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Summary 

This dissertation introduces work on face recognition using a novel technique based on 

Hidden Markov Models (HMMs). Through the integration of a priori structural knowl­

edge with statistical information, HMMs can be used successfully to encode face features. 

The results reported are obtained using a database of images of 40 subjects, with 5 train­

ing images and 5 test images for each. It is shown how standard one-dimensional HMMs 

in the shape of top-bottom models can be parameterised, yielding successful recognition 

rates of up to around 85% . 

The insights gained from top-bottom models are extended to pseudo two-dimensional 

HMMs, which offer a better and more flexible model, that describes some of the two­

dimensional dependencies missed by the standard one-dimensional model. It is shown 

how pseudo two-dimensional HMMs can be implemented, yielding successful recognition 

rates of up to around 95%. 

The performance of the HMMs is compared with the Eigenface approach and various 

domain and resolution experiments are also carried out. Finally, the performance of the 

HMM is evaluated in a fully automated system, where database images are cropped au­

tomatically. 

Keywords: face recognition, face segmentation, automatic feature extraction, Hidden 

Markov Models, stochastic modelling. 
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Chapter 1 

Introduction 

Face recognition plays an important part in human activities. The way we interact with 

other people is firmly based on our ability to recognise them. One of the striking aspects 

of face identification in humans is its robustness. Humans are able to identify distorted 

images (as in the case of a caricature, as studied by Benson and Perrett [8]), coarsely 

quantised images (for example, the face in figure 1.1), faces with occluded details (a per­

son wearing sun glasses) and even inverted face images, as reported by Diamond and 

Carey [21]. Humans perform the task of face recognition effortlessly and this has induced 

Figure 1.1: Low resolution image of a famous scientist 

some researchers to argue that the human brain contains a processing region dedicated to 

recognising faces. Humans are aware of their ability to recognise faces with ease. Early 

postage stamps carried the face of Queen Victoria, as this would make it easy to detect 

11 



CHAPTER 1. INTRODUCTION 12 

forgeries. Today's bank-notes still show the face of the Queen and other famous people 

on the reverse side. 

Understanding the human mechanisms employed to recognise faces constitutes a chal­

lenge for psychologists and neural scientists . In addition to the cognitive aspects, under­

standing face recognition is important because the same underlying mechanisms could be 

used to build a system for the automatic identification of faces by machine. There are 

numerous applications for a robust automated recognition system. Gallery and Trew [25] 

investigated face recognition for the purpose of workstation security: their system would 

grab an image of the user at log-in time and then periodically compare the image of the 

person currently sitting at the terminal with the initial face. General security tasks, such 

as access control to buildings, can be accomplished by a face recognition system. Bank­

ing operations and credit card transactions could also be verified by matching the image 

encoded in the magnetic strip of the card with the person using the card at any time. 

Finally, a robust system could be used to index video-documents (video-mail messages , 

for example) and image archives. An image archive indexed in such a way would be useful 

for criminal identification by the police. 

1.1 Biometric Measures 

Banking institutions lose millions of pounds every year through fraudulent use of cash and 

credit cards, because the available identity checks (personal identity numbers and signa­

tures) can be easily circumvented. As a result, there is increasing interest in collecting 

biometric measures of people to strengthen existing identity checks . Biometric systems 

are automated methods for identifying people through physiological or behavioural char­

acteristics. \Vith the advances in automated technology, biometric systems have expanded 

and now fuel an industry generating tu excess of $100 million in sales of identity verifica­

tion products (figures reported by Miller [51]) . Presently, most people are still identified 

through their passport , driver's licence, or, while at work , through photo-badges. A more 

advanced system in use at Olivetti Research Ltd. in Cambridge is based on the Active 

Badge™ system described by Want and Hopper [70]. Active badges are infra-red trans­

mitters which allow the wearer to be located and recognised in a controlled environment. 

It is possible, in principle, to collect patterns of usage for each person and employ them 

as a biometric measure for recognition. 
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A biometric-based system was developed by Recognition Systems Inc., Campbell, Cal­

ifornia, as reported by Sidlauskas [64J. The system was called ID3D Handkey and used 

the three-dimensional shape of a person's hand to distinguish people. The side and top 

view of a hand positioned in a controlled capture box were used to generate a set of 

geometric features. Capturing took less than two seconds and the data could be stored 

efficiently in a 9-byte feature vector. This system could store up to 20,000 different hands. 

Another well-known example of a biometric measure is that of fingerprints. Various 

institutions around the world have carried out research in the field, including the FBI. 

Fingerprint systems are unobtrusive and relatively cheap to buy. They are used in banks 

and to control entrance to restricted access areas . Fowler [24J has produced a short sum­

mary of the available systems. 

Fingerprints are unique to each human being. It has recently been observed that the 

iris of the eye, like fingerprints, displays patterns and textures unique to each human and 

that it remains stable over' decades of life as detailed by Siedlarz [65J. Daugman [19, 20J 

designed a robust pattern recognition method based on two-dimensional (2D) Gabor trans­

forms to classify human irises. 

Speech recognition also offers one of the most natural and less obtrusive biometric 

measures, where a user is identified through his or her spoken words. AT&T have pro­

duced a prototype that stores a person's voice on a memory card, details of which are 

described by Mandelbaum [50J. 

Least obtrusive of all, a face recognition system would allow a user to be identified 

by simply walking past a surveillance camera. Hutcheson [38J reported that NeuroMet­

ric Vision Systems Inc., Pompano Beach, Florida, has designed a single-camera system 

with one DSP card, one frame grabber and a 5,000 face database, the cost of which is 

approximately $30,000. However, no implementation or performance details are available. 

1.2 Aims of this Work 

Face recognition poses a challenging problem. Images that look alike to humans can 

be very difficult to match using computers, because of lighting, appearance and back­

ground changes . Much of the work in the computer vision literature has concentrated on 

improving the two basic approaches to the problem, namely geometric features and tem-

I' 
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plate matching. In this dissertation, a novel approach based on Hidden Markov Models 

(HMMs) is proposed. HMMs have been used with success in the area of speech recog­

nition, where a word spoken twice by the same person may result in two substantially 

different signals. The ability of HMMs to handle this variability has prompted some com­

puter vision researchers to experiment with HMMs in image recognition applications. To 

date, however, no work in face recognition using HMMs has been found and this disserta­

tion investigates some of the aspects involved in classifying faces using this method. The 

work shows that, through the integration of a priori structural knowledge with statistical 

information, HMMs can successfully describe the content of face images. 

The aims of this dissertation can be summarised as follows: 

• To introduce a novel modelling technique for face images based on Hidden Markov 

Models. 

• To demonstrate the characteristics of the proposed approach through a detailed 

collection of experiments. 

• To study how the recognition performance is affected by the variation of model 

. parameters. 

• To extend the insights gained from experimenting with standard one-dimensional 

(ID) HMMs to pseudo-2D HMMs. 

• To investigate how the HMM performance is affected by varying the image resolution 

and by representing images in the edge domain. 

• To compare the performance of the HMM-based method with a well-known approach 

(Eigenfaces ). 

• To investigate the performance of the HMM approach in a fully automated system, 

in which face images are cropped automatically. 

1.3 Structure of the Dissertation 

This dissertation consists of nine chapters. 

Chapter 2 surveys relevant literature in the field of face recognition. A brief account on 

the work done in psychology is presented first, followed by a more comprehensive 

description of the advances in the field of automated recognition. 



CHAPTER 1. INTRODUCTION 15 

Chapter 3 introduces the proposed approach based on HMMs. The HMM is defined 

first and other work by computer vision scientists using HMMs is briefly reviewed. 

The proposed HMM architecture and its motivations are then described. 

Chapter 4 presents experimental results using basic ID HMMs. Two model topologies 

are investigated. For ergodic models, only preliminary results are presented, as 

they do not appear to model the data successfully. For top-bottom models, the 

parameters are analysed through a series of detailed experiments. 

Chapter 5 extends the insights gained from experimenting with ID HMMs to pseudo-

2D (P2D) HMMs. P2D-HMMs are defined and implemented for face recognition , 

giving improved experimental results which indicate that the model benefits from 

using a more efficient 2D representation. 

Chapter 6 compares the HMM-based approach with the Eigenface approach. Experi­

ments are carried out on the same database, drawing a statistical comparison be­

tween the best results obtained with HMMs and Eigenfaces. 

Chapter 7 is a summary of some representation domain and resolution experiments . 

. The results obtained by the best HMMs using edge-detected images and images at 

different resolutions are analysed. 

Chapter 8 completes the experimental section of the dissertation. An automatic system 

for locating the head in uncropped images is presented. The system is used to crop 

images automatically. These images are then used to train and test a P2D-HMM, 

the results of which are described. 

Chapter 9 concludes the dissertation, by summarising the results obtained and indicat­

ing the future directions of HMM-based face recognition. 
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Chapter 2 

Summary Of Related Work 

The task of recognising faces has attracted much attention both from psychologists and 

from computer vision scientists. This chapter reviews some of the approaches that re­

searchers from both fields have investigated. The section on psychology presents some 

basic ideas and contains a number of useful references . However, a discussion of the 

models and techniques used in the field is beyond the scope of this dissertation. A more 

detailed section follows on progress in the field of automated face recognition, with a 

survey of some of the most popular and successful algorithms to date. 

2.1 Face Recognition in Psychology 

2.1.1 Describing face information 

The recognition of familiar faces plays a fundamental role in our social interactions. Hu­

mans are able to identify reliably a large number of faces, and psychologists are interested 

in understanding the perceptual and cognitive mechanisms at the base of the face recog­

nition process. A recent description of the progress made by psychologists can be found 

in Bruce [9]. The apparent complexity of the identification process and its high rate of 

success for humans have induced some researchers, for example Yin [77] , to argue that 

neural specialisation has evolved to support a processor specific to faces. In support of 

this view, Perrett et al. [54] have reported the detection of special neurons responsive to 

faces in the cerebral cortex of monkeys. 

Faces consist of the same elements (nose, mouth, eyes, etc.) and recognition of in­

dividuals happens when we discriminate between the same basic configurations . Each 

individual must therefore be distinguishable from others because of the way the basic 

16 
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element configuration varies, as pointed out by Young and Bruce [78]. The dichotomy in 

the kind of information carried by a face was also emphasised by Diamond and Carey [21] 

who distinguished between isolated and relational features. Isolated features are those 

. features which can be described by themselves (e.g. eye colour, hair texture, etc.) . Rela­

tional features are those features which describe aspects of the shape and how different 

facial elements relate to one another (e.g. the position of the nose relative to the eyes). 

The description of relational features is useful to discriminate between different people, 

and also to determine different kinds of facial behaviour or expression for the same person. 

Various efforts were made to develop a system able to distinguish and model different 

types of facial expression. One such system was the Facial Action Coding System (FACS) 

proposed by Ekman and Friesen [22], and later used also by Rydfalk [60] to create a 

data-set describing a parameterised face. The system was based on the fact that every 

facial expression is the result of muscular action. A study of the anatomical basis of facial 

movement gave an insight into how facial muscles act to change the physical appearance 

of the face. "Action units" were used to model the different muscles in the face, with 

some muscles contributing to more that one action unit. 

2.1.2 Recognition models 

Hay and Young [32] proposed one of the early models to explain recognition of familiar 

faces based on "face recognition units" (FRUs). FRUs are units which will respond by 

reaching a threshold of excitation when a known face is seen. There is one FRU for each 

known face. Faces are firstly encoded using a suitable representation and then passed to 

the FRUs. The matching FRU gives access to the semantic information of the recognised 

person and the his or her name is generated. FRUs also formed the basis of a later model 

proposed by Bruce and Young [10]. 

Cantor and Mischel [12] analysed the decision process behind visual object categori­

sation. Three approaches to decide if a visual stimulus could be identified as a certain 

visual object were presented: (1) classical, (2) exemplar and (3) prototypical. The decision 

processes for each approach were summarised as follows: 

1. The perceiveI' used a list of necessary attributes that described the visual object; 

recognition occurred if the perceiveI' was satisfied that the visual stimulus possessed 

all the necessary attributes. 
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2. The perceiveI' used an exemplar model which was a collection of known instances 

. of the visual object; a visual stimulus was matched on the basis of its similarity to 

the known instances. 

3. The perceiveI' used a prototype model which was an abstract image or set of features 

(prototype) of the visual object; a visual stimulus was matched on the basis of its 

similarity to the prototype. 

In their work on person perception, Cantor and Mischel restricted their attention to ap­

plications of the prototype approach. 

Light et al. [49] endorsed the view that natural categories such as those of faces are 

better defined in terms of a prototype. A prototype face is created from all the faces 

an individual encounters in daily life and each new face is encoded by reference to the 

prototype. The various face features are conceived as axes extending in all directions from 

the prototype, which represents the origin of this feature space. A typical face, which will 

have a close resemblance to the prototype, will be located close to the origin. Since typical 

faces are assumed to be more common than distinctive faces, the space in the vicinity of 

the origin will have a high density. In contrast, distinctive faces will be located at some 

distance from the prototype and are less likely to be in the proximity of other faces. Light 

et al. presented a set of four studies which showed evidence that recognition memory 

for faces similar to a prototype was inferior to memory for unusual faces. Distinctiveness 

was therefore deemed to be an influencing factor for the successful recognition of faces. 

Further work on distinctiveness was presented by Winograd [72] and Shepherd et al. [63]. 

2.2 Automatic Face Recognition Survey 

This section presents a concise literature survey for the field of automatic face recognition. 

Much work has been done in the field. However, the comparison and description of the 

various methods is often a complex task because the results reported are obtained using 

different image sets and because there is no common terminology to describe the methods. 

In order to create a coherent presentation framework, the following terminology will be 

used throughout this thesis. The task under discussion usually consists of identifying an 

unknown face image from a set of known images. A database of face images consists 

of images of S distinct subjects. In general, in order to balance the database, the S 

subjects should span gender, ethnic origin and age as evenly as possible. However , this is 
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often very difficult to achieve because of a shortage of subject availability and sometimes 

computer storage limitations. The database should contain the same number I of images 

for each subject. In this case the overall size of the database would be I x S. Of the 

. I images available for each subject, J are used for training and K are used for testing. 

The size of the training set is therefore J x S and the size of the test set is K x S. Also 

J + K = I and the training set has an empty intersection with the test set . Recognition 

is usually performed by scoring a test image against the images in the training set using 

some distance metric and selecting the highest score. A set of experiments £ can be 

described using the shorthand notation: 

£ = (S, J, K, r) 

where r is the correct recognition performance expressed as a percentage between 0 and 

100. 

Different techniques have been proposed over the last 25 years. Two general strategies 

for solving the problem of computer face recognition have been identified in the literature, 

as pointed out by Brunelli and Poggio [11] and Robertson and Craw [59]: geometric, 

feature-based matching and template matching. The approaches reviewed in the following 

sections are therefore collected in these two categories. Most of these approaches are 

constrained by a number of assumptions for the training and test data, some of which 

have been summarised by Samal and Iyengar [61] . The most common assumptions are: 

• The face images are in either frontal or profile view; 

• The face is in upright position; 

• No or very little tilt is tolerated; 

• No occlusions, facial hair, glasses or scars; 

• Lighting and background are controlled; 

• Most of the test cases are white males; 

• The size of the test set is limited to at most a few hundred. 

2.2.1 Early recognition work 

Automatic face recognition has attracted much interest from the computer science com­

munity since the late 1960s. However, initial work in automatic face processing dates back 
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to the end of the 19th century, as reported by Benson and Perrett [7] . In his lecture on 

personal identification at the Royal Institution on 25 May 1888, Sir Francis Galton [26] 

F.R.S., an English scientist, explorer and a cousin of Charles Darwin, explained that 

. he had "frequently chafed under the sense of inability to verbally explain hereditary re­

semblances and types of features". In order to relieve himself from this embarrassment, 

he "took considerable trouble and made many experiments". He described how French 

prisoners were identified using four primary measures (head length, head breadth, foot 

length and middle-digit length of the foot and hand respectively). Each measure could 

take one of three possible values (large, medium or small), giving a total of 81 possible 

primary classes. Galton felt it would be advantageous to have an automatic method of 

classification. For this purpose, he devised an apparatus, which he called a mechanical 

selector, that could be used to compare measurements of face profiles. In choosing the 

best measures to describe the form of the profile, Galton reported that most of the mea­

sures he had tried were fairly efficient . 

2.2.2 Geometric, feature-based approach 

The idea of comparing measurements introduced by Galton has also been used in more 

recent work based on computing a set of distinctive features from the picture of a face. 

The features are usually obtained from either profile o~' front view images . 

Profile features 

Hal'mon et al. [31] proposed an approach based on geometric profile features of the human 

face. The features were calculated from some automatically placed fiducial marks along 

the profile trace. Starting from a database of 112 subjects with three training images and 

one test image for each subject, they represented a face using a 17-element feature vector. 

A success rate of 96% was obtained. N ajman et al. [52] also used geometric features from 

profile images. A profile outline was constructed using between 8 and 100 control points . 

Tests were carried out on a database of 10 subjects, with 31 training images and 10 test 

images for each subject. Three classification methods were tried: Principal Component 

Analysis followed by Quadratic Discrimination, k-Nearest Neighbour and Gradient Back 

Propagation. Success rates of about 90% were reported. Wu and Huang [75] used profile 

geometric features in their work with six control points obtained using a cubic B-spline. 

The database contained 18 subjects with three training images and one test image for 

each subject . Nearly 100% recognition rates were obtained. 
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Front view features 

. In one of the first attempts at automatic face recognition, Kanade [40] devised a system 

that would extract 16 front view geometric features (subsequently reduced to 13). He used 

a database of 20 subjects with one training image and one test image for each subject, 

reporting a 75% correct recognition performance. Brunelli and Poggio [11] have recently 

implemented a geometric, feature-based recogniser loosely based on Kanade's work. The 

recogniser was tested on a larger database of 47 subjects and recognition rates of about 

90% were reported. Another front view feature-based approach was implemented by Wong 

et al. [73] using various distances (eye to eye, left and right eye to nose, nose to left and 

right edge) as features. Perfect recognition results were reported on a database of only 6 

people. 

Mixed front view and profile features 

In their early work, Goldstein et al. [29] used a set of 34 mixed front view and profile fea­

tures (subsequently reduced to 22). The features comprised amongst others, hair length, 

hair texture, nose length, mouth width and chin profile. Features were scored on a scale 

of 1-5 (low-medium-high) and were located manually. The model predicted that for a 

population of 255 subjects 6 features were sufficient for identification. 

2.2.3 Template matching 

Another technique often used consists of representing an image as single or multiple arrays 

of pixel values. The arrays are compared with single or multiple templates representing 

the faces in the training set via a suitable metric. The features of interest can be located 

manually or by using a more sophisticated automatic approach based on a multi-layer 

perceptron as detailed in Hutchinson and Welsh [39], a deformable template as described 

by Yuille et al. [80] or an active contour model (snake) as reported by Huang and Chen [37] 

and as originally described by Kass et al. [41]. 

Principal component analysis 

The simplest version of template matching is obtained when the whole face irriage is used 

as a single template. A test image is recognised by computing its distance (in Euclidean 

terms, for example) from the templates generated from the images in the training set and 
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selecting the closest match. The Karhunen-Ldwe procedure of Kirby and Sirovich [42] 

and the Principal Component Analysis approach of Turk and Pentland [69] are based on 

this simple template matching method. The array and the template, however, are not the 

. original face images but their projection onto an optimal coordinate system. The set of 

basis vectors which make up this coordinate system are the eigenvectors of the covariance 

matrix of the ensemble of training faces. Using this method, Turk and Pentland reported 

successful recognition rates of up to 96% with a database of 16 subjects. This method 

will be analysed in more detail and implemented for comparison purposes in chapter 6. 

Isodensity line maps 

A different template-based approach was proposed by Nakamura et al. [53]. The tech­

nique they presented made use of grey-level isodensity line maps to represent face images. 

Summarised in their own words, if the brightness of an image is viewed as the height 

of a mountain, then an isodensity line corresponds to contour lines of equal altitude. A 

database of 10 subjects with one training image and one test image for each subject was 

used. Three subjects wore glasses, two men had a thin beard and two women had different 

make-up and hair styles in the test and training images. Recognition experiments were 

carried out and perfect recognition rates were reported. 

Multiple template correlation methods 

One of the first studies based on multiple template representation was carried out by 

Baron [4]. A database of 42 subjects was used and each was represented by up to five 

manually selected face features (full face, mouth, right eye, chin and hair), and each face 

feature contained up to four distinct templates. A total of up to 20 pictorial templates 

were stored for each subject, with each template being a 15x16 array of pixels. A test 

image was first reduced to a 15x16 full face array and then compared with each full face 

template in the training set. If the correlation value between the reduced test image 

and one of the full face templates exceeded a threshold of recognition, the test image was 

recognised as the corresponding subject. If the correlation value fell between the threshold 

of recognition and a lower value called the threshold of recall, then the other face features 

were recalled and used for recognition. If for at least three out of four of the features the 

correlation value exceeded the threshold of recall, the test image was recognIsed as the 

current subject. Baron reported a recognition accuracy of 100%. 
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More recently Brunelli and Poggio [11] presented results based on a similar approach. 

They used a database of 47 subjects, where each subject was represented by a full frontal 

image and a set of four templates (eyes, nose, mouth and the whole face). Recognition 

of a test image was performed by computing a normalised cross correlation for each tem­

plate and by finding the highest cumulative score. Perfect recognition rates were reported. 

Vector quantised templates 

Sutherland et al. [67] used a template-based approach, where each of the original eight 

feature templates they selected was substituted with an approximately similar template 

drawn from a code-book via vector quantisation. Various algorithms can be used to gen­

erate useful code-books and two such algorithms were presented by Ramsay et al. [58]. 

Using a database of 30 subjects with 10 training images and 10 test images for each sub­

ject, a successful recognition rate of 89% was reported. 

Neural network based template matching 

Templates have been used as input to neural network based systems. Allinson et al. [2] 

used a 32x32 full image template and two 64x32 templates for the eye and mouth regions 

respectively. These templates were used as inputs to Kohonen's [43] self-organising fea­

ture maps . The maps produced a topology which preserved the structure of the input 

templates. The maps were used as input to a multi-layer perceptron which carried out 

the classification. Other work by Cottrell and Fleming [16] studied the performance of 

a network that automatically extracted features (the output of the hidden units) from 

a 64x64 full face template and input them to a one-layer network for identity and also 

gender classification. Test images were perfectly identified with a database of 11 subjects. 

A gender recognition success performance of 37% was reported. 

Stonham [66] detailed experiments on face recognition using a general purpose pattern 

recognition machine called WISARD. A database of 16 subjects was used and full image 

153x214 templates were input to a self-adapting single layer network. Subjects were asked 

to appear before a camera, face on, for approximately 20 seconds. On average, 200-400 

images were required to complete the training. Real time testing results were reported 

with error free recognition rates. 
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Hybrid template methods 

There may be ad vantages in using a combination of both geometric features and template 

information. In the work of Craw and Cameron [18] and in the work of Craw [17], a 

hybrid approach was proposed based partly on template matching and partly on geometric 

features. A face was modelled using a mask with 59 control points and each face was 

described by two vectors: 

1. A shape vector, i.e. the location of each control point. The shape vector contained 

information about the geometric features of the face. 

2. A texture vector, i.e. the grey-levels used to texture the face after the control points 

were aligned with the average face. The information contained in the texture vector 

was the equivalent of that of a template. 

Successful identification results were reported even when there were significant differences 

between test and training images. 

Lanitis et al. [47] also used a combination of shape and grey-level information to encode 

the appearance of human faces. They experimented with a database of 30 subjects, with 

10 training and 10 test images for each subject . Faces were modelled using three methods: 

1. A flexible shape model based on a point distribution model (an introduction to this 

technique can be found in Cootes et al. [15]) . This model captured shape variation 

and could also be used for locating the face in the image. 

2. A shape-free grey-level model, obtained by deforming and aligning each training 

face to the mean face. 

3. A local grey profile model, consisting of a large number of local profiles, taken along 

the perpendicular to the shape model boundary at each shape model point. 

Results were best when all three methods were used simultaneously and successfill recog­

nition rates of 92% were reported. 

2.2.4 Summary of recognition results 

Comparing and interpreting recognition results of different face recognition systems is a 

complex task , because experiments are usually carried out on different data sets . This 

implies that the size of the database and the constraints applied to the data are different 

for each experiment. Robertson and Craw [59] discussed the testing of face recognition 
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systems and pointed out that systems which worked well with constrained data, might 

not perform equally well with data supplied externally. The following gives a number of 

useful questions when reviewing different approaches: 

• Were expression, head orientation and lighting conditions controlled? 

• Were the subjects allowed to wear glasses and have beards or other facial marks? 

• vVas the subject sample balanced? Were gender, age and ethnic origin spanned 

evenly? 

• How many subjects were there in the database? How many images were used for 

training and testing? 

• Were the faces and the face features located manually? Was the scaling controlled? 

Answering the above questions contributes to building a better description of the con­

straints within which each approach operated. This helps to make a fairer comparison 

between different sets of experimental results. However, the most direct and reliable com­

parison between two or more approaches is obtained by experimenting with the same 

database. Brunelli and Poggio [11], for example, implemented a feature-based and a 

template-based method, and tested and compared them using the same database. Ide­

ally, databases should be made available for other researchers to use. 

Table 2.1 summarises the recognition performances of the approaches discussed in the 

previous sections. The experimental results are reported using the E-shorthand notation 

introduced in section 2.2. The table is shown for easy reference, but a comparison between 

the different systems in the terms expressed above is beyond the scope of this dissertation. 
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Reference Experimental Results 

Harmon et al. [31] £=( 112, 3, 1, 96%) 

N ajman et al. [52] £=( 10, 31, 10, 90%) 

Wu and Wuang [75] £=( 18, 3, 1, 100%) 

Kanade [40] £=( 20, 1, 1, 75%) 

Nakamura et al. [53] £=( 10, 1, 1, 100%) 

Sutherland et al. [67] £=( 30, 10, 10, 89%) 

Lani tis et al. [47] £=( 30, 10, 10, 92%) 

Brunelli and Poggio [11] (feature) £=( 47, 90%) 

Brunelli and Poggio [l1](template) £=( 47, 100%) 

\iVong et al. [73] £=( 6, 100%) 

Turk and Pentland [69] £=( 16, 96%) 

Baron [4] £=( 42, 100%) 

Cottrell and Fleming [16] £=( 11, 100%) 

Stonham [66] £=( 16, 200-400, 100%) 

Table 2.1: Summary of surveyed recognition results 



Chapter 3 

The Proposed HMM Approach 

In recent years, research in the field of automated face recognition has focussed on feature­

based and template-based methods, as described in chapter 2. Researchers have spent 

much effort trying to improve these two basic methods. 

A novel approach based on HMMs is investigated in this dissertation. The HMM 

method is based on matching image templates to a chain of states of a doubly-embedded 

stochastic model. This chapter outlines the basic principles of HMMs and explains how 

they can be used for face recognition. The sections are organised as follows: first a 

general overview of HMMs is presented, then some HMM applications in computer vision 

are briefly reviewed and finally the proposed HMM-based architecture for face recognition 

is detailed. 

3.1 Introducing HMMs 

HMMs are generally used for the stochastic modelling of non-stationary vector time­

series. As such, they have an immediate and obvious application in speech processing, 

particularly recognition, where the signal of interest is naturally represented as a time­

varying sequence of spectral estimates. Therefore, much of the development of HMMs in 

recent years has been done within the speech area. Rabiner [56J presented a comprehensive 

tutorial on HMMs, details of which are summarised in the next section. Moreover, a 

good modern treatment of HMM-based speech recognition can be found in Rabiner and 

Juang [57J. 

27 
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3.1.1 One-dimensional HMM definition 

A HMM provides a statistical model for a set of observation sequences. In speech ap­

plications, the observations are sometimes called frames, and the two terms will be used 

interchangeably throughout this dissertation. Let a particular observation sequence have 

length T and be denoted as 01 .. . OT. A HMM consists of a sequence of states numbered 

1 to N and it is best understood as a generator of observations. The states are connected 

together by arcs and each time that a state j is entered, an observation is generated 

according to the multivariate Gaussian distribution bj ( Ot) with mean J-tj and covariance 

matrix Vj associated with that state. The arcs themselves have transition probabilities 

associated with them such that a transition from state i to state j has probability aij. 

The probability of the model starting in state j is 7rj. A HMM is thus defined by the 

following set of parameters: 

• N is the number of states in the model. 

• A = {aij : 1 :::; i, j :::; N} is the state transition matrix. 

• B = {bjO : 1 :::; j :::; N} is the output probability function. 

• IT = {7rj : 1 :::; j :::; N} is the initial state probability distribution. 

In shorthand notation, a given model can be summarised as A = {N, A, B, IT}. All of the 

experimental work described here is carried out with the HTK software package described 

by Young [79], which adopts the convention that a HMM with N-2 states is represented 

by a model with N states, always starting in state 1 and ending in state N. Both these 

states are non-emitting and only states from 2 to N-1 emit. In this way, the parameter IT 

is not used explicitly, but is absorbed by the transition probability matrix. The equations 

that follow, however, are based on the work by Rabiner [56J and make use of the initial 

state probability distribution. 

3.1.2 Model training and recognition 

For a given model A, the joint likelihood of a state sequence Q = q1 . .. qT and the cor­

responding observation sequence 0 = 01 .. . OT is given by multiplying each transition 

probability by each output probability at each step t as follows: 

(3.1) 
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In practice, the state sequence is unknown, i.e. it is hidden and so equation 3.1 cannot be 

evaluated. However, the likelihood P(OIA) can be evaluated by summing over all possible 

state sequences: 

P(OIA) = L P(O, QIA) (3.2) 
Q 

The key attraction of HMMs is that there is a simple procedure for finding the parameters 

A which maximise equation 3.2. This procedure is usually referred to as Baum-Welch 

re-estimation introduced by Baum [5] and it depends for its operation on the forward­

backward algorithm. The latter allows the so-called forward probability P( 01 ... Ot, qt = 

jlA) and the backward probability P(Ot+1 ... oTlqt = j, A) to be found efficiently via a 

simple iteration. The forward and backward variables CXt(j) and f3t(j) are defined as 

follows: 

P(OI . .. 0t, qt = jlA) 

P(Ot+1 ... oTlqt = j, A) 

The variables can then be found inductively: 

1. Initialisation 

2. Induction 

3. Termination 

1, 

N 

1 ~ j ~ N 

1 ~j ~ N 

L aijbj (0t+J)f3t+l(j), 
j=1 

N N 

P(OIA) = LCXT(i) = Lf31(i) 
i =1 i=1 

1~t~T-1 

t = T -1, ... ,1 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The direct calculation of P(OIA) according to equation 3.2 involves on the order of TNT 

calculations, while the calculation through the forward-backward algorithm of equation 3.9 

only requires on the order of T N 2 calculations, as detailed by Rabiner [56]. 
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The product of the forward and backward probabilities when normalised yields the 

probability of occupying state j at step t given the observation sequence O. This variable 

is defined as It(j) = P( qt = jIO,).) and can be simply calculated as: 

(3.10) 

With this state occupation probability, a new set of HMM parameters for each state j can 

be found, essentially by computing weighted averages . The model described by the new 

set of parameters is defined as X = {IT, A, B}. To estimate the transition parameters, a 

related quantity et(i,j) is defined as the probability of being in state i at time t and in 

state j at time t + 1, given the observation sequence and the model: 

(3.11) 

Using the definitions of the forward and backward probabilities, this can be expressed as: 

e ( . . ) - O:t(i)aijbj (Ot+d!3t+1 (j) 
t 2,) - 2:f:1 2:f=1 O:t(i)aijbj (Ot+1)!3t+1 (j) 

(3 .12) 

Using the concept of counting occurrences, the model parameters for X can be re-estimated 

as follows: 

7ri 11 (i) (3.13) 

aij 
2:;=11 et(i,j) (3.14) 
2:;=j1 It(i) 

Iti 
2:;=1 It (i) . 0t 

(3.15) 
2:;=1 It (i) 

V · 
2:;=1 It (i) . (Ot - Iti) (Ot - Iti)/ 

(3.16) t 

2:;=llt(i) 

where prime denotes vector transpose, and Iti and V i are the estimates ofthe mean and co­

variance matrix1 of the Gaussian output probability function for state i. Baum and Sell [6] 

showed that the new model X was equally or more likely than)., i.e. P(OIX) ?: P(OI).). 

Based on the above estimates, X is used iteratively in place of). and the process is l'epeated 

until the parameter estimates converge to a critical point, which is at a local maximum of 

P(OI).). All ofthe above has been described in terms ofa single observation sequence, but 

it is trivial to extend this to maximise over a set of observation sequences , by summing 

the numerators and denominators in the re-estimation formulae over all sequences . Thus, 

given one or more training observation sequences known to come from a specific class, 

lThe re-estimation equation for the covariance matrix in HTK uses I-Li instead oflii . This is found to 

make no difference, provided the Baum-Welch iteration converges 
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the parameters of a HMM can be estimated to form a statistical model to represent that 

class, and a different model is formed for each class. 

In order to use HMMs for recognition, an observation sequence is obtained from the 

test signal and then the likelihood of each HMM generating this signal is computed. 

The HMM which has the highest likelihood then identifies the test signal. This like­

lihood should strictly be the total likelihood as defined in equation 3.2. However, in 

practice, it is more convenient to find the state sequence which maximises equation 3.1 

and use the corresponding maximum likelihood instead. This maximisation, known as the 

Viterbi algorithm described by Forney [23], is a simple dynamic programming optimisa­

tion procedure. The advantage of using it instead of the full likelihood computed by the 

forward-backward algorithm is that it also yields the maximum likelihood state sequence 

as a by-product. This can be useful in determining which regions of the observation se­

quences are being modelled by each state. The best score along a single path (intended 

as a sequence of states) at time t, which accounts for the first t observations and ends in 

state j, is defined by the quantity Ot(j) as follows: 

An inductive procedure can be used to calculate the values of Ot(j) as follows: 

1. Initialisation 

01(j) P(ql = j, 01 I A) 

P(q1 = j I A)P(01 I ql = j, A) 

71' j b.( od, 
J 

2. Induction 

3. Termination 

po = max [OT(j)] 
l~j~N 

1'.5: j '.5: N 

1 '.5: t '.5: T - 1, 

1'.5: j '.5: N 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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The quantity po is the joint probability of the optimal state sequence and the observation 

sequence 0 given the model A. This maximum likelihood value is used for recognition. 

An array 'ljJt(j) is defined to keep track of the states that maximise equation 3.17. The 

maximum likelihood state sequence Q = Ql' .. qT can be found by backtracking through 

'ljJt(j) as follows: 

qT = arg max [6T( i) ] 
l<i<N 

Fori = T - 1 to 1 

3.2 HMMs in Vision 

HMMs have been used mostly in speech recognition applications, an area where they have 

been studied in depth and where they are now a well-established technique. As previ­

ously pointed out, HMMs model the statistical properties of ID observation sequences 

and speech data is naturally ID along the time axis. HMMs have been successful 

for speech and researchers in the field of computer vision have recently started to 

use them for image recognition problems. 

He and Kundu [33] used continuous density HMMs combined with an autoregressive 

data model to classify closed 2D shapes. Each shape was represented using a ID sequence 

of radii from the centre of gravity of the shape to the shape contour as shown in figure 3.1. 

Radii were chosen spaced at an equal curve length along the contour . Each radius was 

predicted using a linear combination of m previous radii, plus a constant term and an er­

ror term. The sequence was divided into T segments with I elements. Each radius feature 

vector consisted of the m autoregressive coefficients for the current radius, a ratio of the 

constant term to the error term and the current segment mean. They experimented with 

eight classes of shapes and trained a distinct HMM for each class using 20 class samples. 

A further 10 class samples were used for testing and shape recognition accuracy of up to 

100% was reported. 

Chen and Kundu [14] proposed a combination of quadrature mirror filter (QMF) banks 

and continuous density HMMs for image texture identification. The QMF bank was used 

to implement the wavelet transform of textures. A set of features was extracted from the 

statistics based on the first-order distribution of grey levels of the subband images. These 
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y 

x 

Figure 3.1: Radii sampling technique 

subband features were arranged in a sequence starting from the lowest frequency band to 

the highest frequency band. The sequence was used to train one HMM for each type of 

texture. Successful recognition rates of up to 93% were reported. 

Yamato et at. [76] chose discrete HMMs to model human action sequences. They anal­

ysed actions of a tennis player by modelling 6 tennis strokes using a different HMM for 

each one. The tennis strokes were extracted from a video sequence and were quantised 

into a discrete symbol sequence. With a 36-state model, they achieved successful recog­

nition rates of over 90% if both the training and the test strokes were performed by the 

same player. For data from different players, the rate dropped to about 60%. 

Another application of discrete HMMs was studied by Kundu et at. [45] for handwrit­

ing recognition applications. One HMM was built to model the letters of the alphabet . 

Each letter was identified with one of the states of the discrete HMM. For a given test 

word , each unknown letter in the word was transformed into its representative symbol 

from a code-book of symbols using a minimum distance criterion. Given the observed 

symbols, the best sequence of states revealing the letters that made up the test word was 

determined through one run of the Viterbi algorithm. 
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Various papers are reported on applications of HMMs to optical character and text 

recognition. Levin and Pieraccini [48], Agazzi et al. [1] and Kuo and Agazzi [46] presented 

work on text recognition using enhanced planar HMMs. A more detailed account of their 

work and a report on enhanced planar HMMs are presented in chapter 5. 

3.3 Proposed Architecture 

In this dissertation, the problem of face identification is addressed from the perspective of 

statistical pattern recognition. Intuitively a face can be divided into a number of regions 

such as the mouth, eyes, nose, etc., and if these could be located reliably, then standard 

pattern matching techniques could be applied to each region individually to compute an 

overall distance metric. However, accurate location is in practice very difficult. Moreover, 

the precise demarkation of the regions is fuzzy since it is unclear where, for example, the 

mouth region ends and the chin begins. 

A potential solution to the above-mentioned problem is to associate facial regions with 

the states of a continuous density HMM. This allows the boundaries between regions to 

be represented by probabilistic transitions between states and the actual image within a 

region to be modelled by a multivariate Gaussian distribution. In the general case, the 

HMM would need to be 2D. However, in the chapters that follow, the assumption is made 

that a first-order approximation can be used where the facial regions are either restricted 

to horizontal bands, or are modelled by a pseudo-2D topology. In both cases, simple 1D 

HMMs can be used. 

In the work described in this dissertation, a model is trained with 5 face images of 

the same subject. Each image generates an observation sequence 0 = 01 ' . . OT. An ob­

servation 0 t is obtained from a block of pixels in the 2D image by means of a sampling 

window that scans the image in some order as illustrated in figure 3.2. The pixels in 

the sampling window are arranged in a column-vector 0 t containing their intensity level 

values. The sampling process determines how successful a model can be and is described 

in more detail in the chapters that follow. HMMs represent the statistical distribution 

of all observation sequences associated with a particular class or in this context with a 

particular subject. When concerned with face images, a number of different views and 

expressions of each face can be combined in a single statistical model. Since the HMM 

associates states with the quasi-stationary regions of its observation sequences, it offers 

a way of automatically locating and utilising the regions of a face which are important 
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image 

sampling window 

Figure 3.2: Sampling technique for ID HMM 

for identification. In subsequent parts of this dissertation, these regions will be referred 

to as features. For any given model, the features can be visualised by displaying the 

mean vector of the model state distributions as a bitmap. Furthermore, the optimal 

state sequence obtained as a by-product of the Viterbi algorithm can be mapped back to 

the image, showing how the face image is segmented into face regions. In this way, the 

segmentation of the face into regions useful for identification is achieved automatically. 

Other methods for feature location, such as those mentioned in chapter 2 based on neural 

networks, deformable templates and active contour models, generally require more guid­

ance, sometimes even a substantial initial guess to find features successfully. The features 

obtained by the HMM are the result of a stochastic optimisation and are not guaranteed 

to yield the same features as those used by humans. However, by modelling the topology 

of the HMM after the structure of the face, the features obtained match in most cases 

those used by humans, as will be shown in the course of this dissertation. 



Chapter 4 

Experiments With One-Dimensional 

HMMs 

This chapter details experimental results obtained using a lD HMM. Two simple, basic 

HMM topologies are investigated: ergodic and top-bottom. The ergodic topology gen­

erates a simple model with .:few constraints on the data. This model makes no use of 

structural information (i.e. the fact that it is known that the image contains a face). Be­

cause of the lack of constraints, the modelling of the data is less successful and only limited 

experimental results are presented (with model parameters chosen based on subjective in­

tuition). The concept of a top-bottom HMM is introduced and top-bottom models are 

analysed in more detail, as it is believed that these models represent facial information in 

a more natural way. The parameterisation of top-bottom HMMs is investigated through a 

comprehensive set of experiments. Both ergodic and top-bottom models are tested using 

the same database, which is described in the section that follows . 

4.1 Experimental Setup 

In order to study the different HMM topologies and parameterisations, a number of ex­

periments with various models were run, the results of which are reported to compare 

the models. All the experiments were carried out using the same database to provide fair 

grounds for comparison. In the next sections the database used for the experiments is 

described and a brief description of the training and testing procedures are presented. 

36 
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4.1.1 Description of the database 

The database described in this section is used throughout this dissertation and will be 

referred to as the Olivetti Research Ltd (ORL) database of faces l
. The database consists 

of 400 images, 10 each of 40 different subjects. The subjects are either Olivetti employees 

or Cambridge University students. The age of the subjects ranges from 18 to 81, with the 

majority of the subjects being aged between 20 and 35. There are 4 female and 36 male 

subjects. Subjects were asked to face the camera and no restrictions were imposed on 

expression; only limited side movement and limited tilt were tolerated. For most subjects 

the images were shot at different times and with different lighting conditions, but always 

against a dark background. Some subjects are captured with and without glasses. The 

images have been manually cropped and rescaled to a resolution of 92x112, 8-bit grey 

levels . Five images of each subject were used for training and five for testing, giving a 

total of 200 training and 200 test images. In order to compare different models, error 

rates were calculated for each tested model. The error rates are expressed as percentages 

and are obtained by dividing the number of misclassified test images by 200. 

4.1.2 Training and testing procedures 

All the HMM-based experiments reported throughout this dissertation were carried out 

using the HT/(; Hidden Markov Model Toolkit Vl.3 developed by Young [79] at the Cam­

bridge University Engineering Department. The training process for each ofthe S subjects 

in the database consists of the following steps which are summarised in the diagram of 

figure 4.1: 

1. J training images are collected for the kth subject in the database and are sampled 

generating J distinct observation sequences. 

2. A common prototype HMM model 'xo is constructed with the purpose of specifying 

the number of states in the HMM, the state transitions allowed and the size of the 

observation sequence vectors. 

3. A set of initial parameter values using the training data and the prototype model 

are computed iteratively. On the first cycle, the data is uniformly segmented and 

matched with each model state. On successive cycles, the uniform segmentation 

is replaced by Viterbi alignment. The outcome of this process is an initial HMM 

estimate ,X~k) which is used as input to the re-estimation stage. 

IThe ORL database of faces is available via anonymous ftp from 

ftp.cam-orl.co . uk and is stored in pub/data/orLiaces.tar.Z 

s 
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4. HMM parameters are re-estimated usmg the Baum-Welch method. The model 

parameters are adjusted so as to locally maximise the probability of observing the 

training data, given each corresponding model. The outcome of this process is the 

HMM ).(k) which is used to represent subject k in the database. 

Sampling 

(k) (k) 
0(1) .......... 0(1) Baum·Welch 

I--r-----------;~ Parameter 
Re·estimator 

(k) 
Initial Ae 

Parameter 
Estimator 

(k) 
A 

Trained Model 
For Subject k 

Figure 4.1: Block diagram of training technique 

Recognition is carried out via a simple Viterbi recogniser. A collection of HMMs each 

representing a different subject is matched against the test image and the highest match 

is selected. The recognition process consists of the following steps which are summarised 

in the diagram of figure 4.2: 

1. The unknown test image is sampled generating an observation sequence Otest. 

2. The observation sequence is matched against each face model by calculating the 

model likelihoods: 

In practice, a maximum likelihood value is used instead, as described in section 3.1.2 

3. The model with the highest likelihood is selected and this model reveals the identity 

of the unknown face. 

4.2 HMM Topology 

A fully connected 2D HMM would be desirable for modelling a 2D image. However, the 

computational complexity for a fully connected 2D network is exponential as discussed 

by Levin and Pieraccini [48]. The methods presented in the sections that follow aim to 

show how to convert 2D images into 1D sequences useful for 1D HMM analysis . Chap­

ter 5 of this dissertation is dedicated to the analysis of a pseudo-2D lattice of HMM states . 



CHAPTER 4. EXPERIMENTS WITH ONE-DIMENSIONAL HMMS 

Unknown 0 test 
Test Sampling 
Image 

Compute 
Probability 

of Test 

Compute 
Probability 

of Test 

PC Otest I /c(l) ) 

(S) 
PC Otest l/c ) 

Select 

Maximum 

P.-obabiIity Best Match 

Figure 4.2: Block diagram of face recogniser 
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The sampling techniques introduced in the following sections serve the purpose of 

extracting a ID observation sequence from a 2D image. The observation sequence is 

constructed by extracting blocks of pixels from an image using a sampling window. Each 

observation is a column-vector containing the intensity levels of the pixels inside the 

window. The sequence is formed by scanning the image in some order. The way in 

which the sampling window scans the image affects the choice of the model topology that 

best describes the data. In the following sections, two different sampling techniques are 

analysed. In the first case, a rectangular sampling window scans the image left-right, 

top-bottom. An ergodic model is used to represent the sequences. Simple experimental 

results are presented to illustrate this approach. In the second case, the sampling window 

extracts blocks of lines traversing the face from top to bottom. By taking advantage 

of the fact that features will occur in a predictable order, a non-ergodic (top-bottom) 

HMM is built to represent the face image. The ergodic model makes no use of structural 

information. The top-bottom approach, on the other hand, exploits some of the inherent 

data patterns. 

4.3 Ergodic HMMs 

In ergodic models every state can be reached from every other state. This implies that 

all the coefficients of the transition matrix A are positive. Ergodic models are generally 

used when limited constraints can be applied to the signal and are the most general 

type of HMM. To illustrate how they work, an ergodic HMM is built for image data 

sampled using the technique shown in figure 4.3, where a PxL sampling window scans 

the image left to right, top to bottom. As the sampling window moves from left to right 
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y 

Figure 4.3: Sampling technique for an ergodic HMM 

o· 1 

40 

on a line, each observation has Q columns of overlap with the observation preceding it. 

When the right edge or the last full frame on the current line is reached, the sampling 

window moves back to the beginning of the line and shifts down with !vI rows of overlap 

between successive lines. Each observation 0 i contains the intensity level values of the 

pixelssampled by the window, arranged in a column-vector. The parameters chosen for 

the experiments reported in this section were selected based on subjective intuition. It 

was decided that an 8-state HMM would be appropriate to model the face, assuming 

that the forehead, the eyes, the nose, the mouth, the chin, the cheeks and a couple of 
ea.ch 

boundary regions would occupy one state).. The parameters of the sampling method of 

figure 4.3 were chosen as: P = 20, L = 16, Q = 5, M = 4, i.e. a 20x16 rectangular window 

of small enough size to capture any significant face features. An overlap of 25% was 

allowed in each direction of sliding. During training the HMM computes the means and 

standard deviations for each of the 8 state distributions. The means of the distributions 

represent the face features. These features are the values of J-tj obtained by the Baum­

Welch method for locally maximising the probability of observing the training data, given 

the model. Figure 4.4 shows the data used to train one such ergodic model and the means 

of the 8 state distributions of the HMM after training. Displaying the means of the state 

distributions may help in trying to gain an insight into how the model is segmenting the 

images and what features are learned. However, the right hand image in figure 4.4 does 

not display any clearly identifiable features. This is partly due to the fact that by using an 

ergodic model, no constraints are imposed on the data hence making no use of structural 

information. In the next section, top-bottom models are introduced and it is shown how, 
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Figure 4.4: Training data and magnified model means for the ergodic HMM 

by making use of structural information, the state distributions can represent features 

recognisable by humans. 

4.4 Top-Bottom HMMs 

The states of a HMM can be arbitrarily connected allowing it to represent ergodic signals 

as detailed in the previous section. However, for pattern recognition applications, it is 

usually better to imply some constraints on the allowed state transitions in order to reflect 

known properties of the data. In particular, so-called left-right HMM topologies are often 

employed which have the property that the state index must monotonically increase when 

progressing through the observation sequence. For faces, the natural order is to traverse 

the face from top to bottom and hence, top-bottom is a more natural designation than 

left-right. Figure 4.5 shows a sampling technique with the window traversing the face 

from top to bottom. An observation sequence 0 is generated from a X xY image using a 

X xL sampling window with X xM pixels overlap as illustrated in the figure. 

v 
o · 1 

y 
o i+l 

V 

x 

Figure 4.5: Sampling technique for a top-bottom HMM 

A ID vector series of pixel observations is generated, where each observation 0 i con­

tains the values of the pixels in the block of lines arranged in a column-vector . Each 

observation vector is therefore a block of L lines, and there is an M-line overlap between 
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successive observations. The length of the observation sequence T can be obtained by: 

(
y -L) 

T=cj; L-M +1 ( 4.1) 

where cj;(x) is the largest integer r such that r ::; x (i.e. cj; is the round-down function). 

Assuming that each face is in an upright, frontal position, features will occur in a pre­

dictable order , i.e. forehead, then eyes, then nose, and so on. This ordering suggests the 

use of a top-bottom (non-ergodic) model , where only transitions between adjacent states 

in a top-bottom manner will be allowed. For face images of fixed size, there are three 

HMM parameters which affect the performance of the model: the number of HMM states 

N, the height of the sampling window L and the amount of overlap M. Using shorthand 

notation, a model with such parameters will be defined as: 

H = (N, L,M) 

Figure 4.6 shows the model for a 5-state HMM, with the expected facial regions as shown. 

The number of states was chosen to be five based on subjective intuition: by looking 

at a face image, approximately five horizontal face regions can be identified, namely the 

forehead, the eyes, the nose, the mouth and the chin. For the experiments presented in this 

section it is therefore assumed that N = 5. The effect of varying N and the other HMM 

parameters is analysed in detail in the sections that follow . Five images of each subject 

all 

1 forehead 
a
12 

a
22 

2 eyes 

~ 
a

23 

3 nose 
a

33 

4 mouth 
a

34 

~ a
44 

5 chin a
45 

a
55 CB 

Figure 4.6: Top-bottom 5-state HMM 

are used to train a top-bottom HMM with parameters H = (5 , 8, 7). Each training image 

is sampled by a block of 8 lines moving down in steps of 1 line (i.e. with a 7 -line overlap). 

The overlapping allows the features to be captured in a manner which is independent of 

vertical position, where a disjoint partitioning of the image could result in the truncation 
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of features occurring across block boundaries. The effect of the overlap is discussed in 

more detail in the next sections. The parameters for these experiments were chosen based 

on subjective intuition. The feature extraction and training data segmentation obtained 

Figure 4.7: Segmented training data and magnified state means for top-bottom HMM 

using this model can be observed in figure 4.7. The features correspond approximately to 

the facial regions which were intuitively predicted in figure 4.6 . Due to the overlap, each 

state leaks into the state following as the first few observations of each state contain pixels 

already seen in the previous state. It is possible to subjectively associate the features with 

those understood by humans. For example, the third band appears to contain the eyes, 

which represent one of the salient features used for identification by humans as reported 

by Shepherd et al. [62J. 

4.5 Analysis of Top-Bottom Model Parameterisa­

tion 

This section presents experiments carried out with different models H using the ORL 

database of faces. The aim of the experiments was to investigate the effect of different 

parameterisations on the recognition rates. A HMM was trained for each of the 40 sub­

jects using five training images . The remaining five images for each subject were used for 

testing, giving a total of 200 test images. 

The parameterisation of the model can determine how successful the model is. In the 

preliminary experiments presented so far, only subjective attempts were made to justify 

the choice of specific values of H. In the sections that follow experimental results are 

presented for different values of N, Land M . 

For each model 1-l = (N, L, M), the results of the 200 identification tests are reported 

as an error rate. Each error rate is calculated as the percentage of the images which 

are misclassified, where a lower error rate obviously indicates a better model. Trying all 

possible combinations of N,L and M would require a large number of experiments. It 

was therefore assumed that, to a certain extent, parameters could be varied independently 
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and only a subset of all possible 1£ was tested. It is evident that the parameters are not 

independent. The size of the window L directly constrains the possible values of the 

overlap M (0 :::; M :::; L - 1). Moreover, both Land i'v[ determine the length of the 

observation sequence T as can be seen from equation 4.1 and this affects the choice of 

number of states N. Given the image size, it was decided to experiment with parameters 

in the following range: 

2::; N :::; 112 

1:::; L :::; 10 

0:::; M :::;L-1 

Initially it is assumed that N = 5 is a reasonable number of states based on the intuitive 

argument that five subjective face features appear when traversing the face top-bottom 

as illustrated in figure 4.6 . 

4.5.1 Varying the overlap 

A model with no overlap implies that training and test faces are partitioned into rigid, 

arbitrary regions with the risk of cutting across potentially discriminating features. In 

a top-bottom model with no overlap, features require accurate alignment for successful 

results. Alignment in images of the same subject is preserved either if the features occupy 

the exact same position in all the images or if the features are vertically displaced by a 

number of pixels which is a multiple of L. Unless the images are preprocessed, the features 

will normally not be in the same position. Therefore in most cases alignment is preserved 

only if the vertical displacement is a multiple of L. Overlap during the sampling process 

has the following main functions: 

1. The overlap determines how likely feature alignment is and it is expected that a 

large overlap would increase the likelihood of preserving the alignment. 

2. Given a fixed image size and window height, the overlap determines the length of 

the observation sequence T as can be seen from equation 4.1. 

A larger value of M produces a larger T because the face regions are oversampled hence 

increasing the length of the training and test data observations. The accuracy of the 

model estimates depends on the number of observations T in the training data. If T is 

small, the accuracy will be limited, as there are not enough occurrences of model events. 
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Figure 4.8: Results obtained for varying M 

Following the above analysis, it is reasonable to expect better recognition results when 

a larger value of M is used. In order to determine the effect of M on the recognition 

performance, a comprehensive set of experiments were run with the number of states 

fixed to N = 5 as discussed in section 4.4, window height in the range 2 :S L :S 10 

and every possible overlap 0 :S M :S L - 1. The results are summarised in figure 4.8, 

where the error rate is expressed as a percentage, and the overlap is in units of pixels. 

The recognition performance appears to improve as the overlap increases, which is in 

accordance with expectations. A greater overlap, however, implies a larger value of T and 

the number of calculations required in the identification process varies linearly with T. 
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4.5.2 Varying the window height 

The window height L has the following functions: 

1. It determines the size of the features that the model extracts. 

2. For a fixed image size and overlap, L determines the length of the vector series as 

can be seen from equation 4.1. 
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10 

12345678910 
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2345678910 
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12345678910 
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Figure 4.9 : Results obtained for varying L 

The experiments reported in this section consider the cases with no overlap, one line 

overlap, and maximum overlap L - 1. The number of states was still kept to N = 5. 

If the sampling window height is sufficiently smaller than the image height Y and there 

is substantial overlap, then the length of the observation sequence will be large. In this 

case the value of L is expected to have a limited effect on the identification performance 

since the overlap guarantees that features are aligned. The histograms of figure 4.9, 

with the window height L expressed in units of pixels, show the results obtained for the 

experiments mentioned above. From the results it appears that, for sufficiently large 

overlap, the window height has a marginal effect on the recognition performance. The 

effect of the window height becomes more noticeable when there is little or no overlap. 

In both cases, as the window size increases the error rate also increases. These results are 

in accordance with expectations. For small overlap, a larger window height implies that 

there is a smaller chance of features being aligned. It also implies that the model sees 

less training data, since a fixed small or no overlap implies a smaller T and the value of 

T also decreases as L increases for a fixed M. If T is too small, it becomes difficult to 

model the data as not enough training is provided to the HMM. 

4.5.3 Varying the number of states 

The number of states N in a top-bottom HMM determines the number of features used 

to characterise the face. If the number of observations in a sequence is very large, a large 
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N can be chosen to capture more features. However , the computational complexity of the 

identification algorithm is order N 2 and therefore the smaller the value of N the faster 

the identification. 
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Figure 4.10: Results obtained for varying N 

In the experiments presented so far , it has been assumed that five was a reasonable 

number of states to use. The experiments presented in this section analyse the variation 

of recognition performance as the number of states varies. Two cases are investigated: the 

smallest possible window with L = 1 and a medium size window L = 8 with maximum 

overlap M = 7. The results are presented in figure 4.10. The performance is fairly uniform 

for the values 4 s:; N s:; 10, while the error rate increases for values of N smaller than 4, 

with the exception of the model 'H = (3 , 1,0) which recorded an overall error rate of 13%. 

4.5.4 Summary of results 

The experimental results presented in the previous sections offer an insight into the way 

top-bottom parameters affect the recognition performance of a HMM. By varying the 

parameters independently, it was found that some models performed better than. others 

and the results indicated that: 

• Large overlap in the sampling resulted in better recognition performances. 

• As the overlap became 519"; rcord:-, the effect of the window height decreased. 

• With the exception of one case, best results were obtained when using at least 3 

states. 
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The various models have so far been assessed on the basis of their recognition performance. 

In the next sections, some of these experiments are revisited from the point of view of 

data segmentation and storage requirements. 

4.6 Training Data Segmentation 

Each subject in the database is stored as a HMM with a mean and standard deviation 

vector for each state and a transition probability matrix . The internal parameters used 

by the HMM to characterise a face can be visualised, in order to gain a better under­

standing of the way a model works . It is possible, for example, to visualise the values of 

each of the state distribution means by displaying them as bit-maps. Using the Viterbi 

algorithm, it is also possible to obtain the single best state sequence through a model for 

the training data. For a top-bottom model the index of each state in the sequence will 

either remain unchanged or increase by 1. By applying the Viterbi algorithm to the data 

used to train the model, it is possible to visualise how the data is segmented into states . 

This sometimes offers a measure of how well the model represents the data and can show 

how accurate the model estimates are. 

Some experimental results with different overlap, window height and number of states 

are presented in this section and analysed in the context of image segmentation. In all the 

pictorial figures that follow, the state distribution means are displayed as magnified bit­

maps for easier visualisation and they are not in scale with the images of the segmented 

training data. 

4.6.1 Overlap experiments 

First, the effect on the segmentation of varying the overlap was investigated. Three ex­

periments with different overlap were carried out using models from the experiments with 

1-l = (5,8, M). The training data segmentation and the state distribution means were 

generated for the three cases with maximum, medium and zero overlap (M = 7, 4, 0). 

These three cases were assumed to be representative of the full 0-7 M-range. The results 

are shown in figure 4.11 . 

A visual inspection of the results obtained with the three overlaps does not reveal 

any significant difference. The training images were segmented in a consistent way by all 

three models, even though the choice of state features varied. The eye band is clearly 
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Model Training Data Segmentation State Means Error Rate 

H=(5,8,7) 15.5% 

H=(5,8,4) 17.5% 

H=(5,8,O) 22.5% 

Figure 4.11: Segmentation and feature results for varying NI 

picked up only by the model with the largest overlap. For the model with no overlap , 

the segmentation depended mostly on the initial vertical location of the feature, as this 

model has to rely on accurate feature alignment in the vertical direction. For this model, 

the total number of observations in the sequence is smaller than in the case of the other 

two models, and therefore each state models, on average, a smaller number of events. 

4.6.2 Window height experiments 

In order to investigate the effect of the window height L on the training data segmenta­

tion, experiments were run with models of the form 1£ = (5, L, L - 1). Two cases were 

analysed; experiments were carried out with L = 1 and L = 10, and the results are shown 

in figure 4.12. 

Model State Means Error Rate 

H=(5,1,O) 13.5% 

H=(5,1O,9) 16% 

Figure 4.12: Segmentation and feature results for varying L 

The segmentation results for the case with L = 1 are only consistent for the top three 

bands. The boundary between the fourth and the fifth state moves irregularly and this 

is partly due to the small size of the sampling window. For the case with L = 10, the 
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image segmentation is consistent across the training images and the five states are similar 

to those found by the models shown in figure 4.11. 

4.6.3 State experiments 

The effect of N was investigated through experiments with models of the form 1£ = 

(N, 8, 7). Four different cases were analysed, with the value of N set to 2,4,8,16. Fig­

ure 4.13 shows the results obtained for these cases. 

Model Training Data Segmentation State Means Error Rate 

H=(2,8,7) 24.5% 

H=(4,8,7) 16% 

H=(8,8,7) 16% 

H=(16,8,7) 18% 

Figure 4.13: Segmentation and feature results for varying N 

For the case with N = 2, both the segmentation and the state images convey little in­

formation, as the number of states is too small compared with the number of observations 

and the number of features that are intuitively visible in the images. Conversely, for case 

with N = 16, it appears that most state bands contain only one or two observations. For 

the given observation length, this model has too many states. The error rate was higher 

for the models with N = 2 and N = 16, compared with the error rate of the models with 

N = 4 and N = 8, where the number of states seems more appropriate for the given 

observation sequence length. 
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4.7 Storage Requirements 

Two quantities are defined in this section. The first quantity is an approximation to the 

memory requirements to store a trained model representing a certain subject . The other 

quantity describes the number of parameters used to represent a face image, given a model. 

Both parameters contribute to the order of calculations needed by the Viterbi recogniser, 

and therefore can be used to get an impression of how fast images are recognised. These 

quantities are used in chapter 7, where different spatial resolution experiments are as­

sessed. 

4.7.1 Model size 

The approximate number of internal parameters used to represent a subject are estimated 

first. Each subject in the database is stored as a HMM, where the number of parameters 

required to specify the model depends on the image width X, the number of states N 

and the window height L. Each model stores the following information: 

1. The mean of each state distribution, represented as a XL-row vector. 

2. The covariance matrix of each state distribution. Diagonal covariance matrices 

are used throughout this work, therefore only the XL-row vector representing the 

standard deviation of each state distribution is required. 

3. The transition probability matrix . For a top-bottom model it is sufficient to store 

for each state s only two parameters, namely the probability of remaining in the 

same state ass and the probability of moving to the next one as s+l. A total of 2N 

parameters is therefore required. 

Using the above assumptions, the quantity p~, defined as the total number of parameters 

required by a model to represent an individual subject, can be calculated as: 

p~ = 2(XL + N) (4.2) 

4.7.2 Image size 

The number of parameters required to represent a face image depends on the image width 

X, the window height L and the overlap M. Each image is stored as a sequence of T 
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observations of size XL. For a top-bottom model, the quantity p~, defined as the total 

number of parameters required to represent a face image, can be calculated as: 

p~ = XLT (4.3) 

The value of T can be expressed as a function of L and M using equation 4.1 to yield: 

( 4.4) 

where c/; is the round-down function as previously defined. 



Chapter 5 

Pseudo Two-Dimensional HMMs 

The top-bottom technique detailed in chapter 4 gave successful recognition performances 

of around 85% using the ORL database of images. However , one limitation of the tech­

nique was that each image was sampled using blocks of lines. While this allowed for 

vertical shifting, accurate horizontal alignment was required. Horizontal alignment can 

only be guaranteed by constraining the training and test data. A more flexible model 

that allows for shifts in both the horizontal and vertical directions can be obtained using 

pseudo 2-dimensional (P2D) HMMs which are discussed and experimented with in this 

chapter. 

5.1 Introducing P2D-HMMs 

Feature alignment in images is useful for applications in the area of image recognition. 

Levin and Pieraccini [48] formulated the image alignment problem as a dynamic plane 

warping (DPW) problem, in a way analogous to the dynamic time warping method used in 

automatic speech recognition. The goal was to align a reference image to a distorted test 

image. The solution was found to be exponential in the dimensions of the image, hence 

making it impractical for real images. However, the computational complexity could be 

reduced to polynomial time by simplifying the original DPW problem. The admissible 

warping sequences could be limited by assuming that vertical distortion was independent 

of horizontal position. A statistical interpretation of the DPW approach was realised 

through planar HMMs, also used by Agazzi et al. [1] for degraded text recognition and 

renamed as P2D-HMMs by Kuo and Agazzi [46] in their keyword spotting work. Images 

were scanned left-right, top-bottom (using a technique like the one discussed for ergodic 

ID HMMs) and the scanned samples were associated with the states of a P2D-HMM 

arranged in a 2D lattice. 

53 
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5.1.1 Model definition 

P2D-HMM structures are obtained by linking ID left-right HMMs to form vertical su­

perstates as shown in figure 5.l. The network is not fully connected in two dimensions, 

j 

Figure 5.1 : Structure of a P2D-HMM 

hence it is only pseudo 2D. In the horizontal direction, transitions are only allowed among 

the states of a superstate. In the vertical direction, transitions occur among different 

superstates. A formal definition of the parameters of a P2D-HMM follows: 

l. N is the number of superstates in the vertical direction. 

2. A = {akj : 1 S; k, j S; N} is the superstate transition probability matrix. 

3. IT = {1fj : 1 S; j S; N} is the initial superstate probability distribution. 

4. A = {).,J : 1 S; j S; N} is the set of left-right ID HMMs in each superstate. Each Aj 

is specified by the standard ID HMM parameters: 

• Nj is the number of states. 

• Aj = {a~i : 1 S; k , i S; Nj} is the state transition matrix. 

• Bj = {btU: 1 S; i S; Nj} is the output probability function . 

• ITj = {1ft : 1 S; i S; Nj} is the initial state probability distribution. 
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A P2D-HMM can be specified using the shorthand notation: Tl = (N, A, IT, A). The 

model parameters A, IT and A can be estimated during the training procedure using the 

segmental k-means algorithm described by Rabiner [56]. The recognition is achieved by 

running a double execution of the Viterbi algorithm as described by Kuo and Agazzi [46] 

and summarised in the next section. 

5.1.2 The matching algorithm 

Recognition is accomplished by matching a test observation sequence against each stored 

P2D-HMM in a way similar to the ID HMM. The sampling technique used for ergodic 

ID HMMs illustrated in figure 4.3 can be used to generate a sequence of T observations. 

The observations can be arranged in a ExF lattice, where, using the parameters shown, 

E and F can be calculated as follows: 

E (X -P) 
4J P_Q +1 (5.1 ) 

F = (
y -L) 

4J L-M +1 (5.2) 

An observation vector 0 therefore consists of a sequence of rectangularly arranged vectors 

Oej : 1 S; e S; E, 1 S; f S; F as follows: 

(5.3) 

The state sequence Q associated with the observation sequence 0 for the kind of topology 

shown in figure 5.1 can then be expressed as: 

(5.4) 

where qj is the superstate occupied by the f-th row of observations and qej is the state 

occupied by the observation O ej in the corresponding A q,. For a model Tl the goal is to 

find the best single state sequence that maximises P( Q I 0, Tl) or equivalently P( Q, ° I Tl). 

Defining 0 j = 0lj, ... , 0Ej as the sequence observed in the f-th row, the highest proba­

bility of ending in superstate j and accounting for the observations in the first f rows of 

observations is defined as Dj (j): 

Dj(j)= max {P(ql ... qj=j,Ol ... OjITl)} 
ql, .. ·,q,-I 

(5.5) 

The probability of row f in superstate j defined as PjU) = P(O j I qj = j) is needed 

to maximise 5.5. Calculating PjU) is equivalent to calculating P(Oj I Aj ) and can be 

obtained by running the Viterbi algorithm on the observation sequence in row f and the 
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ID left-right HMM )..i. The quantity o~J( i) is defined as the highest probability of ending 

in state i and accounting for the first e observations in row f as follows: 

o~J(i) = max {P(qlf," .,qej = i,Olf," .,Oej I )..i)} 
91/, ···,ge-I ./ 

(5.6) 

The standard inductive procedure of the Viterbi algorithm as used for ID HMMs can be 

used to compute Pi (1) as follows: 

1. Initialisation 

oL(i) P(q1j = i, 0lj I )..i) 

2. Induction 

P(q1j = i I )..i)P(OlJ I q1j = i , )..i) 
i J 

7T"i ~(OlJ) ' 
~ 

o~+l,j(i) = i-rrtf<i [O~j(k)aqb:(Oe+1,J), 

3. Termination 

1 :::; e :::; E - 1, 

1 :::; i :::; Ni 

(5.7) 

(5.8) 

(5.9) 

In the induction step outlined above it is assumed that the states of the ID HMM occur in 

a strictly left-right order and hence the maximisation is only computed for i-I:::; k :::; i. 

An array \]f~j(i) can be set up to track the optimum states that maximise 5.6. The 

quantity D J(j) can then be calculated inductively as follows: 

1. Initialisation 

2. Induction 

P(q1 = j, 0 1 I ry) 

P(q1 = j I ry)P(Ol I q1 = j, ry) 

7T"i Pi(l), 

1 :::; f :::; F -1, 

1:::; j:::; N 

(5.10) 

(5.11) 

(5.12) 
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3. Termination 

(5.13) 

In the induction step outlined above it is assumed that superstates occur in a strictly 

top-bottom order and hence the maximisation is only computed for j - 1 :s; k :s; j. An 

array ''''fJ(j) is used to store the superstates that maximise equation 5.5 . An array Xj(J) is 

defined to store the last state of the optimum path traced by the f-th row of observations 

o j in superstate j as follows: 

Xj(f) = arg max [ob(i)] 
l<i <NJ 

(5.14) 

Finally, by backtracking through ''''fJ (j) and \f1!j (i) it is possible to find the maximum 

likelihood state sequence Q as follows: 

qF = arg max [DF(j) ] 
l::;j::;N 

For f = F - 1 to 1 

For e = E - 1 to 1 

The value of P * obtained from 5.13 is a measure of how well the P2D-HMM 'rJ models the 

data O. A different model 'rJ is generated for each subject in the database. For a test image 

generating the observation Otest, the values of P* corresponding to the different models 

are computed and compared. The test image is identified as the subject represented by 

the highest scoring model. 

5.2 Implementation of P2D-HMMs 

5.2.1 Equivalent ID topology 

In this section it is shown how a P2D-HMM can be transformed into an equivalent stan­

dard ID HMM. The equivalent model is made of rows of states, one for each superstate 

of the P2D-HMM. A P2D-HMM and its equivalent are shown in figure 5.2. The shaded 
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Figure 5.2: P2D-HMM and its equivalent 1D HMM 

states in the 1D model are end-of-line states which consume one observation only. The 

end-of-line states are allowed two transitions: one to the same row of states, which is 

equivalent to a superstate self-transition; one to the next row of states, which is equiv­

alent to a superstate-to-superstate transition. The sampling technique of figure 4.3 is 

slightly modified by adding a white frame at the end of each line of sampling. The white 

frame was chosen as it is considered to be a frame that would be unlikely to occur nor­

mally in the sequence. The white frame is an end-of-line marker and is modelled by the 

end-of-line states. When an end of-line-state is reached, the model can either stay in the 

same row of states or jump to the next row of states . When the end-of-line state of the last 

row of states is reached, the model can either repeat the last row of states or terminate 

when the last observation is reached. The illustrated topology with end-of-line states has 

the effect of modelling the observation sequence as a two-dimensionally arranged grid of 

data. Each line of observations is modelled by a row of states. In order to maximise the 

probability of the end-of-line state modelling the added white frame, the mean of each 

end-of-line state is set to white and the variance is set to be very small , as detailed in the 

next section. This makes it very unlikely for an end-of-line state to model any observation 

other than the white frame. However, it is possible that a row of states could model more 

than one line of observations, as there is no way to enforce that the white frame should 

not be generated by a state other than the end-of-line state. In order to reduce the prob­

ability of the white frame being generated by a state other than an end-of-line state, the 

end-of-line marker was chosen to be the white frame . This frame is unlikely to generate 

a high probability in any other state, as it is an unlikely frame to occur naturally. In the 

experiments presented in this chapter, the assumption that the suggested topology would 

model the images as a P2D-HMM was found to be satisfied. 

5.2.2 Training procedure for P2D-HMMs 

The training procedure detailed in section 4.1.2 needed to be modified for the P2D-HMM 

experiments. The initial uniform segmentation of the observation sequence was an appro-
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priate estimate for top-bottom models. Uniform segmentation, however, is inadequate for 

P2D-HMMs, as it fails to preserve the 2D structure of the data. A simple alternative was 

used to generate a model estimate that served the purpose of specifying the state topology. 

The Gaussian state distribution parameters were set to neutral values for all the states 

except the end-of-line states. The neutral parameters were chosen as mid-intensity values 

for the mean and large standard deviations . For the end-of-line states, the means were set 

to the end-of-line marker frame, with very small standard deviations. These parameters 

were re-estimated using the standard Baum-Welch procedure. It was found that by set­

ting the standard deviation of the end-of-line states to be small , the state topology was 

preserved and the parameters of the end-of-line states were unaltered after re-estimation. 

The training procedure is illustrated in figure 5.3 and consists of the following steps: 

1. J training images are collected for the kth subject in the database and are sampled 

generating J distinct observation sequences , with an added white frame at the end 

of each line of observations. 

2. A simple common prototype model Ao specifying which states are end-of-line states 

is constructed. The prototype model has the further purpose of specifying the 

number of states in the HMM, the state transitions allowed and the size of the 

observation sequence vectors. The mean values of the end-of-line states are set 

to white (intensity level 255) and the standard deviations are set to a small value 

(the value used was 10-4 ). The mean values of all the other states were set to the 

mid-intensity level value (128 for 8-bit images) with standard deviations of 2x102. 

3. The HMM parameters of the simple prototype model are re-estimated using the 

Baum-Welch method. The model parameters are adjusted so as to locally maximise 

the probability of observing the training data, given each corresponding model. The 

outcome of this process is the HMM A (k) which is used to represent subject k in 

the database. It was found that the mean and the standard deviation vectors of 

the end-of-line states were unaltered after re-estimation, thus preserving the model 

topology. 

5.3 Experimental Results 

There are five topology and sampling parameters that characterise a P2D-HMM. The 

topology information is summarised in the total number of states N , which is the sum of 
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Figure 5.3: Block diagram of P2D-HMM training technique 

all the states within the superstates, as follows: 

N 
N = I:Nj 

j=l 

60 

(5.15) 

The sampling information is represented by the width and height ofthe sampling window, 

the horizontal overlap and the vertical overlap. With reference to the parameters of fig­

ure 4.3, these are P, L, Q and M respectively. Using short-hand notation, a parameterised 

P2D-HMM P is denoted by: 

P = (N,P,L ,Q,M) 

The number of states N is expressed as i-j- . .. , where i is the number of states in super­

state 1, j is the number of states in superstate 2, etc., and where the number of states in 

each superstate includes the end-of-line states. 

A set of experiments were carried out for different topology and sampling parameters 

with the ORL database of faces. Some of the insights obtained from experimenting with 

top-bottom models were taken into consideration when choosing the P2D-HMM param­

eters . It was decided that the P2D-HMM should have at least four superstates and the 

experiments reported here were carried out using four and five superstates. The results 

are summarised in table 5.1, where the experiments are grouped according to the number 

of states. 

The error rates for the best performing P2D-HMMs were approximately 5%, with 

many models scoring success rates above 90%. Better results were obtained from the 

experiments where the overlap was large in both the horizontal and vertical direction, 

confirming the findings from the top-bottom experiments. The state topology was chosen 
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11 N Sup.states Topology PxL QxM 1 Err. Rate 11 

16 4 3-5-5-3 10x8 8x6 18% 

16 4 3-5-5-3 12x8 8x6 10.5% 

16 4 3-5-5-3 24x22 20x13 14% 

16 4 3-5-5-3 8x8 6x6 10.5% 

18 4 4-5-5-4 2x2 1x1 9% 

18 4 4-5-5-4 2x2 OxO 8% 

18 4 4-5-5-4 4x4 2x2 8.5% 

20 4 4-6-6-4 4x4 OxO 13% 

20 5 4-4-4-4-4 7x4 2x1 15% 

24 5 3-6-6-6-3 10x8 8x6 5.5% 

24 5 3-6-6-6-3 12x8 9x6 5.5% 

30 5 4-8-8-6-4 12x8 8x6 6.5% 

30 5 4-8-8-6-4 12x8 4x6 14% 

30 5 4-8-8-6-4 24x22 20x13 10% 

30 5 4-8-8-6-4 2x2 1x1 6.5% 

30 5 4-8-8-6-4 2x2 OxO 7% 

Table 5.1: Results for P2D-HMMs 

based on intuition. The first and last superstate are generally assigned the smallest 

number of states, as it is believed that they will model regions of less importance for 

recognition, i.e. the top of the head and the chin. Most of the useful information is 

assumed to be inside the face and therefore the other superstates are assigned a larger 

number of states for more accurate modelling. 

5.4 Image Segmentation with P2D-HMMs 

As for top-bottom models, it is possible to visualise the mean vector of the Gaussian 

distributions associated with each state. For example, the magnified state means of 

the P2D-HMM with parameters P = (3-5-5-3,24,22,20,13) are displayed in figure 5.4. 

These are the magnified state means obtained by the P2D-HMM after training on the 

data shown on the left of figure 4.4. This particular model was chosen because the size 

of the sampling window (and hence of the mean vector) is sufficiently large to be displayed. 
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Figure 5.4: P2D-HMM states for P = (3-5-5-3,24,22,20,13) 

Given an image and a P2D-HMM, the optimal state sequence obtained after running 

the Viterbi algorithm on the image can be used to segment the image into regions. The 

images are split into a number of horizontal bands equal to the number of superstates. 

Each horizontal band is further divided vertically into the number of states within that 

superstate. The results obtained on one of the training images using the same P2D-HMM 

as above are shown in figure 5.5, where the end of line states are not displayed. 

Figure 5.5: P2D-HMM segmentation for P = (3-5-5-3,24,22,20,13) 

Other segmentation experiments were carried out to try to isolate the background from 

the face image. Three 4-state, 1-superstate P2D-HMM were trained. The four states were 

used to model the image left edge, the face, the right edge and the end-of-line white frame, 

as shown in figure 5.6. 
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End-of-line state 

FUghtedge(background) 

Face image 

Left edge (background) 

Figure 5.6: The 4-state P2D-HMM 

The three 4-state P2D-HMMs were trained on images sampled with a 4x4, 2x2 and 

lxl sampling window and maximum overlap in both directions. The segmentation results 

are shown in figure 5.7 , where three different shades of grey are used to represent each 

of the P2D-HMM states (hence 3 colours, without counting the end-of-line state) . The 

segmentation results for the 4x4, 2x2 and lxl models are shown in the figure from left 

to right, respectively. The results for the three models are very similar to each other. 

The left edge is modelled very accurately, with the left ear clearly visible. The right 

edge, on the other hand, spills into the face at the eyes and mouth height, which are 

of a dark colour similar to the background. The 4-state P2D-HMMs were also trained 

and tested with images rotated by 180 degrees (showing the subjects upside-down). The 

segmentation results obtained were the same as those of figure 5.7. 

Figure 5.7: Segmentation results for the 4-state P2D-HMMs 

5.5 P2D-HMM Storage Requirements 

The number of P2D-HMM parameters needed to store a face model and a face image are 

defined in this section, similarly to those defined for top-bottom models in section 4.7. 



CHAPTER 5. PSEUDO TWO-DIMENSIONAL HMMS 64 

5.5.1 P2D-HMM model size 

The number of parameters needed to specify a P2D-HMM is defined as the quantity p~{. 

It depends on the size of the sampling window PxL and the total number of states N. 

Each HMM stores the following information: 

1. The mean of each state distribution, stored as a PxL-row vector. 

2. The standard deviation vector of each state distribution, stored as a PxL-row vector . 

3. The transition probability matrix, which, for the ID equivalent of a P2D-HMM 

illustrated in figure 5.2, consists of two transitions probabilities for each state. 

Using these assumptions, the number of parameters p~ needed to store a P2D-HMM is: 

p~ = 2(PL + N) (5.16) 

5.5.2 P2D-HMM image size 

The number of parameters needed to represent an image is defined as the quantity pj. 

It depends on the size of the sampling window PxL and the number of observations in 

the sequence, defined as Tp , obtained after sampling the image. By applying the same 

concept used to calculate T in 4.1 for the top-bottom case, extended to two dimensions , 

Tp for the P2D-HMM is calculated as: 

(5.17) 

Using this equation, a value for pj can then be estimated as: 

(5 .18) 

5.6 Unconstrained P2D-HMMs 

In the last section of this chapter, experiments are presented to investigate the perfor­

mance of unconstrained P2D-HMMs. An unconstrained P2D-HMM is a model with no 

end-of-line state. During sampling, this model does not require the addition of an end­

of-line white frame. As for the P2D-HMM, the states are arranged in a 2-dimensional 

grid. However, no attempt is made to enforce the fact that the last frame ofa line of 

observations should be generated by the last state of a superstate. It is also possible that 

a transition to a new superstate could occur from a frame that is in the middle of a line 

, . 
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of observations. In practice, the unconstrained P2D-HMM is a standard ID HMM with 

left-right transitions and a number of loop-back transitions that simulate the superstate 

structure. Figure 5.S shows the topology of a 25-state, 5-superstate unconstrained P2D­

HMM. 

Figure 5.S: Unconstrained 25-state P2D-HMM 

Some experiments were carried out using simple topologies . The size of the sampling 

window was, with one exception, I2xS pixels. During the training phase, the model param­

eters were initialised uniformly, by setting the means and the standard deviations to the 

same values for all the states . The results that were obtained are summarised in table 5.2. 

The recognition results for the unconstrained P2D-HMMs are similar to the results 

obtained with standard P2D-HMMs. The model with error rate 2% scores in absolute 

terms the best recognition result obtained with the ORL database. However, by consid­

ering the performance of the other two 25-state models with slightly different overlap, the 

2% error rate appears to be a fortuitous result. 

The state segmentation obtained with unconstrained P2D-HMMs was analysed for the 

various models of table 5.2. In general , the last state of a superstate is associated with 
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11 N Sup.states Topology PxL QxM 1 Err. Rate 11 

12 4 3-3-3-3 12x8 4x6 18% 

12 4 3-3-3-3 15x17 8x12 10% 

21 5 3-5-5-5-3 12x8 4x6 12.5% 

25 5 3-7-7-5-3 12x8 8x6 6% 

25 5 3-7-7-5-3 12x8 4x6 2% 

25 5 3-7-7-5-3 12x8 4x4 8.5% 

Table 5.2: Results for unconstrained P2D-HMMs 

frames either at the end of a line of observations, hence modelling the right edge of the 

image; or with frames at the beginning of a line of observations, modelling the left edge of 

the image. This is not surprising, as the observations, sampled around the edges (which, 

for the most part, contain background information), are very similar. Sometimes the last 

observation on a line is not modelled by the last state of a superstate and, in a number of 

cases, the last state of some superstates occurs in the middle of a line of observations. The 

segmentation that is obtained from unconstrained P2D-HMMs is therefore more difficult 

to interpret and often appears to be random. 
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Chapter 6 

Comparison With The Eigenface 

Method 

Different face recognition methods were described in chapter 2 and their success rates 

reported. However, since the experiments were carried out with different data, it was not 

possible to decide which methods performed better or to make a direct comparison. The 

constraints applied to the data varied from case to case and often little emphasis was put 

on presenting a statistical analysis of the results . 

In order to gain an insight into how the HMM approach proposed in this disserta­

tion compares with other established techniques, a set of experimental results based on 

Eigenfaces is presented in this chapter. The Eigenface experiments were carried out using 

the software implemented by Cham [13]. The Eigenface method is first summarised. A 

set of recognition results using this method on the ORL database is presented. Since the 

Eigenface approach is tested on the same data as the HMMs, a comparison between the 

two methods is drawn. The best top-bottom and P2D-HMM models are selected from 

the results described in previous chapters and a statistical comparison with the Eigenface 

method is presented. 

6.1 The Eigenface Approach 

In many pattern classification problems, data is represented in a n-dimensional space, 

usually chosen prior to observing any data. For such cases, it is often possible to reduce 

the dimensionality of the representation space without losing information, hence encoding 

the data in a more efficiently. One way of achieving this is through Principal Component 

Analysis (PCA) . The principal components of the data distribution can be found by com-
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puting the eigenvalues of the covariance matrix of the data. A more detailed description 

of this method is presented by Thierren [68]. 

PCA-based methods have been recently applied to face recognition as detailed by 

Kirby and Sirovich [42] and Turk and Pentland [69]. Each face image is converted into 

a column-vector by scanning each pixel left-right, top-bottom. Therefore a rectangular 

image of dimensions X by Y is expressed as a vector in XY dimensions. For a training 

set of s images, each image is represented as a point in the XY-space. However, as s 

is in practice much smaller than XY, each image-point will lie on a hyperplane (called 

feature space) within the full XY-space. By chosing an alternative set of axes with the 

origin in the feature space, the number of dimensions used to represent the training data 

can be reduced to s - 1. The goal of PCA is to determine an appropriate set of axes that 

represent the s training images in the space with reduced dimensions . The eigenvectors 

of the data covariance matrix are used as axes and their importance is ranked according 

to the value of their corresponding eigenvalue. The number of dimensions can be reduced 

further by considering only the eigenvectors which have larger corresponding eigenvalues. 

The eigenvectors that best account for the distribution of face images within the entire 

image space are termed Eigenfaces by Turk and Pentland [69]. 

6.1.1 Calculating the Eigenfaces 

Each training image is represented by a column-vector Xi where 1 :::; i :::; s. The mean ill 

of the training set is calculated as: 

1 s 

ll1 = - LXi 
S i= l 

(6.1) 

The mean of equation 6.1 lies in the feature space spanned by the s images and can 

therefore be chosen as a convenient point to which the origin can be shifted. A vector Yi 

is defined as the shifted version of X i : 

Yi = X i - ill (6.2) 

The shifted training set is represented as a XY by s matrix A as follows: 

A = [YIYZ . .. Ys] (6.3) 

The data covariance matrix is then simply given by: 

C=AA' (6.4) 
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where AI denotes the transpose of A. The covariance matrix is of dimensions XY by 

XY, which makes the computation of its eigenvectors unfeasible for typical image sizes. 

Considering that only s - 1 eigenvectors will have non-zero corresponding eigenvalues, 

there is an alternative way to determine those eigenvectors, as illustrated by Turk and 

Pentland [69] . Denote the eigenvectors of the matrix AlA (which is of size s by s) as 

Vk with corresponding eigenvalues }.k. Then the eigenvector/eigenvalue equation can be 

written as: 

(6 .5) 

Premultiplying both sides by A yields: 

(6 .6) 

Letting Uk = AVk and substituting for C from equation 6.4 yields: 

(6.7) 

which means that the eigenvectors with non-zero eigenvalues of C can be found by pre­

multiplying the eigenvectors of AlA by A. The order of calculations is therefore reduced 

from the resolution of the images (X2Y2) to the size of the training set (S2). 

6.1.2 Using Eigenfaces for recognition 

Face images are encoded by projecting them onto the axes spanning the feature space. 

An unknown test image t is projected to t*, its image in the feature space, as follows : 

t* = UI(t - m) (6 .8) 

where U = [U1U2 .. . UE] and 1 :::; E :::; s, depending on how many Eigenfaces are used, 

is the s by E eigenvector matrix . In order to determine which face best matches the 

test image, the Euclidean distance Ei between each training image and the projected test 

image is calculated as: 

Ei = Ilx; - t*11 (6.9) 

where xi = UI(Xi - m) is the projection of Xi onto the feature space. 
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6.1.3 Experimental results with Eigenfaces 

The Eigenface approach described in the previous sections was tested on the ORL database. 

The Eigenfaces for the 200 training images were calculated and experiments using various 

number of Eigenfaces were carried out. Since most of the data information is packed 

in the principal components (the Eigenfaces with largest eigenvalues), it was possible to 

experiment with a smaller number of Eigenfaces. The five Eigenfaces with largest and 

smallest eigenvalues are shown in figure 6.1. Reducing the number of Eigenfaces could 

Large 
Eigenvalues 

Small 
Eigenvalues 

Figure 6.1: Five most and least significant Eigenfaces 

have the effect of removing some data noise, while speeding up the recognition process. 

Experiments where carried out with the number of Eigenfaces varying from 5 to 199 in 

increments of 5. Each test face was identified as the nearest neighbour training image. 

The results are shown in figure 6.2. The best results were obtained using between 175 

and 199 Eigenfaces, with an error rate of 10%. The performance worsened when using 

less than 10 eigenvalues and was quite uniform with 10 or more eigenvalues. 

6.2 McNemar's Statistical Test 

The results obtained with HMMs are compared with the Eigenface method. Both ap­

proaches were tested using the same database; however, it was decided that a direct 

comparison of the results would not be sufficient . A more sophisticated statistical ap­

proach, based on McNemar's test as described by Gillick and Cox [27], is used to test the 

statistical significance of the results. The work presented by Gillick and Cox referred to 

speech recognition algorithms, but it is equally applicable to face recognition. 

Two algorithms, Al and A 2 , are presented with the same n test images f = {fl, 12,· .. , fn}. 

Assuming that the n test images are a representative sample of a larger population of im­

ages, the goal is to establish if the true (but unknown) error rate Pl of Al is larger , equal or 
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Figure 6.2: Results using the Eigenface approach 

smaller than the true (but unknown) error rate P2 of A2 . The following random variables 

are defined: 

Noo Images that Al and A2 classify correctly 

NOI Images that Al classifies correctly and A2 misclassifies 

NlO Images that Al misclassifies and A2 classifies correctly 

Nll Images that Al and A2 misclassify 

From the definition, it follows that: 

n = Noo + NOI + NlO + Nll (6.10) 

The joint performance of two algorithms Al and A2 is summarised using a table like the 

one shown in table 6.1. Probability quantities corresponding to the those defined above 

are: 

qoo P(A I and A2 classify Ji correctly) 

qOl P( Al classifies Ji correctly and A2 misclassifies it) 

qlO P(A I misclassifies Ji and A2 classifies it correctly) 

qll P(A I and A2 misclassify Ji) 

The error rates for Al and A2 can then be calculated as: 

(6.11) 

., 
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The null hypothesis Ho is: 

Ho: Pt = P2 

Substituting for Pt and P2 in 6.13, the equivalent null hypothesis H6 is obtained: 

H t. 
o· 

72 

(6.12) 

(6.13) 

(6.14) 

Finally, by defining q as the conditional probability that At will make an error, given that 

only one of the two algorithms makes an error: 

q P(A t makes an error I only one makes an error) 
P(A t makes an error, only one makes an error) 

P( only one makes an error) 

qOt + qlO 

a further equivalent null hypothesis H~ is obtained: 

H 2. 
o· 

1 
q= -

2 

(6.15) 

(6 .16) 

The fact that the null hypothesis now depends only on qOt and qlO was expected, as no 

measure of the relative performance of the two algorithms is obtained when either both 

fail or both succeed. Let the random variable f{ represent the number of images for which 

only one algorithm fails: 

f{ = NlO + Not (6.17) 

For f{ = k and the null hypothesis, the random variable N lO , representing the number 

of images that At misclassified and A2 classified correctly, follows a binomial distribution 

A2 

Correct Incorrect 

Correct I\. roo h,.;Ot 

At 

Incorrect n·lO n.il 

Table 6.1: Results summary for At and A2 
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B = (k, !). The mean m of this distribution is m = ~. The null hypothesis is tested by 

computing the probability P of a random variable V from B = (k,!) using a two-tailed 

test as described in Kreyszig [44]: 

2P(nlO S; V S; k) = 2L~=nlO 
( 

kvn ) ("21)k if nlO > k/2 

P= 
if nlO < k/2 

(6.18) 

1.0 if nlO = k/2 

where nlO is a specific value of the random variable N lO. A statistical significance level 

a is chosen and if it is found that P < a, then the null hypothesis is rejected. Typical 

values of a are 0.05,0.01 or 0.001 . Throughout this analysis, it is assumed that the errors 

made by an algorithm are independent. 

6.3 HMM and Eigenface Comparison 

In the following sections, the best top-bottom and P2D-HMMs are selected and compared 

with the best Eigenface results using McNemar's statistical test. 

6.3.1 Top-bottom HMM vs Eigenfaces 

The best performing top-bottom model was found to be 1l = (3,1,0), which scored an 

error rate of 13% with 26 misclassified images out of 200. The top-bottom HMM-based 

algorithm is denoted by Al. The best Eigenface results were obtained using 175 or more 

eigenvectors, scoring an error rate of 10% with 20 misclassified images out of 200. The 

Eigenface algorithm is denoted by A 2 . The results obtained with the two methods were 

analysed and the values of the Nij random variables were computed. Table 6.2 summarises 

the results. 

Using equation 6.18 with nlO = 20 and k = 34, the value of P can be calculated as 

P = 0.3915. The value of P indicates that the observed difference in performance between 

the top-bottom HMM and the Eigenface approach would arise by chance on about 40% 

of the occasions and that therefore the null hypothesis can not be rejected for any typical 

values of a . 



CHAPTER 6. COMPARISON WITH THE EIGENFACE METHOD 74 

Eigenfaces 

Correct Incorrect 

Correct 160 14 

Top-bottom HMM 

Incorrect 20 6 

Table 6.2: Top-bottom HMM vs Eigenfaces results 

6.3.2 P2D-HMM vs Eigenfaces 

The best performing P2D-HMM was found to be P = (3-6-6-6-3,12,8,9,6), which scored 

an error rate of 5.5% with 11 misclassified images out of 200. The P2D-HMM algorithm 

is denoted by Al' The Eigenface algorithm is again denoted by A 2 . The results obtained 

with the two methods were analysed and the values of the Nij random variables were 

computed. Table 6.3 summarises the results. 

Using equation 6.18 with nlO = 8 and k = 25, the value of P can be calculated as 

P = 0.1078. With this value of P, the null hypothesis cannot be rejected for typical 

values of a. The value of P indicates that the observed difference in performance between 

the P2D-HMM and the Eigenface approach would arise by chance on about 10% of the 

occasions. However, even though there is not strong statistical evidence, the results 

suggest that the P2D-HMM performs better than the Eigenface method when tested 

with the given database. 

Eigenfaces 

Correct Incorrect 

Correct 172 17 

P2D-HMM 

Incorrect 8 3 

Table 6.3: P2D-HMM vs Eigenfaces results 



Chapter 7 

Domain And Resolution 

Experiments 

This chapter investigates the effect of changing the image domain of representation and the 

image spatial resolution on the recognition performance of top-bottom and P2D-HMMs. 

The HMMs with best recognition results were selected and experiments were carried out 

on them using edge-detected images and images at lower spatial resolution. The results 

are summarised in the following sections. 

7.1 Representation Domain Experiments 

The choice of representation domain of image data often determines the degree of success 

of pattern classification applications. The challenge is to represent the content and the 

salient features of an image in a compact way, that can be efficiently and robustly used for 

search and recognition tasks . For example, frequency and frequency jspace representation 

may yield better data separation, hence facilitating the recognition task, as reported by 

Wechsler [71]. Representation in the frequency domain can be obtained by taking the 

Fourier transform of the image. Figure 7.1 shows two face images and their compressed 

Fourier spectra as intensity images. The spectra were compressed1 using a logarithmic 

function and scaled to 8 bits to facilitate visual analysis. Details of this enhancement 

technique are explained by Gonzalez and Woods [30] . It is evident that the structure 

arguments that were used to choose the HMM topology for the top-bottom and P2D 

models are no longer valid in the frequency domain. In the spatial domain, the facial 

features are clearly visible and they can be used to choose appropriate model parameters 

1 If F(u, v), with u and v being frequency variables, denotes the discrete Fourier transform of the image, 

the compressed spectrum is obtained as D(u , v) = clog [ 1 + IF(u , v) I ), where c is a scaling constant. 
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for the HMM. In the frequency domain, the spatial configuration is lost and no obvious 

alternative is available to constrain the model parameters. 

Figure 7.1: Face images and their compressed Fourier spectra 

In order to retain some spatial information, experiments were carried out using a 

joint frequency jspace representation. The images in the ORL database were converted 

to edge-detected images and used to train and test various HMMs. The edge detection 

technique was based on taking the Pythagorean sum of two perpendicular Sobel gradient 

operators, as detailed by Gonzalez and Woods [30]. Through edge detection, much of the 

texture information is lost, however the features can still be located with ease. Figure 7.2 

shows the training data segmentation and the magnified states for the top-bottom model 

with parameters 1£ = (5,8 , 7). The relevant facial features, such as the eyes, are isolated 

successfully, even in the absence of the full texture of the face. 

Figure 7.2: Segmentation and states for edge images using a top-bottom HMM 

All the images in the 0 RL database of faces were passed through an edge-detector 

filter, thus generating a new database of 400 edge-detected images. As for previous ex­

periments, 5 images for each subject were used to train a HMM and the remaining 5 

were used for testing. In this section, the results obtained testing three HMMs with the 
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edge-detected database are presented. The HMMs were the two best top-bottom model 

1-l = (3 , 1,0), 1-l = (5,1,0) and the best P2D-HMM P = (3-6-6-6-3 , 12,8,9,6). Two top­

bottom models were used, since the results obtained with the apparently best top-bottom 

HMM (which had only 3 states and an error rate of 13%) could have been accidental. 

The top-bottom model with 5 states and an error rate of 13.5% was also used. 

40 

30 

20 

10 

Error Rate (%) 

H=(3,1,0) 

IIii llwtiJ spatial domain 

.. edge domain 

H=(5,1,0) P2D-HMM 

Figure 7.3: Space vs edge domain recognition results 

The recognition results are shown in figure 7.3. The recognition performance is worse 

in the edge domain for both the top-bottom and the P2D models. The performance of 

the top-bottom models has approximately halved in the edge domain, while the P2D­

HMM results worsen by a factor of about 7. The loss of texture information, which does 

not dramatically affect the segmentation process (as shown also in figure 7.4, where a 

segmented edge image for the P2D-HMM is shown), causes the recognition performance 

to drop. 

7.2 Spatial Resolution Experiments 

In this section, the three models used for the edge domain experiments above are re­

adapted to deal with images at different spatial resolutions. It is of interest to investigate 
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.. 

Figure 7.4: Segmentation of edge image using a P2D-HMM 

how the recognition performance varies, as the image resolution is decreased, because 

images at lower resolutions occupy less storage space and run faster through the Viterbi 

recogniser. For humans, it is reasonable to hypothesise that when moving from coarse 

to fine spatial quantisation, processing efficiency should increase, since both local feature 

adequacy and the adequacy of global configurational measures will increase, as indicated 

by Bachmann [3] . Also, it is expected that the recognition performance will only improve 

up to a certain level , beyond which recognition efficiency will not improve with any further 

increase in spatial resolution. 

The experiments presented here were obtained with images at 4 different resolutions. 

Table 7.1 shows the results obtained using the two best top-bottom HMMs. The values 

pk and pj are those defined in equations 4.2 and 4.4 respectively. The figures reported 

in the table are rounded to two significant figures. 
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Resolution Model p~ p~ Err.Rate 

(width x height) 

92x112 H=(3,1 ,0) 190 10,000 13% 

46x56 H=(3,1 ,0) 100 2,500 17% 

23x28 H = (3,1,0) 50 650 19.5% 

12x14 H = (3,1,0) 30 160 18.5% 

92xl12 H = (5,1,0) 190 10,000 13.5% 

46x56 H = (5,1,0) 100 2,500 13.5% 

23x28 H = (5,1,0) 60 650 14% 

12x14 H = (5,1,0) 30 160 17% 

Table 7.1: Resolution experiment results for top-bottom HMMs 

The recognition results are summarised in figure 7.5. As the resolution halves in each 

dimension, the storage requirement for each model halves and the storage requirement 

for each image decreases by a factor of 4. The recognition performance, however, de­

creases only slightly and the error rate is below 20% even at lower resolutions. With the 

5-state model, the difference in performance between the full resolution images and the 

images at 23x28 is 0.5%. However, the storage requirements of the models and images 

with images at a resolution of 23x28 are approximately 4 and 16 times smaller respectively. 

30 Error Rate (%) 30 Error Rate (%) 

H=(3,1,O) H=(5,1,O) 

w w 

10 10 

92x112 46x56 23x28 12x14 92x112 46x56 23x28 12x14 

Resolution Resolution 

Figure 7.5: Performance vs resolution for top-bottom HMMs 
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Resolution Model p~ pj Err.Rate 

(width x height) 

92x112 P = (3-6-6-6-3,12,8,9,6) 240 130,000 5.5% 

46x56 P = (3-6-6-6-3,6,4,4,3) 90 26,000 6,5% 

23x28 P = (4-5-5-4 , 3, 3,2,2) 50 5,000 6% 

12x14 P = (4-5-5-4,2,2,1,1) 40 600 12% 

Table 7.2: Resolution experiment results for the P2D-HMM 

The same lower spatial resolution images were tested with the best performing P2D­

HMM. At the full 92x112 resolution, the model with parameters P = (3-6-6-6-3,12,8,9,6) 

was initially chosen. As the resolution was decreased, the model parameters were adjusted, 

trying to approximately preserve the initial ratio of sampling window size to image size, 

and changing the number of states according to intuition. The results are summarised in 

table 7.2. 

Figure 7.6 graphically summarises the recognition results for the various P2D-HMMs 

at different resolutions. There is very little difference in performance for image sizes down 

to 23x28 and at 12x14 the error rate is 12%. The difference in performance between the 

full resolution case and the case with images at 23x28 is 0.5%, but the storage space 

required by the images is approximately 25 times smaller with the 23x28 images. 

30 Error Rate (%) 

P2D·HMMs 

20 

10 

92x112 46x56 23x28 12x14 

Resolution 

Figure 7.6: Performance vs resolution for P2D-HMMs 
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In summary, the resolution experiments presented in this section indicate that consid­

erable storage savings can be obtained at little performance cost by reducing the spatial 

resolution of the database images. As the size of the models and images also affects the 

speed of training and recognition, the HMMs with lower resolution images train and run 

more quickly. 



Chapter 8 

Automatic Face Location 

The recognition experiments presented in the previous chapters were obtained using the 

ORL database of faces, which contained a collection of face images that had been manually 

located and cropped. In this chapter, the HMM based approach is tested on images that 

are cropped automatically using a model-based method. The face model is defined first, 

and a technique based on genetic algorithms is used to find the location of the face in a 

256 pixel-wide by 256 pixel-high image. This technique is employed to locate faces in 400 

uncropped images, which are then cropped and used to train and test a P2D-HMM. The 

automatic face location ideas presented in this chapter were implemented by Heap [34] in 

his final year undergraduate project1 on human hand tracking. 

8.1 Building the Face Model 

Automatic face location has a number of useful applications. Ponticos [55] described a 

system based on motion detection to enhance the quality of video-phone images around 

the user's face. In the context of this dissertation, still images are used and it is therefore 

not possible to make use of motion information. In order to locate the face in the image, 

a face model is defined as a collection of 42 control points of a 2D wire frame structure, 

as shown in figure 8.1. 

This model will be referred to as a Shape Model (SM), which is a set of labelled points 

joined together, in this case, by straight line~.In order to create a generic face model, a 

number of examples were collected and used to train the face model. 

IThe work was carried out under the author's supervision 
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Figure 8.1: Wire frame model of the face 

8.1.1 Training the face model 

A technique for training the SM using a set of examples was suggested by Cootes et 

al. [15] and is briefly described here. Given a training set containing examples of faces, 

a vector is formed for each example by manually placing the control points of the wire 

frame model on the images. In the case of the experiments presented in this chapter , ten 

256x256 images (one image each of ten different people) were used for training and for 

each image, the co-ordinates of the 42 control points were recorded as a vector: 

(8.1 ) 

where 1 :::; i :::; 10 and prime indicates transpose. In order to derive any useful statistics 

from the 10 examples, the shapes have to be aligned as accurately as possible. The 

alignment technique described here is based on defining an alignment operator A, that 

transforms each pair of points in a model ffi i, by scaling them by s, rotating them by () 

and translating them by ta; horizontally and ty vertically. After applying A, each pair of 

points (x, y) of ffii is transformed to a new pair of points (x A, YA) defined as: 

YA 

sx cos () - sy sin. () + ta; 

sx sin () + sy cos () + ty 

(8.2) 

(8.3) 

Shape ffit is taken as reference and the remaining 9 shapes are aligned to it . In order to 

align ffi2 to ffi!, the operation A is applied to ffi2 and the values of s, (), t a; and ty that 

best align the two shapes are determined using a least square approach that minimises 

the expression: 

(8.4) 
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where D is a diagonal matrix of weights, which gives emphasis to points that are more 

stable over the training set. One way to provide a measure of the stability of a point is to 

find how much that point moves over the training set relative to the other points. This is 

achieved by calculating the variance across the training set of the normalised distance of 

the point from all the other points in the model and taking the inverse of the sum of all 

such variances. If the distance between point k and point I in the ith training example is 

defined as RiL, then the normalised distance Nil between the two points is defined as: 

N
i _ R11 
kl -

Si 
(8.5) 

where the normalisation factor Si is the sum of the distances of all pairs of points for that 

training example, i.e.: 

41 41 

Si = LLR11 (8.6) 
k=OI=O 

By defining Vkl as the variance across the training set of the normalised distance between 

point k and I, the weight dk for the kth point in the model can then be found as: 

(8.7) 

The diagonal matrix D is thus constructed as: 

do 0 o o 
o do 0 

D= o 0 o o (8.8) 

o o 

After the 9 shapes are aligned to the reference, the mean of all ten aligned shapes is found 

and is used as a new reference. The ten training shapes are aligned to the mean, and 

this process is repeated iteratively, until some form of convergence is achieved. The final 

mean vector is denoted as illo and is the model that will be used to locate the head in 

other images . 

8 .1.2 Scoring the face model 

In order to determine the position of the face in an image using the SM, a scoring function 

is needed to assess the suitability of the model in any given position. For a trained model 

-. 
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mo and a position A defined by the four variables s, B, tx and ty, the model mA is defined 

as the model mo transformed through A, i.e: 

mA = A(mo) (8.9) 

At regular intervals along the boundaries of mA, a line of pixels normal to the boundary is 

extracted and the edge strength along that line is calculated by differencing the grey-level 

values of adjacent pixels. The total number of normals along the model boundary is fixed. 

The number of pixels along each normal depends on the size of the model and is changed 

dynamically. 

Figure 8.2 shows an example of normals along the model boundary. By summing up 

the scorestof all the normals, an overall score is obtained to represent the fitness of mA. 

Boundary Normals 

0 0 

• 0 
III • 0 • 0 rn 
• 0 

\ • m 
m 0 

• • 0 0 

Control Point 

Model Boundary 

Figure 8.2: Normals along model boundaries 

Given a test image and a face model mo, the goal is to locate the face in the test image 

as accurately as possible, by finding the position for the model which gives the highest 

score. An exhaustive search through all the possible values of the four parameters of A 

would require a very large number of operations. In order to reduce the search space, 

a method based on genetic algorithms is used, an account of which is given in the next 

section. 

2 The scores were obtained by mult.iplying the edge values along the normals by a weight. vpetOl' , t.h l' 

coefficents of which decreased with distance from the boundary. 
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8.2 The Genetic Algorithm Approach 

Genetic Algorithms (GAs) perform search tasks based on mechanisms similar to those of 

natural selection and genetics. The detailed presentation of the principles involved in the 

use of GAs is beyond the scope of this dissertation, and a full account on GAs can be 

found in Goldberg [28]. The use of GAs in model-based image interpretation was intro­

duced by Hill and Taylor [36] and the implementation described here is based on their 

work. 

Given a test image and mo, the goal was to find the values of the four parameters of A 

that maximised the scoring function. The scale and rotation parameters of A were coded 

into two orthogonal parameters p and q for convenience as follows: 

p 

q 

s cos e 
s sin e 

(8.10) 

(8.11) 

Therefore, the four parameters defining the transformation A were p, q, t a; and t y , and 

were encoded in a 32-bit code as illustrated in figure 8.3. 

p t 
X 

t 
Y 

q 

bit 31 24 23 16 15 8 7 bit 0 

Figure 8.3: Genetic code representing the transformation A 

The basic principle used in the GA experiments was that if a 32-bit code was found 

to generate a high score, then it was assumed that other good codes existed nearby in the 

search space. In the first instance, a population of 50 random 32-bit codes was generated 

and each code was given a score. A new sample of 50 codes was chosen with replacement 

from the original random population, with probabilities proportional to the code's scores. 

This ensured that the codes with higher scores were more likely to be selected. The 

processes of crossover and mutation were applied to the new sample. Crossover consisted 

of taking two codes and swapping bit portions between them at random places. Mutation 

consisted of introducing random bits in the code. After crossover and mutation, a new 

population of 50 codes was generated. This process was repeated for 100 iterations. · At 

the end, the code with the highest score from the last population was selected as the 

overall winner, revealing the position, scale and rotation of the face in the test image. 
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8.3 Automatic Location Results 

The CA-based face location system3was tested using a collection of 400 uncropped 256x256 

images. The images were heads against a dark, homogeneous background. Training was 

carried out using the SM of figure 8.1 and 10 images, for which the control points were 

located manually. Initial experiments with a SM describing only the outer face boundary 

had not produced good results, and it was decided to add internal face features, such as 

the eyes, the eyebrows, the nose and the mouth. After aligning the training set, the mean 

shape was calculated and used to locate the face in the 400 uncropped images. The CA 

technique is not deterministic and its output is likely to change at each run. The method 

is also prone to be attracted to local maxima and converge to regions of little interest. For 

these reasons , it was decided that the lOO-iteration CA procedure should be repeated 20 

times. The highest overall score was then chosen as best match. By repeating the proce­

dure 20 times, the probability of the overall winner being a true good match was increased. 

The results obtained by the 20 runs of the CA for one of the images in the database 

are shown in figure 8.4, where an uncropped image is shown, followed by the same image 

with the best model match superimposed on it and finally the cropped face. The cropped 

image was obtained by drawing a rectangle around the model edges. 

Figure 8.4: Face location using CAs 

The location results were inspected visually and were found to be accurate for most 

images in the database. In current work at the Olivetti Research Laboratory in Cam­

bridge, the CA approach is being tested with colour, cluttered background images. The 

work is carried out within the framework of Medusa, a system for orchestrating networked 

multimedia devices, such as cameras , and prototyping media processing functions and ap­

plications, described by Wray et al. [74]. The initial results obtained indicate an equally 

successful performance, using images captured in a standard office environment. In other 

work by Hill et al. [35], the CA search was used in combination with active shape model 

3 The GA experiments were carried out with a mutation rate of 0.004 and a crossover rat.e of 0.5 . 
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refinement to improve the results. In the context of this dissertation, the cropped images 

obtained from the GA results are sufficient to be used by a P2D-HMM, which does not 

require accurate alignment of features, and therefore active shape model refinement was 

not investigated. The results obtained with a P2D-HMM trained and tested with the 

automatically cropped images generated from the GA are presented in the next section. 

8.4 Recognition of Automatically Cropped Images 

The GA routine was used to crop 200 full resolution (256x256), 8-bit grey-level images of 

40 different subjects (5 images for each subject). The 200 cropped images were used to 

train a HMM. The block diagram shown in figure 8.5 illustrates the training process. 

200 full size 
training images ... GA ~ 

Cropping 
Module ~I HMM~ training 

'--------' 

40 trained 
HMMs 

Figure 8.5: HMM training with automatically cropped images 

Similarly, the GA routine was used to crop 200 other full resolution images, which were 

used to test the HMM. The process is illustrated in figure 8.6. 

~ 
200 full size Y 
test imag~e_s_--;"''''I GA H Cropping 1_ HMM 

Module r classifier 
Recognition 
Results 

Figure 8.6: HMM testing with automatically cropped images 

A 24-state P2D-HMM was chosen for the experiments presented in this section. P2D­

HMMs generally require little horizontal and vertical alignment, and their performance 

with the automatically cropped images is expected to be similar to that obtained with 

the manually cropped images of the ORL database. The resolution results presented 

in chapter 7 indicated that the recognition performance was little affected by reducing 

the image resolution. It was therefore decided to re-scale the automatically cropped 
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images to an image resolution of 46x56. The P2D-HMM used for these experiments was 

parameterised as: 

P = (24,3-6-6-6-3,6,4,4,3) 

Using the ORL database of faces, this model had an error rate of 6.5%. Experiments were 

carried out with the automatically cropped images a number of times, as the CA process 

produces a different output every time it is run. The error rates obtained varied between 

4% and 5% (i.e. from 8 errors out of 200 images, to 10 errors out of 200 images). These 

figures are very similar to the error rates obtained with the manually cropped images. 

These results appear to indicate that the HMM's performance is unaffected when using 

images cropped automatically. The system described contains all the components of a 

fully automated system. 



Chapter 9 

Conclusions 

This dissertation has presented a novel approach for modelling human faces, for the 

purpose of recognition, based on HMMs. The potential benefits of this approach were 

investigated and this chapter concludes the investigation by summarising the experimental 

results and indicating directions of future work. 

9.1 Summary of Results 

9.1.1 Model assessment experiments 

It was first shown how the face images could be represented using top-bottom models. 

These models made use of the structural information contained in the face and success­

ful recognition rates of around 85% were obtained. It was shown how the face could 

be segmented into horizontal bands and how these bands were similar to the bands a 

human would have drawn based on subjective judgement. The model parameterisation 

was investigated through an extensive set of experiments: by varying the model and the 

sampling technique, the parameters resulting in the lowest error rates were determined. 

Top-bottom models, however, took advantage only of the structural information of the 

face along the vertical direction, by segmenting the face into horizontal bands. The facial 

features related to each other in a top-bottom sense and the 2D structure of the image 

was little exploited. 

In order to make use of the 2D information contained in the face, P2D-HMMs were 

introduced. By representing the data using a combination of left-right models arranged 

in an ordered sequence, a pseudo-2-dimensional representation of the face was obtained. 

It was shown how an equivalent standard ID HMM could be constructed to simulate the 
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behaviour of the P2D-HMM, and recognition experiments were carried out with the ORL 

database. Experiments were set up to investigate the effect of the various parameters 

on the performance of the model and successful recognition rates of around 95% were 

obtained. 

9.1.2 Performance assessment experiments 

In order to assess the performance of the HMM-based approach, a comparison was pre­

sented with one of the best known face recognition algorithms. The Eigenface algorithm, 

based on principal component analysis, was tested using the ORL database of faces. By 

varying the number of Eigenfaces used to define the feature sub-space, various experi­

ments were carried out and the model with the highest success rate (around 90%) was 

selected. A statistical comparison with the best performing HMMs, both top-bottom and 

P2D-HMMs, was carried out. From the analysis, it was found that the observed differ­

ence in performance between Eigenfaces and top-bottom HMMs in favour of Eigenfaces 

would arise by chance on about 40% of the occasions. On the other hand, the observed 

difference between P2D-HMMs and Eigenfaces in favour of P2D-HMMs, would arise by 

chance on approximately 10% of the occasions. Thus, although the statistical evidence 

is not strong, there is evidence to suggest that the P2D-HMM system is superior to the 

Eigenface method for the given database. 

The performance of the HMMs was analysed using edge-detected images and images at 

lower spatial resolution. It was found that, in the edge domain, the performance dropped 

approximately by a factor of 2 for top-bottom HMMs and by more than 6 times for the 

P2D-HMM with the best performance. The segmentation results in the edge domain, 

however, were similar to those obtained in the intensity domain. The results obtained for 

images at lower spatial resolutions indicated that the performance was almost unaffected 

for images as small as 23 pixels wide and 28 pixels high. At this resolution, however, the 

storage space required for the models and images in the database was significantly lower 

than for the full resolution case. Naturally, with the smaller resolution images, the model 

training and the recognition of the test images could be carried out more quickly. 

Finally, a shape model and a genetic algorithm technique were used to locate the face 

in an image. Based on this technique, 400 faces were automatically cropped and used to 

train and test a P2D-HMM. It was found that the performance of the P2D-HMM was 
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practically the same as for the case with the manually cropped database, indicating that 

the model could be used in a fully automated system. 

9.2 Limits and Shortcomings 

The HMM approach has been shown to yield satisfactory recognition rates. By exploiting 

the inherent ability of HMMs to segment data automatically, successful recognition results 

were obtained with limited initial guidance. However, while experimenting with HMMs, 

some shortcomings became evident. 

HMMs are processor intensive models. Depending on the parameterisation used, the 

Viterbi algorithm can require a large number of calculations. This implies that sometimes 

the algorithm runs slowly. For example, using a Sun Sparc II workstation, the P2D-HMM 

with parameters P = (3-6-6-6-3,12,8 , 9,6) classified full resolution images at a speed of 

approximately 4 minutes per image. 

The HMM analysis is based on grey-level templates and therefore lighting plays an 

important role. The success of the model partly depends on the training data used. Initial 

informal experiments with equal lighting conditions for all training images revealed that 

the HMM would have low success rates in classifying images taken under different lighting 

conditions. In order to compensate for this, it was decided that the ORL database should 

have training images captured under a variety of lighting conditions. 

Finally, the P2D-HMM segmentation results were unsatisfactory, despite the improve­

ment in recognition rates obtained with these models . While the top-bottom HMM seg­

mentation matched expectations, the segmentation obtained with P2D-HMMs appeared 

quite erratic. 

9.3 Future Work 

9.3.1 Face recognition work 

Computer facilities are becoming widespread. Information super-highways, optical fibre 

networks such as those of the Granta Project in Cambridge, are being laid out to connect 

cities, universities, companies and the home. Multimedia applications, in which comput­

ers exchange video and audio data, are becoming commonly available. Computers in the 
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office and in the home will be equipped with video cameras and face recognition in this 

context will represent a valuable tool. New applications will emerge: it will be possible to 

index video documents dynamically, using the knowledge of who appears in them. Com­

puters will not switch on unless the user is recognised as an authorised one. By knowing 

which user is in a certain room through face recognition, it will be possible to person­

alise dynamically the equipment in that room according to the preferences of the user. 

The rapid expansion of the home entertainment industry will bring more applications: a 

user may want to fast-forward through a movie, until a scene featuring a specific actor is 

reached. 

In the light of this scenario, it is planned to develop the ideas introduced in this disser­

tation into a large scale system capable of recognising faces in real-time. The framework 

for this system is the ubiquitous deployment of digitally networked video cameras at the 

Olivetti Research laboratory in Cambridge. Inside the laboratory, offices are equipped 

with several camera sources. The Medusa application environment makes streams of live 

video images available to software processing elements, which can be distributed elsewhere 

on the network. Instances of a processor bank, a network module with a number of pro­

cessors, will provide a computation resource, which can be allocated dynamically to the 

various tasks involved in face recognition. Initially, the system is going to be employed 

to discriminate between approximately 40 people (Olivetti and University staff). Further 

experiments will be required to establish if the HMM-based technique can scale up to 

model a larger database of subjects. 

In order to make the system more tolerant to orientation changes, individual models 

will be trained for views of the same subject at different orientations to the camera. Test 

images will be matched against the models of different subjects and head orientations. 

Experiments will be carried out to investigate how the recognition performance is affected 

by introducing differentorientations. 

9.3.2 Broader work 

The HMM approach presented in this dissertation was applied to face images, but it can 

in principle be used for any image. Work with HMMs on generic images has already been 

carried out, as detailed in chapter 3. In most cases the observation vectors represented 

a set of features extracted from the images. In this dissertation, the observation vectors 

are image templates, used as input to a continuous density HMM. This approach has 
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the advantage that structural information can be integrated easily in the model. The 

approach therefore can be extended to any image, the structure of which can be modelled 

by a set of interconneCted states, each representing features in the image. 

9.4 Summary 

This dissertation has presented a novel approach to face recognition based on continuous 

density HMMs. Experiments were presented to assess the plausibility of the approach and 

to investigate its performance, as model parameters, model structure, image resolution 

and image domain were varied . Through the integration of structural and statistical 

information, image segmentation and feature extraction were carried out automatically. 

The HMM approach gave satisfactory recognition rates of up to around 95% and the 

method is currently being implemented as a real-time system, using the insights obtained 

from the experimental results presented in this dissertation. 
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