
Abstract 
 
This study assesses the accuracy of the value-at-risk estimate (VaR).  On 
the basis of posterior distributions of the unknown population parameters, 
we develop a confidence interval for VaR that reflects the genuine 
information available about the portfolios for which the VaR is 
calculated.  This approach is more accurate than that in Dowd (2000) as it 
avoids explaining the behaviour of the population parameters on the basis 
of distributions of sample parameters.  We find that the accuracy of both 
the confidence interval and the VaR estimate depend more dramatically 
on the sample size than what Dowd’s results suggest.  In addition, we not 
only find that the impact of the confidence level and the holding period at 
which the VaR is predicated are negligible compared to that of the sample 
size (as in Dowd), but also that the confidence interval is far from being 
symmetric. 
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1. Introduction 
 

The disastrous consequences of excessive exposure to market risk 
experienced in the past years revitalized the search for early-warning and 
forward-looking indicators of financial vulnerability.  The ability of 
value-at-risk (VaR) models to determine maximum expected losses 
taking into account a portfolio’s overall exposure to different types of risk 
– e.g. exchange rate, interest rate, maturity – has led to the widespread 
use of these models for internal monitoring and managing of market risk 
exposure.  Furthermore regulators have advocated the use of VaR models 
for purposes of financial solvency assessment and, in the case of banks, 
for capital adequacy determination.3  At the macroeconomic level, recent 
literature has proposed the use of a “macroeconomic” value-at-risk 
approach that focuses on the solvency of a nation’s aggregate balance 
sheet- in order to assess the vulnerability of particular economic regimes.4 
  The widespread and increasing reliance on VaR highlights the 
critical importance of the accuracy of the value-at-risk estimate.  Current 
implementations of VaR, however, do not recognise the fact that VaR 
measures are only estimates of risk.  Because VaR numbers are estimated 
from sample data it is likely that sampling error feeds through to the VaR 
figure, making the estimate risky itself.  More critically, most often VaR 
numbers rely on parameters –means, standard deviations, and quantiles – 
estimated from historical data, which provide a poor guide to future 
values.   

Consider the following example taken from Britten-Jones (1999).  
Assume a portfolio is composed of one riskless asset and K risky assets.  

Minimum variance portfolio weights, ( ) 1X'XXω̂
1−= ' , are obtained by 

running the “artificial” OLS regression 
1Tx)1kx)(Txk(Tx1

uXω +=1 , where 1  is a 

vector of ones, X  is a matrix of excess return vectors tx , and u  is a 

                                                 
1 The Judge Institute of Management Studies, University of Cambridge, UK. Email: 
pcontreras@oas.org 
2 Faculty of Economics and Politics, University of Cambridge, UK. Email: 
stephen.satchell@econ.cam.ac.uk.  
3 The Basle Committee on Banking Supervision permitted at the beginning of 1998 
that banks determine their capital adequacy for financial risk exposure using VaR 
models. 
4 See Blejer and Schumacher (1998). 
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residual vector.  The dependent variable 1  is interpreted as a sample 
counterpart to arbitrage profits -positive excess return with zero standard 
deviation; the coefficients ω  represent the weights on risky assets in the 
portfolio; Xω represents excess returns;5 and the residual vector u  shows 
deviations in the portfolio’s return from 1 .  Poor estimates of future 
returns, such as historical returns, make the weights estimates -and hence 
the corresponding mean and variance figures - subject to “estimation 
risk.”  Note that “estimation risk” arises not only with parametric VaR 
approaches, but also with non-parametric approaches that rely on 
simulated (rate of return) data but make use of historical portfolio 
weights. 

To recognise the existence of “estimation error” not only provides 
a decision criterion for selecting the confidence level and the estimation 
method with the best sampling characteristics, but it also highlights the 
relevance of reporting the VaR number with confidence intervals.6  The 
aim of the paper is to provide a method for calculating a confidence 
interval for VaR that minimizes estimation risk and that can 
accommodate a wide range of probability distributions of portfolio 
returns.  The paper is organized as follows:  section two presents the 
value-at-risk measure, section three summarises the relevant literature 
and section four proposes an alternative Bayesian Approach to the 
estimation of a confidence interval for VaR.   The estimation procedure 
and results are presented in sections five to seven. 
 
2. Parametric VaR  
 
For general distributions the VaR of a portfolio can be defined as the 
absolute pound loss, 
 

*
0

*
0 rWWWVaR −=−= ,  (1) 

 
where 0W  is the initial investment in the portfolio, r its rate of return, and 

0
** W)r1(W +=  the lowest portfolio value at a given confidence level α.7 

For location-scale densities8 a parametric representation of VaR is 
obtained by resorting to the invariance of such densities to linear 

                                                 
5 The estimated portfolio weights produce a portfolio return that is closest in terms of 
least squares distance to the arbitrage return vector 1.  It is straightforward to adapt a 
mean-standard deviation setting. 
6 See Jorion  (1996), page 47. 
7 See Jorion (1997), page 87. 



 3

transformations.  Let 
σ

µ−=
*r

b , so that µ+σ= br * , where b is the 

standardised random variable, and σ  and µ the (scale) standard deviation 
and (location) mean of r, respectively.  Assume 1W0 = , substitute *r into 
(1) and get  
 

)ba(VaR σ+µ−= , (2) 
 
where a equals one and b is the (1-α)% value of the standardised 
distribution.  Hence, when ir , i=1,…,N, are identically and independently 
distributed normal with parameters 2,σµ , ),(N~r 2

i σµ , and the confidence 
level 1-α is set at  95%, b = 1.645 is readily obtained from the standard 
normal table.9  To find the VaR under a Student distribution, equation (2) 
still applies, but b should be replaced by the appropriate 1-α standard 
Student  deviate.  For example, for a standard Student with six degrees of 
freedom at the 95% confidence level, b equals 1.943. 

There are two convenient attributes to this approach.  The first is 
that it can easily accommodate distributions for which the dispersion can 
be adequately summarized by one parameter, the standard deviation.  
Even fat-tailed distributions, such as those of stock prices, can be 
accommodated as long as they are “fairly” symmetric.  Strongly 
asymmetric distributions, such as those of derivatives, invalidate the 
procedure, as standardisation of the distribution is no longer adequate.   
For large and diversified portfolios, however, the issue is one of fatness 
of tails, not asymmetry.10 

The second compelling attribute of the “sigma-based approach” 
presented in this section relates to efficiency gains. Jorion (1996) shows 
that  “the sample standard deviation method has uniformly lower standard 
errors and is, therefore, uniformly superior to the sample quantile 
method.” 11 

                                                                                                                                            
8 A location scale density has the form 









σ
θ−σ− x

f1 , where θ ∈ 1R  and 0>σ are the 

unknown parameters.  The class of such densities is invariant under the group of 
affine transformations bcx)x(g c,b += ( Berger, 1980, pages 88 and 401). 
9 When VaR is measured relative to the mean, ),R(WW)W(EVaR *

0
* µ−−=−= the 

parametric representation of VaR for location-scale returns is 0WbVaR σ−= . 
10 Involving the Central Limit Theorem, near-normality can be a reasonable 
assumption provided the portfolio is well diversified and individual returns are 
sufficiently independent of each other. 
11 The appropriate quantile can be obtained directly from the historical distribution 
(Quantile-based VaR) or indirectly by measuring the standard deviation and 
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3. A Confidence Interval for VaR 
 
  Dowd (2000)12 writes that the “most natural way” to gauge the 
precision of a VaR estimate is to construct a confidence interval for it.  
The simplest way to do it is to assume normality and that µ  is known 
(e.g. zero), so that the VaR estimate is given by 
 

0bsWRâV −= .  
 (3) 

 
If we draw a random sample of size N from a normal distribution, 

the variable ( )
2

2s1N
σ
−  will be distributed as a chi-squared with 1N −=υ  

degrees of freedom (2υχ ), where 2s is known and 2σ is unknown.  One can 

say that there is an %
2

α  probability that this variable will fall below the 

2

2
,
αυ

χ quantile and an %
2

α  probability that it will fall above the 

corresponding 2

2
1,

α−υ
χ .  It follows that the )%1( α−  confidence interval for 

( )
2

2s1N
σ
− must be:  

 ( )
)%1(

s1N
P 2

1,2

2
2

2
,

D α−=








χ<

σ
−<χ= α−υαυ

,   (4) 

where DP is the ( )%1 α− probability value calculated using the method of 
Dowd. 

By transformation, given a sample value of s, the 
)%1( α− confidence interval for the sample standard deviation s is given 

by: 
 

)%1(
1N

s
1N

sP 2

2
,

2
2

2
1,

2
D α−=

















χ
−<σ<

χ
−=

αυα−υ

   (5) 

Multiplying equation (5) by b−  yields a confidence interval for the VaR: 
 

                                                                                                                                            
multiplying it by an appropriate scaling factor (Sigma-based VaR).  Jorion (1997) and 
(1996). 
12 The confidence interval was originally developed in Chappel and Dowd (1999), 
however no testing was conducted in this paper. 
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)%1(
1N

sbVaR
1N

sbP
2

2
,

2
2

2
1,

2
D α−=

















χ
−−<<

χ
−−=

αυα−υ

,   (6) 

 
where b  is a parameter reflecting the confidence level on which the VaR 
is predicated. 

However, if both µ  and σ  are unknown variables the VaR 
estimate, )bsra(RâV +−= , will depend on two stochastic variables, s and 
r .  The construction of analytic confidence intervals for this more general 
case is “nearly impossible” (Kendall and Stuart (1973) in Chappel and 
Dowd (1999)).  The alternative is to construct a “confidence distribution 
for VaR by simulating each of these terms using the information 
available.  This information consists of s and r and their distributions. 

Statistical theory tells us that 






 σµ
N

,N~r
2

 and that ( ) 2
2

2

~
s1N

υχ
σ
− .  

After a little rearranging, we can therefore treat σ and µ  as if they were 
random in the sense that: 
 

( )
2

2s1N
~

υχ
−σ   and ( )










χ
−µ

υ
2

2

n

s1N
,rN~   (7) 

 
Substituting into (2) and making a=1, the “confidence distribution” 

for VaR is given by: 
 

( ) ( )









χ
−−

χ
−−

υυ
2

2

2

2

n
s1N

,rN
s1N

b  (8) 

This distribution can be simulated and the confidence intervals read 
from the quantiles of the simulated distribution. 
 
4. A Bayesian Approach  
 

A weakness of the above procedure is that it relies on distributions 
of sample parameters, r  and s, that are conditional on unknown 
population parameters, µ  and 2σ , to explain the behaviour of the 
unknown parameters.  A more realistic approach that reflects the genuine 
information that is available about the behaviour of the population 
parameters is presented in this section.   

Our procedure follows the above procedure in that a confidence 
region for VaR  is estimated, assuming that µ  and 2σ  are distributed 
according to some posterior probability density functions (pdfs).  These 
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functions are estimated through an empirical Bayes approach13, which 
enables us to reduce the estimation error arising when the sample 
parameters are treated as if these were the true (unknown) parameters.    

Our approach works as follows: first we let ir  be i.i.d ),(N 2σµ , and 
σµ and  be independently distributed so that )()(),( 22 σΠµΠ=σµΠ , (.)Π  

denotes a posterior distribution.  This leads to the following confidence 
distribution for VaRas specified in equation (2) and assuming a=1: 
 

)()(b µΠ−σΠ−  (9) 
 
4.1. Prior and Posterior Distributions 
 

We assume that plausible functional forms for µ  and 2σ are given 
by a conjugate family of prior distributions and that one can draw on 
prior information contained in the cross-sectional pattern of the stock 
returns composing the portfolio to infer the parameters specifying such 
functional forms.14 The assumption of a conjugate family of priors is 
usually robust and simplifies calculations.15   

We make the assumption that the individual stock returns are 
statistically independent through time and that the joint distribution of the 
cross-section of returns is identical across time.  Although unrealistic, we 
make this assumption following the relevant literature and to simplify the 
calculations. 

Once prior distributions have been estimated, posterior 
distributions are readily calculated by application of Bayes Theorem:16 

 
( ) ( ) )/x(lx/x/ θθπαθΠ , (10) 

 
where ( )x/θΠ  and ( )x/θπ  are the posterior and prior pdfs, respectively, 
for the parameter vector θ , given the sample information x ,  and ( )θ/xl  is 
the likelihood function; α denotes proportionality.  
 

                                                 
13 See Berger (1980 a and b). 
14 The procedure is a direct application of the approach of Karolyi (1993), who 
estimates the stock return volatility for a given stock by drawing on prior information 
from the cross-sectional pattern in the return volatitilities for a whole group of stocks.  
He draws on the empirical fact that stock return volatilities are generally clustered 
about some market-wide measure of volatitility and also within subgroups of stocks 
sorted by a firm’s degree of financial leverage, the level of trading volume in a firm’s 
stock, and a firm’s capitalisation value.   
15 See Berger (1980b). 
16 See Berger (1980a). 
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4.1.1  Prior and Posterior Pdfs of µ  
 

In order to estimate the prior distribution of  µ  we apply a type II 
maximum likelihood (ML-II) prior (Berger 1980a).  This empirical Bayes 
approach assumes that a suitable prior is obtained as the result of 
maximising the likelihood function of the marginal distribution of the 
independent components of the data given the unknown true prior 
distribution. 

Consider a portfolio composed of P independent stock returns 
)r,...,r( P1 , each with density ),(N)|r(f 2

iii fσµ=µ , and let the conjugate prior 

)(µπ  be ),(N 2
ππ σµ .17 Then the marginal density of each ir , )|r(m 0i0 π  is 

),(N 2
f

2 σ+σµ ππ .  The corresponding likelihood function is  
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where ∑
=

=
P

1i

i

P

r
r and ∑

=

−
=

P

1i

2
i2

P

)rr(
s . 

Berger shows that maximisation of (11) leads to the ML-II prior 0π̂ to be 

)ˆ,ˆ(N 2
ππ σµ , where rˆ =µπ  and { }2

f
22 s,0maxˆ σ−=σπ .  A suitable estimator of 2fσ  

is given by ∑∑
= =

−
−

=σ
P

1i

N

1j

2
i

j
i

2
f )rr(

P)1N(N

1
ˆ (Berger (1980a) page 172). 

The posterior pdf of µ  is readily obtained after substituting the 
prior pdf of µ  and the likelihood of ),(N)|r(f 2

fσµ=µ  into the proportional 

relation (10).  This leads to a  Normal pdf with mean 

N

ˆ
ˆ

N

ˆ
ˆˆr

2
f2

2
f2

f

σ+σ

σµ+σ

π

π
and 

variance 

N

ˆ
ˆ

N

ˆ
ˆ

2
f2

2
f2

σ+σ

σσ

π

π
 (Zellner, 1971, page 15). 

                                                 
17 In dealing with a normal mean, the class of ),(N 2

ππ σµ priors is rich enough to 
include approximations to most reasonable priors.  See Berger (1980a) section 4.7 for 
cases when this leads to unappealing conclusions. 
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4.1.2. Prior and Posterior Pdfs of 2σ  
 

In order to estimate a suitable prior for 2σ  we follow Karolyi 
(1993).  Assuming independent, linear stochastic processes for the stock 

returns of each stock i, i=1,…,P;  we know that the statistic 
2

2

i

ii s

σ
υ

is 

distributed chi-squared with  1N ii −=υ  degrees of freedom (2
iυχ ).  By 

transformation, 2is  has the following density 
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 (12) 

where ∫
∞

− −=Γ
o

1y dx)xexp(x)y( , the Gamma function. 

Assume now that the 2iσ  are distributed in the population according 
to an inverse gamma distribution (the conjugate prior) about an unknown 
location parameter, τ , and with some unknown parameter of dispersion, 
ν :18  
 








 νΓσ








 ντ














σ
ντ−

=σπ
+

ν

ν
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22
exp

)(
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i2

i , (13) 

 
where 0, >τν  and ∞<< 20 iσ .  The expected value, variance and 

skewness of 2iσ  are given by  
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i , 2>ν  (14) 
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18 Empirical Bayes analysis is usually fairly robust with respect to the functional form 
chosen for π .  See Berger (1980) and Zellner (1971).  
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 (16) 

Note that as ν gets large the mean )(E 2
iσ converges to τ  and the variance 

)(V 2
iσ and skewness both converge to zero, so that 2

iσ  converges in mean 
square to τ .  For ν greater than four the prior for 2iσ  has a rather long tail 
to the right. 

The squared coefficient of variation, 
4v

2

)(E

)(V
2
i

2

2
i2

−
=

σ
σ

=θ , enables us 

to infer a suitable value for the dispersion parameter, ν , from prior 
information.  For instance, assume that the average volatility of the 
portfolio stock returns is approximately 25% and that its variance is 
approximately 3%, then ν  is approximately eight.   
 

The marginal densities  
 

∫ στνσπσυ=τν 2
i

2
i

2
ii

2
ii

2
ii d),|(),|s(f),|s(m , (17) 

provide the vehicle for the estimation of ν and τ . 
A mixture of method of moments and maximum likelihood 

methods are used to estimate ν and τ .  Using the method of moments 
approach, an estimator of τ  is given by 

∑

∑

=

=

+ν+υ
υ

+ν+υ
υ

=τ
P

1i i

i

P

1i i

2
ii

2

2

s

ˆ , (18) 

which simplifies to an arithmetic average of the individual stock’s sample 

return variances, ∑
=

P

i

i

P

s

1

2

, when iυ  is the same for each stock.19  The joint 

log-likelihood of τν,  from the product of the marginal conditional 
densities of (17) is 
 

                                                 
19 This method is however limited to stocks with common characteristics.   See 
footnote 14.  
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Replacing τ  with τ̂  from (18) and maximising (19) over ν yields 
ν̂ .  It is possible though that maximisation of (19) leads to ∞=ν  or ν  
near zero (see Hui and Berger, 1983). 

As before, the posterior pdf of 2
iσ  is readily obtained after 

substituting the likelihood equation obtained by transformation of the 2
iυχ  

pdf of the statistic 
2
i

2
iis

σ
υ , and the prior pdf of 2

iσ  into the proportional 

relation (10).  This leads to an inverse gamma pdf with parameters 

2ˆi
''
i +ν+υ=ν  and 

''

2
i''2 ˆˆs

s i

ν
τν+υ= . 

 
5. Data 
 

The data employed in this study consists of daily prices for all 
stocks listed in the London Stock Exchange for the period January 1993 
to December 2002.  The prices for each day are taken at the close of 
market and are adjusted for subsequent capital actions.  Stock returns are 
then calculated as the difference in logarithms. 

In conducting the Bayesian analysis stocks are grouped on the 
basis of cross-sectional prior information.   Karolyi (1993) summarizes 
the evidence supporting the idea that each of leverage, volume, and size 
represents instrumental variables related to the true return variances so 
that a reasonable alternative choice of prior density should include 
subgroups of return variances sorted by the stock’s measures of leverage, 
volume and size.  This study employs these three grouping criteria, in 
addition to a separate group containing all stocks in the LSE.  The latter 
takes account of the case where no prior information about the stock is 
available, other than the fact that it comes from the population of all 
stocks in the LSE.  Each one of these groups is later divided into three 
subgroups (high, medium, low), which provide the basis for the 
estimation of ten equally weighted portfolios. 

The balance sheet and trading information used to group the stocks 
is selected in order to ensure that such information is known at the 
moment of estimating the results.   Although different cutting points are 
tested, the results presented below are calculated on the basis of balance 
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sheet and trading information published for the third quarter of 2002.  
Prior hyperparameters are estimated for the last day of the time series.  
The fact that the results are virtually unchanged when different cutting 
points are considered, suggests a reasonable level of stationarity. 

All data is taken from Datastream and simulations are conducted 
using Gauss Aptech Systems.   
 
6. Simulations 
 

Confidence regions (8) and (9) above are estimated for each of the 
ten portfolios described in the previous section by running 10,000 Monte 
Carlo simulations in each case.20  This produces a histogram for each 
portfolio, from which the mean and upper and lower boundaries are read.  
As in Dowd, the confidence intervals are estimated at the 95% confidence 
level.  The mean of each distribution is regarded as an estimate of the 
unknown “true” VaR and the 2.5% and the 97.5% quantiles of the 
distributions are regarded as estimates of the lower and upper bounds.  
VaRs are predicated on the 95% and 99% confidence levels and on one-
day and 30-day holding periods.  The simulations are carried out for a 
sample size (N) ranging from 100 to 2580 (the complete sample).   

The accuracy of the VaR estimate and the lower and upper bounds 
is assessed by measuring their distance (i.e. biasedness) from the “true” 
VaR and their sensitivity to the sample size, holding period and 
confidence level.   
 
7. Results and Conclusions 
 

The results of the simulations are shown in tables 1 to 3 below for 
VaRs predicated on a 30-day holding period.  Three additional models 
were also estimated, however these were excluded from the body of the 
study (and presented in Annex I) due to the weak results obtained from 
the simulations.  All simulated equations are shown in Annex II in 
functional form.   

The tables show simulation results for sample sizes ranging from 
100 to 2580.  For N below 600, results are missing for some portfolios as 
the maximisation of equation (19) fails to converge in these cases.  This is 
consistent with Hui and Berger in the sense that it is possible that 
maximisation of this equation leads to ∞=ν  or ν  near zero.   

Our results basically validate the tendencies found in Dowd, 
however we find that the precision of both the VaR estimate and the 
confidence interval are more dramatically linked to the sample size than 

                                                 
20 Dowd uses the Latin Hypercube routine in @Risk. 
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what Dowd suggests.  For instance, Dowd finds that the conventional 
VaR estimate (equation 2) suffers from a downward bias, but this bias 
gets smaller as the sample size increases.  Dowd reports that the bias of 
the conventional VaR for a 95% confidence interval decreases from 1% 
when N=100 to 0.1% when N=1000.  When we run Dowd’s model with 
our sample data the bias across groups ranges between 0.35% and 1.6% 
when N equals 100 and rapidly approaches zero (for all groups) as N 
increases (Table 1).  Only in one case is the bias higher that 0.1% when N 
is 600 or higher.     Our model, on the other hand, suggests that the bias is 
much larger than what Dowd reports and that it decreases much more 
dramatically as the sample size increases.  For instance, the bias of the 
conventional VaR estimate for the portfolio “Lev high” decreases from 
89% when N=100 to 1% when the complete sample is used.  Likewise, 
when N is maximum the bias is less than 1% in all cases, except for 
portfolios “Lev high” and “Lev med.”   This evidence indicates that a 
“reasonably” precise VaR estimator requires a sample size considerably 
larger than what Dowd suggests.     

The accuracy of the VaR estimate also differs considerably across 
portfolios in our model.  We assess the variability of the bias across 
portfolios by calculation of the standard deviation, although we 
acknowledge that this measure of variability provides limited information 
when calculated for such a small number of data points.  We find that the 
standard deviation of the bias across portfolios is 13% when N equals 
600, and decreases to a mere 0.3% when all the sample information is 
considered.  This suggests that the impact of the different groupings 
becomes considerably more relevant as the sample size decreases.  
Dowd’s model does not support this conclusion as the standard deviation 
of the bias across portfolios in his model is always less than 0.1%, except 
for N=100, when the standard deviation is 0.35%.  These results remain 
virtually unchanged when the VaR is predicated at the 99% confidence 
level. 
  Similar results can be reported for the lower and upper bounds of 
the confidence interval.  Both the lower and upper bound move further 
away from the mean of the distribution as each of the sample size and the 
confidence level decreases.  This tendency is less clear in both Dowd’s 
and our model when the holding period increases.  For instance, for “Lev 
high” when N=2580, the lower bound under both models moves closer to 
the mean of the distribution when the holding period increases.  The same 
happens with “Size high” and “Size med” when N is 1500 or higher.  In 
two additional cases, “Vol high” and “Lev med”, the lower bound moves 
closer to the mean of the distribution when the holding period increases in 
our model, but not in Dowd’s.   
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Similarly, the upper bound moves closer to the mean of the 
distribution when N =2580 for “Vol high.”   This also happens for “Size 
high” when N is 1500 or higher and again the results go in opposite 
directions for “Lev med” when N=2580, although this time it is Dowd’s 
model which shows the “right” direction.   

The sensitivity of the lower and upper bounds to the different 
groupings of stocks is extremely low (0.2%) and virtually identical in 
both models for large N.  As N gets smaller the standard deviation across 
portfolios of both the distance between the lower bound and the mean of 
the distribution and the upper bound and the mean gets slightly bigger, 
although it remains below the 2% level under both models.   Only when 
N equals 100 does the standard deviation rise to levels of 12%.   

Dowd concludes that the confidence interval depends mostly on the 
sample size and gets smaller as N gets larger.  He reports that the 
confidence interval decreases from roughly the VaR estimate plus or 
minus 20% when N=100 to the VaR estimate plus or minus 9% when 
N=1000.  We verify these results when we run Dowd’s model with our 
data although with some variability across portfolios (Table 3).     When 
N is 1500 or higher, our model behaves similarly to that of Dowd, 
although we find a considerable degree of asymmetry between lower and 
upper bounds.   When N is less than 1500 our model becomes 
increasingly less precise as the VaR estimate falls outside the interval in 
an amount that increases as N gets smaller.  This also happens in one 
case, “Lev med”, when N equals 1500.  All of these cases are 
characterized by a very high v value, whereas when v is small (say below 
30) the model provides precise results even for small N. 
  We also verify Dowd’s conclusion that the impact on the 
confidence interval of the confidence level and holding period are 
negligible compared to that of the sample size.   
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Table 1 

ALL LSE Vol high Vol med Vol low Lev high Lev med Lev low Size high Size med Size low

Dowd -0.01% -0.01% -0.03% -0.02% -0.01% -0.04% -0.03% 0.00% 0.02% 0.01%
C&S -0.34% -0.56% -0.75% -0.71% -1.00% -1.40% -0.97% -0.58% -0.48% -0.67%

Dowd 0.04% -0.04% -0.04% -0.02% -0.03% -0.04% -0.06% -0.01% -0.05% -0.02%
C&S -2.12% -1.73% -2.23% -2.19% -3.45% -6.01% -3.00% -2.41% -1.66% -1.74%

Dowd -0.07% 0.02% -0.02% -0.02% -0.09% -0.07% -0.08% 0.01% -0.03% -0.02%
C&S -6.72% -6.11% -7.63% -6.49% -13.99% -26.47% -10.96% -9.18% -5.81% -5.46%

Dowd -0.06% 0.02% -0.04% -0.11% -0.08% -0.02% -0.09% -0.02% -0.04% -0.21%
C&S -31.45% -26.00% -36.00% -36.80% -52.32% -56.10% -17.38% -33.72%

Dowd -0.54% -0.78% -0.72% -0.70% -1.62% -0.84% -0.62% -0.46% -0.35% -0.63%
C&S -88.09% -30.29%

Dowd 2.98% 2.80% 2.92% 3.12% 2.76% 2.73% 3.02% 2.53% 2.62% 3.15%
C&S 3.06% 2.89% 2.89% 3.15% 2.73% 2.84% 2.98% 2.59% 2.65% 3.12%

Dowd 4.22% 4.01% 4.04% 4.68% 4.12% 3.98% 4.19% 3.52% 3.52% 4.52%
C&S 4.21% 3.95% 4.13% 4.51% 4.01% 3.97% 4.23% 3.51% 3.55% 4.37%

Dowd 5.50% 5.69% 5.16% 5.95% 5.21% 5.08% 5.47% 4.96% 4.73% 5.71%
C&S 5.46% 5.30% 5.10% 5.64% 5.00% 4.79% 5.26% 4.52% 4.67% 5.56%

Dowd 9.95% 9.43% 8.91% 11.88% 8.84% 8.32% 9.86% 6.73% 6.74% 11.89%
C&S 8.31% 8.06% 7.34% 9.55% 6.14% 6.26% 6.23% 9.41%

Dowd 31.25% 26.75% 28.51% 39.24% 66.38% 31.98% 27.79% 19.71% 20.20% 36.87%
C&S 17.07% 14.86%

Dowd -2.83% -2.70% -2.87% -3.02% -2.70% -2.73% -2.92% -2.43% -2.50% -3.03%
C&S -2.86% -2.68% -2.81% -3.01% -2.72% -2.63% -2.89% -2.42% -2.49% -3.00%

Dowd -3.99% -3.81% -3.87% -4.29% -3.69% -3.76% -3.95% -3.32% -3.48% -4.26%
C&S -3.90% -3.81% -3.90% -4.42% -3.71% -3.75% -3.93% -3.24% -3.36% -4.28%

Dowd -5.12% -5.16% -4.71% -5.46% -5.11% -5.00% -5.08% -4.40% -4.24% -5.32%
C&S -5.05% -4.88% -4.80% -5.25% -4.81% -4.48% -4.92% -4.27% -4.37% -5.31%

Dowd -9.11% -8.25% -8.32% -10.94% -8.01% -7.32% -8.90% -6.18% -6.24% -10.76%
C&S -7.30% -7.13% -6.82% -8.78% -5.66% -5.69% -5.58% -8.38%

Dowd -23.97% -21.25% -22.95% -31.02% -52.27% -25.12% -21.82% -15.40% -15.72% -29.00%
C&S -14.23% -12.23%

N=1500

N=600

N=1000

N=600

Lower boundary (distance from mean)

N=100

N=1500

VaR (distance from mean)

Upper  boundary (distance from mean)

Confidence level = 95%

N=100

N=2580

N=2580

N=100

N=600

N=1000

N=2580

N=1000

N=1500
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Table 2 

ALL LSE Vol high Vol med Vol low Lev high Lev med Lev low Size high Size med Size low

Dowd -0.02% -0.02% -0.02% 0.00% -0.02% -0.02% -0.02% -0.02% -0.01% -0.01%
C&S -0.33% -0.56% -0.74% -0.69% -1.05% -1.39% -1.01% -0.59% -0.50% -0.66%

Dowd -0.02% -0.03% -0.02% -0.04% -0.03% -0.07% -0.05% -0.01% -0.02% -0.04%
C&S -2.03% -1.60% -2.16% -2.00% -3.38% -5.82% -2.89% -2.42% -1.62% -1.63%

Dowd -0.07% -0.09% -0.04% 0.01% -0.03% -0.06% -0.05% -0.05% -0.03% -0.04%
C&S -6.36% -5.75% -7.35% -6.02% -13.40% -25.61% -10.46% -9.08% -5.78% -5.09%

Dowd -0.12% -0.07% -0.08% -0.07% -0.09% -0.14% -0.05% -0.04% -0.05% -0.18%
C&S -27.73% -23.22% -32.76% -31.03% -49.02% -51.74% -16.91% -28.50%

Dowd -0.55% -0.36% -0.36% -0.76% -0.89% -0.42% -0.43% -0.35% -0.22% -0.50%
C&S -79.07% -28.85%

Dowd 3.00% 2.82% 2.86% 3.02% 2.69% 2.80% 2.95% 2.58% 2.67% 2.99%
C&S 3.04% 2.84% 2.95% 3.08% 2.71% 2.78% 2.89% 2.71% 2.66% 2.99%

Dowd 4.10% 3.93% 3.91% 4.28% 3.86% 3.90% 4.06% 3.53% 3.63% 4.13%
C&S 3.94% 3.87% 4.01% 4.15% 3.77% 3.83% 3.94% 3.55% 3.66% 4.14%

Dowd 5.12% 5.12% 4.98% 5.35% 5.20% 4.97% 5.12% 4.65% 4.68% 5.46%
C&S 5.22% 5.24% 5.07% 5.41% 4.90% 4.58% 5.10% 4.48% 4.61% 5.29%

Dowd 8.15% 7.97% 7.87% 9.22% 7.82% 7.36% 8.33% 6.53% 6.49% 9.18%
C&S 7.33% 7.24% 6.64% 7.79% 5.71% 5.79% 6.02% 7.74%

Dowd 24.80% 22.21% 22.91% 27.51% 34.53% 24.64% 23.13% 17.85% 18.63% 25.98%
C&S 15.60% 13.89%

Dowd -2.9% -2.7% -2.7% -2.9% -2.6% -2.7% -2.8% -2.6% -2.6% -2.9%
C&S -2.8% -2.7% -2.8% -2.9% -2.7% -2.6% -2.8% -2.5% -2.5% -2.9%

Dowd -3.9% -3.7% -3.7% -4.1% -3.6% -3.7% -3.8% -3.2% -3.4% -3.9%
C&S -3.7% -3.6% -3.7% -4.1% -3.6% -3.7% -3.8% -3.3% -3.4% -4.0%

Dowd -5.0% -4.9% -4.6% -4.9% -4.7% -4.7% -4.8% -4.4% -4.2% -5.0%
C&S -4.7% -4.8% -4.6% -5.0% -4.6% -4.3% -4.7% -4.3% -4.2% -4.9%

Dowd -7.5% -7.3% -7.2% -8.4% -7.2% -6.7% -7.5% -6.0% -5.9% -8.2%
C&S -6.6% -6.5% -6.1% -7.2% -5.4% -5.4% -5.4% -7.0%

Dowd -19.2% -17.2% -18.0% -21.8% -26.6% -19.2% -17.9% -14.2% -14.3% -20.7%
C&S -12.9% -11.3%

Confidence level = 99%

VaR (distance from mean)

Upper  boundary (distance from mean)

N=100

N=600

Lower boundary (distance from mean)

N=1500

N=1000

N=1500

N=600

N=1500

N=2580

N=100

N=2580

N=100

N=600

N=1000

N=2580

N=1000
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Table 3 

ALL LSE Vol high Vol med Vol low Lev high Lev med Lev low Size high Size med Size low

Dowd
  Lower bound 2.99% 2.81% 2.95% 3.14% 2.77% 2.77% 3.05% 2.52% 2.59% 3.14%
  Upper bound -2.82% -2.69% -2.84% -3.00% -2.69% -2.68% -2.89% -2.44% -2.53% -3.04%
C&S
  Lower bound 3.42% 3.47% 3.68% 3.89% 3.77% 4.30% 4.00% 3.20% 3.15% 3.81%
  Upper bound -2.53% -2.14% -2.07% -2.32% -1.73% -1.25% -1.94% -1.85% -2.01% -2.35%

Dowd
  Lower bound 4.18% 4.05% 4.08% 4.70% 4.15% 4.02% 4.25% 3.53% 3.57% 4.54%
  Upper bound -4.02% -3.78% -3.83% -4.26% -3.66% -3.73% -3.90% -3.31% -3.43% -4.24%
C&S
  Lower bound 6.47% 5.78% 6.51% 6.85% 7.73% 10.62% 7.46% 6.07% 5.30% 6.23%
  Upper bound -1.82% -2.12% -1.71% -2.28% -0.27% 2.40% -0.96% -0.85% -1.73% -2.58%

N=2580

N=1500

Distance from VaR estimate
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Appendix I:  Additional Models 
 

Three additional models were tested, however the results obtained 
from their simulations are either weaker than those obtained for equation 
(9) or they fail to achieve “normal” convergence.  The models tested are 
the following: 
 
• Confidence region for VaRon the basis of prior distributions: 
 

)()(b µπ−σπ− ,   (20) 
 
where (.)π  denotes some prior pdf of the unknown parameters µ  and 2σ . 
 
• Confidence region for RâV  
 
Given the conditional joint distribution ),|s,r(f 2σµ , the “unconditional” 
joint distribution ),|s,r(f[E)s,r(g 2

, 2
σµ≡

σµ
 may be estimated by taking 

expectations over the unknown parameters, µ  and 2σ .  We apply this 
procedure to RaVˆ (equation 3) and obtain two alternative “unconditional” 
pdfs21 for RâV : 
 

( )[ ] ( )[ ]2

),()(
,/rfE/sfEb

2
σµ−σ−

σµπσπ
, (21) 

where [ ](.)fE (.)π  denotes the expected value of the pdf (.)f  over the 

unknown parameters, which are distributed according to some prior 
distributions (.)π . 

( )[ ] ( )[ ]2

),()(
,/rfE/sfEb

2
σµ−σ−

σµΠσΠ
, (22) 

where [ ](.)fE (.)Π  denotes the expected value of the pdf (.)f  over the 

unknown parameters,  which are distributed according to some posterior 
distributions (.)Π . 

Equations (21) and (22) require estimation of the joint distribution 
of µ  and 2σ .   When both parameters of an Independent Normal process 
are unknown, the most convenient joint distribution of the two variables – 

                                                 
21 Although the sample parameters are no longer conditional on the population 
parameters, they are conditional on the hyperparameters of the prior or posterior 
distributions. 
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the natural conjugate of the Normal pdf – is the Normal-gamma 
distribution22: 
 

( ) ( ) )ĥ,,ˆ/(ˆ,ˆ/ˆ,ˆ,ĥ,ˆ/, 2
N

2
IG

2
NG σµµπτνσπ=τνµσµπ ππ , (23) 

 
where IGπ  and Nπ  are an inverse gamma and a normal prior pdfs, 
respectively, and h  is an unknown precision parameter, h>0.  The 

maximum likelihood estimator of 
2

2s
ĥ

σ=  can be obtained from the 

maximisation of the likelihood of Nπ  evaluated at rri = .  As before, a 
suitable estimator for2σ  is 2

fσ̂ . 
The joint posterior is obtained by combining the likelihood 

function of the joint Normal and the joint Normal-gamma prior.  This 
results in a joint Normal-gamma pdf with parameters ''''2'''' ands,h, νµ

π
, 

where 

''
''

h

rNˆĥ +µ=µ π
π , 

Nĥh '' += , 
( ) ( )( )

''

''2''222
''2 ˆhrNs1Nhˆˆˆ

s
ν

µ−+−+µ+τν
= ππ , and 

1ˆN'' +ν+=ν . 
 
 

                                                 
22 Raffa and Schleifer work with the Gamma pdf of 

2

1
h

σ
= .  For consistency 

purposes, here we work with the inverse-gamma pdf of 2σ .  See Raffa and Schleifer, 
page 300.   
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Appendix II:  Main Equations in Extended Form 
 
• Pdfs of r and s: 



















σ
µ−−

σπ
=σµ

2

22

2

N
2

)r(
Exp

N
2

1
),|r(f  (24) 










σ
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σ







 υ








 υΓ
=υσ −υ

υυ

2

2
12

2

22

2

s
exps

1

2
2

1
2),|s(f  (25) 

Prior and posterior distributions of µ and 2σ : 










σ
µ−µ

−
σπ

=σµµπ
π

π

π

ππ 2

2

2

2
N ˆ2

)ˆ(
Exp

ˆ2

1
),|( , (26) 

where ( ).Nπ  denotes a prior Normal distribution. 

)1
2

(2

2

2

2
IG

2

2
Exp

2
),|(

+
ν

ν

σ






 νΓ










σ
ντ−







 ντ

=ντσπ , (27) 

where ( ).IGπ  denotes an inverted gamma prior distribution. 
 
• Confidence regions 
 

The confidence regions (9) and (20)-(22) above take the functional 
forms presented below once the estimated prior and posterior pdfs are 
substituted into each equation.  Closed form solutions are obtained for 
equations (9) and (20), both of which are readily simulated using the 
appropriate software.  Simulations of equations (21) and (22) involve 
greater complication, as it is not possible to arrive to a close form solution 
due to the presence of µ .  These equations have first to be integrated 
numerically, which compromises the precision of the results. 
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Equation (20): )ˆ,ˆ/()ˆ,ˆ/(b 2
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Equation (22): ( )[ ] ( )[ ]2
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