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1 Introduction

Model evaluation in econometrics has been carried out along two main lines. One is model
selection and the other is hypothesis testing. Model selection is a decision theoretic approach.
Given a set of rival models, its objective is to select the ‘best’ among them. This selection
invariably involves the specification and estimation of a loss function which reflects the aspects
of importance for the given modelling situation. The loss function is implicitly constructed
from the perspective of the true data generation process which may or may not be required
to belong to the set of rival models being investigated. The model which implies the smallest
estimated loss is retained as the preferred specification. This approach provides unambiguous
conclusions. At the end of the investigation one model is always accepted as the preferred
specification. As a number of model selection procedures are derived using concepts from
information theory, the set of these procedures will be collectively referred to as information
criteria. This paper considers the properties of model selection using information criteria in
the context of nonlinear threshold models.

Hypothesis testing starts by specifying two hypotheses usually denoted by Hy and H;. The
objective is to consider the validity of the null hypothesis, H,, against the evidence provided
by the alternative hypothesis, H;. Although the analysis is carried out under the assumption
of the null being true, this assumption is only temporary and its validity is the focus of the
investigation. Usually, Hy may be obtained from H; by restricting a subset of the parameters
of H;. Then, Hj is said to be nested within H;. However, the case when the two hypotheses
are not nested is of interest as well. The most usual instance of nonnested hypotheses test-
ing involves the comparison of alternative parametric models. In the framework of nonlinear
models, comparisons between alternative nonnested parametric models, for example between
threshold autoregressive and Markov-switching models, is likely to be of interest since both
classes may be used to model macroeconomic data.

It is common to consider model selection and nonnested hypothesis testing as rival pro-
cedures of model evaluation. However, it is clear that they are based on different premises.
Unlike model selection, nonnested hypothesis testing makes a probabilistic statement con-
cerning the validity of the null model against the evidence provided by the alternative model.
Additionally, model selection always provides a preferred specification. On the other hand,
although a single test of two nonnested models will always reject one of the two models, the
asymmetric treatment of the null and alternative hypotheses suggests that both models should
take the role of the null hypothesis in two different tests. This distinguishes nonnested hy-
potheses testing from nested hypotheses testing since, in the latter case, the nesting structure
suggests the null and the alternative hypothesis. When both nonnested models take the role
of the null hypothesis, it is possible that both models are rejected or accepted making the
choice between them impossible. Discussions on the conceptual differences between model
selection and nonnested hypotheses testing may be found in Amemiya (1980) and MacKinnon
(1983).

Section 2 gives an account of the information criteria that will be considered. Their prop-
erties are presented and the basic statistical principles on which they are based are outlined.
As most of the work done on model selection in econometrics has focused on linear models,
it is important to consider extensions of existing theoretical results to threshold models. Sec-



tion 3 extends theoretical results concerning lag order selection, available for linear models,
to threshold models. In addition to theoretical results which are, usually, of an asymptotic
nature, the small sample performance of the information criteria needs to be evaluated. There-
fore, Section 4 investigates the small sample performance of the criteria in selecting the lag
order of threshold models. Section 5 presents Monte Carlo evidence on the small sample
performance of information criteria in selecting between alternative threshold specifications.
Section 6 concludes. Appendices 1 and 2 contain part of the proofs and technical discussions
of the theoretical results.

2 Analysis of information criteria

A wide variety of information criteria have been proposed in the statistical and econometric
literature. Most criteria are derived either from classical statistical principles starting with the
pioneering work of Akaike (1973) or Bayesian statistical principles. In this paper we confine
our attention to the following five criteria:

e Akaike’s information criterion Akaike (1973) Akaike (1974)
e Schwarz’s information criterion Schwarz (1978)
e Hannan-Quinn information criterion Hannan and Quinn (1979)

e Generalised information criterion (GIC) Takeuchi (1976), Stone (1977), Kitagawa and
Konishi (1996)

e Informational complexity criterion (ICOMP) Bozdogan (1990)

The first three criteria are standard and require little discussion. The other two are less
known and will be briefly discussed. All the above criteria are structurally similar since they
Involve an estimate of the likelihood function of the model under consideration and a penalty
term which depends directly or indirectly on the number of parameters of the model and the
number of observations Other criteria available in the literature are Mallows’ €}, Mallows
(1973), generalised cross-validation (CGV), Craven and Wahba (1979), Rissanen’s minimum
description length, Rissanen (1978) , and Shibata’s prediction error criterion, Shibata (1980).
In the next two subsections we will briefly present the GIC and ICOMP information criteria.

2.1 Generalised information criterion (GIC)

This information criterion was introduced by Takeuchi (1976), discussed in Stone (1977) and
extended by Kitagawa and Konishi (1996). It extends the framework of AIC by dropping the
assumption that the true model belongs to a parametric family of models which is the focus of
investigation. Kitagawa and Konishi have extended the analysis even further by allowing for
estimation methods other than maximum likelihood. It is well known that operationalising
the principle of model selection based on the minimisation of the Kullback-Leibler (1951)
information quantity as carried out by Akaike (1973) is equivalent to deriving an expression
for the asymptotic bias of the sample log-likelihood as an estimator of the expected log-
likelihood under the true model. In order to derive the expression for the penalty term of
the GIC an analysis similar to that carried out by Akaike may be used but without imposing



the assumption that the true model belongs to the class of models being investigated. Let
f(8) denote the true density of each observation from the sample (yi,...,yr), h(7y) denote
the density of the observation for the generic model under investigation and let I7(.) denote
the loglikelihood function. Then, the loss function of the criterion takes the form —I7(8) +

Tr(BAil) where B and A are estimates of B and A given by
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A derivation of the penalty term may be found in Kitagawa and Konishi and Chapter 2 of
Kapetanios (1998a). Now, if the competing models belong to the same parametric family with
the true model then, under the true model, A = B, giving Tr(BA ') = k where k is the
dimension of @. Thus, we get again Akaike’s criterion.
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2.2 Informational complexity criterion (ICOMP)

ICOMP is a new information criterion which has been proposed by Bozdogan (1990). Al-
though it is derived from principles of information theory it is a different procedure than AIC.
It is based on the concept of complexity. Its aim is to provide the optimal tradeoff between
the fit and the complexity of a model. Intuitively, complexity and parsimony, as represented
by the number of parameters of a model, may seem related concepts. However, complexity
has a specific meaning in information theory. This concept will be presented and a sketch of
the derivation of the criterion will be given below.

For a random vector y = (yi,...,yr), with joint density f(y) = f(yi,...,yr) and
marginal densities fi(y1),..., fr(yr), complexity is a measure of the dependency between
its components. Such a measure may be constructed along the lines used in the construction
of KLIC. The informational measure of dependence between yy,... ,yr is given by

I(yla"' 7yT) = /_oo/_oof(yla 7yT) IOg f£;%3,fT:y(Zi)dyldyT

This is known as the expected mutual information and will be used as an initial measure of
complexity. It turns out that the maximum expected mutual information of a T-dimensional
vector following a multivariate normal distribution with covariance matrix 3 = [o;;], over all
orthogonal transformations of ¥, is a function of ¥ alone! and is given by

T Tr(X) 1
g 0
Given the above, Bozdogan derives the maximal measure of complexity of a multivariate
normal linear or nonlinear model. Such a model is assumed to have the following general form
y=0+e¢€

where y is an T X 1 observable random vector, ® is a deterministic component and € isa 7" x 1
vector of random errors. © depends on a vector of unknown parameters 8° = (69,...,6%)

!See Bozdogan (1990, pp. 237-238).



whose estimate is denoted by 6. The estimate of € is denoted by €. This is referred to
as the residual of the model. Such a model is decomposed into two complexity generating
subsystems. One is the set of estimated parameters, 0 and the other is the residual. Then,
the complexity of the model is the complexity of the vector (é, €). Assuming independent
components and normally distributed, spherical residuals 2, the complexity of the model is
equal to

~ —1 —1
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where F is an estimate of F. As the aim of the criterion is to maximise fit and minimise
complexity its final form is

A1
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where [7(.) is the log-likelihood function of the model.

3 Consistency of lag order selection in threshold models

In this Section we will provide sufficient conditions for the consistency of lag order selection
in threshold models using information criteria. The classes of self-exciting threshold autore-
gressive (SETAR) and Markov-switching models will be considered. Before proceeding with
the presentation of the results we state briefly some available relevant results from the litera-
ture. In order for a criterion of the form —lT(@) + Cr, with penalty term C7y, to be weakly
consistent in the estimation of the lag order of a linear autoregressive model it is sufficient

that?

. Cry,
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Sin and White (1996) provide a significant extension of the above result to general linear and
nonlinear models. Abstracting from the more technical conditions needed for their results,
it turns out that the above conditions are sufficient for a criterion to pick the true model
with probability approaching one, assuming the true model belongs to the set of models being
considered*. Further, a criterion will be strongly consistent for lag order selection, in linear
autoregressive models® if, in addition to (1), its penalty term tends to infinity at a rate higher
than or equal to loglogT. It will be proven that the conditions needed for consistency in
linear autoregressive models extend to threshold models.

2The latter assumption is very strong and is unlikely to hold in most practical situations. It is sufficient to
note that even in a regression model where the errors are normal and spherical, the residuals are not spherical.
This assumption is made by Bozdogan (1990) in the derivation of the second version of his criterion. In the
first version this assumption is not made and as a result two sources of complexity must be evaluated. We
will use the second definition following Bozdogan, Bearse, and Schlottman (1997).

3See, for example Liitkepohl (1991, pp. 131)

4If the true model is not considered in the model selection procedure then a criterion satisfying the above
conditions will pick with probability approaching one the model with minimum KLIC. If more that one models
attain this minimum then the model with the lowest dimension is chosen.

°This result has also been extended to more general setups by Sin and White (1996).



3.1 SETAR Models

The class of SETAR models is extensively discussed in Tong (1995). The piecewise linear
structure underlying the class, indicates that extension of the results available for linear mod-
els concerning lag selection should be investigated.

Consider the following SETAR model

yt:¢j,0+¢j,lyt71+'-'+¢j,p0ytfp0+Uj6t7 ] - 17 , M, t:poa"' 7T7 Oy >0 (2)

The model has m regimes. The process is in regime j if r;_; <y, 4 < r; where d is an integer
valued delay parameter. ry = —oo and r,, = 0o. {ry...7, 1} is a strictly increasing sequence
of parameters to be estimated. The number of regimes, m, and the delay parameter, d, are
assumed known in our setup®. We note that p° is the true lag order for all the m regimes’. We
will concentrate on the case m = 2 for simplicity. The results we will obtain can be readily
extended to models with m > 2 regimes conditional on extending the results by Chan (1993)
concerning the consistency and asymptotic normality of the parameter estimates to models
with more than two regimes. Estimation is carried out by constructing a grid of possible
values for r; = r and running the regressions

for each point in the threshold parameter grid, where y; and X; are a vector and matrix,
respectively, containing the observations for regime j. ¢, and €; are the coefficient and error
vectors for regime j. In matrix notation, y; = (Y, Y, - - - ,ijj)’, X; = (zj,,..- ,a:jTj)’,
Lj;, = (y]‘i*h Yji—2s - - 7yjrp)l7 ¢j = (¢j717 T 7¢j,17), € = (€j17 s 7€jTj)l and {j17j27 T 7]TJ}
are the time indices of the observations belonging to regime j, j = 1,2. As we do not assume
prior knowledge of p° we use p to denote the maintained lag order for the above regressions.

The aim of using the information criterion is to obtain an estimate of the true lag order
p°. It is, thus, assumed that the maximum lag order checked through an information criterion
is P where p® < P. The following assumptions are made.

Assumption 1 The process {(Ys, Yi—1, .- - Yi—po11)} satisfying (2), viewed as a Markov chain,
admits a unique invariant measure 7(.) such that > K, p < 1,Yz € R andt > 1, ||P(z, A)—
m(A)|| < K(1+ |z])p", where P(.,.) is the t-step transition probability, ||.|| denotes the total
variation norm and |.| denotes the Euclidean norm.

Assumption 2 ¢ is absolutely continuous with a uniformly continuous, positive probability
density function and finite fourth moment.

Assumption 3 y; is stationary with finite fourth moment.

Assumption 4 The autoregressive function is discontinuous.

6The number of regimes is usually dictated by theory or preliminary examination of the data. The assump-
tion that d is known may be dropped without affecting the asymptotic results (see Chan (1993).
"The superscript 0 indicates true lag order values.



Remark 1 The above assumptions are taken from Chan (1993) and are sufficient for strong
consistency of all the parameters and asymptotic normality of the autoregressive parameters
and o, j = 1,2. As mentioned in Chan (1993), Assumption 1 is stronger than geometric
ergodicity. But if Assumption 2 holds and max;—; o Z‘fil ¢ < 1, Assumption 1 is obtained
following Chan, Petruccelli, Tong, and Woolford (1985) and Chan (1989)%. Further, Assump-
tion 3 is obtained by Assumption 1, if the marginal distribution of y1, m(.), is the marginal
distribution of the first element of a vector random variable with distribution (.).

Remark 2 It is obvious that the distribution m(.) places positive probability mass on both
partitions of the state space R of y;, defined by the threshold parameter, r (See Remark Bi(ii)
of Chan (1993)). As a result the number of observations in regime j, j = 1,2 rises at rate T
and it follows that limy_, o % =b 0<b<1, a.s.

In the above setup we want to provide necessary and sufficient conditions for weak and
strong consistency of lag order selection through information criteria. All of the criteria
considered in Section 2 are likelihood based and introduce penalty terms to promote model
parsimony. The penalty term may depend on the number of observations and depends either
directly or indirectly on the dimension of the parameter vector of the model. To provide a
general treatment of lag selection through information criteria we will denote the penalty term
by Cr where £ is the dimension of the parameter vector. Note that k = 2p+4 for two regime
SETAR models”. We also define k;, j = 1,2 to be the dimension of the parameter vector for
regime 7. We will additionally make the following two assumptions

Assumption 5 For p < p°, the estimate of v, 7, converges almost surely to some constant

*

r.

Assumption 6 For given r and p, |Cry — (Cry gy + Crypy)| < C almost surely, for all p =
L,..., P, where C is a positive constant and Cr, x;, j = 1,2 is the penalty term that applies
to the observations in regime j in (3). Further, for given T and k but different r it is assumed
that the difference in the penalty terms, for a given criterion, is again almost surely bounded.

Remark 3 It is easy to see that for all standard criteria (Akaike, Schwarz and Hannan-
Quinn) Assumption 6 holds. A proof of this statement for the first part of Assumption 6 may
be found in Remark 8 of Appendix 1.

Then the following results hold.

Theorem 1 If {y;} is generated according to the SETAR model defined by (2), then, under
Assumptions 1-6, the estimate of the lag order p°, p, obtained through an information criterion
with penalty term Cry., is weakly consistent (i.e. converges to its true value in probability) if,
and only if, the following conditions hold

Cri »p

L. Crp Boo 2. 0 3. If k' > k% then Cpp — Crpe 5 oo

8See also Chan, Petruccelli, Tong, and Woolford (1985) for sufficient conditions for ergodicity of a first
order SETAR model.

Disregarding the number of threshold parameters which remains constant throughout the search for the
lag order.



Theorem 2 If {y;} is generated according to the SETAR model defined by (2) then, under
Assumptions 1-6, the estimate of the lag order p°, p, obtained through an information criterion
with penalty term Cry, is strongly consistent (i.e. converges to its true value almost surely)
iof, and only if, the following conditions hold

C a.s. . C a.s.
1. Lk =% C where C is a constant greater than k or —=t— =% 00.
loglog T’ loglog T’
Crp a8.
9. Cre %

Crp1—Cr 2 a.s.

C —C a.s. .
3. Ifk' > k? then —TE Tk 2% & where C' is constant greater than k*—k2, or

loglog T loglog T
o0

Remark 4 The general theory developed by Sin and White (1996) does not apply in the case
of SETAR models as the likelihood function is not continuous with respect to the threshold
parameters.

The proof for both Theorems is given in Appendix 1. For ease of exposition the proof dis-
tinguishes between the case where r is known and the case where r is estimated. The aim
is to prove that an information criterion whose penalty term satisfies the conditions of the
Theorems, minimised over p = 1,... , P, obtains its minimum at p° in probability for Theo-
rem 1 and almost surely for Theorem 2. The cases p < p° and p > p° are distinguished. For
p < p, it is sufficient to show that the change in the likelihood, arising out of an increase in
p, dominates the change in the penalty term in probability and almost surely. For p > p°, the
opposite must be shown to hold.

Remark 5 The setup we are considering restricts all regimes to have the same lag order. If
we wish to relax this assumption the following consistent procedure may be used. Assume a
common lag order and use a consistent (weakly or strongly) information criterion to obtain
its estimate, p. This will, asymptotically, be equal to the mazimum true lag order over all the
regimes. Then, using the estimate of the threshold parameter obtained above, search within
each regime, using the information criterion, over p =1,...,p. The estimate obtained will be
consistent for the true lag order of the regime. See Remark 11 in Appendiz 1 for a justification
of this procedure.

3.2 Markov-switching models

In this subsection we will examine lag selection for Markov-Switching models. A brief review
of this class will be given first. The class was introduced and analysed by Hamilton (1988,
1989, 1990, 1994, 1996) . In these models the switch between regimes is regulated by an
unobserved Markov chain'®. The presence of the unobserved Markov chain makes estimation
of the model more difficult. Hamilton (1989) provides a nonlinear filter which draws inferences
about the Markov chain and produces the conditional likelihood of the model which is used

0The most usual case involves a two-state Markov chain where the transition matrix of the chain is made
up of constant parameters. However, extensions to more states have also been investigated, see Hamilton
(1990). Further, the transition probabilities have been allowed to depend on the duration of the period during
which the system has been in a given regime (see Durland and Mccurdy (1994)) or on a vector of exogenous
variables (see Filardo (1994)).



for ML estimation of the parameters!!.
Consider the following Markov-Switching model

yt:¢j,0+¢j,lyt71+'-'+¢j,p0ytfp0+Uj6t7 ] - 17 , M, t:poa"' 7T7 Oy >0 (4)

The model has m regimes. The process is in regime j if S; = j where {S;} is an m-state first or-

0 l—q ]
l—¢ a2 '
where 0 < ¢; <1 and 0 < g» < 1. The number of regimes, m, is assumed known in our setup.
For simplicity we will concentrate on the case of m = 2. As before, p° is the true lag order for
both regimes. The maximum lag order checked through the information criterion is P where
p? < P. The following assumptions are made.

der Markov chain with transition matrix P. For example, for m = 2, P = [

Assumption 7 ¢; and gs are bounded away from 0 and 1.
Assumption 8 For j = 1,2, the roots of 1 —¢j12—...—¢jpz = 0 lie outside the unit circle.

Assumption 9 {¢;} is an i.i.d. sequence of random variables with finite 2+ 6 moment where
d>0.

Remark 6 Assumption 7 ensures that the Markov chain {S;} is ergodic. Therefore, by ex-
ample 2 in Chapter 20 of Billingsley (1968), {S;} is a uniformly mizing sequence of arbitrary
large size. For simplicity we will also assume that the initial distribution of the Markov chain
is also the invariant distribution. Trivially, by Assumption 9, {€} is a uniformly mizing
sequence of arbitrarily large size.

Unlike SETAR models, Markov-Switching models may be treated under the framework of Sin
and White (1996). Unfortunately, in order to use the results of this paper a number of com-
plicated regularity conditions are needed. These are presented in Appendix F of Kapetanios
(1998a). The conditions are needed to establish pointwise and uniform laws of large numbers
(LLN), central limits theorems (CLT) and laws of iterated logarithm (LIL) for y, and its
derivatives which are required to establish weak and strong consistency for the information
criteria. The key to deriving the limit laws, needed to apply the results of Shin and White, lies
in proving that {y;} is a near epoque dependent process'? on {¢;, S;}. Under Assumption 8,
we can easily prove this. The proof may be found in Appendix 2. Since {¢;, S;} is a mixing
process of arbitrarily large size, it then follows that {y;} is a mixingale!® and the results on
limit laws for mixingales may then be applied.

Following the above discussion we state the following results

Theorem 3 If{y;} is generated according to the Markov-switching model defined by (4), then,
under Assumptions 7-9 and the reqularity conditions in Appendiz F of Kapetanios (1998b),

11 As the likelihood of the model is often ill-behaved, suffering from singularities and multiple local maxima,
Hamilton (1990) has suggested an analytical EM algorithm for parameter estimation. More details about the
estimation of Markov-Switching models may be found in Kapetanios (1998b).

12The definition of a near epoque dependent processes is given in Appendix 2. For examples of near epoque
dependent processes see Gallant and White (1988, pp. 27-31).

13For the definition of a mixingale see Appendix 2.



the estimate of the lag order p°, p, obtained through an information criterion with penalty
term Cry, is weakly consistent, if the following conditions hold

C
1. Crp B oo 2. % 20 3. If K>k then Cpg — Crpe 5 00

Theorem 4 If{y;} is generated according to the Markov-switching model defined by (4), then,
under Assumptions 7-9, and the regularity conditions in Appendiz F of Kapetanios (1998b),
the estimate of the lag order p°, p, obtained through an information criterion with penalty
term Cry, is strongly consistent if the following conditions hold

C a.s. . C a.s.
1. 225 % C where C' is a constant greater than k or —=*— % 0o .
loglog T loglog T’
C a.s.
2. =Lk %0

Cp 1 —C .
3. If k' > k? then % X C, where C is a constant greater than k' — k%, or

CT,kl _CT,k2 a.§.
loglog T’

Theorems 3 and 4 may be proven by using Propositions 4.2(a), 4.2(c), 5.2(a) and Corollary
5.4(b), of Sin and White (1996). The proofs of the Theorems involve supplying the relevant
regularity conditions for the limit laws needed for the theorems in Sin and White (1996) to
hold. These are provided in Appendix 3.

4 Small sample properties of lag order selection

The theoretical results obtained in Section 3 hold asymptotically. Therefore, it is necessary
to investigate the properties of lag order selection in small samples.

4.1 SETAR models

The structure of the Monte Carlo experiments is as follows: The SETAR models have two
regimes. Four true data generating processes (DGP) are used. These are described in Table 1.
The parameters in this table, refer to the SETAR model given by equation (2). For all the
DGPs the true value of r is 0. The first and the third DGPs have coefficients with diminish-
ing absolute values for higher order lag coefficients whereas the second and the fourth DGPs
have coefficients which do not fall in absolute value with the order of the lag. The signs of
the coefficients and the intercepts are chosen so as to approximate an upward trending series
whose differences follow a SETAR model, as the estimates of the proportion of observations
belonging to each of the two regimes, given in Table 1, show. A number of macroeconomic
series have been modelled similarly in the literature (See for example Potter (1995)). The
absolute values of the coefficients are on purpose small to investigate the performance of the
criteria for weak threshold autoregressions and to minimise small sample estimation bias. For
all DGPs, p = 1,...,6. r is estimated by grid search. The grid contains 21 points centered
around the true value. Of course, in practise the grid cannot be centered around the true

9



value of r, since the threshold parameter is unknown. However, as the same value of the
maximised log-likelihood, obtained through the grid search, is used by all criteria, their rel-
ative performance should not be greatly affected. Indeed, limited experimentation with an
alternative grid structure where quantiles of the Monte Carlo samples are used to construct
the grid, indicates that the results are not affected. The delay parameter, d, takes the values 1
and 2. The true value is 1. T takes the values 150, 200, 400 and 600. The rest of the design of
the experiments is common for all experiments in this paper. The error terms are constructed
to be zero mean normal variates. For each replication a sample of size T" + 200 is initially
generated. The first 200 observations of each sample are discarded to minimise the effect of
initial conditions!*. For each of the DGPs and for each T, 400 replications are carried out.

We present, the percentage frequencies of lag orders selected for all DGPs and for T" = 200
in Tables 2-5. The standard errors of the estimated percentage frequencies are given in paren-
theses!®. To save space, the actual frequencies of lag orders selected for all experiments are
presented graphically in Figures 1 to 6 at the end of the paper. Each histogram in these
Figures has twelve bars. The first six correspond tod =1, p=1,...,6, whereas the last six
correspond tod =2, p=1,...,6. To facilitate the legibility of the Figures, the axes are kept
constant over the five criteria for given experiments but vary between experiments.

GIC has a very similar performance to AIC. This, of course, is to be expected given the
fact that GIC is a generalisation of AIC under less stringent assumptions and the fact that
the basic assumption underlying AIC is satisfied'®. It is obvious that for DGPs 2 and 4, as the
number of observations increases, SC and HQ pick the right order almost perfectly, whereas
AIC and GIC overestimate it for large T at expected. However, at smaller samples, AIC
performs better compared to SC which underestimates the order considerably. HQ performs
better overall for DGPs 2 and 4. As far as DGPs 1 and 3 are concerned it is obvious that all
criteria, apart from ICOMP underestimate the order. This is to be expected given the very
small and diminishing absolute values of the coefficients. However, AIC is doing slightly better
with HQ improving for larger samples. It is obvious that the tendency of AIC to overestimate
the order helps. ICOMP performs poorly in smaller samples especially for DGPs whose true
lag order is 2. Its performance improves for 7" = 400 and 600. Overall, HQ seems to be the
best criterion both at small and large samples.

We also comment on the estimation of the delay parameter, d, which, given the estimation
framework, may take the values 1 and 2. Note that the true value is 1. The correct value of
the delay parameter is chosen more often for all the criteria with the exception of ICOMP in
DGPs 1 and 3 and smaller sample sizes and in one case of SC. Furthermore, the frequency
profiles of the lag orders selected are similar for d = 1 and d = 2.

Kapetanios (1998a) investigates briefly the accuracy of the estimates of the parameters of
the models, obtained during the Monte Carlo simulations. The estimates do not appear to
suffer from large biases apart from the threshold parameter which is upwards biased!”.

14The starting values are set to zero.

15The standard errors are given by 100,/N ~17(1 — #) where 7 is the estimated percentage frequency divided
by 100 and N is the number of replications for the Monte Carlo experiment.

L6 ATC is valid if the true model belongs to the parametric family of models being considered.

17See Kapetanios(1998a) for a more extensive Monte Carlo investigation of the threshold parameter estima-
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4.2 Markov-switching models

The Monte Carlo simulations conducted to investigate lag order selection for Markov models
have a similar structure with those presented for SETAR models. Again, four DGPs are con-
sidered. The main features of these DGPs are presented in Table 1. The parameters of this
table refer to the Markov-switching model given by equation (4).

The specification of the autoregressive functions for each regime is similar to that of SE-
TAR models. DGPs 1 and 3 have coefficients with small absolute values which are decreasing
in the lag order while DGPs 2 and 4 have larger coefficients in absolute value which remain
large for higher lag orders. The transition probabilities are both set equal to 0.5, making both
regimes equally likely to occur. The experiments are carried out for 200 and 400 observations.
As for SETAR models, p=1,...,6. Estimation is carried out using the maximum likelihood
routines of GAUSS 3.2.35'8. The percentage frequencies of lag orders selected for all DGPs
and 7" = 200 are presented in Table 6. All results are presented graphically in Figures 7 to 9.
In these Figures, all histograms have six bars forp =1,...,6.

As before HQ performs best in selecting the lag order followed by SC. They both do well
for DGPs 2 and 4 at 200 and 400 observations. For DGPs 1 and 3 HQ and SC underestimate
the true lag. AIC overestimates the true lag order for most DGPs. GIC performs similarly to
AIC as expected. ICOMP significantly overestimates the true lag order for all DGPs. Once
again we conclude that HQ and to a lesser degree SC are the best choices for lag selection in
Markov-switching models. We also note that the performance of the criteria may be adversely
affected by the small sample behaviour of the maximum likelihood estimator. A recent paper
by Psaradakis and Sola (1998) provides Monte Carlo evidence which suggests that conventional
asymptotic approximations for the distribution of the ML estimates are poor for small samples
in Markov-switching models.

5 Selection between alternative threshold models

As new classes of nonlinear threshold models are being developed, it is important to consider
formal methods of selection between alternative nonlinear models as opposed to the prevalent
practise of picking, for a variety of ad hoc reasons, a class of threshold models and working
within the framework of that class only.

In theory, AIC, SC and HQ'Y are not, strictly speaking, applicable in this context since
the assumption concerning model selection within a parametric family is not satisfied. On
the other hand, ICOMP and GIC should be useful tools as they are not bound by such strict
assumptions. Three Monte Carlo experiments are carried out to investigate these issues. The
experiments consider a SETAR, a Markov-switching and an EDTAR model. The EDTAR
model is given by equations

Ih =Yy <y —71¢)y Loy =1L+ 10 =0), Iy =1(y >yl +re), 1e,7p >0 (5)

tor in SETAR models.

18The user defined routines for GAUSS are modified versions of the GAUSS programs by van Norden and
Vigfusson (1996) (see also Gable, van Norden, and Vigfusson (1995)).

YNote that HQ was originally suggested as a tool for lag selection for linear models.
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Ty = ¢o+ (L), +0pF, 1+ 0.Cy 1 + hye (7)

where x, = Ay, by = Ocorleoeg—1+ 01 r—1 + 011, {€} is an i.i.d. sequence of disturbances
and 1(.) denotes the indicator function. p,, p. are the lag orders for the effects of past de-
viations from the trend on the current z; and ®(L) is a lag polynomial of order p. y/ is the
unobserved trend process of y; estimated by a recursive Hodrick-Prescott filter. More details
about the EDTAR model may be found in Kapetanios (1999). The parameter values for the
generation of the Monte Carlo samples are given in Table 7.

The autoregressive structure of the regimes of the SETAR and Markov-switching models is
the same so as to minimise the distance between the two models. The experiments are carried
out for samples of 200 observations only, as the treatment of Markov and EDTAR models is,
computationally, very intensive. For each of the three experiments a different specification
from Table 7 is used as the true DGP. The percentage frequencies of models selected for each
criterion are given in Table 8.

Under a Markov DGP all criteria perform well choosing the true model most often. ICOMP
performs best choosing the true model 96 % of the time. GIC has the least convincing
performance and chooses the Markov model 87 % of the time. When a SETAR DGP is
considered the performance of the criteria deteriorates significantly. All the criteria, apart
from ICOMP, still pick the SETAR model most often but the highest selection frequency is
obtained by AIC which picks the SETAR model 61.25 % of the time. ICOMP picks the Markov
model more often than the SETAR model casting doubts on its impressive performance for the
Markov DGP. It is likely that the inclusion of ¢; and ¢y in the covariance matrix, accentuates
its block diagonality, compared to the SETAR covariance matrix, and reduces complexity.
Under the EDTAR DGP all criteria perform impressively. The highest selection frequency
is by ICOMP which picks the EDTAR model 99.5 % of the time. The lowest is by AIC
which picks the true model 92 % of the time. The performance of the criteria in the case
of the EDTAR model may be due to the fact that the EDTAR model involves three regimes
unlike the other two models. Additionally, the EDTAR model has lower dimension that either
the SETAR or the Markov-switching model. In general it should be expected that the more
distant, in terms of KLIC, two models are the easier it will be for the criteria to pick the true
one. In general AIC, HQ and SC perform slightly better than GIC and significantly better
than ICOMP. Given the results of Sin and White (1996), SC and HQ should to be preferred
since they are strongly consistent. Unfortunately, these results are not valid in this case, since
the assumptions concerning continuity and differentiability of the likelihood functions are not
satisfied in the case of SETAR and EDTAR models.

6 Conclusion

In this paper the role of information criteria in the analysis of threshold models was investi-
gated. Theoretical results concerning consistency of lag selection which are known for linear
models have been extended to threshold autoregressive and Markov-switching models. Monte
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Carlo evidence on the small sample performance of a number of criteria in lag order selection
and selection across different classes of threshold models was presented. As always, the con-
clusions are conditional on the design of the specifications. Nevertheless, we can conclude that
standard information criteria have an important role to play in model selection for nonlinear
threshold models. Other information criteria such as GIC and especially ICOMP have proven
less reliable. The overall relative performance of ICOMP leads to the conclusion that it is of
limited potential in model selection for nonlinear threshold models.
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Appendix 1:Proof of Theorems 1 and 2

The proofs for both Theorems entail common elements. A single account will be given and any anal-
ysis needed for a specific Theorem will be given at the appropriate point. The proof will concentrate
on the case m = 2. The results may be extended to cases of more than two regimes conditionally
on extending the results of Chan (1993) concerning consistency to more than two regimes. For the
first part of this proof we will assume 7 to be known. Modifications needed, when this assumption is
relaxed, are given at the second part of the proof. If r is known the analysis by Sin and White (1996)
is relevant. However, we choose to provide our own setup which will be used in the case where r is
estimated. The analysis used by Shibata (1976) to discuss weak consistency is not valid since the
resulting model is not an autoregression. As mentioned in the main part of the paper, estimation of
the coeflicients of the model is carried out through two OLS regressions for the two regimes. These
regressions are given by (3). The notation introduced for these regressions will be used throughout.
In addition, we define the standard regression idempotent matrix M; = I, — X (XX ;)7'X;
which will be used later. To motivate the use of the likelihood based information criteria we note the
equivalence of maximum likelihood estimation under error normality and conditional least squares
and use the normal likelihood in the specification of the criteria. The concentrated conditional
log-likelihood of the SETAR model is then given by?°

T 1 T 1
I (@1, @) = const — o 10g{?1(y1 ~X1¢1) (y1 — X16)} — 9 log{ﬁ(yZ — X26,) (Y2 — X2y}
(8)
In this context we define the following loss function associated with the information criterion with

penalty term Crj which when minimised over all possible lag orders gives the estimated lag order
according to the information criterion.

T - X "y, — X T - X "y, — X
ICT(¢1,¢2,CTJ§) — _110g{ (yl ld)l) (yl 1¢1)} + —210g{ (y2 2¢2) (yZ 2¢2)}+CT,]C
2 Ty 2 T
(9)
We now claim that minimising (9) over p = 1,... , P is asymptotically equivalent to minimising
the two quantities below over p = 1,... , P using observations from each of the two regimes for each

quantity. We also claim that this equivalence holds both in probability and almost surely. This claim
will be proven at a later stage.

T 1

ICT1,1(¢17 CTl,kl) = ?1 log{ﬁ(yl - X1¢1),(y1 - X1¢1)} + CTl,kl (10)
Ty 1 ,

ICT2,2(¢2v CT2JC2) = ? log{i(yZ - X2¢2) (yZ - X2¢2)} + CTz,kz (11)

20]og denotes natural logarithms.
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Remark 7 This equivalence holds only asymptotically. For small samples the conclusions reached by
minimising (9) as opposed to (10) or (11) will not be the same when the Schwarz and Hannan-Quinn
criteria are used.

Remark 8 As noted in Remark 3 we now prove that the first part of Assumption 6 holds for the
standard information criteria (Akaike, Schwarz and Hannan-Quinn). For Akaike we have Cry =
k, Cr g, = k1 and Cryp, = k2. Since ki + k2 = k, the first part of the assumption holds for
Akaike’s criterion. For Schwarz’s criterion, Cry, = %log T,Crpy = %1 log T and Cr, j, = % log T5.
But Cr, p, + C1y ey = % logT + %2 logT + % log % + % log % which s asymptotically equal to
%logT + %logb + %log(l —b). But % logb + % log(1 — b) is bounded by Remark 2. For the
Hannan-Quinn criterion, Cry = kloglogT, Cr, p, = kiloglogTi and Cr, 1, = k2 loglogTs. But
k1 log log Ty +k log log Ty = k log log T+ k1 log 57+ +k; log 572 Using L 'Hopital’s rule for limits of
fractions we get that the limits of k1 log l%g% and ko log ll%gg% are ki log% and ks log ﬁ respectively
and therefore bounded.

The decomposition of the likelihood in terms of regimes permits the search for the lag order for
each regime independently since a different set of observations is used for the search in each regime.
Thus, ICr, 1 or ICT, 2> may be minimised over p.

Following the above argument, we can concentrate on regime 1. The same argument can be
applied to the second regime. To reduce notational burden we drop the subscript indicating the
regime from the coefficient and error vectors and data matrices. From now on when the matrices
X and M have superscript 0, they are constructed using the true lag order p°. If they have no
superscript then they are constructed using lag order p # p°. When the coefficient vector ¢ has
superscript 0 then it refers to a model using the true lag order. Hats indicate estimated parameters.
At first we consider the case where p < p°. Then, weak consistency requires that

) N N
lim P{ICTl,l(d)a CTl,kl) — ICT1,1(¢ 7CT1,k?) < 0} =0 (12)

Ty —00

By substitution, using standard regression results and after some algebra this becomes

I <0! ¢, 0-C
et { B MX%;:'F;I,?ZE FRMN) <e S } =0 (13)
But, X € X°. Also idempotency implies positive-definiteness for M. As a result
¢V X" MX¢° > 0 in probability (14)
for all sample sizes. By the assumed stationarity and ergodicity of the model, we get
TixYx0 L0 rix'x By 1Ix'x0 B = (15)
where X% and X are positive definite matrices. Further, by the i.i.d. assumption on ¢; we have
T ' XYe—,0, T;'X'e—,0 and T, 'e M e—,07, T, '€ Me—,0} (16)

For all § > 0 there exists a constant K such that for all 73 > K, the RHS of the inequality in (13)
is less than 1+ d. This is because of the second condition of the Theorem. Now, given (14) and (16),
for a fixed ¢ > 0 and for all sufficiently small § > 0, there exists another constant, K, such that for
all T1 > K the following holds

b { (" XV MX ¢’ + € Me + 2 MX'¢°)

Tontle <1+ 6} <e (17)
1
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Noting that ¢ was arbitrary, we have proven weak consistency for p < p°. Now we consider strong
consistency. (10) may also be written as

T .
10T, 1(Cry y) = 71 log 62 + Cry i, (18)

where 612, is the residual sum of squares of the regression of y; on y;_1,...y;—p, involving observations
in regime 1, divided by the number of observation in that regime. A well known regression result

(see for example Cramer (1946) p. 307) states that
6y = 65(1=prp) (L= p3) - (L= Pl ) (19)

where &3 is the sample variance, and p;;_1,% = 1,... ,p, is the estimated partial correlation coefficient
between y; and y;; (i.e. the correlation coefficient between the residuals of the regression of y; on
Yi—1,--- ,Yt—i+1 and the residuals of the regression of y;—; on y—1,... ,4—;+1). Using the above
result the objective function of the information criterion may be written as

T, 5, T .
ICr,1(Cry 1) = 5 log &5 + - D Jlog(1 = p; 1) + Ory iy
j=1

2
For p < p° strong convergence of the parameter estimates in the regression of of y; on 41, ... , Yr—is1
and the regression of y;—; on y;—1,... ,yt—i+1, guarantees that p;;_; estimates consistently the true

partial correlation coefficient p;;_;. But p;;_; is nonzero for p < py and less than 1. Thus, log(1 —
,(3?|j71) is strictly negative, and, by the second condition of Theorem 2, ICr, 1(Cr, x,) cannot be

minimised for p < p® proving strong consistency for p < p° .

Remark 9 The same conclusion would also follow if we observe that (14), and (15)-(16) hold almost
surely as well as in probability implying that the event in the probability expression (17) occurs almost
surely for sufficiently large T}.

Now we want to prove weak and strong consistency for p > p%. Using (18) and (19) we need to
analyse the behaviour of log(1 — ﬁ127|p71) for p > p°. We concentrate on Pplp—1

T —1 7 -1
=ik, [yt -3 ¢iyt—z} [yt—p -3 ¢fyt—i]

Pplp—1 = SN
&;31 is equal to the residual sum of squares of the regression of y;_, on y;—1,... ,y;—p41 divided by

the number of observations and gﬁz‘ are the estimated coefficients of that regression. The denominator

of the above expression converges strongly to some positive constant. Thus, we only need to consider

the numerator. Ergodicity and stationarity of {y;} imply that ¢}, i =1,... ,p—1, converge strongly
1

%
79

to some constants, say ¢!, at the rate of T>. Thus, putting §; = gﬁz — ¢; and 9] = gﬁz‘ —
i=1,...,p—1, the numerator of py,, | is given by

1 T p—1 p—1 p—1 p—1
T > [?/t > i+ 5iyt—i] [yt—p > dtuit+ Y 5fyt—1]
t=p i=1 i=1 i=1 i=1

Since the errors are serially uncorrelated and orthogonal to past values of y;, it follows that y; —
Z‘Z’:—f ¢iyi—i is uncorrelated with y;,—; i = 1,... ,p—1, p > p’, and also that y_, — Z‘Z’:—f Gryi—i is
uncorrelated with y;, ;. This implies that, for j =1,... ,p — 1,

1 T p—1 1 1 T p—1 n
T > [yt—p - Zﬁyt—i] Yi—j = Op(T; *) and T > [yt - Z¢iyt—i] Yi—j = Op(Ty *)
t=p =1 t=p i=1
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Thus, the numerator becomes?!

1 Tl p—l p—l
T, > [yt = ¢iyt—i] [yt—p = Gy | +Op(T7)
t=p i=1 i=1

We only need to consider

p—1 p—1
[yt - Z ¢z‘yti] [ytp - Z ﬁyti] (20)
i=1 i=1

But, as the two quantities involved in (20) are uncorrelated for p > p°, this forms a stationary,
ergodic square integrable martingale difference sequence. This implies that a central limit theorem
holds?? for \/ﬁﬁmp,l implying that p,,_1 = O,,(Tfl/Z) or equivalently that log(l — ﬁz‘p_l) =
log(1 — O,(T; 1)) = Oy(T, ). Then, % Z?:pO_H log(1 — /3?|j71) = Op(1) implying the sufficiency of
conditions 1 and 3 in Theorem 1 for weak consistency of lag selection. For strong consistency we
note that by Heyde and Scott (1973) a law of iterated logarithm holds for the martingale difference
in (20) implying that

1

1
Pplp—1 = Cp(T1)Ty *(2loglogT)2, a.s. for p > po

where limsup (,(71) = 1 and liminf {,(77) = —1. It then follows that log(l—ﬁz‘p71)+2Tfl loglog T7 >
0 a.s. for p > pg implying the sufficiency of conditions 1 and 3 of Theorem 2 for strong consistency
of lag selection.

The above covers the sufficiency part of the proof. The necessity of condition 2 for both Theorems
is obvious from what has been said above. The necessity of conditions 1 and 3 is obtained as follows.
By similar arguments to those used above we can show that the change in the likelihood arising out
of including one extra lag is asymptotically distributed as a x?-variate when p > p®. This implies
that any criterion whose penalty term does not tend to infinity with the number of observations
cannot be weakly consistent, since it will overestimate with positive probability, asymptotically, the
lag order. For strong consistency, we have that for any criterion whose penalty term Cr, ;, does not
satisfy conditions 1 and 3 of Theorem 2, log(1 — /3;21\;171) + 27, Yoglog Ty > 0 does not hold almost
surely for p > pg.

Remark 10 We need to provide a justification for the wvalidity of using the decomposition given
A0
in (10)-(11). Forp < p°, and under the conditions of Theorem 2 it has been shown that ICr, (D), Cr, 10)—
g

ICTJ.,J-(ﬁj, Cryk;)s 3 = 1,2, are almost surely negative and O 5.(T). For p > p° the same quantities
are again negative almost surely and Ogs (loglogT). But, by Assumption 6, ICT($1,$2,C’T,]C) —

ICr 1(¢1, Cry 4y) — ICT, 2(o, Cry 1y) is almost surely bounded for all p. The same holds in proba-
bility. As a result the decomposition is justified.

When r is not known but estimated the above arguments need to be extended. In this case the
decomposition of IC in terms of regimes cannot be used. The cases p < p® and p > p° need to be
considered The second case implies that r is estimated strongly consistently and thus what has been
said above holds. Note that the rate of convergence of the estimate of r, 7 to its true value is T' (See
Chan (1993)). A lower rate would have invalidated the argument developed above. In the first case,

2INote that all the results hold both a.s and in probability.
22Gee Davidson (1994) pp. 383-385
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consistency of the estimate of r is not guaranteed. We will assume that consistency does not hold
since if it did what has been said above would hold. We reintroduce the regime subscript. Since the
regime based decomposition does not hold, (12) is replaced by

) o A0 20
Tlggo P{ICT (¢, ¢9,7, C1 k) — ICT(¢1,¢2,7“0,CT,,€0) <0} =0 (21)

where 70 denotes the estimate of r for p° and # denotes the estimate of r for p # p’. Note that
implicit dependence on the threshold parameter is introduced. We define [;(¢;,r) = % log{T%_(yj —
X;¢;) (y;—X;¢;)}, j = 1,2, to be the contribution to the log-likelihood?? involved in ICT (¢, ¢y, 1)
from regime j. Then, we can write (21) as

. ~ N ~0 . 20
Jim Pil(y,7) +12(y,7) + Cryy — (b1, 7°) = l2(y, ) — Crpo < 0} =0 (22)
This is equivalent to
. . L ~0 . 20
Tll_{go P{li(¢1,7) +12(y, ) — l1(P1,7) — la(Pg,7) + Crype — (23)

~0 ~0 ~0 ~0
l1(¢1,T0) - l2(¢2,’l"0) + ll(d)la’r) + l2(¢2,’l") - CT,kO < 0} =0

It is sufficient to show the following

Jim P{L(S1,7) + 1a($5,7) — (1, 7°) = La($5,7°) < Crgo — Crr} = 0 (24)
Tim Py (,7) + La($a,7) — 1 (B, 7) — la(hy,7) < 0} =0 (25)

Consider (24) first. The RHS of the inequality in the probability expression is 0,(T’), by the conditions
of Theorem 1. The LHS is the log-likelihood of the model under the consistent estimate of r minus
the log-likelihood of the model under an inconsistent estimate of . Both log-likelihoods are obtained
under the true lag order. By Chan (1993), it follows that the LHS is O,(T’). Thus, (24) is proven.
Now we turn to (25). We note that for all the terms in the expression in the probability the same
value of the threshold parameter is involved. We denote the number of observations belonging to
regime j under 7 by T, j = 1,2. By substitution and rearranging terms, the inequality inside the
probability in (25) becomes

. 7=yi Miyj . 75 Y3 My}
Tilogs v~ ¢ T Lo logy 75+~ ¢ <0 (26)
Y1 M7 yi 7 Y2 M3 y;

where stars indicate that the vectors or matrices are constructed using 7. But the argument
of both logarithms in (26) is a ratio of residual sums of squares where in both the numerator and
the denominator the dependent variable is the same. As the set of regressors in the denominator
include the set of regressors in the numerator, standard regression analysis states that their ratio
is greater than one. Thus the LHS of (26) is positive in probability proving that (26) holds. The
above concerned weak consistency. Strong consistency is obtained by noting that the event in the
probability expression in (24) occurs almost surely for sufficiently large 7" and that the LHS of (26)
is almost surely positive.

**We choose to denote the contribution to the likelihood by I;(¢;,r) instead of Ir; j(¢;,r) to reduce the
notational burden, although, of course, this contribution depends on the sample size.
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Remark 11 The above treatment assumed that both regimes have a common lag order. In some
situations this may be considered too restrictive. In Remark 5 we proposed a procedure for obtaining
lag orders under the assumption that the lag order differs across regimes. In the case where r is
estimated we advocate assuming a common lag order for all regimes, at first. Then from what has
been said in this Appendiz we realise that the mazimum lag order over all regimes will be chosen. To
see that let the maintained lag order be p and let p < p? for some j where p? denotes the true lag order
of regime j. Then, under the conditions of either Theorem 1 or 2, the rise in likelihood resulting
from considering a higher p will dominate the rise in the penalty term. This will keep happening for
as long as p < p? for some j. Once the maximum lag order has been obtained we can start searching
for the lag orders of individual regimes using the estimates of the threshold parameters that have been
obtained in the first stage of the search. These estimates will clearly be consistent. Then the analysis
presented in the first part of this proof where r was assumed known is relevant and the conditions of
Theorems 1 and 2 are sufficient for weak and strong consistency of lag order selection for individual
regimes.

Appendix 2:The Markov-Switching Model as a NED Pro-
cess

In this Appendix we prove that a process following the Markov-switching model is NED (see also
Gallant and White (1988, pp. 98)). Below we define NED processes.

Definition 1 For a, possibly vector valued, stochastic process {z;}°%, on a probability space (2, F, P),
let FIT" = 0(24-my- - » Zt4m), such that {F}TV_ is an increasing sequence of o-fields®*. If, for
v >0, a sequence of integrable random variables {y,}*, satisfies

supy|lye — E(yel FLEp)| o = vm

and vy, = O(m™9), then y; will be said near epoque dependent in Ly-norm (L,-NED) of size —a on
{z1}%, where ||.||y denotes Ly-norm.

This definition is taken from Davidson (1994) and generalises previous definitions by considering
Ly-norms, v > 1, instead of the Ls norm. The class of NED processes is useful because it includes
a number of processes widely encountered in econometrics such as linear and many nonlinear au-
toregressive processes. The NED property focuses on the relationship between the process {y;} and
the underlying process {z;}. On its own it is of little use. However, when the underlying process,
{2}, is mixing, the NED property may be used to extend results on limit laws which hold for mixing
processes to the process {y;} which may not be mixing. The fact which permits this extension is
that NED processes on mixing processes are, under regularity conditions, mixingales?®. Therefore,
we can apply results on limit laws available for mixingales to NED processes.

To see that a process following the Markov-switching model is NED we investigate the two regime
simple model given below

iyt i Sy =1
= { boyr—1+ € it S =2 (27)

24For a random variable z, we denote by o(z) the intersection of all o-fields of the sample space €, with
respect to which z is measurable.

Z5Given a probability space (Q,F, P), the sequence of {y;, F;}>,, where {F;} is an increasing sequence
of o-subfields of F and {y:} is a sequence of integrable random variables, is called an L,-mixingale if, for
v > 1, there exist sequences of nonnegative constants {c;}*° and {(}*, such that {, — 0 as m —
00, ||E(ye| Fe—m)ll, < ctlm and ||y — E(ye| Fe—m)ll, < ctlmi1- As for the definition of NED process, this
definition is taken from Davidson (1994) where again L,-norms, v > 1, instead of the Ly norm is used.
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where S; is a Markov chain specified as in (4). Extension to higher order lag structures makes no
difference for what follows. In this case the underlying process, {z;}, is given by {e;, S;}. Then the
following Theorem may be proven

Theorem 5 Under Assumptions 8 and 9 the process defined in (27) is Lo-NED of arbitrarily large
size on {e, St}

Proof of Theorem §

(27) may be written as y; = > >2 (Hu 0.5, =1 %1 [To=o Sy =2 ¢2> €. But, defining ¢,.,. to
be the coefficient with the maximum absolute value between ¢; and ¢9, noting that E|e;| < oo, that
|pmax] < 1 from Assumption 8 and that the conditional expectation is the minimum squared error
predictor of y; we have

m 9] U=T v=T
llye — By FEN, < Jloe = H¢1 H¢2 e = D Lo I
=0 u=0 T=m+1 u=0 v=0
St—u=1 St vil 9 St—u=1 St—v=1 9

|¢max| +1||6t||2

— | Prmex]

Z -

T=m—+1

< |¢max Z|¢max| ||€t T— m||2

2

Consequently v, — 0 as m — oo, and more specifically v,,, = O(m~™7) where ~ is a arbitrarily large.

Appendix 3: Regularity Conditions and Proofs for The-
orems 3 and 4

In this Appendix we provide the technical regularity conditions needed for Theorems 3 and 4 and
the proofs of the Theorems. The specification of the regularity conditions requires the following
definitions. The sequence {y;} is defined on a generic probability space (Q2,F,P). Let y,, =
Wty -+ ye—p) Let b, ®p, vp(Yyp, ¥,) and Vrp(eh,) = ZtT:1 Vtp(Yrp, ¥p) denote a generic vector
containing the parameters of the model, the parameter space, the log-likelihood?® of observation ¢
and the log-likelihood of the whole model under a maintained lag order p. Also, let u;(y;,) and u
denote the density of y, , and a measure dominating the marginal distribution of y, ,, t =1,... T,
respectively. To simplify notation, the symbols V and V? are used to denote the gradient and the
hessian of a function, respectively. In what follows expectations are taken with respect to the true
distribution of y, ,,.

Assumption 10 V7,(1p,) is measurable-F and twice continuously differentiable on ¥, almost ev-
erywhere, for all v, € ¥, forp =1,...,P. For all ¢, € ¥,, E(Vrp(tp,)) evists and defines an
almost surely twice continuously differentiable function on ¥,. Finally, the integral and differentia-
tion operator in the above expectation are interchangeable.

Assumption 11 The parameters of the model are uniquely identified forp=1,...,P.

Assumption 12 The parameter vector which attains the supremum of the expectation of the log-
likelihood of the model for p =1,..., P, denoted v, lies in the interior of ¥y,

26For details on how to obtain the log-likelihood for observation ¢ see Hamilton (1989).
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Assumption 13 ¥,, p=1,...,P, is compact.

Assumption 14 For all points in ¥, lying in an open sphere of radius € > 0 centered at 1, ,
T='V?Vpy(1,) is asymptotically bounded away from zero almost surely and E[T~'N2Vr,(,)] is
asymptotically bounded almost surely, forp=1,...,P.

Assumption 15 For the sequence {vip(y,,v¥,)} and the sequences of elements {Vvip(y, ,¥,)}
and {V”vt,p(zp;)} of the processes {Vvyp(y, ¥, } and {V%t,p(yt,p%)}, the following holds almost
everywhere for all t and y', y>, p=1,... ,P, 4,5 =1,... , dim(vp,), where By, By; and By;; are
finite constants

l=p+1
orp (Y 5) — v 03 < B >yl — o
=1
I=p+1
Vivep (' ¥5) = Vivep(y?, 93) < Bei Y |yl — o7l
1=1
and
I=p+1
|v?,jvt,p(y1a¢;) - sz,jvt,p(y2a ¥y)| < Buij Z ly — vl
Assumption 16 There exist a sequence of positive constants {cia},
ct,1 — 00, such that {ip(Yips¥y)  —  Evip(yp,¥,))]/cent and
{[V?,jvt,p(ytmzp;) — E(V?,jvt,p(ytmzp;))]/ct,l} are uniformly Lo-bounded, and
o0 v , *Y E v k 2
Z t,P(yt,p ¢p) ( t,p(yt,p¢p)) < 00
t=1 Ct,l 2
00 2 2
Z v vt,p ¢p) (Vi,jvt,p(yt,p¢;)) < 0
=1 Ct,1 9

fori,j=1,...,dim(¢,), p=1,... ,P.
Assumption 17 E(Vvy,(y, %)) = 0, {Vivip(yy p¥,)} is La-bounded and 0 < limp T*IU%,p,i <
0o, where O'%’p’i = Var [Ethl Vivt,p(yt,p'lp;)} yforallt,i=1,...,dim(,), p=1,...,P.

Assumption 18 a%,p,z- < 0o where a%,p,z- is defined in Assumption 17. There exists a sequence of
positive constants c;o such that

vivt,p(yt,p¢;) - E(vivt#’ (yt,p’l'b;))
Ct,2

supy , 6>0
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and suppT[max;<i<7{cy, 2} <00, 0= s dim(v,), p=1,...,P.

Assumption 19 wu(y,,) is continuous for all t.
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Assumption 20

[ sz, e, oty gl winldy) < oo, p=1.....P

Assumption 21 For each element of V201p(Yypr ) V%ijt,p(yt,p,ipp),
ij=1,... dim(,)

/supt>1,'l,bp6\llp|v7,2,jvt,l7(ya¢p)|ut(y)lu(dy) <o, p= ]-7 s 7P

Assumption 22 1. Forp<p®

T
{ = Z [UtJ’ yt’ Ut,p(ytad);;)]} >0

t=1
for all sufficiently large T.

2. Forp > p°

T

% Z [’Ut,P(yta d);;o) - ,Utyp(yta ¢;)j| = OP(T?I)

t=1

3. Forp > p°

L T
E {T Z [Ut,p(yta @p0) — vip(Yt, ¢;)] } =0

t=1

for all sufficiently large T.
Assumption 23 The information matriz equality holds for p > p°.

Assumptions 10-13 are standard regularity and identifiability conditions. Assumption 15 provides
a uniform Lipschitz condition for the gradient and Hessian of v ,(y, ,,1,). Assumptions 16-18 are
needed for establishing limit laws for y; and the gradient and hessian of v;,(y, ,,%,). Finally, As-
sumptions 19-21 are needed for obtaining uniform laws of large numbers (ULLN) from their pointwise
counterparts.

In what follows we take Assumptions 7-9, and therefore the conclusions of Theorem 5, as given.
Assumptions 10-12 provide Assumption A of Sin and White (1996). By Theorem 17.12 of Davidson
(1994) and given that y; is a Lo-NED process of arbitrarily large size, Assumption 15 ensures that
v¢(Yy,,¥,) and every element of its hessian are Lo-NED processes of arbitrarily large size as well.
Therefore, by Theorem 20.20 of Davidson (1994) and Assumption 16, v;(y, ,,%,) and every element
of its hessian obey a pointwise strong law of large numbers (SLLN)?7. Using Corollary 3 of Andrews

2TFor weak consistency of an information criterion only a weak law of large numbers (WLLN) needs to
be obtained. This may obtained under less stringent conditions than a SLLN. However, the difference in
the conditions lies mainly in the required sizes for the NED process and the underlying mixing processes.
Therefore, given that all processes we consider are of arbitrarily large sizes we will not pursue the distinction
further.
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Table 1: DGPs for Monte Carlo experiments on lag selection

SETAR Model
Markov Switching Model
DGP 1 | DGP 2 [ DGP 3 | DGP 4

d G1 G1 Gl & Gl DGP 1| DGP 2 [ DGP 3 | DGP 4
r 0 0 0 0 P’ 2 2 3 3
p° 2 2 3 3 ¢ 0.5 0.5 0.5 0.5
$rpo| 0.2 0.2 0.2 0.2 ‘P 0.5 0.5 0.5 0.5
¢10 | 0.2 0.2 0.2 0.9 $10| 0.5 0.5 0.5 0.5
¢1’2 0.1 0.2 -0.1 0.2 P11 0.3 0.4 0.2 0.5
¢1’3 0.1 0.2 $pr12| 0.1 0.4 0.2 0.5
$2,0 0.4 0.4 0.4 0.4 P13 , , Oil —01.5
$o1 | 0.3 0.3 0.3 0.3 20 . ~ x L
$22 | 0.05 -0.3 0.1 0.3 P21 : . , '
P23 0.05 0.3 P22 | -0.1 0.5 0.1 0.4
o> | 15 15 1.5 15 P23 0.05 | 0.6
o3 1 1 1 1 o1 1 1 1 1
b 2 1 1 1 1
be | 030 | 0.37 | 027 | 031 92

o} is a Monte Carlo estimate of the proportion of observations
in regime 1 under the given DGP.

(1987) and Assumptions 13, 19, 20 and 21, uniform SLLNs are obtained for these processes. Further,
Assumption 17 with Corollary AIIL.3 of Sin and White (1992) and 18 with Corollary 24.7 of Davidson
(1994) provide a LIL and a CLT, respectively, for each element of Vu,(y, ,,v,).

Combining Assumption A of Sin and White with the uniform LLNs for v;(y, ,,%,) and its Hes-
sian, the CLT for each element of Vu(y; ,,%,), Assumptions 14, 22 (i),(ii) and the conditions of
Theorem 3 we obtain the conclusions of Proposition 4.2(a),(c) of Sin and White. This proves Theo-
rem 3.

For Theorem 4 we need to obtain Proposition 5.2(a) and Corollary 5.4(b) of Sin and White.
These are obtained through Assumption A of Sin and White, the uniform SLLNs for v;(y; ,,%,)
and its Hessian, the LIL for each element of Vu,(y, ,,,), Assumptions 14, 22 (i),(iii), 23 and the
conditions of Theorem 4. This concludes the proof of Theorems 3 and 4.
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Table 2: Percentage frequencies of the lag order selected for SETAR models (DGP 1, T=200,

N=400) (standard errors of the frequency estimates are given in parentheses)

Table 3: Percentage frequencies of the lag order selected for SETAR models (DGP 2, T=200,

N=400)

Information Criteria
de | pb AIC SC HQ GIC ICOMP
1 | 47752500 75.00(2.17) 69.50(2.30) 46.00(2.49) 14.50(1.76)
2 1 12.25(164y 0.500035y  5.50(1.14) 14.00(1.73)  6.50(1.23)
L | 3| 725130 0.00n/4) 0.75(0.43) 7.50(1.32) 4.50(1.04)
4 | 5.001.09) 0.00(n/ay 1.25056)  3.79(0.95  6.00(1.19)
5 | 2.000.70) 0.00(n/4) 0.00(n74)y  2.500.78)  7.75(1.34
6 | 3.00085 0.00(n/4) 0.00n/4) 400098y 13.25(; 70
1 110.50(1.53 24.0002.14y 21.0002.04) 9.50(1.47)  21.25(2.05)
2 | 5.25¢112)  0.500035)  1.750.66)  4-75(1.06)  2-25(0.74)
2 1 3| 275082 0.00n/4) 0.250.25) 3.2500.89)  1.50(0.61)
4 | 0.50¢0.35  0.00(n/a)y  0.00(n/4)  0.75(0.43) 5.25(1.12)
5 | 1.50@e1)  0.00(n/a)  0.00(n74)  1.50061)  7-25(1.30)
6 | 225074 0.00(n/a) 0.00(n/4) 2500078y 10.00(; 50

“Delay Parameter
Lag Order

Information Criteria
d|p AIC SC HQ GIC ICOMP
L | 15061y 975148  3.000085  1.50061)  0.00(n,/4)
2 | 55.25249) 50.75(2.50) 65.25(2.38y 54.00(2.49) 20.50(2.02)
1| 3]12.000162 1.000.50) 4.75(1.06) 12.75(1.67) 11.00(1.56)
41 5.50(1.14y  0.00(n/4)  1.75(0.66) 6.25(1.21) 8.00(1.36)
5 4.25(1.01) OOO(N/A) 0.50(0.35) 4.25(1_01) 1275(167)
6| 5.0001.09) 0.00(n/4a) 0.00(n/4) 5.2501.12) 24.502.15)
L | 5.751.16) 36.0002.40) 16.751.87)  4.75(1.06) 5.25(1.12)
2| 5251120 2250074y  6.75(125  9.25(112)  0.50(0.35)
2 13| 1.50@.61) 025025y  0.750043) 1.75066)  1.25(0.56)
41 1.50061)  0.00(n/ay  0.500035 1.2500.56  1.50(0.61)
5| 1.00¢0.50)  0.00(n/a)  0.00(n/4)  1.750066)  5.00(1.09)
6| 1.500061) 0.00(n/4)  0.00(n/4)  1.25(0.56) 9.75(1.48)
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Table 4: Percentage frequencies of the lag order selected for SETAR models (DGP 3, T=200,
N=400)

Information Criteria
d|p AIC SC HQ GIC ICOMP
L | 25.752.19) 55.00(2.49) 44.00(2.48) 24.252.14y  9-25(1.12)
2 2000(200) 3.75(0.95) 1400(173) 2125(205) 7-00(1.28)
13| 11.50160) 0.50(0.35) 5.00(1.09) 12.25(164)  9.25(1.45)
4| 4.000.98) 0.00(n/4)  0.75(0.43) 4.75(1.06) 9.00(1.43)
5| 3.250089)  0.00(n/4)  0.75(0.43) 4.25(1.01) 9.00(1.43)
6| 3.250.89) 0.00(n/a)  0.00(n/a)  3.2500.89) 13.50(1.71
L | 15.75(1.82) 40.50(2.45) 29.75(2.29) 14.25(1.75) 19.00(1.96)
2| 5.25(1.19) 0.25(0.25) 3.00(0.85) 4.50(1.04) 3.25(0.89)
2 13| 4.000.98  0.00n/a) 1.75066)  3.50(0.92)  2.75(0.82)
41 275082  0.00n/4)  0.25(0.25) 3.25(0.89) 2.75(0.82)
5| 2.000.70) 0.00(n/4)  0.50(0.35) 2.25(0.74) 7.25(1.30)
6| 2.500.78) 0.00(n/4)  0.25(0.25) 2.2500.74y  12.00(1.62)

Table 5: Percentage frequencies of the lag order selected for SETAR models (DGP 4, T=200,
N=400)

Information Criteria
d|p AIC SC HQ GIC ICOMP
L | 0.750.43) 13.25(1.70)  2.75(0.82) 0.75(0.43)  0.00(n/4)
2| 2.000.70) 5.751a6) 475106  1.50061)  0.00(n/4)
1|3 |61.25044) 57.500247) 73.752.20) 60.00(245) 31.25(2.32)
411350171y 1.00¢0.50) 6.50(123) 13.25(1.70y 12.50(1.65)
51 9.50(14a7)  0.00(n74)  0.75(0.43) 9.50(1.47)  19.75(1.99)
6| 7.001.28) 0.00(n/4)  0.75(0.43) 8.50(1.39) 24.00(2.14)
1] 1.0000.50) 20.25201) 6.50(1.23) 1.00.50)  0.75(0.43)
2| 0.25(0.25) 1.00¢0.50) 1.250056)  0.75(0.43)  0.00(/4)
213| 275082 125056 3.00085  2.7500s82)  1.00(0.50)
41 0.250.25  0.00n74) 0.00(n/4) 0.250.25  1.00(0.50)
51 1.25056)  0.00(n/a)y  0.00(n74)  1.25056)  4.00(0.98)
6| 0.5000.35 0.00(n/4) 0.00(n/4) 0.500035)  5.75(1.16)
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Table 6: Percentage frequencies of the lag order selected for Markov-switching models (T=200,
N=400)

Information Criteria
DGP | p AIC SC HQ GIC ICOMP
1| 1775091y 75.752.14) 45.00(2.49) 21.750206) 11.00(1 56)
2| 14250175y  9.25(145) 13.25(1.70) 16.50(1.86)  9.75(1.48)
1 31 12.00¢162) 5.50(1.14y  8.25(1.38) 12.00(162) 8.75(1.41)
4 116.00(1.83) 3.50(0.92)  9.50(1.47y  14.00¢1.73) 13.75(1.72)
5| 17.25(1.89) 2.50(0.78y  10.00(1.50) 15.75(1.82) 20.00(2.00)
6| 22.750.10) 3.50(0.92) 14.00(1.73) 20.0002.00) 36.75(2.41)
]. 5-75(1.16) 3375(236) 1475(177) 8.75(1.41) 4.25(1_01)
2 | 41.50(246) 57.50(2.47) 99.75(245) 35.00(2.38) 12.25(1.64)
2 3| 11.75¢1.61) 3.0000.85)  8.50(1.39) 16.75(1.87)  9.25(1.45)
4| 11.00¢1.56)  2.50(0.78)  4.50(1.04)  12.25(164) 14.00(;.73)
5| 11.00(156)  1.90(0.61)  5.75(1.16)  10.75(155) 22.25(2.08)
6| 19.0001.96) 1.7500.66) 6.75(1.25) 16.50(1.86) 38.00(2.43)
11 15.50(1.81) 73.00(2.22y 38.75(2.44) 18.50(1.94y 8.75(1.41)
2 1225(164) 9.25(1.45) 1450(176) 1425(1 75) 9.00(1.43)
3 3| 13. 75172y 7750134y 11250158y 15.50(181) 10.75(155)
41 15.25(180) 3.50(0.92) 11.25(158) 14.50(1.76) 13.75(1.72)
5| 15.50(1.81) 2.75(0.82)  8.50(1.39) 15.50(181) 23.75(2.13)
6| 27.750.24) 3.75(0.95) 15.75(1.82) 21.7502.06) 34.00(2.37)
1] 0.25025 12.25(164)  2.00(0.70) 1.00¢0.50)  0.25(0.25)
2| 0.75(0.43) 1.75(0.66) 1.50(0.61) 1.50(0.61) 1.00(0.50)
4 3 | 63.50(2.41) 83.25(187) 86.00(1.73) 59.50(2.45) 21.00(2.04)
4 1 17.50(1.90) 1.750066) 6.50(1.23) 18.00(1.92) 19.75(1.99)
5| 8500139 0.75043)  2.50¢0.78) 10.50(153) 21.00(2.04)
6| 9.501.47  0.25(.25) 1.500.61)  9.50(147)  37.00(2.41)
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Table 7: Monte Carlo DGPs for model selection between alternative threshold models

DGP 1 DGP 2
M-S% Model | SETAR Model

m 2 2

r 0

p° 3 3

qi 0.5

2 0.5
P10 0.5 0.5
P11 0.5 0.5
P12 0.5 0.5
P13 -0.5 -0.5
$2,0 1 1
P21 0.6 0.6
P2, -0.4 -0.4
P23 0.6 0.6
o’ 2.25 2.25
o3 2.25 2.25

*Markov-switching

DGP 3
EDTAR Model

Pr 3

Pe 3

P 3
oo 0.5
01 0.4
o)) 0.4
O3 -0.4
r 0.3
0. -0.3
O'z 1

(o 1
1

Table 8: Percentage frequencies of the model selected (T=200, N=400)

Information Criteria
DGP® | Model AIC SC HQ GIC ICOMP
Selected
T | 94.000.10) 9200136 9325025 8700168 96.00(0.08)
1 2 500000 425101) 45000 475006  0.75(0.4s)
3 1.000050)  3.75(005) 2:25(074) 8250131 3.25(0.59)
T | 35.50(230) 33-Tb(2.36) 30-2b(2.30) 38-Tb2a3) 47-00(2.49)
2 2 | 61.2543 5925046 60.502.49) 47.0000.40) 39.75(2.45)
3 3-25(0.89) 7.00(1.27) 4.25(1_01) 1425(175) 1325(169)
1 700027 525111 625021 525011 02505
3 2 1.00(0.50) 0.25(0.25) 1.00(0_50) 0.25(0.25) 0.25(0.25)
3 9200036 9450014 9275130 94.50014 99.50035)

DGP 1: Markov, DGP 2: SETAR, DGP 3: EDTAR
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