Supplementary Material

Pseudo-code for BarraCUDA GPGPU alignment core

The following pseudo-code describes the new CUDA alignment core. BarraCUDA
uses a data parallelism strategy and loads sequencing reads in batches onto the
GPU to facilitate concurrent alignment computations. Each GPU thread contains
a difference-bound depth-first search (DFS) agent that evaluates only one of the
matching possibilities at a time on each node during search space traversal
rather than storing all the possible matches in memory like BWA. For long
sequencing reads, the program divides query into fragments of 32 bp and
performs the alignment for each fragment in a consecutive manner.

Data parallelism

CUDA_alignment_core {
Read BWTs from disk to GPU memory
While there are unprocessed sequencing reads do {
Read a batch of n sequencing reads (query) from disk to GPU memory

Check if sequencing read length >= 38 bp (default threshold){
//Divide query into fragments of 32bp and perform alignment with multiple GPU
threads
Launch split CUDA kernel with n threads {
For each thread
Calculate the lower bound of the number of differences for each base on
the read up to 32bp //please refer to Li and Durbin 2009 for details
Search_inexact_alignment for the first 32bp and store partial
alignments in GPU alignment store
}
} else {
//perform alignment with 1 GPU thread per read
Launch normal CUDA kernel with n threads {
For each thread
Calculate the lower bound of the number of differences for each base on
the read
Search_inexact_alignment and store alignments in GPU alignment store

Data management for split CUDA kernel

Create partial alignment store
// a queue for storing partial alignments generated from the previous kernel

Do {
Copy alignments from GPU alignment store to a temporary memory store on the
host

For each alignment in the temporary memory store do {
Check if alignment is finished {
Store alignment to the final alignment store)
} else {
//if itis a partial alignment
Add partial alignment to partial alignment store

}
}

Check if there still partial alignments in the partial alignment
store {

Select n x lowest-scored partial alignments from the store for the next
kernel run

Copy n x partial alignments to the GPU

Launch CUDA kernel with n threads {
For each thread
Calculate the lower bound of the number of differences for the
next 32 bp of the read
Search_inexact_alignment for the next 32bp with data stored in
the partial alignment store and store new alignments in GPU
alignment store

}

} loop while there are still partial alignments in the partial alignment store

For each of the reads from the final alignment store{
Write alignments to the disk

}

} //end of CUDA_alignment_core

Difference-bound depth-first search (DFS) agent for inexact alignments
Search_inexact_alignment {

Initializations
Check if it is a continuation of previous alignment, i.e. a partial alignment exists
{
Recall the last aligned base position
Recall differences and suffix array boundaries
} else{
//This is a new unaligned read
Set last aligned base position to 1
Set suffix array lower bound k to 0
Set suffix array upper bound I to the size of BWT,
}
Check if base position is within the seed_length > set number of allowed
differences to the number of allowed difference in the seed

Check if number of differences > number of allowed differences - exit
Check if the DFS agent has returned to the last aligned base position - exit

Check if the DFS agent has reached the last base of the query {
Store suffix array coordinates and differences to the GPU alignment store
Mark as finished

}

Check if the DFS agent has reached the end of the fragment (32bp){
Store suffix array coordinates and differences to the GPU alignment store
Mark as unfinished and store the last aligned base position

}

For each base on the query, the agent evaluates only one of the following
alignment possibilities:
Case 1. Exact match
Evaluate if there is an exact *match resulting in k <=1 >
Search_inexact_alignment with next base and new boundaries [k,1]

Case 2. Mismatches
Substitute base with other bases and evaluate if there is a *match with
k <=1-> record differences and Search_inexact_alignment with next
base and new boundaries [k,I]

Case 3. Indels
Shift base position (either by jumping to the next base or inserting {A,G,
C,T}) and evaluate if there is *match with k <= [3 record differences
and Search_inexact_alignment with next base and new boundaries [k,1]

Evaluate if there is no more matches above for the current base -> return to
previous base position and evaluate other possibilities

}

* Please refer to Li and Durbin 2009 for details about calculating a match using FM-index

Calculating the Memory Workspace Required in BWA’s BFS and BarraCUDA’s
DFS alignment core

BWA'’s BFS alignment core

BWA BEFS alignment core uses a heap-like memory structure to store all the
partial alignment matches as it traverses the search space. The program
allocates space for the memory store dynamically at run time and expands the
allocation when required. The default ceiling is set at 2,000,000 partial hit
entries as a compromise between speed and accuracy, and can be changed using
the ‘-m’ option. When aligning long sequence reads, it is not unusual that the
default ceiling is reached from time to time.

Given that each of the partial match entries contains
5 x 4 bytes (32 bit) = 20 bytes of data
The maximum workspace required for BWA for each sequence read

= 2,000,000 * 20 bytes = 40 Mbytes

BarraCUDA’s DFS alignment core

BarraCUDA only stores the data of partial matches (nodes) that are on the path
of the search agent and the space requirement is much less than BWA at O(n)
where n is the length of the sequence read to be aligned. Assuming the sequence
read is 100bp long, the memory requirement is therefore

=100 * 20 bytes = 2 Kbytes

which is 20,000 fold less than BWA

