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Abstract

This paper considers the problem of model uncertainty in the case of multi-asset volatility
models and discusses the use of model averaging techniques as a way of dealing with the risk
of inadvertently using false models in portfolio management. Evaluation of volatility models
is then considered and a simple Value-at-Risk (VaR) diagnostic test is proposed for individual
as well as ‘average’ models. The asymptotic as well as the exact finite-sample distribution
of the test statistic, dealing with the possibility of parameter uncertainty, are established.
The model averaging idea and the VaR diagnostic tests are illustrated by an application to
portfolios of daily returns on six currencies, four equity indices, four ten year government
bonds and four commodities over the period 1991-2007. The empirical evidence supports the
use of ‘thick’ model averaging strategies over single models or Bayesian type model averaging
procedures.
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1 Introduction

Multivariate models of conditional volatility are of crucial importance for optimal asset al-
location, risk management, derivative pricing and dynamic hedging. However, their use in
practice has been rather limited, particularly in the case of portfolios with a large number
of assets. There are only a few published empirical studies that consider the performance
of multivariate volatility models involving a large number of assets, and for operational
reasons most of these studies focus on highly restricted versions of the multivariate gener-
alized autoregressive conditional heteroscedastic (GARCH) model of Bollerslev (1986). The
risk associated with possible model misspecification could then be sizeable. Also for risk-
management purposes, the main focus is often on the tail behavior of the predictive density
of the asset returns, and not simply to obtain the ‘best’ approximating volatility model.
This in turn implies that a unified treatment of empirical portfolio analysis requires shifting
the focus from a statistical to a decision-theoretic framework for model evaluation. This
paper provides an integrated econometric approach to the portfolio optimization subject to
the Value at Risk (VaR) constraint in the presence of model uncertainty, and the associated
risk monitoring problem. In this paper we focus on uncertainty of multivariate volatility
models and abstract from return prediction uncertainty already addressed extensively in the
literature.1 The various issues involved are discussed and evaluated in the context of an
empirical application.

Many variants of the multivariate GARCH have been proposed in the literature. These
include the conditionally constant correlation (CCC) model of Bollerslev (1990), the Risk-
metrics specifications popularized by J.P.Morgan (1996) and used predominantly by practi-
tioners, the orthogonal GARCH model of Alexander (2001), and the dynamic conditional cor-
relation (DCC) model advanced by Engle (2002).2 Recent surveys are provided in Bauwens,
Laurent, and Rombouts (2003) and McAleer (2005). Multivariate stochastic volatility (SV)
models have also been considered in the literature, with reviews by Ghysels, Harvey, and
Renault (1995) and Shephard (2004).3 We consider models frequently used by practition-
ers together with many models recently proposed in academic papers, and consider their
empirical performance within a decision-theoretic framework.

The highly restricted nature of the multivariate volatility models advanced in the liter-
ature could present a high degree of model uncertainty which ought to be recognized at the
outset. This is particularly important since due to data limitations and operational consider-
ations it is not possible to subject these models to rigorous statistical testing. Application of
model selection procedures also involves additional risks that are difficult to assess a priori.
This is especially true when the number of assets is moderately large, and it might well be
that no single model choice would be satisfactory in practice.

This paper considers model averaging as a risk diversification strategy in dealing with
model uncertainty, and provides a detailed application of recent developments in model

1See, for example, Pesaran and Timmermann (1995).
2The DCC model is also related to the VCC model of Tse and Tsui (2002).
3So far the focus of the SV literature has been on univariate and multivariate models with a small

number of assets, with the notable exceptions of Diebold and Nerlove (1989), Engle, Ng, and Rothschild
(1990), King, Sentana, and Wadhwani (1994) and Harvey, Ruiz, and Shephard (1994), that are similar in
structure to the class of factor GARCH models that we do consider below.
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averaging techniques to multi-asset volatility models. Frequently used model selection cri-
teria are the Akaike Information Criterion (AIC) and the Schwartz Bayesian Information
Criterion (SBC). However, such a two-step procedure is subject to the pre-test (selection)
bias problem and tends to under-estimate the uncertainty that surrounds the forecasts. Of
course, the use of model averaging techniques in econometrics is not new and dates back to
the work of Granger and Newbold (1977) on forecast combination.4 However, this litera-
ture focusses on combining point forecasts and does not address the problem of combining
forecast probability distribution functions which is relevant in risk management.

Concerning model evaluation, the standard forecast evaluation techniques that focus on
metrics such as root mean square forecast errors (RMSFE), also run into difficulties when
considering volatility models. Since volatility is not directly observable, it is often proxied
by the square of daily returns or more recently by the standard error of intra-daily returns,
known as realized volatility (see, for example, Andersen, Bollerslev, Diebold, and Labys
(2003)). In multi-asset contexts the use of standard metrics such as RMSFE is further
complicated by the need to select weights to be attached to errors in forecasts of individual
asset volatilities and their cross-volatility correlations and the choice of such weights is not
innocuous in a multivariate framework (see Pesaran and Skouras (2002)). Here we develop
a simple criterion for evaluation of alternative volatility forecasts by examining the Value-
at-Risk (VaR) performance of their associated portfolios. Our test, which can be applied to
individual as well as to average models, belongs to a class of so-called unconditional coverage
tests, the most important case of which is the Kupiec (1995) binomial test. In contrast to the
existing literature, though, we formally establish both the asymptotic as well as the exact
finite-sample distribution of our test statistics. Further, we provide formal conditions that
permit to ignore the potential effect of the sampling variability associated with estimation.
Conditional coverage tests (see Christoffersen (1998)) and density forecast tests (Crnkovic
and Drachman (1997) and Berkowitz (2001)) could also be adapted to our model averaging
framework, although the related distribution theory will need to be established. For a review
of existing approaches to the evaluation of the VaR estimates see Andersen, Bollerslev,
Christoffersen, and Diebold (2006). The VaR based diagnostic tests developed in this paper
can be used both for risk monitoring of a given portfolio as well as for construction of optimal
(in the VaR sense) portfolios.

The remainder of the paper is organized as follows: the decision problem that underlies
the VaR analysis is set out in Section 2. Section 3 provides a brief outline of the different
types of multivariate volatility models considered in the paper. Several approaches to model
averaging are reviewed and discussed in Section 4. Section 5 introduces the Value-at-Risk
(VaR) diagnostic test and establishes its finite-sample as well as its asymptotic distribution.
Section 6 provides a detailed empirical analysis using daily returns for eighteen futures
contracts covering equity indices, government bonds, exchange rates and commodities over
the period 2 January 1991 to 11 July 2007. Section 7 concludes with a summary of the main
results and suggestions for future research. The mathematical proofs and a description of
the multivariate volatility models are provided in three appendices.

4For reviews of the forecast combination literature see Clemen (1989), Granger (1989), Diebold and
Lopez (1996) and Hendry and Clements (2002).
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2 The Decision Problem: Active Risk Management

Here we are concerned with the decision of a portfolio manager who is interested in control-
ling the risk of a given portfolio composed of N futures contracts over a given trading day.
We refer to this portfolio decision problem as ‘active risk management’, and distinguish it
from what might be called ‘passive risk management’ where the outcome of the portfolio
decision is evaluated or monitored by a risk manager or by an outside supervisory financial
institution. This distinction is important since the solution to the portfolio decision problem
requires a complete knowledge of the conditional multivariate probability distribution of the
N × 1 vector of returns, rt. In contrast, for passive risk management it is clearly possible
to work directly with the conditional univariate distribution of portfolio returns, ρt, with no
apparent need for multivariate volatility modelling.

We suppose that the portfolio manager is allowed to hold long and short positions and
the contracts could be in home currency (taken to be US dollar) or in foreign currencies.
Denote the price of each contract (in local currency) on close of business day t by Pjt, and
the US dollar exchange rate relevant to the jth contract by Ejt (measured as the units of
foreign currency in one US dollar), and the number of contracts held in the portfolio at
yesterday’s close by nj,t−1. Abstracting from transaction costs, the change in the value of
this portfolio in US dollar is given by

∆Vt =
N∑

j=1

nj,t−1

(
Pjt − Pj,t−1

Ejt

)
=

N∑
j=1

(
nj,t−1Pj,t−1

Ej,t−1

)(
rjt

1 + re
jt

)
, (1)

where njt and rjt = (Pjt − Pj,t−1) /Pj,t−1 are the position size (number of contracts) and
the one-day holding return of asset j, and re

jt = (Ejt − Ej,t−1)/Ej,t−1 is the daily change in
spot currency rate. Note that for US dollar denominated assets re

jt = 0. Since the second

order terms re
jtrjt,

(
re
jt

)2
rjt, etc. are negligible the daily change in the value function can be

simplified as

∆Vt ≈
N∑

j=1

ωj,t−1rjtCt−1, (2)

where ωj,t−1 = nj,t−1Pj,t−1/(Ej,t−1Ct−1) is the value of the contracts in US dollar relative to
notional capital, Ct−1, on close of day t − 1. In what follows we suppose that a portfolio
manager chooses these position sizes by solving a standard mean-variance problem subject
to a daily value at risk (VaR) constraint. Let ρt(ωt−1) = ω′t−1rt be the portfolio return, where
ωt−1 = (ω1,t−1, ω2,t−2, ..., ωN,t−1)

′ and rt = (r1t, r2t, ..., rNt)
′. Then the objective function of

the mean-variance problem is given by

Q(ωt−1|M,Ft−1) = ω′t−1E(rt|M,Ft−1)− δt−1

2
ω′t−1V (rt|M,Ft−1)ωt−1, (3)

where Ft−1 is the available information, δt−1 > 0 is a (possibly time-varying) risk-aversion
coefficient, and M denotes the assumed multivariate model of returns, characterized by the
joint probability distribution of rt conditional on Ft−1, and denoted by fM(rt |Ft−1 ). The
VaR constraint is given by

Pr
(
ω′t−1rt < −Lt−1 |M,Ft−1

) ≤ α, (4)
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where Lt−1 > 0 is a pre-specified maximum daily loss (as a fraction of notional capital)
and α is a probability value (typically taken to be 1%) which captures the fund manager’s
attitude towards risk in the case of large losses.

To obtain a feasible solution to the mean-variance problem we shall assume that con-
ditional on Ft−1 returns rt have means µM,t and finite variance-covariances ΣM,t. The
conditional probability distribution of the change in the portfolio value, ρt = ω′t−1rt, takes
relatively simple forms when the distribution of returns are closed under linear transforma-
tions.5 For example, in the case where the conditional distribution of rt follows a multivariate
t distribution with vt−1 > 2 degrees of freedom, ρt will also be t distributed with the same
degree of freedom, and hence

ω′t−1rt − ω′t−1µM,t√
vt−1−2

vt−1
ω′t−1ΣM,tωt−1

∼ tvt−1 ,

and the VaR constraint (4) simplifies to

−Lt−1 − ω′t−1µM,t√
ω′t−1ΣM,tωt−1

≤
√

vt−1 − 2

vt−1

T−1
v (α) = −

√
vt−1 − 2

vt−1

cvt−1,α ≡ −c̃vt−1,α, (5)

where cvt−1,α (cvt−1,α > 0 for α < 0.5) is the α% left tail of the Student t distribution with
vt−1 degrees of freedom.

The optimal portfolio weights, ω∗t−1,M, that maximize Q(ωt−1|M,Ft−1) subject to the
VaR constraint in (5) are then given by6

ω∗t−1,M =

{
1

δt−1
Σ−1
M,tµM,t, if δt−1 ≥ δ∗t−1

1
δ∗t−1

Σ−1
M,tµM,t, otherwise,

(6)

with

δ∗t−1 ≡
sM,t(c̃vt−1,α − sM,t)

Lt−1

,

where sM,t =
√

µ′M,tΣ
−1
M,tµM,t can be viewed as the ex ante daily Sharpe ratio of the

portfolio. This solution shows that the VaR constraint will be binding only if the risk
aversion coefficient is relatively small. In the case where the VaR constraint binds, the level
of ω∗t−1,M is determined by the level of the risk capital, Lt−1, and the tail property of the
underlying return distribution. In practice, to avoid negative values of δ∗t−1, it would be
advisable to cap sM,t so that it does not exceed c̃vt−1,α.

The solution to the constrained MV optimization problem is more complicated when the
return distribution is constructed as an average of a number of Gaussian or t-distributed
return distributions with different means and variances. We shall return to this problem
below in section 4.1.

5The probability distribution of rt is said to be closed under linear transformations if all linear combi-
nations of rt have the same distribution as the marginal distributions of the returns.

6For the details of the derivations see Appendix A.
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3 Multivariate Models of Asset Returns

Our primary concern in this paper is on modelling and evaluation of alternative multivariate
volatility models in a wider context that nests both passive and active risk management
problems. Typically one would also need to address the uncertainty that surrounds the
conditional mean returns, E (rt |Ft−1 ) = µt. But given the focus of the present paper we shall
abstract from this problem and throughout assume that mean returns can be characterized
by first order autoregressive processes

rit = ai0 + αi1ri,t−1 + εit, (7)

such that µit = ai0 + αi1ri,t−1. Therefore, in what follows we shall focus on alternative
specifications of the joint probability distribution of εt = rt− µt, namely fM(rt |Ft−1 ) for the
model class M. For this purpose it is convenient to work with the standardized unexpected

returns, zt, defined by zt = Σ
− 1

2
t εt, where Σt = V ar (εt |Ft−1 ).

A complete specification of fM(rt |Ft−1 ) can be achieved by: (i) a non-singular choice of
Σt; (ii) specification of the distribution of standardized values, zt. For the latter, we focus on
distributions that are closed under linear transformations. This includes the case of standard
multivariate Gaussian, and the multivariate Student t with v degrees of freedom. These are
the two specifications that are most commonly encountered in practice. In specifying Σt,
we focus on parametric volatility models, the classical example of which is the multivariate
generalized autoregressive heteroskedasticity model of order 1, 1 (MGARCH(1, 1)). In its
most general form it is given by7

vech(ΣMGARCH,t) = a0+A0vech(ΣMGARCH,t−1) + B0vech
(
rt−1r

′
t−1

)
, (8)

where vech(·) denotes the column stacking operator of the lower portion of a symmetric
matrix, a0 is an N(N +1)/2× 1 vector, and A0, B0 are N(N +1)/2×N(N +1)/2 matrices
of unknown coefficients. It is evident that even such a low-order model already contains a
large number of parameters even for moderate values of N which renders model (8) effectively
unfeasible for practical applications.

The different multivariate volatility models considered in this paper are special cases of
the MGARCH(1, 1). These volatility models are denoted by Mi and the associated condi-
tional covariance matrix by Σit. Altogether we consider 53 different specifications of Σit that
can be grouped into 9 different model types. We consider both econometric specifications
advanced in the academic literature as well as ad hoc data filters more commonly used by
practitioners.

Within the first group, we considered the constant conditional correlation (CCC(p, q))
model of Bollerslev (1990) and its more recent generalizations, namely the dynamic condi-
tional correlation (DCC(p, q, 1, 1)) of Engle (2002) and the asymmetric dynamic conditional
correlation (ADCC(p, q, 1, 1)) of Cappiello, Engle, and Sheppard (2006). We also consider
the orthogonal GARCH (O-GARCH(p, q)) of Alexander (2001), the factor GARCH model
of Harvey, Ruiz, and Sentana (1992) (factor GARCH(p, q, 1, 1)) and the Student t dynamic
conditional correlation model of Pesaran and Pesaran (2007) (TDCC(p, q, 1, 1)).

7See Bollerslev, Engle, and Wooldridge (1988, equation (4)).
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Within the second group we consider the equal-weighted moving average model (EQMA(n0)),
which is a rolling filter that puts equal weights on the n0 most recent squared observa-
tions. We further consider the exponentially-weighted moving average (EWMA(n0, λ0)),
well known as the Riskmetrics filter (see J.P.Morgan (1996)) and a number of its vari-
ants such as the two-parameter exponential-weighted moving average (EWMA (n0, λ0, ν0))
(see De Santis, Litterman, Vesval, and Winkelmann (2003, p.14)). We also consider two
hybrid filters: a mixed moving average (MMA(n0, ν0)) specification whereby the condi-
tional variances are computed as in the EQMA(n0) model but with the conditional co-
variances obtained using the Riskmetrics approach; and a generalized exponential-weighted
moving average (EWMA(n0, p, q, ν0)) whereby conditional variances are modelled as univari-
ate GARCH(p, q) with the conditional covariances specified using the Riskmetrics approach.
More detailed accounts are given in Appendix B.

Let θi0 be the ki× 1 vector of coefficients characterizing the true unknown parameters of
the volatility model Mi, denoted by Σit= Σit(θi0). For estimation of θi0 we shall be using
the Gaussian pseudo maximum likelihood estimator (PMLE), defined by

θ̂iT0 = arg max
θi∈Θi

{
−1

2

τ∑
t=τ−T0+1

[
log |Σit(θi)|+ ε′tΣ

−1
it (θi)εt

]
}

, (9)

where Θi represents a suitable parameter space, τ is the end of the estimation period, T0 is
the size of the estimation period.8 Correspondingly, let Σ̂it = Σit(θ̂iT0). We view Gaussian
PMLE as a robust method, delivering consistent and asymptotically normal estimates of θi

under the volatility model Mi even for non-Gaussian zt. In particular we shall assume that
as T0 →∞,

θ̂iT0

p→ θi0 (10)

and √
T0

(
θ̂iT0 − θi0

)
| Mi

d→ N [0,Ωi (θi0)] , (11)

where Ωi (θi0) is a positive definite matrix,
p→ denotes convergence in probability and

d→
convergence in distribution. The asymptotic properties of the Gaussian PMLE have been
established for certain classes of multivariate GARCH-type volatility models (see Ling and
McAleer (2001)) and it is reasonable to expect that results such as (10) and (11) would
hold for the more general class of models considered in this paper, under suitable regularity
conditions.9

In what follows we shall assume that under model Mi,

Mi : rt = µt + Σ
1
2
itzit, zit | Ft−1 ∼ (Fit, 0, IN), (12)

meaning that E (zit |Ft−1,Mi ) = 0, E (zitz
′
it |Ft−1,Mi ) = IN , where IN is the N×N identity

matrix, and Fit(.) is the the conditional joint probability distribution function of zit = Σ
− 1

2
it εt.

8An exception is the TDCC model, which is estimated under the assumption of a Student t distribution
with ν degrees of freedom, where ν forms part of the parameter vector θ.

9Some of the models we consider do not require estimation. For instance Zaffaroni (2007) shows that
the PMLE estimator of the Riskmetrics model fails even the consistency property.
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Note that the above formulation allows the higher order moments of zit to be time varying.
This would be the case, for example, when zit is distributed as the multivariate Student t
with time varying degrees of freedom, vt−1, conditional on Ft−1.

4 Average Volatility Models

Considering the restrictive nature of the multivariate volatility models in the literature,
model averaging techniques that explicitly allow for parameter and model uncertainty could
be particularly important in risk management. Let f(rt|Ft−1,Mi) be the predictive density
of rt conditional on model Mi, Ft−1 the in-sample available information, and M =

⋃m
i=1 Mi

the space of the models under consideration. Each model Mi is fully specified by the choice of
the volatility model, Σit, and of the conditional probability distribution, Fit, of devolatilized
residuals, zit.

Model averaging implies a predictive density of rt conditional on Ft−1 given by

f(rt |Ft−1, M) =
m∑

i=1

λi,t−1f(rt|Ft−1,Mi), (13)

where the set of weights λi,t−1 are pre-determined at the time the decision over the posi-
tions, ωj,t−1 (j = 1, 2, ..., N), is taken. This is possible since it is assumed that there is
no feedback from trade decisions to the probability models under consideration. One could
consider attaching equal weights to all the models belonging to M, yielding λi,t−1 = 1/m.
A further refinement would be to apply model averaging not to all of the models but only
to a given number of top performing models. Therefore, one could pool different models
by taking simple averages, but after ‘trimming’ models with poor past performances. For-
mally, this implies λi,t−1 = 1/nt−1 for i ∈ Nt−1 ⊂ M, where nt−1 indicates the cardinality
of the sequence of subsets of models Nt−1. For i 6∈ Nt−1, λi,t−1 = 0. Such a procedure,
often referred to as ‘thick’ modelling, has been proposed, among others, by Granger and
Jeon (2004) who note that, standard two-stage procedures, such as selection methods based
on the AIC or SBC, might exhibit poor performance simply because the ‘true’ model does
not belong to the set of models under consideration.10 Another example is the Bayesian
Model Averaging (BMA) that combines the models under consideration using their respec-
tive posterior probabilities.11 BMA requires λi,t−1 = Pr(Mi |Ft−1 ), where the latter denotes
the posterior probability of model Mi. The BMA approach requires specifications of the
prior probability of model Mi and of the prior probability of θi conditional on Mi, for
i = 1, 2, ..., m. BMA can be quite demanding computationally, particularly in the case of
multi-variate volatility models with many unknown parameters. As a result, the model
weights λi,t−1 are often approximated by the Akaike weights or the Schwartz weights. The

10See Stock and Watson (1999) for an application to macroeconomic time series and Aiolfi, Favero, and
Primiceri (2001) for an application of ‘thick’ modelling to point forecasts of excess returns across different
models.

11A formal Bayesian solution to the problem of model uncertainty is reviewed, for example, in Draper
(1995) and Hoeting, Madigan, Raftery, and Volinsky (1999). Recent applications to time series econometrics
are provided in Fernandez et al. (2001a,b), Garratt, Lee, Pesaran, and Shin (2003) and Godsill, Stone, and
Weeks (2004).
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latter gives a Bayesian approximation when the estimation sample, T0, is sufficiently large.12

In particular, setting λi,t−1 = exp(∆i,t−1)/
∑m

j=1 exp(∆j,t−1), in the case of AIC and SBC
we have ∆i,t−1= AICi,t−1 − Maxj(AICj,t−1), ∆i,t−1= SBCi,t−1 − Maxj(SBCj,t−1), where
in turn AICi,t−1 = LLi,t−1 − ki, SBCi,t−1 = LLi,t−1 −

(
ki

2

)
ln(t − 1), and LLi,t−1 indicates

the maximized logarithm of the joint probability distribution, with ki parameters, of the
observations r1, r2, ..., rt−1 conditional on the given initial values r0, ..., r−si+1.

13

In this paper, we implement both the ‘thick’ modelling and the (approximate) BMA
procedures. The former is carried out by first ranking the individual models according the
AIC or SBC criteria, and then constructing an ‘average’ model based on a given number of
top-percentile (say the top 25%) of all the models under consideration. Therefore, we still
make use of the information contained in AIC and SBC criteria, but only to trim-out the
poorly performing models. Under this approach the models that survive will be given equal
weights.

In contrast to applications that focus on point forecasts, in the case of density forecasting
the choice of the number of models to be used in the model averaging process and the
differences in their forecast error variances can have important implications for the shape
of the resulting average model in general and the degree of its fat-tailness, in particular.
Therefore, it seems likely that averaging across a very large number of models could be
counter productive for density forecasting, whereas this might not be a problem for point
forecasting. Further analysis of average models and their tail properties will be provided
below in Section 5.3.

4.1 MV Optimization Subject to VaR Constraint in the Case of
Average Models

Suppose the ‘average’ model is constructed using the probability weights, λi,t−1, applied, for
example, to the following m Gaussian return distributions:

Mi : rt|Ft−1 ∼ N(µit,Σit) for i = 1, 2, ..., m. (14)

The MV objective function in this case is given by

Q(ωt−1) = ω′t−1µ̄t − δt−1

2
ω′t−1Σ̄tωt−1,

where (see, for example, Draper (1995))

µ̄t =
m∑

i=1

λi,t−1µit,

Σ̄t =
m∑

i=1

λi,t−1Σit +
m∑

i=1

λi,t−1 (µit − µ̄t) (µit − µ̄t)
′

12In the empirical applications to be discussed below T0 is sufficiently large and parameter uncertainty
is likely to be of second order importance. Also see Burnham and Anderson (1998, Chapter 4).

13We do, however, recognize that for small to moderate sample sizes used in macro-economic applications
the choice of priors could be important, particularly if the object of exercise is the estimation of the marginal
probability densities.
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with the VaR constraint given by

Pr(ω′t−1rt < −Lt−1|M,Ft−1) =
m∑

i=1

λi,t−1Φ

(
−ω′t−1µit − Lt−1√

ω′t−1Σitωt−1

)
≤ α, (15)

where Φ (·) is the distribution function of the standard normal variate.14

The Lagrangian for the above constrained optimization problem is given by

L(ωt−1, ψt−1) = ω′t−1µ̄t − (δt−1/2)ω′t−1Σ̄tωt−1 −

ψt−1

{
m∑

i=1

λi,t−1Φ

(
−ω′t−1µit − Lt−1√

ω′t−1Σitωt−1

)
− α

}
,

where ψt−1 is the Lagrange multiplier which will be non-zero when the VaR constraint binds.
The first-order necessary conditions for this optimization problem are given by

∂L(ωt−1, ψt−1)

∂ωt−1

= µ̄t − δt−1Σ̄tωt−1 + ψt−1 [gµ(ωt−1)−Gσ(ωt−1)ωt−1] = 0, (17)

∂L(ωt−1, ψt−1)

∂ψt−1

=
m∑

i=1

λi,t−1Φi(ωt−1)− α ≤ 0, (18)

and

ψt−1
∂L(ωt−1, ψt−1)

∂ψt−1

= 0, (19)

where

gµ(ωt−1) =
m∑

i=1

λi,t−1φi(ωt−1)µit(
ω′t−1Σitωt−1

)1/2
,

Gσ(ωt−1) =
m∑

i=1

λi,t−1φi(ωt−1)
(
ω′t−1µit + Lt−1

)
Σit(

ω′t−1Σitωt−1

)3/2
,

φi(ωt−1) = φ

(
−ω′t−1µit − Lt−1√

ω′t−1Σitωt−1

)
, Φi(ωt−1) = Φ

(
−ω′t−1µit − Lt−1√

ω′t−1Σitωt−1

)
,

and φ (·) is the density of the standard normal variate. The m + 1 equations (17) and (18)
in ωt−1 and ψt−1 can be solved iteratively. Pre-multiplying (17) by ω′t−1 and solving for ψt−1

in terms of ωt−1 we have

ψt−1 =
ω′t−1µ̄t − δt−1ω

′
t−1Σ̄tωt−1

Lt−1

∑m
i=1 λi,t−1φi(ωt−1)

(
ω′t−1Σitωt−1

)−1/2
≥ 0. (20)

14Alternatively, one could use any other set of return distributions, for example a set of t distribution
with νi,t−1 degrees of freedom ({Tνi,t−1}m

i=1). In this case the VaR constraint would be

Pr(ω′t−1rt < −Lt−1|M,Ft−1) =
m∑

i=1

λi,t−1Tνi,t−1


 −ω′t−1µi,t−1 − Lt−1√

νi,t−1−2
νi,t−1

√
ω′t−1Σi,t−1ωt−1


 ≤ α. (16)
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Solving for ωt−1 in terms of ψt−1

ωt−1 =
[
δt−1Σ̄t + ψt−1Gσ(ωt−1)

]−1
[µ̄t + ψt−1gµ(ωt−1)] . (21)

One could then check to see if the solution to the unconstrained problem, namely ω̃∗t−1 =
(δt−1Σ̄t)

−1µ̄t, satisfies the VaR constraint (16). If affirmative, set ω∗t−1 = ω̃∗t−1. Otherwise,
use a standard root-finding algorithm such as the secant method15 to search over different
values of ψt−1 in order to find a pair (ψ∗t−1, ω

∗
t−1), such that ω∗t−1 is a function of ψ∗t−1 (via

equation (21)) and satisfies the VaR constraint with equality.

5 Value-at-Risk Based Diagnostic Tests

This section examines the evaluation of multivariate volatility models from the perspective of
risk management. First we consider the problem for a given model, Mi. Next, we describe
how the analysis can be extended to models obtained by application of model averaging
techniques.

5.1 VaR Diagnostics for Individual Models

In the econometric literature models are often evaluated by their out-of-sample forecast
performance using standard metrics such as the RMSFE but, as noted earlier, the application
of this approach to volatility models is subject to a number of difficulties. An alternative
approach would be to employ decision-based evaluation techniques and compare different
volatility models in terms of their performance in trading and risk management.16 In this
sub-section we propose simple examples of such a procedure based on the VaR problem set
out in Section 2.

Consider first the VaR constraint (4) associated with the passive version of the risk
management problem where the portfolio exposures, ωt−1, are given, and suppose that the
analysis is carried out conditional on model Mi. In this setting the VaR constraint becomes

Pr (ρt < −ρ̄i,t−1 |Ft−1,Mi ) ≤ α, (22)

where ρ̄i,t−1 will be a function of α and the assumed volatility model, Mi. To fully specify
the model, assume that the standardized returns, zit, have a joint cumulative distribution
function Fit(·) which is closed under linear combinations so that c′zit also has (univariate)
distribution Fit,ρ(·) of the same type for any fixed N -dimensional vector c. A special case
of our results is obtained if zit is assumed to follow the multivariate normal or the Student
t distribution. Conditional on Ft−1 and model Mi being true, ρt will have mean µρt = ω′tµt

and variance σ2
ρt(Mi) = ω′t−1Σit ωt−1. Therefore, under (12) we have

zρt(Mi) =
ω′t−1(rt − µt)

σρt(Mi)
|Ft−1,Mi ∼ (Fit, 0, 1). (23)

15See e.g. Burden and Faires (1997) for a description of the secant method.
16For a general discussion of decision-based evaluation techniques see Pesaran and Skouras (2002).
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This implies that under Mi, zρt(Mi) is a martingale difference sequence with unit variance.
Note, however, that zρt(Mi) need not be independent across time. Temporal dependence
in zρt(Mi) could arise not only due to possible higher-order moment dependence of the
underlying innovations zit, but also because of possible serial dependence of portfolio weights
and the temporal dependence of Σit.

Denoting the maximum value of ρ̄i,t−1 that satisfies (22) by ρ̄i,t−1(ωt−1,α) and assum-
ing that (23) holds, then Fit

(
(−ρ̄i,t−1(ωt−1, α)− ω′t−1µt)σ

−1
ρt

(Mi)
)

= α. But since Fit(·)
is a continuous and monotonically non-decreasing function we have (−ρ̄i,t−1(ωt−1, α) −
ω′t−1µt)σ

−1
ρt (Mi) = F−1

it (α) = −cit(α), or

ρ̄i,t−1(ωt−1,α) = −ω′t−1µt + cit(α)σρt(Mi), (24)

where −cit(α) is the α per cent critical value of the distribution of zρt(Mi) conditional on
model Mi and Ft−1. Note that cit(α) and σρt(Mi) are based on observations available at
time t− 1, and this is highlighted in the notation used for ρ̄i,t−1(ωt−1, α).17

The evaluation of model Mi can now proceed in the following manner. Suppose that the
evaluation exercise starts on day t = τ + 1 with the available sample of T observations split
at this date into T = T0 + (T − T0) for some 0 < T0 < T . Further suppose that the first T0

observations before day τ + 1 are used for estimation whereas the last T1 = T − T0 obser-
vations are used for evaluation purposes. Accordingly, we define the sets of estimation and
evaluation dates by T0 = {τ − T0 + 1, τ − T0 + 2, ..., τ}, and T1 = {τ + 1, τ + 2, ..., τ + T1},
respectively.

A simple test of the validity of model Mi from the perspective of the VaR can then
be based on the proportion of days in the evaluation sample where the VaR constraint is
violated: π̂i =

∑
t∈T1

dit(θ̂iT0)/T1, where dit(θ̂iT0) = I[−ρt + ω′t−1µt − cit(α) σ̂ρt(Mi)] and

σ̂ρt(Mi) = (ω′t−1Σ̂it ωt−1)
1
2 , Σ̂it = Σit(θ̂iT0). Recall that θ̂iT0 is the PMLE of the unknown

parameters (if any) of Σit under model Mi (see (9)), and I(·) as an indicator function.
We now present two Theorems. The first establishes the distribution of T1π̂i under the

null hypothesis defined by

Hi0 : Σt = Σit and zit | Ft−1,Mi ∼ (Fit, 0, IN). (25)

for T1 < ∞ and as T0 → ∞. The second Theorem establishes the asymptotic distribution
of the following standardized test statistic based on π̂i

zπ̂i
=

√
T1(π̂i − α)√
α(1− α)

(26)

under Hi0, and as T1/T0 + 1/T1 → 0. The proofs of both Theorems are provided in
Appendix C.

17The above derivations hold even if the portfolio exposures, ωt−1, are derived conditional on model Mi.
In that case the portfolio weights could be denoted by ωi,t−1 to highlight their dependence on the choice of
the volatility model. But to simplify the notations we continue to represent the portfolio weights without
the subscript i.
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Theorem 1 (finite-T1 distribution) Assume that Σit(θi) is continuous in θi and that (11)
holds. Let Bi(T1, α) define a Binomial distribution with parameters T1 and α. Then under
Hi0,

T1π̂i
d→ Bi(T1, α), as T0 →∞, (27)

for any finite T1, 0 < α < 1, and any sequence of portfolio exposures, ωt−1, t = 0,±1...,
satisfying ‖ ωt−1 ‖> 0, with ‖ · ‖ being the Euclidean norm.

Remark. This result is important for cases when T1 is small or, alternatively, when one
is interested in testing VaR performance of a given set of portfolios for small values of
α. In such cases the asymptotic normal distribution presented below might not provide a
sufficiently accurate approximation.

Theorem 2 (asymptotic distribution) Assume that (i) fit(·) = F ′
it(·) exists and f̄it =

supx fit(x) < ∞ for any t; (ii) condition (11) holds and θi0 belongs to the interior of
the compact set Θi; (iii) Σit(θi) is twice continuously differentiable in θi such that, for
some δ > 1, infθi∈Θi

λit(θi) > 0, a.s.

E{sup
θ∈Θi

‖ ∂λ̄it(θ)/∂θ ‖
λ

1
2
it(θ)λ

1
2
it(θi0)

}δ = µit,
1

T1

T∑
t∈T1

f̄itµ
1/δ
it = O(1), (28)

where λ̄it(θi) and λit(θi) define, respectively, the maximum and the minimum eigenvalues
of Σit(θi), (iv) for T0 sufficiently large

E ‖ θ̂iT0 − θi0 ‖
δ

δ−1 = O(T
−δ/(2(δ−1))
0 ). (29)

Under Hi0, zπ̂i

d→ N(0, 1) as T1/T0 + 1/T1 → 0, any 0 < α < 1, for any sequence of
portfolios ωt−1, t = 0,±1..., satisfying ‖ωt−1 ‖> 0.

Remarks:
(i) It is important to note that the null distribution of zπ̂i

does not depend on the portfolio
exposures, ωt−1, although the power of the test typically does depend on ωt−1.
(ii) The mild condition for consistency of the test is that π̂i does not converge in prob-
ability to α as T1/T0 + 1/T1 → 0. This can happen if either we use the wrong condi-
tional covariance matrix or the wrong innovation distribution, or both. For example, in the
first case, under Mj : Σjt 6= Σit we have E(π̂i|Mj) = 1

T1

∑
t∈T1

E[Fit(−cit(α)qij,t)], where

qij,t = (ω′t−1Σ̂it ωt−1/ω
′
t−1Σjt ωt−1)

1/2, for t ∈ T1. It is clear that under Mj, qij,t does not
tend to unity and in general E(π̂i|Mj) will diverge from its hypothesized value of α, and the
power of the test tends to unity with T1.
(iii) Most likely, the assumptions required for (10) and (11) will imply (28) but we felt it is
necessary to make the additional explicit assumptions since the former have been formally
established only for a sub-class of multivariate volatility models considered in this paper.
(iv) When model Mi is not subjected to estimation, as is the case for some for some of the
models we consider, such as the Riskmetrics model, then the Theorem applies by setting
θ̂i = θi0 and the conditions (28) and (29) are no longer needed. In particular, the non-
singularity condition of the model conditional covariance matrix is not required.
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(v) Under the null hypothesis Hi0 : E(zρt(Mi) | Ft−1) = 0. This is a key property since it im-
plies that I [−zρ t(Mi)− cit(α)]−α is also a martingale difference process. Strict stationarity
of the asset returns is not required.
(vi) The importance of the condition T1/T0 → 0 in cross validation of forecasts was put
forward by West (1996). McCracken (2000) extends West’s framework to allow for non-
differentiable loss functions in a regression set-up.

5.2 VaR-Based Diagnostics for Average Models

Suppose that set of m models is described by rt|Ft−1,Mi ∼ (Fit, µt,Σit) for (i = 1, 2, ..., m).
Therefore, Fit(·) defines the conditional distribution of the observed return rt, given Ft−1

and the volatility model Mi.
The probability distribution function of the portfolio return, ρt, based on the average

model obtained with respect to these models using the weights, λi,t−1, is then given by

Pr(ρt < a |Ft−1,M) =
∑m

i=1 λi,t−1Fit

(
a

σρt(Mi)

)
. In cases where Pr(ρt < a |Ft−1 ,Mi) does not

have a closed form it needs to be computed by stochastic simulations, noting that conditional
on model Mi we have, J−1

∑J
j=1 I(−ω′t−1r

(i)
jt + a) → Pr(ρt < a |Ft−1 ,Mi) almost surely as

J → ∞, where J is the number of replications and r
(i)
jt is the jth draw from the assumed

distribution of rt under Mi. On the other hand, when the probability distribution of rt under
Mi is closed under linear transformations, as with Gaussian or multivariate t distribution, the
computations can be simplified considerably by drawing from the distribution of ρt = ω′t−1rt

under Mi directly or using the closed-form expression when the latter exists.
It is now easy to generalize the diagnostic test statistics given by (26) for an individual

model Mi, to the case of an average model. For a given α we need to find the maximum
value ρ̄b,t−1(ωt−1, α), the VaR associated with the BMA forecast probabilities, for which∑m

i=1 λi,t−1Fit [(−ρ̄b,t−1(ωt−1, α)− ω′µit) /σρt(Mi)] ≤ α. To solve for ρ̄b,t−1(ωt−1,α), let

g(κ) =
m∑

i=1

λi,t−1Fit

(
−κ + ω′µit

σρt(Mi)

)
− α = 0, (30)

and note that g(κ) = 0 has a unique positive solution under the additional assumptions that
α is sufficiently small such that g(0) > 0, and the model densities fit(·) = F ′

it(·) exist and
fit(·) is continuous and strictly positive for some i.18 In this case ρ̄b,t−1(ωt−1,α) can be easily
computed using numerical techniques such as the Newton-Raphson iterative procedure. The
VaR diagnostic statistic, given by (26), can then be computed for the average model using
d̂bt = I [−ρt − ρ̄b,t−1(ωt−1,α)], in place of dit(θ̂iT0).

5.3 Tail Behavior of Average Volatility Models

It is well known that linear combinations (mixtures) of normal distributions are not normal,
although the moments of the mixture distribution are effectively linear combinations of the
corresponding moments of the individual normal distributions, with the same weights. For

18This result follows by noting that under the additional assumptions g′(κ) < 0, and limκ→∞g(κ) =
−α < 0.
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instance, the pooled volatility forecast of portfolio returns with zero conditional means is
given by V (ρt|Ft−1,M) =

∑m
i=1 λit−1σ

2
ρt(Mi). However, tail probabilities using the mixture

model and a Gaussian model with the same average volatility are not the same, namely

m∑
i=1

λit−1Φ

[
a

σρt(Mi)

]
6= Φ


 a√∑m

i=1 λit−1σ2
ρt(Mi)


 , (31)

unless Σit = Σt for all i, where Φ(·) defines the normal cumulative distribution function. The
following Theorem, whose proof is reported in Appendix C, characterizes the direction of the
bias. In risk management applications where a < 0 and one is interested in tail probabilities,
it is easily seen that the correctly combined model, on the left hand side of (31), will be more
fat-tailed than the associated Gaussian model with the same average volatility measure, on
the right hand side of (31), so long as a < −√3σρ t(Mi), i = 1, ..., m. As we shall see this
result has direct bearing on some of the empirical results that we shall be reporting below.

Theorem 3 Let f(x) be a differentiable real function, with f ′ denoting its first-derivative,
with

∫∞
−∞ | f(u) | du < ∞. Let F (z) =

∫ z

−∞ f(u)du. Then, for any constant a and any
finite sequence b1, b2, ..., bm of strictly positive constants satisfying

a [(a/b
1
2
i )f ′(a/b

1
2
i ) + 3f(a/b

1
2
i )] > 0, i = 1, 2, ..., m, (32)

it follows that
m∑

i=1

λiF
[
a/(bi)

1
2

]
> F

[
a/(

m∑
i=1

λibi)
1
2

]
, (33)

for any finite sequence λ1, λ2, ..., λm of non-negative constants such that λ1 +λ2 + ...+λm =
1, λi < 1 , i = 1, 2, ..., m.

Remarks:
(i) When f(u) is the standard normal density, for a < 0 condition (32) is

a/b
1
2
i < −

√
3, i = 1, ...,m. (34)

When a > 0 condition (32) is instead 0 < a/b
1
2
i <

√
3 (i = 1, 2, ..., m), although note that

when a > 0, (33) expresses the case where the tail probability of the average model is smaller
than for the model with the average parameter

∑m
i=1 λibi.

(ii) When f(u) is the standardized Student t distribution with ν > 2 degrees of freedom, for
a < 0 the same condition (34) applies, independently from ν.

6 An Empirical Application

6.1 Data and Some Preliminary Analysis

The active and passive risk management procedures in the presence of model uncertainty
developed in this paper can be applied to a variety of problems in finance. Here we shall
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consider a global macro portfolio of 18 futures contracts grouped into four equity futures
indices (S&P, FTSE, DAX, NIKKEI), six currencies (GBP, EUR, JPY, CAD, AUD, CHF),
four 10 year government bonds (US, EUR, Gilt, JGB), and four commodities (Gold, Silver,
Wheat, Crude), yielding a reasonably diverse global macro portfolio. The overall portfolio
return is measured in US dollar, with currencies defined as the number (fraction) of US
dollars per unit of the foreign currency. The returns are daily and cover the period 2
January 1991 to 11 July 2007 (a total of T = 4311 daily observations). The source of the
data is Datastream with returns on the futures contracts appropriately adjusted for roll
overs. Since we are considering markets with different time zones and holidays, the return
data are aligned by filling forward the missing asset prices due to differences in holidays in
the US, euro area and Japan.

[Insert Table 1 around here.]

Daily returns are computed as rjt = 100 (Pjt − Pjt−1) /Pjt−1, j = 1, ..., 18, where Pjt is
the jth asset price. Table 1 gives the mean, standard deviation, skewness and kurtosis of asset
returns together with estimates of a t−GARCH(1,1) model fitted to the individual returns
over the full sample. The returns rt = (r1t, r2t, ..., r18,t)

′ display the familiar stylized features
– namely little evidence of skewness, possibly with the exception of JPY, Silver and Crude,
but a substantial degree of fat-tailedness as measured by excess kurtosis. There are also
important differences in the unconditional volatilities across asset classes, with bonds being
least volatile followed by currencies, equities and commodities. The estimates of univariate
t-GARCH models show a high degree of volatility persistence with the sum of the coefficients
of r2

i,t−1 and σ2
j,t−1 being very close to unity. The estimates are also very similar across assets.

The degrees of freedom of the Student t distribution, v, assumed for the innovations were
closely clustered across assets, and ranged from 4.5 for Japanese Yen to 11.5 for FTSE
with an average of 6.5, suggesting a significant degree of departure from normality, partly
reflecting the relatively large estimates obtained for the kurtosis coefficients.

[Insert Table 2 around here.]

The unconditional return correlations across assets and asset classes are summarized in
Table 2. The results show a relatively high degree of average pairwise correlations for assets
within a given asset class and a relatively low average correlation across the asset classes
with a few notable exceptions. Not surprisingly, gold and silver futures have a relatively
high correlation with currencies, and amongst bonds, JGB is only weakly correlated with
the returns on other bond futures.

These results further highlight the non-Gaussian nature of asset returns. But estima-
tion of multivariate volatility models with non-Gaussian distributions present considerable
technical difficulties and are unlikely to significantly affect the QMLE estimates that are
computed assuming Gaussian errors. For risk management purposes, it seems justified to
combine the QMLE estimates with multivariate Student t distributions with a low degree
of freedom. Therefore, based on the univariate t-GARCH estimates we also consider multi-
variate volatility models where the innovations are t distributed with 7 degrees of freedom.
This approach is followed for all the empirical results to be reported below, except for the
TDCC model of Pesaran and Pesaran (2007) where the degrees of freedom of the underlying
multivariate t distribution are estimated recursively.
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6.2 Recursive Estimation of Multivariate Volatility Models

For each of the 9 types of multivariate volatility models listed in Appendix B, a number of
variations were considered, depending on the choice of the window size (n0) when applicable,
the pre-specified parameters of the Riskmetrics specifications (λ0, ν0) and the orders of the
multivariate GARCH models (p, q, r, s). In particular, we considered the following parameter
values n0 = 50, 75, 125, 250, λ0 = 0.94, 0.95, 0.96, ν0 = 0.6, 0.8, 0.94, p, q ∈ {1, 2} and r =
s = 1.

To estimate the volatility models, we first obtained recursive forecasts of the individual
mean returns using the AR(1) specification defined by (7), which we denote by µ̂jt, for
j = 1, 2, ..., 18. These AR specifications were estimated each day using a rolling window of
size 800. The AR(1) autocorrelation coefficients of the individual returns were quantitatively
small (ranging from −0.20 to 0.15 across all the assets and over the whole sample period),
and were on average negative, suggesting some degree of market over-reaction.

The multivariate volatility models were estimated (when applicable) using the one-day
ahead forecast errors, ε̂jt = rjt − µ̂jt, j = 1, 2, ..., 18, based on rolling samples of size 800
days. The re-estimations were carried out every 25 days. The first rolling sample covered
the period 2 January 1991 to 25 January 1994, and the last estimation sample covered
the period 17 June 2004 to 11 July 07; namely a total of 3512 rolling samples of size 800.
Clearly, the parameters of the volatility models could have been also updated daily. The
monthly updates of the parameters can be viewed as a plausible and practical solution to a
highly computer intensive problem. Therefore, the models were estimated 144 times over the
evaluation sample. Interestingly enough, the estimation procedure converged in the case of
all volatility models with the exception of the ADCC models where they failed to converge
in one sample period. For this period the parameters of the ADCC models were set equal
to the ones obtained in the previous sample period.

6.3 Modelling Strategies

A number of different modelling strategies may now be considered. One possibility would
be to follow the classical approach and select the ‘best’ model from the set of models under
consideration using model selection criteria such as AIC or SBC. Alternatively, the model
uncertainty can be explicitly taken into account using ‘thick’ modelling or Bayesian type
model averaging procedures. The former is implemented here using the top 10%, 25%, 50%
and 75% of the models selected according to AIC or SBC. We refer to these as ‘best’, ‘thick
average’, and ‘Bayesian average’ modelling strategies. As an extreme benchmark we also
consider an equal-weighted average model using all the 53 specifications.

[Insert Tables 3 to 6 around here.]

In-sample penalized measures of fit for the various multivariate volatility models (as set
out in Appendix B) for a selection of rolling windows are summarized in Tables 3 to 6. Tables
3 and 4 gives the AIC and SBC values assuming Gaussian innovations, whilst the results in
Tables 5 and 6 report the in-sample measures assuming Student t innovations with 7 degrees
of freedom. Each table gives the AIC (or SBC) values of the different models together with
their rank in parentheses (1 for the best fitting model and 53 for the worst one) for the
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first sample (2-Jan-91 to 25-Jan-94, 800 observations), for the last sample, (17-June-04 to
11-July-07, 800 observations), and for the average AIC (or SBC) values over all 3,512 rolling
samples.

Overall the DCC type models performed best, followed by CCC, and OGARCH specifi-
cations. Amongst the Riskmetrics type specifications, the simplest of the data filters namely
the equal weighted moving average specification, EQMA, with n0 = 125, or 250, do con-
siderably better than the other filters and perform well even when compared to estimated
models such as O-GARCH. Out of all the models considered the TDCC specification per-
formed best irrespective of the penalization criteria, sample period or assumptions about
the innovations. The better performance of the TDCC model could be partly due to the
fact that the degrees of freedom of the underlying t distribution is updated every month
rather than being set to 7 as in the case of the other specifications reported in Tables 5 and
6. However, it is unlikely that the large differences that exist between the AIC (or SBC)
values of TDCC(1,1) and the second best model, ADCC (1,1), could be only due to the
differences in the estimates of the degrees of freedom. Note that the average value of the
AIC (across all the 144 rolling samples) for the TDCC model is -8676 as compared to the
value of -8756 obtained for the ADCC with Student t (7) innovations (see Table 5). The
apparent superiority of the TDCC over the other models is likely to be due to the way con-
ditional correlations are defined in terms of de-volatized returns. As shown in Pesaran and
Pesaran (2007) standardizing returns by realized volatility (estimated using daily returns)
yields approximately Gaussian processes with respect to which correlations are likely to be
more meaningful measures of dependence as compared to the standardization of returns by
conditional volatilities as utilized in DCC type models.

The fact that the DCC models, and in particular the TDCC version, dominate the other
models in terms of AIC or SBC also means that in Bayesian type model averaging the best
model in the set of models under consideration will tend to get a weight that could be very
close to unity. In the case of financial applications where the sample sizes are relatively large,
the best model could totally dominate the other models. In our application where the average
AIC (or SBC) value of the TDCC model exceeds the next best model by 80, and considering
that the computation of posterior model probability weights involve exponentiating these
differences, we typically end up giving a weight of unity to the best model and zero to the
other models.19 As a result, as we shall see below, portfolio outcomes and VaR diagnostics
are almost identical for the best model and Bayesian type model averaging strategies.

6.4 Active Management: Performance of Optimal Portfolios and
VaR Diagnostic Test Results

In this section we provide an out of sample, decision-based comparative analysis of the
different multivariate volatility models, and different average models based on them. We
use the same recursively computed one-step ahead mean forecasts, µ̂t = (µ̂1t, µ̂2t, ..., µ̂18,t)

′

in the case of all the 53 individual multivariate volatility models and their various averages.

19Notice that the model weights are obtained by exponentiation of the AIC-penalized log-likelihood values
and even seemingly small differences in the average fit of the models can translate into major differences
in model weights for sufficiently large sample sizes. See also Garratt, Lee, Pesaran, and Shin (2003).
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In this way we are able to focus on the uncertainty of multivariate volatility models and
abstract from the uncertainty associated with the mean returns. For each multivariate
volatility model, Mi, we estimated the one-day ahead recursive forecasts of Σt denoted by
Σ̂it, i = 1, ..., 53. Using µ̂t and Σ̂it, and for a given assumption regarding the distribution
of innovations (Gaussian or a Student t with 7 degrees of freedom) we then computed the
optimal portfolio weights, ω̂∗t−1,Mi

using the closed form solution given by (6) and setting
α = 1%, δt−1 = 75, and Lt−1 = 1%. Recall that α is the risk tolerance probability of
the fund manager and Lt−1 is the maximum permitted daily loss defined as the fraction of
the notional capital, and δt−1 is the coefficient of risk aversion. We calibrated δ in order
to achieve a reasonable fraction of times where the VaR part of the optimization will be
binding.

For each set of portfolio weights, we then computed the portfolio returns, ρt,Mi
=

r′tω̂
∗
t−1,Mi

, and the associated performance statistics: the mean, standard deviation, the In-
formation Ratio (IR), defined as the ratio of the mean to the standard deviation. All these
statistics were computed recursively over the evaluation sample from 26-Jan-94 to 11-Jul-07,
inclusive (3511 data points).

6.4.1 Individual Volatility Models

[Insert Table 7 around here.]

Table 7 summarizes the results for the individual volatility models and gives the annu-
alized mean return, the IR and VaR diagnostic test statistics. These statistics are provided
for Gaussian and Student t(7) innovations. The percentage of times the VaR constraint (5)
binds for the optimum solution is also given.

The results differ markedly across models, which highlights the important role the choice
of multivariate volatility model can play in portfolio management. We also note that the
VaR constraint tends to bind more often in the case of the Riskmetric filters relative to the
OGARCH or DCC type models. The VaR constraint also binds more frequently when the
innovations are t distributed.

The trading performance of the different volatility models, as measured by IR, vary con-
siderably from a low of 0.61 for the MMA(250,0.95) specification with Gaussian innovations
to a high of 1.51 for the CCC(1,2) specification with t(7) innovations. Nevertheless, it is
interesting that all volatility models generate a positive IR, despite the relatively simple
model assumed for the return processes. Amongst the Riskmetric type specifications the
simple EQMA filters performed best, which is in accordance with the in-sample results dis-
cussed above. The IR of the portfolios constructed assuming t-distributed innovations were
also generally higher than those based on Gaussian innovations, although the magnitude of
the difference is not that large. The TDCC model, which had performed best in-sample,
continued to perform well in trading. However, the differences between models in trading
turned out to be considerably less pronounced compared to their differences in terms of the
statistical measures of penalized in-sample fit.

We next turn to the VaR diagnostics and use the portfolio returns for each volatility
model, Mi, to compute (i) π̂i, the percentage of times the VaR constraint was violated
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(ρt,Mi
< Lt−1 = 0.01) and (ii) zπ̂i

, the VaR diagnostic statistics defined by

zπ̂i
=

√
3511(π̂i − .01)√

0.01× 0.99
.

Under the null hypothesis that the underlying volatility model is correctly specified, zπ̂i
is

approximately distributed as a standard normal variate. Since the parameters are estimated
recursively every T1 = 25 days which is small relative to the estimation sample of T0 = 800,
the conditions of the Theorem 1regarding T1 and T0 is likely to hold. The values of π̂i, and
zπ̂i

for all the 53 individual volatility models are also summarized in Table 7.
The estimates of πi are all biased upward, and are scattered over a relatively wide range,

from a high value of 13.04% for the MMA(50,0.95) with Gaussian innovations to a low of
1.40 for DCC(1,1) with t(7) innovations. Once again the DCC type models do considerably
better than the Riskmetric filters in controlling the rate of VaR exceedences. The choice of
the multivariate t distribution for the innovations helps reducing the bias of π̂i for all i, but
does not eliminate it. The null hypothesis that πi = 0.01 is rejected at the 95% significance
level for all individual volatility models under consideration.

We obtained similar results for other portfolios, although the extent of over-rejection were
somewhat lower for the Riskmetric filters when an equal weighted portfolio was used. This
is in line with the results in Theorems 1 and 2 where the distribution of the VaR diagnostic
test is invariant to the choice of the portfolio weights, ωt−1.

6.4.2 Modelling Strategies

As has been emphasized in this paper there are many ways in which the results from the
53 individual volatility models can be used/combined. We refer to these as strategies and
distinguish between the standard classical strategy where the ‘best’ in-sample fitting model is
selected, and alternative strategies that consist of combinations of the models. In particular
we shall consider both Bayesian type and ‘thick’ model averaging procedures discussed in
Section 4. In the case of thick modelling we focus on the top 10%, 20%, 50% and 75% of
models ranked by AIC or SBC. The top echelon of selected models are then given equal
weights in the averaging process. Finally, we included all the 53 models in an average ‘All’
group strategy.

[Insert Table 8 around here.]

For the model averaging strategies the optimal portfolio weights are computed iteratively
as set out in Section 4.1, and the VaR diagnostic statistics are then computed with the help of
(30) derived in Section 5.2. All computations are carried out recursively over the evaluation
sample as in the case of the individual volatility models. The results are summarized in
Table 8, using Gaussian and Student t(7) distributions. Given the in-sample dominance of
the DCC type models there are no differences in the test results for the average ‘Bayesian’
and the ‘best’ modelling strategies. As noted earlier, this is due to the fact that for almost
all periods in the evaluation sample the ‘best’ model happens to totally dominate all other
models, and as a result the average ‘Bayesian’ and the best models end up being the same
for all practical purposes. This result suggests that the potential risk diversification benefits
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of Bayesian model averaging might be limited in financial applications where the available
time series samples are typically rather large.

A comparison across strategies shows that all procedures yield very similar IRs, with
thick strategies doing generally better than the ‘best’ models. The use of Student t inno-
vations also seem to help improve the IRs irrespective of the strategy, although the ‘best’
models benefit more from switching to Student t innovations than to the thick modelling
approaches. In terms of VaR exceedences again the thick modelling strategies tend to have
lower rejection frequencies than the ‘best’ or the Bayesian average strategies. Amongst the
various models and model strategies considered, the top 25% AIC thick modelling strategy
with Student t(7) innovations is the only strategy that yields VaR exceedences that are sta-
tistically insignificant (π̂ = 1.20 and zπ̂ = 1.17) whilst maintaining an IR that is comparable
to that of other strategies (IR = 1.37). It seems that in the present application one needs
both model averaging and Student t distributed innovations to deal with the fat tail nature
of the underlying asset returns. A useful visual summary is provided in Figure 1 where
the empirical VaR exceedances (π̂i) from Tables 7 and 8 are plotted against the IR. The
results from the individual models are marked by empty circles, best and Bayesian average
strategies are marked by empty triangles, and the results from the thick modelling strategies
are marked by filled squares. The vertical line represents the tolerance probability, α = 1%.
The results from thick modelling strategies stand out quite clearly, as they are clustered
together close to the vertical line and display reasonably high IRs.

[Insert Figure 1 around here.]

The above findings are in line with the theoretical results discussed in Section 5.3, where
it was shown that the average model will be more fat-tailed than the underlying Gaussian or
Student t models with the same average volatility. When the underlying models are already
fat tailed model averaging (without any single model dominating) can induce a further degree
of fat-tailedness. This is evident in the case of the top 25% AIC thick modelling strategy
with Student t(7) innovations.

6.5 Statistical Diagnostic Test Results

The different volatility models and modelling strategies can also be evaluated using purely
statistical techniques. A statistical procedure, which is close to ours, focuses on the proba-
bility density forecasts of a given portfolio return, ρt = ω′t−1rt, and considers the probability

integral transforms v̂it =
∫ ρt

−∞ f̂(x|Ft−1,Mi)dx, for t = τ + 1, ..., τ + T1, where f̂(x|Ft−1, Mi)
is the estimated probability density of ρt under model Mi and conditional on Ft−1. Mak-
ing use of a well-known result due to Rosenblatt (1952) it is easily seen that the sequence
{v̂it, t ∈ T1} will be i.i.d. uniformly distributed on the interval [0, 1] if f̂(x |Ft−1,Mi ) coin-
cides with the ‘true’ but unknown conditional predictive density of ρt. For further discussions
see Diebold, Gunther, and Tay (1998) and Diebold, Hahn, and Tay (1999).

To test the hypothesis that v̂it are random draws from the uniform [0, 1] distribution,

we consider the standard Kolmogorov-Smirnov test KS = max1≤j≤T1

∣∣∣ j
T1
− v̂∗j

∣∣∣ as well as

the Kuiper test Ku = max1≤j≤T1(
j
T1
− v̂∗j ) + max1≤j≤T1(v̂

∗
j − j

T1
), where v̂∗1 ≤ v̂∗2 ≤ ... ≤ v̂∗T1
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represent ordered values of v̂iτ+1, ..., v̂iτ+T1 . The Kuiper test has the added advantage of
placing greater emphasis on the tail behavior of the distribution.

[Insert Figure 9 around here.]

Table 9 reports the p-values of these tests for the 53 individual multivariate models using
equally weighted portfolios, defined by ρt = (1/18)

∑18
j=1 rjt. The KS and Ku tests are

rejected for all the individual models when the underlying innovations are assumed to be
Gaussian, which is not surprising considering the known fat-tailed nature of the underlying
returns. However, the results are mixed when the innovations are assumed to follow a
Student t distribution. Although all volatility models continue to be rejected by the Ku
test (possibly with the exception of the TDCC), none are rejected by the KS test at the 1%
level.

The test results for the average modelling strategies are summarized in Table 10. The
test outcomes are very similar to the ones obtained for the individual models in the sense
that all average models are rejected by the Ku test, but none are rejected by the KS test at
the 1% level of significance when the innovations are Student t distributed.

Overall, the statistical tests support the main conclusions reached using the VaR based
diagnostics.

7 Summary and Conclusions

This paper considers the problem of model uncertainty in the context of multivariate volatil-
ity models and notes that it is particularly important given the highly restrictive nature of
these models that are used in practice. To deal with model uncertainty we advocate the
use of model averaging techniques where an ‘average’ model is constructed by combining
the predictive densities of the models under consideration, using a set of weights that re-
flect the models’ relative in-sample performance. We consider ‘thick’ modelling as well as
(approximate) Bayesian modelling frameworks.

Second, the paper proposes a simple decision-based model evaluation technique that
compares the volatility models in terms of their Value-at-Risk performance. The proposed
test is applicable to individual as well as to average models, and can be used in a variety of
contexts. Under mild regularity conditions, the test is shown to have a Binomial distribution
when evaluation sample (T1) is finite and T0 (the estimation sample) is sufficiently large.
The proposed test converges to a standard Normal variate provided T1/T0 + 1/T1 → 0,
a condition also encountered in the forecast evaluation literature that uses the root mean
square error as an evaluation criterion, as discussed in West (1996). The proposed VaR test
is invariant to the portfolio weights and is shown to be consistent under departures from the
null hypothesis. The Binomial version of the VaR test could have important applications in
credit risk literature where the evaluation samples are typically short.

In the empirical application we experimented with AIC and SBC weights and found that,
due to the large sample sizes available, they led to very similar results with the selected
models often totally dominating the rest. The model most often selected by both criteria
turned out to be the TDCC model. In out of sample evaluation, only the TDCC model
managed to pass the VaR diagnostic tests. Interesting enough, the simplest of all data filters
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used in this paper, namely the Equal Weighted Moving Average filter also performed well;
doing better than other data filters as well as the O-GARCH specifications. In general, the
‘thick’ modelling approach turned out to be the most reliable within the class of models and
model average strategies that we considered. Thick model averaging strategies consistently
had low VaR exceedance frequencies (relative to most single models), whilst retaining high
information ratios. Overall, the only strategy that was not rejected by our VaR diagnostic
tests was the equal-weighted average model based on the top 25 models (ranked by AIC)
and assuming Student t innovations with 7 degrees of freedom.

Finally, while model averaging provides a useful alternative to the two-step model selec-
tion strategy, it is nevertheless subject to its own form of uncertainty, namely the choice of
the space of models to be considered and their respective weights. It is therefore important
that applications of model averaging techniques are investigated for their robustness to such
choices. In the case of our application it is clearly desirable to consider also other forms of
multivariate volatility models, which could be the subject of future research.
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Appendix A Derivation of the Optimal Mean-Variance Portfolio
Subject to the VaR Constraint

Under the assumption of a Student t distribution with νt−1 degrees of freedom the Lagrangian of the mean-
variance problem (3) subject to the value-at-risk constraint (5) is given by

L(ωt−1|M,Ft−1) = ω′t−1µM,t − δt−1

2
ω′t−1ΣM,tωt−1 (A.1)

−ψt−1

{
c̃νt−1,α

√
ω′t−1ΣM,t−1ω − ω′t−1µM,t−1 − Lt−1

}

The first-order conditions with respect to ωt−1 are

∂L
∂ωt−1

= µM,t − δt−1ΣM,tωt−1 (A.2)

−ψt−1

{
−c̃νt−1,α

(
ω′t−1ΣM,t−1ω

)−0.5
ΣM,t−1ωt−1 − µM,t−1

}
= 0,

and the complementary slackness condition is

ψt−1

{
c̃νt−1,α

√
ω′t−1ΣM,t−1ω − ω′t−1µM,t−1 − Lt−1

}
= 0. (A.3)

If the VaR constraint does not bind ψt−1 = 0 and the optimal solution is given by

ω∗t−1 =
1

δt−1
Σ−1
M,t−1µM,t−1. (A.4)

If, on the other hand, the VaR constraint binds ψt−1 < 0 and the optimal solution is given by

ω∗t−1 =
1

δ∗t−1

Σ−1
M,t−1µM,t−1, (A.5)

where δ∗t−1 ≡
δt−1−ψt−1(ω′t−1ΣM,t−1ω)−0.5

1+ψt−1
> δt−1. From the complementary slackness condition (A.3) we also

have that
c̃νt−1,α

√
ω′t−1ΣM,t−1ω − ω′t−1µM,t−1 − Lt−1 = 0. (A.6)

Substituting ω∗t−1 from (A.5) into (A.6) we get

δ∗t−1 ≡
sM,t(c̃vt−1,α − sM,t)

Lt−1
, (A.7)

where sM,t =
√

µ′M,tΣ
−1
M,tµM,t.
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Appendix B Description of Volatility Models

Almost all the multivariate volatility models considered in the literature can be cast in terms of the following
decomposition of the conditional volatility matrix, Σt, originally due to Bollerslev (1990):

Σt= DtRtDt, (B.1)

where Rt is the one-step-ahead conditional correlation matrix with its (h, j)th element given by ρhj,t, and
Dt is a diagonal matrix with √

σhh,t on its (h, h) th element. This is a convenient decomposition and
allows separate specification of the conditional volatilities and conditional cross-asset returns correlations.
The models used in our empirical applications also belong to the class of models spanned by different
specifications of √σhh,t and ρhj,t, which are computationally feasible for estimation and forecasting in the
case of portfolios with a large number of assets (N = 15 in our application). In what follows εt denotes the
N × 1 vector of residuals from the OLS regressions of returns on a number of predictor variables. In our
empirical application N = 15 and residuals are computed from first-order autoregressions of the individual
return series. For the computation of the CCC, DCC, and ADCC models we have benefitted from Matlab
code made available by Kevin Sheppard.

B.1 Equal-Weighted Moving Average (EQMA(n0))

In the absence of reliable intra-daily observations on returns, a simple estimate of Σt can be obtained using
the following rolling moment estimates based on the last n0 observations:

Σ1t =
1
n0

n0∑
s=1

rt−sr′t−s.

For Σ1t to be positive definite we must have n0 > N . In the empirical applications we consider four variants
of Σ1t, using n0 = 50, 75, 125, and 250. Subject to n0 > N , care should be taken so that n0 is not set too
high; otherwise Σ1t could behave like the unconditional variance matrix of the returns.

B.2 One and Two-Parameter Exponential-Weighted Moving Average
(EWMA(n0, λ0, ν0))

The one-parameter EWMA (setting λ0 = ν0) is the popular Riskmetrics estimate of Σt (see J.P.Morgan
(1996)) which is defined by the following recursion

Σ2t = λ0Σ2,t−1 +
(1− λ0)
(1− λn0

0 )
εt−1ε

′
t−1 −

(1− λ0)
(1− λn0

0 )
λn0−1

0 εt−n0−1ε
′
t−n0−1, (B.2)

for a constant parameter 0 < λ0 < 1, and a window of size n0. Typically, the initialization of the recursion
in (B.2) is based on estimates of the unconditional variances using a pre-sample of data. For the (i, j)th
entry of Σ2t we have

σ2,ijt =
(1− λ0)
(1− λn0

0 )

n0∑
s=1

λs−1
0 εi,t−sεj,t−s.

The Riskmetrics model is characterized by the fact that n0 and λ0 are fixed a priori. Moreover, it has been
recently pointed out that it is not possible to formally estimate the model statistically, due to its asymptotic
degenerateness (see Zaffaroni (2007)). The value of λ0 = 0.94 is suggested in J.P.Morgan (1996). In our
analysis we shall consider the values λ0 = 0.94, 0.95, and 0.96, and set n0 = 250. We only consider one value
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for the window size since there is an obvious trade-off between λ0 and n0, with a small λ0 yielding similar
results to a small n0. Note that for Σ2t to be non singular requires n0 ≥ N . Nevertheless, the model does
admit a well-defined forecasting function and indeed Σ2,t+1 represents the one-step ahead forecast of the
conditional variance for period t + 1, based on the information available up to time t.

Practitioners and academics have often pointed out that the effects of shocks on conditional variances and
conditional correlations could decay at different rates, with correlations typically responding at a slower pace
than volatilities (see De Santis and Gerard (1997)). This suggests using two different parameter values for
the decay coefficients, one for volatilities and the other for correlations (see De Santis, Litterman, Vesval, and
Winkelmann (2003, p.14)). This yields the two-parameter Exponential-Weighted Moving Average (EWMA
(n0, λ0, ν0)). Therefore, the diagonal elements of (B.2) define conditional variances σ3,hht, h = 1, ..., N the
square-roots of which form the diagonal matrix D3t. The covariances are based on the same recursion as
(B.2) but using a smoothing parameter ν0, generally different from λ0 (ν0 ≤ λ0) yielding

σ3,hjt =
(1− ν0)

(1− νn0
0 )

n0∑
s=1

νs−1
0 εh,t−sεj,t−s, for h 6= j.

We assume that the same window size, n0, applies to variance and covariance recursions. The ratio

σ3,hjt/
√

σ3hh,t σ3jj,t (B.3)

represents the (h, j)th entry of the matrix R3t. Σ3t is obtained by combining terms according to (B.1). The
parameters ν0 and λ0 are not estimated but calibrated a priori, as for the one-parameter EWMA model.

B.3 Mixed Moving Average (MMA(n0, ν0))

This is a generalization of the equal-weighted MA model discussed above. Under this specification, the
conditional variances are computed as in the equal-weighted MA model, the square root of which yields the
diagonal matrix D4t. Then we estimate the conditional covariances using a Riskmetrics type filter: σ4,hjt =
(1−ν0)

(1−ν
n0
0 )

∑n0
s=1 νs−1

0 εh,t−sεj,t−s, which after normalization according to (B.3) yields R4t. Re-combining the
results according to (B.1) we then obtain Σ4t.

B.4 Generalized Exponential-Weighted Moving Average
(EWMA(n0, p, q, ν0))

This is a generalization of the two-parameter EWMA. In the first stage N different univariate GARCH(p, q)
volatility models are estimated for each rht by PMLE. The conditional covariances are then obtained using
the Riskmetrics filter (B.2), with the parameters n0 and ν0 fixed a priori. The results are then normalized
using (B.3), with the resultant variances and correlations re-combined according to (B.1), thus yielding
Σ5t. The estimated number of parameters of this model is k5 = N(1 + p + q), which will be used in the
computation of AIC and SBC.

B.5 Constant Conditional Correlation (CCC(p, q))

Bollerslev (1990) introduced a multivariate GARCH model with the simplifying assumption that the one-step
ahead conditional correlations are constant. Under this model, (B.1) takes the form Σ6t = D6tR6D6t, where
D6t is a diagonal matrix containing the square-root of the σ6,hht, each of which follow the GARCH(p, q)
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model of Bollerslev (1986)

σ6,hht = c0h +

q∑

k=1

α0hkε
2
h,t−k +

p∑
j=1

β0hjσ6,hht−j,

for constant positive parameters c0h, α0h1, ..., α0hq, β0h1, ..., β0hp. Positivity of these parameters is sufficient
but not necessary to ensure σ6,hht > 0 a.s. (see Nelson and Cao (1992)). The positive definite matrix
R6, made by N(N − 1)/2 constant parameters, contains the (constant) conditional correlations of the
εht, h = 1, 2, ..., N.

Bollerslev (1990) proposed to estimate the model by the PMLE and noting that (9) simplifies due
to the constant correlation assumption. The estimated number of parameters of this model is given by
k6 = N(p + q + 1) + N(N − 1)/2.

B.6 Orthogonal GARCH (O-GARCH(p, q))

This model is proposed by Alexander (2001) and uses a static principle component decomposition of stan-
dardized residuals defined by

ε̃it =
εit − ε̄iT

siT
, t = 1, 2, ..., T,

where ε̄iT and siT are the sample mean and standard deviations of the returns. Denote the sample covariance
matrix of the standardized returns by

S̃T =
∑T

t=1 ε̃tε̃
′
t

T
, ε̃t = (ε̃1t, , ..., ε̃Nt)

′
.

Then
S̃T WT = WT ΛT , (B.4)

where and WT and ΛT are the corresponding N ×N matrices of eigenvectors and eigenvalues, respectively.
Then setting (see Alexander (2001))

Σ7t(u) = VW(u)Γt(u)W(u)′V,

where W(u) = (w1, ...,wu) denotes the N × u matrix of eigenvectors corresponding to the first largest u
eigenvalues, V is a diagonal matrix with the sample standard deviation of rht on the (h, h)th entry and
Γt(u) is a u × u diagonal matrix whose (j, j)th entry, γjt, j = 1, ..., u, is assumed to satisfy the following
univariate GARCH(p, q) specification

γjt = c0j + α0j1s
2
jt−1 + ... + α0jps

2
jt−p + β0j1 γjt−1 + ... + β0jq γjt−q, j = 1, ..., u,

where sj = (ε1, ..., εT )′wj , j = 1, ..., N . Note that this method makes use of the fact that the factors are
unconditionally orthogonal, but there is no guarantee that they will also be conditionally orthogonal. Also
to ensure that Σ7t(u) is non-singular we must have u = N , which is the value considered here, yielding
Σ7t = Σ7t(N). Hence for the O-GARCH(p, q) specification we have k7 = N(p + q + 1).

B.7 Dynamic Conditional Correlation (DCC(p, q, 1, 1))

Engle (2002) relaxed the assumption of constant conditional correlation of the CCC model of Bollerslev
(1990). The conditional variances of individual returns are estimated as univariate GARCH(p, q) specifica-
tions, and the diagonal matrix, D8t, is formed with their square roots. Unlike the CCC, the conditional
correlations are now allowed to be time-varying and are obtained as follows. Starting with the standardized
residuals, ε̃8t = (D8t)

−1
εt, the DCC model assumes that the (h, j)th entry of the conditional covariance

26



matrix of ε̃8t, namely R8t, is given by qhjt/
√

qhht qjjt, where qhjt is the (h, j)th element of matrix Qt defined
by

Qt = Q (1− γ01 − δ01) + γ01ε̃9,t−1ε̃
′
9,t−1 + δ01Qt−1.

for a fixed positive definite matrix Q, and positive parameters satisfying γ01 + δ01 < 1. Finally, Σ8t

is obtained re-combining D8t and R8t based on (B.1). The estimation of the parameters of the DCC
model is carried out using a two-stage Gaussian PMLE procedure. The log-likelihood function is first
optimized with respect to the parameters driving the individual conditional variances. Conditional on
these parameter estimates, in the second step the log-likelihood function is maximized with respect to the
parameters driving conditional correlations. See Engle (2002, Section 4) for details. For this model we have
k8 = N(p + q + 1) + N(N + 1)/2 + 2.

B.8 Asymmetric Dynamic Conditional Correlation (ADCC(p, q, 1, 1))

Cappiello, Engle, and Sheppard (2006) generalized the DCC allowing for the possibility of asymmetric effects
on conditional variances and correlations. The conditional variances of the individual returns are specified
using the specification advanced by Glosten, Jagannathan, and Runkle (1993) given by:

σ9,hht = c0h +
q∑

k=1

α0hkε2
h,t−k +

q∑

k=1

ϑ0hkI(εh,t−k < 0)ε2
h,t−k +

p∑

j=1

β0hjσ9,hh,t−j ,

where I(A) denotes the indicator function which takes the value of unity if A > 0, and zero otherwise. Let
ε̃9t = (D9t)

−1
εt, where D9t is the diagonal matrix formed with the square roots of σ9,hht. The ADCC

model assumes that the (h, j)th entry of the conditional covariance matrix of r̃9t, namely R9t, is given by
qhjt/

√
qhht qjjt where qhjt is the (h, j)th element of matrix Qt defined by

Qt = Q (1− γ01 − δ01 − ϑ01) + γ01ε̃9,t−1ε̃
′
9,t−1 + δ01Qt−1 + ϑ01ε9,t−1ε

′
9,t−1

where ε9t = ε̃9t¯I(ε9,t−1 < 0) (here ¯ denotes the Hadamard product), Q is a fixed positive definite matrix,
and γ01, δ01, and ϑ01 are positive parameters satisfying γ01 + δ01 + ϑ01 < 1. Finally, Σ9t is constructed
using D9t and R9t as in (B.1). The estimation of the parameters of the ADCC model is carried out as for
the DCC, where now we have k9 = N(p + 2q + 1) + N(N + 1)/2 + 3.

B.9 t-Dynamic Conditional Correlation (TDCC(p, q))

Pesaran and Pesaran (2007) modify the DCC model of Engle (2002) by basing the stochastic process of the
conditional correlation matrix on devolatized residuals ε̌10t rather than standardized residuals ε̃8t. Whereas
the standardized residuals are obtained by dividing ε̃t by the conditional standard deviations from a first-
stage GARCH(p,q) model, devolatized residuals are computed by dividing ε̃t by the square root of a k-day
moving average of squared residuals, including the contemporaneous observation,

ε̌10jt =
εjt

σrealized
jt

, (B.5)

σrealized
jt =

√∑k−1
j=0 ε2

j,t−k

k
, (B.6)

which renders them approximately Gaussian. The conditional correlation matrix of ε̌t, namely R10t, is given
by qhjt/

√
qhht qjjt, where qhjt is the (h, j)th element of matrix Qt defined by

Qt = Q (1− γ01 − δ01) + γ01ε̌10,t−1ε̌
′
10,t−1 + δ01Qt−1.

for a fixed positive definite matrix Q, and positive parameters satisfying γ01 + δ01 < 1. Finally, Σ10t is
obtained re-combining D8t and R10t based on (B.1). As in the DCC model the conditional variances of
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individual returns are estimated as univariate GARCH (p, q) specifications, and the diagonal matrix, D10t,
is formed with their square roots. The parameters of the TDCC model are estimated using maximum
likelihood based on a Student t-distribution with νt−1 degrees of freedom. The number of parameters to be
estimated is k10 = N(p + q + 1) + N(N + 1)/2 + 3.
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Appendix C Proofs of the Theorems

Proof of Theorem 1. As T0 →∞, π̂i →p πi = 1
T1

∑
t∈T1

dit, dit = I (−ρt − cit(α)σρt(Mi)). Consider now
the moments of T1πi and note that for any integer n ≥ 1,

E (T1πi)
n =

∑

t1,t2,...,tn∈T1

{E (dit1dit2 ...ditn)} . (C.1)

However, for any δ > 0 we have E(dδ
it | Ft−1,Mi) = α, or unconditionally E(dδ

it | Mi) = α. Hence, all
the terms E (dit1dit2 ...ditn

) in (C.1) coincide with the case when the ditj
, j = 1, .., n, are i.i.d Bernoulli

distributed random variables with parameter α, for any choice of t1, ..., tn. Also, since T1 < ∞, the support
of the distribution of T1πi is bounded and as a consequence its moment generating function exists and is the
same as that of a Binomial distribution with parameters T1 and α. Therefore, by the method of moments
(see Billingsley (1986, Theorem 30.1)), T1πi will also have a Binomial distribution. ¥

Proof of Theorem 2. Assume Hi0 defined by (25) holds. Set qit = qit(θ̂iT0 , θi0) = (σ̂ρ t(Mi)/σρt(Mi)) =
(ω′t−1Σ̂it ωt−1/ω′t−1Σit ωt−1)1/2. Then

E[dit(θ̂iT0)|Ft−1,Mi] = Fit(−cit(α)qit)

and
E[π̂i|Mi] =

1
T1

∑

t∈T1

E{Fit(−cit(α)qit)}.

As T0 →∞, θ̂iT0

p→ θi0 and since Σit(θi) is a continuous function of θi it also follows that qit(θ̂iT0 , θi0)
p→ 1,

for all values of t ∈ T1. Hence, for any given finite evaluation sample size, T1, and as T0 →∞, E (π̂i|Mi) =
1
T1

∑
t∈T1

E{Fit(−cit(α)qit)} p→ Fit(−cit(α)) = α. Consider now the statistic
√

T1(π̂i − α) and write it as

√
T1(π̂i − α) =

√
T1(πi − α) +

√
T1(π̂i − πi), (C.2)

where πi = 1
T1

∑
t∈T1

dit(θi0). Also note that
√

T1(π̂i − πi) =
√

T1/T0(
∑

t∈T1
Xit,T0/T1), where Xit,T0 =√

T0[dit(θ̂iT0)− dit(θi0)]. But it is easily seen that,

|Xit,T0 | =
{ √

T0 if (ρt + cit(α)σ̂ρt(Mi))(ρt + cit(α)σρ t(Mi)) < 0,
0 otherwise.

Hence, for all t ∈ T1, Pr
(|Xit,T0 | =

√
T0 |Ft−1,Mi

) ≤ |Fit(−cit(α)qit(θ̂iT0 , θi0)) − Fit(−cit(α))|, and conse-
quently E(|Xit,T0 | |Ft−1,Mi) ≤

√
T0|Fit(−cit(α)qit(θ̂iT0 , θi0))−Fit(−cit(α))|. Using the mean-value expan-

sion of Fit(−cit(α)qit(θ̂iT0 , θi0)) around θ̂iT0 one gets

Fit(−cit(α)qit(θ̂iT0 , θi0)) = Fit(−cit(α))− cit(α)fit(−cit(α)qit(θ̄i, θi0))∂qit(θ̄i, θi0)/∂θ̂′iT0
(θ̂iT0 − θi0),

where the elements of θ̄i are convex combinations of the corresponding elements of θ̂iT0 and θi0. By Hölder’s
inequality for the norm of matrices, since ‖ ωt ‖> 0, we have E(|Xit,T0 | |Ft−1,Mi)
≤ cit(α)fit(−cit(α)qit(θ̄i, θi0)) ‖∂qit(θ̄i, θi0)/∂θ̂iT0 ‖

√
T0 ‖ θ̂iT0 − θi0 ‖≤ cit(α)fit(−cit(α)qit(θ̄i, θi0))

{supθ∈Θi
‖ ∂λ̄it(θ)/∂θ ‖ /λ

1
2
it(θ)λ

1
2
it(θ0)}

√
T0 ‖ θ̂iT0 − θi0 ‖. Taking the unconditional mean and using the

Hölder inequality again yields E(|Xit,T0 ||Mi)

≤ cit(α) supx fit(x)(E| supθ∈Θi
‖ ∂λ̄it(θ)/∂θ ‖ /λ

1
2
it(θ)λ

1
2
it(θ0)|δ) 1

δ

√
T0(E‖ θ̂iT0 − θi0 ‖

δ
δ−1 )1−1/δ. Therefore,

T−1
1

∑
t∈T1

Xit,T0 = Op(1) and the second term in (C.2) vanishes as T1/T0 +1/T1 → 0. Hence
√

T1(π̂i−α)−√
T1(πi − α) = op(1), where

√
T1(πi − α) = 1√

T1

∑
t∈T1

git, git = I (−ρt − cit(α)σρt(Mi))− α. Therefore, it
remains to establish the asymptotic distribution of

√
T1(πi−α). This easily follows by the martingale central
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limit theorem of Brown (1971, Theorem 2) since the git are a bounded, martingale difference sequence with
the constant variance α(1− α).¥

Proof of Theorem 3: Inequality (33) can be expressed as
∑N

i=1 λig(bi) > g(
∑N

i=1 λibi), for the
function g(x) ≡ F (a/

√
x). Jensen’s inequality ensures that the latter inequality is satisfied whenever g(·)

is strictly convex. Since g(·) is twice differentiable by construction, we just need to check the conditions
such that the second derivative of g(x) satisfies g′′(x) > 0. Straightforward calculations yield the required
condition (32).¥
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Table 1: Summary Statistics and Univariate GARCH Models

(in per cent)

Asset Mean St.Dev. Skewness Kurtosis t-GARCH(1,1)

(× 100) α̂j β̂j ν̂j

Currencies
GBP 0.938 0.577 -0.121 6.542 0.031 0.963 5.349
EUR 0.337 0.647 0.052 5.254 0.026 0.971 6.130
JPY -0.715 0.697 0.860 12.504 0.039 0.945 4.535
CAD 0.425 0.376 0.048 4.882 0.038 0.960 7.600
AUD 1.040 0.621 -0.073 6.101 0.026 0.971 6.142
CHF -0.212 0.706 0.151 4.967 0.022 0.974 5.958
mean 0.302 0.604 0.153 6.708 0.030 0.964 5.952

Equities
SP 3.114 1.005 -0.072 7.843 0.051 0.944 5.846
FTSE 2.137 1.057 -0.023 5.902 0.069 0.923 11.491
DAX 3.526 1.398 -0.285 9.407 0.074 0.919 7.360
NIKKEI -0.047 1.392 0.072 5.051 0.061 0.930 7.214
mean 2.182 1.213 -0.077 7.051 0.064 0.929 7.978

Bonds
10Y US 1.373 0.364 -0.250 4.824 0.031 0.962 6.624
10Y EUR 1.309 0.313 -0.278 5.099 0.041 0.950 8.193
10Y Gilt 1.009 0.403 0.035 7.489 0.035 0.960 6.592
10Y JGB 1.665 0.279 -0.460 7.295 0.062 0.930 5.163
mean 1.339 0.340 -0.238 6.177 0.042 0.951 6.643

Commodities
Gold 0.084 0.872 0.108 13.646 0.053 0.944 4.115
Silver 2.099 1.553 -0.523 9.834 0.034 0.961 4.033
Wheat 2.088 1.241 0.267 5.036 0.058 0.919 7.636
Crude 5.067 2.041 -0.870 19.479 0.049 0.942 6.396
mean 2.334 1.427 -0.254 11.999 0.049 0.941 5.545

mean(all assets) 1.402 0.863 -0.076 7.842 0.044 0.948 6.465

Notes: Columns 2 to 5 report the sample mean, standard deviation, skewness and kurtosis of returns computed as
rjt = 100× (Pjt−Pj,t−1)/Pj,t−1, where Pjt is the close price of the jth asset. Columns 7 to 9 report the estimated parameters
of GARCH(1,1) models with Student t-innovations:

V(rjt|Ωt−1) = σ2
jt = σ̄2

j (1− αj − βj) + αjr2
j,t−1 + βjσ2

j,t−1, where
rjt

σjt

√
νj,t−1 − 2

νj,t−1
∼ tνj,t−1 ,

and σ̄2
j is the unconditional variance of rjt. All estimated coefficients are significant at the 1% level.

The full sample period is January 2, 1991 to July 11, 2007 (4311 observations). The currencies in order are British pound,
Euro, Japanese Yen, Canadian dollar, Australian dollar, and Swiss Franc.

Source: Datastream
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Table 2: Average Pairwise Correlations of Returns Within and Across Asset Classes

Asset Foreign Exchange Equity Indices 10Y Bonds commodities
GBP 0.427 -0.081 0.060 0.106
EUR 0.493 -0.120 0.078 0.119
JPY 0.310 -0.038 0.001 0.094
CAD 0.175 0.091 0.049 0.138
AUD 0.261 0.059 0.016 0.196
CHF 0.486 -0.158 0.077 0.125
SP -0.038 0.322 0.007 -0.038
FTSE -0.076 0.440 0.017 -0.012
DAX -0.083 0.454 -0.026 -0.038
NIKKEI 0.033 0.180 -0.058 0.044
10Y US 0.097 -0.047 0.331 -0.023
10Y EUR 0.059 0.005 0.438 -0.003
10Y Gilt 0.021 0.035 0.388 -0.005
10Y JGB 0.009 -0.053 0.078 -0.019
Gold 0.242 -0.043 0.014 0.306
Silver 0.190 0.012 -0.014 0.299
Wheat 0.053 0.006 -0.014 0.075
Crude 0.034 -0.018 -0.036 0.125

Notes: This table reports the average pairwise correlation of returns of futures contract i with the returns of all contracts
(j 6= i) in each asset class. The sample period is January 2, 1991 to July 11, 2007 (4311 observations).

32



Table 3: AIC Values for Multivariate Volatility Models under Standard Normal Innovations

Model type Sample periods Sample periods
25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)
EQMA (1,1,0.97) -13653 (22) -10007 (16) -13532 (23)
(n0) (1,2,0.97) -13585 (20) -10117 (19) -13510 (20)
(250) -13283 (19) -9533 (14) -13169 (18) (2,1,0.97) -13663 (23) -10025 (17) -13523 (22)
(125) -13131 (18) -9623 (15) -13449 (19) (2,2,0.97) -13614 (21) -10138 (20) -13516 (21)
(75) -13875 (26) -10373 (28) -14243 (28)
(50) -15617 (39) -11966 (42) -15872 (42) OGARCH

(p, q)
EWMA (1,1) -12397 (14) -10148 (21) -13063 (16)
(n0, λ0, ν0) (1,2) -12402 (15) -10157 (22) -13067 (17)
(250,0.95,0.95) -15825 (41) -11762 (39) -15532 (38) (2,1) -12415 (16) -10292 (26) -13020 (15)
(250,0.97,0.95) -15907 (42) -11713 (38) -15537 (39) (2,2) -12419 (17) -10271 (25) -12982 (14)
(250,0.95,0.97) -13877 (27) -10179 (23) -13775 (25)
(250,0.97,0.97) -13908 (28) -10100 (18) -13747 (24) CCC
(125,0.95,0.95) -15626 (40) -11835 (41) -15634 (40) (p, q)
(125,0.97,0.95) -15592 (38) -11782 (40) -15664 (41) (1,1) -12235 (13) -9150 (10) -12456 (11)
(125,0.95,0.97) -13837 (25) -10338 (27) -13992 (27) (1,2) -12207 (11) -9250 (12) -12453 (10)
(125,0.97,0.97) -13766 (24) -10253 (24) -13977 (26) (2,1) -12226 (12) -9167 (11) -12460 (13)
(75,0.95,0.95) -16011 (43) -12306 (45) -16147 (43) (2,2) -12198 (10) -9273 (13) -12457 (12)
(75,0.97,0.95) -16052 (44) -12287 (44) -16212 (44)
(75,0.95,0.97) -14548 (31) -11038 (32) -14760 (31) DCC
(75,0.97,0.97) -14521 (30) -10976 (31) -14765 (32) (p, q)
(50,0.95,0.95) -17995 (51) -13846 (51) -17905 (51) (1,1) -12034 (9) -8956 (6) -12266 (7)
(50,0.97,0.95) -18072 (52) -13872 (52) -18000 (52) (1,2) -12002 (7) -9043 (8) -12261 (6)
(50,0.95,0.97) -16734 (48) -12776 (49) -16688 (47) (2,1) -12030 (8) -8972 (7) -12270 (9)
(50,0.97,0.97) -16733 (47) -12748 (48) -16714 (48) (2,2) -11999 (6) -9065 (9) -12267 (8)

MMA ADCC
(n0, ν0) (p, q)
(250,0.95) -16995 (50) -12418 (46) -16566 (46) (1,1) -11962 (2) -8882 (2) -12197 (2)
(250,0.97) -14773 (32) -10643 (30) -14570 (30) (1,2) -11964 (3) -8891 (3) -12224 (3)
(125,0.95) -16336 (45) -12163 (43) -16455 (45) (2,1) -11981 (4) -8908 (4) -12238 (5)
(125,0.97) -14293 (29) -10501 (29) -14553 (29) (2,2) -11982 (5) -8919 (5) -12237 (4)
(75,0.95) -16588 (46) -12539 (47) -16722 (49)
(75,0.97) -14875 (33) -11122 (33) -15120 (37) TDCC
(50,0.95) -18331 (53) -14027 (53) -18310 (53) (p, q)
(50,0.97) -16869 (49) -12818 (50) -16907 (50) (1,1) -11451 (1) -8676 (1) -11860 (1)

GEWMA
(p, q, ν0)
(1,1,0.95) -15365 (36) -11474 (34) -15104 (36)
(1,2,0.95) -15276 (34) -11616 (36) -15074 (33)
(2,1,0.95) -15385 (37) -11495 (35) -15088 (35)
(2,2,0.95) -15312 (35) -11641 (37) -15078 (34)

Notes: This table reports the Akaike Information Criteria (AIC) of the volatility models described in Appendix B under
the assumption of standard normal innovations (with the exception of the TDCC model). The AIC is computed as AICit =
LLit−ki, where LLit is the maximized log-likelihood value at time t for model i, and ki is the number of parameters estimated
under model i. All multivariate volatility models (when applicable) were estimated based on one-day ahead forecast errors,
ε̂it = rit − µ̂it, using rolling windows of size 800 days every 25 days. The one-step ahead forecasts, µ̂it, were obtained by
estimating an AR(1) model also on a window of size 800 recursively and updated daily. For the TDCC model the distribution
is Student t with νt−1 degrees of freedom, where νt−1 is re-estimated every 25 days. Columns 1 and 4 report the AIC values
of the first sample (2-Jan-91 to 25-Jan-94, 800 observations). Columns 2 and 5 report the AIC values of the last sample
(17-Jun-04 to 11-Jul-07, 800 observations). Columns 3 and 6 report the average AIC values over all 3512 rolling samples, with
800 observations each, extracted from the full sample of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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Table 4: SBC Values for Multivariate Volatility Models under Standard Normal Innovations

Model type Sample periods Sample periods
25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)
EQMA (1,1,0.97) -13779 (22) -10133 (17) -13659 (20)
(n0) (1,2,0.97) -13754 (20) -10285 (22) -13679 (21)
(250) -13283 (19) -9533 (10) -13169 (14) (2,1,0.97) -13832 (24) -10194 (19) -13691 (22)
(125) -13131 (18) -9623 (11) -13449 (19) (2,2,0.97) -13825 (23) -10349 (25) -13727 (23)
(75) -13875 (26) -10373 (26) -14243 (28)
(50) -15617 (39) -11966 (42) -15872 (42) OGARCH

(p, q)
EWMA (1,1) -12523 (10) -10275 (21) -13189 (16)
(n0, λ0, ν0) (1,2) -12571 (11) -10325 (23) -13235 (18)
(250,0.95,0.95) -15825 (41) -11762 (37) -15532 (38) (2,1) -12583 (12) -10461 (27) -13189 (15)
(250,0.97,0.95) -15907 (42) -11713 (36) -15537 (39) (2,2) -12629 (13) -10482 (28) -13193 (17)
(250,0.95,0.97) -13877 (27) -10179 (18) -13775 (25)
(250,0.97,0.97) -13908 (28) -10100 (16) -13747 (24) CCC
(125,0.95,0.95) -15626 (40) -11835 (40) -15634 (40) (p, q)
(125,0.97,0.95) -15592 (38) -11782 (38) -15664 (41) (1,1) -12720 (14) -9635 (12) -12941 (10)
(125,0.95,0.97) -13837 (25) -10338 (24) -13992 (27) (1,2) -12734 (15) -9777 (14) -12980 (11)
(125,0.97,0.97) -13766 (21) -10253 (20) -13977 (26) (2,1) -12753 (16) -9694 (13) -12987 (12)
(75,0.95,0.95) -16011 (43) -12306 (45) -16147 (43) (2,2) -12767 (17) -9842 (15) -13026 (13)
(75,0.97,0.95) -16052 (44) -12287 (44) -16212 (44)
(75,0.95,0.97) -14548 (31) -11038 (32) -14760 (31) DCC
(75,0.97,0.97) -14521 (30) -10976 (31) -14765 (32) (p, q)
(50,0.95,0.95) -17995 (51) -13846 (51) -17905 (51) (1,1) -12165 (3) -9087 (3) -12398 (3)
(50,0.97,0.95) -18072 (52) -13872 (52) -18000 (52) (1,2) -12175 (4) -9217 (7) -12434 (4)
(50,0.95,0.97) -16734 (48) -12776 (49) -16688 (47) (2,1) -12203 (6) -9146 (5) -12444 (6)
(50,0.97,0.97) -16733 (47) -12748 (48) -16714 (48) (2,2) -12214 (7) -9281 (9) -12483 (7)

MMA ADCC
(n0, ν0) (p, q)
(250,0.95) -16995 (50) -12418 (46) -16566 (46) (1,1) -12138 (2) -9058 (2) -12373 (2)
(250,0.97) -14773 (32) -10643 (30) -14570 (30) (1,2) -12182 (5) -9109 (4) -12442 (5)
(125,0.95) -16336 (45) -12163 (43) -16455 (45) (2,1) -12241 (8) -9168 (6) -12498 (8)
(125,0.97) -14293 (29) -10501 (29) -14553 (29) (2,2) -12284 (9) -9221 (8) -12539 (9)
(75,0.95) -16588 (46) -12539 (47) -16722 (49)
(75,0.97) -14875 (33) -11122 (33) -15120 (33) TDCC
(50,0.95) -18331 (53) -14027 (53) -18310 (53) (p, q)
(50,0.97) -16869 (49) -12818 (50) -16907 (50) (1,1) -11542 (1) -8767 (1) -11952 (1)

GEWMA
(p, q, ν0)
(1,1,0.95) -15491 (35) -11600 (34) -15230 (34)
(1,2,0.95) -15444 (34) -11785 (39) -15243 (35)
(2,1,0.95) -15554 (37) -11663 (35) -15256 (36)
(2,2,0.95) -15523 (36) -11852 (41) -15289 (37)

Notes: This table reports the Schwartz Bayesian Criteria (SBC) of the volatility models described in Appendix B under
the assumption of standard normal innovations (with the exception of the TDCC model). The SBC is computed as SBCit =
LLit− 0.5kilog(T ), where LLit is the maximized log-likelihood at time t for model i, ki is the number of parameters estimated
under model i, and T = 800 is the sample size. For the TDCC model the distribution is Student t with νt−1 degrees of freedom,
where νt−1 is re-estimated every 25 days. Columns 1 and 4 report the SBC values of the first sample (2-Jan-91 to 25-Jan-94,
800 observations). Columns 2 and 5 report the SBC values of the last sample (17-Jun-04 to 11-Jul-07, 800 observations).
Columns 3 and 6 report the average SBC values over all 3512 rolling samples, with 800 observations each, extracted from the
full sample of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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Table 5: AIC Values for Multivariate Volatility Models under Student t Innovations

Model type Sample periods Sample periods
25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)
EQMA (1,1,0.97) -12823 (30) -9669 (20) -12862 (22)
(n0) (1,2,0.97) -12793 (28) -9769 (23) -12856 (20)
(250) -12477 (21) -9184 (14) -12543 (14) (2,1,0.97) -12841 (31) -9674 (21) -12862 (23)
(125) -12175 (18) -9225 (15) -12695 (19) (2,2,0.97) -12811 (29) -9776 (25) -12865 (24)
(75) -12522 (22) -9720 (22) -13163 (28)
(50) -13345 (36) -10627 (41) -13960 (42) OGARCH

(p, q)
EWMA (1,1) -11907 (14) -9911 (27) -12637 (17)
(n0, λ0, ν0) (1,2) -11918 (15) -9923 (28) -12642 (18)
(250,0.95,0.95) -13643 (40) -10471 (37) -13735 (38) (2,1) -11933 (16) -10030 (30) -12628 (16)
(250,0.97,0.95) -13670 (43) -10465 (36) -13752 (39) (2,2) -11939 (17) -10015 (29) -12608 (15)
(250,0.95,0.97) -12765 (24) -9632 (18) -12870 (25)
(250,0.97,0.97) -12766 (25) -9592 (16) -12862 (21) CCC
(125,0.95,0.95) -13250 (33) -10430 (35) -13793 (40) (p, q)
(125,0.97,0.95) -13281 (34) -10424 (34) -13816 (41) (1,1) -11754 (11) -8994 (10) -12144 (10)
(125,0.95,0.97) -12463 (20) -9649 (19) -13000 (27) (1,2) -11749 (10) -9101 (12) -12147 (11)
(125,0.97,0.97) -12461 (19) -9613 (17) -12997 (26) (2,1) -11765 (13) -9007 (11) -12150 (12)
(75,0.95,0.95) -13365 (37) -10678 (44) -14015 (43) (2,2) -11755 (12) -9120 (13) -12156 (13)
(75,0.97,0.95) -13405 (38) -10681 (45) -14045 (44)
(75,0.95,0.97) -12762 (23) -10064 (32) -13402 (31) DCC
(75,0.97,0.97) -12772 (27) -10041 (31) -13407 (32) (p, q)
(50,0.95,0.95) -14123 (50) -11353 (51) -14696 (51) (1,1) -11568 (7) -8806 (6) -11961 (5)
(50,0.97,0.95) -14162 (51) -11365 (52) -14726 (52) (1,2) -11560 (5) -8905 (8) -11964 (7)
(50,0.95,0.97) -13693 (45) -10931 (49) -14258 (48) (2,1) -11580 (9) -8818 (7) -11969 (8)
(50,0.97,0.97) -13706 (47) -10923 (48) -14267 (49) (2,2) -11569 (8) -8924 (9) -11973 (9)

MMA ADCC
(n0, ν0) (p, q)
(250,0.95) -14243 (52) -10817 (47) -14257 (47) (1,1) -11526 (2) -8756 (2) -11912 (2)
(250,0.97) -13299 (35) -9897 (26) -13336 (30) (1,2) -11535 (3) -8771 (3) -11941 (3)
(125,0.95) -13641 (39) -10626 (40) -14127 (45) (2,1) -11553 (4) -8783 (4) -11956 (4)
(125,0.97) -12767 (26) -9769 (24) -13270 (29) (2,2) -11560 (6) -8801 (5) -11962 (6)
(75,0.95) -13646 (41) -10813 (46) -14241 (46)
(75,0.97) -12962 (32) -10134 (33) -13566 (33) TDCC
(50,0.95) -14299 (53) -11452 (53) -14843 (53) (p, q)
(50,0.97) -13806 (49) -10978 (50) -14354 (50) (1,1) -11451 (1) -8676 (1) -11860 (1)

GEWMA
(p, q, ν0)
(1,1,0.95) -13697 (46) -10531 (38) -13716 (36)
(1,2,0.95) -13660 (42) -10632 (42) -13709 (34)
(2,1,0.95) -13720 (48) -10534 (39) -13715 (35)
(2,2,0.95) -13680 (44) -10637 (43) -13717 (37)

Notes: This table reports the AIC of the volatility models described in Appendix B and estimated (when applicable)
assuming normal innovations as in Table 3 but evaluated here using a Student t distribution with 7 degrees of freedom (with
the exception of the TDCC model). For the TDCC model the distribution is Student t with νt−1 degrees of freedom, where
νt−1 is re-estimated every 25 days. Columns 1 and 4 report the AIC values of the first sample (2-Jan-91 to 25-Jan-94, 800
observations). Columns 2 and 5 report the AIC values of the last sample (17-Jun-04 to 11-Jul-07, 800 observations). Columns
3 and 6 report the average AIC values over all 3512 rolling samples, with 800 observations each, extracted from the full sample
of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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Table 6: SBC Values for Multivariate Volatility Models under Student t Innovations

Model type Sample periods Sample periods
25-Jan-94 11-Jul-07 Average 25-Jan-94 11-Jul-07 Average

(1) (2) (3) (4) (5) (6)
EQMA (1,1,0.97) -12950 (28) -9795 (22) -12988 (22)
(n0) (1,2,0.97) -12961 (29) -9937 (25) -13025 (25)
(250) -12477 (21) -9184 (10) -12543 (10) (2,1,0.97) -13010 (31) -9842 (23) -13031 (26)
(125) -12175 (14) -9225 (11) -12695 (14) (2,2,0.97) -13022 (32) -9987 (26) -13076 (27)
(75) -12522 (22) -9720 (20) -13163 (28)
(50) -13345 (36) -10627 (39) -13960 (42) OGARCH

(p, q)
EWMA (1,1) -12034 (10) -10038 (27) -12764 (16)
(n0, λ0, ν0) (1,2) -12086 (11) -10092 (30) -12811 (18)
(250,0.95,0.95) -13643 (40) -10471 (37) -13735 (34) (2,1) -12102 (12) -10199 (32) -12796 (17)
(250,0.97,0.95) -13670 (42) -10465 (36) -13752 (35) (2,2) -12150 (13) -10226 (33) -12819 (19)
(250,0.95,0.97) -12765 (24) -9632 (17) -12870 (21)
(250,0.97,0.97) -12766 (25) -9592 (14) -12862 (20) CCC
(125,0.95,0.95) -13250 (33) -10430 (35) -13793 (36) (p, q)
(125,0.97,0.95) -13281 (34) -10424 (34) -13816 (37) (1,1) -12239 (15) -9479 (12) -12628 (11)
(125,0.95,0.97) -12463 (20) -9649 (18) -13000 (24) (1,2) -12276 (16) -9628 (16) -12674 (12)
(125,0.97,0.97) -12461 (19) -9613 (15) -12997 (23) (2,1) -12292 (17) -9534 (13) -12677 (13)
(75,0.95,0.95) -13365 (37) -10678 (41) -14015 (43) (2,2) -12325 (18) -9690 (19) -12725 (15)
(75,0.97,0.95) -13405 (38) -10681 (42) -14045 (44)
(75,0.95,0.97) -12762 (23) -10064 (29) -13402 (31) DCC
(75,0.97,0.97) -12772 (27) -10041 (28) -13407 (32) (p, q)
(50,0.95,0.95) -14123 (50) -11353 (51) -14696 (51) (1,1) -11699 (2) -8937 (3) -12093 (3)
(50,0.97,0.95) -14162 (51) -11365 (52) -14726 (52) (1,2) -11734 (4) -9078 (7) -12137 (4)
(50,0.95,0.97) -13693 (43) -10931 (49) -14258 (48) (2,1) -11753 (6) -8992 (5) -12142 (5)
(50,0.97,0.97) -13706 (44) -10923 (48) -14267 (49) (2,2) -11784 (7) -9139 (9) -12189 (7)

MMA ADCC
(n0, ν0) (p, q)
(250,0.95) -14243 (52) -10817 (46) -14257 (47) (1,1) -11702 (3) -8931 (2) -12088 (2)
(250,0.97) -13299 (35) -9897 (24) -13336 (30) (1,2) -11753 (5) -8989 (4) -12159 (6)
(125,0.95) -13641 (39) -10626 (38) -14127 (45) (2,1) -11813 (8) -9043 (6) -12216 (8)
(125,0.97) -12767 (26) -9769 (21) -13270 (29) (2,2) -11863 (9) -9103 (8) -12264 (9)
(75,0.95) -13646 (41) -10813 (45) -14241 (46)
(75,0.97) -12962 (30) -10134 (31) -13566 (33) TDCC
(50,0.95) -14299 (53) -11452 (53) -14843 (53) (p, q)
(50,0.97) -13806 (45) -10978 (50) -14354 (50) (1,1) -11542 (1) -8767 (1) -11952 (1)

GEWMA
(p, q, ν0)
(1,1,0.95) -13824 (46) -10658 (40) -13842 (38)
(1,2,0.95) -13829 (47) -10801 (44) -13877 (39)
(2,1,0.95) -13888 (48) -10702 (43) -13884 (40)
(2,2,0.95) -13891 (49) -10847 (47) -13927 (41)

Notes: This table reports the SBC of the volatility models described in Appendix B and estimated (when applicable)
assuming normal innovations as in Table 4 but evaluated here using a Student t distribution with 7 degrees of freedom (with
the exception of the TDCC model). For the TDCC model the distribution is Student t with νt−1 degrees of freedom, where
νt−1 is re-estimated every 25 days. Columns 1 and 4 report the SBC values of the first sample (2-Jan-91 to 25-Jan-94, 800
observations). Columns 2 and 5 report the SBC values of the last sample (17-Jun-04 to 11-Jul-07, 800 observations). Columns
3 and 6 report the average SBC values over all 3512 rolling samples, with 800 observations each, extracted from the full sample
of data (2-Jan-91 to 11-Jul-07). The models’ rank is given in parentheses.
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Table 7: Information Ratios and VaR Diagnostic Tests for Optimal Portfolio (Individual
Multivariate Models)

Model type Normal Student (7)
mean IR π̂ zπ̂ % VaR mean IR π̂ zπ̂ % VaR

return binds return binds
EQMA (n0)

(250) 11.66 1.38 2.99 11.85 22 11.43 1.43 2.45 8.63 34
(125) 13.62 1.42 3.73 16.26 28 13.15 1.46 3.33 13.89 42
(75) 13.86 1.24 5.61 27.46 36 13.34 1.29 5.04 24.07 51
(50) 16.52 1.18 9.14 48.49 48 15.67 1.22 8.15 42.55 64

EWMA (n0, λ0, ν0)
(250,0.95,0.95) 14.16 1.05 8.74 46.12 48 13.69 1.11 7.72 40.01 63
(250,0.97,0.95) 13.69 0.99 8.94 47.30 47 13.31 1.06 7.97 41.54 62
(250,0.95,0.97) 13.28 1.28 5.33 25.76 35 12.84 1.32 4.67 21.86 51
(250,0.97,0.97) 12.96 1.24 5.24 25.25 34 12.56 1.29 4.24 19.32 49
(125,0.95,0.95) 14.21 1.05 8.86 46.80 48 13.74 1.11 7.80 40.52 63
(125,0.97,0.95) 13.79 0.99 9.09 48.15 47 13.39 1.06 8.15 42.55 62
(125,0.95,0.97) 13.54 1.27 5.72 28.14 36 13.08 1.31 5.04 24.07 52
(125,0.97,0.97) 13.26 1.23 5.64 27.63 36 12.83 1.28 4.87 23.05 51
(75,0.95,0.95) 14.37 1.01 9.97 53.41 51 13.87 1.06 8.54 44.93 66
(75,0.97,0.95) 14.04 0.96 10.08 54.09 51 13.61 1.02 8.86 46.80 65
(75,0.95,0.97) 13.86 1.16 7.35 37.81 41 13.31 1.20 6.44 32.38 58
(75,0.97,0.97) 13.62 1.12 7.46 38.48 41 13.12 1.17 6.41 32.21 57
(50,0.95,0.95) 16.28 0.95 12.70 69.69 60 15.55 1.01 11.51 62.57 73
(50,0.97,0.95) 15.87 0.90 12.76 70.03 60 15.25 0.96 11.28 61.21 73
(50,0.95,0.97) 16.43 1.08 10.97 59.35 53 15.64 1.13 9.46 50.36 69
(50,0.97,0.97) 16.22 1.05 11.02 59.69 53 15.45 1.10 9.60 51.21 69

MMA (n0, ν0)
(250,0.95) 10.39 0.61 9.77 52.22 46 10.45 0.69 8.66 45.61 59
(250,0.97) 11.36 0.95 5.58 27.29 34 11.12 1.00 4.84 22.88 47
(125,0.95) 12.61 0.78 9.85 52.73 48 12.38 0.85 8.54 44.93 61
(125,0.97) 12.96 1.08 6.10 30.34 37 12.67 1.15 5.27 25.42 51
(75,0.95) 12.86 0.79 10.45 56.29 51 12.84 0.88 9.51 50.70 65
(75,0.97) 13.18 1.02 7.92 41.20 42 12.85 1.08 6.95 35.43 57
(50,0.95) 14.36 0.75 13.04 71.73 59 14.29 0.85 11.65 63.42 72
(50,0.97) 15.64 0.97 11.08 60.03 53 15.01 1.03 9.97 53.41 68

GEWMA (p, q, ν0)
(1,1,0.95) 12.54 0.95 8.57 45.10 43 12.17 1.00 7.41 38.14 58
(1,2,0.95) 13.12 1.01 8.54 44.93 43 12.71 1.06 7.32 37.64 57
(2,1,0.95) 12.72 0.94 8.37 43.91 43 12.43 1.00 7.23 37.13 57
(2,2,0.95) 12.94 0.96 8.77 46.29 43 12.61 1.02 7.60 39.33 57
(1,1,0.97) 11.65 1.16 4.90 23.22 31 11.34 1.20 4.10 18.47 45
(1,2,0.97) 12.08 1.21 4.90 23.22 30 11.75 1.26 4.07 18.30 45
(2,1,0.97) 12.08 1.18 5.07 24.24 31 11.77 1.23 4.24 19.32 45
(2,2,0.97) 12.19 1.19 5.10 24.41 32 11.88 1.24 4.50 20.84 45

Nominal tolerance probability α = 1%

Notes: This table reports the mean return, information ratio (IR), VaR exceedance ratio (π̂) and its zπ̂-statistic, as well as
the percentage of times the VaR constraint is binding, of portfolios that were constructed based on the estimated mean return
(µt – generated by an AR(1) model) and the covariance matrix (Σit – generated by the individual multivariate volatility models
described in Appendix B). The risk-aversion parameter δ is set to 75 and the nominal VaR frequency α is 1%. We assume
that innovations are either normal or Student t with 7 degrees of freedom. For the TDCC model the Student t distribution
has νt−1 degrees of freedom (instead of 7), where νt−1 is re-estimated every 25 days. The multivariate models were estimated
using a rolling window of 800 observations over the period 2-Jan-91 to 11-Jul-07, 3511 rolling samples in total.
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Table 7 cont’d: Information Ratios and VaR Diagnostic Tests for Optimal Portfolio (Indi-
vidual Multivariate Models)

Model type Normal Student (7)
mean IR π̂ zπ̂ % VaR mean IR π̂ zπ̂ % VaR

return binds return binds
OGARCH (p, q)

(1,1) 9.70 1.19 2.73 10.33 16 9.59 1.24 2.34 7.95 27
(1,2) 9.34 1.13 2.62 9.65 16 9.22 1.17 2.45 8.63 27
(2,1) 9.29 1.15 2.68 9.99 16 9.16 1.19 2.31 7.78 27
(2,2) 9.63 1.20 2.51 8.97 16 9.48 1.24 2.28 7.61 27

CCC (p, q)
(1,1) 9.95 1.43 1.79 4.73 13 9.82 1.46 1.48 2.86 23
(1,2) 10.23 1.47 1.82 4.90 12 10.10 1.51 1.62 3.71 23
(2,1) 10.13 1.42 2.08 6.43 13 9.98 1.46 1.82 4.90 24
(2,2) 10.21 1.42 1.94 5.58 14 10.05 1.46 1.77 4.56 24

DCC (p, q)
(1,1) 9.41 1.37 1.57 3.37 13 9.31 1.41 1.40 2.36 24
(1,2) 9.65 1.42 1.68 4.05 12 9.55 1.45 1.48 2.86 23
(2,1) 9.65 1.38 1.85 5.07 14 9.54 1.42 1.62 3.71 25
(2,2) 9.69 1.38 1.88 5.24 14 9.57 1.42 1.59 3.54 24

ADCC (p, q)
(1,1) 8.76 1.27 1.74 4.39 14 8.70 1.31 1.57 3.37 25
(1,2) 8.92 1.24 1.99 5.92 14 8.93 1.30 1.74 4.39 25
(2,1) 9.36 1.30 1.91 5.41 15 9.24 1.34 1.57 3.37 27
(2,2) 9.31 1.25 2.05 6.26 16 9.31 1.32 1.77 4.56 27

TDCC (p, q)
(1,1) - - - - - 9.21 1.39 1.57 3.37 21

Nominal tolerance probability α = 1%
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Table 8: Information Ratios and VaR Diagnostic Tests for Optimal Portfolio (Multivariate
Modelling Strategies)

Model type Normal Student (7)
mean IR π̂ zπ̂ % VaR mean IR π̂ zπ̂ % VaR

return binds return binds
Best (AIC) 9.30 1.29 1.91 5.41 15 9.30 1.34 1.59 3.54 26
Best (BIC) 9.24 1.27 2.05 6.26 15 9.39 1.36 1.62 3.71 26
Bayesian Average (AIC) 9.33 1.29 1.91 5.41 15 9.29 1.34 1.59 3.54 26
Bayesian Average (BIC) 9.27 1.28 2.08 6.43 15 9.40 1.36 1.62 3.71 26
Top 10% (AIC) 9.24 1.38 1.59 3.54 13 8.83 1.34 1.40 2.36 24
Top 10% (BIC) 9.05 1.34 1.57 3.37 13 8.74 1.33 1.48 2.86 25
Top 25% (AIC) 8.70 1.34 1.37 2.19 13 8.72 1.37 1.20 1.17 24
Top 25% (BIC) 9.04 1.37 1.51 3.03 13 8.90 1.38 1.31 1.85 24
Top 50% (AIC) 9.18 1.37 1.57 3.37 15 9.08 1.40 1.28 1.68 26
Top 50% (BIC) 9.19 1.38 1.54 3.20 15 9.10 1.41 1.28 1.68 26
Top 75% (AIC) 9.68 1.36 1.82 4.90 20 9.56 1.39 1.40 2.36 32
Top 75% (BIC) 9.68 1.35 1.79 4.73 20 9.56 1.39 1.42 2.53 31
All 10.11 1.32 2.36 8.12 25 9.95 1.36 1.79 4.73 36

Nominal tolerance probability α = 1%

Notes: Table 8 reports the mean return, information ratio (IR), VaR exceedance frequency (π̂) and its zπ̂-statistic, as well
as the percentage of times the VaR constraint is binding, of portfolios that were constructed based on the estimated mean
return (µt – generated by an AR(1) model) and a set of covariance matrices {Σit} with weights {λit}. The risk-aversion
parameter δ is set to 75 and the nominal VaR frequency α is 1%. We assume that innovations are either normal or Student t
with 7 degrees of freedom. The multivariate models were estimated using a rolling window of 800 observations over the period
2-Jan-91 to 11-Jul-07, 3511 rolling samples in total.
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Table 9: Kuiper and Kolmogorov-Smirnov Tests of the Validity of the Individual Multi-
variate Models Using an Equally Weighted Portfolio

Model type normal t7 Model type normal t7
Ku KS Ku KS Ku KS Ku KS

EQMA (1,1,0.97) 0.000 0.005 0.003 0.052
(n0) (1,2,0.97) 0.000 0.006 0.003 0.052
(250) 0.000 0.004 0.012 0.104 (2,1,0.97) 0.000 0.006 0.002 0.048
(125) 0.000 0.006 0.004 0.052 (2,2,0.97) 0.000 0.008 0.002 0.048
(75) 0.000 0.007 0.001 0.030
(50) 0.000 0.007 0.000 0.033 OGARCH

(p, q)
EWMA (1,1) 0.000 0.015 0.000 0.002
(n0, λ0, ν0) (1,2) 0.000 0.015 0.000 0.002
(250,0.95,0.95) 0.000 0.008 0.000 0.022 (2,1) 0.000 0.015 0.000 0.003
(250,0.97,0.95) 0.000 0.005 0.000 0.048 (2,2) 0.000 0.015 0.000 0.001
(250,0.95,0.97) 0.000 0.008 0.000 0.027
(250,0.97,0.97) 0.000 0.004 0.001 0.048 CCC
(125,0.95,0.95) 0.000 0.008 0.000 0.022 (p, q)
(125,0.97,0.95) 0.000 0.006 0.000 0.040 (1,1) 0.000 0.008 0.002 0.036
(125,0.95,0.97) 0.000 0.008 0.000 0.024 (1,2) 0.000 0.008 0.001 0.036
(125,0.97,0.97) 0.000 0.005 0.001 0.043 (2,1) 0.000 0.010 0.001 0.030
(75,0.95,0.95) 0.000 0.009 0.000 0.018 (2,2) 0.000 0.010 0.001 0.022
(75,0.97,0.95) 0.000 0.006 0.000 0.030
(75,0.95,0.97) 0.000 0.010 0.000 0.020 DCC
(75,0.97,0.97) 0.000 0.007 0.000 0.024 (p, q)
(50,0.95,0.95) 0.000 0.012 0.000 0.008 (1,1) 0.000 0.007 0.002 0.043
(50,0.97,0.95) 0.000 0.008 0.000 0.012 (1,2) 0.000 0.008 0.001 0.040
(50,0.95,0.97) 0.000 0.013 0.000 0.009 (2,1) 0.000 0.008 0.002 0.043
(50,0.97,0.97) 0.000 0.010 0.000 0.012 (2,2) 0.000 0.008 0.001 0.030

MMA ADCC
(n0, ν0) (p, q)
(250,0.95) 0.000 0.004 0.002 0.075 (1,1) 0.001 0.012 0.000 0.016
(250,0.97) 0.000 0.004 0.010 0.096 (1,2) 0.000 0.009 0.000 0.012
(125,0.95) 0.000 0.005 0.000 0.052 (2,1) 0.000 0.010 0.000 0.016
(125,0.97) 0.000 0.005 0.001 0.075 (2,2) 0.000 0.012 0.000 0.016
(75,0.95) 0.000 0.008 0.000 0.040
(75,0.97) 0.000 0.007 0.000 0.043 TDCC
(50,0.95) 0.000 0.005 0.000 0.040 (p, q)
(50,0.97) 0.000 0.006 0.000 0.036 (1,1) 0.000 0.008 0.012 0.096

GEWMA
(p, q, ν0)
(1,1,0.95) 0.000 0.006 0.001 0.043
(1,2,0.95) 0.000 0.005 0.001 0.048
(2,1,0.95) 0.000 0.008 0.001 0.036
(2,2,0.95) 0.000 0.008 0.001 0.043

Notes: This table reports the probability values for the Kuiper and the Kolmogorov-Smirnov tests for the different
multivariate volatility models considered in this paper. We assume that the innovations are either normal or follow a Student t
distribution with 7 degrees of freedom. For the TDCC model the Student t distribution has νt−1 degrees of freedom (instead of
7), where νt−1 is re-estimated every 25 days. The multivariate models were estimated using a rolling window of 800 observations
over the period 2-Jan-91 to 11-Jul-07, 3511 rolling samples in total.
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Table 10: Kuiper and Kolmogorov-Smirnov Tests of the Validity of the Multivariate Model
Averaging Strategies Using an Equally Weighted Portfolio

Strategy type normal t7
Ku KS Ku KS

Best (AIC) 0.000 0.012 0.000 0.024
Best (BIC) 0.000 0.012 0.000 0.024
Bayesian Average (AIC) 0.000 0.012 0.000 0.024
Bayesian Average (BIC) 0.000 0.012 0.000 0.024
Top 10% (AIC) 0.000 0.009 0.000 0.022
Top 10% (BIC) 0.000 0.012 0.000 0.022
Top 25% (AIC) 0.001 0.013 0.000 0.015
Top 25% (BIC) 0.000 0.009 0.000 0.027
Top 50% (AIC) 0.000 0.010 0.000 0.022
Top 50% (BIC) 0.000 0.010 0.000 0.024
Top 75% (AIC) 0.000 0.010 0.000 0.022
Top 75% (BIC) 0.000 0.010 0.000 0.024
All 0.001 0.010 0.000 0.020

Notes: This table reports the probability values for the Kuiper and the Kolmogorov-Smirnov tests for the average mul-
tivariate volatility models considered in this paper. We assume that the innovations are either normal or follow a Student t
distribution with 7 degrees of freedom. The multivariate models were estimated using a rolling window of 800 observations
over the period 2-Jan-91 to 11-Jul-07, 3511 rolling samples in total.
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Figure 1: Scatter Plot of Information Ratios and VaR Exceedance Frequencies Across
Models and Modelling Strategies
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