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STATEMENT OF TRANSLATIONAL RELEVANCE: 

The detection of changes in tumor glucose metabolism, tumor diameter or tumor volume within 

a few weeks of commencing treatment has the potential to inform stratification of patient 

management. For patients with recurrent ovarian cancer, there is an urgent need to identify 

more effective therapies, and an imaging tool that can robustly identify early response would be 

of value both in the clinical setting and as a biomarker for drug development.  Validation of 

imaging biomarkers is critical for effective and reliable use in clinical trials.  Test/re-test data for 

measurements of FDG uptake, tumor diameter and tumor volume are essential in order to 

determine repeatability coefficients, thereby allowing the confident use of these techniques.  

However, these data have not previously been established for ovarian cancer.  This study 

establishes robust repeatability coefficients for FDG measurements, enabling evidence-based 

use of PET/CT in stratification of patients into those with a metabolic or volumetric response to 

treatment. 
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ABSTRACT 

Purpose:   

Repeatability of baseline FDG-PET/CT measurements has not been tested in ovarian cancer. 

This dual-center, prospective study assessed variation in tumor FDG uptake, tumor diameter 

(TD) and tumor volume (TV) from sequential FDG-PET/CT and contrast-enhanced CT (CECT) 

in patients with recurrent platinum-sensitive ovarian cancer.  

Methods:   

Patients underwent two pre-treatment baseline FDG-PET/CT (n=21) and CECT (n=20) at 2 

clinical sites with different PET/CT instruments. Patients were included if they had at least one 

target lesion (TL) in the abdomen with an SUV maximum (SUVmax) of ≥2.5 and a long axis 

diameter of ≥15mm. Two independent reading methods were used to evaluate repeatability of 

TD and SUV uptake: on site and at an imaging clinical research organization (CRO). TV reads 

were only performed by CRO. In each reading set, TLs were independently measured on 

sequential imaging.  

Results:   

Median time between FDG-PET/CT was 2 days (range 1-7). For site reads, concordance 

correlation coefficient (CCC) for SUVmean, SUVmax and TD were 0.95, 0.94 and 0.99 

respectively. Repeatability coefficients were 16.3%, 17.3% and 8.8% for SUVmean, SUVmax 

and TD respectively. Similar results were observed for CRO reads. TV CCC was 0.99 with a 

repeatability coefficient of 28.1%.  

Conclusions: 

There was excellent test/retest repeatability for FDG-PET/CT quantitative measurements across 

two sites and two independent reading methods. Cut-off values for determining change in 

SUVmean, SUVmax and TV establish limits to determine metabolic and/or volumetric response 

to treatment in platinum-sensitive relapsed ovarian cancer.  
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BACKGROUND  

Epithelial ovarian cancer (EOC) remains the most lethal gynecological malignancy and overall 

survival has not changed significantly over the past 15 years (1). Most patients present with 

advanced stage disease and the primary treatment modality is surgical cytoreduction followed 

by platinum/taxane-based chemotherapy. Relapsed disease is classified by its likely response 

to further treatment with platinum-based chemotherapy, being either platinum-sensitive or 

platinum resistant (2). However, the majority of patients eventually develop progressive 

platinum-resistance. There is a clear unmet clinical need to identify new treatments for women 

with ovarian cancer.   

Evaluation of the effectiveness of new drug treatments in EOC depends upon assessment of 

response and progression-free survival. Objective response measurement using RECIST 1.1 

criteria (uni-dimensional tumor diameter) is highly validated across many cancer types, as well 

as having high utility in clinical practice (3;4). However, it is used inconsistently by regulatory 

authorities for the purposes of drug registration (5).  There are inherent limitations using uni-

dimensional measurements. Notably, the time taken for tumor shrinkage of 30% is typically in 

excess of 9 weeks and inevitably delays treatment decisions; particularly in ovarian cancer the 

shape of the mass may alter during treatment so that the long axis does not reflect change in 

volume and residual soft tissue along peritoneal or serosal surfaces or in complex masses may 

be difficult to measure and quantify or may not represent active disease (6-8). Despite these 

recognized limitations, contrast enhanced CT (CECT) is currently the standard of care 

technique for monitoring response to treatment in ovarian cancer, together with the serum 

cancer antigen 125 (CA 125) level. Conversely,  individual patients with EOC would benefit from 

the development of more sensitive methods for determining non-responders. Earlier diagnoses 

of non-response or progressive disease will spare patients from the toxicities associated with 

futile treatments and access alternative therapies sooner.   

FDG-PET/CT has been proposed as an imaging tool for the detection of response, by 

demonstrating metabolic changes in the tumor, early in the course of treatment (9;10). Early 

metabolic changes may also have prognostic value. In ovarian cancer, Avril et al found that in 

the neo-adjuvant setting, by using an a priori stated cut-off value for decrease of standardized 

uptake value (SUV) from baseline of 20% after the first cycle, median overall survival was 38.3 

months in metabolic responders compared with 23.1 months in metabolic non-responders (11). 

There was a significant correlation between FDG-PET metabolic response after the first 
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(p=0.008) and third (p=0.005) cycles of chemotherapy and overall survival. Importantly, 

standard clinical response criteria did not correlate with overall survival, suggesting that FDG-

PET response may be a more powerful prognostic tool.  

However, in order to adopt FDG-PET response into both clinical practice and drug-

development, the range of variability (or confidence interval) surrounding the measurement of 

the standardized uptake value (SUV) of FDG tumor uptake must be determined, in order to be 

able to set appropriate cut-off values for identifying true responses in tumor tissue. The 

repeatability of tumor FDG uptake in lung and other solid organ tumors have recently been 

evaluated in a meta-analysis (12). However, FDG avid lesions in the abdomen and pelvis are 

often difficult to delineate and no test retest data regarding FDG uptake or tumor volume data 

have been published for EOC. More importantly, no previous study has compared the test retest 

variation in tumor FDG uptake with test retest variation in tumor volumes determined in 

combination with CECT. Repeatability data would allow the determination of robust cut-off 

values for defining metabolic response or metabolic progression in the absence of either 

complete disappearance of all lesions or appearance of one or more new lesions.  Without this 

information, changes in SUV may be erroneously interpreted as response or progression and 

this could adversely affect patient care and clinical trial outcome. Also, although there is a 

general assumption that anatomical changes occur after several cycles of chemotherapy, there 

is little information available about early changes in tumor volumes and their ability to predict 

treatment response early during chemotherapy.  

The purpose of this study was to establish the variation in the measurements of FDG uptake 

and tumor volumes in recurrent ovarian cancer. Our aims were to measure prospectively the 

test-retest repeatability of quantitative PET measurements (SUVmean, SUVmax) using a 

standardized volume of interest as well as tumor diameter and tumor volume in a cohort of 

women with recurrent ovarian cancer treated at 2 sites using different PET/CT instruments.     

PATIENTS AND METHODS 

The  study  protocol  was  reviewed  and  approved  by  Cambridgeshire  2  Research  Ethics 

Committee, UK (09/H0308/129).  Patients were recruited by two academic oncology centers in 

the UK  from  a  larger  study  cohort  evaluating  treatment  response. All  patients  gave written 

informed  consent.  All  screened  patients  had  platinum‐sensitive  (defined  as  platinum‐free 

interval of  at  least  6 months) ovarian  cancer  that had  relapsed  as  confirmed by  findings on 
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computed  tomography  (CT), with or without  an elevated CA‐125  level. The patient  inclusion 

and exclusion criteria are  listed  in appendix 1. Of the cohort of 43 patients recruited  into the 

main study, 21 patients agreed  to  take part  in the  test‐retest sub‐study. Center 1 recruited 8 

patients and center 2 recruited 13 patients, mean age 60.4 years (median 61 years, range 38 to 

74). Patients underwent two identical baseline imaging investigations prior to starting standard 

of  care  platinum‐based  chemotherapy.  This study was performed according to the latest 

guidelines and recommendations from the MHRA and FDA for clinical trials as a prospective 

dual center study. All data we collected at the time of origin and collected in a secure database. 

The trial was funded and monitored by Merck and Co, which enabled us to conduct the study on 

the highest level of evidence possible.  

 

Imaging techniques 

Following enrolment, a baseline FDG-PET/CT scan was performed, immediately followed by a 

contrast-enhanced CT scan (CECT).  This was termed baseline 1 (BL1).  Patients who did not 

have at least one lesion with both, an SUVmax ≥ 2.5 at BL1 FDG-PET scan and a longest 

diameter lesion of ≥1.5 cm on the BL1 CECT scan were discontinued on the study. In those 

patients with at least one such lesion, imaging was repeated 1 - 7 days later (baseline 2 - BL2) 

prior to starting treatment.  

FDG-PET imaging  

Patients were imaged using a Gemini TF with a 64 channel CT (Philips Healthcare UK) in center 

1 and a GE Discovery 690 (GE Healthcare UK) at center 2. Both PET/CT scanners were 

comparable in performance and both used time-of-flight technology. Both sites were qualified by 

the CRO (Perceptives Informatics, Billerica, MA, USA) and by the UK National Cancer 

Research Institute programme for PET sites involved in multi-centre trials. Daily quality control 

and regular standard calibration procedures were undertaken. The same PET/CT scanner was 

used for each patient throughout the study. All patients underwent the entire PET/CT imaging 

procedure twice within 7 days without any therapeutic interventions in-between.  

Blood glucose levels were measured prior to the administration of the radiotracer (within 1 hour) 

for BL1 and BL2. Patients with a blood glucose level exceeding 150 mg/dL (8.3 mmol/L) were 

not injected with the radiotracer.  The mean blood glucose level was 5.75mmol/l.  The mean 

difference between BL1 and BL2 was 0.6 mmol/l, median 0.3 mmol/l and range 0 – 2.7 mmol/l.  
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The net dose of FDG injected was measured by placing the injection syringe in a dose calibrator 

before and after administration, with decay corrections factored into the calculation. All FDG 

doses were injected through a venous catheter. Patients rested for approximately 50 minutes in 

a comfortable recliner after FDG injection prior to PET/CT imaging. Patients were then asked to 

empty their bladder and positioned in prone on the scanner table. A scout scan was obtained to 

plan the imaging procedure. A transmission CT scan for attenuation correction was performed 

prior to the PET emission scan (at about 55 minutes post injection of FDG). PET emission 

scans started at 60 minutes (median = 60, mean = 61.4, range = 59 – 70 minutes) post-

injection. If the 60-minute FDG uptake time target was missed, subsequent studies aimed for 

the actual uptake period at the first baseline FDG-PET/CT.  The difference in FDG uptake time 

between the test and retest PET scans was between 0 to 3 minutes in all but three patients (in 

whom there was a difference of 6, 7 and 10 minutes respectively), with a mean difference of 1.9 

minutes and median of 1 minute.  The duration of all emission scans were identical for each 

PET/CT scanner.  The acquisition parameters are given in appendix 2.  

Contrast-enhanced CT 

The CECT scan was performed directly following the baseline FDG-PET/CT scan including the 

abdomen and pelvis (and chest if clinically indicated). CECT was defined as a volumetric CT 

acquisition of the body using a multidetector spiral CT scanner in the portal venous phase 

following intravenous contrast administration (CECT acquisition parameters are available in 

supplementary table 2). Images were viewed on 5mm reformatted slices in the axial plane, as 

per RECIST 1.1 rules, with the option to view in reformatted sagittal or coronal planes. All target 

lesions were measured in the axial plane (the plane of acquisition). The CECT scans were of 

sufficient quality to enhance interpretation of FDG-PET scans, permit RECIST assessments, 

and enable tumor volume image analysis to be performed. For all CECT scans, intravenous 

iodinated contrast media were used according to local standards of care.  If contrast media was 

contraindicated in a patient, then CECT scan was not performed and the test-retest 

measurements for RECIST and volumetric analysis could not be evaluated.   

Image analysis 

Measurement of SUV 

FDG uptake in tumor lesions was quantitatively assessed using Standardized Uptake Values 

(SUV) as a measure for tumor glucose metabolism. Activity concentrations in the attenuation-

corrected PET images were converted to SUV’s by dividing the activity concentrations derived 
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from PET by the decay-corrected injected dose divided by the patient’s body weight. The 

following SUV parameters were obtained within a volume of interest: maximum SUV (SUVmax), 

mean SUV (SUVmean) and the mean weighted SUV, which is defined as the sum of all counts 

in all of the volumes of interest (VOIs) representing all of the TLs divided by the sum of all the 

voxels in all of the VOIs representing the TLs (the SUV mean weighted average, SUVmwa).  

Image reads 

Analysis of the FDG-PET scan and the CECT was performed without knowledge of any specific 

clinical information apart from the inclusion and exclusion criteria. Two independent reads of the 

FDG-PET and CECT were made, one being a site read and the other an imaging CRO read, 

using two different methods. The reads were performed to reflect the practice of trial reporting 

whereby once targets have been chosen on the first baseline scan, measurements of the same 

targets are subsequently performed. Target selection was independent between site and CRO 

as two different reading methods were being evaluated for test retest repeatability.  

Site reads 

The baseline FDG-PET/CT and CECT were viewed simultaneously by the PET expert and the 

gynecologic oncology CT expert respectively. A maximum of 5 target lesions were selected from 

the CECT, maximum two per organ. Although the inclusion criteria required at least one lesion 

to be SUVmax ≥2.5 and diameter ≥15mm, the criteria used for selecting other target lesions 

were that each target lesion was FDG avid and of minimal size criteria as defined by RECIST 

1.1 (10mm long axis for non-nodal target and 15mm short axis for nodal target).   

The longest diameter of each TL was then measured on the CECT according to RECIST rules. 

On the FDG-PET images, a spherical VOI with a diameter of 15mm was used to measure the 

SUVmean and SUVmax of each target, following manual identification of the most avid part of 

the tumor lesion. All measured parameters were recorded and screen shots of each selected 

target lesion were stored. The BL1 scan was then closed. The BL2 scan was then opened and 

each target lesion was measured using to the same technique.   Each target lesion was 

checked with BL1 to ensure that the same target lesions were used, but with blinding to the prior 

measurements.  

Contract Research Organisation reads  

CRO reads for SUV measurements and TD were considered the secondary reads. CECT 

volumes and FDG-PET images were read by a single independent radiologist with significant 
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experience in reading CT-volumes and FDG-PET.  CECT images were assessed for target 

lesion diameter and volume. The CT lesion selection criteria followed the guidelines set forth by 

the RECIST allowing selection of up to 10 lesions ≥10mm to be selected with a maximum of 5 

per organ. The FDG-PET images for this study were used to assess the SUVmax and SUVmwa 

for up to 10 lesions.  As long as appropriate, the same target lesions were chosen on PET and 

CECT. However, when an FDG-avid lesion was not suitable for RECIST measurements or vice 

versa, measurements on the other modality were not enforced. Thirty-five percent of subjects 

had different numbers of targets in the two modalities (28% had additional FDG-PET targets, 

7% had additional CECT targets). All but one PET avid target had an SUVmax ≥2.5. CECT 

images were used to delineate the target lesions which were described as series of Regions of 

Interest (ROIs), drawn on each slice where present, to ensure the entire volume of the lesion 

was assessed (VOI). ROIs were created using a semiautomatic approach combining freehand 

and autosegmentation, which allowed adjustment by a radiologist. The ROIs for target lesions 

provided longest diameter for non-nodal lesions, longest short axis diameter for nodal lesion 

and volume assessment of the individual target lesions.  The lesion locations from CECT 

images were used to follow consistently the target lesions on sequential imaging.   FDG-PET 

images were viewed along with the CECT images to confirm the selection of the same lesion 

selected on CECT, up to the extent possible to meet lesion selection criteria. Metabolic volumes 

were determined by an isocontour of 25% of the SUVmax. 

Statistical methods  

Repeatability 

When the number of target lesions increases, the sum of target lesions (in terms of SUV and 

tumor size) also increases.  As a result, correlation between repeated scans may be inflated 

due to different numbers of target lesions across patients.  Therefore, for repeatability 

assessment, the average was used to summarize measures across multiple target lesions 

within a scan.  

The repeatability of SUV and tumor size measurements was assessed based on the two 

baseline scans.  The Kendall tau and Shapiro-Wilk tests were performed on both original and 

log-transformed data and the log-transformed data were closer to normality and constant 

variance.  Scatter plots (Scan 1 vs Scan 2) with a 45° line through the origin and Bland-Altman 

plots (difference vs mean) were generated.  Concordance correlation coefficient (CCC), within 

subject standard deviation (SD), and within-subject coefficient of variation (CV) were derived. 

The difference between two baseline measurements for the same patient was considered to be 
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within the normal variation for 95% of pairs of observations. The repeatability coefficient was 

estimated to be twice the standard deviation of the paired differences. On a logarithmic scale, 

expressed as a percent change from baseline, the repeatability coefficient was [1 – exp (-2 * 

SDdiff)]  x 100%. 

RESULTS 

21 patients underwent two baseline imaging studies. In one case, the diagnostic CECT 

component could not be done with intravenous contrast media on BL2, and therefore the CT 

components (TD and TV) were not evaluated for repeatability, with a final number of 20 patients 

evaluable for TD and TV.  The number of target lesions in each data set is provided in table 1. 

For the primary site reads, the mean diameter of target lesions was 32mm and all target lesions 

were > 15mm except for 4 which were between 11.1 and 14.6mm.  

Median time between sequential FDG-PET/CT was 2 days (range 1 to 7, mean 2.4 days). The 

repeatability of SUV and tumor size measurements were plotted in Figures 1 – 4. The paired 

values from the same subject fell near the solid line. The Pearson correlation between 

SUVmean and SUVmax was 0.95 for the site read. Concordance correlation coefficient (CCC) 

and repeatability cut-off values are given in table 2.  Concordance correlation coefficient (and 

80% confidence intervals) for SUVmean (average), SUVmax (average) and TD (average) were 

0.95 (0.92-0.98), 0.94 (0.90- 0.97) and 0.99 (0.98 – 1.00) respectively. Repeatability cut-off 

values (indicating the lower limit of the 95% CI for % change between two baseline scans) were 

16.3% for SUVmean (average), 17.3% for SUVmax (average) and 8.8% for TD (average). The 

repeatability results from the two reading methods were similar. Tumor volume (average) CCC 

was 0.99 (0.98 – 1.00) with a repeatability cut-off value of 28.1%.  

The repeatability results are plotted in figures 1- 4.  

DISCUSSION 

FDG-PET is increasingly being used as a biomarker for treatment monitoring in cancer patients 

(13-15). In order to identify a metabolic response it is necessary to establish the normal 

variation of tumor FDG uptake prior to therapeutic intervention. We found a high test-retest 

repeatability of quantitative measures of tumor glucose metabolism (FDG uptake) using different 

parameters derived from Standardized Uptake Values (SUV) in ovarian cancer. This is in line 

with previous reports who observed a good repeatability of FDG uptake measurements in other 

tumors, as reported in a recent meta-analysis (12). The first study addressing this issue dates 
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back in 1999 and included 16 patients with different tumor types who underwent FDG-PET 

within 10 days without anti-cancer treatment in-between (16). In that study, the differences of 

repeated measurements were approximately normally distributed for all SUV parameters with a 

SD of the mean percentage difference of about 10%. The authors concluded that changes of a 

SUV parameter outside the 95% normal range may be used to define a metabolic response to 

therapy. 

The PET technology has advanced since then from stand-alone PET scanners to combined 

PET-CT and subsequent studies have shown a high repeatability for measuring tumor FDG 

uptake using FDG-PET/CT in a limited number of patients (17;18). This is the first study to 

address this issue in ovarian cancer. The abdomen is particularly difficult to quantitatively 

evaluate for tumor FDG uptake due to physiologic excretion of FDG via the urinary tract and due 

to variable physiologic FDG uptake within bowel structures. Ovarian cancer often presents with 

serosal implants, which can be subject to motion, potentially compromising longitudinal FDG-

PET imaging for treatment monitoring. To date, only few studies have addressed FDG-PET 

treatment monitoring in ovarian cancer. Our study is of potentially high clinical relevance as we 

showed that changes beyond 15-20% in tumor glucose metabolism allows the identification of 

treatment induced changes, which provides the basis for future prospective treatment 

monitoring studies in ovarian cancer. There are a number of targeted therapies currently in 

development or already being evaluated clinically. This includes drugs targeting the PI3K – Akt- 

mTOR pathway, the inhibition of angiogenesis as well as specific inhibitors of Interleukin-6 and 

Stat3 amongst other targets (19-23).  A significant challenge is the evaluation of their 

therapeutic effectiveness as they are often cytostatic rather than cytotoxic and changes in tumor 

size occur late if at all. It is recognised that anti-angiogenic agents may therefore result in stable 

disease according to RECIST or PERSIST criteria although tumour necrosis may be seen 

following treatment.  The data from the current study may contribute to support robust metabolic 

response criteria in the absence of change in tumor size when targeted therapy is being used.  

 

Biomarkers that predict whether a drug will lengthen progression free survival (PFS) or overall 

survival (OS) are therefore needed, both for optimising the clinical management of patients and 

to accelerate decisions concerning novel drug efficacy in clinical trials. Bi-dimensional (WHO) or 

uni-dimensional (RECIST) measurements have been used for many years to monitor objective 

response to chemotherapy but certain limitations are recognised: 1. measurable changes take 
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time to allow for tumor shrinkage; 2. in some cases, clinical response to chemotherapy does not 

result in a change in tumor dimensions; 3. tumor response measured by RECIST does not 

always correlate well with PFS or OS (4;6;8;24). In addition, measuring the tumor dimension 

might be an effective criterion in the setting of spherical tumors that change size in a uniform 

fashion following therapy; however, tumor morphologies that do not manifest in this idealized 

shape can be challenging to evaluate for changes in size using uni-dimensional line lengths.  

An important strength of our study is that we fully utilized the capability of FDG-PET/CT by 

performing a CECT after completion of the PET data acquisition. No such CECT repeatability 

study has previously been performed in ovarian cancer patients. Changes in tumor size are 

generally believed to occur at later time points after start of treatment as compared to metabolic 

changes. Tumor size measurements can be affected by partial volume artefacts particularly 

when the target lesion is small when using a CT slice thickness of 5mm and in addition, some 

bowel movement can occur during the time of CT acquisition further compounding partial 

volume artefacts. However, we found a test retest variation as low as 8.8% for tumor diameter 

when measured sequentially. We also assessed changes in tumor volume and found a test 

retest variation of 28.1%; despite this wider variation between repeat measurements in volume, 

changes in tumor volume following treatment may be more sensitive than changes in diameter 

and establishing the repeatability coefficient is thus highly relevant. It is important to point out 

that defining a tumor volume in the abdomen is particularly difficult and automated software 

algorithms for that purpose are currently under investigation. Such algorithms which render 

volumetric and tissue density measurements have been successfully used in the lungs: a study 

demonstrated that a semi-automated algorithm was able to accurately segment 14 out of 15 

patient tumors imaged in thin section CT scans (7;25).  Follow-up CT at 3 weeks after start of 

gefitinib showed that 73% of patients had an absolute change in tumor volume of at least 20%; 

in contrast, only 7% and 27% of patients showed similar changes in their tumor sizes using 

either uni-dimensional or bi-dimensional measurements, respectively.  

An important strength, but also a potential weakness of our study is the highly standardized 

imaging environment with strong academic support. Highly experienced PET and CT reader 

have jointly interpreted the images, which might at least have partially contributed to the 

superiority of tumor size measurements over semi- automated volume measurements. 

Nevertheless, our data also demonstrate that a company based image analysis (CRO read) 

produced results comparable to the site reads. Our approach in this regard is novel as it directly 

allowed a comparison between an academic and a commercial setting for image analysis.  
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The FDG uptake measurements are affected by numerous factors and a meticulous quality 

assurance program needs to be place in order to achieve repeatable PET measurements. This 

includes patient preparation, obtaining blood glucose levels, measuring precisely the amount of 

injected FDG activity as well as scanner calibration amongst others. Of note, a recent study 

found much greater variance of SUV uptake measurements in a clinical PET setting when 

compared to ideal study settings (26). The variation in FDG uptake time is an important 

limitation in the repeatability of FDG-PET and specific efforts need to be place to ensure timely 

procedures. It is of crucial importance for oncologists to work closely together with their imaging 

group to ensure that procedures are in place to enable PET treatment monitoring studies.   

A limitation of our study is that we did not independently repeat each of the two reading 

methods by a further reader, but rather we compared two independent reading methods. 

However, we have attempted to recreate the method used in standard trial sequential reporting 

to closely reflect clinical practice.  Also, the selection of target lesions on the CECT was aided 

by simultaneous viewing of the PET images which could have resulted in an increase in the 

detection of lesions on CT.  

CONCLUSION: 

We have shown excellent test/retest repeatability for FDG-PET/CT quantitative measurements 

in recurrent ovarian cancer across two independent reading methods. The repeatability 

coefficients suggest that a decrease in FDG uptake (SUV) of 15-20% from baseline and 

decrease in tumor size between 10-15% could be used to determine early tumor response. 

 

ACKNOWLEDGEMENTS 

We would like to acknowledge our patients and their care-givers; the help and support of the 

research nurses, trial staff and the staff in the PET centers. In addition, we acknowledge the 

help of Mark Utley, Gary Herman, Jeffrey Evelhoch, Eric Rubin (Merck and Co); Faith 

Dzumbunu, Craig Copland, Iain Murray (Barts Cancer Institute); Nick Bird, Charlotte Hodgkin 

(Addenbrooke’s Hospital). We acknowledge additional support from Cancer Research UK, 

National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, 

Cambridge Experimental Cancer Medicine Centre and Hutchison Whampoa Limited. 

   



 

  14

Reference List 
 
 (1)  Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C et al. Cancer survival 

in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the 
International Cancer Benchmarking Partnership): an analysis of population-based 
cancer registry data. Lancet 2011; 377(9760):127-138. 

 (2)  Chan S, Griffin M, Stewart J, Gregory K, Hughes A, Awwad S et al. Modern 
chemotherapy management of recurrent ovarian cancer: a multicentre study. Clin Oncol 
(R Coll Radiol ) 2007; 19(2):129-134. 

 (3)  Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New 
response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). 
Eur J Cancer 2009; 45(2):228-247. 

 (4)  Eisenhauer EA. Optimal assessment of response in ovarian cancer. Ann Oncol 2011; 22 
Suppl 8:viii49-viii51. 

 (5)  Buckler AJ, Schwartz LH, Petrick N, McNitt-Gray M, Zhao B, Fenimore C et al. Data sets 
for the qualification of volumetric CT as a quantitative imaging biomarker in lung cancer. 
Opt Express 2010; 18(14):15267-15282. 

 (6)  Villaruz LC, Socinski MA. The clinical viewpoint: definitions, limitations of RECIST, 
practical considerations of measurement. Clin Cancer Res 2013; 19(10):2629-2636. 

 (7)  Zhao B, Schwartz LH, Moskowitz CS, Ginsberg MS, Rizvi NA, Kris MG. Lung cancer: 
computerized quantification of tumor response--initial results. Radiology 2006; 
241(3):892-898. 

 (8)  Shankar LK, Van den AA, Yap J, Benjamin R, Scheutze S, Fitzgerald TJ. Considerations 
for the use of imaging tools for phase II treatment trials in oncology. Clin Cancer Res 
2009; 15(6):1891-1897. 

 (9)  Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol 2006; 
24(20):3282-3292. 

 (10)  Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving 
Considerations for PET response criteria in solid tumors. J Nucl Med 2009; 50 Suppl 
1:122S-150S. 

 (11)  Avril N, Sassen S, Schmalfeldt B, Naehrig J, Rutke S, Weber WA et al. Prediction of 
response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron 
emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 
2005; 23(30):7445-7453. 

 (12)  de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK et al. 
Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med 
2012; 53(5):701-708. 

 (13)  Mghanga FP, Lan X, Bakari KH, Li C, Zhang Y. Fluorine-18 fluorodeoxyglucose positron 
emission tomography-computed tomography in monitoring the response of breast 



 

  15

cancer to neoadjuvant chemotherapy: a meta-analysis. Clin Breast Cancer 2013; 
13(4):271-279. 

 (14)  Dupas B, Augeul-Meunier K, Frampas E, Bodet-Milin C, Gastinne T, Le Gouill S. Staging 
and monitoring in the treatment of lymphomas. Diagn Interv Imaging 2013. 

 (15)  Hoekstra CJ, Hoekstra OS, Stroobants SG, Vansteenkiste J, Nuyts J, Smit EF et al. 
Methods to monitor response to chemotherapy in non-small cell lung cancer with 18F-
FDG PET. J Nucl Med 2002; 43(10):1304-1309. 

 (16)  Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of 
metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999; 
40(11):1771-1777. 

 (17)  Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, Lammertsma AA et al. 
Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced 
gastrointestinal malignancies. J Nucl Med 2009; 50(10):1646-1654. 

 (18)  van Velden FH, Nissen IA, Jongsma F, Velasquez LM, Hayes W, Lammertsma AA et al. 
Test-Retest Variability of Various Quantitative Measures to Characterize Tracer Uptake 
and/or Tracer Uptake Heterogeneity in Metastasized Liver for Patients with Colorectal 
Carcinoma. Mol Imaging Biol 2013. 

 (19)  Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA et al. Interleukin-
6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011; 17(18):6083-
6096. 

 (20)  Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G et al. 
A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011; 365(26):2484-
2496. 

 (21)  Ledermann JA, Hackshaw A, Kaye S, Jayson G, Gabra H, McNeish I et al. Randomized 
phase II placebo-controlled trial of maintenance therapy using the oral triple angiokinase 
inhibitor BIBF 1120 after chemotherapy for relapsed ovarian cancer. J Clin Oncol 2011; 
29(28):3798-3804. 

 (22)  Hall M, Gourley C, McNeish I, Ledermann J, Gore M, Jayson G et al. Targeted anti-
vascular therapies for ovarian cancer: current evidence. Br J Cancer 2013; 108(2):250-
258. 

 (23)  Baumann KH, Wagner U, du BA. The changing landscape of therapeutic strategies for 
recurrent ovarian cancer. Future Oncol 2012; 8(9):1135-1147. 

 (24)  Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR et al. 
Correlation of computed tomography and positron emission tomography in patients with 
metastatic gastrointestinal stromal tumor treated at a single institution with imatinib 
mesylate: proposal of new computed tomography response criteria. J Clin Oncol 2007; 
25(13):1753-1759. 



 

  16

 (25)  Zhao B, Oxnard GR, Moskowitz CS, Kris MG, Pao W, Guo P et al. A pilot study of 
volume measurement as a method of tumor response evaluation to aid biomarker 
development. Clin Cancer Res 2010; 16(18):4647-4653. 

 (26)  Kumar V, Nath K, Berman CG, Kim J, Tanvetyanon T, Chiappori AA et al. Variance of 
SUVs for FDG-PET/CT is greater in clinical practice than under ideal study settings. Clin 
Nucl Med 2013; 38(3):175-182. 

 
 



 

 1

Legends for all figures (Figures 1 to 4) 
 
Left side (a,c) on original scale and Right side (b,d) on log scale. Top (a, b): Scan 1 
value versus Scan 2 value. The paired values from the same subject are plotted against 
each other (the first observation on the y-axis and the second on the x-axis). If the 
paired values from the same subject are similar, the points will fall near the solid line. 
Bottom (c,d): Difference versus Average. The differences and means between the 
paired values are plotted to see if a trend exists. Horizontal lines: dashed lines=mean 
difference, dotted lines=lower and upper 95% confidence limits for difference. 
 
Figure 1. Repeatability of SUVmean at Baseline (Site read) 
Figure 2. Repeatability of SUVmax at Baseline (Site read) 
Figure 3. Repeatability of Tumor (lesion longest) Diameter (mm) at Baseline (Site read) 
Figure 4. Repeatability of Tumor Volume (cc) at Baseline (CRO read) 
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Figure 1. Repeatability of SUVmean at Baseline (Site read) 
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Figure 2. Repeatability of SUVmax at Baseline (Site read) 
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Figure 3. Repeatability of Tumor (lesion longest) Diameter (mm) at Baseline  (Site read) 
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Figure 4. Repeatability of Tumor Volume (cc) at Baseline  (CRO read) 
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Table 1.  Number of target lesions (Site and CRO reads) 
 Site Read 

Combined PET and 

CT target lesions 

CRO Read 

PET target 

lesions 

CRO Read 

CT target lesions 

 Number of patients       21  21            21           

 Mean number of 

target lesions              

4.0  4.4           3.8          

 SD                                1.3  2.4           2.2          

 Median                         5.0  5.0           3.0          

 Range                           (2, 5)  (1, 8)        (1, 8)       

 Total target lesions       85  93            80           

Lesion numbers per 

patient 

   

 1 lesion                         0  2 (9.5%)      3 (14.3%)    

 2 lesions                       4 (19.0%)  5 (23.8%)     5 (23.8%)    

 3 lesions                       4 (19.0%)  2 (9.5%)      3 (14.3%)    

 4 lesions                       0  1 (4.8%)     0 

 5 lesions                       13 (61.9%)  4 (19.0%)     6 (28.6%)    

 6 lesions                       0  1 (4.8%)      1 (4.8%)     

 7 lesions                       0  3 (14.3%)     2 (9.5%)     

 8 lesions                       0  3 (14.3%)     1 (4.8%)     
 

 

 



Table 2. Repeatability of FDG SUV and Tumor Size Measures at Baseline 

PET and CT n CCC and 80% 

CI†  

Geo. 

Mean‡ 

Geo. SD and 

80% CI§  

Geo. CV and 

80% CI* 

Repeatability 

Cut-off¶ % 

Decrease 

 Site Read, up to 5 target lesions                   

 SUV mean (avg)        21  0.95 (0.92,0.98)   6.66  1.07 (1.06,1.08)   6.6 (5.5,8.5)      16.3 

 SUV max (avg)           21  0.94 (0.90,0.97)   9.69  1.07 (1.06,1.09)   7.1 (5.9,9.1)      17.3 

 TD (mm) (avg)            20  0.99 (0.98,1.00)   31.6  1.03 (1.03,1.04)   3.4 (2.8,4.3)       8.8 

 CRO Read, up to 10 target lesions                   

 SUV mwa                   21  0.98 (0.97,0.99)   4.97  1.06 (1.05,1.08)   6.3 (5.3,8.1)      15.6 

 SUV max (avg)           21  0.98 (0.96,0.99)   7.85  1.07 (1.06,1.09)   7.2 (6.0,9.2)      17.6 

 TD (mm) (avg)            20  0.97 (0.95,0.99)   27.7  1.06 (1.05,1.08)   6.0 (5.0,7.7)      14.8 

 

 TV (cc) (avg)              20  0.99 (0.98,1.00)   7.77  1.13 (1.10,1.16)   12.7 (10.5,16.4)   28.1 

 † Concordance correlation coefficient and 80% confidence interval 

 ‡ Geometric grand mean 

 § Geometric within-patient standard deviation and 80% confidence interval 

 *  Geometric within-patient coefficient of variation and 80% confidence interval 

 ¶  Repeatability Cut-off = the lower limit of the 95% CI for % change between two baseline scans 

  TD: tumor diameter; TV: tumor volume; avg: average 
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