1c)

Here the current j is given by2 j = ∇ × B, and µs, µb and η are respectively the coefficients of

shear and bulk viscosity and the magnetic diffusivity of the fluid. In general, these equations must

be supplemented by an equation of state relating pressure p and density ρ ; however, we shall be

concerned here with an extremely tenuous fluid (i.e. an extremely low-β plasma) in which the

pressure gradient ∇p can in effect be set to zero; further, for greater simplicity, we shall suppose

that the density is so low that the inertia term ρDu/Dt in Equation (1a) is also negligible. In this

situation, from Equation (1a), the velocity u is instantaneously related to the magnetic field B by

the quasi-static (or ‘diagnostic’) equation

µs∇2u+
(
1
3µs + µb

)
∇(∇ · u) = −j∧B, (2)

2The permeability of the vacuum, µ0, is absorbed in the definition of B.
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while B evolves according to Equation (1c); the density ρ plays a subsidiary role, evolving as a

passive scalar field. Magnetoacoustic oscillations and waves are filtered from the equations in this

approximation.

We consider the simplest possible configuration: a unidirectional magnetic field of the form

B = B(x, t) êz , (3)

with initial condition B(x, 0) = Bin(x). Then

j = −∂B

∂x
êy and j×B = − ∂

∂x

(
1
2B

2
)
êx. (4)

We shall suppose that ∂Bin(x)/∂x is everywhere finite.

The (driven) velocity field then also has the one-dimensional form u = u(x, t) êx, where, from

Equation (2),

µ
∂2u

∂x2
=

∂

∂x

(
1
2B

2
)
, (5)

with µ = 4
3µs + µb (the ‘effective viscosity’ in this one-dimensional situation). This integrates

immediately to give

µ
∂u

∂x
= 1

2B
2 + F (t), (6)

for some function F (t). We shall suppose that B and u are either periodic or stationary-random

functions of x, with zero mean; then evidently F (t) = −1
2

⟨
B2

⟩
, and

µ
∂u

∂x
= 1

2

(
B2 −

⟨
B2

⟩)
, (7)

where the angular brackets denote an average over x. At the same time, the induction equation

(1c) reduces to
∂B

∂t
= − ∂

∂x
(uB) + η

∂2B

∂x2
. (8)

An energy equation may be obtained by standard manipulation of Equations (5) and (8) in

the form
∂

∂t
1
2B

2 =
∂

∂x

(
−uB2 + µu

∂u

∂x
+ η B

∂B

∂x

)
− µ

(
∂u

∂x

)2

− η

(
∂B

∂x

)2

. (9)

For periodic or stationary-random conditions, the x-average of the first term on the right is zero,

so averaging over x and using Equation (7) we obtain

d

dt

⟨
B2

⟩
= − 1

2µ

⟨(
B2 −

⟨
B2

⟩)2⟩− 2η
⟨
(∂B/∂x)2

⟩
. (10)

The first term on the right indicates a tendency for B2 to evolve towards its average value
⟨
B2

⟩
everywhere, i.e. for B to evolve to ±

√
⟨B2⟩ according as B> or <0.
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Points where B(x, t) = 0 (null points3 of the field) play a prominent role in the relaxation

process. In general, ∂B/∂x is non-zero at null points, so that B changes sign at each such point.

We shall suppose, unless otherwise stated, that all null points are ‘generic’ in this sense.

We may distinguish two stages in this process. The first stage is non-diffusive and the flux

between any two null points is conserved. It follows that the mean ‘unsigned’ flux ⟨|B(x, t)|⟩ is also
conserved; it is therefore useful to define

B0
def
= ⟨|B(x, 0)|⟩ , (11)

and to use this as the scale of the magnetic field, conserved during the initial phase. The field

relaxation during this phase proceeds on the time-scale

tr
def
= µ/B2

0 = δ2m/η where δ2m = µη/B2
0 . (12)

During this phase, current sheets tend to form in the neighborhood of null points of B. The

thickness of these sheets decreases to a minimum scale, of order δm, at which the two terms on

the right of Equation (8) become comparable in magnitude. This first stage is followed by a much

slower second stage when weak diffusion slowly erodes the current sheets through a nonlinear but

quasi-static process.

This scenario requires that the scale of the initial field, L say, be large compared with δm,

i.e. that4

S
def
=

L

δm
=

B0L√
µη

≫ 1. (13)

We assume that this condition is satisfied in the discussion that follows. For fields that are periodic

in x, we shall take L to be the half-period. Alternatively, it may be more appropriate to use the

typical separation of null points, L̄ say, with corresponding S̄ = L̄/δm.

We shall find in §4 that the second (diffusive) stage lasts for a period td = O(S2)tr; during

this stage, the field decays algebraically and the time-scale of decay |d(lnB)/dt|−1 increases from

O(S)tr to O(S2)tr. For t > S2tr, the field is so weak that the first term on the right of Equation (8)

becomes negligible, and a ‘final period of decay’ sets in with exponential decay on the time-scale

td.

We shall show in §6 that the density field tends to concentrate at the null points; this con-

centration persists during the long diffusive stage when the density at the null points increases to

a saturation level ρs that increases exponentially with S. For example, even for the modest value

S = 50, ρs/ρ0 is already greater than 2×105, where ρ0 is the initial density, assumed uniform. The

3The points x = xn are strictly ‘null-planes’ in the space of the Cartesian coordinates (x, y, z), but we shall refer

to them as null points throughout, without danger of misunderstanding

4Note that S = Lu/
√
Prm , where Lu = VAL/ν is the Lundquist number and Prm = ν/λ the magnetic Prandtl

number (with ν = µ/ρ0 and VA = B0/
√
ρ0 the Alfvén velocity based on the initial density ρ0, assumed uniform).
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set of density concentrations survives as a ‘fossil relic’ of the relaxation process after the ultimate

decay of the magnetic field.

3. Initial stage: non-diffusive relaxation

In this section, we set η = 0 (equivalently S = ∞), i.e. we neglect effects of magnetic diffusion. In

this perfectly conducting limit, the B-lines are frozen in the fluid, with conservation of magnetic

flux across any Lagrangian (material) surface. Equations (1b) and (8) then together imply that

D

Dt

(
B

ρ

)
=

(
∂

∂t
+ u

∂

∂x

)(
B

ρ

)
= 0 , (14)

so that B/ρ is constant following any material particle. In particular, the null points of B(x, t) move

with the fluid. Suppose that these null points are located at x = xn(t) (n = 0,±1,±2,±3, . . . ). Let

In(t) denote the open interval (xn, xn+1) of length ∆n(t) = xn+1 − xn. In each In, B is nonzero

(positive or negative), and the flux in each interval,

Φn =

∫
In

B(x, t) dx , (15)

is conserved during the relaxation process.

3.1. Energy minimization

The null points and the corresponding intervals move during relaxation and eventually settle in

their final positions:

xn(t) → xfn , In(t) → Ifn and ∆n(t) → ∆f
n as t → ∞ . (16)

Let Bn denote the average of the relaxed field in the interval Ifn , i.e.

Bn =
1

∆f
n

∫
Ifn

B(x)dx =
Φn

∆f
n

. (17)

Then the energy in the interval Ifn is

En = 1
2

∫
Ifn

B2(x) dx ≡ 1
2

∫
Ifn

(
(B(x)−Bn)

2 +B2
n

)
dx . (18)

The minimizing field in Ifn is therefore B(x) = Bn, and so constant. Hence, in the relaxed state

the field is piecewise constant on open intervals between the null points. At a generic null point

the field changes sign and therefore exhibits a tangential discontinuity, i.e. a current sheet.
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In fact the condition for global equilibrium requires the magnitude of the field, |Bn|, to have

the same value in all intervals n = 1 . . . N − 1. This can be demonstrated in two ways. Firstly, if

|Bn| ≠ |Bn+1|, then there would be an unsustainable pressure jump across the null located at xfn.

Secondly, the state with all Bn equal minimises the total magnetic energy ⟨E⟩.

We calculate the variation of ⟨E⟩ =
∑N−1

n=1 En (N ≥ 2), where En = 1
2(Φn/∆n)

2∆n is the

energy in the interval ∆n. The fluxes Φn are prescribed, while the positions of the nulls (and

therefore the lengths ∆n of the intervals) are variable, except for the end points at x = 0 and x = L,

which are fixed and thus impose the constraint
∑N−1

n=1 ∆n = L. The (constrained) minimization of

the total energy then gives

δ

[
N−1∑
n=1

1
2

(
Φn

∆n

)2

∆n + λ

N−1∑
n=1

∆n

]
= −

N−1∑
n=1

[
1
2

(
Φn

∆n

)2

− λ

]
δ∆n = 0 , (19)

where λ is a Lagrange multiplier. Hence indeed the magnitude of the field is the same in all

subintervals, and only its sign changes at the null points:

Bn =
Φn

|Φn|
B0 where now B0 =

1

L

L∫
0

|B0(x)| dx . (20)

The final positions of the interior null points are then also determined; these are at positions

xfn =

n−1∑
m=1

∆f
m (n = 2, 3, . . . , N − 1) where ∆f

m = |Φm|/B0 . (21)

Similarly, since the flux between any two material points is conserved, knowledge of the final state

allows us to infer the net displacement of every material point over the entire relaxation process,

and hence the corresponding net change in the density distribution (see §6 below for an explicit

calculation).

In summary, relaxation in a perfectly conducting pressureless fluid eliminates variations in

magnetic pressure, smooths all field variations between null points, and creates current sheets and

density concentrations at these null points. The situation is illustrated in Figure 1 for the prototype

initial field B(x, 0) = (π/2) sin(πx/L) (0 < x/L < 2), for which B0 = 1.

3.2. Exponential development of current sheets

The time-dependent approach to the current sheet limit in the above non-diffusive situation is of

interest. We focus on an isolated current sheet of the above type, near a null point of B located at,

say, x = 0, and we suppose that B tends to the values ±B0 outside the sheet. Let L be the typical

distance between null points of B. Adopting dimensionless variables

x∗ = x/L, t∗ = t/tr, B∗ = B/B0 and u∗ = u(tr/L), (22)
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and dropping the stars, Equations (8) and (7) become

∂B

∂t
= −∂(uB)

∂x
+

1

S2

∂2B

∂x2
,

∂u

∂x
= 1

2

(
B2 − 1

)
, (23)

with the (now scaled) boundary conditions

B(x, t) ∼ ±1 as x → ±∞ . (24)

With S ≫ 1, Equations (23) become, in first approximation

∂B

∂t
= −∂(uB)

∂x
,

∂u

∂x
= 1

2

(
B2 − 1

)
. (25)

These equations describe the ‘non-diffusive’ first phase of development of the current sheet, once

the ‘plateaus’ with B = ±1 have formed on either side of the sheet. We may assume that the fields

B and u are antisymmetric,

B(−x, t) = −B(x, t), u(−x, t) = −u(x, t), (26)

and we look for a similarity solution of the form

B(x, t) = f(ξ), where ξ = x/δ(t). (27)

Then, from Equation (25),

u(x, t) = 1
2δ(t)v(ξ) , where v′(ξ) = f(ξ)2 − 1, (28)

and it follows that

(δ̇/δ)ξf ′(ξ) = 1
2(vf)

′. (29)

We can satisfy this only if

δ̇/δ = −k (const.) i.e. δ(t) ∼ e−kt. (30)

Equations (25) now reduce to

(vf)′ = −2kξf ′ and v′ = f2 − 1. (31)

Eliminating v(ξ), and simplifying, we get

f(f2 − 1)f ′′ = 2(2f2 + k − 1)f ′2, (32)

and the appropriate boundary conditions (consistent with the antisymmetry condition f(−ξ) =

−f(ξ)) are

f(0) = 0, f(∞) = 1. (33)
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The first of these is compatible with Equation (32) only if k = 1; then Equation (32) integrates

once to give

f ′ = C(f2 − 1)2, (34)

where C is a constant; by rescaling ξ (equivalent to the freedom of choice of time origin in Equation

(30)), we may take C = 1. A second integration with the boundary condition f(0) = 0 then gives

1

4

[
2f

1− f2
+ ln

1 + f

1− f

]
= ξ . (35)

The function f(ξ), obtained by inverting this equation, is plotted in Figure 2, with the function

tanh ξ (dashed) shown for comparison. The asymptotic behavior of f(ξ) is:

f ∼ ξ for ξ → 0, and f ∼ 1− 2

ξ
as ξ → ∞ . (36)

Now v(ξ) can be found from Equation (31); the only problem is that this behaves logarithmi-

cally for large ξ:

v(ξ) ∼ −4 ln ξ → −∞ as ξ → ∞ . (37)

However, realistically ξ is never greater that O(S); moreover, from Equation (28),

u(x, t) ∼ 1
2v(ξ)e

−t , (38)

so that exponential decay wins in the end!

For the prototype initial field shown in Figure 1, the magnetic energy 1
2

⟨
B2

⟩
decreases during

the initial stage from π2/16 ≈ 0.61685 to 0.5. This decrease, at least once the plateaus have formed,

is well represented by the function

⟨
B2

⟩
(t) =

π2

π2 + (8− π2)e−t
, (39)

as shown in Figure 3. Note that the length-scale δ(t) decreases exponentially during this non-

diffusive stage. If the initial scale is O(L), this continues only until

Le−t = O(δm) or equivalently until t = O (lnS) . (40)

At this stage, as may be easily verified, the diffusive term S−2∂2B/∂x2 becomes of the same

order of magnitude as ∂B/∂t. In dimensional terms, the non-diffusive phase lasts for the period

0 < t < O(lnS)tr . The current sheet develops exponentially rapidly during this phase, the scale

decreasing exponentially in time until it reaches the scale δm , when diffusion can no longer be

neglected.
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Fig. 1.— Relaxation of the field B(x, 0) = (π/2) sin(πx/L) (dashed), to a piecewise constant field

with tangential discontinuity at x = L (solid).

Fig. 2.— The function f(ξ) (solid) given by Equation (35), with C = 1, D = 0. The function tanh ξ

(dashed) is shown for comparison.

Fig. 3.— Schematic representation of the non-diffusive relaxation of magnetic energy; when t =

O(lnS), diffusion becomes significant.
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4. Slow diffusion phase

4.1. Steady state of a dissipating current sheet

We turn now to the second ‘diffusive’ stage of evolution. Consider first the possibility of an isolated

steady current sheet with thickness O(δm), located in the neighborhood of x = 0. The length L is

now irrelevant, and the appropriate dimensionless variables are

x∗∗ = x/δm, u∗∗ = (δm/η)u, and still B∗ = B/B0 . (41)

Substituting in Equations (8) and (7), and again dropping the stars, the steady equations become

B′′ = (uB)′, u′ = 1
2

(
B2 − 1

)
, (42)

with boundary conditions

B → ±1 and u → ∓u0 as x → ±∞ . (43)

Integrating the first of Equations (42) with these boundary conditions gives

B′ = uB + u0, u′ = 1
2

(
B2 − 1

)
. (44)

The energy equation (9) integrates to give

∞∫
−∞

(
u′2 +B′2) dx =

[
−uB2 + uu′ +BB′]∞

−∞ = 2u0, (45)

which shows immediately that a nontrivial steady state is possible only if u0 > 0. This means

that, as might be expected, the fluid must flow into the current sheet from both sides. This is not

therefore a strictly steady-state situation, because the fluid density must increase continuously in

time within the sheet; however, for so long as the pressure remains negligible, the fields B and u

can still remain steady. The implications for the build-up of density in the sheet will be considered

in §6 below.

Equations (44) together with the boundary conditions (43) constitute a nonlinear eigenvalue

problem. Figure 4 shows the phase portrait for three values of u0. As u0 increases from zero

to 1 + 1/
√
2, the phase portrait evolves continuously, and for the critical value u0 = 1/

√
2 it

exhibits a heteroclinic connection between the fixed points (−1, u0) and (1,−u0) in the (B, u)-

plane (corresponding to x = ∓∞ respectively). In Figure 4(b), it is evident that this heteroclinic

connection is a straight line, which suggests looking for a solution in the formB = −u/u0 (consistent

with the conditions at x = ±∞). With u0 = 1/
√
2 this solution is easily found in the form

B = −
√
2u = tanh

(
x/

√
2
)
. (46)

This describes a dissipating current sheet in a pressureless fluid of effectively infinite extent. Positive

magnetic field in the half-space x > 0 and negative field in the half-space x < 0 are pressed together
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by a converging flow driven by the magnetic pressure gradient, moderated by viscosity. Magnetic

diffusion in the current sheet annihilates the field and thus maintains the magnetic pressure gradient

that drives the flow. The thickness and structure of the sheet and the inflow are uniquely determined

by the conditions B(x) → ±1 as x → ±∞ and the resulting internal balance. (This is in marked

contrast to a ‘conventional’ current sheet in an incompressible fluid where the inflow can be specified

independently and the sheet adjusts its thickness accordingly.) Returning to dimensional variables,

the sheet thickness is indeed O(δm) and, from Equations (41) and (46), the inflow velocity is

precisely

u0 = η/
(√

2 δm

)
=

√
η/2µB0 . (47)

4.2. Similarity solution during diffusive phase

The above steady solution applies only to a single isolated current sheet. But now consider any

two null points of B(x, t), which, without loss of generality, we may take to be centered on x = 0

and x = L, with L ≫ δm (i.e. x = S when x is scaled with δm). We suppose for the moment

that these null points are fixed, and that the field is uniform, B(t) say, except in the current

sheets near the null points, so that the flux between them is approximately B(t)L; we assume this

to be positive. The result (47) corresponds to the situation when in effect L = ∞; now, with

S = L/δm sufficiently large, we may anticipate quasi-steady evolution with Equation (47) still

satisfied. Integrating Equation (8) between δm and L − δm, (i.e. over the plateau region in which

B is uniform), the slow decrease of flux B(t)L is given approximately by

d

dt
(B(t)L) = −2|u0|B = −

√
2η

µ
B2, (48)

using Equation (47). With the scaling (41), together with t∗ = t/tr and B∗ = B/B0, this equation

becomes in dimensionless form
d

dt

1

B
=

√
2

S
, (49)

which integrates to give

B(t) =
S√

2 (t+ t1)
, (50)

where t1 is a constant of integration. Since B = O(1) when t = 0, it follows that t1 = O(S). The

situation is represented schematically in Figure 5, with current sheets at x/S = 0 and ±1.

During this diffusive phase, each current sheet evolves slowly as a result of this decay. Again

with the scaling (41), the anticipated quasi-static evolution is described by

∂2B

∂x2
=

∂

∂x
(uB),

∂u

∂x
= 1

2

(
B2 −

⟨
B2

⟩)
. (51)

For the sheet at x = 0, the boundary conditions are

B(0, t) = 0, B(x, t) ∼ B(t) =
S√

2 (t+ t1)
as x → ∞ . (52)
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Here, t appears merely as a parameter5.

Note that the velocity field u(x, t) in each plateau region has uniform gradient ∂u/∂x =

1/(t+ t1), satisfying Equation (8). Since u is antisymmetric about x = S/2, it follows that, in the

plateau region between x = 0 and x = S,

u(x, t) =
(x− S/2)

t+ t1
. (53)

This implies that, at the outer limits of the current sheets at x = 0 and x = S,

u = ∓ S

2(t+ t1)
= ∓ B√

2
, (54)

the dimensionless form of Equation (47), as required for consistency.

We may now seek a similarity solution of Equation (51) of the form

B(x, t) = B(t)f(ξ), u(x, t) = u0(t)g(ξ), with ξ = x/σ(t). (55)

The two terms of Equation (51a) remain in step provided σ(t)B(t) is constant, i.e. σ(t) grows

linearly in time; taking

σ(t) = 2(t+ t1)/S, (56)

Equations (51) reduce to

f ′ = fg + C, g′ = f2 − 1, (57)

just as for the steady state, but now B(t) decreases according to Equation (50), and the layer

thickness σ(t) increases according to Equation (56). A solution with f(0) = g(0) = 0, f(∞) = 1

exists only if C = 1, and then the solution is

f(ξ) = −g(ξ) = tanh ξ , (58)

much as for the steady current sheet. Thus, in the transition from the initial relaxation phase to

the diffusive phase, the field profile within the sheet must evolve from the solid to the dashed curve

in Figure 2.

The quasi-static evolution of this diffusive stage continues until the current sheets centered on

x = 0 and x = S begin to overlap. This occurs when σ(t) ∼ S/2, i.e. (restoring the time dimension,

and recalling that t1 = O(S)) when

t ∼ (S2/4)tr , (59)

5Strictly this requires antisymmetry about x = 0. If current sheets are distributed non-uniformly in x, then they

will move during decay in such a way as to maintain magnetic pressure equilibrium, i.e. the same value of |B(t)| at
each time t on all the plateaus between the sheets.
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and at this stage, the quasi-static approximation breaks down. Indeed, for t ≫ (S2/4)tr, the

convection term in Equation (8) becomes negligible, and purely diffusive decay, described by the

diffusion equation
∂B

∂t
=

∂2B

∂x2
, (60)

sets in. Ultimately therefore, in a ‘final period of decay’, B(x, t) decays exponentially in its funda-

mental mode in −S < x < S, for which B ∼ sin(πx/S) exp[−(π/S)2t].

It is now apparent that, as anticipated in §2, we can distinguish three phases in the relax-

ation/diffusion process:

• t/tr < O(lnS): the fast relaxation phase, with exponentially rapid formation of current sheets

near null points of B on the relaxation time-scale tr;

• O(lnS) < t/tr < O(S2/4): the slow diffusion phase, during which |B| decreases in inverse propor-

tion to time; the result (50) implies the time-scale |d lnB/dt|−1 for this algebraic decay increases

from O(S)tr to O(S2)tr during this phase;

• t/tr > O(S2/4): the final phase of (linear) exponential decay on a time-scale O[(S/π)2]tr.

As regards the decay of energy, taking account of Equation (50), this is given during the

diffusive phase by

1
2

⟨
B2

⟩
=

S2

4(t+ t1)2
. (61)

To extend the range to include the final period of decay, we may merely include an exponential

decay factor corresponding to the slowest decaying fundamental mode:

1
2

⟨
B2

⟩
=

S2

4(t+ t1)2
exp

[
−2

(π
S

)2
t

]
. (62)

5. Numerical solution of the relaxation equations

For the purpose of computation, we consider an initial field B(x, 0) = B0(x) periodic in x, with

period 2L, and we continue to use B0 = ⟨|B0(x)|⟩ as the ‘unit’ of magnetic field. With the further

scalings x∗∗, t∗, u∗∗ as defined in Equations (22) and (41) (so that when x = L, x∗∗ = L/δm = S),

Equations (8) and (7) become (dropping the stars)

∂B

∂t
=

∂2B

∂x2
− ∂

∂x
(uB) ,

∂u

∂x
= 1

2

[
B2(x, t)−

⟨
B2(x, t)

⟩]
, (63)

and the initial and boundary conditions become

B(x, 0) = B0(x), B(0, t) = 0, B(S, t) = 0, (64)
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where the scaled initial B0(x) satisfies

⟨ |B0(x)| ⟩ = 1 . (65)

We solve Equations (63) numerically for two representative choices of B0(x) satisfying Equations

(64) and (65), using an explicit finite-difference scheme on a uniform grid of 500 points.

5.1. Sinusoidal initial field

Figure 6 shows the evolution with B0(x) = (π/2) sin(πx/S) with S = 50. As t increases from 0 to 4

(left-hand column), the field relaxes rapidly and current sheets are formed at the null points of the

field x = 0, 50 and 100. Between these points, plateaus are formed, while the flux is conserved. At

around t = 4, the field gradient is so large near the null points that diffusion and flux annihilation

become significant. The right-hand panels show the subsequent slow diffusive evolution from t = 4

to t = 400. The field and the velocity gradient remain approximately uniform on the plateaus, the

level adjusting to the annihilation of flux at the null points, as well described by the model of §4.2.

The maximum value of the field (at x = 25), B(t), is plotted in Figure 7 for the initial period

(0 < t < 8) on the left, and for the decay period (100 < t < 400) on the right. With S = 50,

lnS ≈ 3.91, and this is indeed roughly the time when diffusion effects become important. Moreover,

S/
√
2 ≈ 35.3553, close to the coefficient C1 = 35.3579 (Figure 7a) that provides the optimal fit to

the algebraic decay; and the value t1 ≈ 32 ≈ 2
3S is of order S as expected. Finally, (S/π)2 ≈ 253.303

is close to the value t2 = 253.3014 (Figure 7b), the time characteristic of the final period of decay.

Thus the numerical results are entirely consistent with the foregoing theoretical analysis.

5.2. Field with several null points

Figure 8 shows the field evolution for the more structured initial condition

B0(x)=c ϕ(x), ϕ(x) = 10 sin(2πx/S)− 5 sin(3πx/S) + 6 sin(5πx/S) + 10 sin(7πx/S), (66)

with S = 50, and c = ⟨|ϕ(x)|⟩−1 = 0.112265, the prefactor needed to satisfy the normalization

condition (65). The field is antisymmetric about the fixed null point x = S, i.e. B(S+x, t) =

−B(S−x, t). As expected, the field rapidly relaxes to the level ±1 between the null points, but

signs of diffusion are already evident (e.g. near x = 30) by time t = 1 . The slow diffusive stage

lasts from about t = 2 till t = 100, by which time the plateaus have disappeared, and the final

period of decay has set in. Current sheets at adjacent null points are of opposite sign, and those

that are initially close merge and disappear early in the diffusive stage. By time t = 5, only three

internal null points remain, the one at x = 50, and two on either side. These two were initially at

approximately x = 50± 14, but they move, and during the final period of decay this movement is

towards the end points x = 0 and x = 100, where they are ‘absorbed’. By time t = 500, only the

fundamental mode ∼ sin(πx/S) remains.
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6. Evolution of the density field ρ(x, t)

We come now to what is perhaps the most interesting aspect of this problem, namely the evolution

of the density field ρ(x, t), which, as already observed, is closely coupled with that of the magnetic

field B(x, t). Consider as before the simple example

B(x, 0) = (π/2) sin(πx/S) (0≤x≤2S), (67)

with initial density ρ(x, 0) normalized to 1. Let Φ0(X) and M0(X) represent the initial flux and

mass contained in the interval 0<x<X, i.e.

Φ0(X) =

X∫
0

B(x, 0)dx = 1
2S (1− cosπX) , M0(X) =

X∫
0

ρ(x, 0)dx = X. (68)

Let X → x(X) be the net Lagrangian displacement of the fluid particle initially at position X over

the entire relaxation process. We know that the relaxed field in 0<x<S is simply Br(x) = 1, so

that

Φr(x) =

x∫
0

Br(x
′)dx′ = x (0<x<S). (69)

Since flux is conserved during non-diffusive relaxation, Φr(x) = Φ0(X), so

x/S = 1
2 [1− cos(πX/S)] = sin2(πX/2S). (70)

Now let the density distribution in the relaxed state be ρr(x), and let

Mr(x) =

x∫
0

ρr(x
′)dx′. (71)

Since mass is also conserved, Mr(x) = M0(X), so

Mr(x) = X = (2S/π) sin−1
√

x/S. (72)

Hence

ρr(x) =
dMr

dx
=

S

π
√

x(S − x)
(0 < x < S), (73)

and obviously ρr(x + S) = ρr(x) for all x. This relaxed density field is shown in Figure 9 for

0 < x < 100 with S = 50. Note that, in the range 0<x<25, ρr(x) = 1 at x ≈ 5.7; thus within this

range, fluid is transferred from the region 5.7<x<25 to the region 0≤x<5.7 during the relaxation

process.

The build-up to the singularity ρr(x) ∼ x−
1
2 near the null point x = 0 appears to be generic,

i.e. a similar singularity occurs at every null point at which B = 0 and ∂B/∂x ̸= 0. However,

diffusion presumably causes a cut-off at x ∼ S−1, where ρ ∼
√
S. We may verify this estimate by

considering the time development of ρ(x, t) during this initial phase.
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6.1. Initial build-up of density near null points

As already observed, the density field satisfies

∂ρ

∂t
= − ∂

∂x
(ρu), (74)

and, during the non-diffusive stage, from Equation (38), ρu = 1
2ρe

−tv(ξ), with ξ = xet. Hence

∂

∂x
(ρu) =

∂

∂ξ
(12v(ξ)ρ), (75)

and Equation (74) becomes:

2
∂ρ

∂t
+ (v + 2ξ)

∂ρ

∂ξ
= −v′(ξ)ρ. (76)

With initial condition ρ(x, 0) = 1, the symmetry implies that ρ(−x, t) = ρ(x, t) for all t > 0.

Now, from Equation (38) and the asymptotic behavior of f , we have

v′(ξ) ∼ −1 + ξ2 as ξ → 0, (77)

so, near ξ = 0, Equation (84) is well approximated by

2
∂

∂t
(ln ρ) + ξ

∂

∂ξ
(ln ρ) = 1− ξ2, (78)

or, defining ζ = ln ξ,

2
∂

∂t
(ln ρ) +

∂

∂ζ
(ln ρ) = 1− e2ζ . (79)

With initial condition ln ρ = 0, the solution to this wave-type equation (as may be verified) is

ln ρ = 1
2 t−

1
2e

2ζ(1− e−t). (80)

Returning to the original variables, this gives

ρ(x, t) ∼ et/2 exp
[
−x2e2t(1− e−t)/2

]
, for |x|et ≪ 1. (81)

Note in particular that

ρ(0, t) ∼ et/2 and ∂2ρ/∂x2|x=0 ∼ −e5t/2 for t ≫ 1. (82)

This describes well the build-up of density in a layer of thickness O(e−5t/4) near x = 0. This initial

build-up of density at x = 0 continues until e−t = O(S−1), by which time

ρ(0, t) ∼ S
1
2 , (83)

consistent with the previous estimate.
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6.2. Concentration of density at null points during diffusive phase

We now focus on the continuing and persistent build-up and concentration of density at null points

during the diffusive phase, when, as we have seen, there is a continuing inflow into each current

sheet from both sides. Consider first a stationary null point at which u = 0 (as for example the

null point at x = S in Figures 6 and 8). From Equations (74) and (51b), we have

∂ρ

∂t
+ u

∂ρ

∂x
= −∂u

∂x
ρ = −1

2

(
B2 −

⟨
B2

⟩)
ρ , (84)

so that, at a stationary null point where B = u = 0,

∂ ln ρ

∂t
= 1

2

⟨
B2

⟩
≈ S2

4(t+ 2S/3)2
exp

[
−2

(π
S

)2
t

]
, (85)

using Equation (62). Here, we have adopted the (admittedly heuristic) estimate t1 = 2S/3, as

found numerically.

This equation can be integrated in terms of the incomplete gamma function. Figure 10a shows

the build-up of ρ for S = 50, up to the time t ≈ 500 by which the null-point density has saturated at

the high value ρmax somewhat greater than 2×105. Figure 10b shows the very sensitive dependence

of this saturation level on S: it increases to a value of order 106 with the modest increase of S to

55. In fact, for large S, the asymptotic behavior is given by

ln ρmax ∼ 3S

8
− π2

2

(
1 +

4π2

3S

)(
−γ + ln

(
3S

4π2

)
+

4π2

3S

)
, (86)

where γ = 0.5772 . . . is Euler’s constant. This result is quite accurate for S > 30 and implies

approximately exponential growth of ρmax with increasing S.

In general however, null points are not stationary: they move with a velocity v that differs

from the local fluid velocity u because of diffusion. If however ∂2B/∂x2 is small at the null points,

then the null point does move with the fluid, and for so long as this is true, Equation (85) holds in

the Lagrangian form
D ln ρ

Dt
=

S2

4(t+ 2S/3)2
exp

[
−2

(π
S

)2
t

]
, (87)

where D/Dt represents differentiation following the null point. It would appear then that the

density will still build up exponentially at the null point, despite its motion, at least until it merges

with a neighbor.

This prediction is well supported by numerical computation (see Figure 11). Here again S = 50,

but this S is based on the half-period of the field (66); the more relevant choice of length-scale is

here the mean separation L̄ of the nulls of B early on in the diffusive stage (at t = 5 say), giving a

corresponding S̄ ≈ 25. After the disappearance of a null point, the associated density concentration

survives as a fossil and continues to drift with the local fluid velocity. The growth of log10 ρ to

between 2 and 2.4 at the principal maxima is compatible with Figure 10b; in fact, the formula (86)
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with S replaced by S̄ = 25 gives log10 ρmax ≈ 2.14 (i.e. ρmax ≈ 138). (With the modest increase of

S̄ to 26.5, ρmax increases to approximately 213.)

Figure 12 shows the density distribution at time t = 1000, when no further change is detectible,

and also the associated mass concentrations near the spikes of density. The peak density at x = 50 is

just greater than 200, and 20% of the initial mass is concentrated in the immediate neighborhood

(49.4 < x < 50.6) of this point. Overall, 84% of the initial mass is concentrated near the five

density spikes, and 16% remains in the ‘evacuated’ regions (where ρ < 1) between the spikes. The

concentration of mass as well as density is thus quite striking.

Fluid pressure will also build up at null points in step with density, and this is a possible limiting

factor. In this case, it is the sum of magnetic and internal energies that will be minimized during the

quasi-steady phase of decay. A further limiting factor is that the exponentially decreasing transverse

scale of the density concentrations will eventually be comparable with the mean-free-path of fluid

molecules, and at this stage, if no other mechanism intervenes, the continuum approximation will

break down. In cosmic contexts, self-gravitation will of course be a powerful mechanism for the

maintenance of localized density concentrations, once formed.

7. Possible generalizations

The one-dimensional model treated in this paper was chosen for simplicity, and because it permits

detailed analysis. We can now however envisage generalization to 2D fields. First, we may consider

a field of the form

B = B(x, y, t) êz with B0 = ⟨|B|⟩ , ⟨B⟩ = 0 , (88)

where the angular brackets now indicate an average over the (x, y) plane; B0 is conserved in the

limit η = 0. This field is still unidirectional, but a function of position in the plane. The contours

B = const. determine the topology of the field, and this topology is also conserved in this limit.

The particular contours B = 0 may be described as ‘null contours’, and these now play a key role

in the relaxation process. Some of these null contours may be closed, while others may extend

without limit. An example is shown in Figure 13.

If the fluid pressure is negligible, then there is again an immediate tendency to smooth out

variations of magnetic pressure 1
2B

2. In particular, fluid will be driven towards the null contours.

Current sheets and concentrations of density will develop on these contours and the area inside

closed contours will adjust so that magnetic pressure is equalized across every contour in the

relaxed state. In such a state, any further area-preserving deformation in the plane will not change

the (uniform) magnetic energy, and is therefore ‘dynamically neutral’. Slow magnetic diffusion in

each current sheet will again lead to quasi-static algebraic decay of the field. The decay of the

current sheets will lead to slow change of the area inside closed null-contours, in such a way as to

maintain pressure equilibrium. Again, the density field will grow dramatically on these contours

and will survives as a fossil after ultimate decay of the magnetic field.
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We note that the resulting highly differentiated density field is qualitatively similar to those

found by Davis et al. (2012) in their ‘symmetron model’ for structure formation in the early universe,

and by Hennebelle et al. (2008) and Banerjee et al. (2009) in their MHD simulations of molecular

cloud formation.

We may also consider fields of the form

B = B2(x, t) êy +B3(x, t) êz, (89)

i.e. two-component fields with rectilinear field lines whose magnitude and direction may change with

increase of the coordinate x. What is interesting here is that even if B2 is uniform at time t = 0,

diffusion will in general produce spatial variation of B2 for t > 0, and this will immediately trigger

the dynamic tendency to restore magnetic pressure equilibrium. For example, we might consider a

situation in which the B-lines rotate through an angle π, as x increases through a neighborhood

of x = 0. The two components of B initially diffuse independently and differently, and a dip of

magnetic pressure must develop near x = 0. This will presumably lead to field annihilation near

x = 0, inflow into this region, and a build-up of fluid density similar to that described in §6.2 above.

We may also envisage generalization to 3D fields, but now hoop stress plays a part in con-

junction with magnetic pressure. The field will presumably relax to a force-free magnetostatic

equilibrium, i.e. a Beltrami field for which ∇×B = α(x)B, for some scalar α(x), as envisaged by

Moffatt (1987). To understand the possible structures of such fields remains an extremely challeng-

ing problem. We note that (Enciso & Peralta-Salas 2012, 2013) have recently made an encouraging

start, through proving the existence of a Beltrami field containing any prescribed knot or link

among its field lines. 3D fields may also have a chaotic character (as exemplified by the quadratic

field of Bajer & Moffatt 1990.) As shown by Bajer (2005), the relaxed form of such fields may have

stacked current sheets of non-differentiable structure. Fast reconnection of field lines can occur on

an Alfvén time-scale (Priest & Forbes 2007); in their treatment of fast reconnection in astrophysical

plasmas, Hanasz & Lesch (2003) have concluded that this will occur if the plasma β is “significantly

larger than 2me/mp (twice the ratio of electron mass to proton mass)” i.e. approximately 10−3. For

β ≪ 10−3, reconnection can still proceed through the agency of magnetic diffusion as considered

in the present paper, this mechanism being most effective, as we have described, near minima of

magnetic pressure.

Generalizations of this kind to 2D- and 3D-fields deserve detailed study, and will be the subject

of continuing investigation.
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Fig. 5.— Schematic diagram showing the normalized magnetic pressure distribution 1
2B

2 during

the diffusive phase; the inflow into the current sheets is indicated by the horizontal arrows. The

downward-pointing arrows indicate the resulting slow decrease of 1
2B

2 as implied by Equation (50).
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Fig. 6.— Relaxation of the initial field B0(x) = (π/2) sin(πx/S) with S = 50, as governed by

Equations (63). Each panel shows the initial field B0(x) (dotted), the relaxing field B(x, t) (contin-

uous), and the velocity field u(x, t) (dashed). The left column shows the initial nearly non-diffusive

relaxation on the short time-scale and the formation of current sheets (cf. Figure 1). The right

column shows the subsequent slow diffusive decay. Note the change of velocity scale (shown on the

right of the panels) at t = 20.
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Fig. 7.— (a) Transition from initial rapid, ideal relaxation to the quasi-static, algebraic decay

(liner-plot); (b) transition to the final period of exponential decay (semi-log plot).
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Fig. 8.— Similar to Figure 6, but with initial condition (with several null points) B0(x)= c ϕ(x),

where ϕ(x) = 10 sin(πx/S)− 5 sin(3πx/2S)+ 6 sin(5πx/2S)+ 10 sin(7πx/2S), S = 50, and c =

⟨|ϕ(x)|⟩−1 = 0.112265. Each panel shows the relaxing field B(x, t) (continuous), and the veloc-

ity field u(x, t) (dashed). Until about t = 2, relaxation proceeds on the short time-scale, although

signs of diffusion are already apparent by t = 1. Later (right-hand column), the decay is on the

slow diffusive time-scale. Current sheets at adjacent null points are of opposite sign, and these

merge and disappear during diffusive decay. For t > 250, only one interior null point remains, and

the subsequent decay is similar to that of Figure 6. Note again the changes of scale of u (on the

right of the panels) and of B (on the left).
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Fig. 9.— Relaxed density distribution ρr(x) in (0 < x < 2S) as given by Equation (73) with S = 50

(solid lines). Fluid is transferred during the initial relaxation, as indicated by the arrows, from the

central regions towards the current sheets that form at x = 0, 50 and 100. Dashed lines mark the

locations where ρr = 1, i.e., density has its initial value.

(a) (b)

Fig. 10.— (a) Density build-up at a stationary null point as a function of time for S = 50. The

saturation level is ρmax = 219817; (b) log10 ρmax as a function of S in the range 10 < S < 55; the

asymptotic formula (86) is shown by the dashed curve, which is evidently accurate for S > 30.
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Fig. 11.— Evolution of density for the same conditions as in Figure 8; the plot shows B (solid, as

in Figure 8) and log10 ρ (dashed). Note the changes of scale of B at t = 50, 200, 500. The nulls at

x = 0, 50, 100 are stationary, so the density evolves according to Equation (85). The nulls initially

near x = 25, 75 closely follow material elements (advection dominates diffusion) and, for t < 100,

the density growth at these moving nulls is almost the same as at stationary nulls. For t > 100,

the motion of these nulls is dominated by diffusion so they no longer coincide with local density

maxima, which continue to be advected without further growth. The last panel (t = 500) shows

the ultimate density distribution. Note the remnants of the small local density maxima caused by

the pairs of nulls present in the initial condition near x = 8, 12 and x = 88, 92; these nulls disappear

at t ≈ 2 due to diffusion and the density maxima later migrate towards the ends of the interval.
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Fig. 12.— Final distribution of mass at the end of the evolution shown in Figure 11. Upper curve

shows density distribution. Lower (step) diagram shows narrow intervals where mass accumulates

(ρ > 1, i.e. density exceeds its initial value) and broad intervals, which are evacuated (ρ < 1). The

upper figures (15%, 4%, 17%, , . . . ) give the percentages of the total initial mass left in each interval,

while the lower figures (5.4, 1.5, . . . ) give the widths of the mass concentrations.
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Fig. 13.— Null contours B = 0 for a hypothetical quasi-random 2D field B(x, y), containing 18

Fourier components.


