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Abstract

This paper derives a novel formulation of the depth-averaged shallow

water equations with anisotropic porosity for computational efficiency rea-

sons. The aim is to run simulations on coarser grids while maintaining an

acceptable accuracy through the introduction of porosity terms, which ac-

count for subgrid-scale effects. The porosity is divided into volumetric and

areal porosities, which are assigned to the cell volume and the cell edges,

respectively. The former represents the volume in the cell available to flow

and the latter represents the area available to flow over an edge, hence in-

troducing anisotropy. The porosity terms are variable in time in dependence

of the water elevation in the cell and the cumulative distribution function of

the unresolved bottom elevation. The main novelty of the equations is the

formulation of the porosities which enables full inundation of the cell. The

applicability of the equations is verified in five computational examples, deal-
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ing with dam break and rainfall-runoff simulations. Overall, good agreement

between the model results and a high-resolution reference simulation has

been achieved. The computational time decreased significantly: on average

three orders of magnitude.
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1. Introduction

Shallow water models are applied in a broad range of areas such as river

hydraulics [1, 2, 3, 4], dam break simulations [5, 6], urban flooding [7, 8, 9, 10]

and recently also for overland flow in natural catchments [11, 12, 13, 14, 15,

16] and urban runoff [17, 18], among many others (cf. e.g. [19]). In over-

land flow simulations, usually there is a large difference between the scales

of the features significantly influencing the flow and the scale of the simu-

lation domain. For example, in a natural catchment with a scale around a

square kilometer, local depressions and microtopograpy with horizontal scales

smaller than a square meter influence the flow field significantly [20, 21, 22].

Similar observations are made for urban flood models where the scale of

buildings is exceeded by the scale of the city in several orders of magnitude,

e.g. a building has a scale of around 100 m2 while the city may span up to

100 km2. Recent developments in survey technology such as light detection

and ranging (LIDAR) and laser scanning are able to provide high accuracy

high-resolution elevation data sets at relatively low cost [23]. However, the

integration of these data into numerical models is often challenging because
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of finite computer resources [24, 25]. In order to capture the impact of the

smallest relevant scale on the flow, the microtopography has to be explic-

itly discretized. This leads to meshes with small cell size and therefore high

cell number which in return leads to an increased computational effort. De-

spite developments in CPU power, high-resolution simulations across large

catchments are in practice often unfeasible without supercomputers [26].

Instead of explicitly discretizing the small-scale topography, its influence

on the flow can be conceptually accounted for on coarser meshes to reduce

the computational effort [27]. One such approach introduces a porosity term

into the shallow water equations, which refers to the fraction of a computa-

tional cell available for flow and is a concept borrowed from groundwater flow

modeling. The porosity then conceptually accounts for subgrid-scale topog-

raphy. In literature, the extended shallow water equations incorporating this

porosity are called shallow water equations with porosity or porous shallow

water equations. The initial porous shallow water equations have been de-

rived by Defina [11] to account for microtopography in overland flow. Later,

the concept has been applied in urban flood modeling as a building treatment

method [28, 29, 30, 31, 32, 33, 34]. These porous urban flood models use a

single isotropic porosity to account for the buildings in the cell, assuming

isotropic behaviour. The reason for this assumption is that the shallow wa-

ter equations with single porosity are derived from the differential form of the

classical shallow water equations using a representative elementary volume

(REV) similar to the derivation of the Darcy flow equation in groundwater

flow modeling, e.g. [35]. The REV is by definition isotropic and therefore

only a single isotropic porosity can be derived for each cell (cf. [29]), which
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leads to the loss of directionality and hence may falsify the preferential flow

paths. To the authors’ knowledge, two approaches have been developed to

overcome the loss of directionality and both have been developed for building

treatment in urban flood models. The first approach has been developed by

Guinot [36] and introduces multiple porosities in each cell, which account for

different directions and storages. These porosities can be derived from the

differential form of the shallow water equations without violating the contin-

uum model and REV assumption. The second approach has been introduced

by Sanders et al. [37]. This approach additionally assigns so-called areal or

conveyance porosities to the cell edges, which introduce directionality to the

equations. If the differential form of shallow water equations is used, these

areal porosities can not be introduced without violating the REV assump-

tion. Therefore, the integral form of the shallow water equations is used, as it

does not require the assumption of an REV for the derivation. Yet, using the

integral form of the shallow water equations means that only a finite volume

method can be utilized for the numerical solution [36, 37]. Because these

types of models are not isotropic anymore, they are referred to as anisotropic

porosity shallow water models.

While there is ongoing research at the University of Liege to incorporate

depth-dependent porosities into an urban flood model [38], the porous shallow

water models for building treatment generally do not allow full inundation of

the buildings. This is a valid assumption for urban flood modeling, however

a porous shallow water model for generalized flow requires partial as well as

full inundation of unresolved topography. Therefore, this paper examines the

possibility of extending the equations derived in [37] to enable full inundation
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of the subgrid-scale unresolved topography to apply it to general surface

flow modeling. This leads to a novel formulation of the porosities and the

interfacial pressure terms and a mutual dependency between water elevation

and porosity.

Finally, it should be noted that the shallow water equations with porosity

can not reproduce a high-resolution solution exactly, because they can not

resolve local details of the flow. However, the anisotropic porosity model has

been found to be able to reproduce overall flow characteristics with satisfac-

tory accuracy.

This paper is organized as follows: first the integral shallow water equa-

tions with anisotropic porosity are presented; then the numerical methods

are discussed briefly; five computational examples are shown to demonstrate

model capabilities; finally conclusions are given. In the following, the unre-

solved subgrid-scale topography features such as microtopography in over-

land flow modelling or buildings in urban flood modelling are referred to as

unresolved solid structures or unresolved topography.

2. Governing equations

In this section, the integral shallow water equations with anisotropic

porosity are derived for an arbitrary control volume. As aforementioned,

the numerical solution of the shallow water equations in integral form is only

possible with the finite volume method.
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2.1. Anisotropic porosities

For the derivation of porosity, the phase function i inside a given control

volume is introduced as

i (x, y) =

1, if η (x, y) > zb (x, y)

0, else

(1)

where η is the water elevation, zb is the bottom elevation and x, y are the

horizontal Cartesian coordinates. Figure 1 illustrates the water elevation η

and bottom elevation in a vertical section through a control volume. For

illustration purposes, i is evaluated in two points. If the bottom elevation

exceeds the water elevation, i.e. dry case, the phase function is 0. If the water

elevation exceeds the bottom elevation, i.e. wet case, the phase function

equals 1. Therefore, the phase function indicates whether a certain point

(x, y) in the control volume is wet or dry. Porosity is defined as the ratio of

volume or area of fluid to the whole volume or area of the control volume.

Then, the volumetric porosity φ is defined as

φ =

∫
Ω
i (η − zb) dΩ∫

Ω
(η − z0) dΩ

(2)

and the areal porosity ψ of the boundary of the control volume is defined as

ψ =

∮
∂Ω
i (η − zb) dr∮

∂Ω
(η − z0) dr

(3)

where Ω stands for the area of the control volume, ∂Ω stands for the boundary

of the control volume, z0 is the zero datum of the control volume (cf. Figure

1, dashed line) and r is the path along the boundary ∂Ω. The values of the

porosities depend on the zero datum z0. Here, the lowest bed elevation inside

the control volume (denoted as minimum in Figure 1) is chosen as the zero
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datum. This means, that in the finite-volume method the zero datum will

vary for each cell.

Figure 2 shows an exemplary control volume with the definition of Ω and

∂Ω. Figure 2 (left) shows a three-dimensional view of a partially inundated

control volume, where blue colour indicates the water column and grey colour

indicates bottom topography. Figure 2 (right) shows the top view of the

control volume (top) and a vertical section through the boundary of the

control volume denoted with (A-A’) (bottom). Here, darker shades of grey

indicate higher bottom elevation. Again, in each point where the water

inundates the bottom topography the phase function i = 1 and at the points

where the bottom topography elevation exceeds the water elevation i = 0.

Both elevations are calculated with the minimum bottom elevation inside

the control volume as the zero datum, which is marked in Figure 2 (left).

The volumetric porosity φ is calculated with Equation 2, and is the ratio of

the volume of the fluid (blue columns) to the volume of the control volume.

The volume of the control volume is calculated by multiplying the elevation

of the water column, i.e. the distance (A’-B’) in Figure 2 (right, bottom)

with the total horizontal area of the cell Ω, shown in Figure 2 (right, top).

For example, in the case illustrated in Figure 2, Ω = (A-A’)2. Similarly, the

areal porosity ψ is calculated as the ratio of the vertical area of the fluid at

the boundary edge (coloured blue in Figure 2 (right, bottom)) to the vertical

area of the boundary, described by the path (A-A’-B’-B) in Figure 2 (right,

bottom).

It can be shown that the constant porosities derived in [37] can be ob-

tained by simplifying Equations 2 and 3 (cf. Appendix A). In contrast to
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these constant porosities, the porosities derived in this work are variable in

time.

2.2. Integral-differential form of the shallow water equations with anisotropic

porosity

The integral formulation of the shallow water equations can be obtained

by applying the balance equation for mass and momentum to a fixed Eulerian

control volume under the assumption of hydrostatic pressure distribution

[39] (pp. 47 ff.). Prior to the integration, the conserved variables h, qx and

qy are multiplied with the phase function i (Equation 1) to account for the

unresolved topography. Then, the temporal change of the vector of conserved

variables q can be expressed as:

∂

∂t

∫
Ω

iqdΩ +

∮
∂Ω

iFndr =

∫
Ω

sdΩ +

∮
∂Ω∗

s∗dr (4)

Here, t is the time and s is the source vector. q and s are usually expressed

as:

q =


h

qx

qy

 , s =


ir

sb,x + sf,x

sb,y + sf,y

 (5)

where h = η − zb stands for water depth. qx and qy are the unit discharges

in x- and y-direction, respectively. ir is a mass source term, e.g. rainfall

intensity; sb,x, sb,y, sf,x, sf,y are the bed slope and the friction source terms

in x- and y-direction, respectively, and are calculated as:

sb,x = −gh∂zb
∂x

, sb,y = −gh∂zb
∂y

(6)

sf,x = −cfqx
√
q2
x + q2

y

h2
, sf,y = −cfqy

√
q2
x + q2

y

h2
(7)

8



The slope source terms account for variations in bottom and the friction

source terms account for the bottom roughness. cf stands for the friction

coefficient. F is the flux vector and can be expressed via f and g as

Fn = fnx + gny (8)

where n is the unit normal vector to the boundary; nx and ny are its com-

ponents and f and g are the flux vectors in x- and y-direction defined as

f =


qx

uqx + 0.5gh2

uqy

 , g =


qy

vqx

vqy + 0.5gh2

 . (9)

Here, u and v are the depth-averaged velocity in x- and y-direction, respec-

tively. g is the gravitational acceleration. s∗ is the source vector accounting

for fluid pressure along the interface between the fluid and solid ∂Ω∗. It re-

sults from the macroscopic description, which does not differentiate between

fluid and solid (cf. [40], pp. 200-201).

In the limit of no structures to account for, the phase function i returns

1, the integral along ∂Ω∗ vanishes and therefore Equation 4 converges to the

classical two-dimensional shallow water equations, which can be found in,

e.g. [39] (p. 47). In [11], while properties of the differential form of the

equations are discussed, it is argued that the equations may fail to give a

good approximation for very shallow flow, because some of the assumptions

made for the derivation, e.g. a smooth free surface, do not hold. Although

the assumptions made in deriving the integral form are not violated during

very shallow flow, other statements made in [11] still apply and may lead to

an inaccurate approximation. Namely, very shallow flow with partially dry
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area is dominated by the effects of bottom irregularities which direct most of

water laterally which increases the flow path and the amount of dissipated

energy [11]. If these bottom irregularities are only conceptually taken into

account by using the porosity and the interfacial pressure terms, the model

will not be able to reproduce the correct flow paths and may underestimate

the dissipated energy. Unresolved topography which lies inside the computa-

tional cell can only be accounted for with the volumetric porosity. This is a

limitation of the model, because directionality is introduced in the model in

form of the areal porosities, to which the unresolved topography inside the

cell can not contribute. Hence, structures which would have influenced the

flow direction, e.g. roads and curbs, but lie completely inside the cell, will

not effect the flow direction. As a result, their impact on the flow may be

underestimated by the model.

2.3. Storage and flux terms

The porosity terms in Equation 2 and 3 are used to express discrete forms

of the integral terms containing the phase function i.

The evaluation of the integral of iq in Equation 4 is considered. In the

following, volume-averaged variables will be used to find a suitable approxi-

mation for this integral. The volume-averaged water elevation is calculated

as:

η̄ =

∫
Ω
iηdΩ∫

Ω
idΩ

(10)

The volume-averaged velocity is calculated as:

v̄ =

∫
Ω
ihvdΩ∫

Ω
ihdΩ

(11)
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The volume-averaged variables are constant within the control volume Ω.

Applying Equation 10 to Equation 2 and using η − zb = h leads to:

φ =

∫
Ω
i (η − zb) dΩ∫

Ω
(η − z0) dΩ

=

∫
Ω
ihdΩ∫

Ω
(η̄ − z0) dΩ

(12)

As established above, η̄ is constant inside the control volume. Hence, the

expression (η̄ − z0) is also constant inside the control volume and can be

taken outside of the integration:

φ =

∫
Ω
ihdΩ

(η̄ − z0)
∫

Ω
dΩ

=

∫
Ω
ihdΩ

(η̄ − z0) Ω
(13)

Then, Equation 13 can be rearranged to∫
Ω

ihdΩ = φ (η̄ − z0) Ω, (14)

which corresponds to the evaluation of the integral of the mass storage (first

entry of q) in Equation 4. The momentum storage in x-direction (second

entry of q) can be written by using qx = uh as:∫
Ω

iqxdΩ =

∫
Ω

iuhdΩ (15)

If the velocity u is approximated by the volume-averaged velocity, the equa-

tion becomes: ∫
Ω

iuhdΩ ≈
∫

Ω

iūhdΩ = ū

∫
Ω

ihdΩ (16)

Then, Equation 13 can be used to write:

ū

∫
Ω

ihdΩ = φū (η̄ − z0) Ω (17)

The same derivation can be applied in y-direction (third entry of q in Equa-

tion 4) to get:∫
Ω

iqydΩ =

∫
Ω

ivhdΩ ≈
∫

Ω

iv̄hdΩ = v̄

∫
Ω

ihdΩ = φv̄ (η̄ − z0) Ω (18)
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The integral of q in Equation 4 can be replaced using Equations 13, 17 and

18 to write
∂

∂t
φΩq̄ +

∮
∂Ω

iFndr =

∫
Ω

sdΩ +

∮
∂Ω∗

s∗dr, (19)

where q̄ is the vector of volume-averaged variables:

q̄ =


(η̄ − z0)

ū (η̄ − z0)

v̄ (η̄ − z0)

 (20)

The integral of iFn in Equation 4 can be evaluated by defining the area-

averaged variables. Here, the area under consideration (∂Ω) is the boundary

of the control volume. The closed curve integral of an arbitrary variable q

can be splitted into integrals along n segments:∮
∂Ω

qdr =

∫ j+1

j

qdr +

∫ j+2

j+1

qdr + ...+

∫ j

j+n

qdr (21)

This is illustrated in Figure 3, where the black line denotes ∂Ω and the blue

line denotes a piecewise linear approximation of it. The approximation is

intentionally crude for a better illustration. In theory, the integration can be

carried out on the splitted parts of ∂Ω (Figure 3, black line), however in a

finite volume method context the integration is carried out on piecewise linear

approximations of the boundary (Figure 3, blue line). The area-averaged

variables are calculated as:

ĥ =

∫
r
ihdr∫
r
idr

(22)

η̂ =

∫
r
iηdr∫
r
idr

(23)

v̂ =

∫
r
ihvdr∫
r
ihdr

(24)
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r is the path between two points on ∂Ω, measured counter clockwise around

∂Ω, e.g. the path between point j and j + 1 in Figure 3 (marked with the

index k + 1). The relationship between ∂Ω and r is that ∂Ω is the sum of

all paths r. ĥ is the area-averaged water depth, η̂ is the area-averaged water

elevation and v̂ = (û, v̂) is the area-averaged velocity vector. In a finite

volume method, variables would be averaged per cell edge, thus the area

would be the edge under consideration. Therefore, the term edge-averaged

value is used interchangeably. To differentiate the area-averaged values from

the volume-averaged values, the area-averaged values are denoted with a

circumflex (hat), e.g. ĥ, and the volume averaged values are denoted with a

bar, e.g. h̄.

The flux term Fn in Equation 4 is:

Fn =


qxnx + qyny

(uqx + 0.5gh2)nx + vqxny

uqynx + (vqy + 0.5gh2)ny

 (25)

Equation 3 can be rearranged to:∫
r

i (η − zb) dr = ψ

∫
r

(η − z0) dr (26)

Further, applying the relation h = η − zb and Equation 23 leads to:∫
r

ihdr = ψ

∫
r

(η̂ − z0) dr = ψ (η̂ − z0) r (27)

Equation 24 in combination with Equation 27 can be rearranged to:∫
Ω

ihvdr = v̂

∫
Ω

ihdr = ψv̂ (η̂ − z0) r (28)

This can be written in x- and y-direction as∫
r

ihudr = ψû (η̂ − z0) r (29)
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and ∫
r

ihvdr = ψv̂ (η̂ − z0) r, (30)

respectively. Using qx = hu and qy = hv, the integral of the mass flux (first

entry of Fn) is approximated as:∫
r

(qxnx + qyny) dr = ψû (η̂ − z0) rnx + ψv̂ (η̂ − z0) rny (31)

The momentum fluxes (second and third entries of Fn) are approximated by

using the area-averaged values ĥ, û and v̂. In x-direction this results in:∫
r

(
ihûûnx + 0.5igh2nx + ihv̂ûny

)
dr (32)

The area-averaged values are taken outside of the integral:

ûûnx

∫
r

ihdr +

∫
r

0.5igĥhnxdr + v̂ûny

∫
r

ihdr (33)

Equation 27 can be used to rewrite Equation 32:

ûûnxψ (η̂ − z0) r + 0.5gĥnxψ (η̂ − z0) r + v̂ûnyψ (η̂ − z0) r (34)

The approximation of the momentum flux in y-direction is straight forward.

Using Equation 21 to replace the closed curve integral, Equation 19 is rewrit-

ten as
∂

∂t
φΩq̄ +

∑
k

ψkrkF̂knk =

∫
Ω

sdΩ +

∮
∂Ω∗

s∗dr, (35)

where k is the index of the path integral. The vector F̂n is written as:

F̂n =


û (η̂ − z0)nx + v̂ (η̂ − z0)ny

ûû (η̂ − z0)nx + 0.5gĥ (η̂ − z0)nx + ûv̂ (η̂ − z0)ny

v̂û (η̂ − z0)nx + v̂v̂ (η̂ − z0)ny + 0.5gĥ (η̂ − z0)ny

 (36)
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2.4. Solid-fluid interfacial pressure source term

∂Ω∗ is the interface between fluid and solid, denoted with blue lines in

Figure 4, where the top view of a square-shaped control volume is given. The

dashed black line shows the boundary of the control volume (∂Ω) and the

grey blocks represent single elements of simplified structures, e.g. buildings.

Representing the unresolved fluid pressure at the interface ∂Ω∗, s∗ consists

of two components; the stationary component s∗st which can be calculated

if hydrostatic pressure distribution at the interface is assumed and the non-

stationary component s∗ns which accounts for drag effects of the unresolved

structures [37]: ∮
∂Ω∗

s∗dr =

∮
∂Ω∗

s∗stdr +

∫
Ω

s∗nsdΩ (37)

While the stationary component s∗st acts along the interface ∂Ω∗, the non-

stationary component acts on the whole control volume Ω.

In theory, the calculation of the stationary component s∗st is straight-

forward. Figure 5 shows a vertical section through a control volume and

the two possible cases of submergence: partially submerged (left) and fully

submerged (right). If these cases are considered separately and hydrostatic

pressure is assumed, the pressure of the fluid on the solid p∗ can be written

as

p∗ (x, y) =

0.5 g (η − zb)2 if η (x, y) ≤ z∗b

0.5 g ((η − z∗b ) + (η − zb)) (z∗b − zb) else

(38)

where z∗b is the bottom elevation of the microtopgraphy that the fluid pressure

is acting on (cf. Figure 5). If m = (mx,my) is the unit normal vector along

∂Ω∗, which points inside the solid structure as illustrated in Figure 4, the

stationary component of the interfacial pressure source term can be written
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as:

s∗st =


0

p∗mx

p∗my

 (39)

The difficulty in the calculation of s∗st is that the interface between solid and

fluid ∂Ω∗ is unknown because it is not resolved. Therefore, the stationary

term can not be solved exactly and has to be approximated. One approach

to estimate s∗st can be found in [37].

The non-stationary component of Equation 37 essentially accounts for

drag which occurs during the flow through the unresolved structures, e.g.

buildings or microtopography, as the fluid moves between the single elements

of the structure. Because it occurs at unresolved scales, the drag force can

not be calculated. In [37], a generalized drag law is suggested to approximate

this term as:

s∗ns =


0

cDu|v|

cDv|v|

 (40)

Here, |v| is the Euclidian norm of the vector of velocities v = (u, v) and cD

is a dimensionless drag coefficient. The determination of cD is challenging,

often requires a calibration process and has not been fully understood yet.

Several approaches have been suggested to overcome this difficulty. In [37],

it is acknowledged that the drag effect may be estimated by an increased

roughness coefficient as demonstrated in [7]. In [11], momentum correction

terms are calculated which depend on the volumetric porosity and a so-called

effective water depth, which is the water volume per unit area. Also, different

methods with varying complexity for estimating cD have been presented in

16



[28, 29, 30, 37]. In [37], a vegetative resistance model as proposed in [41] is

used to estimate cD. In this study, the drag force approach is used, because

it is commonly used and studied in literature, e.g. [28, 29, 30, 37]. Here, the

drag force approach of [41] is slightly modified to allow the full submergence

of the control volume. Then, cD is calculated as:

cD = 0.5 c0
D a ·min (h, z∗b − zb) (41)

Here, a is the horizontally projected area of the elements of the solid struc-

ture per unit volume in one cell and c0
D is a bulk drag coefficient accounting

for the whole solid structure (cf. [41]) and min is the minimum function.

A similar approach is given in [28] to account for inundated subgrid-scale

structures. Both a and c0
D are not fully understood yet [37], they depend

on the configuration of the solid structures as well as the shape of single

elements, flow direction and several other factors which have yet to be iden-

tified. Therefore, in this work the model is calibrated with the product c0
D ·a

as a whole. Hence, both a and c0
D lose their strict physical interpretations

and become calibration parameters.

3. Numerical method and computational examples

The numerical solution of Equation 35 can only be achieved with the

finite volume method, as the equation does not contain spatial differential

expressions. Numerical studies of the authors have shown that a second

order reconstruction of the bottom elevation is necessary to obtain accu-

rate results, especially in sloped domains (cf. [14]). Further, a second-order

accurate scheme allows to compensate to some degree the loss of accuracy
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in the approximation due to coarse cells in the anisotropic porosity model.

Thus, for the following computational examples, the presented equations are

solved with a second-order monotonic upstream-centered scheme for conser-

vation laws (MUSCL) presented in [42] being used for both the anisotropic

porosity model and the high-resolution model. It is acknowledged that the

high-resolution model is suffering more from the additional calculations per

cell associated with the second order reconstruction process in comparison

to the anisotropic porosity model. A two-step explicit Runge-Kutta method

is used to advance in time [43]. The numerical scheme is implemented in the

Hydroinformatics Modeling System (hms), an in-house scientific program-

ming framework [14].

3.1. Calculation of porosities

Similar to [11], it is suggested to calculate the porosities φ and ψ with

statistical properties of the unresolved subgrid-scale features of the topogra-

phy.

In a preprocessing step, the bottom elevation in each computational cell

is sampled on a finer scale such that the discrete cummulative distribution

function (CDF) can be calculated individually in each cell. The CDF can

then be used at the beginning of each time step to evaluate how many of

the samples are submerged by the water depth inside the cell. Basically, the

CDF is used as a structure to store the different bottom elevations mapped

to the number of their occurences.

For example, let the computational cell have a CDF based on 25 samples

of bottom elevation inside the cell. It is assumed that each sample corre-

sponds to an equal area inside the cell. For sake of simplicity, let 10 of the
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samples have a bottom elevation of 0, let 10 of the samples have a bottom

elevation of 0.2 m and let 5 of the samples have a bottom elevation of 0.4 m.

Then, the zero datum in the cell is defined as 0 and the water depth h in

the cell corresponds to the water elevation η as h = η − 0 = η. Further,

assume the water depth is h = 0.1 m. The volume of the water inside the

cell corresponds to Vw = 10 · 0.1 · c, where c is the area of one sample. The

total volume is Vt = 25 · 0.1 · c. Then, the volumetric porosity is calculated

as φ(h = 0.1) = Vw/Vt = 10/25.

If the water depth rises to h = 0.3 m, the volume of water becomes

Vw = 10·0.3·c+10·(0.3−0.2)·c, and the total volume becomes Vt = 25·0.3·c.

Hence, the volumetric porosity is calculated as φ(h = 0.2) = Vw/Vt = 40/75.

The same approach is applied to calculate areal porosities.

3.2. Error and speedup calculation

In the following, computational examples are presented to evaluate the

capability of the equations. To the authors’ knowledge, no analytical solu-

tions for the shallow water equations with anisotropic porosity have been

reported in literature. The shallow water equations with isotropic porosity

in [11] are compared with large-scale real case applications. The analytical

and semi-analytical solutions presented in [29] are valid for isotropic poros-

ity only. In [37], the anisotropic porosity model results are compared with

measurement data.

Therefore, in this work four examples are presented where the high-

resolution shallow water model (HR) results are considered to be the reference

solution. In a final example, the anisotropic porosity model (AP) results are

compared with measurement data. The resolution of the HR model is always
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chosen such that further refinement does not change the result. Turbulence

and fluid viscosity are neglected in all test cases.

In order to assess the quality of the model results, the L1-norm, defined

as

L1 =
1

N

N∑
i

|xi − ẋi| (42)

is used, where N stands for the total number of solutions, xi is the reference

solution, ẋi is the model solution and i is the sample index.

The computational benefit of the anisotropic porosity model is quantified

using the speedup, defined as

ζ =
tHR

tAP

(43)

whereby tHR and tAP are the wall-times of the HR model and the AP model,

respectively.

3.3. One-dimensional dam break on dry bed with sine-wave shaped microto-

pography

In this computational example, a one-dimensional dambreak on dry bed is

simulated. The domain is 6 m long, 0.5 m wide and the initial water elevation

is defined as:

η (x) =

η0, x ≤ 3 m

zb (x) , x > 3 m

(44)

η0 stands for the initial water elevation and is varied from 0.025 m to 0.06 m

for different simulation runs. The bottom elevation of the domain is described

with a sine-wave as:

zb (x) = A sin

(
2π

λ
x+

π

2

)
+ 0.01 (45)
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Here, λ is the wavelength and A is the amplitude of the sine-wave. In this

example they are set to λ = 0.05 m and A = 0.01 m. Figure 6 (left) shows the

initial conditions for η0 = 0.03 m. Only the section from 2.5 m < x < 3.5 m

is plotted because the small wavelength of the sine-wave makes it difficult to

illustrate the bottom elevation over the whole domain. At the outlet of the

domain at x = 6 m, an open boundary forcing the water elevation gradient

to zero is set. All other boundaries are closed boundaries. Bottom roughness

is accounted for with a Manning’s coefficient of n = 0.016 sm−1/3.

The reference solution is obtained by using a classical shallow water model

with an element size of ∆x = 0.01 m (HR model). As shown in Figure 6

(right), this resolution is sufficient to explicitly discretize the bottom eleva-

tion (Equation 45). In contrast, the model with anisotropic porosities (AP

model) uses a mesh with element size of ∆x = 0.1 m. Figure 6 (right) shows

exactly one computational cell of the AP model and the bottom topography

inside it. The resolution of the AP model’s mesh is not sufficient to explic-

itly discretize the sine-wave, therefore the bottom elevation is described by

zb (x) = 0 m. A classical shallow water model (SWE model) with the same

resolution as the AP model is used to illustrate the effect of the AP model.

Good agreement between the HR model and the AP model is achieved for

c0
D · a = 10 m2 as shown in Figure 7 and 8. In [37], c0

D = 2 is recommended

but values up to c0
D = 6 have been reported (M. Bruwer, personal communi-

cation, 24 March 2015) which shows that this value has an uncertainty. The

results for water elevation, velocity and unit discharge are plotted on the left

side in Figure 7 (top, middle and bottom, respectively). The fluctuations in

the HR model solution are due to the sine-wave shaped microtopography as
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the water accelerates when flowing down the sine-wave and decelerates when

climbing up the crests of the sine-wave. The SWE model shows poor agree-

ment in all cases. The AP model captures the advance of the front correctly

and the obstructive effects of the microtopography could be reproduced well

(Figure 7 (top left)). The velocity is underestimated between 0 < x < 1 m

and slightly overestimated between 1 m < x < 4 m (Figure 7 (middle left)).

The unit discharge behaves similar as the velocity (Figure 7 (bottom left)).

Water elevation, velocity and unit discharge are all captured well. On the

right side in Figure 7, the sensitivity of c0
D ·a is illustrated. The product c0

D ·a

is varied from 0 to 500 m2. As c0
D · a increases, the roughness of the model

increases. The AP model is sensitive with regard to c0
D ·a until a critical value

of about c0
D · a = 500 m2 is reached. It was observed that for c0

D · a > 500 m2

this parameter is not very sensitive. This is because after reaching a certain

value, friction is artificially limited in the numerical scheme to avoid veloci-

ties to change direction. For details on this friction treatment, the reader is

referred to [44].

The initial water elevation η0 is varied to 0.025 m and 0.03 m to study the

influence of the water elevation. Figure 8 (left) and Figure 8 (right) show that

the solution is enhanced by the AP model for different initial water elevations.

In both cases, the overestimation of the velocity and the discharge is higher

than for η0 = 0.06 m. It is noted, that the drag coefficient c0
D · a = 10 m2 is

kept constant for these simulations. Case specific calibration might further

enhance the solution. The L1-error for the presented cases is summarised in

Table 1, 2 and 3 for water elevation, velocity and discharge. For all variables,

the L1-error of the SWE model is about one order of magnitude higher than
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the AP model error. The computation with the AP model was carried out

approximately 1000 times faster than with the HR model.

3.4. Two-dimensional dam break across a porosity discontinuity

The following example simulates a two-dimensional dam break across a

porosity discontinuity on a 100 m × 10 m domain. This example was ini-

tially introduced in [29] as a one-dimensional benchmark for the shallow

water model with isotropic porosity and a quasi-analytical solution for the

one-dimensional case was derived. This solution is not valid for the two-

dimensional case, therefore the results of the anisotropic porosity model

(AP) is compared with a high-resolution shallow water model (HR). The

computational domain is illustrated in Figure 9 (left). The discontinuity of

the porosity as well as the discontinuity of the water elevation is located at

x = 50 m:

η0 (x, y) =

2 m, x ≤ 50 m

1 m, x > 50 m

φ0 (x, y) =

1, x ≤ 50 m

0.8, x > 50 m

(46)

At the outlet x = 100 m, an open boundary forcing the water elevation gradi-

ent to zero is set. All other boundaries are closed wall boundary conditions.

The porosity jump is constructed via randomly generated obstacles which

are explicitly discretized in the HR model and are taken into account by

the porosities in the AP model. All obstacles are square shaped with an

edge length of 0.1 m and with infinitive vertical height and are spatially dis-

tributed according to a random uniform distribution such that each cell of the

AP model has a volumetric porosity of φ = 0.8 for x > 50 m as illustrated

in Figure 9 (right) for one exemplary cell. During the whole simulation,
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the obstacles are never fully inundated, which means that the volumetric

porosity stays constant in each cell. The simulation is run for t = 4 s. The

HR model is calculated on a grid with square-shaped elements with an edge

length of 0.02 m. The AP model uses a computational grid with square-

shaped elements with an edge length of 0.5 m. c0
D · a = 10 m2 is chosen for

the AP model. Bottom roughness in both models is taken into account by a

Manning’s coefficient of n = 0.016 sm−1/3.

Results for water elevation and unit discharge at different longitudinal

sections at t = 4 s are plotted in Figure 10 (left) and Figure 10 (right),

respectively. L1-errors for water elevation and unit discharge at the sections

are given in Table 4. The AP model results show good agreement with the

reference solution calculated by the HR model. After the dam break at x =

50 m, the rarefaction wave traveling in upstream direction as well as the shock

wave travelling in flow direction are captured well, although at about x =

30 m the water elevation is underestimated in all sections. The fluctuation

of the water elevation, which results from the superposition of waves due to

the obstacles, calculated by the HR model can not be reproduced by the AP

model. The unit discharge is captured very well by the AP model (Figure 10

(right)). The discretized obstacles in the HR model narrow the cross section

available to flow and lead to a high localized flow velocity and therefore a high

unit discharge. This can not be reproduced by the AP model. As pointed

out in [29], this is not a failure of the AP model, but is a consequence of

the macroscopic modeling using the porosity concept. The AP model results

were computed roughly 3000 times faster than the HR model results.
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3.5. Two-dimensional dam break on dry bed with random microtopography

This example considers a two-dimensional dam break on dry bed with

random microtopography. The domain spans 6 m in x-direction and 3 m in

y-direction. The water elevation is defined as:

η (x) =

0.03 m, x ≤ 3 m

zb (x, y) , x > 3 m

(47)

The microtopography is generated as square-shaped deviations with an edge

length of 0.05 m, and their amplitudes zb,mic are distributed between 0 and

0.02 m according to a Gaußian distribution function as illustrated in Figure

11 (right). All boundaries are closed except at the right side of the domain

(x = 6 m), where an open boundary condition as in previous the example is

applied. A reference solution is computed with a shallow water model on a

0.01 m× 0.01 m grid (HR). The anisotropic porosity model uses square grid

cells with an edge length of 0.1 m (AP). The bottom friction is expressed via

a Manning coefficient n = 0.016 sm−1/3. The drag force of the AP model is

estimated with the product c0
D · a = 10 m2. The simulation runs for t = 2 s.

Results for water depth at different sections through different y-values

are plotted in Figure 12. Here, dry cells are not plotted for the HR model.

The L1-errors for water elevation and velocity at different times are given

in Table 5 and 6. The AP model shows very good agreement with the HR

model. The shock is captured with satisfactory accuracy at all times, however

local details of the water elevation variation such as small scale fluctuations

due to the microtopography can not be captured.

Velocity profiles through the same sections as in Figure 12 are plotted

in Figure 13. Although the maximum values of the velocity profiles are not
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reproduced by the AP model, overall good agreement between the HR model

and the AP model is observed.

Figure 14 shows a topview on the water elevation distribution in the

domain at the same time steps as in Figure 12 for the HR model (left) and

the AP model (right). The HR model resolves the microtopography explicitly

and as the water elevation is calculated as η = h+ zb, in the dry part of the

domain, the water elevation equals the bottom elevation. It is observed that

the overall characteristics of the advancing front and the rarefaction wave

moving upstream are captured well by the AP model. However, the spatial

distribution of the AP model results have low accuracy, as they suffer from

numerical diffusion due to coarse grids as well as the lack of information on

small scale bottom elevation variations. The results of the AP model are

calculated approximately 1000 times faster than the HR model.

3.6. Rainfall-runoff on an inclined plane with random microtopography

Rainfall-runoff is heavily influenced by the microtopography of the do-

main [45]. In this example, the surface runoff on a 6 m× 3 m inclined plane

with a slope of 0.02 and a Manning’s coefficient of n = 0.016 sm−1/3 is simu-

lated. The bottom elevation for the high-resolution model (HR) is calculated

as:

zb (x, y) = 1− 0.02 · x+ zb,mic (x, y) (48)

Here, zb,mic is the amplitude of the microtopography, which is generated as

square blocks with an edge length of 0.02 m and a vertical amplitude varying

between 0 and 0.003 m according to a Gaußian distribution function. The

microtopography is applied only inside a rectangular area spanning from
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(2.25 m, 0.75 m) to (3.75 m, 2.25 m) whereby the first pair of coordinates de-

notes the bottom left corner and the latter pair denotes the top right corner

of the rectangle as illustrated in Figure 15 (right top). For the anisotropic

porosity model (AP), the microtopography is not explicitly discretized and

the bottom elevation is calculated as:

zb (x, y) = 1− 0.02 · x (49)

The domain without microtopography is illustrated in Figure 15 (left). Rain-

fall is imposed for 100 s with the intensity being varied from ir = 1 ·10−5 m/s

to ir = 1 ·10−3 m/s for different simulation runs. The boundary at the outlet

is an open boundary, all other boundaries are closed. The HR model uses a

square grid with an element size ∆x = 0.02 m, the AP model uses a square

grid with an element size of ∆x = 0.1 m. A calibration resulted in c0
D ·a = 0,

i.e. no drag force influence.

The normalised discharges at the outlet of the domain (x = 6 m) are

compared for the different rainfall intensities in Figure 16. The normalized

discharge is calculated as the ratio of the model discharge (Qmodel) to the

rainfall discharge, whereby the rainfall discharge for a l × w rectangular

domain is calculated as [46]:

Qrain = l · w · ir (50)

The comparison shows that the influence of the microtopography is overes-

timated by the AP model. In the early time of the simulation, both hydro-

graphs agree well but when the wave which is influenced by the microtopog-

raphy reaches the outlet the hydrographs start to deviate.
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For ir = 1 · 10−5 m/s the AP model does not reach its concentration

time in 100 s. The agreement at the late stages of the simulation (after

t = 80 s) is less good. This suggests that in the AP model, the influence of

the microtopography is overestimated in these test cases and thus the water

is artificially held back and does not reach the outlet. This argument is

supported by the fact that the agreement gets better for increasing rainfall

intensity, cf. e.g. the hydrograph of ir = 1 · 10−3 m/s. As the intensity

increases, the influence of the microtopography on the flow decreases. For

ir = 1 · 10−4 m/s the hydrograph of the AP model rises a little bit too slow

and for ir = 1 · 10−3 m/s both hydrographs agree well. The water depths

behave similarly. The results of the AP model are on average computed 550

times faster than the reference solution.

The L1-errors for different intensities are given in Table 7. Here, the L1-

error is divided by the corresponding intensity for better comparison of the

cases.

For ir = 1 · 10−4 m/s, model results at different points are compared

(cf. Figure 17, right bottom). Figure 17 also shows a comparison of nor-

malized discharges at these evaluation points. Good agreement between the

discharges is observed at the points 1, 2 and 5. However, especially at points

1 and 2 is a temporal delay in the hydrograph of the AP model which again

comes from the overestimation of the influence of microtopography. Point

3, which is located inside the area with microtopography, shows the worst

agreement which might result from the aforementioned overestimation as well

as the macroscopic approach of the AP model which is not expected to re-

produce local flow processes. At point 4 the discharge is overshot by the AP
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model.

Model results for the same points are compared in Figure 18 for ir =

1 · 10−5 m/s. Here, it is seen that the agreement at the points where the flow

is influenced by the microtopography, namely points 2, 3 and 4, gets worse

for lower intensities. Especially at point 3, which is located inside the area

with microtopography, the AP model returns a discharge which is 3 times

higher than the HR model discharge and is temporally delayed.

The L1-errors at the different points are given in Table 8 and 9 for i =

10−4 m/s and i = 10−3 m/s, respectively. Again, the L1-errors are divided by

the corresponding intensity.

Figure 19 shows temporal snapshots of the discharge distribution in the

domain at t = 15 s, t = 20 s and t = 50 s for both the HR model (left) and the

AP model (right). The resolution of the AP model is much coarser than the

HR model and therefore local details can not be resolved as good as in the

HR model but general properties of the flow field are reproduced. At t = 20 s

the overestimation of microtopography can be seen very clearly, as the flow

calculated by the HR model (Figure 19, left middle) has already reached

the right border of the microtopography area while the flow calculated by

the AP model (Figure 19, right middle) has only reached the middle of the

microtopography area. The discharge of the AP model is higher than of the

HR model, however the porosity slows down the front of the AP model flow.

This can also be observed in Figure 17 (left middle), where the discharge at

point 3 is delayed and overestimated by the AP model. At t = 50 s the flow

fields reasonably resemble (Figure 19, bottom).
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3.7. Dam-break flow through an idealised city

In this computational example, results of a dam-break experiment con-

ducted at the Université catholique de Louvain, Belgium, [47] are numerically

reproduced.

3.7.1. Domain description, initial and boundary conditions

The domain is a 35.8 m long and 3.6 m wide channel with horizontal bed.

The idealised city consists of 5 × 5 buildings, each of them being a square

block with an edge length of 0.30 m. The distance between the blocks is

0.10 m. The dam-break is constructed by opening a 1 m wide gate, which

initially seperates part of the channel with water ponding at 0.40 m from

the rest of the channel (reservoir), where a very thin layer of 0.011 m water

due to imperfect tightness of the gate is reported. For further details on

the experimental setup and employed measurement techniques, the reader is

referred to [47]. The domain is illustrated in Figure 20, where the reservoir

is coloured in grey.

For the numerical model, only the reservoir and the first 16 m of the chan-

nel is discretised for computational efficiency. In preliminary studies it had

been observed that for the duration of the simulations, t = 15.5 s, the shock

wave does not travel further than this length. The downstream boundary is

an open boundary and all other boundaries are closed boundaries.

The HR model uses a triangular mesh with three different cell sizes: the

inside of the reservoir is discretised with cells with a characteristic length of

lc,1 = 0.3 m. The area inside the channel which is sufficiently far away from

the building blocks is discretised with a characteristic length of lc,2 = 0.1 m.

The space between the buildings is discretised with a characteristic length of
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lc,3 = 0.01 m. The buildings are represented as holes in the mesh, which is a

method commonly used in urban flood modeling [48]. With the value chosen

for lc,3, the space between two buildings is discretised with about 10 cells and

the total cell number is 95975. The AP model uses square-shaped cells with

an edge length of 0.25 m in the whole domain, which results in 1272 cells in

total.

Experimental data is available at 64 measurement gauges distributed in-

side the channel [47]. The positions of these gauges are given in Figure 21.

Errors are calculated for all gauges. In the discussion, results are plotted

only for 4 gauges, namely gauges 1, 18, 44 and 55, to avoid too many figures.

These gauges are pointed out in Figure 21.

The roughness of the channel has been estimated in [47] with a Manning’s

coefficient of n = 0.01 sm1/3. This value is used for both the HR and the AP

model.

3.7.2. Model calibration and run time

The AP model is calibrated with the value a · c0
D. The best results in

this specific case were obtained by completely neglecting the drag force, i.e.

a · c0
D = 0. No calibration is carried out for the HR model. The HR model

simulation takes about 3000 s wall-clock time to finish. The AP model re-

quires about 4 s wall-clock time. Consequently, the speedup is calculated as

750 (cf. 10).

3.7.3. Discussion

The HR model makes overall a good prediction of the water depth at

the evaluated gauges. In Figure 22, the water depth calculated by the HR
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model at the aforementioned gauges is plotted together with the measured

water depth. Overall, the numerical results approximate the experimental

results very well. The arrival time of the wave is predicted correctly at all

gauges. Larger deviations between the results occur at the later stages of

the simulation. At gauge 18, which is located between the buildings, the

wave reflections from the walls of the buildings superpose and create several

peaks between t = 3.5 s and t = 6.5 s in the HR model results which were

not observed during the experiment. Further, at gauge 1, which is at the

upper right corner of the building block, the water depth is underestimated

by the HR model. This might be because of the hydraulic jump observed

at the impact section which leads to increased local water levels which are

not reproduced by the HR model. These points might raise the question,

whether a turbulence model should be used, however Soares-Frazão and Zech

[47] report that adding turbulence to the numerical model leads to a worse

agreement between numerical and experimental results.

The anisotropic porosity model (AP) shows good agreement with the HR

model results, although the results of the AP model are smoother and more

diffused than the HR model results. In Figure 22, AP model results for

water depth are plotted for the four gauges as well. Gauge 1 and gauge 18

show very good agreement, while the arrival time of the wave at gauge 44

is delayed. Gauge 55, located in the front of the building block, shows the

worst agreement of the four. Here, the AP model overshoots the HR model.

The peak at around t = 4s is not reproduced. Overall, the general properties

of the AP model results, i.e. the lack of local and spatial fluctutations, agree

with the observations in [49]. In general, the AP model error manifests itself
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in excessive damping of the results.

L1-errors of both models in regard to the experimental data are calculated

as the average L1-error of all 64 gauges. The HR model has a L1-error of

0.02 m, the AP model has a L1-error of 0.07 m.

4. Conclusions

An integral formulation of the two-dimensional shallow water equations

with anisotropic porosity for flow over partially and fully inundated topog-

raphy was derived. A novel formulation for the porosities was proposed and

an approximation for the storage and flux terms was presented. The porosi-

ties are dependant on the water elevation in the cell. This relationship can

be approximated by calculating a cummulative distribution function for the

unresolved bottom elevation and evaluating it at the water elevation. Due

to the macroscopic point of view, additional terms appear in the governing

equations. Suitable approximations for these terms have been referred to.

The non-stationary term was approximated with a drag force approach. The

integral formulation of the equations can only be solved by the finite volume

method. A second order MUSCL scheme was used to solve the equations

with a two-step explicit Runge-Kutta method for time stepping.

Five computational examples, ranging from simple academic benchmarks

to nearly ’real case’ laboratory experiments were shown to demonstrate the

capabilities and limitations of the new approach. Due to the lack of ana-

lytical solutions a high-resolution shallow water model was used to calculate

reference solutions. In the last test case, experimental data was used for

model evaluation. The shallow water model with porosity showed overall
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good agreement with the reference solutions. The aforomentioned drag term

was used to calibrate the model and a sensitivity study regarding this term

was carried out. Except in the last test case, good results are obtained with

c0
D · a = 10. However, further studies to investigate the drag force coefficient

values and the possibility to represent the drag effect with increased friction

are required.

As bottom slope increases, the accuracy of the anisotropic shallow water

model decreases. Experimental studies show that a large bed slope reduces

the effect of microtopography [50] and the presented model seems to under-

estimate the reduction.

A challenge in practical applications is the isolation of the part of topog-

raphy modeled as porosity from the global topography. Usually, the global

topography is defined as the roughness of the surface of the earth and rep-

resented by the cell value. The unresolved topography is thought about as

subgrid-scale deviations from this value which creates heterogeneity inside

the cell. The issue of identifying these deviations has been researched in

the context of isolating microtopography and different methods have been

proposed in the literature, e.g. [51]. However, finding suitable methods to

correctly isolate the part of topography to be modeled as porosity remains an

open issue, which seems to be the main limitation of applying the proposed

model to ’real world cases’.

Local details of the flow could not be exactly reproduced by the anisotropic

porosity model, because the concept of porosity as a statistical property of

the topography is not expected to reproduce processes at this scale [29].

The novel anisotropic porosity was found to be a good balance between
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computational time and accuracy. Table 10 gives an overview of the speedups

in the simulations in dependency of cell size ∆x and cell number n. The ratio

of cell numbers (nHR/nAP) is identified as the main factor of the speedup. In

the presented computational examples, the anisotropic porosity model pro-

vided a computational benefit around three orders of magnitude, depending

on the ratio of the cell numbers, i.e. the difference in cell size.
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Figure 1: Definition of phase function i, water elevation η (blue), bottom elevation zb

(black) and zero datum z0 (dashed) in a vertical section through a control volume

Figure 2: Definition of control volume area Ω, control volume boundary ∂Ω and path r in

three dimensional view (left) top view and vertical section through the cell edge marked

with A-A’ (right)
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Figure 3: Definition of path index k and vertex index j: top view of an arbitrary control

volume; black color indicates the exact boundary, blue color indicates the approximated

boundary

Figure 4: Definition of the interface ∂Ω∗ (blue); grey blocks represent elements of micro-

topography
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Figure 5: Definition of p∗ and z∗b ; partially submerged control volume (left), fully sub-

merged control volume (right): blue color indicates the water column
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Figure 6: Dam break on dry bed with sine-wave shaped microtopography: Initial condi-

tions for η0 = 0.03 m (left); bottom elevation distribution inside one AP model cell and

the HR model discretization (dashed lines) (right)
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Figure 7: Dam break on dry bed with sine-wave shaped microtopography: Comparison

of model results at t = 4 s with η0 = 0.06 m (the anisotropic porosity model (AP), the

high-resolution reference solution (HR) and a coarse grid classical shallow water model

(SWE)) (left), sensitivity study of c0D · a (denoted as c) (right)
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Figure 8: Dam break on dry bed with sine-wave shaped microtopography: Comparison of

model results at t = 4 s with η0 = 0.03 m (left) and η0 = 0.025 m (right) (the anisotropic

porosity model (AP), the high-resolution reference solution (HR) and a coarse grid classical

shallow water model (SWE))
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Figure 9: Dam break across a porosity discontinuity: Top view on the computational

domain (left); top view on an exemplary computational cell of the AP model (right),

black color indicates the location of obstacles
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Figure 10: Dam break across a porosity discontinuity: Water elevation (left) and unit

discharge (right) at t = 4 s for different longitudinal sections for the anisotropic porosity

model (AP) and the high-resolution reference solution (HR)
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Figure 11: Dam break on bed with random microtopography: Initial conditions (left);

microtopography in the domain (right)
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Figure 12: Dam break on bed with random microtopography: Water elevations at

y = 0.525 m (left) and y = 2.245 m (right) at different times for the anisotropic porosity

model (AP) and the high-resolution reference solution (HR); the high-resolution bottom

topography is plotted at the very top of each column for illustration purposes44



Figure 13: Dam break on bed with random microtopography: Flow velocities at y =

0.525 m (left) and y = 2.245 m (right) at different times for the anisotropic porosity model

(AP) and the high-resolution reference solution (HR)
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Figure 14: Dam break on bed with random microtopography: Water elevations at different

time steps for the high-resolution reference solution (HR) (left) and the anisotropic porosity

model (AP) (right)
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Figure 15: Rainfall-runoff on an inclined plane with random microtopography: Side view

of the computational domain without microtopography (left); top view of the position and

spatial distribution of microtopography (right top); top view of the positions of evaluation

points (right bottom)
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Figure 16: Rainfall-runoff on an inclined plane with random microtopography: Compar-

ison of normalized discharges (left) and water depths (right) at the outlet computed by

the HR model and the AP model for different rainfall intensities
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Figure 17: Rainfall-runoff on an inclined plane with random microtopography: Com-

parison of normalized discharges computed by the HR model and the AP model for

ir = 1 · 10−4 m/s at different evaluation points (plotted in the right bottom)
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Figure 18: Rainfall-runoff on an inclined plane with random microtopography: Com-

parison of normalized discharges computed by the HR model and the AP model for

ir = 1 · 10−5 m/s at different evaluation points (plotted in the right bottom of Figure

17)
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Figure 19: Rainfall-runoff on an inclined plane with random microtopography: Compari-

son of snap shots of unit discharges computed by the HR model (left) and the AP model

(right) at different time steps
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Figure 20: Dam break flow through an idealised city: Computational domain and initial

conditions

Figure 21: Dam break flow through an idealised city: Location of the gauges, area of

building array is marked with dashed line
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Figure 22: Dam break flow through an idealised city: Discharges calculated by the

anisotropic porosity model (AP), high-resolution model (HR) and the measurement data

at gauges 1, 18, 44 and 55
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η (m) L1,AP (η) (m) L1,SWE(η) (m)

0.025 3.8 · 10−4 28 · 10−4

0.03 6.4 · 10−4 34 · 10−4

0.06 15 · 10−4 76 · 10−4

Table 1: Dam break on dry bed with sine-wave shaped microtopography: L1-error for

water elevation as calculated by the anisotropic porosity model (AP) and the coarse shallow

water model (SWE)

η (m) L1,AP (v) (m/s) L1,SWE(v) (m/s)

0.025 0.8 · 10−2 5.7 · 10−2

0.03 1.6 · 10−2 7 · 10−2

0.06 1.2 · 10−2 13.8 · 10−2

Table 2: Dam break on dry bed with sine-wave shaped microtopography: L1-error for

velocity as calculated by the anisotropic porosity model (AP) and the coarse shallow

water model (SWE)

η (m) L1,AP (q) (m2/s) L1,SWE(q) (m2/s)

0.025 1.0 · 10−4 8.6 · 10−4

0.03 2.6 · 10−4 12 · 10−4

0.06 4.9 · 10−4 44 · 10−4

Table 3: Dam break on dry bed with sine-wave shaped microtopography: L1-error for unit

discharge as calculated by the anisotropic porosity model (AP) and the coarse shallow

water model (SWE)
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y (m) L1(η) (m) L1(q) (m2/s)

0.525 8.1 · 10−3 5.3 · 10−2

1.455 7 · 10−3 3.9 · 10−2

2.25 7.4 · 10−3 5.3 · 10−2

Table 4: Dam break on dry bed across a porosity discontinuity: L1-error for water elevation

and unit discharge

t (s) L1(η) (m) L1(v) (m/s)

0.4 1.8 · 10−4 2 · 10−3

1 2.5 · 10−4 3.6 · 10−3

1.8 6 · 10−4 9.1 · 10−3

Table 5: Dam break with random microtopography: L1-error for water elevation and

velocity for y = 0.525 m

t (s) L1(η) (m) L1(v) (m/s)

0.4 2.7 · 10−4 4 · 10−3

1 2.5 · 10−4 5 · 10−3

1.8 2 · 10−4 6 · 10−3

Table 6: Dam break with random microtopography: L1-error for water elevation and

velocity for y = 0.525 m
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i (m/s) L1(q) ((m2/s)/(m/s)) L1(h) (m/(m/s))

10−3 1.4 · 10−2 3.8 · 10−2

10−4 10 · 10−2 40 · 10−2

10−5 28 · 10−2 280 · 10−2

Table 7: Rainfall-runoff on an inclined plane with random microtopography: scaled L1-

error for unit discharge and water elevation at the outlet, errors are scaled by division by

the corresponding rainfall intensity

point L1(q) ((m2/s)/(m/s))

1 2 · 10−1

2 1.6 · 10−1

3 10 · 10−1

4 3.1 · 10−1

5 0.13 · 10−1

Table 8: Rainfall-runoff on an inclined plane with random microtopography: scaled L1-

error for unit discharge at the gauges for i = 10−4 m/s, errors are scaled by division by

the rainfall intensity
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point L1(q) ((m2/s)/(m/s))

1 5.1 · 10−1

2 7.2 · 10−1

3 30 · 10−1

4 4 · 10−1

5 1.2 · 10−1

Table 9: Rainfall-runoff on an inclined plane with random microtopography: scaled L1-

error for unit discharge at the gauges for i = 10−5 m/s, errors are scaled by division by

the rainfall intensity

Case ∆xHR nHR ∆xAP nHR nHR/nAP speedup

3.3 0.01 m 30000 0.1 m 300 100 1000

3.4 0.02 m 2500000 0.5 m 4000 625 3000

3.5 0.01 m 180000 0.1 m 1800 100 1000

3.6 0.02 m 45000 0.1 m 1800 25 550

3.7 0.01− 0.3 m 95975 0.25 m 1272 75.4 750

Table 10: Summary of speedups obtained in all simulations, n: Number of cells, ∆x: edge

length, HR: high-resolution model, AP: anisotropic porosity model
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Appendix A. Derivation of porosities by Sanders et al. [37]

It can be shown that the definitions of porosity in [37] can be considered as

a special case of Equations 2 and 3, where submergence of microtopography

is not allowed. If microtopography is not allowed to be submerged, the wet

fraction of the control volume will remain constant. Further, if the wet

fraction of the control volume is considered to have the same constant bed

elevation zb = z0, Equation 2 can be simplified to

φ =

∫
Ω
i (η − z0) dΩ∫

Ω
(η − z0) dΩ

=
(η − z0)

∫
Ω
idΩ

(η − z0)
∫

Ω
dΩ

=
1

Ω

∫
Ω

idΩ. (A.1)

If the same assumptions are made for the boundary of the control volume,

Equation 3 simplifies to

ψ =

∮
∂Ω
i (η − z0) dr∮

∂Ω
(η − z0) dr

=
1

∂Ω

∮
∂Ω

idr. (A.2)

Equations A.1 and A.2 are the porosities introduced in [37] for building treat-

ment. The assumptions made are valid for describing the effects of buildings,

which are unlikely to become submerged by the flood wave. If the porosities

are used to describe the effects of microtopography, Equations 2 and 3 have to

be used. A significant difference between Equations 2 and 3 (with inundation)

and Equations A.1 and A.2 (without inundation) is that the porosities that

allow inundation are dependent on the water elevation η, which is variable

in time. If the water elevation increases, the porosities increase. Therefore,

the porosities are functions of time if the terrain variation within a control

volume is considered and inundation is allowed, while without inundation the

wet fraction of the control volume remains constant and thus, the porosities

are constant in time.
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[1] I. Özgen, S. Seemann, A. L. Candeias, H. Koch, F. Simons, R. Hinkel-

mann, Simulation of hydraulic interaction between Icó-Mandantes bay
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