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1. Introduction

This chapter focuses on the hypotheses testing problem when the hypotheses or
models under consideration are “non-nested” or belong to “separate” families of
distributions, in the sense that none of the individual models may be obtained from
the remaining either by imposition of parameter restrictions or through a limiting
process®. In econometric analysis non-nested models arise naturally when rival eco-
nomic theories are used to explain the same phenomenon such as unemployment,
inflation or output growth. Typical examples from the economics literature are
Keynesian and new classical explanations of unemployment, structural and mone-
tary theories of inflation, alternative theories of investment, and endogenous and
exogenous theories of growth.? Non-nested models could also arise when alternative
functional specifications are considered such as multinomial probit and logit dis-
tribution functions used in the qualitative choice literature, exponential and power
utility functions used in the asset pricing models, and a variety of non-nested spec-
ifications considered in the empirical analysis of income and wealth distributions.
Finally, even starting from the same theoretical paradigm, it is possible for differ-
ent investigators to arrive at different models if they adopt different conditioning
or follow different paths to a more parsimonious model using the general-to-specific
specification search methodology, advocated, for example by Hendry (1993).

The concept of an econometric model is discussed in Section 2, where a distinc-
tion is made between conditional and unconditional models. This is an important
distinction since most applied work in econometrics takes place within a modelling
framework where the behaviour of one or more “endogenous” variables is often ex-
plained conditional on a set of “exogenous” variables. This discussion also highlights
the importance of conditioning in the process of model evaluation. Examples of
non-nested models are given in Section 3. Section 4 discusses the differences that lie

! Therefore our focus is distinct from Chow (1981) who, in examining a similar problem, assumes
that the set of models under consideration contains a general model from which all other competing
models may be obtained by the imposition of suitable parameter restrictions.

2See, for example, Friedman and Meiselman (1963) on alternative consumption models, Barro
(1977), Pesaran (1982b) and McAleer, Pesaran, and Bera (1990) on alternative explanations of the
unemployment rate, Jorgenson and Siebert (1968), Dixit and Pindyck (1994) and Bernanke, Bohn,
and Reiss (1988) on alternative models of investment behaviour, and McAleer, Fisher, and Volker
(1982) and Smith and Smyth (1991) on non-nested money demand functions.



behind model selection and hypotheses testing. Although this chapter is primarily
concerned with hypotheses testing involving non-nested models, a discussion of the
differences and similarities of the two approaches to model evaluation can serve an
important pedagogic purpose in clarifying the conditions under which one approach
rather than the other could be appropriate.

The literature on non-nested hypothesis testing in statistics was pioneered by
the seminal contributions of Cox (1961), Cox (1962) and Atkinson (1970), and was
subsequently applied to econometric models by Pesaran (1974) and Pesaran and
Deaton (1978). The analysis of non-nested regression models was further considered
by Davidson and MacKinnon (1981), Fisher and McAleer (1981), Dastoor (1983),
Deaton (1982), Sawyer (1983), Gourieroux, Monfort, and Trognon (1983), and God-
frey and Pesaran (1983)3. .This literature is reviewed in Section 5 where we examine
a number of alternative approaches to testing non-nested hypotheses, including the
encompassing approach advanced by Mizon and Richard (1986), Gourieroux and
Monfort (1995) and Smith (1993).

Generally speaking, two models, say H; and H,, are said to be non-nested if it
is not possible to derive H; (or H,) from the other model either by means of an
exact set of parametric restrictions or as a result of a limiting process. But for many
purposes a more rigorous definition is needed. Section 6 examines this issue and
focuses on the Kullback-Leibler divergence measure which has played a pivotal role
in the development of a number of non-nested test statistics. The Vuong approach
to model selection, viewed as a hypothesis testing problem is also discussed in this
section. (see Vuong (1989)). Section 7 deals with the practical problems involved
in the implementation of the Cox procedure. Apart from a few exceptions, the
centring of the log-likelihood ratio statistic required to construct the Cox statistic,
will involve finding an estimate of the Kullback-Leibler measure of closeness of the
alternative to the null hypothesis, which in most cases is not easy to compute using
analytical techniques. Subsequently we explore two methods which circumvent the
problem. First, following work by Pesaran and Pesaran (1993), we examine the
simulation approach which provides a consistent estimator of the KLIC measure.
However, since this approach is predicated upon the adherence to a classical testing
framework, we also examine the use of a parametric bootstrap approach. Whereas
the use of simulation facilitates the construction of a pivotal test statistic with an
asymptotically well defined limiting distribution, the bootstrap procedure effectively
replaces the theoretical distribution with the empirical distribution function. We
also discuss the use of pivotal bootstrap statistics for testing non-nested models.

3An excellent survey article on non-nested hypothesis testing can be found in Gourieroux and
Monfort (1994).



2. Models and Their Specification

Suppose the focus of the analysis is to consider the behaviour of the n x 1 vector of
random variables w; = (W1, Wy, ..., Wy, ) observed over the period t =1,2,...,7. A
model of w;, indexed by 9;, is defined by the joint probability distribution function
(p.d.f.) of the observations

W = (wi,wy,..,wr)
mi . fi(Wl,WQ, ...,WT|W0, QOZ) = fZ(W|W0, (')02)7 1= 1, 2, ., m, (21)

where f;(.) is the probability density function of the model (hypothesis) 9t;, and ¢,
is a p; x 1 vector of unknown parameters associated with model 91;.4

The models characterised by f;(W|wy, ;) are unconditional in the sense that
probability distribution of w; is fully specified in terms of some initial values, wy,
and for a given value of ¢,. In econometrics the interest often centres on conditional
models, where a vector of “endogenous” variables, y;, is explained (or modelled)
conditional on a set of “exogenous”, variables, x;. Such conditional models can be
derived from (2.1) by noting that

fi(Wb Wo, ..., WT’W07 ‘pz)

= fi(y1,y2,---,YT‘X1;X2,---,XT,",b(LPi)) X fi(x17X27"'7XT‘W07K’(LPZ'))7 (22)

where w; = (yj, X;). The unconditional model 9t; is decomposed into a conditional
model of y; given x; and a marginal model of x;. Denoting the former by 9, ,, we
have

gﬁi,y\m : f’i(y17y27 "'7yT|X17X27 "'JXT7W07¢(¢i)) = fZ(Y|X7W07¢((P2))7 (23)

where Y = (y},¥5, ..., ¥}) and X = (x|, %5, ..., x})".

Confining attention to the analysis and comparison of conditional models is
valid only if the variations in the parameters of the marginal model, k(¢p;), does
not induce changes in the parameters of the conditional model, ¥ (¢p,). Namely
Y (p;)/0k(p;) = 0. When this condition holds it is said that x; is weakly ex-
ogenous for 1p;. The parameters of the conditional model, ¥, = ¥(yp;), are often
referred as the parameters of interest.’

The conditional models 9M; . @ = 1,2, ...,m all are based on the same condition-
ing variables, x;, and differ only insofar as they are based upon different p.d.fs. We
may introduce an alternative set of models which share the same p.d.fs but differ
with respect to the inclusion of exogenous variables. For any model, 9t; we may
partition the set of exogenous variables x; according to a simple included/excluded

4In cases where one or more elements of z; are discrete, as in probit or Tobit specifications
cumulative probabality distribution functions can be used instead of probability density functions.
5See Engle, Hendry and Richard (1983).



dichotomy. Therefore x; = (x},,x};)" writes the set of exogenous variables according
to a subset x;; which are included in model 9;, and a subset x}, which are excluded.
We may then write

[i(Y]x1,%g, ..X1, Wo, ;)
= fz(Y‘lea X2, - XiT, Xj;l; Xj;27 tey X;‘kTa Wo, ‘pz)

= [i(Y X, wo,;(p;)) x fi( XXy, wo, ¢i(;))

where X; = (X}, Xlg, ..., X)) and X} = (x[3,%55,...,X). As noted above in the

case of models differentiated solely by different p.d.fs, a comparison of models based
upon the partition of x; into x;; and x}; should be preceded by determining whether
O, (p;)/Oci(;) = 0.

The above set up allows consideration of rival models that could differ in the
conditioning set of variables, {x;, ¢ = 1,2,...,m} and/or the functional form of
their underlying probability distribution functions, {fi(-), ¢ = 1,2,...,m}. In much
of this chapter we will be concerned with two rival (conditional) models and for
notational convenience we denote them by

Hf . fg = {f(yt|xt;Qt—l;0>; 0 - @}, (24)
Hq : JTV = {g(yt‘zbﬁtfl;"/)a Y€ F}a (25)

where (), ; denotes the set of all past observations on y,x and z, 8 and = are
respectively k; and k, vectors of unknown parameters belonging to the non-empty
compact sets © and I', and where x and z represent the conditioning variables. For
the sake of notational simplicity we shall also often use f;(€) and ¢;(7) in place of
F(yelxe, 415 0) and g(y:|z, Q—1;7y), respectively.

Now given the observations (y¢, x¢,z:, t = 1,2,...,7) and conditional on the
initial values wy, the maximum likelihood (ML) estimators of 8 and = are given by

07 = Arg maxL;(0), A, = ArgmaxLy(7y), (2.6)

6co ~vel

where the respective log-likelihood functions are given by:

Ly(0)=> Infi(0), Ly(v)=> Ing(y) (2.7)

Throughout we shall assume that the conditional densities f;(€) and g;(v) satisfy
the usual requilarity conditions as set out, for example, in White (1982) and Smith
(1993), needed to ensure that 87 and 4, have asymptotically normal limiting dis-
tributions under the Data Generating Process (DGP). We allow the DGP to differ
from Hy and H,, and denote it by H}; thus admitting the possibility that both H
and H, could be misspecified and that both are likely to be rejected in practice.



In this setting 87 and 4, are referred to as quasi-ML estimators and their proba-
bility limits under Hj, which we denote by 6, and =, respectively, are known as
(asymptotic) pseudo-true values. These pseudo-true values are defined by

0. = Argmax Ep{T 'L;(0)}, ;. = Argmax E,{T 'L,(v)}, (2.8)

6co ~eTl

where Ej,(-) denotes expectations are taken under Hj,. In the case where w, follows
a strictly stationary process, (2.8) simplifies to

0. = Argmax Ep{ln f,(0)}, ~,. = Argmax E,{lng/(v)}. (2.9)

0o ~el’

To ensure global identifiability of the pseudo-true values, it will be assumed that
6. and v, provide unique maxima of E,{T~"L;(0)} and E,{T~'Ly()}, respec-
tively. Clearly, under H;, namely assuming Hy is the DGP, we have 6 ;.= 0, and
Y« = V.(6,) where 6y is the “true” value of @ under Hy. Similarly, under H, we
have v,,= vy, and 0,.= 0.(v,) with v, denoting the “true” value of v under H,.
The functions 7,(68,),and 8.(vy,) that relate the parameters of the two models under
consideration are called the binding functions. These functions do not involve the
true model, H},, and only depend on the models H; and H, that are under consider-
ation. As we shall see later a formal definition of encompassing is given in terms of
the pseudo true values, 6, and +,,, and the binding functions ~,(6,), and 0.(~,).

Before proceeding further it would be instructive to consider some examples of
non-nested models from the literature.

3. Examples of Non-Nested Models

We start with examples of unconditional non-nested models. One such example,
originally discussed by Cox (1961) is that of testing a log-normal versus an expo-
nential distribution.

Iny, — 6;)*
Hy = f(ul6) = £:(6) =y; 1<2792>‘”2€Xp{‘%

Hy : glyly) =a(v) =7 "exp(=w/v), v>0,y >0.

}, oo >0;>0, y >0

These hypotheses (models) are globally non-nested, in the sense that neither can be
obtained from the other either by means of suitable parametric restrictions or by a
limiting process.® Under H; the pseudo-true value of 4, denoted by ~ f+ 18 obtained
by solving the following maximization problem

Yo = Argmax Ep{ln gi(y)}.
~v>0

6A formalization of the concept of globally non-nested models can be found in Pesaran (1987).
Also see Section 6.



But”

Ef{lng:(v)} = —Invy — Ef(y:)/v = —Invy — exp(6 + 0.503) /7,

which yields
Y £+= Y+ (00)=exp(01 + 0.504).
Similarly, under H, we have®
01 (No) =In~vy, —0.5772,  05(7y,) = 1.6449.

Other examples of non-nested unconditional models include log-normal versus Weibull,
Pereira (1984) and log-normal versus gamma distribution, Pesaran (1987).

The most prominent example of conditional non-nested models is linear normal
regression models with “rival” sets of conditioning variables. As an example consider
the following regression models:

Hy © yo=a'x +uy, uy -~ N(0,07), co>o>0, (3.1)
H, : y=0%+w,, u,—N0w), oco>w’>0. (3.2)

The conditional probability density associated with these regression models are given
by

-1
202

Hy: flplxs6) = (2r0%)~ exp{ (e — a’xf} , (33)

H,: gyl 0) = (2me?) 2 exp {‘—1(% - B’zt)Q} , (3.4)

2w?
where 8 = (', 0?)’, and v = (', w?)". These regression models are non-nested if it
is not possible to write x; as an exact linear function of z; and vice versa, or more
formally if x; g z, and Z; g x¢. Model Hy is said to be nested in H, if x;, C 2,
and z; g x;. The two models are observationally equivalent if x; C z; and z; C X;.

Suppose now that neither of these regression models is true and the DGP is given
by

Hy: oy = 8w +ug, um -~ N(0,0%), oo>v*>0. (3.5)
It is then easily seen that conditional on {x¢,z;, w;, t =1,2,....,T}

V2 8 Nwd — 20 S0+ 'S,
202 202 ’

"Note that under Hy, E(y:) = E {exp(Iny;)} = exp(6; + 0.56).
8See, Pesaran (1984, p. 249-50).

E, {T7'Ly(0)} = —% In(270?) —




where

T T T
S = T4 wew!, 3., =T1! XX, Dy, =T 1 WX,
w [AAE 2] Tr — 1A wr — t8g
t=1 t=1 t=1

Maximizing Ej,{T'L;(0)} with respect to @ now yields the conditional pseudo-true
values:

Op s iilimwd
0 * p— p— A~ Tz A A A . .
h ( o2, > ( 0?4 8 (S — S S18,,)8 ) (36)
Similarly,
_ /Bh* _ i;zl > Z'w(s
Ve = ( i )T s, s, 586 ) (37)
where

T T

S —1 1< -1 !

Y., =T E ZiZy, Dy = 1 g W:Zy.
t=1 t=1

When the regressors are stationary, the unconditional counterparts of the above
pseudo-true values can be obtained by replacing Swws Swzs Sws €tc. by their popu-
lation values, namely ¥, = E(w;w}), Y. = E(x4X}), Ye = E(WiX}) etc.

Other examples of non-nested regression models include models with endogenous
regressors estimated by instrumental variables (see, for example, Ericsson (1983)
and Godfrey (1983)), non-nested non-linear regression models and regression models
where the left hand side variables of the rival regressions are known transformations
of a dependent variable of interest. One important instance of this last example
is the problem of testing linear versus log-linear regression models and vice versa.”
More generally we may have

Hy: f(y) = &)+, uy ~ N(0,6°%), o0 >a° >0,

Hy: g(y) = B2 +uyy, 1wy~ N(0,w?), o0 >w? >0,

where f(y;) and g(y;) are known one-to-one functions of y;. Within this more general
regression framework testing a linear versus a log-linear model is characterized by
f(y:) = yr and g(y;) = In(y;); a ratio model versus a log-linear model by f(y:) = i/
and ¢g(y:) = In(y;), where ¢, is an observed regressor, and a ratio versus a linear model

9There is substantial literature on non-nested tests of linear versus log-linear regression models.
Earlier studies include Aneuryn-Evans and Deaton (1980), Godfrey and Wickens (1981) and David-
son and MacKinnon (1985). In a more recent study Pesaran and Pesaran (1995) have examined
the properties of a simulation-based variant of the Cox test.

7



by f(y) = y:/q: and g(y;) = y;. For example, in analysis of aggregate consumption
a choice needs to be made between a linear and a log-linear specification of the
aggregate consumption on the one hand, and between a log-linear and a saving rate
formulation on the other hand. The testing problem is further complicated here due
to the linear transformations of the dependent variable, and additional restrictions
are required if the existence of pseudo-true values in the case of these models are
to be ensured. For example, suitable truncation restrictions need to be imposed on
the errors of the linear model when it is tested against a log-linear alternative.

Other examples where specification of an appropriate error structure plays an
important role in empirical analysis include discrete choice and duration models
used in microeconometric research. Although the analyst may utilise both prior
knowledge and theory to select an appropriate set of regressors, there is generally
little guidance in terms of the most appropriate probability distribution. Non-nested
hypothesis testing is particularly relevant to microeconometric research where the
same set of regressors are often used to explain individual decisions but based on
different functional distributions, such as multinomial probit and logit specifications
in the analysis of discrete choice, exponential and Weibull distributions in the anal-
ysis of duration data. In the simple case of a probit (Hy) versus a logit model (H,)
we have

0'x
/ t1
Hy @ Pr(yy=1) =®(0'%,) = / Norhats {-1v*} dv (3.8)
/ B’YIZt
Hy @ Pr(yy=1)=AN"'z)= Tr o (3.9)

where y;, t = 1,2, ..., T are independently distributed binary random variables tak-
ing the value of 1 or 0. In practice the two sets of regressors x; used in the probit
and logit specifications are likely to be identical, and it is only the form of the distri-
bution functions that separate the two models. Other functional forms can also be
entertained. Suppose, for example, that the true DGP for this simple discrete choice
problem is given by the probability distribution function H(d'x;), then pseudo-true
values for @ and ~ can be obtained as functions of &, but only in an implicit form.
We first note that the log-likelihood function under Hy, for example, is given by

T

Ly(0) = ylog [®(0'x,)] + > (1 —w)log [1 - 2(6'x,)]

t=1

and hence under the assumed DGP we have

E{T7'Lp(0)} =T7'>  H(8'%)log [®(6'x,)] + T~ [1— H(8'x,)| log [1 — @(6'x)] .

t=1



Therefore, the pseudo-true value of 8, namely 6,(d) or simply 0., satisfies the
following equation

e H('x) 1—H(8'%,)
1 / _
' ;ww*"” {@w;xt) 1-2(0x) } -0

where ¢(6.x;) = (2m)"/*exp [5£(0,%,)?]. Using results in Amemiya (1985), pp.
271-2 it is easily established that the solution of 6, in terms of d is in fact unique,
and 0, = ¢ if and only if ®(-) = H(-). Similar results also obtains for the logistic
specification.

4. Model Selection Versus Hypothesis Testing

Hypothesis testing and model selection are different strands in the model evaluation
literature. However, these strands differ in a number of important respects which
are worth emphasising here.'® Model selection begins with a given set of models,
M, characterised by the (possibly) conditional p.d.fs

M= {fz(Y|Xz;¢z)’Z = 17 27 ...,m},

with the aim of choosing one of the models under consideration for a particular
purpose with a specific loss (utility) function in mind. In essence model selection
is a part of decision making and as argued in Granger and Pesaran (1999) ideally
it should be fully integrated into the decision making process. However, most of
the current literature on model selection builds on statistical measures of fit such
as sums of squares of residuals or more generally maximized log-likelihood values,
rather than economic value which one would expect to follow from a model choice.!!
As a result model selection seems much closer to hypothesis testing than it actually
is in principle.

The model selection process treats all models under consideration symmetrically,
while hypothesis testing attributes a different status to the null and to the alternative
hypotheses and by design treats the models asymmetrically. Model selection always
ends in a definite outcome, namely one of the models under consideration is selected
for use in decision making. Hypothesis testing on the other hand asks whether there
is any statistically significant evidence (in the Neyman-Pearson sense) of departure

10A review of the model selection literature is beyond the scope of the present paper. See, for
example, Leamer (1983) for an excellent review. A recent review focussing upon the selection of
regressors problems is to be found in Lavergne (1998). Two excellent texts are Grasa (1989) and
Linhart and Zucchini (1986). Maddala (1981) edited a special issue of the Journal of Econometrics
which focusses on model selection.

HFor the case of the classical linear regression model examples of model selection criteria include
Theil’s R?, with more general loss functions based upon information criteria including Akaike’s
(Akaike (1973)) information criteria and Schwarz’s (Schwarz (1978)) Bayesian information crite-
rion.



from the null hypothesis in the direction of one or more alternative hypotheses.
Rejection of the null hypothesis does not necessarily imply acceptance of any one of
the alternative hypotheses; it only warns the investigator of possible shortcomings
of the null that is being advocated. Hypothesis testing does not seek a definite
outcome and if carried out with due care need not lead to a favourite model. For
example, in the case of non-nested hypothesis testing it is possible for all models
under consideration to be rejected, or all models to be deemed as observationally
equivalent.

Due to its asymmetric treatment of the available models, the choice of the null
hypothesis plays a critical role in the hypothesis testing approach. When the models
are nested the most parsimonious model can be used as the null hypothesis. But
in the case of non-nested models (particularly when the models are globally non-
nested) there is no natural null, and it is important that the null hypothesis is
selected on a priori grounds.!? Alternatively, the analysis could be carried out with
different models in the set treated as the null. Therefore, the results of non-nested
hypothesis testing is less clear cut as compared to the case where the models are
nested. 3.

It is also important to emphasise the distinction between paired and joint non-
nested hypothesis tests. Letting f; denote the null model and f; € M, i =2,....m
index a set of m — 1 alternative models, a paired test is a test of f; against a single
member of M, whereas a joint test is a test of f; against multiple alternatives in M.
McAleer (1995) is careful to highlight this distinction and in doing so points out a
deficiency in many applied studies insofar as many authors have utilised a sequence of
paired tests for problems characterised by multiple alternatives. Examples of studies
which have applied non-nested tests to the choice between more than two models
include Sawyer (1984), Smith and Maddala (1983) and Davidson and MacKinnon
(1981). The paper by Sawyer is particularly relevant since he develops the multiple
model equivalent of the Cox test.

The distinction between model selection and non-nested hypothesis tests can also
be motivated from the perspective of Bayesian versus sampling-theory approaches
to the problem of inference. For example, it is likely that with a large amount of
data the posterior probabilities associated with a particular hypothesis will be close
to one. However, the distinction drawn by Zellner (1971) between “comparing” and
“testing” hypothesis is relevant given that within a Bayesian perspective the pro-
gression from a set of prior to posterior probabilities on M, mediated by the Bayes
factor, does not necessarily involve a decision to accept or reject the hypothesis. If
a decision is required it is generally based upon minimising a particular expected
loss function. Thus, model selection motivated by a decision problem is much more
readily reconcilable with the Bayesian rather than the classical approach to model
selection.

Finally, the choice between hypothesis testing and model selection clearly de-

12The concepts of globally and partially non-nested models are defined in Pesaran (1987).
13Gee also Dastoor (1981) for further discussion.
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pends on the primary objective of the exercise. There are no definite rules. Model
selection is more appropriate when the objective is decision making. Hypothesis
testing is better suited to inferential problems where the empirical validity of a the-
oretical prediction is the primary objective. A model may be empirically adequate
for a particular purpose but of little relevance for another use. Only in the unlikely
event that the true model is known or knowable will the selected model be univer-
sally applicable. In the real world where the truth is elusive and unknowable both
approaches to model evaluation are worth pursuing.

5. Alternative Approaches to Testing Non-nested Hypothe-
ses with Application to Linear Regression Models

To provide an intuitive introduction to concepts which are integral to an understand-
ing of non-nested hypothesis tests we consider testing of linear regression models as
a convenient starting point. In the ensuing discussion we demonstrate that de-
spite its special features non-nested hypothesis testing is firmly rooted within the
Neyman-Pearson framework.

There are three general approaches to non-nested hypothesis testing all discussed
in the pioneering contributions of Cox (1961) and Cox (1962). (i)- The modified
(centred) log-likelihood ratio procedure, also known as the Cox test. (ii)- The com-
prehensive model approach, whereby the non-nested models are tested against an
artificially constructed general model that includes the non-nested models as special
cases. This approach was advocated by Atkinson (1970) and was later taken up
under a different guise by Davidson and MacKinnon (1981) in developing their J-
test and by Fisher and McAleer (1981) who proposed a related alternative procedure
known as the JA-test. (iii)- A third approach, originally considered by Deaton (1982)
and Dastoor (1983) and further developed by Gourieroux, Monfort, and Trognon
(1983) and Mizon and Richard (1986) is the encompassing procedure where ability
of one model to explain particular features of an alternative model is tested directly.
The Wald and Score Encompassing Tests (usually denoted by WET and SET) are
typically constructed under the assumption that one of the rival models is correct.
Encompassing tests when the true model does not necessarily lie in the set of mod-
els (whether nested or non-nested) under consideration are proposed by Gourieroux
and Monfort (1995) and Smith (1993).

We shall now illustrate the main features of these three approaches in the con-
text of the classical linear normal regression models (3.1) and (3.2) set out above.
Rewriting these models in familiar matrix notations we have:

Hy : y=Xa+u; u;~ N(0,0%I7), (5.1)
H, : y =728 +u,, u, ~ N(0,w’Ty),

where y is the T" x 1 vector of observations on the dependent variable, X and Z are

11



T x ky and T' X kg, observation matrices for the regressors of models H; and H,, o
and 3 are the ky x 1 and k; x 1 unknown regression coefficient vectors, uy and u, are
the T' x 1 disturbance vectors, and I is an identity matrix of order 7'. In addition,
throughout this section we assume that

T X" %0, T7'X'u, 250, 772X us ~ N(0,0°%,,),

T='Z'a, %0, T7'Z'u; %0, 77?7, & N(0,0?%..),

A~ A~

See = T X X580, 8., = T'ZZ5Y,,, 8. = T ZX5E,,,
where & denotes convergence in probability, the matrices flm, Yiews f)zz, >,, are
non-singular, ¥,, = >/ # 0, and set

Y=Y — Y0 S, and By =2, — B, 000,

5.1. Motivation for Non-Nested Statistics

From a statistical view point the main difference between the nested and non-nested
hypothesis testing lies in the fact that the usual log-likelihood ratio or Wald statistics
used in the conventional hypothesis testing are automatically centred at zero under
the null when the hypotheses under consideration are nested while this is not true
in the case of non-nested hypotheses. However, once the conventional test statistics
are appropriately centred (at least asymptotically) the same classical techniques
can be applied to testing of non-nested hypotheses. Using the two non-nested linear
regression models in (5.1) and (5.2) we first demonstrate the problems with standard
test statistics by focussing on a simple comparison of sums of squared errors.
Consider the following test statistic:

Ep =0, — 03 (5.3)
where
5’? = e’fef/(T — k'f)
5 = e;eg/(T —ky)

and ey is the OLS residual vector under H; such that e; = Myy. Note that (5.3)
represents a natural starting point being the difference between the mean sum of
squared errors for the two models.

In general the exact distribution of &, will depend on the unknown parameters.
To see this first note that under Hy, ey = My (uy+Xa) therefore, (since M;X = 0),
we have

(T — k’f)(}?c = U}Mfu]v. (54)

12



Now under Hy,
e, = Myy = M,(Xa + uy),
or
e, = M, Xa + Mju;
and
(T — ky)2 = €je, (5.5)
(v} + a'X' )My (X + uy)
= u;Myu; + 2a'X'Myu; + o’ X'M Xa.
Using (5.4) and (5.5) in (5.3) and taking expectations (under H;) we have

XM, X
22X 5 (5.6)

E(¢r) = T _ & =

which we denote by pu; = (/X'MyXa)/(T — k). Since &, does not have mean
zero under the null hypothesis Hy, then {;, cannot provide us with a suitable test-
statistic. Notice, however that when H; is nested within H,, then M,X = 0 and
& will have mean zero (exactly) under H,. In this case if we also assume that u;
is normally distributed it can be easily shown that

T = k)r

~2
’I“O'g

=1-F.r4,

where F. 7 g, is distributed as a (central) F' with r and T — k, degrees of freedom;
r here stands for the number of restrictions that we need to impose on H, in order
to obtain Hy.

A fundamental tenet of classical hypothesis testing is that the distribution of the
test statistic is known under a well specified null hypothesis. Thus, in this context if
H is nested within H,; then under the null of H; the normalised difference between
the sum of squared errors has a zero expectation. When Hy is not nested within H,
we may adopt a number of alternate approaches. First, a suitable test statistic that
has zero mean asymptotically will be

zr = &p — fip
where fip is a consistent estimator of ;1 under Hy. More specifically

&'X'M, Xé

T— kg ) (57)

_~2  ~2
ZT—Ug Uf

where & = (X'X)"'X'y. (5.7) represents an example of centring of a test statistic
such that the distribution of zr is known (asymptotically). Cox (1961), Cox (1962)
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utilised this approach to centre the log-likelihood ratio statistic for two non-nested
models. When the models are nested the log-likelihood ratio statistic is properly cen-
tred (at least asymptotically). For example, if we let L;(0) and L,(-) denote, respec-
tively the log-likelihood functions for H; and H,, and we if assume that H is nested

within H,, then under H; the log-likelihood ratio statistic, 2 [Lg(’yT) — L(07)],
does not require any centring and the test defined by the critical region

2| Ly(2) = Ls(0r)] = X1 a(r)

where 7 is the number of parameter restrictions required to obtain Hy from H,,
asymptotically has the size a and is consistent. In the case of non-nested models
the likelihood ratio statistic is not distributed as a chi-squared random variable. The
reason for this is simple. The degrees of freedom of the chi-square statistic for the LR
test is equal to the reduction in the size of the parameter space after imposing the
necessary set of zero restrictions. Thus, if neither H; nor H, nests the other model,
the attendant parameter spaces and hence the likelihoods are unrelated. In Section
5.2 we examine the application of centring (or mean adjustment) of the likelihood
ratio statistic to obtain a test statistic that has a known asymptotic distribution.
Given that in most instances the form of mean adjustment involves analytically
intractable expectations in Section 7.1 we examine the use of simulation methods
as a method of circumventing this problem.

Following seminal work by Efron (1979), an alternative approach conducts infer-
ence utilising the empirical distribution function of the test statistic. In this instance
there is, in general, no need to centre {; using ji;. Instead we take {; as the ob-
served test statistic, and given a null hypothesis, we simulate a large number, say R,
of the &;, &fc pairs. The empirical distribution function for £;. is then constructed
based on &?]T and &?«r, r=1,2,..., R. In Section 7.2 we examine the use of bootstrap
procedures for conducting non-nested hypothesis tests. We also consider the case
for combining the type of mean adjustment in (5.7) with bootstrap procedures.

5.2. The Cox Procedure

This procedure focuses on the log-likelihood ratio statistic, and in the case of the
above regression models is given by (using the notations of Section 2)

A A T. (62
LRy = Ly(0r) — Ly(7) = 7 In ( 5) ,
Wy
where
63 = T 'ejey, ar = (X'X) Xy,
e, = y—Xéy =My M, =Iy -X(X'X)"'X, (5.8)
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and
‘*Z)QT = Tﬁle;eg, BT = (Z/Z)ilzl}’,
eg = y—2ZB;, =M.y, M. =1, -Z(Z'Z)"'Z. (5.9)

In the general case where the regression models are non-nested the average log-
likelihood ratio statistic, % In (&2T /@2T), does not converge to zero even if T is suffi-
ciently large. For example, under H; we have

P lim (T'LRyy | Hy) = 2 1n B W Y /S
T 00 To 1 51) =9 w2(0y)) 2 o3+ apXrag )’

and under H,:

1 2(v,) 1 w3 + BLE,8
- -1 ! Yo) ) _ 1 0+ Po2igPo
P Jim (T Lng|Hg)—2ln( v ~n 5 .

The LR statistic is naturally centred at zero if one or the other of the above prob-
ability limits is equal to zero; namely if either ¥; = 0 or ¥, = 0.1 When 3; =0
then X C Z and Hy is nested in H,. Alternatively, if ¥, = 0, then Z C X and H, is
nested in Hy. Finally, if both ¥ = 0 and ¥, = 0 then the two regression models are
observationally equivalent. In the non-nested case where both ¥ # 0 and X, # 0,
the standard LR statistic will not be applicable and needs to be properly centred.
Cox’s contribution was to note that this problem can be overcome if a consistent
estimate of Plimg_o (T"'LRy, | H;), which we denote by E;(T~'LRy,), is sub-
tracted from T 'LRy,, which yields the new centred (modified) log-likelihood ratio
statistic (also known as the Cox statistic) for testing H; against H:

Sty = T LRy, — Ef(T7'LRy,) (5.10)
1 5o 1 2
= —ln (%) — —ln 3 O-TA
2 \e2) 2 \&2+a,Sen
~92 Al Y A
_ Lo <JT+?‘2TEf°‘T>. (5.11)
2 Wy

It is now clear that by construction the Cox statistic, S, has asymptotically mean
zero under Hy. As was pointed out earlier, since there is no natural null hypothesis
in this set up, one also needs to consider the modified log-likelihood ratio statistic
for testing H, against H; which is given by

~ Al a2
1 (w?p + ﬂTEgBT>
D) .

ng:§ln 5
T

4The cases where Xy # 0 (respectively ¥, # 0 ) but neverthelss rap = 0 (respectively
Y,8y = 0) are discussed in Pesaran (1987, p. 74).

15



Both of these test statistics (when appropriately normalized by VT ) are asymptot-
ically normally distributed under their respective nulls with a zero mean and finite
variances. For the test of H; against H, we have'®

o5 (G XM, M, M,Xér)

A@T(ﬁsﬁq) = Vg = . 2
T (&?F + a'Tz:faT>

The associated standardized Cox statistic is given by

VTS«

V'Vig

By reversing the role of the null and the alternative hypothesis a similar standardized
Cox statistic can be computed for testing H, against H;, which we denote by Ng;.
Denote the (1 — ) percent critical value of the standard normal distribution by C,,
then four outcomes are possible:

(1) Reject H, but not Hy if | Ny, |< Cy and | Nyy |> C,,
(2) Reject Hy but not Hy if | Ny, |[> Cy and | Nyy |< Cy,
(3) Reject both Hy and H, if | Ny, |> Cy and | Nyg |[> C,,
(4) Reject neither Hy or H, if | Ny, |< Cy and | Nys |< Cl.

These are to be contrasted to the outcomes of the nested hypothesis testing
where the null is either rejected or not, which stem from the fact that when the hy-
potheses under consideration are non-nested there is no natural null (or maintained)
hypothesis and one therefore needs to consider in turn each of the hypotheses as the
null. So there are twice as many possibilities as there are when the hypotheses are
nested. Note that if we utilise the information in the direction of rejection, that
is instead of comparing the absolute value of Ny, with C, we determine whether
rejection is in the direction of the null or the alternative, there are a total of eight
possible test outcomes (see the discussion in Fisher and McAleer (1979) and Dastoor
(1981)). This aspect of non-nested hypothesis testing has been criticized by some
commentators; pointing out the test outcome can lead to ambiguities. (See, for ex-
ample, Granger, King, and White (1995)). However, this is a valid criticism only if
the primary objective is to select a specific model for forecasting or decision making,
but not if the aim is to learn about the comparative strengths and weaknesses of
rival explanations. What is viewed as a weakness from the perspective of model
selection now becomes a strength when placed in the context of statistical inference
and model building. For example, when both models are rejected the analysis points
the investigator in the direction of developing a third model which incorporates the
main desirable features of the original, as well as being theoretically meaningful.
(See Pesaran and Deaton (1978)).

Nfg

N(0,1). (5.12)

15See Pesaran (1974) for details of the derivations.
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5.3. The Comprehensive Approach

Another approach closely related to the Cox’s procedure is the comprehensive ap-
proach advocated by Atkinson (1970) whereby tests of non-nested models are based
upon a third comprehensive model, artificially constructed so that each of the non-
nested models can be obtained from it as special cases. Clearly, there are a large
number of ways that such a comprehensive model can be constructed. A prominent

example is the exponential mixture, H,, which in the case of the non-nested models
(2.4) and (2.5) is defined by

F(yelxe, Q1;0) g (yelze, U1;v)*
H, : Q. :0 =
A CA(Yt|Xt,Zt’ t—1; a’)’) fRy f(yt\xt,QtA;9)1_>‘Q(Yt\zt,th;’)/))‘dyt’

where R, represents the domain of variations of y;, and the integral in the denomi-
nator ensures that the combined function, ¢, (y:|x:, z¢, 2 1;6,7), is in fact a proper
density function integrating to unity over R,. The “mixing” parameter A varies in
the range [0, 1] and represents the weight attached to model Hy. A test of A =0
(A = 1) against the alternative that A # 0 (A # 1) can now be carried out using
standard techniques from the literature on nested hypothesis testing. (See Atkinson
(1970) and Pesaran (1982a)). This approach is, however, subject to three important
limitations. First, although the testing framework is nested, the test of A = 0 is still
non-standard due to the fact that under A = 0 the parameters of the alternative hy-
pothesis, v, disappears. This is known as the Davies’s problem. (See Davies (1977)).
The same also applies if the interest is in testing A = 1. The second limitation is due
to the fact that testing A = 0 against A # 0, is not equivalent to testing H; against
H,, which is the problem of primary interest. This implicit change of the alternative
hypothesis can have unfavourable consequences for the power of non-nested tests.
Finally, the particular functional form used to combine the two models is arbitrary
and does not allow identification of the mixing parameter, A, even if 8 and = are
separately identified under H; and H,, respectively. (See Pesaran (1981)).

The application of the comprehensive approach to the linear regression models
(5.1) and (5.2) yields:

w2

H, : y:{(l;—j)lﬂ}Xa—k{/\—l/Q}Zﬂ—l—u, u~ N(0,%Iy), (5.13)

where 72 = (1 — Ao ? + Aw 2. It is clear that the mixing parameter \ is not
identified.!® In fact setting k = A\v?/w? the above “combined” regression can also
be written as

H.,: y=01-rXa+kKZB+ u, (5.14)

6For example, it is not possible to test whether A = 1/2, which could have been of interest in
assessing the relative weights attached to the two rival models.
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and a test of A = 0 in (5.13) can be carried by testing x = 0 in (5.14). Since the
error variances o2 and w? are strictly positive A = 0 will be equivalent to testing
k = 0. The Davies problem, of course, continues to apply and under Hy (x = 0) the
coefficients of the rival model, 3, disappear from the combined model. To resolve
this problem Davies (1977) proposes a two-stage procedure. First, for a given value
of B a statistic for testing x = 0 is chosen. In the present application this is given
by the t-ratio of x in the regression of y on X and yz = Z/3, namely

B'Z'M,y
tn(ZB) =—— .
v (8'Z/M,Z3)
. 1 (BZ'M.y)”
2 _ le _
S S {y Y gz M,z

and where M, is already defined by (5.8). In the second stage a test is constructed
based on the entire random function of t,(Z3) viewed as a function of 3. One
possibility would be to construct a test statistic based on

F. = Mﬁam {t.(ZB)} .

Alternatively, a test statistic could be based on the average value of ¢,,(Z3) obtained
using a suitable prior distribution for 3. Following the former classical route it is
then easily seen that F), becomes the standard F.. statistic for testing by = 0, in
the regression

y = Xb; + Z*by + vy, (515)

where Z* is the set of regressors in Z but not in X, namely Z* = Z — X NZ.Y"
Similarly for testing H, against H; the comprehensive approach involves testing
c; = 0, in the combined regression

y = X*Cl + ZCQ + Vg, (516)

where X* is the set of variables in X but not in Z. Denoting the F statistic for testing
c; = 0 in this regression by F,« , notice that there are still four possible outcomes
to this procedure; in line with the ones detailed above for the Cox test. This is
because we have two F statistics, F,« and F,«, with the possibility of rejecting both
hypotheses, rejecting neither, etc.

An altogether different approach to the resolution of the Davies’ problem would
be to replace the regression coefficients, 3, in (5.14) by an estimate, say B, and
then proceed as if y3 = Z3 is data. This is in effect what is proposed by Davidson
and MacKinnon (1981) and Fisher and McAleer (1981). Davidson and MacKinnon

1"For a proof see McAleer and Pesaran (1986).
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suggest using the estimate of B under H,, namely BT = (Z'Z)_IZy. This leads
to the J test which is the standard t ratio of the estimate of k in the artificial
regression'®

H.: y=Xa+ kZB+V.. (5.17)

For testing H, against Hy, the J test will be based on the OLS regression of y on Z
and Xér, and the J statistic is the t-ratio of the coefficient of Xéq (which is the
vector of fitted values under Hy) in this regression.

The test proposed by Fisher and McAleer (known as the JA test) replaces 3 by
the estimate of its pseudo-true value under Hy, given by 3, (ér)

B.(ar) = (2Z) 'Zér

In short the JA test of H; against H, is the t-ratio of the coefficient of §3, =
Z(Z'Z)"'Z & in the OLS regression of y on X and yg,. Similarly, a JA test of H,
against Hy can be computed.

Both the J and the J A test statistics, as well as their various variations proposed
in the literature can also be derived as linear approximations to the Cox test statistic.
See (5.10).

Various extensions of the non-nested hypothesis testing have also appeared in the
literature. These include tests of non-nested linear regression models with serially
correlated errors (McAleer, Pesaran, and Bera (1990)), models estimated by instru-
mental variables (Ericsson (1983) and Godfrey (1983)), models estimated by the gen-
eralized method of moments (Smith (1992)), non-nested Euler equations (Ghysels
and Hall (1990)), autoregressive versus moving average models (Walker (1967), King
(1983)), generalized autoregressive conditional heteroscedastic (GARCH) model against
the exponential-GARCH model (McAleer and Ling (1998)), linear versus log-linear
models (Aneuryn-Evans and Deaton (1980), Davidson and MacKinnon (1985), Pe-
saran and Pesaran (1995)), logit and probit models (Pesaran and Pesaran (1993),
Weeks (1996) and Duncan and Weeks (1998)), non-nested threshold autoregressive
models (Altissimo and Violante (1998), Pesaran and Potter (1997) and Kapetanios
and Weeks (1999)).

5.4. The Encompassing Approach

This approach generalizes the Cox’s original idea and asks whether model Hy can
explain one or more features of the rival model H,;. When all the features of model
H, can be explained by model H; it is said that model H; encompasses model Hy;
hkevvlse model H, is said to encompass model H; if all the features of model Hy
can be explained by model H,. A formal definition of encompassing can be given in
terms of the pseudo-true parameters and the binding functions defined in Section 2:

18Chao and Swanson (1997) provide some asymptotic results for the J test in the case of non-
nested models with I(1) regressors.
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Model H,, is said to encompass model Hy, respectively defined by (2.5) and (2.4),
if and only if

Hg(‘:Hf . Oh* = 0*(7}1*) (518)
Similarly, H; is said to encompass H, (or H, is encompassed by H; ) if and only if
Hngg S PSS 7*(0h*)

Recall that 8, and «,, are the pseudo-true values of 8, and « with respect to the
true model Hy, and 6,(-) and -, (-) are the binding functions linking the parameters
of the models H; and H,. For example, in the case of the linear rival regression
models (3.1) and (3.2), and assuming that the true model is given by (3.5) then it is
casily seen that the functions that bind the parameters of model H, to that of Hy
are

Therefore, conditional on the observation matrices X, Z, and W, model H; encom-
passes model H, if and only if

( R0 S )
V2 + 8 (Bww — Bwzdgs Sew)0
N ( TILIEP. 0 SHED S0 i SNV T IR, S0 iuts 0 SIS 9100 9
These conditions are simplified to
Sewd = 5027150, (5.19)
and
1IN e SN IESR. 10 SHUD Dautd DD D DD it DI 3 (5.20)

But it is easily verified that (5.19) implies (5.20), namely encompassing with respect
to the regression coefficients imply encompassing with respect to the error variances.
Therefore, H; is encompassed by H, if and only if (X'M,W)§ = 0. This condition
is clearly satisfied if either Hy is nested within Hy, (X'M,= 0), or if H, contains the
true model, (M, W = 0). The remaining possibility, namely when (X'M,W) = 0,
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but the true value of &, say &y, is such that (X'M,W)d,= 0, is a rather a low
probability event.
The encompassing hypothesis, H,EHy, (or HfEH,) can now be tested using the

encompassing statistics, v/T' [9T -0, (ﬁ/T)}, ( or VT [’yT - ’y*(éT)] ) Gourieroux
and Monfort (1995) show that under the encompassing hypothesis, 05, = 0.(7,,),
and assuming certain requilarity conditions are met, T [9T -0, (‘)/T)} is asymp-
totically normally distributed with zero means and a variance covariance matrix that
in general depends in a complicated way on the probability density functions of the
rival models under consideration. Complications arise since because H, need not
belong to Hy,. Two testing procedures are proposed, the Wald encompassing test
(WET) and the score encompassing test (SET), both being difficult to implement.
First, the binding functions 6.(-) and ~,(-) are not always easy to derive. (But
this problem also afflicts the implementation of the Cox procedure, see below). Sec-

ond, and more importantly, the variance-covariance matrices of vT' [9T — 0*(’7T)} ,

or VT |47 —~.(0r)| ), are, in general, non-invertible and the construction of

WET and SET statistics involve the use of generalized inverse and this in turn
requires estimation of the rank of these covariance matrices. Alternative ways of
dealing with these difficulties are considered in Gourieroux and Monfort (1995) and
Smith (1993).

In the case of linear regression models full parameter encompassing (namely an
encompassing exercise involving both regression coefficients and error variances) is
unnecessary.'? Focussing on regression coefficients the encompassing statistics for
testing H,E Hy is given by

VT [ar — au(By)] = VI(X'X) 'X'M.y.
Under Hy, defined by (3.5),
VT | — a*(BT)] = \/T(X,X)_l(X/MZW)J—G—\/T(X/X)_IX’MZuh,

where u;, «~ N(0,v?I7).2° Hence, under the encompassing hypothesis, (X'M,W)§ = 0,
the encompassing statistic v/T [&T — a*(BT)] is asymptotically normally distributed

with mean zero and the covariance matrix v*¥_ (2, — 3., 512, )5}, Therefore,
the construction of a standardized encompassing test statistic requires a consistent
estimate of v?, the error variance of the true regression model, and this does not
seem possible without further assumptions about the nature of the true model. In
the literature it is often (implicitly) assumed that the true model is contained in
the union intersection of the rival models under consideration (namely W = XU Z)

9Recall that the encompassing condition (5.19) for the regression coefficients implies the condi-
tion (5.20) for error variance encompassing but not vice versa.
2ONotice that the normality assumption is not needed and can be relaxed.
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and v? is then consistently estimated from a regression of y on X U Z. Under this
additional assumption, the WET statistic for testing H,E Hy, is given by

y' M, X(X'M, X)X M,y
E:gf = /&2 )

where @2_is the estimate of the error variance of the regression of y on X U Z, and
(X'M,X) is a generalised inverse of XM, X. This matrix is rank deficient whenever
X and Z have variables in common, namely if X N Z =Q # 0. Let X = (X,,Q)

and Z = (Z,,Q), then
XM, X; 0
/ o 1 z4x1
X'M. X = ( 0 0 ) .
But it is easily seen that £, is invariant to the choice of the g-inverse used and is
given by

y'M. X, (XM, X,) "X M.y

E =
gf @2

and is identical to the standard Wald statistic for testing the statistical significance
of X7 in the OLS regression of y on Z and X;. This is perhaps not surprising, consid-
ering the (implicit) assumption concerning the true model being a union intersection
of the rival regression models Hy and H,.

Other encompassing tests can also be developed depending on the parameters
of interest or their functions. For example, a variance encompassing test of H,EH

compares a consistent estimate of o with that of its pseudo-true value o3, namely

62 —0(Ap) = 65— [c&?p +T-1BLZ MwZBT] 2 Under the encompassing hypothesis

this statistic tends to zero, but its asymptotic distributions in general depends on
Hj,. In the case where H, contains the true model the variance encompassing test
will become asymptotically equivalent to the Cox and the J tests discussed above.

The encompassing approach can also be applied to the log-likelihood functions.
For example, to test H,EH; one could use the encompassing log-likelihood ratio
statistic T~ {L;(67)—L;(0.(5;))}. This test can also be motivated using Cox’s idea
of centred log-likelihood ratio statistic, with the difference that the centring is now
carried out under Hj rather than under H, (or Hf). See Gourieroux and Monfort
(1995) and Smith (1993) for details and difficulties involved in their implementation.
Other relevant literature include Dastoor (1983), Gourieroux, Monfort, and Trognon
(1983) and Mizon and Richard (1986).

5.5. Power and Finite Sample Properties

A number of studies have examined the small sample properties of non-nested tests.
For a limited number of cases it is possible to determine the exact form of the test

21Gimilarly, the variance encompassing statistic for testing H tEH, is given by LDQT —

(67 + T 'a/r X' M. Xél .
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statistic and the sampling distribution. For example, Godfrey (1983) shows that
under H; if X and Z are non-stochastic with normal errors, then the JA-test has
an exact t(T — ky — 1) distribution.?? In the majority of cases the finite sample
properties have been examined using Monte Carlo studies. A recurrent finding is
that many Cox-type tests for non-nested regression models have a finite sample size
which is significantly greater than the nominal level. Modifications based upon mean
and variance adjustments have been proposed in Godfrey and Pesaran (1983), and
are shown to affect a substantial improvement in finite sample performance. The
authors demonstrate that in experimental designs allowing for non-nested models
with either non-normal errors, different number of regressors, or a lagged dependent
variable, the adjusted Cox-test performs favourably relative to the J test or F-test.?
In the case of non-nested linear regression models, Davidson and McKinnon (1982)
compared a number of variants of the Cox test with F, JA and J test.

An analysis of the power properties of non-tested tests has been undertaken using
a number of approaches. In the case of nested models local alternatives are readily
defined in terms of parameters that link the null to the alternative. Obviously in the
case of models that are globally non-nested (i.e. the exponential and log-normal)
this procedure is not possible. In the case of regression models Pesaran (1982a)
is able to develop asymptotic distribution of Cox-type tests under a sequence of
local alternatives defined in terms of the degree of multicollinearity of the regressors
from the two rival models. Under this sequence of local alternatives he shows that
the F test based on the comprehensive model is less powerful than the Cox-type
tests, unless the number of non-overlapping variables of the alternative over the null
hypothesis is unity. An alternative approach to asymptotic power comparisons which
does not require specification of local alternatives is advanced by Bahadur (1960)
and Bahadur (1967) and holds the alternative hypothesis fixed but allows the size of
the test to tend to zero as sample size increases. Asymptotic power comparisons of
non-nested tests by the Bahadur approach is considered in Gourieroux (1982) and
Pesaran (1984).

6. Measures of Closeness and Vuong’s Approach

So far the concepts of nested and non-nested hypotheses have been loosely defined,
but for a more integrated approach to non-nested hypothesis testing and model se-
lection a more formal definition is required. This can be done by means of a variety
of “closeness” criteria proposed in the literature for measuring the divergence of one
distribution function with respect to another. A popular measure employed in Pe-
saran (1987) for this purpose is the Kullback-Leibler (Kullback (1959)) Information
Criterion (KLIC). This criteria has been used extensively in the development of both
non-nested hypotheses tests and model selection procedures. Given hypotheses Hy

22Gee also McAleer (1983).
238ee McAleer and Pesaran (1986) for additional details.
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and H,, defined by (2.4) and (2.5), the KLIC measure of H, with respect to H; is
written as

Itg(0,7) = Ep{lnfi(0)—In g(v)} (6.1)
f:(0)
{8}

It is important to note that I;,(6,7) is not a distance measure. For example,
in general I;,(0,7) is not the same as I,;(7,6), and KLIC does not satisfy the
triangular inequality, namely Iy, + I, need not exceed Iy, as required if KLIC
were a distance measure. Nevertheless, KLIC has a number attractive properties:
I+,(0,7) > 0, with the strict equality holding if and only if f(.) = ¢(.). Assuming
that observations on y; are independently distributed then the KLIC measure is
additive over sample observations.

To provide a formal definition of non-nested or nested hypothesis we define two
“closeness” measures: one measuring the closeness of H, to Hy (viewed from the
perspective of Hy), and another the closeness measure of Hy to H,. These are
respectively given by Cpy(69) = Ifg(00,7.(00)), and Cyp(vy) = Lor(0, 04(70)),
where as before 7, (6y) is the pseudo-true value of 7y under Hy, and 6,(7,) is pseudo-
true value of @ under H,.

Definition 6.1. H; is nested within H, if and only if Cyy(609) = 0, for all values
of 8y € ©, and Cy¢(7y,) # 0 for some v, € I'.

Definition 6.2. Hy and H, are globally non-nested if and only if C¢y(0y) and
Cys(vo) are both non-zero for all values of @y € © and v, € I'.

Definition 6.3. H; and H, are partially non-nested if C;,(0y) and Cys(7y,) are
both non-zero for some values of 8y € © and vy, € I'.

Definition 6.4. H; and H, are observationally equivalent if and only if C,4(6y) = 0
and Cy¢(7,) = 0 for all values of @y € © and v, € I.

Using the above definitions it is easily seen, for example, that linear or non-
linear rival regression models can at most be partially non-nested, but exponential
and log-normal distributions discussed in Section 3 are globally non-nested. For
further details see Pesaran (1987).

We may also define a closeness measure of H, to Hy from the perspective of the
true model Hj, and in doing so are able to motivate Vuong’s approach to hypothesis
testing and model selection. (see Vuong (1989)). The primary focus of Vuong’s
analysis is to test the hypothesis that the models under consideration are “equally”
close to the true model. As Vuong (1989) notes “If the distance between a specified
model and the true distribution is defined as the minimum of the KLIC over the
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distributions in the model, then it is natural to define the “best” model among a
collection of competing models to be the model that is closest to the true distribution”.
Thus, in contrast to the standard approach to model selection, a hypothesis testing
framework is adopted and a probabilistic decision rule used to select a “best” model.

With our set up and notations the closeness of Hy to H}, viewed from the per-
spective of the true model, Hj is defined by

Chy(On) = En{lnhe(-)—In fi(6r)}.

Similarly, the closeness of H, to H}, is defined by

Chg( Vi) = En{lnhe(-) = In gi(v4.) }-

The null hypothesis underlying Vuong’s approach is now given by

HV . Chf(eh*) == Chg(7h*)7

which can also be written as

HV : Eh{ln ft(eh*)} = Eh{lngt(7h*)}

The quantity E,{ln f;(04.) — In g;(7;.)} is unknown and depends on the unknown
true distribution Hj, but can be consistently estimated by the average log-likelihood

ratio statistic, 7! {Lf(éT) — Lg(’yT)}. Vuong derives the asymptotic distribution
of the average log-likelihood ratio under Hy, and shows that it crucially depends
on whether f,(0n.) = g1(v;.), namely whether the distributions in H; and H, that
are closest to the true model are observationally equivalent or not. In view of this a
sequential approach to hypothesis testing is proposed. See Vuong (1989) for further
details.

7. Practical Problems

In Section 5 we noted that the motivation for the Cox test statistic was based upon
the observation that unless two models, say f(.) and g(.) are non-nested then the
expectation

T Ef [L(0) — Le()], (7.1)

does not evaluate to zero and as a result standard likelihood ratio statistics are
not appropriate. Cox (1961,1962) proposed a procedure such that a centred (mod-
ified) log-likelihood ratio has a well-defined limiting distribution. In Section 5.1
we demonstrated that in the case of the linear regression we may obtain a closed
form consistent estimate of (7.1). However, this is the exception rather than the
rule and the use of the Cox test has been restricted to a relatively small number of
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applications due to problems in constructing a consistent estimate of the expected
log-likelihood ratio statistic. There are two principal problems. First, in order to
estimate (7.1) we require a consistent estimate of the pseudo true value, vy(6y). Sec-
ond, in most cases even given such an estimate, the expectation (7.1) will still be
intractable. An exception is the application of the Cox test to both binary and
multinomial probit and logit models. Independent of the dimension of the choice
set, the expected difference between the two log-likelihoods under the null has a
relatively simple, closed form expression (see Pesaran and Pesaran (1993)).

Following the work of Pesaran and Pesaran (1993), Pesaran and Pesaran (1995),
and Weeks (1996), a simulation-based application of the modified likelihood principle
has been used to affect adjustments to the test statistic in order to improve the
finite sample size and power properties. A drawback of this approach is that it is
still reliant upon a reference distribution which is valid asymptotically. In addition,
Orme (1994) attests to the existence of a large number of asymptotically equivalent
(AE) variants of the Cox test statistic which represents a formidable menu of choices
for the applied econometrician. In the case of the numerator, various test statistics
are based upon the use of alternative consistent estimators of the Kullback-Leibler
measure of closeness. An additional set of variants of the Cox test statistic depend
upon the existence of a number of AE ways of estimating the variance of the test
statistic.

An alternative approach based upon the seminal work of Efron (1979), with con-
tributions by Hall (1986), Beran (1988), Hinkely (1988), and Coulibaly and Brorsen
(1998), applies bootstrap-based procedures to directly evaluate the empirical dis-
tribution function of the log-likelihood ratio statistic. In this context the focus is
upon correcting the reference distribution rather than centring the log-likelihood ra-
tio statistic and utilising limiting distribution arguments. This type of adjustment
may, in a number of cases, be theoretically justified through Edgeworth expansions
and can under certain conditions result in improvements over classical asymptotic
inference. The existence of a large menu of broadly equivalent test statistics is
also relevant in the context of bootstrap-based inference. Recent surveys by Vinod
(1993), Jeong and Maddala (1993), and Li and Maddala (1996), review a large num-
ber of variants including the double, recursive and weighted bootstrap. Related, Hall
(1988) notes that in many applications the precise nature of the bootstrap design is
not stated.

7.1. A Simulation Application of the Modified Likelihood Principle

The essence of the Cox non-nested test is that the mean adjusted ratio of the max-
imised log-likelihoods of two non-nested models has a well defined limiting distri-
bution under the null hypothesis. Using the notation set out in Section 2 above we
may write the numerator of the Cox test statistic as

Stg =T LRy — Cyy(07,7). (7.2)
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The last term on the right-hand side of (7.2), C}y(f7,), represents a consistent
estimator of C,(0¢,7,(00)), the KLIC measure of closeness of ¢g(.) to f(.). This
may be written as Cf,(67,75) = Ej [Tfl(Lf(éT) — Lg(:{/))], and is an estimator
of the difference between the expected value of the two maximised log-likelihoods
under the distribution given by f(.); 7 is any consistent estimator for ~y,(60y). Weeks
(1996) in testing probit and logit models of discrete choice, distinguished between
three variants, ¥ = {7, ’yR(/H\T) 1} A is the MLE of 7, 7 is due to Kent (1986)
and is an estimator derived from maximising the fitted log-likelihood, and =, R(OT)
=% Ly ’y*(BT) is a simulation-based estimator where ’y*(OT) is the solution to

Argmax{LT Zlng Y (0r) |z, u_1:7)}, (7.3)

t=1

where yg(éT) is the rth draw of y; under H; using §T and R is the number of
simulations. Note that for both R — oo and 7" — oo then ’y*R(@T) — v,.(09).

A simulation-based estimator of C,(6¢,7.(60)) has been suggested by Pesaran
and Pesaran (1993) and is given by

Cro.ul(Br,7.5(01)) = TRz[Lr (B2) — Ly(7.p(61)] (7.4)

However (7.4) represents one approach to centring the log-likelihood ratio statistic,
whereby both 87 and ~,(87) are treated as fized parameters. An alternative
method of mean adjustment is given by the following estimator of KLIC

1 R

Cror(Br, ... ,00,72(Or),... ,vE(O =iRZ[ — L(v:(B7)], (7.5)

where the parameter arguments to both L;(.) and L,(.) are allowed to vary across
each rth replication. (See Coulibaly and Brorsen (1998)).

7.2. Resampling the Likelihood Ratio Statistic: Bootstrap Methods

The bootstrap is a data-based simulation method for statistical inference. The boot-
strap approach involves approximating the distribution of a function of the observed
data by the bootstrap distribution of the quantity. This is done by substituting the
empirical distribution function for the unknown distribution and repeating this pro-
cess many times to obtain a simulated distribution. Its recent development follows
from the requirement of a significant amount of computational power. Obviously
there is no advantage to utilising bootstrap procedures when the exact sampling dis-
tribution of the test statistic is known. However, it has been demonstrated that when
the sampling distribution is not known, the substitution of computational intensive
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bootstrap resampling can offer an improvement over asymptotic theory. The use
of non-pivotal bootstrap testing procedures does not require the mean adjustment
facilitated by (7.4) and (7.5). However, pivotal (or bootstrap-t) procedures require
both mean and variance adjustments in order to guarantee asymptotic pivotalness.

Utilising a parametric bootstrap we present below a simple algorithm for re-
sampling the likelihood ratio statistic which we then use to construct the empirical
distribution function of the test statistic. For the purpose of exposition the algo-
rithm is presented for the non-pivotal bootstrap.

1. Generate R samples of size T’ by sampling from the fitted null model f,(67).

2. For each rth simulated sample, the pair (9;, 'y:(éT)) represent the parameter
estimates obtained by maximising the log likelihoods

T T
15(0) = S In Ayl )i, 213 0), Lo(y) = 3 I gu(yi (B 70, Q13 ),

t=1 t=1

(7.6)

where y7(87) denotes the rth bootstrap-sample conditional upon 8 = 8. We
then compute the simulated log likelihood ratio statistic

Tf = Ly(87) — Ly(v5(87)).

3. By constructing the empirical cdf of {7} : 1 < r < R}, we can compare the
observed test statistic, Ty = L(01)— Ly(7,(07)), with critical values obtained
from the R independent (conditional) realisations of T7. The p-value based
upon the bootstrap procedure is given by?*

R
> UTj > Ty)

Py = "= = , (7.7)

where 1(.) is the indicator function.

The bootstrap procedure outlined above simply resamples the likelihood ratio
statistic without pivoting. There are a number of alternative test statistics which by
using pivotal methods are conjectured to represent an improvement over classical
first order methods (see for example, Beran (1988) and Hall (1988)). An evaluation
of both the size and power properties of a number of simulation and bootstrap-based
tests applied to linear versus loglinear regression models and a number of variants
of threshold autoregressive models is provided in Kapetanios and Weeks (1999).

24Tf T is discrete then repeat values of T can occur requiring that we make an adjustment to

(7.7).
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