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Abstract

The present paper suggests a possible framework to analyze the impact of changes to the economic

and social environment on the topology of networks formed. Economic (costs) and social (norms) con-

straints bind individuals in their ability to create ties with others. When global phenomena a¤ect these

constraints, the overall shapes of resulting networks naturally alter. I attempt to shed light on this

relationship.

1 Introduction

The importance of social structure in determining economic outcomes is widely documented.

Word of mouth communication plays an important role in disseminating information about

products, prices, and quality (Katz and Lazarsfeld (1955)), network e¤ects pervade the

adoption and spread of new technologies (Conley and Udry (2001)), and individuals often

rely on friends or acquaintances to obtain information on job opportunities (Granovetter

(1973)) to name only a few examples.

The present paper aims to evaluate the way in which changes to the economic and social

environment naturally translate into changes in the networks of interactions formed. The

latest wave of globalization, for example, is rede�ning the face of communication on a world

scale. Not only are people able to make long distance phone calls at very little cost, but the
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widespread learning of the English language across countries and cultures mean that it is now

possible for many to maintain relationships, private or professional, with others on the other

side of the globe. The impact of education on racism and tolerance is another important

example. Psychologists hold that fear resulting from mis-information (or lack of) is one of the

most important factor explaining discriminatory behaviour vis-à-vis other identity groups1.

As a response, public funding of awareness schemes have developed on a large scale in an

attempt to ease tensions between communities and promote the normalization of dialogue

across them. In both cases, it is natural and compelling to enquire about the transformations

implied at the global level.

To this end, we take a broad �geographic�approach by assuming that nodes are located

in some underlying s-dimensional Euclidian space and derive positive utility solely from

forming ties with others su¢ ciently close to them within the metric. The usefulness of this

approach stems from the fact that distances may be customized to account for economic

constraints. For example, a rise in the costs of maintaining links may be modeled as an

e¤ective in�ation of distances. As distances are in�ated, the number of nodes lying within

the radius of positive utility of any given node falls. Each node therefore �nds it increasingly

di¢ cult to form links.

To model the network formation per se, we borrow from the recent work of Vazquez

(2003) and Jackson and Rogers (2007). Nodes are introduced into the network sequentially

and meetings proceed from a combination of random and network-based devices. Each new

node entering the network is �rst introduced to a subset of nodes picked at random from

the existing set. She then goes on to meet some of the neighbours of those randomly chosen

nodes. The Jackson-Rogers-Vazquez (henceforth JRV) framework is both simple and intu-

itive, however its greatest credentials lie in its ability to generate networks which reproduce

accurately their empirical counterparts2. In view of our objective, the JRV framework is

therefore a natural one to base our analysis upon.

Our main results relate the topology of the networks formed and the underlying economic

constraints. First, I show how the constraints a¤ect the distribution of links arising. Second,

and contrastingly, I show that clustering is essentially determined by the dimension s of the
1"Le Racisme", Que sais-je n� 1603.
2See, e.g., Vega-Redondo (2007). In short, a large number of empirical networks tend to exhibit the following regularities:

(i) short average distance, (ii) degree distribution exhibiting a power law in the tail, (iii) high clustering, (iv) assortativity, and

(v) negative clustering-degree relationship.
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underlying space. We are thus able to make sharp predictions regarding some important

aspects of network topology following changes to the underlying economic environment.

Next I show that in a geographic context and when nodes are searching potential partners

locally in the network, the intensity of the constraints is unimportant in the sense that having

more stringent constraints does not reduce the prospects of �nding matching nodes. This

adds importantly to previously recorded motivations for using local search in models of

network formation, particularly in hostile environments for which constraints are tight.

Lastly, recent empirical evidence (Goyal, Moraga, and van der Leij (2007)) seems to

indicate that, at least for some networks evolving over time, the number of links formed

using the network tends to grow faster than links formed at random when the overall density

of the network rises. I show how this phenomenon can be accounted for in a simple way

within the model presented in this paper. Essentially, when constraints are relaxed nodes�

access to the network is enhanced.

The present paper is related to the economics literature on network formation, introduced

by the work of Jackson and Wolinsky (1996), and Bala and Goyal (2000)3. Models using the

idea of an underlying metric have been developed by Gilles and Johnson (2000), and Galeotti,

Goyal, and Kamphorst (2006). The focus of these papers however is largely distinct from

ours since they are concerned with the formation of �small networks� for which standard

game-theoretic assumptions may reasonably be expected to hold. This paper, on the other

hand, incorporates a large amount of bounded rationality on the part of agents involved in

the process of network formation. In the spirit of Vega-Redondo (2007) we assume that in

such a complex environment nodes follow a number of simple rules.

This paper is also related to the work of Strogatz and Watts (1998) in which nodes

populating a ring lattice connect their closest neighbours. The issues these authors address

are however wholly distinct from ours since they focus on the sharp impact that introducing

some long range links may have on average distances in the network. The literature on

random geometric graphs �nally (Penrose (2003)), shares some common features with the

present paper. In the former, nodes are placed randomly in Euclidian space and edges added

to connect points that are close to each other. The absence of time, and of any kind of local

search, mark however some important di¤erences with our work.

The rest of the paper is organized as follows. Section 2 presents the model and gives some
3See Goyal (2007) for an overview of this literature.

3



preliminary results. The topological analysis is carried out in Section 3. Section 4 applies

some of our results to the data analyzed by Goyal, Moraga, and van der Leij (2007) as an

illustrative example of their empirical applicability. Section 5.1 discusses geodesic distances

in the model. Section 5.2 discusses the model vis-à-vis its non-geographic counterpart.

Important extensions, including higher dimensions, are discussed in Section 5.3. Section 6

concludes.

2 The model

Consider a countably in�nite set of nodes labelled according to N. For i 2 N, Xi4 de�nes a

random variable locating node i in some s-dimensional Euclidian space S. Furthermore, we

assume that (Xi)i2N are uniformly and independently distributed in S. Nodes derive utility

ui(g; (xi)i2N) from forming ties with others according to network g. Let ", �xed for society

as a whole, determine the neighbourhood 
i(xi) in S within which agent i derives positive

marginal utility from being linked with others. That is, we assume

@ui
@n
i

> 0 (1)

@ui
@n
ci

< 0

where n
i = #fjji and j linked; xj 2 
i(xi)g, and n
ci = #fjji and j linked; xj 2 
ci (xi)g. Unless

stated otherwise we assume for simplicity that S is identi�ed with the torus of unit length,

and that 
(x) is given by the interval of length " centred at x. Higher dimensional S are

discussed in Section 5.3.1. Notice that xj 2 
i(xi) if and only if xi 2 
j(xj). We shall say that

i and j match whenever the previous conditions hold. Also, since nodes are symmetric under

our assumptions we may write 
(xi) instead of 
i(xi). Finally, we require " << 1.

Nodes enter the world sequentially, one at a time, so that node t also enters the world at

time t. Upon entrance, each new node randomly meets mr existing nodes chosen uniformly

at random from the current set of nodes f1; :::; t�1g. Nodes also meet some of the neighbours

of their random meetings by following each of their (outgoing) links independently and

with probability �. We emphasize here the distinction between neighbourhoods in S and
4Upper case symbols are used to indicate random variables, while corresponding lower case symbols indicate realizations of

the random variables.
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neighbourhood of a node i in network g. The �rst concept is topological, while the second

refers to the subset of nodes which are linked to i. It follows from (1) that whenever node

i meets another node j such that xj 2 
(xi) a directed link is formed from i to j, which

we denote by ij. Throughout, we refer to the links initiated (received) by node i as the

outgoing (incoming) links of i. Note �nally the clear distinction made between the �meeting�

and �matching�processes which jointly constitute the formation process. On the one hand

the meeting process determines which pairs of agents are introduced to one another. The

matching process on the other hand determines which of the former pairs give rise to a link

being formed.

Since two nodes can only form a link if they �nd themselves within distance " in S, prox-

imity in the network also conveys valuable information regarding nodes�relative positions in

S. In particular, nodes are much more likely to form links in the neighbourhood of those that

they matched with rather than those with whom they did not. Our �rst result makes this

statement precise. Proposition 1.(ii) gives the probability that a node matches with some

other node�s neighbour, given that she has matched with the former. Proposition 1.(iii) gives

the same probability given that she has not matched with the parent node5. Proposition

1.(i) simply states the obvious probability that a node matches with some random other. All

proofs are relegated to the appendix.

Proposition 1 Let i, j , and k 2 @. Matching probabilities are given by

(i) Pr(Xj 2 
i) = "

(ii) Pr(Xk 2 
i j (Xj 2 
i) ^ (Xk 2 
j)) = 3=4

(iii) Pr(Xk 2 
i j (Xj 2 
ci ) ^ (Xk 2 
j)) =
"

4 (1� ")

Note that Proposition 1 shows how the geographic model analyzed here provides addi-

tional motivation for using local search in models of network formation. By Proposition

1.(ii), the probability of matching with a neighbour�s neighbour is independent of " in the

model. In hostile environments, as " tends to zero, this means that friends of my friends

provide a particularly favourable pool of individuals with whom to form new links6.
5�Parent� node in this context is used to indicate that node which outgoing link was used to generate the network-based

meeting under consideration.
6Consider the connections model of Jackson and Wolinsky (1996) in which the bene�t to node i from being connected to

node j is given by �d(i;j;g), where d(i; j; g) indicates geodesic distance between nodes i and j in network g. With these payo¤s
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Next, the number of nodes met during the random stage is �xed and equal to mr. However,

since the number of nodes met through the network is unbound, conditions should be imposed

that guarantee convergence of our process for t large. Following the literature on stochastic

network formation we henceforth make extensive use of mean-�eld approximations on the

premise that doing so greatly simpli�es the analysis7. Our next result states the conditions

under which the average number of links formed by entering nodes approaches a steady state

as t!1.

Proposition 2 Let mt denote the number of (outgoing) links formed by node t. In the mean-

�eld approximation, E[mt] approaches a steady state as t!1 provided �mr" < 1.

In what follows we assume that the condition �mr" < 1 is always satis�ed, and let m

denote the steady state average number of outgoing links. Upon entering the network each

new node forms an average mr" links with random nodes. By Proposition 1.(ii), she also

forms an average 3
4�mr"m links in the neighbourhoods of these nodes, along with a further

"
4(1�")� mr (1� ")m links in the neighbourhoods of the nodes she met randomly but failed to

form a link with. Notice that the ratio of the average number of links formed respectively

in the neighbourhoods of matching and non-matching parent nodes is 3 : 1. Finally, adding

contributions from the random and network-based processes gives

m = mr"(1 +
3

4
�m) +mr (1� ")

�
�m

"

4 (1� ")

�
= mr"(1 + �m)

from which

m =
mr"

1� �mr"
(2)

Naturally, increases in any of mr; "; or � raises the expected number of outgoing links as

indicated by (2). Notice also that m!1 as �mr"! 1.

A natural partition of links in our model results from the distinction made between

random and network-based links. Following Jackson and Rogers (2007) we may de�ne the

ratio r of, respectively, the average number of random and network-based links in the network

in our model, the expected bene�t from meeting a neighbour�s neighbour is given by 4
3
(1� �), while for t large the expected

bene�t from meeting a random node is ". For equal meeting costs, local search may therefore be optimal even in situations of

weak informational decay (provided � < 1 � 4
3
") for which the perfect monitoring model warrants link formation with distant

nodes instead.
7For an account of the performance of mean-�eld approximation in statistical models of network formation the reader is

referred to Vega-Redondo (2007).
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formation process

r =
average number of random links

average number of network � based links (3)

In particular, the r statistic provides a useful measure of randomness in this kind of models.

Using our previous results we obtain

r =
mr"

mr"
�
3
4�m

�
+mr (1� ")

h
�m "

4(1�")

i = 1

�m

i.e.

rm =
1

�
(4)

Equation (4) is a distinguishing feature of the present model. It indicates that denser

networks also tend to be less random. As later emphasized in Section 4, this result proves

important in view of empirical applications. Combining (2) and (4) we have r = 1��mr"
�mr"

,

which shows that increases in any of mr; "; or � reduces r. Intuitively, raising " improves

nodes�access to the network. It should therefore not be too surprising that raising " also

reduces the relative importance of randomness in the model.

The following proposition summarizes the above observations

Proposition 3 A change in any one parameter keeping other parameters �xed induces opposite

shifts on m and r respectively. In particular, a rise in any one of mr; "; or � leads to greater

network density and falling randomness.

3 Topological Analysis

3.1 Degree Distribution

The sequential addition of nodes in the JRV framework naturally introduces heterogeneity

among nodes in the network. Whereas all nodes have identical expected out-degree in the

formation process, older nodes accumulate incoming links for a longer period of time and

are therefore more likely to exhibit high in-degrees. In what follows we analyze the in-degree

distribution of nodes resulting from our formation process.

Let di(t) denote the in-degree of node i at time t. The probability of node i receiving a

new link at time t is obtained by adding the probability of receiving a link through random

selection with the probability of receiving a link through network-based meeting. The �rst
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term is (approximately) (mr

t )", the probability of her being randomly selected times the

matching probability of two random nodes. In the same vein the second term is mr�m"(
di(t)
mt ),

each node receiving a share of the total expected mr�m" network-based links formed in

proportion to her own in-degree. The total probability of node i receiving a new link at time

t is therefore given by
mr"

t
+ (

�mr"

t
)di(t) (5)

Using (2) and (4), we may rewrite (5) as

1

t

�
r

1 + r
m+

1

1 + r
di

�
(6)

highlighting the respective shares of randomness and network-based linking in the process.

In the mean-�eld approach di(t) is a �probabilistic stock�variable, the evolution of which

is described in continuous time by the �probabilistic �ow�given by (5). The random system

is thereby transformed yielding a set of deterministic ordinary di¤erential equations of the

form
ddi(t)

dt
=
mr"

t
+ (

�mr"

t
)di(t) (7)

Notice the proportionality in degree-growth in (7). Lastly, initial conditions for all i solve

for di(t), 8 i; t. The degree distribution follows immediately. Details of the proof are relegated

to the appendix.

Theorem 1 As t ! 1, in the mean-�eld approximation, the cdf of the in-degree distribution

tends to

F (d) = 1� ( ��1

��1 + d
)1=�mr" (8)

Notice that for d large the in-degree distributions resulting from our formation process

approximate power laws. As shown by Albert and Barabasi (1999), power-law degree distri-

butions follow from proportionality in degree-growth. In our model, as in the standard JRV

framework, proportionality in degree growth results from network-based linking. Lastly, no-

tice that for � � 0 the network formation process approaches one of uniform random linking8.

In that case it is easily shown that an exponential distribution obtains9.

The following corollary provides important comparative statics results regarding the de-

gree distribution obtained in (8)
8 In our model, only by acting on � can network-based links be a¤ected independently of random links.
9See, e.g., Vega-Redondo (2007).

8



Corollary 1 Let F and F
0 denote the cumulative distribution functions of the formation

processes with parameters (mr, ", �), and (m0
r, "0, �

0) respectively,

(i) If (m0
r, "0, �

0) > (mr, ", �), then F 0 strictly �rst order stochastically dominates F .

(ii) Given (m0
r, "0, �

0), and (mr, ", �) such that m0 > m and r0 = r then F 0 strictly �rst order

stochastically dominates F .

(iii) Given (m0
r, "0, �

0), and (mr, ", �) such that r0 > r and m0 = m then F 0 strictly second

order stochastically dominates F .

Corollary 1 has important welfare implications. Such a systematic analysis however is

besides the focus of the present paper. The reader is referred to Jackson and Rogers (2007)

for a detailed discussion of these issues.

Before turning to the next section notice that, following Corollary 1, increases in r may

be accompanied by second order stochastic dominance or its opposite. As noted above, fat-

tails result from network-based links. When average degree is kept �xed, a rise in r signals a

transfer from the contribution of network-based links to that of random links which therefore

reduces the spread in the distribution of degree. On the other hand when the rise in r mirrors

a fall in m, Corollary 1.(i) indicates a dominance of the mean e¤ect.

3.2 Clustering

There exist a number of possible measures of clustering, each de�ning a variation on a theme.

In the model we present, one measure naturally imposes itself. For a given network g, it

indicates the fraction of times the dotted connection in Figure (A) of the appendix exists

given the pair of bold links, i.e.

C(g) =

X
i;j 6=i;k 6=j

gijgjkgikX
i;j 6=i;k 6=j

gijgjk
(9)

where gij = 1 if link ij exists in g and gij = 0 otherwise.

More intuitively, C(g) can be expressed in terms of the percentage of times �(g) that two

of a node�s neighbours are linked (see Figure (B)),

�(g) =

X
i;j 6=i;k 6=j

gijgjkgikX
i;j 6=i;k 6=j

gijgik
=

X
i;j 6=i;k 6=j

gijgjkgikX
i;j 6=i;k 6=j

gijgjk

X
i;j 6=i;k 6=j

gijgjkX
i;j 6=i;k 6=j

gijgik
= C(g)

X
i;j 6=i;k 6=j

gijgjkX
i;j 6=i;k 6=j

gijgik
(10)
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We show in the appendix that for t large clustering may be approximated using the

following expression

C =
E(triplets per node i)

m2
(11)

The average number of triplets per node can be calculated, in the mean-�eld approxima-

tion, by separating out the situations according to whether j, and k, were met randomly or

through the network. The following Theorem is proven in the appendix.

Theorem 2 As t!1, in the mean-�eld approximation

(i) sup" C = lim"!0 C =
3�
4 .

(ii) @C
@" < 0 where continuity holds.

(iii) @C
@� 7 0 depending on parameter values.

Interestingly, in a similar model Strogatz and Watts (1998) previously simulated a lowest

upper bound for clustering equal to 3
4 . In view of Proposition 1.(ii), it is easy to see why such

a result holds. In fact, referring back to (9) one can see that Proposition 1.(ii) delivers an

immediate measure of clustering provided the formation process is such that a node meets all

the neighhbours of those she links to. In the model presented here each new node only meets

her random meetings� neighbours so that the former condition is only satis�ed provided

network-based links can safely be ignored, which occurs as " ! 0 since in that case r ! 1.

This explains point (i) in Theorem 2.

As " moves away from zero, network-based links start forming a non-negligible part of

the total number of links existing. Since entering nodes do not meet the neighbours of

the nodes they met through the network10, the number of situations depicted in Figure

(A) where the dotted link never materializes increases importantly too, thereby triggering

downward pressure on overall clustering. While on the one hand this explains point (ii) of

the Theorem, the same argument also gives an important sense in which the determinants

of clustering are largely independent from the intensity of the constraints in the underlying

space S. Indeed, without loss in the meeting process, changes to " do not a¤ect clustering. In

Section 5.3 I show that the key element determining the level of clustering is the dimension

of the underlying space S.
10Naturally, due to neighbourhood overlap in the process they may e¤ectively meet some of them.
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Our last comment concerns the �nite discontinuity points observed regarding clustering.

Clustering arises in the JRV framework as a result of local search. A triplet is formed as

soon as a node randomly links another and goes on to form a link with some neighbour of

that node. We term this process ��rst order clustering�. However, when the average number

of links formed in the neighbourhood of matching parent nodes is greater than one, more

triplets are formed due to the fact that two neighbours of a given node have a non-trivial

probability of being linked (so long as some amount of (�rst order) clustering already exists).

We refer to this process as �second order clustering�since it arises only when some clustering

already prevails in the network. Clustering therefore exhibits discontinuous jumps whenever

the average number of links formed, respectively, in the neighbourhoods of matching and non-

matching parent nodes reach the critical value 1. Numerical estimates show that the e¤ect

of second order clustering can lead to discontinuous jumps which are large in magnitude.

For � = 1; and mr = 10 we go from less than a third of triplets realized to well over a half at

the threshold.

4 Empirical applications

Our model constitutes a powerful instrument for the empirical investigation of networks.

First, by Theorem 1, �mr" can be obtained from the slope of the degree distribution. Second,

using equation (1) along with the observed value of the average degree m gives mr". Third,

� is retrieved by taking the ratio of �mr" and mr". Notice that at this point equation (3)

provides an estimate of r. Finally, the biggest di¢ culty lies in separating the e¤ects of mr

and ". Closer investigation of the model reveals that the only place in which the e¤ect of

" is singled-out is in second-order clustering arising in the neighbourhoods of non-matching

parent nodes. This poses two problems. Firstly, it means that for a large range of parameter

values separate estimation of mr and " is precluded. Secondly, inspection of Theorem 2

reveals that the necessary condition for retrieving " from C(g) requires itself knowledge of "

to be evaluated. This means that even in the most favorable range of parameters we can

hope for no more than a simple test of non-inconsistency. The impact of this limitation

depends on the particular question one aims to address and the assumptions one is willing

to make about the formation process. For example, in many situations mr = 1 naturally

suggests itself given the nature of the problem. Following the above procedure then delivers
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".

As an illustrative example, we apply some of our results to the data analyzed by Goyal,

Moraga, and van der Leij (2007) concerning the evolution of coauthorship in the economics

literature through the 1970�s, 80�s, and 90�s. The coauthor network provides a natural

platform for empirical applications of our model. First, the time-sequencing and meeting

process of JRV provide a very intuitive description of their real-world counterpart in the

context of coauthorship. Second, the amount of interaction involved in such relationships

is such that communication costs are likely to play a prominent role in the determination

of matching outcomes. Third, the availability of data dating back to 1970 is particularly

relevant in our context considering the way in which communication costs have evolved

over that period. The question therefore is whether our model is able to shed light on the

evolution of coauthorship over the last decades.

Table 1 below is adapted from Goyal, Moraga, and van der Leij (2007). First, notice

the negative relationship exhibited between randomness and average degree. Second, while

network density trends upward through time, � repeatedly falls from one decade to the next.

Provided nodes attempt to achieve a target number of links, it is easy to see that � and m

should indeed evolve in opposite directions in our model11.

In view of our interpretation, these results therefore suggest that sharp falls in communi-

cation costs over the period under consideration largely contributed in lifting geographical

barriers to coauthorship. While the resulting positive impact on coauthorship likely lead re-

searchers to cooperate with a lesser proportion of their own coauthors�colleagues, increases

in the average number of links indicate a dominance of the �rst e¤ect. Falling randomness

is then accounted for in our interpretation by agents�improved access to the network.

70�s 80�s 90�s

m :445 :622 :836

r 2:94 2:70 2:49

� :76 :59 :48

Table 1
11Suppose agents tailor their behaviour so as to achieve an expected number of (outgoing) links equal to K (possibly due to

resource constraints or other), taking other agents behaviour as given. Letting m� denote average degree in the network, the

expected number of links formed as a function of � is given by mr"(1 +
3
4
�m�) +mr (1� ")

h
�m� "

4(1�")

i
= mr"(1 + �m�).

Setting mr"(1 + �m�) = K then yields � = K�mr"
mr"m� , showing that

@�
@m� < 0.
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(adapted from Goyal, Moraga, and van der Leij (2007))

5 Discussions

5.1 Distances

Recently, a number of studies have provided analytical results in an attempt to shed light

on the small world phenomenon. In�uential work by Newman, Strogatz, and Watts (2001)

has established standard methods to estimate diameters in large, complex networks. In

this approach, the model is given by starting from a degree distribution P and choosing a

graph uniformly at random from all graphs with this distribution of degrees. Within this

framework, starting from a node chosen at random, the number of nodes one link away is

given by the average degree k of P . Each such node in turn has degree distributed according

to P 0(k) = kP (k)

k
. The average number of nodes two links away is therefore k:k0, where k0

indicates average degree under P 0. After d such steps one covers
dX
l=1

k
�
k
0�l nodes, giving an

approximate average diameter d solution to

dX
l=0

k
�
k
0�l
= n (12)

The heuristic argument outlined above provides a useful benchmark in many cases, how-

ever ignoring the actual structure of the network may prompt largely misleading conclusions

as shown by the work of Bollobas and Riordan (2004). Indeed, the authors are able to show

that, in the preferential attachment model (PA), whereas heuristics correctly predict a di-

ameter O( lnn
ln(lnn) ) when the number of links formed by entering nodes is greater than or equal

to 2, predictions fail to be revised to the correct value of O(lnn) when a single link is formed

on entry.

Our model exhibits some important similarities to PA. Bollobas and Riordan�s (2004)

contribution therefore rings a �rst alarm concerning the use of standard methods to estimate

diameters in our case. However, simple inspection alone of the heuristic argument given

above provides convincing case against its use for our purpose. Indeed, the neighbourhood

expansion method underlying equation (12) implicitly assumes tree-like structure of the

network. Clearly, such an approximation cannot be supported in our model considering the
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amount of neighbourhood overlap exhibited, even as n!1. The caveat is that in our model

many links are in fact redundant as they do not help to decrease the distance between nodes

much. A detailed analysis of distances arising in our model therefore represents considerable

challenge.

Short distances arise in PA (when the number of links formed by entering nodes is � 2)

from the combined e¤ects of proportionality in degree-growth with randomness in linking.

As indicated previously, proportionality in degree-growth leads to the existence of some very

highly connected nodes. These nodes then act as hubs of information for newly entering nodes

which (randomly) create bridges between them. Fat-tails do result in our model, however

the number of distinct neighbourhoods connected by entering nodes is stochastic and has

mean mr" +mr (1� ") [1 � (1 � � "
4(1�") )

m] � m. Therefore, although the results from Bollobas

and Riordan (2004) indicated in the previous paragraph do not transpose immediately here,

it seems natural to conjecture that similar results hold in our model too provided m � 2.

Finally, notice that our model structurally imposes a lower bound on the distance sep-

arating two nodes due to the fact that on any path between them each �step� size in S

is bounded above by ". Therefore, although the model guarantees existence of some very

highly connected nodes, these hubs together form a chain in which each member connects

only others close by in S. For some parameter values this e¤ect may be large and a¤ect

distances importantly. At this stage, we simply point to the fact that minor amendments

can be found that resolve this weakness. Introducing a few fully tolerant nodes would be

one way of bringing together the di¤erent hubs. Alternatively, as discussed below, allowing

for higher dimensional S can also reduce distances under appropriate assumptions.

5.2 Geographic vs non-geographic

In the most straightforward interpretation the space S may be identi�ed with the familiar

physical geographic space, in which communication costs e¤ectively serve to in�ate or de�ate

distances. A fall in " for example corresponds to an increase in communication costs, disabling

agents to maintain ties with others far away.

Our model however may also serve as a useful yardstick in view of empirical research

concerning individuals�tendency to associate with others similar to them, a phenomenon

usually coined as �homophily�12. Our endeavour in this interpretation may be viewed as an
12See Cook, Smith-Lovin, and McPherson (2001) for a well documented survey on homophily. See also Currarini, Jackson,
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attempt to extract some of the information conveyed by linking patterns regarding nodes�

preferences. In this case S may be used to represent the underlying social characteristic

space, with higher " representing more �open�societies.

Quite generally, it is insightful to view the model developed in the present paper as

an embodiment of the JRV framework in a geographical context. Following the notation of

Jackson and Rogers (2007), a non-geographic version of the model presented here is obtained

by taking a probability pr of link formation following randommeetings and some independent

probability pn of link formation following network-based meetings13. A few remarks may be

valuable. First, using (2) and (4) to substitute in (8) one obtains

F (d) = 1� ( rm

rm+ d
)1+r (13)

It can be checked that, in this more general form, expression (13) for the cdf of the

in-degree distribution applies to the non-geographic model too. This indicates that (13)

essentially captures the dynamics of the JRV framework and is quite independent of the

(non-)geographic aspect of the model.

Second, the implications of a geographic model are strongest regarding clustering. Loosely

speaking, in the geographic model clustering is determined by the dimensionality of the

underlying space14. The non-geographic model o¤ers more �exibility. An interesting point

of comparison consists in setting the network-based linking probability equal to the highest

(conditional) value attained in the geographic model, i.e. to set pn = maxf 34 ;
"

4(1�")g =
3
4 . On

the one hand it is quite compelling to choose pr so as to set the average density of linksm equal

in both models15. There are two important drawbacks however to choosing pr in this way.

One, we indicated in Section 3.2 that clustering tends to naturally drop as network density

rises due to the fact that network-based meetings occur in the �rst (random) stage only. And

two, we wish to focus on �rst order clustering, which further requires binding m. For these

reasons we contend that a more meaningful evaluation results from taking limits in which,

respectively, "! 0 and pr ! 0. Proposition 4 highlights the sense in which geographic settings

tend to generate networks which are more clustered than their non-geographic counterpart.

The intuition behind Proposition 4 is straightforward. For given numbers of links of each

and Pin (2007) for a recent theoretical investigation of the phenomenon.
13The non-geographic version of our model di¤ers slightly from Jackson and Rogers (2007) since we do not restrict new

entrants in the number of network-based meetings they make.
14See Section 5.3.1.
15Notice that this would imply choosing pr < ".
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kind, network-based links tend to be concentrated in the neighbourhood of matching parent

nodes in the geographic model whereas the same links are evenly spread between matching

and non-matching parent nodes�neighbourhoods in the non-geographic model.

Proposition 4 Let pn = 3
4 . Then limpr!0 C

ng < lim"!0 C
g.

To complete, we should add that provided mr� is small enough one may obtain Cng > Cg

for some range of pn above 3
4 . Such a result should not be too surprising since the non-

geographic model is naturally less binding than its geographic counterpart.

5.3 Extensions

5.3.1 Higher dimensions

To keep things simple, all results in the present paper have been derived for the case in

which S was identi�ed with the Euclidian space16 of dimension one. The model naturally

extends into higher dimensions as well, subject to the following adjustments. In dimension

s > 1, 
i(xi) is chosen to be the s-dimensional cube of sidelength "17. This is a technical

requirement, and our results hold if we instead choose to work with balls of radius " (though

in that case they become approximations)18. The analysis carried out in Sections 2 and 3 is

easily generalized to give Proposition 5. In particular, and in view of the discussion given in

Section 5.2, Proposition 5.(ii) corroborates our early assertion that in the geographic model

clustering is determined by the dimensionality of the underlying space.

Proposition 5 In the general case, with dim(S) =s <1 and with 
(xi) denoting the s-dimensional

cube of sidelength " centred at xi, as t!1 and in the mean-�eld approximation

(i) Ft(d) = 1� ( ��1

��1+d
)1=�mr"

s

(ii) sup" C = lim"!0 C =
�
3
4

�s
�

A few remarks are useful to uncover the results of Proposition 5. First, notice that

with 
(xi) so de�ned nodes are constrained to match along all s dimensions. Since the
16More precisely a close substitute to the Euclidian space of dimension one, namely the torus of unit length.
17Note that, just as in dimension one we chose to work with the torus of unit length, in dimension s > 1 we take S to be the

(s+ 1)-dimensional sphere normalized with unit surface.
18 In a nutshell, this condition allows us to generalize the point made by Proposition 1.(ii) whereby we showed that the extent

of interval overlap was independent of " (assuming " << 1).
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probability of matching along any one dimension is " and we have assumed independence

across dimensions, the overall matching probability is given by "s. As the dimensionality

increases, this naturally generates networks which tend to exhibit fewer links. Second, in

higher dimensions nodes typically �nd themselves close to a subset of neighbours along

one dimension while they are close to other neighbours along a di¤erent dimension. The

possibilities for any given node�s neighbours to �nd themselves at odds therefore increase with

the dimensionality. Figure (C) illustrates this e¤ect. Whereas in the unidimensional case

xi ' xj implies j
i \ 
j j ' j
ij, in two dimensions we draw an example for which j
i \ 
j j ' j
ij
2 .

To complete, let us note that alternative versions of Proposition 5 may just as easily be

obtained for which 
(xi) is chosen di¤erently. An interesting example can be given in two

dimensions, where one only requires nodes to match along a single dimension. In that case

short (geodesic) distances between widely dissimilar nodes nodes are rendered possible by

the intervention of intermediate nodes matching both of them (along di¤erent dimensions).

5.3.2 Heterogeneity

Heterogeneity of agents naturally arises in the model as a consequence of timing. However,

we maintained throughout the existence of a single " for society as a whole. Although

this is certainly a simplifying assumption, my view is that it is easily supported as a �rst

approximation by the fact that technological constraints in communication are commonly

shared, and that di¤erent societies do exhibit tendencies towards lesser or greater tolerance

levels. Nevertheless, there are good reasons for which one may want to relax this assumption.

First, in the context of communication costs we should expect heterogeneity in agents�budget

constraints to be re�ected in varying " values. Second, in social dimensions contexts some

agents do tend to be more tolerant than others and this may in turn have consequences for

society as a whole. For example, highly tolerant agents can create bridges between parts of

the network segregated by social characteristics. Studying the impact of having heterogeneity

in " may therefore be an interesting path for research.

6 Concluding Remarks

The present paper suggests a possible framework to analyze the impact of changes to the

economic and social environment on the topology of networks formed. Economic (costs) and
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social (norms) constraints bind individuals in their ability to create ties with others. When

global phenomena a¤ect these constraints, the overall shapes of resulting networks naturally

alter. I have tried to shed light on this relationship.

One weakness of the analysis in the present paper relates to the fact that the optimizing

behaviour of nodes has by and large been ignored. Clearly, an interesting path for future

research would be to investigate the consequences of giving nodes some freedom regarding

their linking strategies. This is also a necessary step to truly understand the incentives

mechanisms underlying the formation of social networks.

It is hoped �nally that the results of the present paper will prove useful to those doing

empirical research on networks.

7 Appendix

Proof of Proposition 1

(i) Obvious.

(ii) To begin, �x Xi = xi and Xj = xj, with xj 2 
(xi). Assume moreover that Xk 2 
(xj).

Under such conditions, the probability that Xk lies within 
(xi) is given by

j
(xi) \ 
(xj)j
j
(xj)j

where j:j denotes the length of an interval. This is given equivalently by

"� jxj � xij
"

By varying xj along 
(xi) and integrating out, we obtain

Pr(Xk 2 
(xi) j (Xj 2 
(xi)) ^ (Xk 2 
(Xj))) =
Z
"� jxj � xij

"
dF

where F denotes the distribution of jXj � xij conditional on Xj 2 
(xi). Under the hypothesis

of the model F is the distribution of a uniform random variable with support on
�
0; "2

�
.

Substituting in the above expression yields

Pr(Xk 2 
(xi) j (Xj 2 
(xi)) ^ (Xk 2 
(Xj))) =
2

"

Z "
2

0

"� u
"
du =

3

4

Since this result holds for arbitrary xi, the proof is concluded.
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(iii) Notice that the probability of matching with a node picked at random is the same as

that of matching with any neighbour of a node picked at random. Therefore

Pr(Xk 2 
ijXk 2 
j) = "

Conditioning on Xj and using (ii) we then get

" = Pr(Xk 2 
ijXk 2 
j)

= Pr(Xk 2 
i j (Xj 2 
i) ^ (Xk 2 
j)) Pr(Xj 2 
i) + Pr(Xk 2 
i j (Xj 2 
ci ) ^ (Xk 2 
j)) Pr(Xj 2 
ci )

=
3

4
"+ (1� ") Pr(Xk 2 
i j (Xj 2 
ci ) ^ (Xk 2 
j))

from which

Pr(Xk 2 
i j (Xj 2 
ci ) ^ (Xk 2 
j)) =
"

4 (1� ")
as indicated in the statement of the Proposition.

Proof of Proposition 219

Let mt denote the number of (outgoing) links formed by node t. Adding contributions

from the random and network-based processes gives

E[mt] = mr"(1 +
3

4
�E[msjs < t]) +mr (1� ") (

"

4 (1� ")�E[msjs < t])

= mr"(1 + �E[msjs < t])

It is easy to see, by induction, that E[msjs < t] � E[mt], and so

E[mt] � mr"(1 + �E[mt])

Successive substitution of the previous expression into itself then shows that for �mr" < 1,

E[mt] � mr"
1��mr"

. E[ms] is therefore increasing and bounded, and so converges as s ! 1, as

claimed in the statement of the proposition.

Proof of Theorem 1

The equation of motion for node i is given by

ddi(t)

dt
=
mr"

t
+ (

�mr"

t
)di(t) , t � i

19 I am grateful to Marco Van der Leij for suggesting this simpler version of the proof.
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with initial condition di(i) = 0. The solution to this standard ODE yields

di(t) = �
�1
�
t

i

��mr"

� ��1 , t � i

Let i(d; t) denote the (unique) node with degree d at time t. Substituting in the previous

expression this is given by

i(d; t) = t

�
��1

��1 + d

� 1
�mr"

In our deterministic framework, 1 � Ft(d) corresponds to the fraction of nodes older than

i(d; t), i.e.

1� Ft(d) =
i(d; t)

t
=

�
��1

��1 + d

� 1
�mr"

as indicated in the Theorem.

Proof of Corollary 1

(i) It is easy to see that 1�
�

��1

��1+d

� 1
�mr" is decreasing mr and ".

Showing that 1 �
�

��1

��1+d

� 1
�mr" is decreasing in �, is the same as showing that

�
x
x+d

�x
decreases in x for x > 0. Since d

dx (
�

x
x+d

�x
) =

�
x
x+d

�x
[ln( x

x+d ) +
d

x+d ], it is enough to show that

h(x) = ln( x
x+d ) +

d
x+d < 0, 8x > 0. This in turn follows from the observation that d2h(x)

dx2 =

� (3x+d)d2

(x+d)3x2 < 0, 8x > 0, while

lim
x!0

h(x) = �1

and

lim
x!1

h(x) = lim
x!1

[� d2

x(x+ d)
] = 0�

(ii) Substitute ��1 = mr, and 1
�mr"

= 1 + r. It is then easily veri�ed that 1 �
�

mr
mr+d

�1+r
is

decreasing in m.

(iii) Substituting as in (ii), the result follows by Theorem 6 in Jackson and Rogers (2007).

Proof of Theorem 2

Let �i(g) =
X

j 6=i;k 6=j
gijgik denote the number of pairs of outgoing links (bold links in Figure

(B)) existing for node i in network g, �i(g) =
X

j 6=i;k 6=j
gijgjk denote the number of transitive pairs
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of outgoing links (bold links in Figure (A)) for node i in network g, and �i(g) =
X

j 6=i;k 6=j
gijgjkgik

denote the number of triplets realized for node i in network g.

With this notation, (9) and (10) can be rewritten as

C(g) =

X
i

�i(g)X
i

�i(g)

and

�(g) = C(g)

X
i

�i(g)X
i

�i(g)

Note that, with respect to i, each of �i(g); �i(g); and �i(g) involve outgoing links only. Since

all nodes are treated symmetrically in the formation process regarding outgoing links, we can

divide both nominator and denominator by t and approximate in the law of large numbers

as t!1 to get

C =
E[�]

E[�]
=
E[�]

m2

and

� = C
m2

m(m� 1)=2

The next step in the proof consists in calculating E[�], the expected number of triplets

realized per node in the process. We consider in turn the contributions from the 3 cases

highlighted in the text (see Figure(B))

1. Both j and k were met randomly. In this case, with t large, the probability of jk existing

becomes arbitrarily small.

2. j was met randomly while k was met through the network. If k was met through

l 6= j then given the information set, the probability of jk is at most that of a highly

connected node with some other random node. This is higher than in the previous

case but still tending towards zero under weak conditions. However, when k was met

through j then we have found such a triplet by de�nition. Each random link engenders
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an average 3=4�m matches in its neighbourhood. Therefore, the expected contribution

of this scenario is mr"(3=4:�m).

3. Both j and k where met through the network. Once again, we need only consider the

situation in which j and k belong to the same parent�s neighbourhood. In the model,

network-based links are primarily concentrated in the neighbourhoods of matching par-

ent nodes. Each of these provides an expected 3=4�m network-based links whereas

non-matching parent nodes only contributes "
4(1�")�m. Three ranges of parameters must

be considered. (i) When 3=4:m < 1 second order clustering is altogether absent. (ii)

When 3=4:�m > 1 > "
4(1�")�m second order clustering obtains for matching parent nodes.

The situation in Figure (B) takes place an average 3=4:�m(3=4:�m�1)
2 times per parent

node. In each of these events link jk exists with probability � (see (10)). The total

expected contribution to node i�s triplets is therefore mr"�
�
3=4:�m(3=4:�m�1)

2

�
.(iii) Finally

when "
4(1�")�m > 1 we must add to the previous case the contribution from second order

clustering arising in non-matching parent nodes�neighbourhoods. The total expected

contribution to node i�s triplets becomes �
�
mr"

3=4:�m(3=4:�m�1)
2 +mr(1� ")

"�m
4(1�") (

"�m
4(1�")�1)
2

�
:

For "
4(1�")�m > 1, adding the contributions of cases 2 and 3 above, we �nd

C =

mr"(3=4:�m) + �

�
mr"

3=4:�m(3=4:�m�1)
2 +mr(1� ")

"�m
4(1�") (

"�m
4(1�")�1)
2

�
m2

and, replacing � = C m2

m(m�1)=2

C =
3�mr"

4m
+ C

mr" [3=4:�m(3=4:�m� 1)] +mr(1� ")
h
"�m
4(1�")

�
"�m
4(1�") � 1

�i
m(m� 1)

simple algebra then yields

C =
12�r (m� 1)

16 (1 + r) (m� 1)� �m
�
9 + "

1�" � 16r
�

Other cases are solved in the same way. For "
4(1�")�m < 1 and 3

4�m > 1 we obtain

C =
12�r (m� 1)

16 (1 + r) (m� 1)� �m (9� 12r)

while for 3
4�m < 1 we have

C =
3

4m(1 + r)
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Part (i), (ii), and (iii) of Theorem 2 are easily veri�ed by substituting out for m and r

using (2) and (4) to express C in terms of the parameters of the model.

Proof of proposition 4

In the non-geographic model, we have m = prmr +mrm�pn, and m = prmr

1�mr�pn
. In particular

m!pr!0 0, and the average number of network-based links formed also tends to zero as pr ! 0

(recall from Section 3.2 that no clustering ever arises in the neighbourhoods of these nodes

according to the model). In the limit, we can therefore safely ignore second-order clustering.

Using de�nitions from Section 3.2 it then follows that limpr!0 C
ng = mrpr�pn

m = �pn(1�mr�pn) <

3
4� = lim"!0 C

g, from Theorem 2.
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