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1 Introduction

Model evaluation in econometrics has been carried out along two main lines. One is model

selection and the other is hypothesis testing. Model selection is a decision theoretic approach.

Given a set of rival models, its objective is to select the `best' among them. This selection

invariably involves the speci�cation and estimation of a loss function which re
ects the aspects

of importance for the given modelling situation. The loss function is implicitly constructed

from the perspective of the true data generation process which may or may not be required

to belong to the set of rival models being investigated. The model which implies the smallest

estimated loss is retained as the preferred speci�cation. This approach provides unambiguous

conclusions. At the end of the investigation one model is always accepted as the preferred

speci�cation. As a number of model selection procedures are derived using concepts from

information theory, the set of these procedures will be collectively referred to as information

criteria. This paper considers the properties of model selection using information criteria in

the context of nonlinear threshold models.

Hypothesis testing starts by specifying two hypotheses usually denoted by H0 and H1. The

objective is to consider the validity of the null hypothesis, H0, against the evidence provided

by the alternative hypothesis, H1. Although the analysis is carried out under the assumption

of the null being true, this assumption is only temporary and its validity is the focus of the

investigation. Usually, H0 may be obtained from H1 by restricting a subset of the parameters

of H1. Then, H0 is said to be nested within H1. However, the case when the two hypotheses

are not nested is of interest as well. The most usual instance of nonnested hypotheses test-

ing involves the comparison of alternative parametric models. In the framework of nonlinear

models, comparisons between alternative nonnested parametric models, for example between

threshold autoregressive and Markov-switching models, is likely to be of interest since both

classes may be used to model macroeconomic data.

It is common to consider model selection and nonnested hypothesis testing as rival pro-

cedures of model evaluation. However, it is clear that they are based on di�erent premises.

Unlike model selection, nonnested hypothesis testing makes a probabilistic statement con-

cerning the validity of the null model against the evidence provided by the alternative model.

Additionally, model selection always provides a preferred speci�cation. On the other hand,

although a single test of two nonnested models will always reject one of the two models, the

asymmetric treatment of the null and alternative hypotheses suggests that both models should

take the role of the null hypothesis in two di�erent tests. This distinguishes nonnested hy-

potheses testing from nested hypotheses testing since, in the latter case, the nesting structure

suggests the null and the alternative hypothesis. When both nonnested models take the role

of the null hypothesis, it is possible that both models are rejected or accepted making the

choice between them impossible. Discussions on the conceptual di�erences between model

selection and nonnested hypotheses testing may be found in Amemiya (1980) and MacKinnon

(1983).

Section 2 gives an account of the information criteria that will be considered. Their prop-

erties are presented and the basic statistical principles on which they are based are outlined.

As most of the work done on model selection in econometrics has focused on linear models,

it is important to consider extensions of existing theoretical results to threshold models. Sec-
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tion 3 extends theoretical results concerning lag order selection, available for linear models,

to threshold models. In addition to theoretical results which are, usually, of an asymptotic

nature, the small sample performance of the information criteria needs to be evaluated. There-

fore, Section 4 investigates the small sample performance of the criteria in selecting the lag

order of threshold models. Section 5 presents Monte Carlo evidence on the small sample

performance of information criteria in selecting between alternative threshold speci�cations.

Section 6 concludes. Appendices 1 and 2 contain part of the proofs and technical discussions

of the theoretical results.

2 Analysis of information criteria

A wide variety of information criteria have been proposed in the statistical and econometric

literature. Most criteria are derived either from classical statistical principles starting with the

pioneering work of Akaike (1973) or Bayesian statistical principles. In this paper we con�ne

our attention to the following �ve criteria:

� Akaike's information criterion Akaike (1973) Akaike (1974)

� Schwarz's information criterion Schwarz (1978)

� Hannan-Quinn information criterion Hannan and Quinn (1979)

� Generalised information criterion (GIC) Takeuchi (1976), Stone (1977), Kitagawa and

Konishi (1996)

� Informational complexity criterion (ICOMP) Bozdogan (1990)

The �rst three criteria are standard and require little discussion. The other two are less

known and will be brie
y discussed. All the above criteria are structurally similar since they

Involve an estimate of the likelihood function of the model under consideration and a penalty

term which depends directly or indirectly on the number of parameters of the model and the

number of observations Other criteria available in the literature are Mallows' Cp, Mallows

(1973), generalised cross-validation (CGV), Craven and Wahba (1979), Rissanen's minimum

description length, Rissanen (1978) , and Shibata's prediction error criterion, Shibata (1980).

In the next two subsections we will brie
y present the GIC and ICOMP information criteria.

2.1 Generalised information criterion (GIC)

This information criterion was introduced by Takeuchi (1976), discussed in Stone (1977) and

extended by Kitagawa and Konishi (1996). It extends the framework of AIC by dropping the

assumption that the true model belongs to a parametric family of models which is the focus of

investigation. Kitagawa and Konishi have extended the analysis even further by allowing for

estimation methods other than maximum likelihood. It is well known that operationalising

the principle of model selection based on the minimisation of the Kullback-Leibler (1951)

information quantity as carried out by Akaike (1973) is equivalent to deriving an expression

for the asymptotic bias of the sample log-likelihood as an estimator of the expected log-

likelihood under the true model. In order to derive the expression for the penalty term of

the GIC an analysis similar to that carried out by Akaike may be used but without imposing
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the assumption that the true model belongs to the class of models being investigated. Let

f(�) denote the true density of each observation from the sample (y1; : : : ; yT ), h(
) denote

the density of the observation for the generic model under investigation and let lT (:) denote

the loglikelihood function. Then, the loss function of the criterion takes the form �lT (�̂) +
Tr(B̂Â

�1
) where B̂ and Â are estimates of B and A given by
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A derivation of the penalty term may be found in Kitagawa and Konishi and Chapter 2 of

Kapetanios (1998a). Now, if the competing models belong to the same parametric family with

the true model then, under the true model, A = B, giving Tr(BA�1) = k where k is the

dimension of �. Thus, we get again Akaike's criterion.

2.2 Informational complexity criterion (ICOMP)

ICOMP is a new information criterion which has been proposed by Bozdogan (1990). Al-

though it is derived from principles of information theory it is a di�erent procedure than AIC.

It is based on the concept of complexity. Its aim is to provide the optimal tradeo� between

the �t and the complexity of a model. Intuitively, complexity and parsimony, as represented

by the number of parameters of a model, may seem related concepts. However, complexity

has a speci�c meaning in information theory. This concept will be presented and a sketch of

the derivation of the criterion will be given below.

For a random vector y = (y1; : : : ; yT ), with joint density f(y) = f(y1; : : : ; yT ) and

marginal densities f1(y1); : : : ; fT (yT ), complexity is a measure of the dependency between

its components. Such a measure may be constructed along the lines used in the construction

of KLIC. The informational measure of dependence between y1; : : : ; yT is given by

I(y1; : : : ; yT ) =

Z
1

�1

: : :

Z
1

�1

f(y1; : : : ; yT ) log
f(y1; : : : ; yT )

f1(y1) : : : fT (yT )
dy1 : : : dyT

This is known as the expected mutual information and will be used as an initial measure of

complexity. It turns out that the maximum expected mutual information of a T -dimensional

vector following a multivariate normal distribution with covariance matrix � = [�ij], over all

orthogonal transformations of �, is a function of � alone1 and is given by

T

2
log

Tr(�)

T
� 1

2
log j�j

Given the above, Bozdogan derives the maximal measure of complexity of a multivariate

normal linear or nonlinear model. Such a model is assumed to have the following general form

y = �+ �

where y is an T �1 observable random vector, � is a deterministic component and � is a T �1

vector of random errors. � depends on a vector of unknown parameters �0 = (�01; : : : ; �
0
k
)0

1See Bozdogan (1990, pp. 237-238).
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whose estimate is denoted by �̂. The estimate of � is denoted by �̂. This is referred to

as the residual of the model. Such a model is decomposed into two complexity generating

subsystems. One is the set of estimated parameters, �̂ and the other is the residual. Then,

the complexity of the model is the complexity of the vector (�̂; �̂). Assuming independent

components and normally distributed, spherical residuals 2, the complexity of the model is

equal to

k

2
log

Tr(F̂
�1
)

k
� 1

2
log jF̂�1j; F =

�
�E lT (�

0)

@�@�0

��1

where F̂ is an estimate of F . As the aim of the criterion is to maximise �t and minimise

complexity its �nal form is

�lT (�̂) +
k

2
log

Tr(F̂
�1
)

k
� 1

2
log jF̂�1j

where lT (:) is the log-likelihood function of the model.

3 Consistency of lag order selection in threshold models

In this Section we will provide suÆcient conditions for the consistency of lag order selection

in threshold models using information criteria. The classes of self-exciting threshold autore-

gressive (SETAR) and Markov-switching models will be considered. Before proceeding with

the presentation of the results we state brie
y some available relevant results from the litera-

ture. In order for a criterion of the form �lT (�̂) +CT;k, with penalty term CT;k, to be weakly

consistent in the estimation of the lag order of a linear autoregressive model it is suÆcient

that3

CT;k !1 as T !1 and lim
T!1

CT;k

T
= 0 (1)

Sin and White (1996) provide a signi�cant extension of the above result to general linear and

nonlinear models. Abstracting from the more technical conditions needed for their results,

it turns out that the above conditions are suÆcient for a criterion to pick the true model

with probability approaching one, assuming the true model belongs to the set of models being

considered4. Further, a criterion will be strongly consistent for lag order selection, in linear

autoregressive models5 if, in addition to (1), its penalty term tends to in�nity at a rate higher

than or equal to log logT . It will be proven that the conditions needed for consistency in

linear autoregressive models extend to threshold models.

2The latter assumption is very strong and is unlikely to hold in most practical situations. It is suÆcient to

note that even in a regression model where the errors are normal and spherical, the residuals are not spherical.

This assumption is made by Bozdogan (1990) in the derivation of the second version of his criterion. In the

�rst version this assumption is not made and as a result two sources of complexity must be evaluated. We

will use the second de�nition following Bozdogan, Bearse, and Schlottman (1997).
3See, for example L�utkepohl (1991, pp. 131)
4If the true model is not considered in the model selection procedure then a criterion satisfying the above

conditions will pick with probability approaching one the model with minimum KLIC. If more that one models

attain this minimum then the model with the lowest dimension is chosen.
5This result has also been extended to more general setups by Sin and White (1996).
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3.1 SETAR Models

The class of SETAR models is extensively discussed in Tong (1995). The piecewise linear

structure underlying the class, indicates that extension of the results available for linear mod-

els concerning lag selection should be investigated.

Consider the following SETAR model

yt = �j;0 + �j;1yt�1 + : : :+ �j;p0yt�p0 + �j�t; j = 1; : : : ; m; t = p0; : : : ; T; �j > 0 (2)

The model has m regimes. The process is in regime j if rj�1 � yt�d < rj where d is an integer

valued delay parameter. r0 = �1 and rm =1. fr1 : : : rm�1g is a strictly increasing sequence
of parameters to be estimated. The number of regimes, m, and the delay parameter, d, are

assumed known in our setup6. We note that p0 is the true lag order for all the m regimes7. We

will concentrate on the case m = 2 for simplicity. The results we will obtain can be readily

extended to models with m > 2 regimes conditional on extending the results by Chan (1993)

concerning the consistency and asymptotic normality of the parameter estimates to models

with more than two regimes. Estimation is carried out by constructing a grid of possible

values for r1 � r and running the regressions

yj =Xj�j + �j; j = 1; 2 (3)

for each point in the threshold parameter grid, where yj and Xj are a vector and matrix,

respectively, containing the observations for regime j. �
j
and �j are the coeÆcient and error

vectors for regime j. In matrix notation, yj = (yj1; yj2; : : : ; yjTj )
0, Xj = (xj1

; : : : ;xjTj
)0,

xji
= (yji�1; yji�2; : : : ; yji�p)

0, �
j
= (�j;1; : : : ; �j;p)

0 �j = (�j1; : : : ; �jTj )
0 and fj1; j2; : : : ; jTjg

are the time indices of the observations belonging to regime j, j = 1; 2. As we do not assume

prior knowledge of p0 we use p to denote the maintained lag order for the above regressions.

The aim of using the information criterion is to obtain an estimate of the true lag order

p0. It is, thus, assumed that the maximum lag order checked through an information criterion

is P where p0 � P . The following assumptions are made.

Assumption 1 The process f(yt; yt�1; : : : ; yt�p0+1)g satisfying (2), viewed as a Markov chain,

admits a unique invariant measure �(:) such that 3 K; � < 1, 8z 2 R
p0 and t � 1, jjP t(z;A)�

�(A)jj � K(1 + jzj)�t, where P t(:; :) is the t-step transition probability, jj:jj denotes the total

variation norm and j:j denotes the Euclidean norm.

Assumption 2 �t is absolutely continuous with a uniformly continuous, positive probability

density function and �nite fourth moment.

Assumption 3 yt is stationary with �nite fourth moment.

Assumption 4 The autoregressive function is discontinuous.

6The number of regimes is usually dictated by theory or preliminary examination of the data. The assump-

tion that d is known may be dropped without a�ecting the asymptotic results (see Chan (1993).
7The superscript 0 indicates true lag order values.
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Remark 1 The above assumptions are taken from Chan (1993) and are suÆcient for strong

consistency of all the parameters and asymptotic normality of the autoregressive parameters

and �j, j = 1; 2. As mentioned in Chan (1993), Assumption 1 is stronger than geometric

ergodicity. But if Assumption 2 holds and maxj=1;2

P
p0

i=1 �j;i < 1, Assumption 1 is obtained

following Chan, Petruccelli, Tong, and Woolford (1985) and Chan (1989)8. Further, Assump-

tion 3 is obtained by Assumption 1, if the marginal distribution of y1, �1(:), is the marginal

distribution of the �rst element of a vector random variable with distribution �(:).

Remark 2 It is obvious that the distribution �(:) places positive probability mass on both

partitions of the state space R of yt, de�ned by the threshold parameter, r (See Remark B(ii)

of Chan (1993)). As a result the number of observations in regime j, j = 1; 2 rises at rate T

and it follows that limT!1
T1

T
= b; 0 < b < 1; a.s.

In the above setup we want to provide necessary and suÆcient conditions for weak and

strong consistency of lag order selection through information criteria. All of the criteria

considered in Section 2 are likelihood based and introduce penalty terms to promote model

parsimony. The penalty term may depend on the number of observations and depends either

directly or indirectly on the dimension of the parameter vector of the model. To provide a

general treatment of lag selection through information criteria we will denote the penalty term

by CT;k where k is the dimension of the parameter vector. Note that k = 2p+4 for two regime

SETAR models9. We also de�ne kj, j = 1; 2 to be the dimension of the parameter vector for

regime j. We will additionally make the following two assumptions

Assumption 5 For p < p0, the estimate of r, r̂, converges almost surely to some constant

r�.

Assumption 6 For given r and p, jCT;k � (CT1;k1
+ CT2;k2

)j < C almost surely, for all p =

1; : : : ; P , where C is a positive constant and CTj ;kj
, j = 1; 2 is the penalty term that applies

to the observations in regime j in (3). Further, for given T and k but di�erent r it is assumed

that the di�erence in the penalty terms, for a given criterion, is again almost surely bounded.

Remark 3 It is easy to see that for all standard criteria (Akaike, Schwarz and Hannan-

Quinn) Assumption 6 holds. A proof of this statement for the �rst part of Assumption 6 may

be found in Remark 8 of Appendix 1.

Then the following results hold.

Theorem 1 If fytg is generated according to the SETAR model de�ned by (2), then, under

Assumptions 1-6, the estimate of the lag order p0, p̂, obtained through an information criterion

with penalty term CT;k, is weakly consistent (i.e. converges to its true value in probability) if,

and only if, the following conditions hold

1: CT;k

p!1 2:
CT;k

T

p! 0 3: If k1 > k2 then CT;k1 � CT;k2

p!1

8See also Chan, Petruccelli, Tong, and Woolford (1985) for suÆcient conditions for ergodicity of a �rst

order SETAR model.
9Disregarding the number of threshold parameters which remains constant throughout the search for the

lag order.
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Theorem 2 If fytg is generated according to the SETAR model de�ned by (2) then, under

Assumptions 1-6, the estimate of the lag order p0, p̂, obtained through an information criterion

with penalty term CT;k, is strongly consistent (i.e. converges to its true value almost surely)

if, and only if, the following conditions hold

1.
CT;k

log log T

a:s:! C where C is a constant greater than k or
CT;k

log log T

a:s:! 1.

2.
CT;k

T

a:s:! 0

3. If k1 > k2 then
C
T;k1

�C
T;k2

log log T

a:s:! C, where C is constant greater than k1�k2, or C
T;k1

�C
T;k2

log log T

a:s:!
1

Remark 4 The general theory developed by Sin and White (1996) does not apply in the case

of SETAR models as the likelihood function is not continuous with respect to the threshold

parameters.

The proof for both Theorems is given in Appendix 1. For ease of exposition the proof dis-

tinguishes between the case where r is known and the case where r is estimated. The aim

is to prove that an information criterion whose penalty term satis�es the conditions of the

Theorems, minimised over p = 1; : : : ; P , obtains its minimum at p0 in probability for Theo-

rem 1 and almost surely for Theorem 2. The cases p < p0 and p > p0 are distinguished. For

p < p0, it is suÆcient to show that the change in the likelihood, arising out of an increase in

p, dominates the change in the penalty term in probability and almost surely. For p > p0, the

opposite must be shown to hold.

Remark 5 The setup we are considering restricts all regimes to have the same lag order. If

we wish to relax this assumption the following consistent procedure may be used. Assume a

common lag order and use a consistent (weakly or strongly) information criterion to obtain

its estimate, p̂. This will, asymptotically, be equal to the maximum true lag order over all the

regimes. Then, using the estimate of the threshold parameter obtained above, search within

each regime, using the information criterion, over p = 1; : : : ; p̂. The estimate obtained will be

consistent for the true lag order of the regime. See Remark 11 in Appendix 1 for a justi�cation

of this procedure.

3.2 Markov-switching models

In this subsection we will examine lag selection for Markov-Switching models. A brief review

of this class will be given �rst. The class was introduced and analysed by Hamilton (1988,

1989, 1990, 1994, 1996) . In these models the switch between regimes is regulated by an

unobserved Markov chain10. The presence of the unobserved Markov chain makes estimation

of the model more diÆcult. Hamilton (1989) provides a nonlinear �lter which draws inferences

about the Markov chain and produces the conditional likelihood of the model which is used

10The most usual case involves a two-state Markov chain where the transition matrix of the chain is made

up of constant parameters. However, extensions to more states have also been investigated, see Hamilton

(1990). Further, the transition probabilities have been allowed to depend on the duration of the period during

which the system has been in a given regime (see Durland and Mccurdy (1994)) or on a vector of exogenous

variables (see Filardo (1994)).
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for ML estimation of the parameters11.

Consider the following Markov-Switching model

yt = �j;0 + �j;1yt�1 + : : :+ �j;p0yt�p0 + �j�t; j = 1; : : : ; m; t = p0; : : : ; T; �j > 0 (4)

The model hasm regimes. The process is in regime j if St = j where fStg is anm-state �rst or-

der Markov chain with transition matrix P . For example, for m = 2, P =

�
q1 1� q1

1� q2 q2

�
.

where 0 � q1 � 1 and 0 � q2 � 1. The number of regimes, m, is assumed known in our setup.

For simplicity we will concentrate on the case of m = 2. As before, p0 is the true lag order for

both regimes. The maximum lag order checked through the information criterion is P where

p0 � P . The following assumptions are made.

Assumption 7 q1 and q2 are bounded away from 0 and 1.

Assumption 8 For j = 1; 2, the roots of 1��j;1z� : : :��j;p0z = 0 lie outside the unit circle.

Assumption 9 f�tg is an i.i.d. sequence of random variables with �nite 2+ Æ moment where

Æ > 0.

Remark 6 Assumption 7 ensures that the Markov chain fStg is ergodic. Therefore, by ex-

ample 2 in Chapter 20 of Billingsley (1968), fStg is a uniformly mixing sequence of arbitrary

large size. For simplicity we will also assume that the initial distribution of the Markov chain

is also the invariant distribution. Trivially, by Assumption 9, f�tg is a uniformly mixing

sequence of arbitrarily large size.

Unlike SETAR models, Markov-Switching models may be treated under the framework of Sin

and White (1996). Unfortunately, in order to use the results of this paper a number of com-

plicated regularity conditions are needed. These are presented in Appendix F of Kapetanios

(1998a). The conditions are needed to establish pointwise and uniform laws of large numbers

(LLN), central limits theorems (CLT) and laws of iterated logarithm (LIL) for yt and its

derivatives which are required to establish weak and strong consistency for the information

criteria. The key to deriving the limit laws, needed to apply the results of Shin and White, lies

in proving that fytg is a near epoque dependent process12 on f�t; Stg. Under Assumption 8,

we can easily prove this. The proof may be found in Appendix 2. Since f�t; Stg is a mixing

process of arbitrarily large size, it then follows that fytg is a mixingale13 and the results on

limit laws for mixingales may then be applied.

Following the above discussion we state the following results

Theorem 3 If fytg is generated according to the Markov-switching model de�ned by (4), then,

under Assumptions 7-9 and the regularity conditions in Appendix F of Kapetanios (1998b),

11As the likelihood of the model is often ill-behaved, su�ering from singularities and multiple local maxima,

Hamilton (1990) has suggested an analytical EM algorithm for parameter estimation. More details about the

estimation of Markov-Switching models may be found in Kapetanios (1998b).
12The de�nition of a near epoque dependent processes is given in Appendix 2. For examples of near epoque

dependent processes see Gallant and White (1988, pp. 27-31).
13For the de�nition of a mixingale see Appendix 2.
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the estimate of the lag order p0, p̂, obtained through an information criterion with penalty

term CT;k, is weakly consistent, if the following conditions hold

1: CT;k

p!1 2:
CT;k

T

p! 0 3: If k1 > k2 then CT;k1 � CT;k2
p!1

Theorem 4 If fytg is generated according to the Markov-switching model de�ned by (4), then,

under Assumptions 7-9, and the regularity conditions in Appendix F of Kapetanios (1998b),

the estimate of the lag order p0, p̂, obtained through an information criterion with penalty

term CT;k, is strongly consistent if the following conditions hold

1.
CT;k

log log T

a:s:! C where C is a constant greater than k or
CT;k

log log T

a:s:! 1 .

2.
CT;k

T

a:s:! 0

3. If k1 > k2 then
CT;k1�CT;k2

log log T

a:s:! C, where C is a constant greater than k1 � k2, or
CT;k1�CT;k2

log log T

a:s:! 1

Theorems 3 and 4 may be proven by using Propositions 4.2(a), 4.2(c), 5.2(a) and Corollary

5.4(b), of Sin and White (1996). The proofs of the Theorems involve supplying the relevant

regularity conditions for the limit laws needed for the theorems in Sin and White (1996) to

hold. These are provided in Appendix 3.

4 Small sample properties of lag order selection

The theoretical results obtained in Section 3 hold asymptotically. Therefore, it is necessary

to investigate the properties of lag order selection in small samples.

4.1 SETAR models

The structure of the Monte Carlo experiments is as follows: The SETAR models have two

regimes. Four true data generating processes (DGP) are used. These are described in Table 1.

The parameters in this table, refer to the SETAR model given by equation (2). For all the

DGPs the true value of r is 0. The �rst and the third DGPs have coeÆcients with diminish-

ing absolute values for higher order lag coeÆcients whereas the second and the fourth DGPs

have coeÆcients which do not fall in absolute value with the order of the lag. The signs of

the coeÆcients and the intercepts are chosen so as to approximate an upward trending series

whose di�erences follow a SETAR model, as the estimates of the proportion of observations

belonging to each of the two regimes, given in Table 1, show. A number of macroeconomic

series have been modelled similarly in the literature (See for example Potter (1995)). The

absolute values of the coeÆcients are on purpose small to investigate the performance of the

criteria for weak threshold autoregressions and to minimise small sample estimation bias. For

all DGPs, p = 1; : : : ; 6. r is estimated by grid search. The grid contains 21 points centered

around the true value. Of course, in practise the grid cannot be centered around the true
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value of r, since the threshold parameter is unknown. However, as the same value of the

maximised log-likelihood, obtained through the grid search, is used by all criteria, their rel-

ative performance should not be greatly a�ected. Indeed, limited experimentation with an

alternative grid structure where quantiles of the Monte Carlo samples are used to construct

the grid, indicates that the results are not a�ected. The delay parameter, d, takes the values 1

and 2. The true value is 1. T takes the values 150, 200, 400 and 600. The rest of the design of

the experiments is common for all experiments in this paper. The error terms are constructed

to be zero mean normal variates. For each replication a sample of size T + 200 is initially

generated. The �rst 200 observations of each sample are discarded to minimise the e�ect of

initial conditions14. For each of the DGPs and for each T , 400 replications are carried out.

We present the percentage frequencies of lag orders selected for all DGPs and for T = 200

in Tables 2-5. The standard errors of the estimated percentage frequencies are given in paren-

theses15. To save space, the actual frequencies of lag orders selected for all experiments are

presented graphically in Figures 1 to 6 at the end of the paper. Each histogram in these

Figures has twelve bars. The �rst six correspond to d = 1, p = 1; : : : ; 6, whereas the last six

correspond to d = 2, p = 1; : : : ; 6. To facilitate the legibility of the Figures, the axes are kept

constant over the �ve criteria for given experiments but vary between experiments.

GIC has a very similar performance to AIC. This, of course, is to be expected given the

fact that GIC is a generalisation of AIC under less stringent assumptions and the fact that

the basic assumption underlying AIC is satis�ed16. It is obvious that for DGPs 2 and 4, as the

number of observations increases, SC and HQ pick the right order almost perfectly, whereas

AIC and GIC overestimate it for large T at expected. However, at smaller samples, AIC

performs better compared to SC which underestimates the order considerably. HQ performs

better overall for DGPs 2 and 4. As far as DGPs 1 and 3 are concerned it is obvious that all

criteria, apart from ICOMP underestimate the order. This is to be expected given the very

small and diminishing absolute values of the coeÆcients. However, AIC is doing slightly better

with HQ improving for larger samples. It is obvious that the tendency of AIC to overestimate

the order helps. ICOMP performs poorly in smaller samples especially for DGPs whose true

lag order is 2. Its performance improves for T = 400 and 600. Overall, HQ seems to be the

best criterion both at small and large samples.

We also comment on the estimation of the delay parameter, d, which, given the estimation

framework, may take the values 1 and 2. Note that the true value is 1. The correct value of

the delay parameter is chosen more often for all the criteria with the exception of ICOMP in

DGPs 1 and 3 and smaller sample sizes and in one case of SC. Furthermore, the frequency

pro�les of the lag orders selected are similar for d = 1 and d = 2.

Kapetanios (1998a) investigates brie
y the accuracy of the estimates of the parameters of

the models, obtained during the Monte Carlo simulations. The estimates do not appear to

su�er from large biases apart from the threshold parameter which is upwards biased17.

14The starting values are set to zero.
15The standard errors are given by 100

p
N�1�̂(1� �̂) where �̂ is the estimated percentage frequency divided

by 100 and N is the number of replications for the Monte Carlo experiment.
16AIC is valid if the true model belongs to the parametric family of models being considered.
17See Kapetanios(1998a) for a more extensive Monte Carlo investigation of the threshold parameter estima-
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4.2 Markov-switching models

The Monte Carlo simulations conducted to investigate lag order selection for Markov models

have a similar structure with those presented for SETAR models. Again, four DGPs are con-

sidered. The main features of these DGPs are presented in Table 1. The parameters of this

table refer to the Markov-switching model given by equation (4).

The speci�cation of the autoregressive functions for each regime is similar to that of SE-

TAR models. DGPs 1 and 3 have coeÆcients with small absolute values which are decreasing

in the lag order while DGPs 2 and 4 have larger coeÆcients in absolute value which remain

large for higher lag orders. The transition probabilities are both set equal to 0.5, making both

regimes equally likely to occur. The experiments are carried out for 200 and 400 observations.

As for SETAR models, p = 1; : : : ; 6. Estimation is carried out using the maximum likelihood

routines of GAUSS 3.2.3518. The percentage frequencies of lag orders selected for all DGPs

and T = 200 are presented in Table 6. All results are presented graphically in Figures 7 to 9.

In these Figures, all histograms have six bars for p = 1; : : : ; 6.

As before HQ performs best in selecting the lag order followed by SC. They both do well

for DGPs 2 and 4 at 200 and 400 observations. For DGPs 1 and 3 HQ and SC underestimate

the true lag. AIC overestimates the true lag order for most DGPs. GIC performs similarly to

AIC as expected. ICOMP signi�cantly overestimates the true lag order for all DGPs. Once

again we conclude that HQ and to a lesser degree SC are the best choices for lag selection in

Markov-switching models. We also note that the performance of the criteria may be adversely

a�ected by the small sample behaviour of the maximum likelihood estimator. A recent paper

by Psaradakis and Sola (1998) provides Monte Carlo evidence which suggests that conventional

asymptotic approximations for the distribution of the ML estimates are poor for small samples

in Markov-switching models.

5 Selection between alternative threshold models

As new classes of nonlinear threshold models are being developed, it is important to consider

formal methods of selection between alternative nonlinear models as opposed to the prevalent

practise of picking, for a variety of ad hoc reasons, a class of threshold models and working

within the framework of that class only.

In theory, AIC, SC and HQ19 are not, strictly speaking, applicable in this context since

the assumption concerning model selection within a parametric family is not satis�ed. On

the other hand, ICOMP and GIC should be useful tools as they are not bound by such strict

assumptions. Three Monte Carlo experiments are carried out to investigate these issues. The

experiments consider a SETAR, a Markov-switching and an EDTAR model. The EDTAR

model is given by equations

If;t = 1(yt < y�
t
� rf ); Icor;t = 1(If;t + Ic;t = 0); Ic;t = 1(yt > y�

t
+ rc); rc; rf > 0 (5)

tor in SETAR models.
18The user de�ned routines for GAUSS are modi�ed versions of the GAUSS programs by van Norden and

Vigfusson (1996) (see also Gable, van Norden, and Vigfusson (1995)).
19Note that HQ was originally suggested as a tool for lag selection for linear models.
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Ft =

prX
i=0

"
(y�

t�i
� rf � yt�i)

iY
j=0

If;t�j

#
; Ct =

peX
i=0

"
(yt�i � y�

t�i
� rc)

iY
j=0

Ic;t�j

#
(6)

xt = �0 + �(L)xt + �fFt�1 + �cCt�1 + ht�t (7)

where xt = �yt, ht = �corIcor;t�1 + �fIf;t�1 + �cIc;t�1, f�tg is an i.i.d. sequence of disturbances

and 1(:) denotes the indicator function. pr, pe are the lag orders for the e�ects of past de-

viations from the trend on the current xt and �(L) is a lag polynomial of order p. y�
t
is the

unobserved trend process of yt estimated by a recursive Hodrick-Prescott �lter. More details

about the EDTAR model may be found in Kapetanios (1999). The parameter values for the

generation of the Monte Carlo samples are given in Table 7.

The autoregressive structure of the regimes of the SETAR and Markov-switching models is

the same so as to minimise the distance between the two models. The experiments are carried

out for samples of 200 observations only, as the treatment of Markov and EDTAR models is,

computationally, very intensive. For each of the three experiments a di�erent speci�cation

from Table 7 is used as the true DGP. The percentage frequencies of models selected for each

criterion are given in Table 8.

Under a Markov DGP all criteria perform well choosing the true model most often. ICOMP

performs best choosing the true model 96 % of the time. GIC has the least convincing

performance and chooses the Markov model 87 % of the time. When a SETAR DGP is

considered the performance of the criteria deteriorates signi�cantly. All the criteria, apart

from ICOMP, still pick the SETAR model most often but the highest selection frequency is

obtained by AIC which picks the SETAR model 61.25 % of the time. ICOMP picks the Markov

model more often than the SETAR model casting doubts on its impressive performance for the

Markov DGP. It is likely that the inclusion of q1 and q2 in the covariance matrix, accentuates

its block diagonality, compared to the SETAR covariance matrix, and reduces complexity.

Under the EDTAR DGP all criteria perform impressively. The highest selection frequency

is by ICOMP which picks the EDTAR model 99.5 % of the time. The lowest is by AIC

which picks the true model 92 % of the time. The performance of the criteria in the case

of the EDTAR model may be due to the fact that the EDTAR model involves three regimes

unlike the other two models. Additionally, the EDTAR model has lower dimension that either

the SETAR or the Markov-switching model. In general it should be expected that the more

distant, in terms of KLIC, two models are the easier it will be for the criteria to pick the true

one. In general AIC, HQ and SC perform slightly better than GIC and signi�cantly better

than ICOMP. Given the results of Sin and White (1996), SC and HQ should to be preferred

since they are strongly consistent. Unfortunately, these results are not valid in this case, since

the assumptions concerning continuity and di�erentiability of the likelihood functions are not

satis�ed in the case of SETAR and EDTAR models.

6 Conclusion

In this paper the role of information criteria in the analysis of threshold models was investi-

gated. Theoretical results concerning consistency of lag selection which are known for linear

models have been extended to threshold autoregressive and Markov-switching models. Monte
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Carlo evidence on the small sample performance of a number of criteria in lag order selection

and selection across di�erent classes of threshold models was presented. As always, the con-

clusions are conditional on the design of the speci�cations. Nevertheless, we can conclude that

standard information criteria have an important role to play in model selection for nonlinear

threshold models. Other information criteria such as GIC and especially ICOMP have proven

less reliable. The overall relative performance of ICOMP leads to the conclusion that it is of

limited potential in model selection for nonlinear threshold models.
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Appendix 1:Proof of Theorems 1 and 2

The proofs for both Theorems entail common elements. A single account will be given and any anal-

ysis needed for a speci�c Theorem will be given at the appropriate point. The proof will concentrate

on the case m = 2. The results may be extended to cases of more than two regimes conditionally

on extending the results of Chan (1993) concerning consistency to more than two regimes. For the

�rst part of this proof we will assume r to be known. Modi�cations needed, when this assumption is

relaxed, are given at the second part of the proof. If r is known the analysis by Sin and White (1996)

is relevant. However, we choose to provide our own setup which will be used in the case where r is

estimated. The analysis used by Shibata (1976) to discuss weak consistency is not valid since the

resulting model is not an autoregression. As mentioned in the main part of the paper, estimation of

the coeÆcients of the model is carried out through two OLS regressions for the two regimes. These

regressions are given by (3). The notation introduced for these regressions will be used throughout.

In addition, we de�ne the standard regression idempotent matrix M j = ITj � X
0

j(X
0

jXj)
�1Xj

which will be used later. To motivate the use of the likelihood based information criteria we note the

equivalence of maximum likelihood estimation under error normality and conditional least squares

and use the normal likelihood in the speci�cation of the criteria. The concentrated conditional

log-likelihood of the SETAR model is then given by20

lT (�1;�2) = const�
T1

2
logf

1

T1
(y1 �X1�1)

0(y1 �X1�1)g �
T2

2
logf

1

T2
(y2 �X2�2)

0(y2 �X2�2)g

(8)

In this context we de�ne the following loss function associated with the information criterion with

penalty term CT;k which when minimised over all possible lag orders gives the estimated lag order

according to the information criterion.

ICT (�1;�2; CT;k) =
T1

2
logf

(y1 �X1�1)
0(y1 �X1�1)

T1
g+

T2

2
logf

(y2 �X2�2)
0(y2 �X2�2)

T2
g+CT;k

(9)

We now claim that minimising (9) over p = 1; : : : ; P is asymptotically equivalent to minimising

the two quantities below over p = 1; : : : ; P using observations from each of the two regimes for each

quantity. We also claim that this equivalence holds both in probability and almost surely. This claim

will be proven at a later stage.

ICT1;1(�1; CT1;k1
) =

T1

2
logf

1

T1
(y1 �X1�1)

0(y1 �X1�1)g+CT1;k1
(10)

ICT2;2(�2; CT2;k2
) =

T2

2
logf

1

T2
(y2 �X2�2)

0(y2 �X2�2)g+CT2;k2
(11)

20log denotes natural logarithms.
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Remark 7 This equivalence holds only asymptotically. For small samples the conclusions reached by

minimising (9) as opposed to (10) or (11) will not be the same when the Schwarz and Hannan-Quinn

criteria are used.

Remark 8 As noted in Remark 3 we now prove that the �rst part of Assumption 6 holds for the

standard information criteria (Akaike, Schwarz and Hannan-Quinn). For Akaike we have CT;k =

k, CT1;k1
= k1 and CT2;k2

= k2. Since k1 + k2 = k, the �rst part of the assumption holds for

Akaike's criterion. For Schwarz's criterion, CT;k =
k

2
log T , CT1;k1

= k1

2
log T1 and CT2;k2

= k2

2
log T2.

But CT1;k1
+ CT2;k2

= k1

2
log T + k2

2
log T + k1

2
log T1

T
+ k2

2
log T2

T
which is asymptotically equal to

k

2
log T + k1

2
log b + k2

2
log(1 � b). But k1

2
log b + k2

2
log(1 � b) is bounded by Remark 2. For the

Hannan-Quinn criterion, CT;k = k log log T , CT1;k1
= k1 log log T1 and CT2;k2

= k2 log log T2. But

k1 log log T1+k2 log log T2 = k log log T+k1 log
log T1
log T

+k2 log
log T2
log T

. Using L'Hopital's rule for limits of

fractions we get that the limits of k1 log
log T1
log T

and k2 log
log T2
log T

are k1 log
1
b
and k2 log

1
1�b

respectively

and therefore bounded.

The decomposition of the likelihood in terms of regimes permits the search for the lag order for

each regime independently since a di�erent set of observations is used for the search in each regime.

Thus, ICT1;1 or ICT2;2 may be minimised over p.

Following the above argument, we can concentrate on regime 1. The same argument can be

applied to the second regime. To reduce notational burden we drop the subscript indicating the

regime from the coeÆcient and error vectors and data matrices. From now on when the matrices

X and M have superscript 0, they are constructed using the true lag order p0. If they have no

superscript then they are constructed using lag order p 6= p0. When the coeÆcient vector � has

superscript 0 then it refers to a model using the true lag order. Hats indicate estimated parameters.

At �rst we consider the case where p < p0. Then, weak consistency requires that

lim
T1!1

PfICT1;1(�̂; CT1;k1
)� ICT1;1(�̂

0
; C

T1;k
0

1

) < 0g = 0 (12)

By substitution, using standard regression results and after some algebra this becomes

lim
T1!1

P

(
1
T1
(�00X00MX0�0 + �0M�+ 2�0MX0�0)

1
T1
�0M 0�

< e

C
T1;k

0
1

�CT1;k1

T1=2

)
= 0 (13)

But, X �X0. Also idempotency implies positive-de�niteness for M . As a result

�00X00MX0�0 > 0 in probability (14)

for all sample sizes. By the assumed stationarity and ergodicity of the model, we get

T�11 X00X0 p
! �0; T�11 X 0X

p
! �; T�11 X 0X0 p

! � (15)

where �0 and � are positive de�nite matrices. Further, by the i.i.d. assumption on �t we have

T�11 X00�!p0; T�11 X 0�!p0 and T�11 �0M0�!p�
2
1 ; T�11 �0M�!p�

2
1 (16)

For all Æ > 0 there exists a constant K0 such that for all T1 > K0, the RHS of the inequality in (13)

is less than 1+ Æ. This is because of the second condition of the Theorem. Now, given (14) and (16),

for a �xed " > 0 and for all suÆciently small Æ > 0, there exists another constant, K1, such that for

all T1 > K1 the following holds

P

(
1
T1
(�00X00MX0�0 + �0M�+ 2�0MX0�0)

1
T1
�0M0�

< 1 + Æ

)
< " (17)
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Noting that " was arbitrary, we have proven weak consistency for p < p0. Now we consider strong

consistency. (10) may also be written as

ICT1;1(CT1;k1
) =

T1

2
log �̂2p + CT1;k1

(18)

where �̂2p is the residual sum of squares of the regression of yt on yt�1; : : : yt�p, involving observations

in regime 1, divided by the number of observation in that regime. A well known regression result

(see for example Cramer (1946) p. 307) states that

�̂2p = �̂20(1� �̂21j0)(1� �̂22j1) : : : (1� �̂2
pjp�1) (19)

where �̂20 is the sample variance, and �̂iji�1, i = 1; : : : ; p, is the estimated partial correlation coeÆcient

between yt and yt�i (i.e. the correlation coeÆcient between the residuals of the regression of yt on

yt�1; : : : ; yt�i+1 and the residuals of the regression of yt�i on yt�1; : : : ; yt�i+1). Using the above

result the objective function of the information criterion may be written as

ICT1;1(CT1;k1
) =

T1

2
log �̂20 +

T1

2

pX
j=1

log(1� �̂2
jjj�1) + CT1;k1

For p < p0 strong convergence of the parameter estimates in the regression of of yt on yt�1; : : : ; yt�i+1

and the regression of yt�i on yt�1; : : : ; yt�i+1, guarantees that �̂iji�1 estimates consistently the true

partial correlation coeÆcient �iji�1. But �iji�1 is nonzero for p < p0 and less than 1. Thus, log(1 �
�̂2
jjj�1

) is strictly negative, and, by the second condition of Theorem 2, ICT1;1(CT1;k1
) cannot be

minimised for p < p0 proving strong consistency for p < p0 .

Remark 9 The same conclusion would also follow if we observe that (14), and (15)-(16) hold almost

surely as well as in probability implying that the event in the probability expression (17) occurs almost

surely for suÆciently large T1.

Now we want to prove weak and strong consistency for p > p0. Using (18) and (19) we need to

analyse the behaviour of log(1� �̂2
pjp�1

) for p > p0. We concentrate on �̂pjp�1

�̂pjp�1 =

1
T1

P
T1

t=p

h
yt �

P
p�1
i=1 �̂iyt�i

i h
yt�p �

P
p�1
i=1 �̂

�

i
yt�i

i
�̂p�1�̂

�

p�1

�̂�2
p�1 is equal to the residual sum of squares of the regression of yt�p on yt�1; : : : ; yt�p+1 divided by

the number of observations and �̂�
i
are the estimated coeÆcients of that regression. The denominator

of the above expression converges strongly to some positive constant. Thus, we only need to consider

the numerator. Ergodicity and stationarity of fytg imply that �̂�
i
, i = 1; : : : ; p�1, converge strongly

to some constants, say ��
i
, at the rate of T

1

2

1 . Thus, putting Æi = �̂i � �i and Æ�
i
= �̂�

i
� ��

i
,

i = 1; : : : ; p� 1, the numerator of �̂pjp�1 is given by

1

T1

T1X
t=p

"
yt �

p�1X
i=1

�iyt�i +

p�1X
i=1

Æiyt�i

#"
yt�p �

p�1X
i=1

��i yt�i +

p�1X
i=1

Æ�i yt�1

#

Since the errors are serially uncorrelated and orthogonal to past values of yt, it follows that yt �P
p�1
i=1 �iyt�i is uncorrelated with yt�i i = 1; : : : ; p � 1, p > p0, and also that yt�p �

P
p�1
i=1 �

�

i
yt�i is

uncorrelated with yt�i. This implies that, for j = 1; : : : ; p� 1,

1

T1

T1X
t=p

"
yt�p �

p�1X
i=1

��i yt�i

#
yt�j = Op(T

�
1

2

1 ) and
1

T1

T1X
t=p

"
yt �

p�1X
i=1

�iyt�i

#
yt�j = Op(T

�
1

2

1 )
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Thus, the numerator becomes21

1

T1

T1X
t=p

"
yt �

p�1X
i=1

�iyt�i

#"
yt�p �

p�1X
i=1

��i yt�i

#
+Op(T

�1
1 )

We only need to consider "
yt �

p�1X
i=1

�iyt�i

#"
yt�p �

p�1X
i=1

��i yt�i

#
(20)

But, as the two quantities involved in (20) are uncorrelated for p > p0, this forms a stationary,

ergodic square integrable martingale di�erence sequence. This implies that a central limit theorem

holds22 for
p
T1�̂pjp�1 implying that �̂pjp�1 = Op(T

�1=2
1 ) or equivalently that log(1 � �̂2

pjp�1
) =

log(1 � Op(T
�1
1 )) = Op(T

�1
1 ). Then, T1

2

P
p

j=p0+1
log(1 � �̂2

jjj�1
) = Op(1) implying the suÆciency of

conditions 1 and 3 in Theorem 1 for weak consistency of lag selection. For strong consistency we

note that by Heyde and Scott (1973) a law of iterated logarithm holds for the martingale di�erence

in (20) implying that

�̂pjp�1 = �p(T1)T
�

1

2

1 (2 log log T1)
1

2 ; a:s: for p > p0

where limsup �p(T1) = 1 and liminf �p(T1) = �1. It then follows that log(1��̂2
pjp�1

)+2T�11 log log T1 >

0 a.s. for p > p0 implying the suÆciency of conditions 1 and 3 of Theorem 2 for strong consistency

of lag selection.

The above covers the suÆciency part of the proof. The necessity of condition 2 for both Theorems

is obvious from what has been said above. The necessity of conditions 1 and 3 is obtained as follows.

By similar arguments to those used above we can show that the change in the likelihood arising out

of including one extra lag is asymptotically distributed as a �2-variate when p > p0. This implies

that any criterion whose penalty term does not tend to in�nity with the number of observations

cannot be weakly consistent, since it will overestimate with positive probability, asymptotically, the

lag order. For strong consistency, we have that for any criterion whose penalty term CT1;p does not

satisfy conditions 1 and 3 of Theorem 2, log(1 � �̂2
pjp�1

) + 2T�11 log log T1 > 0 does not hold almost

surely for p > p0.

Remark 10 We need to provide a justi�cation for the validity of using the decomposition given

in (10)-(11). For p < p0, and under the conditions of Theorem 2 it has been shown that ICTj ;j
(�̂

0

j ; CTj ;k
0

j
)�

ICTj ;j
(�̂j; CTj ;kj

), j = 1; 2, are almost surely negative and Oa:s:(T ). For p > p0 the same quantities

are again negative almost surely and Oa:s:(log log T ). But, by Assumption 6, ICT (�̂1; �̂2; CT;k) �
ICT1;1(�̂1; CT1;k1

) � ICT2;2(�̂2; CT2;k2
) is almost surely bounded for all p. The same holds in proba-

bility. As a result the decomposition is justi�ed.

When r is not known but estimated the above arguments need to be extended. In this case the

decomposition of IC in terms of regimes cannot be used. The cases p < p0 and p > p0 need to be

considered The second case implies that r is estimated strongly consistently and thus what has been

said above holds. Note that the rate of convergence of the estimate of r, r̂ to its true value is T (See

Chan (1993)). A lower rate would have invalidated the argument developed above. In the �rst case,

21Note that all the results hold both a.s and in probability.
22See Davidson (1994) pp. 383-385
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consistency of the estimate of r is not guaranteed. We will assume that consistency does not hold

since if it did what has been said above would hold. We reintroduce the regime subscript. Since the

regime based decomposition does not hold, (12) is replaced by

lim
T!1

PfICT (�̂1; �̂2; r̂; CT;k)� ICT (�̂
0

1; �̂
0

2; r̂
0; CT;k0) < 0g = 0 (21)

where r̂0 denotes the estimate of r for p0 and r̂ denotes the estimate of r for p 6= p0. Note that

implicit dependence on the threshold parameter is introduced. We de�ne lj(�j; r) =
Tj

2
logf 1

Tj
(yj �

Xj�j)
0(yj�Xj�j)g, j = 1; 2, to be the contribution to the log-likelihood23 involved in ICT (�1;�2; r)

from regime j. Then, we can write (21) as

lim
T!1

Pfl1(�̂1; r̂) + l2(�̂2; r̂) + CT;k � l1(�̂
0

1; r̂
0)� l2(�̂

0

2; r̂
0)� CT;k0 < 0g = 0 (22)

This is equivalent to

lim
T!1

Pfl1(�̂1; r̂) + l2(�̂2; r̂)� l1(�̂
0

1; r̂)� l2(�̂
0

2; r̂) + CT;k � (23)

l1(�̂
0

1; r̂
0)� l2(�̂

0

2; r̂
0) + l1(�̂

0

1; r̂) + l2(�̂
0

2; r̂)� CT;k0 < 0g = 0

It is suÆcient to show the following

lim
T!1

Pfl1(�̂
0

1; r̂) + l2(�̂
0

2; r̂)� l1(�̂
0

1; r̂
0)� l2(�̂

0

2; r̂
0) < CT;k0 � CT;kg = 0 (24)

lim
T!1

Pfl1(�̂1; r̂) + l2(�̂2; r̂)� l1(�̂
0

1; r̂)� l2(�̂
0

2; r̂) < 0g = 0 (25)

Consider (24) �rst. The RHS of the inequality in the probability expression is op(T ), by the conditions

of Theorem 1. The LHS is the log-likelihood of the model under the consistent estimate of r minus

the log-likelihood of the model under an inconsistent estimate of r. Both log-likelihoods are obtained

under the true lag order. By Chan (1993), it follows that the LHS is Op(T ). Thus, (24) is proven.

Now we turn to (25). We note that for all the terms in the expression in the probability the same

value of the threshold parameter is involved. We denote the number of observations belonging to

regime j under r̂ by T �
j
, j = 1; 2. By substitution and rearranging terms, the inequality inside the

probability in (25) becomes

T �1 log

(
1
T �
1

y�1
0M�

1y
�

1

1
T �
1

y�1
0M 0

1
�

y�1

)
+ T �2 log

(
1
T �
2

y�2
0M�

2y
�

2

1
T �
2

y�2
0M0

2
�

y�2

)
< 0 (26)

where stars indicate that the vectors or matrices are constructed using r̂. But the argument

of both logarithms in (26) is a ratio of residual sums of squares where in both the numerator and

the denominator the dependent variable is the same. As the set of regressors in the denominator

include the set of regressors in the numerator, standard regression analysis states that their ratio

is greater than one. Thus the LHS of (26) is positive in probability proving that (26) holds. The

above concerned weak consistency. Strong consistency is obtained by noting that the event in the

probability expression in (24) occurs almost surely for suÆciently large T and that the LHS of (26)

is almost surely positive.

23We choose to denote the contribution to the likelihood by lj(�j ; r) instead of lTj ;j(�j ; r) to reduce the

notational burden, although, of course, this contribution depends on the sample size.

19



Remark 11 The above treatment assumed that both regimes have a common lag order. In some

situations this may be considered too restrictive. In Remark 5 we proposed a procedure for obtaining

lag orders under the assumption that the lag order di�ers across regimes. In the case where r is

estimated we advocate assuming a common lag order for all regimes, at �rst. Then from what has

been said in this Appendix we realise that the maximum lag order over all regimes will be chosen. To

see that let the maintained lag order be p and let p < p0
j
for some j where p0

j
denotes the true lag order

of regime j. Then, under the conditions of either Theorem 1 or 2, the rise in likelihood resulting

from considering a higher p will dominate the rise in the penalty term. This will keep happening for

as long as p < p0
j
for some j. Once the maximum lag order has been obtained we can start searching

for the lag orders of individual regimes using the estimates of the threshold parameters that have been

obtained in the �rst stage of the search. These estimates will clearly be consistent. Then the analysis

presented in the �rst part of this proof where r was assumed known is relevant and the conditions of

Theorems 1 and 2 are suÆcient for weak and strong consistency of lag order selection for individual

regimes.

Appendix 2:The Markov-Switching Model as a NED Pro-

cess

In this Appendix we prove that a process following the Markov-switching model is NED (see also

Gallant and White (1988, pp. 98)). Below we de�ne NED processes.

De�nition 1 For a, possibly vector valued, stochastic process fztg1�1 on a probability space (
;F ; P ),
let F t+m

t�m
= �(zt�m; : : : ;zt+m), such that fF t+m

t�m
g1
m=0 is an increasing sequence of �-�elds24. If, for

� > 0, a sequence of integrable random variables fytg1�1 satis�es

suptjjyt �E(ytjF t+m

t�m
)jj� � vm

and vm = O(m��), then yt will be said near epoque dependent in L�-norm (L�-NED) of size �� on

fztg1�1, where jj:jj� denotes L�-norm.

This de�nition is taken from Davidson (1994) and generalises previous de�nitions by considering

L�-norms, � � 1, instead of the L2 norm. The class of NED processes is useful because it includes

a number of processes widely encountered in econometrics such as linear and many nonlinear au-

toregressive processes. The NED property focuses on the relationship between the process fytg and
the underlying process fztg. On its own it is of little use. However, when the underlying process,

fztg, is mixing, the NED property may be used to extend results on limit laws which hold for mixing

processes to the process fytg which may not be mixing. The fact which permits this extension is

that NED processes on mixing processes are, under regularity conditions, mixingales25. Therefore,

we can apply results on limit laws available for mixingales to NED processes.

To see that a process following the Markov-switching model is NED we investigate the two regime

simple model given below

yt =

�
�1yt�1 + �t if St = 1

�2yt�1 + �t if St = 2
(27)

24For a random variable x, we denote by �(x) the intersection of all �-�elds of the sample space 
, with

respect to which x is measurable.
25Given a probability space (
;F ; P ), the sequence of fyt;Ftg

1

�1
where fFtg is an increasing sequence

of �-sub�elds of F and fytg is a sequence of integrable random variables, is called an L�-mixingale if, for

� � 1, there exist sequences of nonnegative constants fctg
1

�1
and f�mg

1

�1
such that �m ! 0 as m !

1, jjE(ytjFt�m)jj� � ct�m and jjyt �E(ytjFt�m)jj� � ct�m+1. As for the de�nition of NED process, this

de�nition is taken from Davidson (1994) where again L�-norms, � � 1, instead of the L2 norm is used.
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where St is a Markov chain speci�ed as in (4). Extension to higher order lag structures makes no

di�erence for what follows. In this case the underlying process, fztg, is given by f�t; Stg. Then the

following Theorem may be proven

Theorem 5 Under Assumptions 8 and 9 the process de�ned in (27) is L2-NED of arbitrarily large

size on f�t; Stg.

Proof of Theorem 5

(27) may be written as yt =
P

1

�=0

�Q
u=�

u=0;St�u=1 �1
Q

v=�

v=0;St�v=2 �2

�
�t�� . But, de�ning �max to

be the coeÆcient with the maximum absolute value between �1 and �2, noting that Ej�tj <1, that

j�maxj < 1 from Assumption 8 and that the conditional expectation is the minimum squared error

predictor of yt we have

jjyt �E(ytjF t+m

t�m
)jj

2
�

����������

����������
yt �

mX
�=0

0
BBBB@

u=�Y
u=0

St�u=1

�1

v=�Y
v=0

St�v=1

�2

1
CCCCA �t��

����������

����������
2

=

����������

����������
1X

�=m+1

0
BBBB@

u=�Y
u=0

St�u=1

�1

v=�Y
v=0

St�v=1

�2

1
CCCCA �t��

����������

����������
2

�

�����
�����

1X
�=m+1

��
max

�t��

�����
�����
2

� j�maxjm
1X
�=1

j�maxj� jj�t���mjj2 =
j�maxjm+1jj�tjj2

1� j�maxj

Consequently vm ! 0 as m!1, and more speci�cally vm = O(m�
) where 
 is a arbitrarily large.

Appendix 3: Regularity Conditions and Proofs for The-

orems 3 and 4

In this Appendix we provide the technical regularity conditions needed for Theorems 3 and 4 and

the proofs of the Theorems. The speci�cation of the regularity conditions requires the following

de�nitions. The sequence fytg is de�ned on a generic probability space (
;F ; P ). Let yt;p =

(yt; : : : ; yt�p)
0 Let  p, 	p, vt;p(yt;p; p) and VT;p( p) =

P
T

t=1 vt;p(yt;p; p) denote a generic vector

containing the parameters of the model, the parameter space, the log-likelihood26 of observation t

and the log-likelihood of the whole model under a maintained lag order p. Also, let ut(yt;p) and �

denote the density of yt;p and a measure dominating the marginal distribution of yt;p, t = 1; : : : ; T ,

respectively. To simplify notation, the symbols r and r2 are used to denote the gradient and the

hessian of a function, respectively. In what follows expectations are taken with respect to the true

distribution of yt;p.

Assumption 10 VT;p( p) is measurable-F and twice continuously di�erentiable on 	p almost ev-

erywhere, for all  p 2 	p for p = 1; : : : ; P . For all  p 2 	p, E(VT;p( p)) exists and de�nes an

almost surely twice continuously di�erentiable function on 	p. Finally, the integral and di�erentia-

tion operator in the above expectation are interchangeable.

Assumption 11 The parameters of the model are uniquely identi�ed for p = 1; : : : ; P .

Assumption 12 The parameter vector which attains the supremum of the expectation of the log-

likelihood of the model for p = 1; : : : ; P , denoted  �p, lies in the interior of 	p.

26For details on how to obtain the log-likelihood for observation t see Hamilton (1989).
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Assumption 13 	p, p = 1; : : : ; P , is compact.

Assumption 14 For all points in 	p lying in an open sphere of radius " > 0 centered at  �p ,

T�1r2VT;p( p) is asymptotically bounded away from zero almost surely and E[T�1r2VT;p( p)] is

asymptotically bounded almost surely, for p = 1; : : : ; P .

Assumption 15 For the sequence fvt;p(yt;p 
�

p)g and the sequences of elements frivt;p(yt;p 
�

p)g
and fr2

i;j
vt;p( 

�

p)g of the processes frvt;p(yt;p 
�

p)g and fr
2vt;p(yt;p 

�

p)g, the following holds almost
everywhere for all t and y1, y2, p = 1; : : : ; P , i; j = 1; : : : ; dim( p), where Bt, Bt;i and Bt;i;j are

�nite constants

jvt;p(y1; �p)� vt;p(y
2; �p)j � Bt

l=p+1X
l=1

jy1
l
� y2

l
j

jrivt;p(y
1; �p)�rivt;p(y

2; �p)j � Bt;i

l=p+1X
l=1

jy1
l
� y2

l
j

and

jr2
i;jvt;p(y

1; �p)�r
2
i;jvt;p(y

2; �p)j � Bt;i;j

l=p+1X
l=1

jy1l � y2l j

Assumption 16 There exist a sequence of positive constants fct;1g,
ct;1 ! 1, such that f[vt;p(yt;p; 

�

p) � E(vt;p(yt;p 
�

p))]=ct;1g and

f[r2
i;j
vt;p(yt;p 

�

p)�E(r2
i;j
vt;p(yt;p 

�

p))]=ct;1g are uniformly L2-bounded, and

1X
t=1

����
����vt;p(yt;p; 

�

p)�E(vt;p(yt;p 
�

p))

ct;1

����
����
2

2

<1

1X
t=1

�����
�����r

2
i;j
vt;p( 

�

p)�E(r2
i;j
vt;p(yt;p 

�

p))

ct;1

�����
�����
2

2

<1

for i; j = 1; : : : ; dim( p), p = 1; : : : ; P .

Assumption 17 E(rivt;p(yt;p 
�

p)) = 0, frivt;p(yt;p 
�

p)g is L2-bounded and 0 < limT!1 T�1�2
T;p;i

<

1, where �2
T;p;i

= Var
hP

T

t=1rivt;p(yt;p 
�

p)
i
, for all t, i = 1; : : : ; dim( p), p = 1; : : : ; P .

Assumption 18 �2
T;p;i

< 1 where �2
T;p;i

is de�ned in Assumption 17. There exists a sequence of

positive constants ct;2 such that

supt

����
����rivt;p(yt;p 

�

p)�E(rivt;p(yt;p 
�

p))

ct;2

����
����
2+Æ

; Æ > 0

and supTT [max1�t�T fct;2g]2 <1, i = 1; : : : ; dim( p), p = 1; : : : ; P .

Assumption 19 ut(yt;p) is continuous for all t.
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Assumption 20 Z
supt�1; p2	p

jvt;p(y; p)jut(y)�(dy) <1; p = 1; : : : ; P

.

Assumption 21 For each element of r2vt;p(yt;p; p) r2
i;j
vt;p(yt;p; p),

i; j = 1; : : : ; dim( p)Z
supt�1; p2	p

jr2
i;jvt;p(y; p)jut(y)�(dy) <1; p = 1; : : : ; P

.

Assumption 22 1. For p < p0

E

(
1

T

TX
t=1

h
vt;p(yt;�

�

p0
)� vt;p(yt;�

�

p)
i)

> 0

for all suÆciently large T .

2. For p > p0

1

T

TX
t=1

h
vt;p(yt;�

�

p0
)� vt;p(yt;�

�

p)
i
= Op(T

�1)

3. For p > p0

E

(
1

T

TX
t=1

h
vt;p(yt;�

�

p0
)� vt;p(yt;�

�

p)
i)

= 0

for all suÆciently large T .

Assumption 23 The information matrix equality holds for p � p0.

Assumptions 10-13 are standard regularity and identi�ability conditions. Assumption 15 provides

a uniform Lipschitz condition for the gradient and Hessian of vt;p(yt;p; p). Assumptions 16-18 are

needed for establishing limit laws for yt and the gradient and hessian of vt;p(yt;p; p). Finally, As-

sumptions 19-21 are needed for obtaining uniform laws of large numbers (ULLN) from their pointwise

counterparts.

In what follows we take Assumptions 7-9, and therefore the conclusions of Theorem 5, as given.

Assumptions 10-12 provide Assumption A of Sin and White (1996). By Theorem 17.12 of Davidson

(1994) and given that yt is a L2-NED process of arbitrarily large size, Assumption 15 ensures that

vt(yt;p; p) and every element of its hessian are L2-NED processes of arbitrarily large size as well.

Therefore, by Theorem 20.20 of Davidson (1994) and Assumption 16, vt(yt;p; p) and every element

of its hessian obey a pointwise strong law of large numbers (SLLN)27. Using Corollary 3 of Andrews

27For weak consistency of an information criterion only a weak law of large numbers (WLLN) needs to

be obtained. This may obtained under less stringent conditions than a SLLN. However, the di�erence in

the conditions lies mainly in the required sizes for the NED process and the underlying mixing processes.

Therefore, given that all processes we consider are of arbitrarily large sizes we will not pursue the distinction

further.
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Table 1: DGPs for Monte Carlo experiments on lag selection

SETAR Model

DGP 1 DGP 2 DGP 3 DGP 4

d 1 1 1 1

r 0 0 0 0

p0 2 2 3 3

�1;0 0.2 0.2 0.2 0.2

�1;1 0.2 0.2 0.2 0.2

�1;2 0.1 0.2 -0.1 -0.2

�1;3 0.1 0.2

�2;0 0.4 0.4 0.4 0.4

�2;1 0.3 0.3 0.3 0.3

�2;2 0.05 -0.3 0.1 0.3

�2;3 0.05 -0.3

�2
1 1.5 1.5 1.5 1.5

�2
2 1 1 1 1

b̂a 0.30 0.37 0.27 0.31

ab̂ is a Monte Carlo estimate of the proportion of observations

in regime 1 under the given DGP.

Markov Switching Model

DGP 1 DGP 2 DGP 3 DGP 4

p0 2 2 3 3

q1 0.5 0.5 0.5 0.5

q2 0.5 0.5 0.5 0.5

�1;0 0.5 0.5 0.5 0.5

�1;1 0.3 0.4 0.2 0.5

�1;2 0.1 0.4 0.2 0.5

�1;3 0.1 -0.5

�2;0 1 1 1 1

�2;1 0.2 0.4 0.1 0.6

�2;2 -0.1 -0.5 -0.1 -0.4

�2;3 0.05 0.6

�2
1 1 1 1 1

�2
2 1 1 1 1

(1987) and Assumptions 13, 19, 20 and 21, uniform SLLNs are obtained for these processes. Further,

Assumption 17 with Corollary AIII.3 of Sin and White (1992) and 18 with Corollary 24.7 of Davidson

(1994) provide a LIL and a CLT, respectively, for each element of rvt(yt;p; p).

Combining Assumption A of Sin and White with the uniform LLNs for vt(yt;p; p) and its Hes-

sian, the CLT for each element of rvt(yt;p; p), Assumptions 14, 22 (i),(ii) and the conditions of

Theorem 3 we obtain the conclusions of Proposition 4.2(a),(c) of Sin and White. This proves Theo-

rem 3.

For Theorem 4 we need to obtain Proposition 5.2(a) and Corollary 5.4(b) of Sin and White.

These are obtained through Assumption A of Sin and White, the uniform SLLNs for vt(yt;p; p)

and its Hessian, the LIL for each element of rvt(yt;p; p), Assumptions 14, 22 (i),(iii), 23 and the

conditions of Theorem 4. This concludes the proof of Theorems 3 and 4.
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Table 2: Percentage frequencies of the lag order selected for SETAR models (DGP 1, T=200,

N=400) (standard errors of the frequency estimates are given in parentheses)

Information Criteria

da pb AIC SC HQ GIC ICOMP

1 47:75(2:50) 75:00(2:17) 69:50(2:30) 46:00(2:49) 14:50(1:76)
2 12:25(1:64) 0:50(0:35) 5:50(1:14) 14:00(1:73) 6:50(1:23)

1 3 7:25(1:30) 0:00(N=A) 0:75(0:43) 7:50(1:32) 4:50(1:04)
4 5:00(1:09) 0:00(N=A) 1:25(0:56) 3:75(0:95) 6:00(1:19)
5 2:00(0:70) 0:00(N=A) 0:00(N=A) 2:50(0:78) 7:75(1:34)
6 3:00(0:85) 0:00(N=A) 0:00(N=A) 4:00(0:98) 13:25(1:70)
1 10:50(1:53) 24:00(2:14) 21:00(2:04) 9:50(1:47) 21:25(2:05)
2 5:25(1:12) 0:50(0:35) 1:75(0:66) 4:75(1:06) 2:25(0:74)

2 3 2:75(0:82) 0:00(N=A) 0:25(0:25) 3:25(0:89) 1:50(0:61)
4 0:50(0:35) 0:00(N=A) 0:00(N=A) 0:75(0:43) 5:25(1:12)
5 1:50(0:61) 0:00(N=A) 0:00(N=A) 1:50(0:61) 7:25(1:30)
6 2:25(0:74) 0:00(N=A) 0:00(N=A) 2:50(0:78) 10:00(1:50)

aDelay Parameter
bLag Order

Table 3: Percentage frequencies of the lag order selected for SETAR models (DGP 2, T=200,

N=400)

Information Criteria

d p AIC SC HQ GIC ICOMP

1 1:50(0:61) 9:75(1:48) 3:00(0:85) 1:50(0:61) 0:00(N=A)

2 55:25(2:49) 50:75(2:50) 65:25(2:38) 54:00(2:49) 20:50(2:02)
1 3 12:00(1:62) 1:00(0:50) 4:75(1:06) 12:75(1:67) 11:00(1:56)

4 5:50(1:14) 0:00(N=A) 1:75(0:66) 6:25(1:21) 8:00(1:36)
5 4:25(1:01) 0:00(N=A) 0:50(0:35) 4:25(1:01) 12:75(1:67)
6 5:00(1:09) 0:00(N=A) 0:00(N=A) 5:25(1:12) 24:50(2:15)
1 5:75(1:16) 36:00(2:40) 16:75(1:87) 4:75(1:06) 5:25(1:12)
2 5:25(1:12) 2:25(0:74) 6:75(1:25) 5:25(1:12) 0:50(0:35)

2 3 1:50(0:61) 0:25(0:25) 0:75(0:43) 1:75(0:66) 1:25(0:56)
4 1:50(0:61) 0:00(N=A) 0:50(0:35) 1:25(0:56) 1:50(0:61)
5 1:00(0:50) 0:00(N=A) 0:00(N=A) 1:75(0:66) 5:00(1:09)
6 1:50(0:61) 0:00(N=A) 0:00(N=A) 1:25(0:56) 9:75(1:48)
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Table 4: Percentage frequencies of the lag order selected for SETAR models (DGP 3, T=200,

N=400)

Information Criteria

d p AIC SC HQ GIC ICOMP

1 25:75(2:19) 55:00(2:49) 44:00(2:48) 24:25(2:14) 5:25(1:12)
2 20:00(2:00) 3:75(0:95) 14:00(1:73) 21:25(2:05) 7:00(1:28)

1 3 11:50(1:60) 0:50(0:35) 5:00(1:09) 12:25(1:64) 9:25(1:45)
4 4:00(0:98) 0:00(N=A) 0:75(0:43) 4:75(1:06) 9:00(1:43)
5 3:25(0:89) 0:00(N=A) 0:75(0:43) 4:25(1:01) 9:00(1:43)
6 3:25(0:89) 0:00(N=A) 0:00(N=A) 3:25(0:89) 13:50(1:71)
1 15:75(1:82) 40:50(2:45) 29:75(2:29) 14:25(1:75) 19:00(1:96)
2 5:25(1:12) 0:25(0:25) 3:00(0:85) 4:50(1:04) 3:25(0:89)

2 3 4:00(0:98) 0:00(N=A) 1:75(0:66) 3:50(0:92) 2:75(0:82)
4 2:75(0:82) 0:00(N=A) 0:25(0:25) 3:25(0:89) 2:75(0:82)
5 2:00(0:70) 0:00(N=A) 0:50(0:35) 2:25(0:74) 7:25(1:30)
6 2:50(0:78) 0:00(N=A) 0:25(0:25) 2:25(0:74) 12:00(1:62)

Table 5: Percentage frequencies of the lag order selected for SETAR models (DGP 4, T=200,

N=400)

Information Criteria

d p AIC SC HQ GIC ICOMP

1 0:75(0:43) 13:25(1:70) 2:75(0:82) 0:75(0:43) 0:00(N=A)

2 2:00(0:70) 5:75(1:16) 4:75(1:06) 1:50(0:61) 0:00(N=A)

1 3 61:25(2:44) 57:50(2:47) 73:75(2:20) 60:00(2:45) 31:25(2:32)
4 13:50(1:71) 1:00(0:50) 6:50(1:23) 13:25(1:70) 12:50(1:65)
5 9:50(1:47) 0:00(N=A) 0:75(0:43) 9:50(1:47) 19:75(1:99)
6 7:00(1:28) 0:00(N=A) 0:75(0:43) 8:50(1:39) 24:00(2:14)
1 1:00(0:50) 20:25(2:01) 6:50(1:23) 1:00(0:50) 0:75(0:43)
2 0:25(0:25) 1:00(0:50) 1:25(0:56) 0:75(0:43) 0:00(N=A)

2 3 2:75(0:82) 1:25(0:56) 3:00(0:85) 2:75(0:82) 1:00(0:50)
4 0:25(0:25) 0:00(N=A) 0:00(N=A) 0:25(0:25) 1:00(0:50)
5 1:25(0:56) 0:00(N=A) 0:00(N=A) 1:25(0:56) 4:00(0:98)
6 0:50(0:35) 0:00(N=A) 0:00(N=A) 0:50(0:35) 5:75(1:16)
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Table 6: Percentage frequencies of the lag order selected for Markov-switching models (T=200,

N=400)

Information Criteria

DGP p AIC SC HQ GIC ICOMP

1 17:75(1:91) 75:75(2:14) 45:00(2:49) 21:75(2:06) 11:00(1:56)
2 14:25(1:75) 9:25(1:45) 13:25(1:70) 16:50(1:86) 9:75(1:48)

1 3 12:00(1:62) 5:50(1:14) 8:25(1:38) 12:00(1:62) 8:75(1:41)
4 16:00(1:83) 3:50(0:92) 9:50(1:47) 14:00(1:73) 13:75(1:72)
5 17:25(1:89) 2:50(0:78) 10:00(1:50) 15:75(1:82) 20:00(2:00)
6 22:75(2:10) 3:50(0:92) 14:00(1:73) 20:00(2:00) 36:75(2:41)
1 5:75(1:16) 33:75(2:36) 14:75(1:77) 8:75(1:41) 4:25(1:01)
2 41:50(2:46) 57:50(2:47) 59:75(2:45) 35:00(2:38) 12:25(1:64)

2 3 11:75(1:61) 3:00(0:85) 8:50(1:39) 16:75(1:87) 9:25(1:45)
4 11:00(1:56) 2:50(0:78) 4:50(1:04) 12:25(1:64) 14:00(1:73)
5 11:00(1:56) 1:50(0:61) 5:75(1:16) 10:75(1:55) 22:25(2:08)
6 19:00(1:96) 1:75(0:66) 6:75(1:25) 16:50(1:86) 38:00(2:43)
1 15:50(1:81) 73:00(2:22) 38:75(2:44) 18:50(1:94) 8:75(1:41)
2 12:25(1:64) 9:25(1:45) 14:50(1:76) 14:25(1:75) 9:00(1:43)

3 3 13:75(1:72) 7:75(1:34) 11:25(1:58) 15:50(1:81) 10:75(1:55)
4 15:25(1:80) 3:50(0:92) 11:25(1:58) 14:50(1:76) 13:75(1:72)
5 15:50(1:81) 2:75(0:82) 8:50(1:39) 15:50(1:81) 23:75(2:13)
6 27:75(2:24) 3:75(0:95) 15:75(1:82) 21:75(2:06) 34:00(2:37)
1 0:25(0:25) 12:25(1:64) 2:00(0:70) 1:00(0:50) 0:25(0:25)
2 0:75(0:43) 1:75(0:66) 1:50(0:61) 1:50(0:61) 1:00(0:50)

4 3 63:50(2:41) 83:25(1:87) 86:00(1:73) 59:50(2:45) 21:00(2:04)
4 17:50(1:90) 1:75(0:66) 6:50(1:23) 18:00(1:92) 19:75(1:99)
5 8:50(1:39) 0:75(0:43) 2:50(0:78) 10:50(1:53) 21:00(2:04)
6 9:50(1:47) 0:25(0:25) 1:50(0:61) 9:50(1:47) 37:00(2:41)
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Table 7: Monte Carlo DGPs for model selection between alternative threshold models

DGP 1 DGP 2

M-Sa Model SETAR Model

m 2 2

r 0

p0 3 3

q1 0.5

q2 0.5

�1;0 0.5 0.5

�1;1 0.5 0.5

�1;2 0.5 0.5

�1;3 -0.5 -0.5

�2;0 1 1

�2;1 0.6 0.6

�2;2 -0.4 -0.4

�2;3 0.6 0.6

�2
1 2.25 2.25

�2
2 2.25 2.25

aMarkov-switching

DGP 3

EDTAR Model

pr 3

pe 3

p 3

�0 0.5

�1 0.4

�2 0.4

�3 -0.4

�f 0.3

�c -0.3

�2
f

1

�2
c

1

�2
cor

1

Table 8: Percentage frequencies of the model selected (T=200, N=400)

Information Criteria

DGPa Model AIC SC HQ GIC ICOMP

Selected

1 94:00(1:19) 92:00(1:36) 93:25(1:25) 87:00(1:68) 96:00(0:98)
1 2 5:00(1:09) 4:25(1:01) 4:50(1:04) 4:75(1:06) 0:75(0:43)

3 1:00(0:50) 3:75(0:95) 2:25(0:74) 8:25(1:37) 3:25(0:89)
1 35:50(2:39) 33:75(2:36) 35:25(2:39) 38:75(2:43) 47:00(2:49)

2 2 61:25(2:43) 59:25(2:46) 60:50(2:44) 47:00(2:49) 39:75(2:45)
3 3:25(0:89) 7:00(1:27) 4:25(1:01) 14:25(1:75) 13:25(1:69)
1 7:00(1:27) 5:25(1:11) 6:25(1:21) 5:25(1:11) 0:25(0:25)

3 2 1:00(0:50) 0:25(0:25) 1:00(0:50) 0:25(0:25) 0:25(0:25)
3 92:00(1:36) 94:50(1:14) 92:75(1:30) 94:50(1:14) 99:50(0:35)

aDGP 1: Markov, DGP 2: SETAR, DGP 3: EDTAR
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Figure 1: Lag selection in SETAR models. DGP 1,2,3: T=150
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Figure 2: Lag selection in SETAR models. DGP 4: T=150; DGP 1,2: T=200
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Figure 3: Lag selection in SETAR models. DGP 3,4: T=200; DGP 1: T=400
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Figure 4: Lag selection in SETAR models. DGP 2,3,4: T=400
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Figure 5: Lag selection in SETAR models. DGP 1,2,3: T=600
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Figure 6: Lag selection in SETAR models. DGP 4: T=600
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Figure 7: Lag selection in Markov-switching models. DGP 1,2,3: T=200
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Figure 8: Lag selection in Markov-switching models. DGP 4: T=200; DGP 1,2: T=400
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Figure 9: Lag selection in Markov-switching models. DGP 3,4: T=400

37


