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1. Introduction

A subset S of a group G is symmetric if S = S−1, that is if S is equal to {x−1 :
x ∈ S}. A very influential result [5] of Helfgott (stated using the “Gowers trick” as in [1, 
Corollary 2.6]) is that there exists a δ > 0 such that if S is a symmetric generating subset 
of G = SL(2, p) containing the identity 1 then the triple product S3 is either equal to G
or has size at least |S|1+δ. This has immediate applications to the diameter of Cayley 
graphs of SL(2, p), and was also used by Bourgain and Gamburd in [3] for the spectral 
gap of expander families of Cayley graphs obtained from a Zariski-dense subgroup of 
SL(2, Z) by reducing modulo primes p. Recently, Helfgott and Seress generalised some 
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of these ideas to prove a quasipolynomial bound on the diameter of the Cayley graphs 
of the alternating and symmetric groups [6].

Helfgott’s result can also be expressed in the language of approximate groups, where 
a k-approximate group A is a finite symmetric subset of a group H such that 1 ∈ S and 
there exists X ⊆ H of size at most k with A2 ⊆ AX. This immediately implies that 
|A3| ≤ k2|A|, so if A is a generating k-approximate group of G = SL(2, p) then Helfgott’s 
result tells us that either |A| ≤ k2/δ or |A| ≥ |G|/k2. Conversely, say there exists an N
such that either |A| ≤ kN or |A| ≥ |G|/kN for any generating k-approximate group A
of G. Then given S a symmetric generating subset of G containing 1, let k be such that 
|S3| = k2|S|. This implies (by Ruzsa’s covering lemma) that S2 is a k6-approximate 
group. Here the Gowers trick tells us that S3 = G if |S| ≥ 2|G|8/9, so if the first case 
holds (namely |S| ≤ |S2| ≤ k6N ) we see that |S3|/|S| = k2 ≥ |S|1/3N . Now suppose 
that |S2| ≥ |G|/k6N . If k ≤ 2−1/6N |G|1/54N then S6 = G, and otherwise we can assume 
by the Gowers trick again that |S| < 2|G|8/9, in which case |S3|/|S| > 2−1/3N |G|1/27N . 
Thus here |S3| > |S|1+δ provided that 2δ|G|8δ/9 ≤ 2−1/3N |G|1/27N . This holds for all 
but finitely many groups G as long as we set δ to be strictly less than 1/24N , whereupon 
we can take the minimum of this δ and suitable values for the finitely many exceptions 
to obtain an overall value of δ such that |S3| ≥ |S|1+δ in all G = SL(2, p).

Not long after this, Helfgott’s result was generalised to every family of finite simple 
groups of Lie type with bounded Lie rank in [10], with an equivalent version in [4]
expressed in terms of approximate groups. Returning to G = SL(2, p), in a recent paper 
[8] by Kowalski the explicit lower bound of 1/3024 was shown to hold for δ, by making 
Helfgott’s proof quantitative at every stage (this paper also contains explicit versions of 
the two applications mentioned above).

Therefore define the Helfgott delta in G to be the supremum (which will be the 
maximum) of the set {δ ∈ [0, ∞) : |S3| ≥ |S|1+δ} where S ranges over all symmet-
ric generating sets of SL(2, p) (over all primes p) that contain 1 and satisfy S3 �= G. 
Given that this Helfgott δ must be at least 1/3024, one can also ask about a good upper 
bound, which is the topic of this paper. Establishing this has a different flavour, because 
finding an explicit lower bound involves carefully inspecting the whole of Helfgott’s proof 
whereas we can be led by examples, looking for such subsets S where log(|S3|)/ log(|S|)
is as small as possible. We shall take all logs to base 2.

The best upper bound we have found is (log(7) − 1)/6 ≈ 0.3012, which comes from 
a symmetric subset S containing 1 and generating SL(2, p) that has size 64, whereas 
|S3| = 224. Moreover, such subsets can be found in SL(2, p) for infinitely many primes p.

Our initial guess for subsets S of small δ was that they should be as close to proper 
subgroups H of G as possible, so we started by looking at subgroup-plus-two subsets: 
these are sets of the form H ∪ {x±1} with 〈H, x〉 = SL(2, p). Note that as our subsets S
are symmetric, we need to add x±1 and not just x to H. However it is a surprising result 
of this paper that subgroup-plus-two subsets cannot be best possible as, regardless of H
or x, they all produce a value of δ which is at least log(3)/5 ≈ 0.3169.
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We start by making some basic but useful observations in Sections 2 and 3. In partic-
ular we show that for a subset S = H ∪ {x±1} in a group K, the size of S3 is controlled 
both above and below by the index of x−1Hx ∩ H in H. In addition, if x2 ∈ H then 
S3 = H ∪HxH ∪ x−1Hx, allowing us to obtain both tight upper and lower bounds for 
|S3| in terms of |H| and this index. In Theorem 3.1 we show that, for general x, if the 
expression for S3 involves only one double coset HxH then without loss of generality 
x2 ∈ H.

Then in Section 3 we display a construction that gives strictly better results than 
subgroup-plus-two subsets. We call such a subset a subgroup plus coset core and they 
are introduced after Proposition 3.2, where it is shown that if S = H ∪ {x±1}, where 
x2 ∈ H, then there is an obvious subset of S3 that can be added to S without adding new 
elements to S3. Moreover Proposition 3.3 shows that this method cannot be improved: 
given any symmetric subset T containing a subgroup-plus-two subset S = H ∪ {x, x−1}
with x2 ∈ H and T 3 = S3 �= SL(2, p), the set T is a subset of the subgroup plus coset 
core of H and x. This provides further heuristic evidence that subgroup plus coset cores 
are likely to lead to small values of δ.

Consequently, for a given subgroup H of G = SL(2, p) we have a good strategy for 
finding suitable sets with small triple product, by looking for an element x ∈ G \ H

with 〈H, x〉 = G and x2 ∈ H but with x−1Hx ∩ H having index as small as possible 
in H, then taking the subgroup plus coset core associated to H and x. However, whilst 
minimising this index is a good proxy for obtaining a small δ when H is fixed, it is no 
good as H varies because subgroups of very large order could give rise, on choosing x, 
to a high index but still do better in terms of δ than if a low index was obtained from 
a smaller subgroup. Fortunately the subgroup structure of SL(2, p) is very well known 
and we can therefore go through all subgroups.

In Sections 4 and 5 we consider cyclic and dihedral subgroups, as well as those con-
jugate into the subgroup of upper triangular matrices. We show that for the latter 
subgroups H, as well as for cyclic groups H, any subgroup-plus-two subset or subgroup 
plus coset core S formed from H satisfies |S3| > |S|3/2, with a lower bound for the 
dihedral subgroups.

Also in Section 5 we look at what might be termed the eventual Helfgott delta: one 
might only be interested in δ > 0 such that either S3 = SL(2, p) or |S3| ≥ |S|1+δ for 
sufficiently large symmetric generating sets S containing 1. In [8] it was mentioned that 
this δ is at least 1/1513 and here we give an example to show that it is at most 1/2.

In Section 6 we examine the exceptional subgroups 2·A4, 2·S4 and 2·A5. Basic esti-
mates allow us to eliminate 2·A4 and 2·A5, then we consider 2·S4 in more detail. Our 
best value of δ is obtained by taking H = 2·S4, of order 48, and an element x with 
x2 ∈ H and such that x−1Hx ∩H has index 3 in H. We then let S = H ∪ (xH ∩Hx), of 
size 64. We thus need to find the exact value of |S3| and this is done in Theorem 6.3 by 
considering a particular characteristic 0 representation of H. In Corollary 6.4 we show 
that this subset exists in SL(2, p) for infinitely many primes p and in Corollary 6.5 show 
that it provides a strictly lower value of δ than the infimum over all other subgroup plus 
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coset cores and all subgroup-plus-two subsets, thus proving that the latter type of subset 
cannot give rise to the minimal δ.

It remains to be seen whether our subset provides the smallest value of δ over all sym-
metric generating subsets S with 1 where S3 �= SL(2, p), as obviously we have attempted 
to guess the form of the best subsets (and indeed our initial guess of subgroup-plus-two 
subsets was not correct). However in Section 7 we provide further evidence as to why 
our example S might be best possible, in that it is robust with respect to small pertur-
bations and can be regarded as a local minimum. By this we mean that if we remove 
an element and its inverse from S, or we add an element and its inverse to S, or we do 
both operations simultaneously, then the resulting subset produces a value for δ that is 
greater than 0.3012.

Finally, we briefly discuss a complete search we did through SL(2, 5) using Magma

[2], and the optimal δ (which is around 0.3925) and corresponding sets S. The sets S
which minimise δ for p = 5 are not subgroup plus coset cores, but their structure is a 
little opaque to us – we describe one such S. Since we submitted this paper, Christopher 
Jefferson has shown that all such sets S are equivalent up to conjugacy in GL(2, 5).

2. Background material

Given a finite subset S of a group G, we write |S| for the size of S. We also write Sn

for the n-th setwise product of S, so for instance S3 = {abc : a ∈ S, b ∈ S, c ∈ S}.
Given subgroups H and L of a group G, for each x ∈ G we can form the double coset 

HxL = {hxl : h ∈ H, l ∈ L}. We refer to [9, Chapter II, Section 16] for the basic facts 
we will need. In particular

Proposition 2.1.

(i) The group G decomposes into a partition of double cosets HxiL for i in some in-
dexing set I.

(ii) (Frobenius) Let d = |x−1Hx ∩ L|. Then

|HxL| = |H| · |L|/d = |H| · [L : x−1Hx ∩ L].

The following lemma is standard, see for example [7, Satz II.8.27].

Lemma 2.2. Let H be a subgroup of PSL(2, p), p ≥ 5. Then H is one of:

(i) a subgroup of Cp : C(p−1)/2, conjugate to the image of a group of upper triangular 
matrices;

(ii) a dihedral subgroup of the group Dp−1 (of order p − 1);
(iii) a subgroup of Dp+1;
(iv) S4 (if and only if p ≡ ±1 mod 8) or A4;
(v) A5 (if and only if p ≡ ±1 mod 10).
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We will also use the following well known facts:

Proposition 2.3. Let p ≥ 5.

(i) The only involution of SL(2, p) is −I.
(ii) The only proper non trivial normal subgroup of SL(2, p) is {±I}.
(iii) Let π : SL(2, p) → PSL(2, p) be the natural homomorphism and H be a subgroup of 

SL(2, p). Then −I ∈ H if and only if H is even. Furthermore, −I ∈ H if and only 
if the index [PSL(2, p) : π(H)] = [SL(2, p) : H].

Proof. A direct calculation, setting A = A−1 ∈ SL(2, p) where p �= 2, proves (i). By 
[7, Satz II.6.13] the group PSL(2, p) is simple, and we can pull back normal subgroups 
to get (ii). Part (iii) then follows from the fact that the index of a subgroup H will be 
preserved under π if and only if H contains the kernel {±I}. �
3. Potential subsets of small tripling

Any proper subgroup H of a finite group G will be symmetric, contain the identity 1
and will satisfy |H| = |H3| (= |Hn|) but of course will not generate G. Moreover it is a 
straightforward exercise to show that any subset S of G containing 1 and with |S| = |S3|
(= |S2|) is a subgroup of G. Consequently our first candidates for symmetric generating 
sets S which have small tripling and which contain 1 are the subgroup-plus-two subsets 
H ∪ {x±1}, because they can generate SL(2, p) but we would expect that most of the 
growth in the size of S3 would be absorbed by H. Note that we are adding two distinct 
elements because if |x| = 2, then 〈H, x〉 = H × C2 �= SL(2, p) by Proposition 2.3.

In this section we first show in Theorem 3.1 that our best subgroup-plus-two subsets 
S = H ∪ {x±1} are likely to occur when x2 ∈ H. However we then find in this case that 
we can obtain an improved value of δ by adding elements to S without increasing the 
size of S3, as shown in Propositions 3.2 and 3.3.

Let us now fix a subgroup H and look for good heuristics to minimise |S3|, where 
S = H ∪ {x±1}. We can express S3 as the union of the thirteen subsets

H, Hx±1H, x±2H, Hx±2, x±1Hx±1, x±3. (1)

Notice that if x2 ∈ H then S3 = H ∪ HxH ∪ x−1Hx. It would seem that this gives 
rise to the smallest tripling of H-plus-two subsets. The following result shows that if S3

contains only two double cosets H and HxH then without loss of generality x2 ∈ H.

Theorem 3.1. Let H ≤ G = SL(2, p) and x ∈ G be such that S = H ∪ {x±1} satisfies 
〈S〉 = G. Then either HxH and Hx−1H are disjoint or there exists y ∈ Hx with y2 ∈ H, 
such that T = H ∪ {y±1} satisfies 〈T 〉 = G and |T | = |S| but T 3 ⊆ S3.
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Proof. Assume that HxH = Hx−1H. Thus x = h1x
−1h2 where h1, h2 ∈ H, so on 

setting y = h−1
2 x we find that y2 is equal to h−1

2 h1x
−1h2 times h−1

2 x and so is in H. 
Consequently T 3 is made up of the union of H, HyH and y−1Hy which are equal to H, 
HxH and x−1Hx respectively, thus T 3 ⊆ S3. Moreover 〈H, x〉 = 〈H, y〉 = G and so 
y �= y−1, giving |T | = |S|. �

However, it could be that there are elements y ∈ S3 with the property that (S ∪
{y±1})3 = S3, thus increasing |S| but keeping |S3| constant to obtain a smaller δ. In the 
case where x2 ∈ H quite a few such elements can be added in this way. From now on, 
given a subgroup-plus-two subset H ∪ {x±1}, we let L be the intersection H ∩ x−1Hx.

Proposition 3.2. Let H be a proper subgroup of the finite group K, let S = H ∪ {x±1}
with x2 ∈ H, and set T = H ∪ xL. Then |T | ≥ |S| but T 3 = S3.

Proof. Now, x−1Lx = x−1Hx ∩ x−2Hx2 = L so xL = Lx. We look at the subsets listed 
in Eq. (1), but with xL = Lx in place of x, and notice that the expressions simplify to 
give T 3 = H ∪HxH ∪ x−1Hx. �

Note that xL = xH ∩Hx and that x−1 ∈ xL if and only if x2 ∈ H, so x2 /∈ H implies 
that H ∪ xL is not a symmetric subset. Moreover, if x2 ∈ L then g2 ∈ L for all g ∈ xL. 
Consequently, if x2 ∈ H then we will call H ∪ (xH ∩Hx) a subgroup plus coset core. We 
now check that there are no further elements that can be added to a subgroup-plus-two 
subset S in a group K without increasing the size of S3, assuming that S3 �= K.

Proposition 3.3. Let K be a finite group, let H be a non-normal subgroup of K, let 
x ∈ K such that 〈H, x〉 = K and x2 ∈ H with |x| > 2, and define S = {H, x±1}. If 
S3 �= K, then the largest subset T of K satisfying S3 = T 3 with T = T−1 and S ⊂ T is 
T = H ∪ (Hx ∩ xH).

Proof. Let y ∈ T \H. We shall show that y ∈ Hx ∩ xH.
Our assumption that x2 ∈ H implies that S3 = H ∪HxH ∪ x−1Hx. Now, T 3 = S3

implies that HyH ⊂ S3, and HyH is an (H, H)-double coset that is not equal to H. If 
HyH �= HxH then HyH has trivial intersection with both H and HxH, so HyH ⊆ S3

implies that HyH ⊂ x−1Hx, a contradiction since |HyH| ≥ |H| and 1 /∈ HyH. So 
HyH = HxH, and in particular, 〈H, y〉 = 〈H, x〉 = K.

Let the right coset representatives of H in HxH be 1 = t0, x = t1, xh2 = t2, . . . , tk. If 
S3 �= K, then there are right cosets of H in K that do not lie in H ∪HxH.

Consider the action of K on the right cosets of H, and identify the coset Hti with i. 
Then {0} and {1, . . . , k} are H-orbits in this action, and 0y ∈ {1, . . . , k}, so y must map 
at least one element of {1, . . . , k} outside of {0, . . . , k} because y and H generate K. That 
is, there exists an i ∈ {1, . . . , k} such that tiy = xhiy /∈ H ∪HxH. Now, tiy = xhiy ∈ S3

implies that xhiy ∈ xHx, and so y ∈ Hx.
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Similarly, let the left coset representatives of H in HxH be s1 = x, s2 = h′
2x, . . . , sk =

h′
kx. The group K also acts on the set of all right H-cosets, via (siH)g = g−1siH, and 

there exists an i ∈ {1, . . . , k} such that (siH)y−1 = ysiH /∈ H ∪HxH. If ysi ∈ S3 then 
yh′

ix ∈ xHx so y ∈ xH. �
We now present two results which we will use to calculate or bound values of δ for 

various explicit subsets S. First, in Proposition 3.4 we collect information about what 
can happen when HxH is a union of few H-cosets.

Proposition 3.4. Let H be a proper subgroup of the finite group K, with 〈H, x〉 = K.

(i) If |HxH| = |H| then H is normal in K, thus K �= SL(2, p).
(ii) If |HxH| = 2|H| and HxH = Hx−1H then L = H ∩ x−1Hx is normal in K, thus 

again K �= SL(2, p).

Proof. The first condition implies that x−1Hx = H by Proposition 2.1(ii). Thus H is 
normalised by 〈H, x〉 = K. If K = SL(2, p) then H = {I} or {±I} by Proposition 2.3(ii). 
But then H ∪ {x} will not generate SL(2, p).

As for (ii), if |HxH| = 2|H| then [L : H] = 2, so L �H. In addition, HxH = Hx−1H, 
so if x2 /∈ H then by Theorem 3.1 we can change x if necessary, but keeping the same H, 
HxH and x−1Hx, and thus the same L. As the new and old x are in the same right 
coset of H, we still have 〈H, x〉 = K but x−1Lx = x−1Hx ∩H = L as now x2 ∈ H, thus 
L � K.

If K = SL(2, p) then L ≤ 〈−I〉. If L = {I} then we have the same contradiction 
as above, whereas if L = {±I} then let H and x be their images in PSL(2, p). Now 
H ∼= C2 and x2 ∈ H, so either x2 is the identity in PSL(2, p) so that 〈H,x〉 is a 
dihedral group, or x2 generates H and 〈H,x〉 is cyclic. Either way 〈H,x〉 �= PSL(2, p) so 
〈H, x〉 �= SL(2, p). �

Since x /∈ H, the sets H and HxH are disjoint. Let c = [H : H ∩ x−1Hx], and set 
S = H∪{x±1}. Then from Proposition 2.1(ii), we deduce that |HxH| +|H| = (c +1)|H| ≤
|S3|. Moreover, by Theorem 3.1, without loss of generality either x2 ∈ H, in which case 
S3 = H ∪ HxH ∪ x−1Hx, and so |S3| ≤ (c + 2 − 1/c)|H|, or x2 /∈ H, in which case 
HxH∪Hx−1H∪H is a disjoint union, and |HxH| +|Hx−1H| +|H| = (2c +1)|H| ≤ |S3|.

The following technical result, which follows from the preceding paragraph, will be 
used repeatedly to show that δ = (log2(7) − 1)/6 is minimal over all subgroup-plus-two 
subsets and subgroup plus coset cores.

Lemma 3.5. Let H be a non-normal subgroup of a finite group K, let x ∈ K be such that 
〈H, x〉 = K and |x| > 2, let L = H ∩ x−1Hx and c = [H : L]. If HxH �= Hx−1H then 
let S = H ∪ {x, x−1}; otherwise assume that x2 ∈ H and let S = H ∪ xL.



JID:YJABR AID:14919 /FLA [m1L; v 1.137; Prn:22/09/2014; 14:44] P.8 (1-19)
8 J. Button, C.M. Roney-Dougal / Journal of Algebra ••• (••••) •••–•••
(i) If HxH �= Hx−1H (which will hold when c = 2 by Proposition 3.4(ii) if K =
SL(2, p)) then |S3| ≥ (2c + 1)H.

(ii) Otherwise, (c + 2 − 1/c)|H| ≥ |S3| ≥ (c + 1)|H| and |S| = (1 + 1/c)|H|.

However, it is less clear how to proceed once |H| varies. For instance, given H ≤
SL(2, p) with |H| = 12 and x as in Lemma 3.5(ii) with c = 3, the set S = H ∪ xL

has size 16 and 48 ≤ |S3| ≤ 56, giving a value for δ of between log(48)/4 − 1 ≈ 0.3962
and log(56)/4 − 1 ≈ 0.4518 which we might think is nice and low. However, given 
another subgroup K of order 144 and z with z2 ∈ K where the index [K : z−1Kz ∩K]
is as much as 6, we find that |S| = 168 and |S3| ≤ (8 − 1/6) · 144 = 1128, giving 
δ ≤ log(1128)/ log(168) − 1 ≈ 0.3716 which beats the lower estimate above.

However, the subgroups of SL(2, p) are well studied, so in the next two sections we shall 
look at the infinite families of subgroups in SL(2, p), where we are able to get stronger 
lower bounds on δ for subgroup-plus-two subsets and subgroup plus coset cores than 
would be implied by the estimates above. We then look in Section 6 at the exceptional 
subgroups and their small index subgroups, which is where our lowest value of δ shall be 
obtained.

We finish this section with two useful inequalities which will come into play when we 
consider specific subgroups of SL(2, p).

Lemma 3.6. If k ≥ 1 and l ≥ 2 then fl(k) = log(lk(k + 1))/ log(l(k + 1)) and gl(k) =
log(lk(2k + 1))/ log(l(k + 1)) are both increasing in k.

Proof. We can write f(k) = 1 +log(k)/ log(l(k+1)) then take derivatives and rearrange 
to find that f ′(k) > 0. We then do the same for

g(k) = log(lk)/ log
(
l(k + 1)

)
+ log(2k + 1)/ log

(
l(k + 1)

)
. �

4. Cyclic and dihedral subgroups

We start with a general lemma which comes in useful for cyclic groups.

Lemma 4.1. Suppose that H is a proper subgroup of a finite group K and that L =
x−1Hx ∩H for some x ∈ K. If L is the only subgroup of H with that index then L is 
normalised by x.

Proof. If L has order l and is the only subgroup of index i in H then x−1Lx is the only 
subgroup of index i in the order li group x−1Hx. But L is also an order l subgroup of 
x−1Hx, thus it is of index i and so L = x−1Lx. �

Let us now consider the case where H = 〈z〉, and S = H∪{x±1} or S = H∪(xH∪Hx). 
We can certainly find x ∈ G = SL(2, p) with 〈H ∪ {x}〉 = G, because G is 2-generated 
for all p. However we will now see that the possibilities for |S3| are limited.
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Proposition 4.2. Let H = 〈z〉 ≤ G = SL(2, p), and let S = H ∪{x±1}, or let x2 ∈ H and 
S = H ∪ (xH ∩Hx). If 〈S〉 = SL(2, p) then |S3| ≥ |S|1+δ, where δ = log(3)/3 ≈ 0.5283.

Proof. Set L = x−1Hx ∩H, then L �H, and Lemma 4.1 implies that x−1Lx = L. This 
forces L to be a proper normal subgroup of G, so L ≤ {±I} by Proposition 2.3, and 
setting n = |H| we see that [H : L] ≥ n/2.

First suppose that HxH = Hx−1H. By Theorem 3.1 there exists y ∈ Hx such that 
y2 ∈ H, but then y2 ∈ y−1Hy = x−1Hx, thus y2 ∈ x−1Lx = L. If L = I then y = −I, 
but then 〈H, y〉 = 〈H, x〉 �= G, a contradiction. Thus L = {±I} and yL = {y±1} so 
we can regard subgroup-plus-two subsets and subgroup plus coset cores as equal, and 
|S| = n + 2. Then Lemma 3.5(ii) bounds |S3| ≥ (n/2 + 1)n, where n is even and at 
least 4. But y2 = −I so that if n = 4 then the image of 〈H, y〉 in PSL(2, p) is dihedral. 
So n ≥ 6 and we are done if (n/2 + 1)n ≥ (n + 2)1+δ, which by taking logs and setting 
l = 2 and k = n/2 is equivalent to claiming that f2(k) ≥ 1 + δ. But as k ≥ 3 we get 
f2(k) ≥ f2(3) = 1 + log(3)/3 by Lemma 3.6, so this value of δ works.

Next suppose that HxH ∩ Hx−1H = ∅, so that |S| = n + 2. Then Lemma 3.5(i) 
bounds |S3| ≥ (n + 1)n. Thus we can again set l = 2 and k = n/2 for k ≥ 3/2 (as 
n ≥ 3) in Lemma 3.6 for g2(k), meaning that we require g2(k) ≥ 1 + δ. But we know 
g2(k) ≥ g2(3/2) = 1 + log(12/5)/ log(5) > 1 + log(3)/3. �

We can now move on to the dihedral subgroups arising in Proposition 2.3, so that 
−I ∈ H. Indeed if the image in PSL(2, p) is the dihedral group D2n of order 2n then H
has the presentation

〈
z, w|z2n, w4, zn = w2, w−1zw = z−1〉

with w2 being equal to −I, which is known as the generalised quaternion group Q4n. We 
can mostly proceed by reducing to the cyclic case, although the estimates obtained for 
δ will necessarily be lower.

Proposition 4.3. Let H = 〈z, w〉 ∼= 2·D2n be a subgroup of G = SL(2, p), and let S =
H ∪{x±1}, or let x2 ∈ H and S = H ∪ (xH ∩Hx). If 〈S〉 = G, then |S3| ≥ |S|1+δ where 
δ = log(3)/5 ≈ 0.3169.

Proof. The group C = 〈z〉 of order 2n has index 2 in H, so in analogy with the proof 
above we set M = x−1Cx ∩ C and obtain in the same way that x−1Mx = M . However 
any subgroup of C is normalised by H, so once again we conclude that M = {I} or 
{±I}. But −I ∈ C, so M = {±I}.

Now if A, B, D are subgroups of G and A is contained in B with index i then A ∩D

has index at most i in B ∩D. As [H : C] = 2, and [x−1Hx : x−1Cx] = 2 also, the group 
M has index at most 2 in x−1Hx ∩ C, which has index at most 2 in L = x−1Hx ∩H, 
thus |L| is 2, 4, or 8. Let c = [H : L].
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First suppose that HxH = Hx−1H, so by Theorem 3.1 there exists y ∈ Hx with 
y2 ∈ L, and c ≥ 3 by Proposition 3.4. By Lemma 3.5(ii), the set S has size at most 
(c +1)|L| whereas |S3| ≥ (c +1)|H| = c(c +1)|L|. We can apply Lemma 3.6 for l = |L| =
2, 4, 8 by taking k = c = 2n, n and n/2, respectively, giving f2(k) ≥ f2(4), f4(k) ≥ f4(3)
and f8(k) ≥ f8(3). Of these the lowest value is f8(3) = log(96)/5 = 1 +log(3)/5 ≈ 1.3169.

Finally if HxH and Hx−1H are disjoint then Lemma 3.5(i) gives |S3| ≥ c(2c + 1)|L|
so we again set l = |L| = 2, 4, 8 and k = c = 2n, n and n/2 to obtain g2(k) ≥ g2(2), 
g4(k) ≥ g4(2) and g8(k) ≥ g8(2), all of which lie comfortably above 1 + δ. �
5. Triangular subgroups

The group SL(2, p) has a subgroup

U =
{(

α β

0 α−1

)
: α ∈ Z∗

p, β ∈ Zp

}

which is maximal and has order p(p − 1). In this section we will assume that H is any 
subgroup of U and that x /∈ U . This assumption is valid because any other subgroup of 
SL(2, p) of order dividing p(p − 1) is conjugate to a subgroup of U , and the size of triple 
products is preserved by conjugation.

In this and the next section we will need some additional notation for matrices in 
SL(2, p). We write u(α, β) for 

( α β

0 α−1

)
∈ U , write diag[α, β] for the diagonal matrix with 

entries α, β, and write antidiag[α, β] for the antidiagonal matrix with α in row 1.

Theorem 5.1. Let H be a subgroup of U . If S = H ∪ {x±1}, or x2 ∈ H and S =
H ∪ (xH ∩Hx), and 〈S〉 = SL(2, p), then |S3| > |S|3/2.

Proof. First note that U splits as the semidirect product N �D where

N =
{
u(1, b) : b ∈ Zp

}
and D =

{
diag

[
λ, λ−1] : λ ∈ Z∗

p

}
.

Since N is simple, either H∩N = {I} in which case H is cyclic and the result follows from 
Proposition 4.2, or N ≤ H, which we assume from now on. We let x =

(
a b
c d

)
∈ SL(2, p)

and count the set

{
h ∈ H : xhx−1 ∈ H

}
=

{
h ∈ H : xhx−1 =

(
∗ ∗
0 ∗

)}
.

This equality is because if xu(α, β)x−1 = u(γ, δ) then the traces are the same, giving 
α = γ±1. But if u(α, β) ∈ H then so is u(α±1, η) for any η ∈ Zp because N ≤ H.

The (2, 1)-entry of xu(α, β)x−1 is (α−α−1)dc −βc2. As c �= 0, this is zero if and only if 
(α−α−1)dc−1 = β. Thus, as x is fixed, for each α ∈ Z∗

p such that u(α, β) ∈ H for at least 
one β, only one such β satisfies u(α, β) ∈ H ∩ x−1Hx. Therefore, |H ∩ x−1Hx| = |H|/p
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and thus |HxH| = |H|2/|H ∩x−1Hx| = p|H|. Thus by Lemma 3.5(ii), |S3| ≥ (p + 1)|H|
and |S| ≤ (1 + 1/p)|H|. Now p divides |H| so set |H| = pk. Thus we require (p + 1)pk >

k3/2(p +1)3/2. By rearranging and squaring we obtain p2/(p +1) > k. Now |H| ≤ p(p −1)
so k ≤ p − 1 and we are done. �

A variation on the Helfgott result for SL(2, p) is that there exist two absolute constants 
c, δ > 0 such that for any symmetric generating subset S containing 1, either S3 =
SL(2, p) or |S3| ≥ c|S|1+δ. To relate this to our formulation, this variation essentially 
says that |S3| ≥ |S|1+δ for all sufficiently large |S|. Indeed, if the latter holds for all 
such S with |S| ≥ N , set c = N−δ and keep the same δ. If however |S3| ≥ c|S|1+δ

then although this need not ensure that |S3| ≥ |S|1+δ for all large |S|, we will have 
|S3| > |S|1+δ′ for any δ′ < δ. Therefore we can introduce the following notion: let Δ
be the set of real positive numbers r such that |S3| ≥ |S|1+r for all sufficiently large 
symmetric generating subsets S of SL(2, p) containing 1 and with S3 �= SL(2, p). We 
define the eventual Helfgott delta to be the supremum of Δ. The next pair of results 
show that this δ must be at most 1/2.

Proposition 5.2. If p is a prime congruent to 1 mod 4 then there is a symmetric subset 
S of SL(2, p) containing 1 of size p(p−1)+4

2 such that

(p + 1)p(p− 1)/2 ≤
∣∣S3∣∣ ≤ (p + 2)p(p− 1)/2.

Proof. One might first try applying Theorem 5.1 to the subgroup-plus-two subset S =
H ∪{x±1} with H the subgroup U of upper triangular matrices and x ∈ SL(2, p) chosen 
so that x2 ∈ H and 〈x, H〉 = SL(2, p). The problem is that we find from the proof that 
|S3| ≥ (p + 1)p(p − 1) which is all of SL(2, p). Consequently we set Q to be the set of 
quadratic residues mod p, with ±1 ∈ Q and we let H be the index 2 subgroup of U

{
u(q, β) : q ∈ Q, β ∈ Zp

}
of order p(p −1)/2. Now we find a suitable x, for instance x could be the order 4 element ( 1 −2
−1 −1

)
with x /∈ U but x2 = −I ∈ H. Then Theorem 5.1 gives us that

∣∣S3∣∣ ≥ |HxH| + |H| = (p + 1)|H|.

But as x2 ∈ H, we can use the argument just before Theorem 3.1 to say that
∣∣S3∣∣ ≤ |HxH| + |H| +

∣∣xHx−1∣∣ = (p + 2)|H|. �
Corollary 5.3. The eventual Helfgott delta is at most 1/2.

Proof. On taking S as in Proposition 5.2 we see that |SL(2, p)|/2 ≤ |S3| ≤ (p + 2)p×
(p − 1)/2 < |SL(2, p)| = (p + 1)p(p − 1), thus S3 �= SL(2, p) and as p tends to infinity, 
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|S3|/|S|3/2 tends to 21/2 by squeezing. Now if S generated a proper subgroup of SL(2, p)
then this subgroup would have index 2 and so be normal, which contradicts Proposi-
tion 2.3. �

Another variation on the eventual Helfgott delta is the supremum over δ such that 
|S3| ≥ |S|1+δ for all symmetric generating sets S containing 1 of SL(2, p) for sufficiently 
large p. We will show in Corollary 6.4 that our subsets with δ = (log(7) − 1)/6 ≈ 0.3012
occur in SL(2, p) for infinitely many p, giving an upper bound for this variation of the 
eventual Helfgott delta.

6. The exceptional subgroups

The remaining subgroups to be considered are the exceptional subgroups 2·A4, 2·S4

and 2·A5, of orders 24, 48 and 120 respectively. We deal with each case in turn.

Proposition 6.1. Let H ∼= 2·A4 be a subgroup of SL(2, p) for some p, and let S be an 
H-plus-two subset or H plus a coset core. If 〈S〉 = SL(2, p) then L = x−1Hx ∩ H has 
index at least 3 in H and |S3| ≥ 96, so that |S|3 ≥ |S|1+δ for δ = log(3)/5 ≈ 0.3169.

Proof. Note that H has no subgroups of index 2. Thus Lemma 3.5, with |H| = 24 and 
[H : L] ≥ 3, yields |S3| ≥ 96 and |S| ≤ 32. �

We now move to H = 2·A5, because it turns out that 2·S4 will produce the lowest 
values of δ.

Proposition 6.2. If SL(2, p) has a subgroup H isomorphic to 2·A5 then for any H-plus-two 
subset or H plus coset core S with 〈H, x〉 = SL(2, p) we can bound |S|3 ≥ |S|1+δ for 
δ = log(5)/ log(144) ≈ 0.3238.

Proof. The group 2·A5 has no proper subgroups of index less than 5. Thus Lemma 3.5
implies that |S3| ≥ 5|H| + |H| = 720 and |S| ≤ 120 + 24 = 144. �

We now come to the best possible value of δ over the two types of subset considered 
and we conclude, perhaps surprisingly, that subgroup-plus-two subsets cannot obtain 
this value of δ. Recall the types of matrices defined at the beginning of Section 5, and 
that 2·S4 ≤ SL(2, p) only when p ≡ ±1 mod 8, and is maximal for these p.

Theorem 6.3. Let H ∼= 2·S4 be a subgroup of SL(2, p) for some p, and let S be an 
H-plus-two subset or H plus coset core with 〈S〉 = SL(2, p). Then |S3| ≥ 224 and 
|S| ≤ 64, giving |S3| ≥ |S|1+δ for δ = (log(7) −1)/6 ≈ 0.3012. Furthermore, |S3| = |S|1+δ

if and only if L = x−1Hx ∩H has index 3 in H and S = H ∪ xL with x2 ∈ H.
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Proof. The group 2·S4 has a unique subgroup of index 2, so we can apply Lemma 4.1
to conclude that if L has index 2 then L is normalised by 〈H, x〉 = SL(2, p) which is a 
contradiction.

If [H : L] ≥ 4 then Lemma 3.5 gives |S3| ≥ 240 and |S| ≤ 60, so we assume from now 
on that [H : L] = 3. Moreover we can assume without loss of generality that x2 ∈ H

when finding the smallest value of |S3|. As for |S|, if x2 /∈ H then S = H ∪ {x±1} and 
so |S| = 50, whereas if x2 ∈ H then we can take S to be the subgroup plus coset core of 
size 64.

Thus we will assume from now on that x2 ∈ H and [H : L] = 3 so S3 = H ∪
HxH∪x−1Hx. Therefore we will obtain the given value for |S3| on showing that HxH∩
x−1Hx = ∅. To do so, we will work in the characteristic zero representation of 2·S4 given 
by H = 〈a, b〉 where

a =
√

2
2 diag

[
(1 + i), (1 − i)

]
, b =

√
2

2

(
1 1
−1 1

)

so that a and b are of order 8. Our assertions in the remainder of this proof about H
can easily be verified in Magma, by defining H as the group generated by a and b over 
Q(

√
2, i).

There is a unique faithful 2-dimensional character of H, up to automorphisms. Thus 
if p ≡ 1 mod 8 then H is the p-modular reduction of H, whilst if p ≡ −1 mod 8 then H
is a GL(2, p2)-conjugate of a p-modular reduction of H. Let F be Fp when p ≡ 1 mod 8
and Fp2 otherwise, so that the p-modular reduction of H lies in F.

We now proceed to work purely over Q(
√

2, i) but all algebraic consequences will be 
true over F too: henceforth we identify H with H. The group L is a Sylow 2-subgroup 
of H, so it is straightforward to check that without loss of generality we may define 
c :=

√
2

2 antidiag[(−1 + i), (1 + i)] and set L = 〈a, c〉.
As x−1Lx = L and there are only 2 elements of order 8 and trace tr(a) in L, namely 

a±1, we deduce that x−1ax = a±1. An easy calculation tells us that if x−1ax = a then 
x = diag[u, u−1] for some u, whereas x−1ax = a−1 means that x = antidiag[v, −v−1]. 
Now as x �= ±I but x2 ∈ L, the order of x is 4, 8 or 16. Therefore u16 = 1 in the first 
case, whereas a direct calculation in the second case shows that x has order 4 for any 
invertible v.

Let us start by considering the second case. Since [H : L] = 3, we define z =
√

2i/2
and fix right (and left) coset representatives I,

d =
(
−z z

z z

)
, and e =

(
−z zi

−zi z

)
.

If HxH intersects x−1Hx nontrivially then l1sxtl2 = x−1hx for some h ∈ H, l1, l2 ∈ L

and s, t ∈ {I, d, e}. As x normalises L, this is equivalent to saying that sxt is in x−1Hx. 
If s or t is I then sxt = x−1hx implies that x ∈ H, so we must check to see if any 
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of dxd, exe, dxe and exd are in x−1Hx, though the last check is unnecessary because 
exd ∈ x−1Hx if and only if its inverse −dxe is (as |d| = |e| = |x| = 4), so if and only if 
dxe is.

Now dxd is easily confirmed to be of the form

−1
2

(
(v−1 − v) −(v + v−1)
(v + v−1) (v − v−1)

)

but let us consider the form of the order 4 elements in x−1Hx. As x = antidiag[v, −v−1], 
when an arbitrary element of SL(2, F) is conjugated by x the diagonal entries are 
swapped. Moreover, a diagonal matrix remains diagonal under conjugation by x. Now 
dxd cannot be in L as this would imply x ∈ H, so we need to see if dxd can be equal to 
x−1yx where y is one of the eight elements of H \ L of order 4. The sum of the antidi-
agonal entries of dxd is zero but standard calculations reveal that this only happens for 
x−1yx if v8 = 1. However, setting v8 = 1 yields that x lies in L, a contradiction.

Similarly

exe = 1
2

(
−i(v + v−1) (v − v−1)
(v − v−1) i(v + v−1)

)

and this time the off-diagonal entries are equal. Forcing this to occur for x−1yx implies 
that v8 = 1.

We do not know a priori the trace of dxe. Thus instead of checking whether dxe can 
be in x−1Hx, we will calculate whether y := xdxex−1 can lie in H. Now,

y =
(

z2(iv−1 − v) −v2z2(iv − v−1)
−v−2z2(v + iv−1) −z2(iv + v−1)

)
.

We first note that no entry of y can be zero because z, v �= 0 and v8 �= 1: this leaves 
32 possible elements of H. Now, the ratio y1,2/y2,1 = −iv4, and looking through these 
elements of H, this must lie in {±1, ±i}. If iv4 = ±i then v8 = 1, a contradiction as 
before. If however −iv4 = ±1 then v is a primitive 16th root of unity. We set a first 
possible v to be the square root of 

√
2(1 + i)/2, and check over Q(

√
2, i, v) that each odd 

power of v yields an x such that x−1Hx ∩HxH = ∅.
Now we return to the case where x = diag[u, u−1] for u16 = 1. If u8 = 1 then x ∈ H, 

so x has order 16, and as in the previous paragraph we can define u to be a square root 
of 

√
2(1 + i)/2, and check over Q(

√
2, i, u) that each odd power of u yields an x such 

that HxH ∩ x−1Hx = ∅. �
We must also show that these best possible sets do actually occur.

Corollary 6.4. Let p be a prime with p ≡ 1 mod 16. Then SL(2, p) contains a subgroup 
plus coset core S of size 64 with |S3| = 224.
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Proof. For such p there are square roots of −1 and 2 in Fp, and the characteristic zero 
representation of 2·S4 given in Theorem 6.3 embeds in SL(2, p) and is maximal. Moreover, 
there exist elements v ∈ F∗

p of order 16. Thus set x = antidiag[v, −v−1] /∈ H, of order 4. 
Now x2 = −I ∈ H and 〈H, x〉 = SL(2, p), and as the conjugate x−1mx of an arbitrary 

matrix m =
(
a b
c d

)
is equal to 

(
d −cv2

−bv−2 a

)
, we see that x−1Lx = L so that [H : L] ≤ 3. 

But this index cannot be 1 or 2 by Proposition 3.4 so we can now apply Theorem 6.3. �
We can now give our main result which follows immediately from this and the two 

previous sections, given that all proper subgroups of SL(2, p) have now been covered.

Corollary 6.5. Let S be a subgroup-plus-two subset or subgroup plus coset core of SL(2, p)
with 〈S〉 = SL(2, p). Then |S3| ≥ |S|1+δ for δ = (log(7) − 1)/6. Moreover this value 
is obtained if and only if H = 2·S4 with x2 ∈ H, [H : x−1Hx ∩ H] = 3 and S =
H∪(xH∩Hx). In particular, subgroup-plus-two subsets do not attain the smallest possible 
value of δ.

Recall that (log(7) − 1)/6 ≈ 0.30122.

7. Further evidence

We have proved that over all subgroup-plus-two subsets and subgroup plus coset cores, 
those giving rise to the smallest value of δ are exactly the ones in Corollary 6.5. But might 
they give the best possible value over all symmetric generating subsets S containing 1 and 
with S3 �= SL(2, p), thus providing us with the correct value of the Helfgott delta? Clearly 
there are vastly many more subsets in this general form compared with the restricted 
nature of the subgroup-plus-two subsets and subgroup plus coset cores. Nevertheless it 
is our contention that the correct value is much nearer 0.3012 than the known lower 
bound 1/3024 ≈ 0.0003 in [8], and indeed these subsets might be best possible. In order 
to provide further evidence for this, we show that these subsets are “local minima” in a 
very general sense.

To define this concept, first suppose that S = H ∪xL is as in Corollary 6.5 and recall 
Proposition 3.3 which states that if T = S ∪ {y±1} �= S then |T 3| > |S3|. We show that 
in fact |T 3| is so much bigger than |S3| that the value of δ increases. In this section, for 
a subset S of SL(2, p), we write Δ(S) to denote log(|S3|)/ log(|S|) (this is one more than 
the value of δ for S).

Theorem 7.1. Let S = H ∪ (xH ∩ Hx) be as in Corollary 6.5, and T = S ∪ {y±1} for 
y /∈ S. Then Δ(T ) > Δ(S).

Proof. For this S, we know that S3 = H ∪HxH ∪ x−1Hx, and that |HyH| ≥ 3|H| =
144. So if HyH �= HxH then the set H ∪ HxH ∪ HyH, of size at least 336, is a 
subset of |T 3|, which means that Δ(T ) is much bigger than Δ(S). If HyH = HxH
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then HyH = Hy−1H, so by Theorem 3.1 there is z = hy with z2 ∈ H such that 
H ∪HzH ∪ z−1Hz ⊆ T 3. Thus z = h1xh2 for some h1, h2 ∈ H, and so z−1Hz ∩ H =
h−1

2 Lh2. Hence, the conditions of Theorem 6.3 are satisfied and we conclude that z−1Hz

is disjoint from HzH.
If x−1Hx = z−1Hz then xz−1 is in the normaliser of the self-normalising subgroup H

so z ∈ Hx. But xHx−1 = x−1Hx and the same holds for z, so repeating this argument 
gives z ∈ xH and hence z was in S anyway, a contradiction.

Thus we can assume that x−1Hx �= z−1Hz, and that both of these subgroups are 
disjoint from HxH = HzH and contained in T 3. Now z−1Hz ∩ H is conjugate to L, 
so |z−1Hz ∩ H| = 16. Since z−1Hz �= x−1Hx, the group z−1Hz ∩ x−1Hx has index 
at least 2 in x−1Hx, thus z−1Hz has at most 24 elements in x−1Hx. Now, any two 
Sylow 2-subgroups of H intersect in a group of order 8, so z−1Hz ∩ (H ∩ x−1Hx) has 
order at least 8. Hence, at least 8 elements of z−1Hz have been double counted when 
looking at which ones lie in H and in x−1Hx, so at most 32 elements of z−1Hz are in 
x−1Hx ∪H. This leaves at least 16 extra elements, making |T 3| ≥ 240 and |T | = 66, so 
Δ(T ) > 1.3081. �

Another reasonable definition of local minimum is that the δ increases under the 
removal of any element and its inverse.

Theorem 7.2. Let S = H ∪ xL be as in Theorem 6.5, and let T = S \ {z±1} for some 
z ∈ S. Then Δ(T ) > Δ(S).

Proof. First assume that z ∈ H and that z �= z−1 (so that we have removed two distinct 
points). We will write h for z and set H0 = H − {h±1}. We will show that T 3 = S3, 
which we know to be H ∪HxH ∪ x−1Hx.

A very old and straightforward result states that if A, B are subsets of a finite group 
G with |A| + |B| > |G| then AB = G. Thus H = H2

0 ⊆ T 3. In order to show that 
HxH ⊆ T 3, it suffices to show that T 3 contains H0xh

±1, h±1xH0 and h±1xh±1 (for all 
choices of signs). We choose any l ∈ L such that l−1h±1 is not equal to h or h−1 and 
thus is in H0. Then H0xh

±1 = H0 · xl · l−1h±1 ⊆ H0xLH0 and so certainly is in T 3.
This also applies to h±1xH0 so we are left with x−1Hx. We clearly already have 

x−1H0x ⊆ T 3 so just need x−1h±1x. If h ∈ L then x−1h±1x ∈ L ⊆ T 3, so assume that 
h ∈ H − L. Then we are done if we can find m ∈ L such that m−1hm �= h±1, because 
x−1h±1x = x−1m ·m−1h±1m ·m−1x ∈ xL ·H0 · xL. It is easy to check that in S4, any 
element h outside a Sylow 2-subgroup L satisfies |CS4(h) ∩ L| ≤ 2, so the number of 
elements of L that either centralise or invert h ∈ H \ L is at most 8, and such an m
exists.

We next consider when H0 is formed by removing just −I from H. The same ar-
guments as above apply to show that H and HxH are in T 3, and when we compare 
x−1H0x to x−1Hx we see we are only missing −I which is already in H and so in T 3.
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Finally, consider what happens if we remove an element lx and its inverse from Lx =
xL to form T . On taking m ∈ L such that mx �= (lx)±1 and thus is in T , we obtain 
HxH = Hm−1 ·mx ·H = HmxH ⊆ T 3 and x−1Hx = (mx)−1Hmx ⊆ T 3, with H ⊆ T 3

already. �
We now obtain our final result on local minima, where this time we allow ourselves to 

remove an element and its inverse from S, then replace it by an arbitrary element and 
inverse from outside S to form T .

Corollary 7.3. Let S be as in Theorem 6.5, let 1 �= s ∈ S and y ∈ SL(2, p) \ S, and let 
T = (S \ {s±1}) ∪ {y±1}. Then Δ(T ) > Δ(S).

Proof. By Theorem 7.2, if we set Z = S\{s±1} then Z3 = S3. As |T | = |S| or |S| +1 (the 
latter occurring only if we remove −I), we will be done on showing that |T 3| ≥ |S3| +14
by finding elements that are not in S3 but which can be made out of Z and y±1. On 
examining the proof of Theorem 7.1, we note that elements in (S ∪ {y±1})3 \ S3 came 
from HyH or Hy−1H or y−1Hy. Thus if s /∈ H then these will also be in T 3.

We now suppose that s ∈ H and let H0 = H \ {s±1} = Z ∩H. First say that HyH

(or Hy−1H by changing y to y−1) provides new elements for (S ∪ {y±1})3. As |HyH|
is at least 3|H|, the double coset HyH contains at least 3 left cosets of H. This implies 
that |H0yH| ≥ |H| because although we could be missing the two left cosets syH and 
s−1yH when we drop from HyH to H0yH, there will still be at least one left over. This 
in turn means that |H0yH0| ≥ |H| − 2 and so there are at least 46 extra elements in T 3.

Finally if our extra elements came from y−1Hy then we still have all but two in 
y−1H0y, and in the proof of Theorem 7.1 we showed that the former set introduces at 
least 16 extra elements, so the latter provides at least 14. �

It might well be so that our subsets S remain best possible under the removal or 
addition of two (or more) elements and their inverses, although we have not examined 
this owing to the lengthier number of cases to consider.

8. Computer calculations

The main computer calculation that we did was an exhaustive search through SL(2, 5)
looking for the sets S of minimal tripling. There are 2120 potential such subsets, so we 
implemented a backtrack search as follows. For convenience we split the search in two, 
one for sets S containing −I, and one for the remaining sets S. The set S was initialised 
to {I} or {±I} and was then grown by adding elements x, x−1 at each branch point. For 
the first few levels of the search tree (up to depth around 3) we only chose {x, x−1} up 
to conjugacy under the subgroup of SL(2, 5) that conjugated each element of S to itself 
or its inverse. After this we chose all possible x, as in SL(2, 5) the stabiliser of a triple of 
elements and their inverses is likely to be just 〈−I〉. The search stored the corresponding 
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δ whenever S generated SL(2, 5), and backtracked when S3 became equal to SL(2, 5). 
The following result has since been confirmed independently by Chris Jefferson, who also 
showed that all sets S attaining the bound are conjugate under GL(2, 5).

Theorem 8.1. Let S be a subset of SL(2, 5) such that 1 ∈ S, S = S−1 and 〈S〉 = SL(2, 5). 
Then |S3| ≥ |S|1.3925, and the set S closest to this bound has size 30 with |S3| = 114.

One such optimal S is the following elements and their inverses
(

2 0
0 3

)
,

(
3 0
1 2

)
,

(
0 3
3 2

)
,

(
4 3
2 3

)
,

〈(
1 1
4 0

)〉
,

〈(
1 4
1 0

)〉
,

(
3 3
3 0

)
,

(
2 3
2 1

)
,

〈(
1 1
1 2

)〉
.

For larger p, we decided that there was no point examining extremely small subsets 
of SL(2, p) systematically, since it is an easy exercise to see that any S of order 5 (say) 
would satisfy |S3| > 10 > 51.4 (say), and hence never be a set of minimal δ. Thus the 
sets S need to be reasonably large, and the combinatorial explosion in the number of 
possible sets would seem to preclude a systematic search.

Similarly, one would not expect a random subset of SL(2, p) to have a low value of δ, 
so extensive random sampling does not seem likely to be useful.

The final obvious trick for computational exploration would be to “evolve” sets S
by adding elements whenever S3 doesn’t grow (or possibly doesn’t grow by too much), 
and otherwise interchanging elements in S for elements outside S when this reduces or 
stabilises the size of the triple product. However, this would need to be very carefully 
designed to avoid the search getting stuck at local minima for δ that are not global 
minima.

We finish with a brief word on subsets with small triple products in other infinite 
families of finite simple (or almost simple) groups. First we mention PSL(2, p): Helfgott’s 
result is sometimes stated for this case but in general one works in SL(2, p) for added 
convenience. However it is certainly straightforward to go from SL(2, p) to PSL(2, p). 
Suppose that we know a value of δ where |A3| ≥ |A|1+δ for any symmetric generating 
subset A containing 1 and with A3 �= SL(2, p). Now suppose there exists B ⊆ PSL(2, p)
which is symmetric, generates, contains 1 but with B3 �= PSL(2, p). Then the pullback 
A = π−1(B) is also symmetric, generates SL(2, p), contains 1 and satisfies A3 �= SL(2, p). 
Moreover |A| = 2|B| and |A3| = 2|B3| because (π−1(B))3 = π−1(B3) for surjections π. 
Thus |B3| ≥ |A|1+δ/2 ≥ 2δ|B|1+δ ≥ |B|1+δ, meaning that the Helfgott delta in PSL(2, p)
is at least that for SL(2, p). For instance our subset in Theorem 6.3 gives rise to a subset 
B of PSL(2, p) of size 32 with |B3| = 112, thus giving an upper bound of 0.3614 for the 
Helfgott delta in PSL(2, p).

In addition to the Helfgott delta, the general results of [10] and [4] show that for 
any family of finite simple groups of Lie type of bounded rank, there exists some delta 
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holding for all groups in the family. However this breaks down without bounded rank, 
for instance in [10, Section 14] counterexamples are given for Sn and for SL(n, p) where n
varies. Interestingly, the first counterexample is a sequence of subgroup-plus-two subsets, 
and the other is what we would call here subgroup-plus-four subsets.
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