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Cell competition: Winning out by losing notch

Maria P Alcolea and Philip H Jones*
MRC Cancer Unit; University of Cambridge; Hutchison/MRC Research Center; Cambridge Biomedical Campus; Cambridge, UK

Cell competition where ‘loser’ cells are
eliminated by neighbors with higher

fitness is a widespread phenomenon in
development. However, a growing body of
evidence argues cells with somatic muta-
tions compete with their wild type counter-
parts in the earliest stages of cancer
development. Recent studies have begun to
shed light on the molecular and cellular
mechanisms that alter the competitiveness
of cells carrying somatic mutations in adult
tissues. Cells with a ‘winner’ phenotype
create clones which may expand into exten-
sive fields of mutant cells within normal
appearing epithelium, favoring the accu-
mulation of further genetic alterations and
the evolution of cancer. Here we focus on
how mutations which disrupt the Notch
signaling pathway confer a ‘super compet-
itor’ status on cells in squamous epithelia
and consider the broader implications for
cancer evolution.

Cell competition is a phenomenon that
occurs between cells in a single tissue com-
partment as ‘winning’ cells with specific
phenotypic advantages out compete their
less fit neighbors. It was first described
and has been extensively studied in Dro-
sophila, but more recently has been
observed in mammalian development.1-4

However, the cellular mechanisms under-
lying this important process are far less
well defined. Competition was originally
described in ‘losers’ carrying a mutation
which slows cellular proliferation relative
to normal cells. More recently, ‘super
competitor’ mutants which win over wild
type cells by actively promoting their
extrusion or apoptosis have been identi-
fied.5-7 Genes and pathways reported to
function as super competitors in Drosoph-
ila include dMyc and Wg, Hpo and Stat
pathway mutants, whose homologues are
frequently mutated in human cancer.6,8-14

To progress into a tumor, an individual
mutant cell must generate a clone which
persists for sufficient time to acquire addi-
tional genomic changes.15 Many genetic
alterations reduce fitness relative to wild
type cells and are eliminated by cell com-
petition, which provides a defense against
cancer development in tissues such as the
mouse thymus.16,17 In contrast, a cell with
a somatic super competitor mutation may
drive out wild type cells, colonize a region
of tissue and persist long term. This pro-
cess is well illustrated in squamous epithe-
lia, such as the epidermis, head and neck
epithelium and esophagus. In these tis-
sues, carcinogen exposure creates mutant
clones within normal appearing tis-
sue.18,19 These may expand to take over
large areas from which multiple dysplastic
lesions and squamous cell carcinomas arise
as additional mutations occur.20,21 The
existence of super competitor mutants
may offer an explanation for how such
areas of ‘field change’ arise.

Studies on cell competition require the
ability to label and visualize mutant cell
clones. Until recently, such lineage trac-
ing experiments were well developed only
in Drosophila.9 However, advances in
transgenic technology, particularly the
availability of inducible alleles of cre
recombinase and reporter strains that
allow the recombined cells to be visual-
ized have allowed clonal lineage tracing
into mice.22 Moreover, by tracking the
size distribution of large samples of clones
over time it is possible to quantify the
behavior of their constituent cells.23-26

This approach has been successfully
applied to squamous epithelia in the
mouse.17,19,21-23 Of these tissues, the uni-
form architecture of the esophageal epi-
thelium (EE), makes it an ideal model to
study epithelial cell competition in a
mammalian context.
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stem cell
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Murine EE consists of layers of kerati-
nocytes (Fig. 1A). It is devoid of appen-
dages such as crypts or glands which form a
niche for stem cells in other tissues.24,26-28

Proliferation is confined to cells in the basal
layer. On commitment to differentiation,
basal cells exit the cell cycle and subse-
quently lose adhesion to the underlying
basement membrane allowing them to
stratify into the overlying suprabasal cell
layer.24 They then undergo a series of mor-
phological and biochemical changes until

they reach the tissue surface from which
they are shed. In normal EE, cell produc-
tion in the basal layer is precisely matched
with shedding at the epithelial surface, so
cellular homeostasis is maintained. To
achieve this, a 1:1 ratio of proliferating and
differentiating cells must be generated
across the basal layer.29

Transgenic measurement of cell prolif-
eration in EE reveals all cycling cells divide
at the same average rate.24 There is no evi-
dence of the slow cycling ‘reserve’ stem

cell population described in other tis-
sues.29,30 Long-term lineage tracing of a
large, representative sample of proliferat-
ing cells in homeostatic EE reveals they
are a single functionally equivalent popu-
lation of progenitor cells (Fig. 1B,C).24

Stratification of a differentiating cell is
linked to division of a nearby progenitor.
Progenitor division may have one of 3
outcomes, generating 2 progenitor cells
that will go on to divide again, 2 differen-
tiating cells that exit the basal layer and

Figure 1. Stochastic cell fate behavior of normal mouse esophageal epithelium. (A) Section of mouse esophageal epithelium showing multilayered squa-
mous tissue devoid of appendages. Basal cells (b) overlie a basement membrane (dashed line) above submucosa. Basal cells stratify into suprabasal
layers (sb), migrating toward the surface of the epithelium, lined by cornified cells (c), which are continually shed into the esophageal lumen. Scale bar
50 mm. (B) Side view of a 3-dimensional reconstruction showing typical EYFP labeled (control) clones 10 d post induction.24 EYFP is green and a6 integ-
rin in white, scale bar 10 mm, b indicates a basal cell and sb suprabasal cells. (C) Cell fate in normal homeostatic mouse esophageal epithelium.24 Progen-
itor cell division is linked to the exit of a nearby differentiating cell from the basal layer. The average rates of progenitor cell division and differentiated
cell stratification are 1.9/week and 3.5 /week respectively. Each division may have one of 3 outcomes: 2 progenitor daughters, 2 differentiating daughters
(a terminal division in which neither daughter divides again) or one cell of each type. The outcome of an individual division is unpredictable, but the like-
lihood of each division outcome, indicated as a percentage, is the same for all progenitors.
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are eventually shed from the tissue, or one
cell of each type. The outcome of an indi-
vidual progenitor division is unpredict-
able, but the probabilities of each type of
division are balanced, with the likelihood
of PP and DD divisions being equal
(Fig. 1C). It follows that across the basal
layer, equal numbers of progenitor and
differentiating cells are generated, achiev-
ing homeostasis.

The single progenitor paradigm differs
from models which postulate that a hierar-
chy of stem and transit amplifying cells
maintains homeostasis, proposed on the
basis of studies in which basal cells are
sorted for cell surface markers and assayed
for their colony forming efficiency in 2 or
3 dimensional cell cultures.31,32 It is not
perhaps surprising that cells differ in their
ability to survive isolation by prolonged
typsinization and then proliferate in a
non-physiological, often growth factor
loaded, culture environment.32 Marker
expression may depend on factors such as
whether cells are in a particular phase of
the cell cycle or initiating differentiation,
that may impact on colony forming effi-
ciency.33 Therefore, inferring cell behavior
in homeostatic tissue from clonal culture
seems unreliable compared with tracking
cells in their ‘native habitat’ by lineage
tracing.22

A consequence of EE progenitor cell
behavior is that the progeny of a given cell
division have a high likelihood of being
lost over time through symmetric differen-
tiation (terminal division), only a minor-
ity of such clones persist and expand in
size. A newly arisen clone carrying a neu-
tral mutation, which although not altering
cell behavior might facilitate neoplastic
progression is likely to be shed from the
tissue within a few rounds of division
(Fig. 4, clone marked with X). By chance,
only a small proportion of clones that
carry neutral mutations will persist long
term, so the acquisition of multiple muta-
tions in a single clone is an even more
remote possibility.24 However, a mutation
that tilts progenitor cell fate toward prolif-
eration by increasing the probability of
divisions producing 2 progenitor cells is
much more likely to create a dominant
and persistent clone which may undergo
further mutations and progress toward
cancer.

Lineage tracing of mutant cells is a
powerful technique with which to define
how mutations alter progenitor cell behav-
ior at a qualitative and quantitative
level.34-36 Candidate mutations that may
alter progenitor fate in EE include those
affecting the Notch pathway. Notch is a
transmembrane receptor, that is cleaved
by gamma secretase when it binds its
ligand.37 This releases the cytoplasmic
domain of the protein (Nicd), which
migrates to the nucleus where it binds to a
multiprotein complex that includes the
DNA binding protein Rbpj and Master-
mind like 1, Maml1, activating the tran-
scription of Notch target genes.38

Multiple lines of evidence point to a
role for Notch in squamous and esoph-
ageal carcinogenesis.Notch receptors are
frequently inactivated by mutation in
tumors of squamous epithelium.39-45 In
keratinocytes, Notch activation drives dif-
ferentiation, while in the squamous epi-
thelium of the epidermis, loss of Notch
promotes tumor formation.46-49 Moti-
vated by these observations, we performed
lineage tracing of esophageal progenitors
expressing a dominant negative mutant of
Mastermind like 1 (DN-Maml1) which
blocks Notch signaling by preventing
Nicd-induced transactivation. DN-Maml1
blocks Notch target gene induction and
phenocopies the effects of Notch deletion
in a range of tissues.47,50-53 Crucially, in
this model, the Maml1 mutant is fused to
GFP and targeted conditionally to a ubiq-
uitous locus, allowing mutant cells to be
visualized using confocal microscopy fol-
lowing cell labeling.

Expression of DN-Maml1 in individual
esophageal progenitors confers a strong
competitive advantage on the mutant
cells, which generate clones that expand
rapidly over the weeks following induction
(Fig. 2A).50 Quantifying clone size at early
time points by 3D imaging reveals mutant
clones contain several fold more cells than
control clones expressing a fluorescent
protein reporter. In addition the propor-
tion of differentiated cells is reduced in
the mutant clones. Most significantly, by
10 d after induction, a substantial number
of control clones are found ‘floating’ in
the suprabasal layers after all their progen-
itor cells have undergone terminal divi-
sion, generating 2 differentiated cells.50 In

contrast there are no floating mutant
clones, indicating that inhibition of Notch
signaling has blocked ‘terminal’ divisions
generating 2 differentiating cells. There-
fore, expression of DN-Maml1 renders
clones functionally ‘immortal’, as they can
no longer be lost by shedding.

Quantitative analysis of mutant clone
sizes reveals how DN-Maml1 expression
alters cell behavior soon after induction
(Fig. 2B).50 Mutant cells divide 3 fold
faster than wild type cells, and, on average,
each cell division produces an excess of
progenitors over differentiated cells due to
the lack of the terminal differentiated divi-
sion outcome. The differentiated cells that
are produced leave the basal layer at a
reduced rate. In combination these
changes confer a decisive advantage over
wild type cells, with mutant clones
expanding exponentially. Analysis of gene
expression in mutant cells reveals altera-
tions in transcripts implicated in keratino-
cyte differentiation and cytoskeletal
organization consistent with the changes
in cell dynamics. For example the stress
induced keratin, Krt6, is strongly induced
in mutant cells. Intriguingly, the differen-
tially expressed genes include the tran-
scription factor Sox9, a Notch target which
is down regulated in mutant clones.50,54

Sox9 is implicated in stem cell regulation
in a range of developing and adult tissues
including foregut endoderm, and the
esophagus, acting to alter the microenvi-
ronment via Tgfb family protein signal-
ing.55,56 57,58

These results reveal the intrinsic molec-
ular and cellular characteristics of cells
expressing DN-Maml1. However studies
in Drosophila indicate some super com-
petitor mutations exert a ‘bystander
effect’, actively eliminating wild type cells.
For example, winner cells with higher lev-
els of dMyc have both cell intrinsic advan-
tages in metabolism and proliferation and
secrete factors which induce apoptosis in
wild type losers.6,7,59,60 In the esophageal
epithelium, short term lineage tracing
reveals the wild type progenitor cells
immediately adjacent to mutant clones
stratify at a higher rate than cells distant
from the clone (Fig. 2C and D).50 The
morphology and expression of markers
such as Krt4 suggests the stratifying wild
type cells are undergoing a normal process
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Figure 2. For figure legend, see page 13.
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of differentiation (Fig. 2D). Increased dif-
ferentiation of wild type cells has also
been observed in co-cultures of wild type
and Notch inactivated human keratino-
cytes in culture.46

What is the mechanism driving
increased wild type cell stratification at
DN-Maml1 clone margins? The observa-
tion that increased differentiation only
occurs in wild type cells in contact with
mutant clones argues that cell-cell signal-
ing promotes differentiation. One candi-
date pathway is the Notch itself, as
imbalances in Notch signaling between
adjacent cells can alter cell fate of in a vari-
ety of epithelia.61,62 In EE, treatment with
a gamma secretase inhibitor which blocks
Notch signaling restores the stratification
rate of wild type cells at the DN-Maml1
clone edge to normal. This argues that a
Notch mediated bystander effect contrib-
utes to the super competitor phenotype of
DN-Maml1 clones (Fig. 2E).

Eventually, the active expulsion of wild
type cells via differentiation induced strat-
ification, combined with exponential
expansion of mutant clones leads to the
entire epithelium being replaced by
mutant cells (Fig. 2A).22 What is surpris-
ing, given the dynamics of mutant cells at
early time points, is that a year or more
after induction of DNMaml1 mice are
healthy and free from esophageal tumors.
At late time points, no wild type cells
remain. The mutant epithelium estab-
lishes a new steady state and retains its
integrity. Lineage tracing within the
mutant epithelium reveals while progeni-
tors still have increased rates of division
and stratification compared to wild type

cells the terminal division outcome is rein-
stated and, the balanced production of
progenitors and differentiating cells
restored (Fig. 3A). The mechanism of this
rebalancing is not known, but it may be
significant that once wild type cells have
been lost, the mutant epithelium becomes
crowded, with a 30% increase in the
density of basal cells and buckling of the
epithelium, consistent with increased
mechanical stress50,63 (Fig. 3B and
C).50,63 These changes are reminiscent of
epidermis exposed to ultraviolet light,
where p53 mutant clones expand expo-
nentially until they reach several thousand
cells in size, when crowding occurs and
expansion slows.19,64 In culture, crowding
of keratinocytes promotes their differenti-
ation followed by stratification out of the
basal layer.65 Differentiation is function-
ally equivalent to the density dependent
cell extrusion widely observed epithelial
tissues.66-68 Linking cell density to differ-
entiation offers a robust defense against
any mutation causing increased cell pro-
duction and may result from the increased
mechanical pressure created by an expand-
ing clone within an epithelium.63

If EE can tolerate Notch inhibiting
mutations so effectively, does Notch muta-
tion play a significant role in early carcino-
genesis? A carcinogen exposed epithelium
may contain numerous cells carrying onco-
genic mutations, such as in p53, which
will form mutant clones. However, unless
probability of cell loss by differentiation
and shedding is significantly reduced,
most of these clones will not persist for
sufficient time to acquire additional muta-
tions.20,36 If a Notch inhibiting mutation

occurs in a cell carrying a preexisting
mutation, it might confer a super competi-
tor phenotype, creating a field change
within which carcinogenesis can progress
(Fig. 4). Indeed, following single cell
induction of DN-Maml1 in nitrosamine
treated mice carrying sporadic p53 mutant
clones, rare double mutant clones are
observed. These are much larger than
clones carrying p53 mutations alone, and
are similar in size to DN-Maml1 clones in
the same animals. When such animals are
aged, large regions of double mutant epi-
thelium are seen, illustrating how DN-
Maml1 clonal dominance can be hijacked
by other less competitive mutations to col-
onize the tissue. This also exemplifies how
oncogene cooperation may occur via cell
dynamics as well as at the level of intracel-
lular signaling and transcription.

Once DN-Maml1 mutant areas have
been established in nitrosamine treated
mice, they have a several fold higher inci-
dence of tumor formation/unit area than
adjacent wild type regions in the same ani-
mals, and the lesions formed are signifi-
cantly larger than those arising from wild
type regions. This argues Notch inhibiting
mutations promotes esophageal tumor
formation beyond conferring clonal domi-
nance, as has been shown in the epider-
mis.49 Loss of Notch in the epidermis is
strongly linked with the induction of sys-
temic immune changes and stromal
inflammation.48,69,70 Interestingly there is
no evidence of epithelial, stromal or sys-
temic immune changes following DN-
Maml1 expression in the esophagus, likely
reflecting organ specific tuning of the
immune system.

Figure 2 (See previous page). Notch inhibition confers clonal dominance. (A) Side views of 3-dimensional reconstructions of confocal z stacks showing
clonal areas of wholemounts of esophageal epithelium immunostained for DN-Maml1 (green) at one month and 1 year post induction. Dapi is blue, scale
bars 500 mm. (B) Effect of clonal DN-Maml1 expression on progenitor cell dynamics. At early time points DN-Maml1 expression (green) increases the rate
of progenitor cell division and decreases the rate of differentiating cell stratification. In addition, divisions resulting in 2 differentiating cells are absent,
blocking clone loss by differentiation. In combination these changes result in exponential clonal expansion in a background of wild type cells (blue). (C)
Notch inhibition induces differentiation of adjacent wild type cells. Side view of 3-dimensional reconstructions showing typical appearances of DN-
Maml1 induced and uninduced age-matched control epithelial wholemounts. Progenitor cells were labeled with a pulse of Ethinyl deoxy Uridine (EdU,
red), taken up by progenitors that were in S phase 48 hours before staining. At the boundary of a DN-Maml1 clone (green), an increased proportion of
non-mutant suprabasal EdUC cells (arrowed) is seen compared with controls, indicative of an increased rate of progenitor differentiation. Dotted line
indicates basement membrane, scale bars 10 mm. (D) XZ cross sections of a wholemount confocal z-stack from DN-Maml1 induced treated with EdU as
described in (C). Accelerated stratification at the wild type edge shows typical markers of esophageal differentiation. GFP green, EdU is red and differenti-
ation marker Keratin 4 white, dotted line indicates basement membrane, arrows suprabasal EdU positive cells. Scale bars 10 mm. (E) Model of wild type
cell elimination through competition with Notch mutant cells. Notch signaling is activated preferentially in wild type cells at the clonal edges due to inhi-
bition of Notch pathway in mutant cells. This prompts stratification and differentiation of wild type progenitors. Clone expansion is accelerated by the
active expulsion of wild type cells through differentiation.
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These observations suggest a cellular
mechanism for the phenomenon of ‘field
change’, observed in carcinogen exposed
human epithelia. Areas of apparently nor-
mal epithelium have been shown to har-
bor clonal mutations and generate
multiple dysplastic lesions and tumors
over time.20,21,71 In squamous epithelium
there is no constraint to clone expansion,
so a single mutant progenitor whose
dynamics are altered in a similar fashion
to that produced by DNMaml may colo-
nize a large region.23-25 Over a prolonged
period of carcinogen exposure an epithe-
lium may become a patchwork of clonal

fields each carrying a super competitor
mutation and any preceding oncogenic
genomic alterations present in the founder
cell. Understanding how the behavior of
cells within these mutant fields changes as
they acquire additional genetic damage
will be key designing rational strategies to
decrease cancer risk in humans with a
large burden of mutations.72

In conclusion, the findings reviewed
here argue Notch should be added to the
expanding list of pathways implicated in
cell competition. The ability of Notch
inhibited progenitor cells to drive out wild
type neighbors and replace an entire tissue

compartment places Notch in the class of
super competitors. The colonization of
the esophageal stem cell niche parallels the
effect of ‘winner’ Wnt pathway, KRas
mutations in intestinal epithelium and
p53 mutation in transplanted haemato-
poietic stem cells.36,73,74 In the context of
early cancer development, where cells may
harbor multiple mutations, such mutants
play a crucial role in immortalizing and
expanding clones carrying oncogenic
genome alterations. If increased cell den-
sity promotes cell loss by differentiation,
tissues may re-establish cell fate balance
and preserve their functional integrity.

Figure 3. Cell dynamics after complete epithelial replacement by DN-Maml1 cells. (A) At long time points after induction, the entire esophageal epithe-
lium is replaced by DN-Maml1 mutant cells (green). As this happens, the 3 division outcomes of normal progenitor cells are reinstated, with balanced
probabilities. Tissue turnover is still accelerated, but a new ‘steady-state’ is reached. (B) Section of mouse esophageal epithelium showing epithelial buck-
ling at 1 year post-induction in DM-Maml1mice compared to aged-matched uninduced controls. Scale bar 20 mm. (C) Side view of 3-dimensional recon-
structions of confocal images showing increased cell density (arrows) one year post induction in DM-Maml1 mutant epithelium compared to aged-
matched uninduced controls. Basal cell marker Keratin 14 is red, suprabasal marker Keratin 4 in white, and Dapi blue. Dotted line indicates basement
membrane, brackets indicate epithelial thickness. Scale bar 10 mm.
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However, such resilience results in carcin-
ogen exposed epithelia becoming a patch-
work of super-competitor mutations in
which cancer evolution will continue
unless mutagen exposure ceases.20
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