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Preface

Je pense, donc je suis.

René Descartes (1596-1650) in Discours de la méthode (1637)

My interest in reaction dynamics was initiated by Professor Hynes’s lec-
ture on reactivity at Ecole normale supérieure in 2004. My subsequent studies
and research projects were in the general area of theoretical physical chem-
istry and chemical dynamics. The present work focuses on electron-transfer
dynamics and the activation parameters involved, as motivated in chapter 1.
Therefore, chapter 2 describes theories of classical reaction rate constants and
their relation to dynamically relevant activation parameters. The methods
used to compute the activation parameters are outlined in chapter 3. Because
I first encountered extensive computer simulations during this project, I also
include the basics of the classical molecular simulation techniques, molecular
dynamics and Monte Carlo methods, in this chapter. The model systems and
the simulation details are briefly described in chapter 4, whereas I present the
results for the activation parameters in chapter 5 and conclusions in chapter
6. I attempted to make this work as self-contained as possible so that rele-
vant background material is given in the appendices. However, some depth
and several topics had to be left out due to limitations in space and time.

I feel that this work would not be complete without a statement about
my relation to it. Without doubt, I have learned a bit about general physical
chemistry and about rate constant descriptions and activation parameters
in particular. I have also learned something about the technical aspects
involved, and it has been a pleasure to think about the specific problems en-
countered. This work has also been a constant source of self-doubt. However,
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it has thereby provided an excellent opportunity for personal development,
and I regard it as an important step in my life-long learning process. During
this process I have benefitted from interactions with many people, whose
input I would like to acknowledge next.
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Computing the energetic component of the
charge-transfer symmetry factor

Christof Drechsel-Grau

Summary

The oxidation half-reaction of the aqueous ferrous ion serves as
a model to investigate electron-transfer dynamics. The present
classical model consists of two empirical valence bond states and
a control parameter that effectively determines the reaction free
energy. The model mimics an outer-sphere electron-transfer re-
action that obeys Marcus theory to a good approximation. This
theory uses the energy difference between the two empirical va-
lence bond states as the reaction coordinate and quantitatively
predicts the location of the transition state and activation param-
eters. The knowledge of the reaction coordinate is exploited in
two ways: to compute activation parameters from umbrella inte-
gration (UI) and Marcus theory (MT) based simulations assum-
ing linear response and to test the accuracy of transition path
sampling (TPS) for the calculation of activation energies. Ac-
tivation energies from transition path sampling (10.2 kJmol−1)
agree within statistical uncertainty with reference calculations
(UI: 15.2 kJmol−1; MT: 15.7 kJmol−1) and are lower than ac-
tivation free energies (UI: 25.8 kJmol−1; MT: 31.8 kJmol−1), in-
dicating substantial activation entropies. The variation of the
activation free energy with the reaction free energy defines the
charge-transfer symmetry factor (UI: 0.47; MT: 0.49). The latter
is larger than its energetic (TPS: 0.39; UI: 0.23; MT: 0.38) and
entropic (UI: 0.25; MT: 0.13) components, given by the variation
of the activation energy and entropy with the reaction free energy.
The charge-transfer symmetry factor also describes the location
of the transition state, which is verified by a committor analysis,
thereby supporting the validity of Marcus theory.
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Chapter 1

Introduction

Thermally activated processes are of great importance in nature and technol-
ogy. Examples include the freezing of water [3, 4], the corrosion of iron [5, 6]
as well as the proton- and electron-transfer processes in the respiratory
chain [7, 8]. These and other thermally activated processes are character-
ized by rare transitions between reactants and products [9–13]. The reac-
tive events occur infrequently because the stable states are separated by
activation barriers large compared to typical thermal fluctuations. This dif-
ference in energy scales results in a separation of timescales [9, 12]. Many
reactive transitions take place on molecular timescales, whereas the average
time between transitions is typically orders of magnitude longer because the
fluctuations providing the required activation have a low probability. This
separation of timescales leads to the existence of rate constants, which are
macroscopic observables [9]. However, a detailed understanding of activated
processes also requires unraveling their microscopic dynamics [14].

Understanding the reaction dynamics of an activated process involves
detailed knowledge about the system’s structural and energetic time evolu-
tion [14, 15]. This microscopic information must be consistent with macro-
scopic kinetic observables such as rate constants and activation energies. If
transition state theory is assumed to hold, the activation free energy and en-
tropy can also be obtained from kinetic measurements [15], which primarily
yield rate constants and activation energies [15, 16]. For a series of related

1
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reactions evolving according to the same mechanism, even the relative loca-
tion of the transition state with respect to the stable states can be inferred
from the Leffler-Hammond postulate [17,18]. In addition, time-resolved spec-
troscopy provides increasingly detailed information about reaction dynam-
ics [19]. Nonetheless, information about the reaction coordinate and the
transition state is usually difficult to obtain [20–22].

The identification of transition states and reaction coordinates generally
becomes more difficult with increasing complexity of the system [20, 21, 23].
For instance, chemical reactions of small molecules in the gas phase generally
involve relatively few degrees of freedom. In that case, the transition state
often corresponds to a saddle point of the potential energy surface, and the re-
action coordinate may be inferred by inspection or from the minimum energy
path [15, 24]. Also, the reaction is typically controlled by energetic factors.
In contrast, chemical reactions in solution take place in high-dimensional
spaces [21, 22, 25]. This complexity greatly decreases the reliability of phys-
ical intuition for the identification of transition states and reaction coor-
dinates [21, 22]. Furthermore, the activation barrier is now generally a free
energy barrier1 because entropic effects are rarely negligible in solution [9,29].
Thus, even unraveling the energy-entropy partitioning of the activation bar-
rier remains a challenge and might lead to a better understanding of the
reaction dynamics.

To investigate such activation parameters in the condensed phase, I shall
focus on homogeneous outer-sphere electron-transfer reactions in aqueous so-
lution. This is done for two reasons. First, these chemical reactions, which
do not involve the formation or rupture of bonds [30–32], are prototypical
for the investigation of solvent effects on chemical reactivity [25]. A detailed
understanding of outer-sphere electron-transfer reactions is also relevant for
more complex redox processes because the latter still involve charged species,

1Kinetic measurements of simple and elementary reactions yield the rate constant from
the time-dependence of the concentrations [15]. The activation energy is obtained from
the temperature-dependence of the logarithm of the rate constant, namely from the slope
of an Arrhenius plot [15,26]. The activation free energy is defined theoretically [12,27,28]
and becomes accessible once we assume a specific value for the pre-exponential frequency
of the transition state theory rate constant expression (2.18).
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which are stabilized by a polar solvent [33,34]. Second, outer-sphere electron-
transfer reactions are well described by Marcus theory [30, 32, 35–42], which
provides a quantitative expression for the activation free energy. This activa-
tion free energy is routinely determined [34,43–50], whereas the computation
of activation energies and entropies [51, 52] from classical molecular simula-
tion techniques still poses substantial challenges, which motivates the present
investigation. Marcus theory also identifies the transition state and the re-
action coordinate of outer-sphere electron-transfer reactions. I exploit this
knowledge about the reaction coordinate to pursue the following complex
double objective.

On the one hand, I address a set of physical questions. In particular, I try
to better understand the activation process and the nature of the transition
state of a suitably chosen model system by means of computer simulations.
The above-mentioned knowledge of the reaction coordinate allows for a com-
putation not only of the activation free energy [20,53], but also of the activa-
tion energy and entropy [29,54]. I thus ask what the latter quantities, which
are obtained from the temperature-dependence of the activation free energy,
contribute to the activation barrier. Similarly, I compute the charge-transfer
symmetry factor, which is defined as the derivative of the activation free en-
ergy with respect to the reaction free energy [55–60]. This charge-transfer
symmetry factor is a measure of the location of the transition state relative
to the stable states according to the Leffler-Hammond postulate [17, 18]. In
addition, I determine the activation entropy and energy variation with the
reaction free energy, namely the entropic and energetic components of the
charge-transfer symmetry factor [61–64], from umbrella integration [65, 66]
and Marcus theory based simulations [47, 67,68].2

On the other hand, methodological alternatives for the investigation of
electron-transfer reactions are explored. The methods mentioned above rely
on transition state theory [9, 11–13, 27, 69–72] and the knowledge of the

2Marcus theory based equilibrium simulations in the canonical ensemble are also known
as free energy perturbation method. However, I shall use the former term throughout this
document because it employs expressions that are only valid if the assumptions underlying
Marcus theory hold. In contrast, free energy perturbation is a more generally applicable
method.
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reaction coordinate to compute static activation parameters. Here, a dy-
namic viewpoint is emphasized. In particular, I employ transition path sam-
pling [21,23,73–75], which provides a more general route to the computation
of activation energies and rate constants. This method, which is based on the
statistical mechanics of trajectories, requires neither prior knowledge of the
reaction coordinate nor biased dynamics to obtain dynamical information.
In addition, Dellago and Bolhuis [76] derived an expression for the activation
energy as the temperature derivative of the logarithm of the exact classical
rate constant. However, this activation energy formula is expected to exhibit
large statistical uncertainties for complex systems because it involves differ-
ences of averages of the Hamiltonian [76]. I therefore assess the accuracy of
activation energies from transition path sampling using activation energies
computed from umbrella integration and Marcus theory based simulations
as a reference. The former reference method relies on the knowledge of the
reaction coordinate, whereas the latter further assumes knowledge of the
transition state and the validity of the linear response approximation, dis-
cussed below. After the validation of the transition path sampling method
for the computation of activation energies, the physical and methodological
aspects of this work are combined to study the nature of the transition state.
Specifically, I investigate whether the static transition state of Marcus theory,
namely the maximum of the free energy profile, corresponds to dynamical
transition state configurations in the committor sense. The committor is the
probability to reach the products before the reactants [21–23, 73, 77–83]. In
particular, transition state configurations have equal probability of reaching
the reactants and products next. Because the committor has emerged as
the ideal reaction coordinate, a committor analysis provides an alternative
means of assessing the reaction coordinate, the transition state and thus the
validity of Marcus theory.

In the following, I briefly describe the main features of Marcus theory
and the model system to make the above-mentioned objectives more explicit.
Then, I motivate the choice for using transition path sampling as the rare
event method. More detailed accounts of reaction rate theory, Marcus theory
and the computational methods employed are given in the main part of this
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document.
Marcus theory of electron transfer has been remarkably successful despite

its simple and elegant formulation [30, 32, 35–42]. Originally formulated as
a macroscopic dielectric continuum theory [35, 84], Marcus theory was sub-
sequently based on a more general statistical-mechanical framework [30,38].
Below, I shall first describe the physical ideas and then turn to the mathe-
matical framework of Marcus theory.

Figure 1.1: Schematic illustration of an outer-shere electron transfer from
a donor D to an acceptor A. Due to the disparate timescales of electronic
and nuclear motion the solvent has to rearrange prior to electron transfer,
as indicated by the reaction process following the solid arrows. The square
brackets contain the resonance between the degenerate solute charge distri-
butions of the reactants and products at fixed nuclear configuration, which
corresponds to the transition state. The direct transition from reactants to
products (dashed arrow) is not allowed and only indicates the reaction free
energy.

Marcus considered a thermally activated outer-sphere electron transfer
between a donor (D) and an acceptor (A) species in a polar solvent:

D + A→ D+ + A−. (1.1)
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The reactants and products are characterized by the solvation of the fixed
charge distributions of the solute [30, 35, 38, 85, 86]. Electronic states with
a fixed charge distribution of the solute are one example of diabatic states,
which are defined as electronic states that retain their physical character at
all nuclear configurations [87]. In contrast, adiabatic states, which are the
eigenstates of the electronic Hamiltonian [31, 33, 87], generally change their
physical character as a function of nuclear geometry [31, 87]. For example,
the dissociation of a NaI molecule involves the transition from a mainly
ionic structure at short internuclear distances to a covalent structure at large
internuclear distances [15, 87, 88]. The set of adiabatic eigenstates forms a
unique basis in which the total wavefunction can be expanded. The coupling
between electronic states then arises from the nuclear kinetic energy opera-
tor acting on the electronic states. In contrast, there is no unique diabatic
basis [31, 87] because a basis in which the nuclear kinetic energy operator
is diagonal cannot generally be found [87]. In a diabatic representation,
the coupling or mixing between electronic states arises from off-diagonal po-
tential energy terms [31]. Diabatic states in this document denote electronic
states with a fixed charge distribution of the solute that is independent of the
nuclear configuration. These diabatic states can be thought of as resonance
forms of valence bond theory, in which electron pairs are localized either as
a lone pair on one nuclear site or as a bonding electron pair between two nu-
clei [15,31,87,89]. The ground-state electronic wavefunction is then obtained
as a linear combination of the diabatic states or charge-localized resonance
structures [33, 89,90].

The diabatic and adiabatic states are obtained at a given nuclear configu-
ration. If the electronic energies are computed for many geometries, diabatic
and adiabatic potential energy surfaces are obtained from which the forces,
needed for molecular dynamics simulations, can be derived [15].

Marcus described the electron transfer as a change of electronic state, that
is, as a transition from the reactant diabatic state to the product diabatic
state. As in optical spectroscopy, the Franck-Condon principle, which states
that the electronic transition takes place in the presence of frozen nuclei
because the electronic motion is usually faster than the nuclear one [15,
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33], ensures that the radiationless electron transfer occurs at a fixed nuclear
configuration. Because the electrons are assumed to be equilibrated to the
nuclei, a fixed nuclear configuration entails a fixed total energy. Marcus thus
realized that the electron transfer must occur at nuclear configurations with
the same total energy of the diabatic reactant and product states to ensure
sufficient electronic coupling between these states [30,35,38].

Outer-sphere electron-transfer reactions are characterized not only by an
unaltered bonding pattern, but also by a first coordination shell that is rel-
atively insensitive to a change in the solute’s charge distribution [31]. Ac-
cordingly, changes in energy arise from changes in nuclear configurations of
the solvent. Because electrons move faster than nuclei (within the Born-
Oppenheimer and Franck-Condon approximations), electronic transitions re-
quire that the solvent rearranges first (see figure 1.1) and thereby provides the
activation as follows [33,35,38]. Initially equilibrated to the reactants’ charge
distribution, the solvent fluctuates until it reaches a configuration for which
the reactants and products are degenerate. This solvent configuration is in
electrostatic equilibrium with the solute’s charge distribution of neither the
reactants nor the products. After the electron transfer the solvent relaxes to
a configuration in equilibrium with the products’ charge distribution [35,84].
Hence, outer-sphere electron transfer is driven by large thermal fluctuations
of the solvent [33].

The mathematical formulation of the physical picture of Marcus theory
drawn above is based on transition state theory. The reaction coordinate
is the diabatic energy gap ∆E = HP − HR, that is, the total energy dif-
ference between the product and reactant diabatic states [30, 38, 43]. The
electron transfer occurs at the transition state, where the diabatic gap van-
ishes: ∆E = 0. In addition, Marcus theory assumes that the solvent responds
linearly to a (hypothetical) change in the solute’s charge distribution [35,42].
As shown in section 2.2, the linear response property and the diabatic gap
as reaction coordinate entail that the diabatic free energies, schematically
shown in figure 1.2, are parabolas with equal curvatures [44,48,91–93]. With
these ingredients, Marcus obtained the following elegant expressions for the
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Figure 1.2: Schematic diabatic free energy profiles are displayed for vanishing
(dashed lines) and positive (solid lines) reaction free energies ∆rF . The
reorganization (λ) and activation (∆‡F ) free energies are also shown for the
asymmetric reaction. Furthermore, ∆µ/2 indicates the shift in the effective
reaction free energy for the reactant state.

rate constant [38,42,94,95],

k+,ET = νR e
−β∆‡F , (1.2)

and for the activation free energy3 [25, 30,42]:

∆‡F =
(λ+ ∆rF )2

4λ
. (1.3)

Above, νR denotes a characteristic frequency in the reactant well [95], and
β−1 = kBT is the product of the Boltzmann constant kB and the absolute
temperature T . The reaction free energy ∆rF characterizes the thermody-

3In principle, the full activation free energy includes the work terms for bringing to-
gether the reactants and for separating the products. However, these terms are often of
similar magnitude and cancel. In addition, the work terms are usually negligible compared
to the activation barrier at the separation at which the reaction takes place [25,55], and I
shall use the simplified expression given in equation (1.3) throughout.
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namics of the transformation, and the solvent effect is condensed into the
single parameter λ [67], called reorganization free energy and shown in fig-
ure 1.2. The reorganization free energy is the reversible work to distort the
solvent around the fixed reactants’ charge distribution between two solvent
configurations: one in equilibrium with the reactants’ charge distribution
and another that would be in equilibrium with the products’ charge distri-
bution [48, 96, 97]. Throughout this reversible work the system stays on the
reactants’ free energy surface. The required distortion around the reactants’
charge distribution entails an intrinsic activation barrier of λ/4 even if the
reaction free energy vanishes [55]. Like transition state theory, Marcus the-
ory with its simple and elegant expressions has been remarkably robust and
successful [34, 48].

An intriguing feature of Marcus theory is the quadratic dependence of
the activation free energy on the free energy of reaction. This functional
dependence leads to two kinetic regions: the normal region, in which the rate
constant increases as the reaction free energy decreases (−∆rF < λ), and
the inverted region, in which the rate constant decreases as the reaction free
energy becomes more negative (−∆rF > λ). The maximum rate constant is
obtained for barrierless reactions (−∆rF = λ) [42, 48]. That the activation
free energy depends quadratically on the reaction free energy also entails that
the charge-transfer symmetry factor [59,60],

βct =
∂∆‡F

∂∆rF
, (1.4)

depends on the reaction free energy in Marcus theory (MT) [30,55,56]:

βct,MT =
1

2
+

∆rF

2λ
. (1.5)

As a result, the location of the transition state, given by βct, is predicted to be
in the middle of a symmetric barrier for ∆rF = 0 and βct,MT = 1/2 [56]. In
contrast, the transition state becomes more reactant-like for negative reaction
free energies and more product-like for positive ∆rF in accordance with the
Leffler-Hammond postulate [17,18].
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The Leffler-Hammond postulate states that two states involved in a reac-
tion that are close in energy will exhibit similar structures [18]. In particular,
the transition state of an elementary chemical reaction step can be consid-
ered intermediate between the reactants and the products. Moreover, it will
be less product-like if it resembles the reactants more and less reactant-like
if it is closer to the products [17].

Let us consider a series of electron-transfer reactions that follow the same
mechanism. For instance, an electron donor might be oxidized by a series
of electron acceptors. If we assume that the reaction free energy decreases
along the series, the transition state will become more reactant-like because
the activation free energy is expected to decrease according to the Leffler-
Hammond postulate [17, 18]. However, if the overall change of the reaction
free energy within the reaction series is small compared to the activation
free energies, the transition state will be at a similar location relative to
the reactants and products for all reactions within the series. Hence, the
variation of the activation free energy with the reaction free energy can serve
as a measure of how closely the transition state resembles the reactant state.
In other words, the charge-transfer symmetry factor is an indicator of the
location of the transition state relative to the reactants and products.

The same conclusion can be reached by a reasoning put forward by
Hush [85, 86]. Hush considered an adiabatic electron transfer for which the
solute charge distribution is always equilibrated to the solvent configura-
tion [85, 86]. In his treatment, Hush introduced a parameter measuring the
probability that the transferring electron resides on the acceptor [85,86]. At
the transition state, a fraction of the electron was assumed to have been
transferred from the donor to the acceptor [85, 86]. The transition state
value of Hush’s parameter coincides with the charge-transfer symmetry fac-
tor of Marcus theory given by equation (1.5) [85, 86]. In other words, the
charge distribution at the transition state influences the activation free en-
ergy. The latter will be lower if the charge distribution at the transition
state resembles that of the reactants, whereas a higher activation free en-
ergy is obtained if the transition state charge distribution is closer to that
of the products [86]. Marcus noted that the charge distribution of the so-
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lute is not equilibrated to that of the solvent at all times for both adiabatc
and non-adiabatic electron-transfer reactions [38]. Instead, the system will
switch from the charge distribution of the reactants to that of the products
at the transition state [35]. However, a picture involving an intermediate
charge distribution between reactants and products can be formulated even
from Marcus’s point of view. In that case, an equivalent charge distribution
can be introduced that corresponds to the one with which the instantaneous
solvent configuration would be in equilibrium [38]. The equivalent transition
state charge then also corresponds to the charge-transfer symmetry factor
(1.5) [30]. We note that even in the (strong) adiabatic electron-transfer case
considered by Hush, the change in the solute’s charge distribution is largest
at the transition state because the mixing between the charge-localized re-
actant and product state is at a maximum there due to the vanishing energy
difference [85].

I can now enunciate the above-mentioned objectives more specifically.
The validity of Marcus theory is tested in three ways. First, I compare
the curvatures of the reactant and product free energy parabolas to test
the linear response approximation, as has been done numerous times be-
fore [34, 43–48, 67, 91, 97–102] (see the review [32] for experimental investi-
gations). Second, a committor analysis is used to test whether the diabatic
energy gap is a suitable reaction coordinate. Third, I assess the quality of the
Marcus theory prediction that the transition state corresponds to vanishing
diabatic gap configurations by two means. On the one hand, the maximum
of the free energy profile is compared to the free energy at ∆E = 0. On the
other hand, I compute the committor distribution of dynamically harvested
configurations with gap values close to zero and test whether the mean is
statistically close to 1/2. Anticipating the result that Marcus theory pro-
vides a robust description of the model system, I use the diabatic gap as the
reaction coordinate to compute the activation free energy. The activation
energy and entropy are obtained from the Gibbs-Helmholtz relation and the
temperature derivative of the activation free energy [15]. The computation
of the activation parameters is then repeated for a series of reaction free en-
ergies to obtain the charge-transfer symmetry factor as well as its energetic
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and entropic components, defined below.

In the electrochemical literature, the variations of the activation energy
and entropy with electrode potential have been termed the energetic and
entropic components of the charge-transfer symmetry factor by some authors
[58,61–64]. By analogy, I shall call the dependence of the activation entropy
and (internal) energy on the reaction free energy the entropic (βct,S) and
energetic (βct,U) components of the charge-transfer symmetry factor:

Tβct,S = −T ∂∆‡S

∂∆rF
; (1.6a)

βct,U =
∂∆‡U

∂∆rF
. (1.6b)

The above procedure is only partially analogous because the precise effects of
electrode potential on reaction free energy and of temperature on electrode
potential are difficult to quantify. Indeed, Gileadi has pointed out that the
quantities βct,U and βct,S might depend on temperature [103, 104]. Below,
I describe the model system employed and how the reaction free energy is
controlled.

To investigate the nuclear dynamics and the activation parameters of
outer-sphere electron-transfer reactions, I study the classical model oxidation
half-reaction of the aqueous ferrous ion:

Fe2+
(aq) → Fe3+

(aq) + e−(µ). (1.7)

The ferrous (Fe2+) and ferric (Fe3+) ions are described by diabatic, charge-
localized empirical valence bond states [105], which interact via a classical,
non-polarizable force field characterized by Lennard-Jones and Coulomb po-
tentials [106,107]. A constant electronic coupling element mixes the diabatic
states to yield an adiabatic potential energy surface, as in reference [108].
The electron is not treated explicitly. Rather, it acquires an effective energy
µ, which is used as a control parameter to shift the potential and free ener-
gies of the diabatic states with respect to each other; this approach is similar
to the virtual electrode treatment of Sprik and co-workers [67, 100]. As a
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result, the control parameter µ provides a means of varying the reaction free
energy ∆rF . The effective reaction free energy ∆µ = µ− µ0 shown in figure
1.2 (between solid parabolas) is the µ value relative to the one (µ0; ∆µ = 0

between dashed parabolas) for which the reaction free energy would vanish if
Marcus theory applied exactly. The model consists of 64 simple point charge
water molecules [109, 110], thus rendering the classical system moderately
complex.

The study of a half-reaction instead of the full reaction is motivated by
the following factors. First, the half-reaction allows for a smaller system
size, thus reducing the computational cost of the investigation. Second, the
study of a single ion avoids the additional complexity of the donor-acceptor
distance, which influences the rate constant. Third, it is desirable to isolate a
single redox pair and to study its properties, as can be done in electrochemical
experiments [58]. Fourth, although the system size is decreased, the model
remains relatively complex because half-reactions are typically asymmetric in
the sense that even if the reaction free energy vanishes, the reaction entropy
and internal energy are generally non-zero. Finally, the main feature of
electron-transfer reactions, namely the activation due to the reorganization
of the solvent, is included in the study of half-reactions.

Classical models have been used in numerous studies of electron-transfer
reactions to determine reaction, activation and reorganization free energies
or dynamical solvent effects, for example in references [34,43,44,47–49,51,52,
97,108,111]. This approach is justified by two aspects. First, Marcus theory
separates the electronic structure of the solute from the classical nuclear
motion of the solvent [67]. It is thus assumed that the dynamics of the
system can be accurately described by classical mechanics. Second, classical
force fields are routinely used to study atomistic systems. This approach
is possible if the connectivity of the constituents remains unaltered [112].
Because the present model only exhibits a change in the charge of the iron
ion, the latter condition is fulfilled. In addition, if the water molecule is
considered as an entity of its own, its mass and a study at room temperature
guarantee that the first classical approximation above is reasonable [113].

The investigation of atomistic classical model systems can generally be
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achieved by Monte Carlo or molecular dynamics simulations [106, 107]. I
shall employ molecular dynamics simulations for the computation of static
quantities such as activation and reaction free energies because I will need
the system’s time evolution to compute committor values and to generate
reactive trajectories. Furthermore, I use umbrella integration [65, 66] to ob-
tain the free energy profile because its analysis of the umbrella sampling
data [114,115] converges with the number of bins. This is in contrast to self-
consistent histogram methods [116–118], as pointed out in references [65,119].
Marcus theory based simulations can be considered as a special case of free
energy perturbation [93,120]. Alternatively, I shall regard the computation of
the reaction free energy by unbiased molecular dynamics as thermodynamic
integration [121] in the present work because this enables me to assess the
accuracy of the linear response approximation in a straightforward way. To
motivate the choice of the transition path sampling method, I shall briefly
survey some rare events techniques below.

Over the last decades, a variety of computational tools has been devised
to overcome the timescale problem [9, 10, 12], on the one hand, and to find
answers to the reaction coordinate question, on the other hand [122, 123].
Because the literature is very extensive, I shall not attempt an exhaustive
review. Instead, I focus on a selection of approaches proposed to tackle
the problems of finding the reaction coordinate and of computing the rate
constant in complex systems from the transition path ensemble, defined as a
weighted set of reactive trajectories [21,124].

The traditional approach to rate constant calculations follows the two-
step procedure of the reactive flux formalism [9,125–127]. This approach first
identifies the free energy barrier along the known reaction coordinate, which
gives the probability of being at the dividing surface compared to being in the
reactant state. Then, dynamical trajectories are launched from the transition
state to evaluate how long transitions between the stable states are [106] and
how large the transmission coefficient is [23]. Alternative approaches are
often based on an idea by Pratt [123] to use a Monte Carlo procedure for
sampling trajectory space, where the endpoints of the trajectories constitute
constraints. Examples include transition path sampling (TPS) [21,23,73–75]
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and related approaches [22,77,128–133].

In particular, transition path sampling performs a biased random walk
in trajectory space that does not alter the natural dynamics of the system’s
time evolution [21, 23]. Here, the rate constant is obtained from the time
derivative of a time correlation function. In an attempt to improve the effi-
ciency of rate constant calculations, the transition interface sampling method
was developed [130], which uses a history-dependent definition of states in
phase space and several interfaces or dividing surfaces in between the stable
states. For diffusive dynamics, the loss of correlation along a given pathway
was exploited in partial path transition interface sampling [131].

One challenging problem of transition path sampling techniques is collect-
ing transition paths when the reactive events are long because the Lyapunov
instability causes initially close trajectories to diverge [106,134], which leads
to low acceptance probabilities [21]. To overcome this problem, more effi-
cient sampling was achieved by combining deterministic dynamics with an
Andersen thermostat [129], on the one hand, and by precision shooting [132],
on the other hand. The former method leads to increased efficiency because
partial paths, propagated from a given time slice and combined with the re-
maining part of the trajectory, might yield a new reactive trajectory with the
fraction of the cost of an entire pathway [129]. In the latter method, deter-
ministic dynamics is preserved throughout by rescaling the divergence of a
trial trajectory from a reference trajectory while the divergence is still in the
linear regime. This procedure allows arbitrarily small momentum changes
to be performed to increase the acceptance probability of long transition
pathways [132].

Conventional transition path sampling schemes consider an activated pro-
cess between two stable states. Recently, an extension to deal with multiple
states including intermediate states was proposed [133]. There, the transi-
tions between any two states were included in an extended path ensemble.
For instance, trajectories that do not visit any other state before returning
to the initial state are not taken into account; all other paths contribute to
the extended path ensemble.

Hummer [22] and Best and Hummer [77] used transition path sampling
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from any dividing surface with a given value of the order parameter to com-
pute rate constants and to identify transition states. The transition state was
defined as the collection of phase space points with the highest probability
that trajectories containing these points connect the stable states.

The methods mentioned above require a stationary phase space density.
For stochastic dynamics, non-equilibrium systems can be investigated by an
extension of the transition path sampling method [128] or by forward flux
sampling and related approaches [124,135,136]. The former changes the noise
history of a randomly selected point along the path, whereas the latter grows
transition paths from one interface to the next, thus generating the transition
path ensemble and yielding the rate constant. The forward flux sampling
technique also differs from transition path sampling based simulations in the
sense that no initial reactive trajectory is required [124,135,136].

Although the computation of rate constants is more efficient if the order
parameter chosen is close to a suitable reaction coordinate, the identifica-
tion of the latter remains a major challenge in complex systems. A widely
used approach is to generate the transition path ensemble and to analyse
the reactive trajectories by means of a committor analysis. The committor,
which is the probability of relaxing to the products prior to reaching the
reactants, along the states of the reactive trajectories can indicate whether
the order parameter characterizing the stable states is a suitable reaction
coordinate [21, 23, 73]. A technique combining transition path sampling and
likelihood maximization [137] was used in references [82, 83, 138] to extract
the reaction coordinate from partial paths using aimless shooting. In this
approach, the reaction coordinate is obtained as a linear combination of
proposed order parameters. An alternative approach [78, 139] is to identify
isocommittor surfaces, which contain configurations that have the same prob-
ability of reaching the product state before the reactant state [21–23,79], as
the ideal reaction coordinate directly by finding the minimum (free) energy
path connecting reactants and products. Ma and Dinner [140] proposed to
find the reaction coordinate automatically from a set of order parameters
by means of a genetic neural network algorithm. Because the genetic neural
network needs to be trained before it can be used [140], no fully automated
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method to identify reaction coordinates seems to exist at present, and all
approaches rely on partial physical insight.

In the present work, I employ transition path sampling to study rare
events. This choice is motivated by the requirements of the system studied
and by the objectives. As mentioned earlier, the computation of activa-
tion parameters and the identification of the reaction coordinate without
prior knowledge of the latter are especially valuable for complex systems.
An additional desirable feature of transition path sampling is the use of dy-
namically unbiased trajectories. This characteristic allows direct insight into
the activation process and is not possible with biased or static free energy
methods such as umbrella sampling or thermodynamic integration. Also, I
investigate ultrafast electron-transfer dynamics so that deterministic dynam-
ics are necessary. An important reason for choosing transition path sampling
is the computation of the activation energy. Although transition interface
sampling could also be used to evaluate the activation energy, reference data
have been published in the case of transition path sampling [76], which was
crucial during the development stage of the present work. Contrary to the
problem of long transition pathways, the short reactive trajectories harvested
here might suffer from too slow a divergence. Therefore, the temperature
control for transition path sampling in the canonical ensemble reported in
reference [141] was implemented to allow for large momentum changes with
moderate variations of the kinetic energy. Hence, theoretical and practical
considerations lead to the use of transition path sampling.

The remainder of this thesis is structured as follows. Chapter 2 out-
lines the theoretical frameworks of reaction rate theory, of Marcus theory
and of the statistical mechanics of trajectories. Simulation techniques are
described in chapter 3, whereas the characteristics of the model systems and
the simulation details are presented in chapter 4. I present the outcomes of
the simulations and their discussion in chapter 5. The main conclusions are
summarized in chapter 6, whereas supporting material is presented in the
appendices.
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Chapter 2

Theory

The present chapter outlines the theoretical framework that underlies the
dynamics and the energetics of electron-transfer reactions. Because electron-
transfer reactions form an important class of chemical reactions, we briefly
review the principles of chemical kinetics. Our presentation focuses on the
central observable of chemical kinetics, namely the rate constant. Along the
way, we describe thermodynamic properties, such as free energies of reac-
tion and activation, that influence the rate constant of chemical reactions.
The rate constant provides a link both to empirical quantities, such as the
activation energy, and to theoretical formulations, such as transition state
theory. This leads directly to our presentation of the classical theory of elec-
tron transfer by Marcus, which is based on transition state theory. On the
other hand, the classical rate constant and the activation energy of electron-
transfer reactions can be computed by transition path sampling. Hence, our
description of the underlying statistical mechanics of trajectories provides a
natural transition to chapter 3.

2.1 Classical reaction rate theory

2.1.1 Chemical kinetics

Chemical kinetics deals with the study of reaction rates, which determine the
speed of a chemical transformation [15]. In principle, reaction rates depend
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on the concentration of species, on temperature and on pressure. Here, we
shall focus on condensed phase kinetics, for which the pressure dependence
of the rate is negligible [142].

To measure the rate of a chemical reaction, we need an observable that
changes in time [15]. However, all properties in thermodynamic equilibrium
are time-independent except time-correlation functions [72]. Therefore, the
system is perturbed from equilibrium, and we monitor its time-dependent
relaxation from the non-equilibrium state back towards equilibrium [33]. In
the realm of chemical kinetics, one example of a perturbation is to create
non-equilibrium concentrations. The speed of the decay of the concentration
deviations from equilibrium then yields the rate [9, 11,143].

We now turn to the rate law. The rate law determines how the rate de-
pends on the concentrations of each chemical species [15]. Two additional
features reveal the importance of the rate law. First, any proposed mecha-
nism for the reaction must be consistent with the rate law [15]. Second, the
rate law enables us to determine the rate constant and thus the temperature
dependence of the rate [15].

The rate constant is independent of the concentrations and carries the
temperature dependence of the rate. Measuring the temperature dependence
of the rate constant, we gain access to the activation energy [15]. For a given
temperature and pressure the rate constant and the activation energy are in-
trinsic kinetic parameters of a chemical reaction. Hence, their determination
provides quantitative insight into the dynamics of the process considered.

To make the treatment more quantitative, we consider the example of a
reversible unimolecular reaction [72]:

R
k+−⇀↽−
k−

P. (2.1)

In reaction (2.1) above, reactants (R) transform into products (P ) with rate
constant k+, and products convert to reactants with rate constant k−. In
equilibrium the concentrations of reactants (〈c〉R) and products (〈c〉P ) remain
unchanged, and the rate constants for the forward and backward reactions
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are related by the equilibrium constant4 [15, 72,145,146],

K =
k+

k−
=
〈c〉P
〈c〉R

, (2.2)

which determines the relative population of stable states. We proceed by
introducing instantaneous time-dependent concentrations cj(t) of the states
j = R and j = P [9, 72],

cR(t) = 〈c〉R +DcR(t); (2.3)

cP (t) = 〈c〉P +DcP (t), (2.4)

as the sum of equilibrium concentrations 〈c〉j and deviations Dcj(t) = cj(t)−
〈c〉j from them. Because the equilibrium concentrations are constant, the
time dependence of the concentrations equals that of their deviations from
equilibrium [9,72,145].

We are now in a position to define the rate of the unimolecular trans-
formation given in equation (2.1). The rate v is determined by the speed
with which product particles are formed at a given absolute temperature
T [15, 146]:

v =
dDcP (t)

dt
= k+DcR(t)− k−DcP (t) (2.5)

= − (k+ + k−)DcP (t). (2.6)

The last equation follows if a closed system with constant particle number is
considered. In that case, we have DcR(t) + DcP (t) = 0 [9, 72]. In addition,
equation (2.5) is the rate law for reaction (2.1) because it relates the rate to

4The thermodynamic equilibrium constant Keq = aP
aR

at constant temperature and
pressure involves the activities of reactants (aR) and products (aP ) [15]. Keq is related
to the equilibrium constant obtained from the ratio of equilibrium populations (2.2) by
Keq = K γP

γR
. The activity coefficient γ links the activity to the equilibrium concentration

〈c〉 via a = γ 〈c〉/c0 [144], where c0 denotes the standard concentration used to render the
concentration dimensionless. Thus, activities can be regarded as effective mole fractions
[15]. We shall consider sufficiently dilute solutions, for which activity coefficients approach
unity and for which we may replace activities by (dimensionless) concentrations or mole
fractions.
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the concentration of each species.

Because the rate law given in equation (2.5) is linear in DcP (t), it can be
integrated to express the time-dependent deviation from equilibrium DcP (t)

as a function of its initial value DcP (0) [9, 15,72,146]:

DcP (t) = DcP (0) e−
t

τrxn . (2.7)

Here, we have introduced the reaction time τrxn = (k++k−)−1 for future refer-
ence [9,143]. We also note that the exponential decay of the non-equilibrium
concentration holds for first-order kinetics discussed in the present docu-
ment [15]. Until now, we have not given an explicit treatment of the rate
constant. This is what we shall do next.

An empirical expression of the rate constant for many condensed phase
reactions was first proposed by van’t Hoff and Arrhenius at the end of the
19th century (according to reference [13]). It consists both of a temperature-
independent frequency factor Ar (which measures the rate of collisions with
suitable orientation) and of a temperature-dependent exponential term con-
taining the activation energy Ea, which the system needs to acquire to over-
come the barrier between reactant and product states [15]. The rate con-
stant k+ at absolute temperature T is then given by the Arrhenius equa-
tion [15, 146]:

k+ = Ar e
−βEa . (2.8)

Above, kBT = β−1 denotes the product of the Boltzmann constant with
temperature.

From an experimental point of view, the activation energy is obtained
by measuring the rate constant at various temperatures [15, 26]. Then, a
plot of the logarithm of the rate constant over inverse temperature yields the
negative activation energy scaled by the inverse Boltzmann constant [15,26].
Such a graph is called an Arrhenius plot [15]. Equivalently, the activation
energy is defined by equation (2.9) [15,146]:

Ea = −d ln k+

dβ
= kBT

2 d ln k+

dT
. (2.9)
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In this section we have introduced the empirical expressions for the rate,
the rate law, the rate constant and the activation energy. In the next sections
we will relate these to microscopic theoretical concepts.

2.1.2 Classical reaction rate constant

The empirical form of the rate constant has been given in the previous section.
In this section we introduce microscopic expressions for the rate constant.
Our treatment will be classical. In particular, classical statistical mechanics
and Hamiltonian dynamics are used throughout.

Restricting our attention to thermal chemical reactions in condensed
phases, we first need to address the conditions under which a rate constant
exists. According to Chandler [9], a rate constant only exists if a rate law
can be written. For this to be possible the process under consideration must
be activated [9]. In other words, the chemical transformation must be char-
acterized by a separation of timescales to be described in more detail later.
Chandler states in reference [9] that the derivation of a macroscopic rate law
from microscopic principles seems impossible. We shall therefore assume that
the rate law of equation (2.5) is accurate and that a rate constant exists. In
that sense, the experimental information guides the theoretical approach [9].

Our starting point is the fluctuation-dissipation theorem discussed below
(and in appendix E) [33, 72]. The fluctuation-dissipation theorem applies
to many condensed phase processes and is particularly suited to describe
relaxation phenomena as the one discussed in the previous section. We shall
assume that it holds for chemical kinetics of the type considered here. It then
provides a direct link between the macroscopic expressions of the previous
section and the microscopic ones that we will present below [72].

The fluctuation-dissipation theorem states that the relaxation of a macro-
scopic non-equilibrium state towards equilibrium occurs on the same timescale
as the decay of spontaneous equilibrium fluctuations [33,72,145,147]. In other
words, for small deviations from equilibrium we cannot distinguish whether
the initial state of the system has been arrived at by a spontaneous fluctua-
tion or by a systematic perturbation [145].
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One mathematical form of the fluctuation-dissipation theorem for the
observable A is given by equation (2.10) [9, 33,72]:

〈DneA(t)〉ne
〈DneA(0)〉ne

=
〈DA(0)DA(t)〉
〈DA(0)DA(0)〉

. (2.10)

Above, angular brackets denote population mean values of a given proba-
bility distribution, and the subscript ne indicates non-equilibrium averages.5

Deviations from the mean values are written as DA(t) = A(t) − 〈A〉 in the
case of equilibrium fluctuations and as DneA(t) = A(t) − 〈A〉ne in the non-
equilibrium case. The theoretical foundation of the fluctuation-dissipation
theorem is linear response theory, a brief account of which is given in ap-
pendix E.

To proceed, two questions have to be dealt with. First, we identify the
observable that enters equation (2.10) for the fluctuation-dissipation theo-
rem [72]. Second, we discuss the timescales involved and the times for which
the fluctuation-dissipation theorem holds [72]. Because our aim is to ar-
rive at an expression for the rate constant that describes the intrinsic rate of
transformation, the relevant observables are the concentrations of the species
involved in reaction (2.1). For ensembles with constant volume V and parti-
cle number N concentrations can be replaced by the corresponding particle
numbers Nj = cj V or mole fractions Xj =

Nj
N

= 〈θj〉. Here, N =
∑

j Nj

is the total number of particles in the system, and j = R,P indicates the
chemical species. The characteristic function θ is defined by relation (2.12).
Combining equations (2.7) and (2.10), we arrive at equation (2.11) [72]:

〈DneNP (t)〉ne
〈DneNP (0)〉ne

=
〈DNP (0)DNP (t)〉
〈DNP (0)DNP (0)〉

= e−
t

τrxn . (2.11)

As mentioned previously, we see that the fluctuation-dissipation theorem

5Contrary to stationary equilibrium averages, non-equilibrium averages are not unique
[72, 148] because they depend on the specific way they are prepared. The distribution of
initial conditions of a non-equilibrium state can be thought of as corresponding to that
obtained from a specific application of an external force that is absent in equilibrium.
This external force will cause a non-equilibrium average value of an observable macroscop-
ically characterizing the non-equilibrium state. The resulting non-equilibrium average is
generally time-dependent [33,72].
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provides a connection between the macroscopic rate law and a microscopic
time-correlation function in the canonical ensemble.

To aid the subsequent derivation, we rewrite equation (2.11) in terms of
characteristic functions. The characteristic function for the product state is
defined as [2, 149]

θP (x) =

1 for x ≥ 0;

0 for x < 0.
(2.12)

Here, x is a scalar order parameter that separates the phase space unambigu-
ously into reactant (x < 0) and product (x ≥ 0) regions [72]. In principle, the
order parameter x = x(ξ), which may not be easily identified, is a function
of all phase space variables [22,81,150]:

ξ = {q1, q2, . . . , q3N , p1, p2, . . . , p3N}. (2.13)

Here, the qj and pj denote canonically conjugate coordinates and momenta,
and N is the number of particles in the system. With the above definition,
the characteristic function of the reactant state is θR(x) = 1−θP (x), and the
canonical ensemble average of the characteristic function of any stable state
corresponds to the equilibrium mole fraction of that state [9]. We also have
〈θ2〉 = 〈θ〉. This property is used to express equation (2.11) as6

e−
t

τrxn =
〈DθP (x0)DθP (xt)〉
〈DθP (x0)DθP (x0)〉

=
〈θP (x0)θP (xt)〉 − 〈θP 〉2

〈θ2
P 〉 − 〈θP 〉2

= 1− 〈θR(x0)θP (xt)〉
〈θR〉〈θP 〉

. (2.15)

6Throughout this document the equilibrium ensemble average of an observable A in
the framework of classical statistical mechanics (outlined in appendix D) is written as

〈A〉 =

∫
A(ξ) ρ(ξ) dξ. (2.14)

Here, ρ(ξ) is the equilibrium phase space density, and the notation dξ =
∏6N
j=1 dξj indicates

integration over the entire set of canonical phase space variables.
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Above, the order parameter value at time t is denoted by xt. Expanding
the exponential to first order in t, taking time derivatives and using τ−1

rxn =

k+ + k− = k+

(
1 + 〈θR〉

〈θP 〉

)
yields an expression for the rate constant of the

forward reaction [9, 12,70,72]:

k+(t) =

〈
θR(x0)θ̇P (xt)

〉
〈θR〉

. (2.16)

According to Miller [70], the classical rate constant defined above is the
equilibrium reactive flux out of the reactant well through the dividing sur-
face (separating reactants and products) into the product well. To see this,
we rearrange equation (2.16) as follows. First, the time derivative can be
transferred to the first factor in the average using properties of equilib-
rium time-correlation functions (see appendix F) [33, 72]. Second, noting
that the derivative of the characteristic function is the δ-distribution, we
obtain [9, 11,12,70]

k+(t) = −〈θ̇R(x0)θP (xt)〉
〈θR〉

=
〈δ(x0)ẋ0θP (xt)〉

〈θR〉
. (2.17)

The interpretation of equation (2.17) is as follows. The δ-distribution locates
the system at the dividing surface at time t = 0, and the initial "velocity" ẋ0

correspond to the equilibrium distribution in the reactant state because of the
denominator. Then, the characteristic function selects those trajectories that
have reached the product state after time t. The factor θP (xt) thus contains
the dynamical information [70]; in particular, it describes the correlation of
the system with its initial state after time t, obeying τmol � t� τrxn. On this
timescale the system relaxes to one of the stable states so that the plateau
value of the rate constant is established as described below [11,12,151].

We now turn to the description of timescales involved in the discussion
of chemical reaction dynamics to assess under which circumstances equation
(2.16) is valid [9,12,72]. The rate constant describes the dynamics of a slow
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variable [9]. In the present case, the slow variable is the time-dependent
population of the product state (or of the reactant state because both are
coupled in a closed system) [9, 12]. This means that the number of particles
in the product state changes appreciably only on a timescale of the order of
the reaction time τrxn, the average time the system spends in a stable state
between infrequent transitions [11]. All other relevant motions of the system
must occur on much shorter timescales for a rate constant to exist [9, 12].
In particular, the time for the system to equilibrate in the new stable state
after a transition and the time needed for that transition are of the order of
molecular times τmol. We thus have a separtation of timescales τmol � τrxn

that characterizes the chemical reaction as an activated process [9, 11].

It follows from the above considerations that the rate constant expression
of equation (2.16) is valid for times t such that τmol � t � τrxn [9]. To
see this, consider times of the order of τrxn. In that case, a given particle
has made at least one transition on average, and the correlation with its
initial state has been lost [11]. In contrast, for times comparable to τmol the
system’s motion is inertial and strongly correlated to its initial condition. On
this timescale the experimentally measured exponential decay cannot hold.
In other words, the rate constant reaches a plateau value after a transient
time of the order of t [9, 12].

2.1.3 Transition state theory

Having discussed the classical reaction rate constant in the previous section,
we now introduce one of the most successful and most widely used concepts in
chemical dynamics: transition state theory. We shall present the assumptions
made in going from the exact classical rate constant to that of transition state
theory and outline its range of validity. Two complementary treatments of
transition state theory are encountered in the literature: a dynamical and
a thermodynamic one. Both treatments are statistical and will be outlined
below. First, Wigner’s dynamical transition state theory is described [69,
150]. Subsequently, the thermodynamic version of Eyring [27] is given to
make the connection to the empirical rate constant and the activation energy
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in equations (2.8) and (2.9).

Wigner’s work [69] involves three assumptions. The first states that the
chemical reaction occurs on the adiabatic ground state potential energy sur-
face. Second, classical mechanics is assumed to provide an accurate descrip-
tion of the nuclear motion. Wigner’s third or fundamental assumption [70]
states that all trajectories reaching the bottleneck region from the reactant
side are reactive and form product species [69]. In addition, because transi-
tions between reactants and products are infrequent, thermal equilibrium pre-
vails in the metastable states [9,12,33,70,71]. According to Wigner [69], the
rate constant is the average velocity of reactant phase space points through
the dividing surface normalized by the total number of reactant phase space
points.

Clearly, the assumption that trajectories do not recross the dividing sur-
face enables us to make the transition from the exact classical rate constant
to the one given by transition state theory. In mathematical terms, we let the
time t approach zero from the positive side [9]. This is equivalent to replacing
θP (xt) in equation (2.17) by θ(ẋ0), yielding the transition state theory rate
constant [9, 12, 70]:

k+,TST =
〈δ(x0)ẋ0θ(ẋ0)〉

〈θR〉
. (2.18)

In other words, a system at the dividing surface with a positive velocity in
the reactive direction is assumed to proceed to the product state. As a conse-
quence, the rate constant is determined by a statistical average of properties
at the dividing surface that are uncorrelated [33, 72]. In particular, transi-
tion state theory allows us to obtain dynamical information without having
to propagate trajectories. [9,70] This is in contrast to the exact classical ex-
pression for the rate constant (2.17), where the fate of a trajectory depends
on the velocities and positions at its initial and final times [9, 70].

As can be seen from equation (2.18), the transition state theory rate con-
stant is given by the probability density of finding the system at the transition
state (or at the dividing surface) compared to the probability that the system
is in the reactant well multiplied by the thermally averaged velocity in the
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reactive direction at the transition state [33]. This very attractive feature of
only involving static properties comes at a price. The transition state theory
rate constant depends on the location of the dividing surface and thus on
the choice of the reaction coordinate [9,152]. In contrast, the exact classical
rate constant is independent of the location of the dividing surface, as follows
from Liouville’s theorem (discussed in section 3.1) [70]. Even if the transition
state could be located correctly, the rate constant of transition state theory
would still overestimate the exact classical rate constant because of the no-
recrossing rule [152]. The difference between the exact classical rate constant
and that from transition state theory is accounted for by the transmission
coefficient [12,27,69,153]:

κtr =
k+

k+,TST
. (2.19)

Given an adiabatic ground state potential energy surface and classical
forces derived from it acting on the nuclei, transition state theory is based
on two key assumptions [9, 12, 33, 70, 71]. First, equilibrium prevails in the
reactant state. Second, trajectories crossing the bottleneck from the reac-
tants transform to products with certainty. According to Nitzan [33], these
two assumptions are incompatible with each other. The second assumption
can only be fulfilled if motion across the dividing surface is inertial so that
no collisions can reverse the trajectory of the system. However, for thermal
equilibrium to exist within the whole reactant region up to the dividing sur-
face according to the first assumption, collisions with the environment are
necessary and thus contradict the second assumption.

Wigner’s dynamical transition state theory emphasizes the second of the
above assumptions, namely that the system does not recross the dividing
surface. In contrast, Eyring’s work [27] stresses the equilibrium within the
reactant state governing the probability of reaching the transition state or
activated complex. The activated complex is the state of the system at the
bottleneck and decomposes along the reaction coordinate. If the motion in
the reaction coordinate is approximated by a harmonic mode in the classical
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limit, we obtain the transition state theory rate constant [12,33,71,154]:

k+,TST = νR e
−β∆‡F . (2.20)

Above, νR is a characteristic relaxation frequency in the reactant well, and
∆‡F denotes the activation free energy7 that determines the probability of
finding the system at the transition state compared to finding it in the reac-
tant region.

We are now in a position to relate the transition state theory rate constant
(2.20) to the empirical rate constant (2.8). In particular, using the definition
of the Helmholtz free energy change [15],

∆‡F = ∆‡U − T∆‡S, (2.22)

we obtain

k+,TST = νR e
−β∆‡U e

∆‡S
kB . (2.23)

For reactions in solution the activation energy and the activation internal
energy are related by equation (2.24) [15, 95]:

Ea = ∆‡U + kBT. (2.24)

Hence, we can identify the pre-exponential factor Ar in equation (2.8) as
[15,36,95]

Ar = e νR e
∆‡S
kB . (2.25)

7In principle, the quantity denoted by ∆‡F (denoted by Marcus as ∆F ∗ [95]) in
equation (2.20) has one degree of freedom less in the partition function of the reactants
than that in the Eyring equation [27]:

k+,TST =
kBT

h
e−β∆‡F . (2.21)

However, the numerical difference is small in practice [38, 95], and we shall not introduce
another symbol to distinguish between the two activation free energies.
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The above equation can thus be interpreted as the product of a collision fac-
tor in condensed phase νR and a factor determining the fraction of systems
suitably prepared for reaction via the relative accessible phase space volume
to do so. The connection between activation parameters and the rate con-
stant closes our discussion about transition state theory. Next, we present
Marcus theory, which uses the framework of transition state theory described
above.

2.2 Marcus theory of electron transfer

2.2.1 Electron-transfer reactions

Before we describe the mechanism and dynamics of electron-transfer reac-
tions, a brief account of redox reactions, their nature and their classification
is given. Electron-transfer reactions involve the transfer of one or more elec-
trons from an electron donor D to an electron acceptor A, as in equation
(2.26) [15, 86]. For notational brevity we shall focus on reactions involving
the transfer of a single electron (e−). The reduced form of the donor D and
the oxidized form of the acceptor A correspond to the reactants R, whereas
the products P consist of the oxidized form of the donor D+ and the reduced
form of the acceptor A−:

D + A
 D+ + A−. (2.26)

From a theoretical point of view, we can divide the above-given full re-
dox reaction into two half-reactions.8 The first half-reaction consists of the
oxidized and reduced forms of the donor D+/D, whereas the second one
is formed by the oxidized and reduced forms of the acceptor A/A−. The

8Dividing the full reaction into half-reactions is a hypothetical operation for homoge-
neous redox reactions. In heterogeneous redox processes the oxidation and reduction are
spatially separated and take place at different electrodes [15].
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corresponding half-reactions read

D → D+ + e−; (2.27a)

A + e− → A−. (2.27b)

As will be seen below, the decomposition of the full reaction into half-
reactions allows for computationally less expensive schemes to evaluate redox
free energies [68].

Redox reactions are fundamental chemical transformations and can be
found in diverse environments and under various conditions. Consequently,
several types of redox reactions can be distinguished. First, homogeneous
redox reactions involve electron transfer between donor and acceptor species
that are in the same phase, often in a polar solvent [15]. In contrast, hetero-
geneous redox processes are transformations in which the electron donor or
acceptor is an electrode. In this case, the electron transfer occurs across an
interface [15]. Second, the electron transfer can be light-induced as in photo-
system II of plants or thermally activated as in the respiratory chain [155]. In
the former case, the system must dissipate excess energy effectively, whereas
the latter case requires an environment capable of providing the activation for
the electron transfer. Third, if the first solvation shell around an electroac-
tive species remains unaltered during the reaction, the process is called an
outer-sphere electron transfer [30]. On the other hand, inner-sphere electron-
transfer reactions are characterized by significant changes in the first solva-
tion shell, such as variations in the number of ligands or shared ligands
between donor and acceptor species [30]. Fourth, as most condensed phase
reactions, redox processes can be divided into the following sequence of steps:
encounter, reaction, separation [33]. The first step involves the encounter of
the reactants via diffusion, and possibly adsorption, to reach a distance suit-
able for reaction. Then, the chemical transformation takes place, and the
products diffuse away from each other, conceivably after desorption from a
surface. It is assumed here that the diffusion steps are fast compared to the
chemical reaction so that the chemical transformation is rate-limiting [15,33].
Also, to restrict the scope of the present document, the investigation will
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focus on homogeneous, thermally activated outer-sphere electron-transfer re-
actions.

After the brief description of redox reactions above the physical view of
electron transfer according to Marcus theory will be presented [35]. It is first
noted that outer-sphere electron-transfer reactions are special transforma-
tions because no chemical bond involving the electroactive species is being
broken or formed [42]. Thus, the electronic coupling between the solute states
is usually weak, and diabatic or charge-localized states can be employed to
describe the solutes’ charge distribution [35]. Because the reactant and prod-
uct solute states usually exhibit charges, redox processes generally take place
in polar solvents capable of stabilizing these charges [34].

The next observation pertains to the overall stable states including solutes
and solvent. Because the solute’s charge distribution of the reactants differs
from that of the products, the equilibrium solvent configuration around the
reactant state of the solute will typically be different from the most probable
solvent configuration stabilizing the products’ solute [33]. Because electrons
commonly move faster than nuclei, the following mechanism of electron trans-
fer is proposed within the framework of Marcus theory [35,42].

The actual electron transfer occurs at a fixed nuclear configuration of the
solutes and the solvent, thereby obeying the Franck-Condon principle [35,42].
Because attention is restricted to thermal processes, the total energies of the
reactant and product states must be equal at the transition state for electron
transfer to occur [35, 42]. As a consequence, the activation involves nuclear
rearrangement of the solvent prior to electron transfer. The solvent distorts
from a configuration equilibrated to the reactants’ charge distribution to
a solvent configuration at the transition state that is in equilibrium with
neither the reactants’ nor the products’ charge distribution [35,84]. After the
charge transfer the solvent relaxes to a configuration that is in equilibrium
with the products’ charge distribution. In summary, thermal fluctuations of
the polar solvent away from the most probable regions of the reactant well,
making reactant and product states degenerate, allow for and drive electron
transfer [33].
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After the physical and qualitative aspects the quantitative features of
Marcus theory will next be described within the microscopic framework of
statistical mechanics [38].

2.2.2 Rate constant and activation free energy

As mentioned earlier, the expression of the rate constant for electron-transfer
reactions is based on transition state theory [38,42,94,95]:

k+,ET = νR e
−β∆‡F . (2.28)

Here, β−1 = kBT is the Boltzmann constant times the absolute temperature,
and ∆‡F denotes the Helmholtz free energy of activation. The value of the
pre-exponential factor νR corresponds to a typical frequency in the reactant
well if the adiabatic version of the rate constant is employed. In contrast,
the non-adiabatic formulation, derived from Fermi’s golden rule in a quan-
tum treatment or from a semi-classical Landau-Zener approach, identifies
νR = 2π

~ γ
2
el (4π λ kBT )−1/2 in the high temperature limit [43,48,92,156,157].

Here, ~ is Planck’s constant divided by 2π. The electronic coupling element
between the reactant and product states is denoted by γel, and λ is the
reorganization free energy defined below.

As usual, the exponential factor gives the probability density for finding
the system at the transition state compared to finding it in the reactant
region. According to Marcus theory [25,30,42], the (diabatic) activation free
energy is (see also the footnotes on page 8)9

∆‡F = ∆‡F
(d) =

(∆rF + λ)2

4λ
. (2.29)

Above, ∆rF denotes the Helmholtz free energy of reaction, hereafter referred

9We shall distinguish between diabatic (d) and adiabatic (a) activation parameters
(∆‡F ; ∆‡U ; ∆‡S), for which the difference due to the electronic coupling γel between
diabatic states is expected to be largest. In contrast, reaction parameters (∆rF ; ∆rU ;
∆rS) as well as the charge-transfer symmetry factor and its components (βct; βct,U ; βct,S)
are expected to be less sensitive to γel. Whenever a statement applies to the diabatic and
adiabatic cases, no distinction in notation will be made.
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to as the reaction free energy. The reaction free energy is a quantity involving
both reactant and product states, whereas the reorganization free energy λ
is a property of only one diabatic state characterized by a fixed charge dis-
tribution of the solute. The reorganization free energy of the reactants is the
reversible work to distort the solvent from a configuration equilibrated to the
reactants’ charge distribution to a configuration that would be in equilibrium
with the products’ charge distribution [48, 96, 97]. The reorganization free
energy of the products is specified in an analogous manner.

As seen from the equations above, Marcus theory provides an elegant way
of describing electron-transfer dynamics [48, 50]. This picture rests on two
crucial assumptions discussed below. The first assumption involves the choice
of the reaction coordinate [91], whereas the second one is the linear response
approximation for the solvent [42]. The implications of these assumptions
will be described, and the quantitative relations following from them will be
used to derive equation (2.29). We shall start with the choice of the reaction
coordinate.

2.2.3 Reaction coordinate and transition state

According to the physical picture of electron transfer given earlier, the tran-
sition state of redox reactions is characterized by degenerate total energies of
the reactants and products [35,42,48,92]. Equivalently, the difference in en-
ergy between the products and reactants, called the diabatic energy gap,10,11

10Throughout this document we interchangeably call the diabatic energy gap diabatic
gap, energy gap or gap. As seen from equation (2.30), the diabatic gap is a dynamical
variable that depends on the phase space variables ξ. We shall denote the function ∆E(ξ)
and its value ∆E. This value represents all phase space points for which the dynamical
variable ∆E(ξ) is ∆E. In the case of δ-distribution arguments, the function will be written
∆E

′
(ξ).

11Some authors [48, 92] define ∆E as a solvation or solvent coordinate because it de-
scribes the configuration of the solvent. This solvent coordinate is the difference in in-
teraction energy of the solvent with the reactants’ and products’ charge distribution. In
that case, the solvent coordinate need not vanish at the transition state because the gas
phase energies of the reactant and product states are generally different. The total energy
difference is also zero at the transition state in that case, and the description is equivalent
to the one given here.
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given in equation (2.30), vanishes at the transition state.

∆E(ξ) = HP (ξ)−HR(ξ) (2.30)

In 1960 Marcus proposed the diabatic gap as the reaction coordinate [38].
This choice leads to the correspondence of the transition state to the crossing
point of the free energy curves displayed in figure 1.2 as a special case of the
following relation [47,91]:

∆FL (∆E) = FL,P (∆E)− FL,R (∆E) = ∆E. (2.31)

In words, the difference in Landau free energy FL between the product and
reactant states for a given value of the diabatic energy gap equals precisely
that gap value.

The consequences of equation (2.31) are far-reaching, and we shall there-
fore derive it below. Our starting point is the expression for the Landau free
energy of state j = R,P (also discussed in appendix D) [47,48,68,93],

FL,j(∆E) = −β−1 ln
(
h3NN !

)−1
∫
δ(∆E

′
(ξ)−∆E) e−βHj(ξ) dξ

= Fj − β−1 ln
〈
δ(∆E

′
(ξ)−∆E)

〉
j

= Fj − β−1 ln ρj(∆E), (2.32)

where β−1 = kBT , h is Planck’s constant, N denotes the number of particles
and δ(y) is the Dirac δ-distribution, whose properties are given in appendix
C.2. The free energy [113]

Fj = −β−1 ln (h3NN !)−1

∫
e−βHj(ξ) dξ (2.33)

of state j is introduced to express the Landau free energy in terms of a
canonical ensemble average, indicated by angular brackets. The third line
defines the restricted phase space density ρj(∆E) in state j. Next, we use
the explicit phase space integrals introduced above to obtain the Landau free
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energy difference:

∆FL(∆E) = −β−1 ln

∫
δ(∆E

′
(ξ)−∆E) e−βHP (ξ) dξ∫

δ(∆E ′(ξ)−∆E) e−βHR(ξ) dξ

= −β−1 ln

∫
δ(∆E

′
(ξ)−∆E) e−β∆E

′
(ξ) e−βHR(ξ) dξ∫

δ(∆E ′(ξ)−∆E) e−βHR(ξ) dξ

= −β−1 ln e−β∆E

= ∆E. (2.34)

Above, we use the definition of the diabatic gap (2.30) to reach the second
line. The δ-distribution selects the same phase space points in the denom-
inator and in the numerator except that the latter contains an additional
constant weight factor e−β∆E, which can be extracted from the integral, thus
yielding the third line. Hence, equation (2.31) is established.

We note that equation (2.31) is specific to the energy gap as the reaction
coordinate [91, 93]. Furthermore, the transition state is indeed predicted
to coincide not only with degenerate energies but also with degenerate free
energies according to this relation. Until now, we have not specified any
functional form of the gap probability density. We shall do so next in our
discussion of the linear response approximation.

2.2.4 Linear response approximation

The linear response approximation consists in assuming that the environment
surrounding the electroactive species distorts harmonically. In particular, the
solvent responds linearly to a change in the solute’s charge distribution [30,
42]. From a mathematical point of view, the linear response approximation
corresponds to assuming that the probability density of the diabatic gap is
Gaussian [99].

The linear response approximation together with choosing the diabatic
gap as the reaction coordinate results in simple and powerful expressions
for the reaction and reorganization free energies used in equation (2.29) for
the activation free energy. To obtain the reaction and reorganization free
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energies, we proceed as follows. First, the Gaussian gap probability density
is used in the expression for the Landau free energy (2.32). We then com-
pute the Landau free energy difference. Finally, the prefactors of the powers
of the diabatic gap are compared to those in equation (2.31), yielding the
expressions for the reaction and reorganization free energies [68, 93].

We start with the Landau free energy (2.32) of state j = R,P with the
Gaussian probability density (B.17) in terms of the diabatic gap [68]:

FL,j(∆E) =Fj − β−1 ln ρj (∆E)

=Fj − β−1 ln
(
2πσ2

j

)− 1
2 e
−

(∆E−〈∆E〉j)
2

2σ2
j

=Fj +
β−1

2
ln
(
2πσ2

j

)
+
β−1

2

(∆E − 〈∆E〉j)2

σ2
j

=
β−1

2σ2
j

(∆E)2 − β−1〈∆E〉j
σ2
j

∆E

+ Fj +
β−1

2
ln
(
2πσ2

j

)
+
β−1

2σ2
j

(〈∆E〉j)2 . (2.35)

Above and below, the mean and the variance of the diabatic gap of state j
are denoted by 〈∆E〉j and σ2

j .

For the difference in the Landau free energy of the stable states we obtain

∆FL(∆E) =FL,P (∆E)− FL,R(∆E)

=
β−1

2

(
1

σ2
P

− 1

σ2
R

)
(∆E)2 − β−1

(
〈∆E〉P
σ2
P

− 〈∆E〉R
σ2
R

)
∆E

+ ∆rF + β−1 ln

(
σP
σR

)
+
β−1

2

(
(〈∆E〉P )2

σ2
P

− (〈∆E〉R)2

σ2
R

)
.

(2.36)

The term ∆rF = FP−FR in the last line denotes the unrestricted equilibrium
Helmholtz free energy of reaction. For an arbitrary, normally distributed
reaction coordinate ∆rF is related to the Landau free energy of reaction
(2.37) [68],

∆rFL = FL,P (〈∆E〉P )− FL,R(〈∆E〉R), (2.37)
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by [48,68]
∆rF = ∆rFL − kBT ln

σP
σR
. (2.38)

We note that equations (2.35), (2.36) and (2.38) are independent of the
reaction coordinate. However, choosing the diabatic gap as the reaction
coordinate enables us to exploit equation (2.31), which demands that the
coefficients vanish for the second and zeroth power in the diabatic gap. Also,
the coefficient of the linear term must be unity [68]. These constraints lead
to the following results.

First, setting the coefficient of the quadratic term to zero yields equal
variances for the product and reactant states:

σ2
R = σ2

P = σ2. (2.39)

Second, comparison of the coefficients of the linear term in the diabatic gap
in equations (2.31) and (2.36) yields

βσ2 = 〈∆E〉R − 〈∆E〉P . (2.40)

This relation (2.40) is now inserted into the last term of equation (2.36) to
yield a remarkable expression for the reaction free energy [50,68,93]:

∆rF =
〈∆E〉R + 〈∆E〉P

2
. (2.41)

Having determined the reaction free energy above, we now seek an ex-
pression for the reorganization free energy [68]:

λR = FL,R(〈∆E〉P )− FL,R(〈∆E〉R); (2.42a)

λP = FL,P (〈∆E〉R)− FL,P (〈∆E〉P ). (2.42b)

From equations (2.35), (2.39) and (2.42) it follows that the reorganization
free energies for the product and reactant states are equal λR = λP = λ
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[52, 68]:

λ =
(〈∆E〉R − 〈∆E〉P )2

2βσ2
=
〈∆E〉R − 〈∆E〉P

2
=
βσ2

2
. (2.43)

Here, the third and fourth expressions are obtained from the second one by
substituting equation (2.40) in the denominator and in the numerator.

The mean diabatic gaps in the reactant and product states can be ex-
pressed as the sum and the difference of equations (2.41) and (2.43) [44,68]:

〈∆E〉R = ∆rF + λ; (2.44a)

〈∆E〉P = ∆rF − λ. (2.44b)

Approximating the activation free energy as the Landau free energy difference
between the transition state and the reactant well [68],

∆‡F = FL,R(0)− FL,R(〈∆E〉R), (2.45)

we obtain for the diabatic case [30,68]

∆‡F
(d) =

(〈∆E〉R)2

2βσ2
. (2.46)

Above, we have used equation (2.35). Substituting relations (2.43) and
(2.44a) into equation (2.46) yields the familiar expression for the (diabatic)
activation free energy [25,30,42]:

∆‡F
(d) =

(∆rF + λ)2

4λ
.

For completeness, an alternative route to obtaining the expressions for
the reaction and reorganization free energies is discussed next. The thermo-
dynamic perturbation result for the reaction free energy between diabatic
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states j = R,P is presented below [68,120]:

∆rF = −β−1ln

∫
e−βHP (ξ) dξ∫
e−βHR(ξ) dξ

; (2.47a)

∆rF = −β−1ln
〈
e−β∆E(ξ)

〉
R

; (2.47b)

∆rF = β−1ln
〈
eβ∆E(ξ)

〉
P
. (2.47c)

Using the cumulant expansions of equations (2.47b) and (2.47c) for the nor-
mally distributed random variable ∆E (see appendix B), we obtain [68, 93]

∆rF = 〈∆E〉R −
1

2
βσ2

R; (2.48a)

∆rF = 〈∆E〉P +
1

2
βσ2

P . (2.48b)

For equal variances the sum and difference of equations (2.48a) and (2.48b)
multiplied by one half reduce to relations (2.41) and (2.43).

It is worth pointing out that equations (2.41), (2.43) and (2.29) for the
reaction, reorganization and activation free energies only hold if the diabatic
energy gap is the reaction coordinate and normally distributed. A Gaussian
probability density of another reaction coordinate would yield parabolic Lan-
dau free energy curves, but not necessarily the same variance for product and
reactant states. The equality of the Marcus parabola curvatures is a specific
feature of the normally distributed diabatic gap, for which equation (2.31)
applies [48, 91].

2.2.5 Activation parameters

In this section we obtain the energetic and entropic contributions to the di-
abatic activation free energy. We then consider the effect of the electronic
coupling on the activation parameters. In other words, expressions for adia-
batic activation parameters are derived.

The internal energy of activation is given by the Gibbs-Helmholtz equa-
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tion [15]:

∆‡U =

(
∂

∆‡F

T

∂ 1
T

)
N,V

. (2.49)

Equivalently, we can use equation (2.22) to obtain the internal energy of acti-
vation from the activation free energy and activation entropy. The activation
entropy in the framework of Marcus theory is given by equation (2.50) [37]:

∆‡S
(d) =−

(
∂∆‡F

(d)

∂T

)
N,V

=

(
1

2
+

∆rF

2λ

)
∆rS +

(
1

4
−
(

∆rF

2λ

)2
)

∆Sλ. (2.50)

Above, we have defined the reorganization entropy [52]:

∆Sλ = −
(
∂λ

∂T

)
N,V

. (2.51)

The internal energy of activation then follows from equation (2.22):

∆‡U
(d) =

(∆rF + λ)2

4λ
+

(
1

2
+

∆rF

2λ

)
T∆rS +

(
1

4
−
(

∆rF

2λ

)2
)
T∆Sλ.

(2.52)
We note that the entropy and internal energy of activation contain both an
intrinsic contribution due to the reorganization of the environment and a
contribution due to the asymmetry of the reaction. The above expressions
are valid if the diabatic states do not interact, whereas the effect of the
electronic coupling will be summarized below.

Brunschwig and Sutin derived the following approximate expression for
the adiabatic activation free energy [158]:

∆‡F
(a) =

λ

4
+

∆rF

2
+

∆rF
2

4 (λ− 2 γel)
− γel +

γ2
el

λ+ ∆rF
. (2.53)

The equation above assumes that the free energy profile has two minima
separated by a local maximum [158]. The effect of the electronic coupling γel
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consists in lowering the free energy of the transition state by γel compared to
the non-interacting case. In addition, the minima of the free energy profile
approach each other and are lower in energy [158]. The reaction free energy
∆rF is that of the diabatic case. The fourth term on the right-hand side of
equation (2.53) represents the dominant effect in going from the diabatic to
the adiabatic activation free energy for small to moderate coupling elements
γel.

Neglecting terms of order (γel/λ)2 and assuming that γel is temperature-
independent, we obtain the following approximate relations from equation
(2.53) for γel � λ/2 and |∆rF | < λ. The adiabatic activation entropy is
given by equation (2.54):

∆‡S
(a) =−

(
∂∆‡F

(a)

∂T

)
N,V

=

(
1

2
+

∆rF

2 (λ− 2 γel)

)
∆rS +

(
1

4
−
(

∆rF

2 (λ− 2 γel)

)2
)

∆Sλ. (2.54)

Similarly, we obtain the adiabatic internal energy of activation:

∆‡U
(a) =

λ

4
+

∆rF

2
+

∆rF
2

4 (λ− 2 γel)
− γel +

γ2
el

λ+ ∆rF

+

(
1

2
+

∆rF

2 (λ− 2 γel)

)
T∆rS +

(
1

4
−
(

∆rF

2 (λ− 2 γel)

)2
)
T∆Sλ

=
λ

4
+

∆rU

2
+

∆rF
2

4 (λ− 2 γel)
− γel +

γ2
el

λ+ ∆rF

+
∆rF

2 (λ− 2 γel)
T∆rS +

(
1

4
−
(

∆rF

2 (λ− 2 γel)

)2
)
T∆Sλ. (2.55)

In the small coupling limit, considered in the present work, the diabatic
expressions for the activation parameters are close to the adiabatic ones.

2.2.6 Charge-transfer symmetry factor

The activation parameters given in equations (2.29), (2.50) and (2.52) are
valid for an electron-transfer reaction under specific conditions. If the reac-
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tion free energy is changed, for example by modifying the chemical nature
of the acceptor species, the derivatives of the activation parameters with
respect to the reaction free energy can be obtained. The variation of the ac-
tivation free energy with the reaction free energy defines the charge-transfer
symmetry factor βct, which describes the relative location of the transition
state relative to the reactants and products in accordance with the Leffler-
Hammond postulate [17,18]. Under restrictions given in the introduction, the
charge-transfer symmetry factor [55–60] can be formally decomposed into an
energetic (βct,U) and entropic (Tβct,S) component [61–64]:

βct =
∂∆‡F

∂∆rF
=
∂ (∆‡U − T∆‡S)

∂∆rF
= βct,U + Tβct,S. (2.56)

For a simple and elementary electron-transfer step in the framework of
Marcus theory βct,MT becomes [30,85,86]

βct,MT =
1

2
+

∆rF

2λ
. (2.57)

Its temperature dependence is given by equation (2.58):

∂βct,MT

∂T
=
−∆rS

2λ
+ ∆Sλ

∆rF

2λ2
. (2.58)

The temperature dependence is seen to be related to the entropic component
of the symmetry factor:

Tβct,S,MT = −T ∂∆‡S
(d)

∂∆rF
=− T ∆rS

2λ
+ T∆Sλ

∆rF

2λ2
. (2.59)

The energetic component of the charge-transfer symmetry factor is

βct,U,MT =
∂∆‡U

(d)

∂∆rF
=

1

2
+

∆rU

2λ
− T∆Sλ

∆rF

2λ2
. (2.60)

The above expression for the charge-transfer symmetry factor and its compo-
nents apply in the diabatic case. The corresponding adiabatic expressions are
obtained by replacing λ by λ− 2 γel. As a result, the diabatic and adiabatic
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expressions are close for γel � λ, and we shall use the diabatic expressions
for the charge-transfer symmetry factor and its components in subsequent
discussions.

After this outline of elements of classical electron-transfer theory the sta-
tistical mechanics of trajectory space will be presented below.

2.3 Statistical mechanics of trajectories

Classical rate theory and transiton state theory provide key dynamical infor-
mation about chemical transformations, such as rate constants and activation
(free) energies. As already pointed out, transition state theory relies on the
knowledge of the reaction coordinate to compute rate constants and activa-
tion parameters [65,159–161]. Although this is not necessary for the classical
rate constant expression, its evaluation is more efficient if the dividing sur-
face is close to the transition state [9,143,152,153]. However, the mechanism
of a complex transformation is often unknown [159,162].

Transition path sampling [21, 23, 74] is a method that does not require
the knowledge of the reaction coordinate. It enables us to calculate rate
constants and activation energies of chemical reactions if the stable reactant
and product states can be identified. Transition path sampling focuses on the
infrequent transitions between the stable states and is based on the statistical
mechanics of trajectories in phase space [73]. Its theoretical foundations are
described next, thereby laying the ground for expressions of the rate constant
and the activation energy.

From a methodological point of view, transition path sampling employs
a Monte Carlo procedure to sample trajectory space [73]. The individual
pathways are generated by molecular dynamics simulation [73]. Details of
the method are deferred to section 3.3.

As stated above, transition path sampling focuses on the actual dynamical
transitions from reactants to products or on reactive trajectories.12 Akin to
classical rate theory, transition path sampling expresses the rate constant as

12The terms trajectory, pathway and path are used interchangeably throughout this
work to describe the time evolution of a phase space point.
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an average over reactive trajectories. To proceed, it is necessary to define the
probability of a trajectory and the appropriate ensemble. Following Chandler
and co-workers [21,23,74], we will turn to both aspects below, starting with
the path probability.

2.3.1 Probability distribution of trajectories

In classical (statistical) mechanics, the (dynamical) state of a system is rep-
resented by a point in phase space [113]. This corresponds to specifying
all positions and momenta of all particles in the system. In addition, the
phase space density gives the probability of finding the system at each point
in phase space given the external constraints defining the ensemble under
consideration [113].

When we consider a reactive trajectory, we also need to specify the time
evolution of the system for a given time t. Because we focus on rare events,
the chosen time will satisfy τmol � t � τrxn. Thus, the dynamics captures
the entire transition from reactants to products, but avoids the equilibrium
fluctuations in the stable states [11,21,23].

In principle, the time evolution of a system is continuous [21]. However, in
the realm of computer simulations time is represented in a discrete manner
[163]. Following reference [21], we define a trajectory ξ(t) as an ordered
sequence of phase space points ξj∆t at time j∆t and write the trajectory as
ξ(t) = {ξ0, ξ∆t, ξ2∆t, . . . , ξt} [21]. A pathway of length t is thus characterized
by t/∆t+1 phase space points or time slices. The continuous path is recovered
in the limit of vanishing time intervals ∆t.

We now present the probability w[ξ(t)] associated with a particular path-
way ξ(t). This probability depends on the weight of the initial conditions
ρ(ξ0) and the probability to reach the subsequent phase space points from
the first time slice [21]. We restrict our attention to Markovian transition
probabilities, for which the probability to reach the next time slice from the
current one depends on the current phase space point only [33, 113]. The
probability to reach a subsequent time slice is thus independent of the his-
tory of the trajectory [33, 113]. In that case, the probability to go from the
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first to the last phase space point of the trajectory is the product of transition
probabilities for reaching the next time slice (j+ 1) from the current one (j):
wt
(
ξj∆t → ξ(j+1)∆t

)
. The overall path probability then reads as follows [21]:

w[ξ(t)] = ρ(ξ0)

t
∆t
−1∏

j=0

wt
(
ξj∆t → ξ(j+1)∆t

)
. (2.61)

The above treatment has been given with deterministic dynamics in mind.
For deterministic dynamics the time evolution of the system is known if
one point along its trajectory is specified completely [33]. In that case, the
individual transition probabilities become unity and the path weight reduces
to the probability of observing the first phase space point w[ξ(t)] = ρ(ξ0) [21].
For this special case the length of the trajectory does not influence its weight.
We shall turn to path ensembles below.

2.3.2 Path ensembles and their partition functions

The set of all trajectories of length t defines a path ensemble characterized
by the partition function Z(t) =

∫
ρ(ξ0)

∏ t
∆t
−1

j=0 wt
(
ξj∆t → ξ(j+1)∆t

)
dξj. Be-

cause the probability of finding a given trajectory, whose time evolution is
governed by Hamiltonian dynamics, depends on its initial time slice only,
all unrestricted path ensembles are equivalent, and the trajectory length is
unimportant. As a consequence, the partition function characterizing the
path ensemble reduces to Z =

∫
ρ(ξ0) dξ0. In contrast, when restrictions are

placed on the trajectories, the path length is crucial, and the resulting re-
stricted path ensembles become time-dependent [21]. As already mentioned
in section 2.1, restrictions in phase space can be introduced by the use of
characteristic functions (2.12). The shorthand notation xt = x(ξt) is again
used to refer to the value of the order parameter x at the phase space point
ξt at time t. Examples relevant for the future development of this work are
displayed in figure 2.1, and analytical expressions are given below.

One way of restricting the path ensemble is to place a condition on the
initial phase space point. As above, the resulting path ensemble is indepen-
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Figure 2.1: Representative schematic trajectories of length t are shown for
the following path ensembles. The solid trajectory is a member of the path
ensemble that requires paths to start in R and to end in P , whereas the
dashed trajectory belongs to the path ensemble in which trajectories start
in R and visit P within time t. The dotted trajectory represents the path
ensemble that fixes the starting point inR. All three trajectories are members
of the path ensemble ZR (2.62), whereas only the solid path belongs to ZRP (t)
(2.63). The path ensemble Z∗RP (2.64) contains the dashed and the solid
trajectories.

dent of path length because the time evolution is determined by the initial
time slice. For instance, the ensemble of all paths required to start in the
reactant state is given by [21,73]

ZR =

∫
θR(x0) ρ(ξ0) dξ0. (2.62)

A different type of restricted path ensemble is obtained when both ends
of a trajectory are subject to conditions. As an example, reactive trajectories
are required to start in the reactants at time t = 0 and end in the product
region at time t, the length of the trajectory. The resulting transition path
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ensemble reads [73]

ZRP (t) =

∫
θR(x0) θP (xt) ρ(ξ0) dξ0. (2.63)

The final example of restricted path ensembles comprises trajectories that
start in the reactants and visit the product state within the path length
t. This ensemble is formally obtained by introducing the path functional
ΘP (x0; ξ(t)) that depends on the entire trajectory. It is unity if the indicator
function for the state P is unity for at least one phase space point along the
trajectory and vanishes if the trajectory is not reactive. The path ensemble
obeying these boundary conditions is [21]

Z∗RP (t) =

∫
θR(x0) ΘP (x0; ξ(t)) ρ(ξ0) dξ0. (2.64)

As already mentioned, the preceding partition functions characterize the
path ensembles introduced above. Furthermore, we define the path average
of a dynamical variable A in the path ensemble Z∗RP (t) [164]:

〈A(t)〉∗RP =

∫
A(ξ0) θR(x0) ΘP (x0; ξ(t)) ρ(ξ0) dξ0∫

θR(x0) ΘP (x0; ξ(t)) ρ(ξ0) dξ0

. (2.65)

2.3.3 Classical rate constant expression

With the path ensembles introduced above we can express the classical rate
constant (2.16) in terms of path ensembles [21,75]:

k+(t) =
〈θR(x0)θ̇P (xt)〉

〈θR〉
=
ŻRP (t)

ZR

=

∫
θR(x0) θ̇P (xt) ρ(ξ0) dξ0∫

θR(x0) ρ(ξ0) dξ0

= 〈θ̇P (xt)〉R. (2.66)

The last equality uses the path ensemble restricted to start in the reactant
state ZR as a new weight, namely ρR(ξ0) = θR(x0) ρ(ξ0)∫

θR(x0) ρ(ξ0) dξ0
. We note that this
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expression for the rate constant is exact in the canonical ensemble if classical
mechanics describes the dynamics of the system accurately. In practice, the
rate constant is computed according to an equivalent, but computationally
more convenient, expression [21,164]:

k+(t) =

∫
θR(x0) θ̇P (xt) ρ(ξ0) dξ0∫

θR(x0) ρ(ξ0) dξ0

=

∫
θR(x0) θ̇P (xt) ρ(ξ0) dξ0∫
θR(x0) θP (xt′ ) ρ(ξ0) dξ0

×
∫
θR(x0) θP (xt′ ) ρ(ξ0) dξ0∫

θR(x0) ρ(ξ0) dξ0

=
〈θ̇P (xt)〉∗RP
〈θP (xt′ )〉∗RP

× 〈θR(x0)θP (xt′ )〉
〈θR〉

. (2.67)

Above, the first line is the definition of the classical rate constant in the tran-
sition path ensemble (2.66). The second line is obtained by multiplying by
unity, thereby introducing a path ensemble that requires trajectories to start
in the reactant state and to end in the product state at time t′ . To reach
the third line, we insert the path functional ΘP (x0; ξ(t)) into the numerator
and denominator of the first ratio on the right-hand side of the second line
of equation (2.67). This operation leaves the integrals concerned unchanged
because the path functional vanishes if the weight of the path is zero; oth-
erwise, the path functional is unity and does not alter the path weight. We
also normalize both the numerator and the denominator of that same first
fraction of the second line of equation (2.67) by the path ensemble (2.64).

The advantage of equation (2.67) is the appearance of path averages of the
form (2.65) for which reactive trajectories are required to visit the product
state, but need not end there. In particular, reactive trajectories are not re-
jected if they end outside the product region. In contrast, the second fraction
on the right-hand side of the last line of equation (2.67) requires trajectories
to end in the product state. This second factor corresponds to a ratio of
path partition functions ZRP (t

′
)/ZR, which is related to the reversible work

of constraining the endpoints of trajectories to the product state provided
that they started in the reactant state [21, 73, 164]. Standard free energy
methods, such as umbrella sampling, can be used to compute this reversible
work. This approach divides the entire phase space into windows of overlap-
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ping order parameter ranges. A single transition path sampling simulation
is then carried out to sample trajectories required to start in the reactant
state and to end in a specific window. This is repeated for all windows to
determine the probability of finding the end point of a path in a given order
parameter range provided that it started in the reactants. The probability
that a trajectory ends in the products is then obtained as an integral over the
windows spanning the product region [21,73,164]. Because this computation
of the reversible work involves several transition path sampling simulations,
it is computationally demanding. As a result, the procedure becomes more
efficient than that for computing the rate constant according to equation
(2.66) if a path length t

′ shorter than t can be employed to compute the
second factor of the last line of equation (2.67). In that case, the first ratio
on the right-hand side of the last line of equation (2.67) is obtained from a
single transition path sampling simulation with trajectories of length t and
enables us to compute the rate constant for all times up to t. We shall only
need to compute path averages of the form (2.65), such as the numerator
and denominator of the first fraction on the right-hand side of the last line
of equation (2.67).

It can be seen from equations (2.66) and (2.67) that the computation of
the rate constant requires a derivative with respect to time. In this work the
time derivative of a path average, such as that given by equation (2.65) or
the one appearing in the last line of equation (2.66), is evaluated by means of
two finite difference schemes. The first is the central finite difference scheme
for a dynamical variable A [2],

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t−∆t)

2∆t
, (2.68)

and the second is the forward finite difference scheme [2]:

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t)

∆t
. (2.69)

Above, ∆t denotes a small time interval between different realizations of the
dynamical variable.
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2.3.4 Activation energy expression

Following Dellago and Bolhuis [76], we now derive an expression for the
activation energy. As pointed out in equation (2.9), the activation energy is
obtained by measuring the rate constant as a function of temperature. This
leads us to take the derivative of the logarithm of the rate constant given
in equation (2.66) with respect to β = (kBT )−1 if the canonical probability
function ρ(ξ0) = e−βH(ξ0)∫

e−βH(ξ0)dξ0
is used. The activation energy thus reads [76]

Ea(t) = − ∂

∂β
(ln k+(t))

= − ∂

∂β

(
ln

∫
θR(x0) θ̇P (xt) e

−βH(ξ0) dξ0∫
θR(x0) e−βH(ξ0) dξ0

)

= −
∂
∂β

∫
θR(x0) θ̇P (xt) e

−βH(ξ0) dξ0∫
θR(x0) θ̇P (xt) e−βH(ξ0) dξ0

+

∂
∂β

∫
θR(x0) e−βH(ξ0) dξ0∫
θR(x0) e−βH(ξ0) dξ0

=

∫
θR(x0) θ̇P (xt)H(ξ0) e−βH(ξ0) dξ0∫

θR(x0) θ̇P (xt) e−βH(ξ0) dξ0

−
∫
θR(x0)H(ξ0) e−βH(ξ0) dξ0∫

θR(x0) e−βH(ξ0) dξ0

=

∫
θR(x0) ΘP (x0; ξ(t)) θ̇P (xt)H(ξ0) e−βH(ξ0) dξ0∫

θR(x0) ΘP (x0; ξ(t)) θ̇P (xt) e−βH(ξ0) dξ0

− 〈H(ξ0)〉R

=
〈θ̇P (xt)H(ξ0)〉∗RP
〈θ̇P (xt)〉∗RP

− 〈H(ξ0)〉R. (2.70)

Above, the first line defines the activation energy; the second line uses the
expression for the classical rate constant in the transition path ensemble;
the third line evaluates the derivative of the logarithm of a fraction; in the
fourth line the derivative introduces the total energy at the initial phase
space point. In going from the fourth to the fifth line, we add the path
functional ΘP (x0; ξ(t)) to those integrands that contain the time derivative
of the characteristic function θP (xt). This does not alter the integral because
ΘP (x0; ξ(t)) is less restrictive than θp(xt); if the latter vanishes, the former
does not contribute anything; if the latter is unity, the former equals one
as well. We see that the integral remains unchanged in both cases. In
going to the last line, we divide both the numerator and the denominator
of the first term on the right-hand side by the partition function Z∗RP (t)
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to introduce averages over the transition path ensemble characterized by
pathways starting in the reactant region and visiting the product state within
the path length t.
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Chapter 3

Methods

The present chapter outlines the methods used to evaluate the properties in-
troduced in the previous chapter. First, we describe the standard techniques
for treating classical atomistic systems: molecular dynamics and Monte Carlo
simulations. In the present work molecular dynamics simulations are em-
ployed to compute equilibrium properties such as the average total energy
of the system at a given temperature. We then discuss the Monte Carlo
method because it provides a means for controlling the temperature in a
molecular dynamics simulation. In addition, it is essential for the transition
path sampling procedure, which combines molecular dynamics and Monte
Carlo simulations to generate ensembles of trajectories from which the acti-
vation energy is obtained. Later, the activation energy will be compared to
the activation free energy. Hence, we close this chapter with a discussion on
biased molecular dynamics simulations and umbrella integration, which are
employed to evaluate free energy differences and free energy profiles.

3.1 Molecular dynamics simulations

Our outline of the molecular dynamics technique follows reference [106].
Molecular dynamics simulations are a means to obtain static and dynamic
equilibrium properties of classical molecular systems [163]. The idea is to
follow the time evolution of a system and to extract observable quantities

55
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in analogy to a physical experiment [106]. The method is based on classi-
cal mechanics and, through the ergodic hypothesis, on classical statistical
mechanics. In particular, it is assumed that time averages correspond to en-
semble averages for long observation times (see appendix D). Furthermore,
we assume that the time evolution of a given system, namely its (simulated)
trajectory in phase space, is close to the physical trajectory of that system.
In other words, the outcome of the computer experiment is believed to be
representative of the physical system investigated [106].

In general, a molecular dynamics simulation requires three main ingredi-
ents [163]. First, a model for the interactions between the particles in the
system has to be chosen, which we shall do in the next chapter. Second, an
ensemble is selected that determines the thermodynamic control parameters.
Third, we need to integrate the classical equations of motion to obtain a
molecular dynamics trajectory from which ensemble averages are computed.

Because the equations of motion depend on the ensemble, we shall present
the integration of the equations of motion in the microcanonical and canon-
ical ensembles. We use molecular dynamics simulations in the canonical
ensemble to obtain reference equilibrium properties in the stable states. In
contrast, pathways in the microcanonical ensemble are used in the transition
path sampling method.

Because the Hamiltonian formulation of classical mechanics provides both
a link to classical statistical mechanics and insight into desirable features
of an integration algorithm [106], we shall discuss it below, following ref-
erence [165]. We start with the microcanonical ensemble because it is the
natural ensemble for a system’s time evolution. Subsequently, we turn to the
canonical ensemble.

3.1.1 Hamilton’s equations of motion and canonical vari-

ables

Before we discuss the Hamiltonian form of the equations of motion, we intro-
duce the Hamiltonian function. To this end, we restrict ourselves to conser-
vative systems. In classical mechanics a conservative system is characterized
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by forces that can be obtained from the gradient of a scalar potential energy
function V with respect to particle positions [165]. Furthermore, we shall
only consider Hamiltonians that do not explicitly depend on time t. In that
case, the Hamiltonian of a conservative N -particle system corresponds to the
total energy of that system [165]. In Cartesian coordinates it reads [106,165]

H(rC ,pC ; t) = H(rC(t),pC(t)) =

Nf∑
j=1

pC,j(t)
2

2mj

+ V (rC(t)). (3.1)

Above, mj denotes the mass associated with the degree of freedom j. The
number of degrees of freedom is Nf , and the set of positions of all particles is
denoted by rC = {rC,1, rC,2, . . . , rC,Nf}. Likewise, we abbreviate the variables
for all momenta by pC = {pC,1, pC,2, . . . , pC,Nf}. As mentioned above, the
Hamiltonian depends on time only implicitly via the time dependence of the
positions and momenta. This implicit time dependence is indicated by the
notation H(rC ,pC ; t), in which the semicolon separates explicit from implicit
arguments of the Hamiltonian function.

Having introduced the Hamiltonian function above, we now turn to the
Hamiltonian equations of motion in Cartesian coordinates [165]:

drC,j
dt

= ṙC,j =
∂H
∂pC,j

; (3.2a)

dpC,j
dt

= ṗC,j = − ∂H
∂rC,j

. (3.2b)

The equations of motion (3.2) are derived from the Hamiltonian function
(3.1), and Cartesian coordinates thus constitute a special case of canonical
variables. In particular, canonical phase space variables satisfy the equations
of motion in the Hamiltonian form (3.3) [165]:

dqj
dt

= q̇j =
∂H
∂pj

; (3.3a)

dpj
dt

= ṗj = −∂H
∂qj

. (3.3b)

We shall denote a set of canonical phase space variables consisting of gen-
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eralized coordinates qj and their conjugate momenta pj by ξ = {q,p} =

{q1, q2, . . . , qNf , p1, . . . , pNf}.

In the Hamiltonian formulation of classical mechanics the canonical vari-
ables are independent of each other. Consequently, the terms canonical coor-
dinates and conjugate momenta for the variables qj and pj might be mislead-
ing. In particular, the canonical coordinates need not refer to positions, and
the conjugate momenta need not be mechanical momenta. The requirements
for a pair of canonical variables are that their product has dimension energy
times time and that they fulfill the canonical equations of motion (3.3). The
latter condition implies that the functional dependence of the Hamiltonian
on the canonical variables is such that Hamilton’s equations of motion can
be obtained from it [165].

3.1.2 Canonical transformations and Poisson brackets

We have seen above that the Hamiltonian function (3.1) leads to equations
of motion of the form (3.3). As already mentioned, Cartesian coordinates
{rC ,pC} are one example of canonical variables {q,p}. Now, the physical
state of a system does not depend on the mathematical representation used
to describe it. Specifically, the value of the Hamiltonian will not change if it
is expressed by a different set of variables {Q,P}. However, the functional
dependence may alter, and the equations of motion might not be derivable
from the Hamiltonian any longer. In contrast, a change of variables is called
a canonical transformation if the new equations of motion are also in the
canonical form of equation (3.3). If the transformation equations do not
involve time explicitly, we have a restricted canonical transformation [165]:

Qk = Qk(q,p; t); (3.4a)

Pk = Pk(q,p; t). (3.4b)

For restricted canonical transformations the Hamiltonian still represents
the total energy of the system after the new variables have been introduced.
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In addition, the equations of motion are in the Hamiltonian form [165]:

dQj
dt

= Q̇j =
∂H
∂Pj

; (3.5a)

dPj
dt

= Ṗj = − ∂H
∂Qj

. (3.5b)

Canonical transformations thus do not alter the form of the Hamiltonian
equations of motion. In the following, we shall introduce Poisson brack-
ets and the symplectic condition to describe canonical transformations in a
mathematically more concise way. We start with the Poisson brackets below.

Let us consider two functions A and B and a set of canonical variables
{q,p}. Then, the Poisson bracket of A and B with respect to the canonical
variables {q,p} is given by [165]

{A,B}q,p =
∑
j

(
∂A
∂qj

∂B
∂pj
− ∂A
∂pj

∂B
∂qj

)
. (3.6)

If we use the ordered set of canonical phase space variables ξ = {q,p} =

{q1, q2, . . . , qNf , p1, . . . , pNf} introduced earlier,13

ξj = qj; ξj+Nf = pj; j ≤ Nf , (3.7)

we can write equation (3.6) in matrix form [165]:

{A,B}ξ =
∂̃A
∂ξ

J
∂B
∂ξ

. (3.8)

In equation (3.8) J designates the 2Nf × 2Nf antisymmetric matrix [2]
whose building blocks are unit and zero matrices of size Nf × Nf . The
constituting building blocks are arranged as in equation (3.9) [106,165]:

J =

(
0 1

−1 0

)
. (3.9)

13Throughout this document we denote a set by braces {· · · }. In contrast, a Poisson
bracket always carries the relevant set of phase space variables as a subscript, as in {· · · }ξ.
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Furthermore, the matrix ∂B
∂ξ

of size 2Nf × 1 contains the partial derivatives
of B with respect to all canonical variables [165]:(

∂B
∂ξ

)
j

=
∂B
∂qj

;

(
∂B
∂ξ

)
j+Nf

=
∂B
∂pj

; j ≤ Nf . (3.10)

The transpose of a similar matrix of size 1 × 2Nf is denoted by ∂̃A
∂ξ

. Using
this symplectic notation [106, 165], we can write the canonical equations of
motion as

ξ̇ = J
∂H
∂ξ

. (3.11)

Equivalently, substituting ξ for A and H for B into equation (3.8), we obtain
Hamilton’s equation of motion in terms of Poisson brackets [165]:

ξ̇ = J
∂H
∂ξ

= {ξ,H}ξ

=

j=Nf∑
j=1

k=2Nf∑
k=1

(
∂ξk
∂qj

∂H
∂pj
− ∂ξk
∂pj

∂H
∂qj

)

=

j=Nf∑
j=1

k=2Nf∑
k=1

(
∂ξk
∂ξj

∂H
∂ξj+Nf

− ∂ξk
∂ξj+Nf

∂H
∂ξj

)
. (3.12)

Having introduced the Poisson bracket above, we return to our discussion
of canonical transformations. First, we consider the special case for which
the functions A and B in equation (3.8) are replaced by the set of canonical
variables ξ. This yields the fundamental Poisson bracket [165]:

{ξ, ξ}ξ =
∂̃ξ

∂ξ
J
∂ξ

∂ξ
= J. (3.13)

Next, let us examine a set of new variables υ,

υj = Qj; υj+Nf = Pj; j ≤ Nf , (3.14)

whose elements are obtained from the transformation given in equation (3.4).
If the new variables υ are introduced as arguments of the Poisson bracket
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with respect to the old canonical variables, we obtain [165]

{υ,υ}ξ =
∂̃υ

∂ξ
J
∂υ

∂ξ
= J̃ JJ . (3.15)

In going to the last equation, we have introduced the Jacobian matrix J
whose elements are the partial derivatives associated with the variable trans-
formation from ξ to υ [165]:

Jjk =
∂υj
∂ξk

. (3.16)

If the transformation is canonical, the set υ constitutes another set of canon-
ical variables. In that case, we have [165]

{υ,υ}ξ = J̃ JJ = J = {υ,υ}υ. (3.17)

In words, the fundamental Poisson bracket of the canonical variables υ is the
same with respect to any set of canonical variables and thus invariant under
canonical transformation [165]. As can be shown [165], any Poisson bracket
is a canonical invariant:

{A,B}ξ =
∂̃A
∂ξ

J
∂B
∂ξ

=
∂̃A
∂υ

J
∂B
∂υ

= {A,B}υ. (3.18)

From equation (3.17) we see that canonical transformations satisfy the sym-
plectic condition [106,165]:

J̃ JJ = J = J JJ̃ . (3.19)

Hence, a transformation is canonical if it leaves Poisson brackets unaltered
and satisfies the symplectic condition (3.19). The symplectic condition and
canonical invariance of Poisson brackets are completely equivalent to stating
that Hamilton’s equation of motion keep the same form under canonical
transformation [165].
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3.1.3 Time evolution and Liouville’s theorem

Until now, we have considered canonical transformations as changing from
one set of canonical variables to another set of canonical variables. Instead,
we can also view a canonical transformation as bringing a set of canonical
variables from time t to time t + ∆t [165]. In that case, the canonical vari-
ables at time t correspond to the initial set, and the canonical variables at
time t + ∆t correspond to the new set of canonical variables. Dividing the
time interval ∆t into infinitesimal time intervals dt, we see that the over-
all transformation will be canonical if the transformation from t to t + dt

is canonical. This situation is similar to viewing a rotation in space as a
sequence of infinitesimal rotations. Hence, such transformations are called
infinitesimal canonical transformations [165]. In the case of interest here,
time is the continuous parameter for an infinitesimal canonical transforma-
tion. In the following, we consider the transformation from ξ(t) to the new
set of canonical variables υ:

υ = ξ(t+ dt) = ξ(t) + δξ. (3.20)

To proceed, we employ another way of describing canonical transforma-
tions, namely in terms of generating functions [165]. As shown in refer-
ence [165], an infinitesimal change in canonical variables can be expressed in
terms of the generating function H and the infinitesimal time difference dt
as

δξ = dt J
∂H
∂ξ

= dt {ξ,H}ξ = dt ξ̇ = dξ. (3.21)

As a finite time evolution is composed of a sequence of infinitesimal canonical
transformations, the values of a set of canonical variables at a given time t
result from their values at an earlier time t0 via a canonical transformation
that is continuous in time. We thus see that the Hamiltonian H generates
the motion of the system [106,165].

As a consequence, the time evolution of any dynamical variable A be-
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comes [165]

dA
dt

=
∂A
∂t

+

Nf∑
j=1

(
∂A
∂qj

∂qj
∂t

+
∂A
∂pj

∂pj
∂t

)

=
∂A
∂t

+

Nf∑
j=1

(
∂A
∂qj

∂H
∂pj
− ∂A
∂pj

∂H
∂qj

)
=
∂A
∂t

+ {A,H}ξ. (3.22)

Hence, the Poisson bracket of the dynamical variable under consideration
with the (time-independent) Hamiltonian determines the implicit time-dependence
of that dynamical variable through its parametric dependence on time.

As a special case, the time evolution of the total energy of a system with
time-independent Hamiltonian vanishes [165]:

dH
dt

=
∂H
∂t

+ {H,H}ξ

=
∂H
∂t

= 0. (3.23)

Another important property of canonical transformations is the invariance
of a volume element in phase space. More precisely, the magnitude of the
volume element is preserved [165], whereas the shape of the volume element
under consideration may vary [33]. Let us denote the volume element of the
new set of canonical variables dυ and that of the old canonical variables dξ.
Then, the absolute value of the determinant of the Jacobian matrix |J | (see
equation (3.16)) relates the volume element of any new set of variables to
that of the old set by [2]

dυ = |J (υ; ξ)|dξ. (3.24)

Now, for canonical transformations, the symplectic condition (3.19) holds.
Given that the determinant of a matrix product equals the product of the
determinants of the individual matrices [2], the determinants of both sides
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of equation (3.19) are related by [106,165]

|J | |J | |J̃ | = |J | = |J |2 |J |; (3.25a)

J (υ; ξ) |J | J̃ (ξ;υ) = |J | = J 2 |J |. (3.25b)

The last equality follows because the determinant of the transpose J̃ equals
the determinant of the original Jacobian matrix J [2]. We see from equation
(3.25) that the absolute value of the determinant of the Jacobian matrix,
which enters equation (3.24), is unity for canonical transformations. As a
result, the magnitude of a volume element in phase space is invariant under
canonical transformation [165].

We are now in a position to discuss the time dependence of the probability
density in phase space: Liouville’s theorem [33,113,165]. Liouville’s theorem
states that the probability density around any given point in phase space is
constant in time. To see this, we note that trajectories in phase space are
completely determined by their initial conditions [165].

Let us consider a small volume element in phase space whose boundary
is composed of phase space points. As the volume element evolves in phase
space, so do the phase space points constituting the boundary. Following
reference [165], we shall show that the number of phase space points in the
volume considered does not change. In other words, phase space points
cannot enter or leave the volume element specified. Any phase space point
entering or leaving the volume element would have to cross the boundary. In
that case, the phase space point would coincide with one at the boundary,
and its time evolution would be the same as that of the phase space point
at the boundary. Hence, the phase space point would stay on the bound-
ary and could neither enter nor leave the volume element considered. As a
consequence, the number of phase space points dNρ within the volume ele-
ment remains constant. Because we know from the symplectic condition for
canonical transformations (see equation (3.19)) that the volume element dV
in phase space does not evolve in time, it follows that the phase space point
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density ρ is also a canonical invariant [33,113,165]:

dρ

dt
=

d

dt

(
dNρ
dV

)
= 0. (3.26)

Equivalently, we can consider the phase space density ρ as a dynamical
variable and use equation (3.22) to obtain [113,165]

dρ

dt
=
∂ρ

∂t
+ {ρ,H}ξ. (3.27)

Using equation (3.27) above, we can express Liouville’s theorem as [165]

∂ρ

∂t
= −{ρ,H}ξ. (3.28)

In words, the explicit time dependence of the phase space density is gov-
erned by the negative Poisson bracket of the probability density with the
Hamiltonian. As a result, the time evolution arising from the implicit time
dependence cancels that stemming from the explicit one.

In thermodynamic equilibrium, the explicit time dependence of the phase
space density must vanish because the number of phase space points repre-
senting a given state of the system is constant in time. Hence, we can write
the condition for thermodynamic equilibrium using equation (3.28) as [165]:

{ρ,H}ξ = 0. (3.29)

Furthermore, any constant of the motion that does not explicitly depend on
time has a vanishing Poisson bracket with the Hamiltonian [165]. Conse-
quently, any function of such constants of the motion can be chosen as phase
space density to guarantee that the system is in equilibrium [165]. For con-
servative systems considered here any function ρ of the Hamiltonian obeys
the equilibrium condition (3.29) [165]. In particular, the microcanonical and
canonical probability densities are examples of equilibrium phase space den-
sities.
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3.1.4 Molecular dynamics in the microcanonical ensem-

ble

As we have seen in the previous section, the Hamiltonian is the generator
of the system’s motion. Equivalently, integrating Hamilton’s canonical equa-
tions of motion provides a means of obtaining the system’s trajectory in phase
space. Consequently, the time evolution of the system would be known if the
initial conditions could be determined [33,165].

In practice, numerical integration of the equations of motion requires
that time is discretized, which leads to inaccuracies [163]. However, it is
desirable to employ an algorithm that satisfies the symplectic condition [106];
in other words, the integration algorithm would be correct, in principle, if
the integration time step could be made arbitrarily small.

One way to approach this challenge is to recognize that the time evolution
of any dynamical variable that does not depend on time explicitly is given
by the Poisson bracket of that property with the Hamiltonian, as discussed
in equation (3.22) above. Because the underlying canonical transformation
obeys the symplectic condition, we can construct an algorithm that is sym-
plectic [106]. This approach is also known as the Liouville formulation for
symplectic integrators [106].

Given a not explicitly time-dependent function A in terms of a set of
canonical phase space variables ξ = {q1, . . . , pNf}, its time evolution can be
expressed as [106,163,165]

dA
dt

= Ȧ = {A,H}ξ = ıLA. (3.30)

Above, we have defined the Liouville operator L [106,113,163]:

ıL = {· · · ,H}ξ =
∑
j

(
∂H
∂pj

∂

∂qj
− ∂H
∂qj

∂

∂pj

)
. (3.31)

We can formally integrate equation (3.30) to obtain [106,113,163]

A(t) = eıLtA(0). (3.32)
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If the canonical variables above are identified as Cartesian coordinates and
mechanical momenta, the Liouville operator contains operators that do not
commute. However, to construct a discrete timestep integrator, we can split
the Liouville operator into two parts L = L1 + L2 and use the Trotter ex-
pansion [106,163]:

eıLt = eı(L1+L2)t

= lim
Nt→∞

(
e
ıL1t
2Nt e

ıL2t
Nt e

ıL1t
2Nt

)Nt
. (3.33)

In practice, the simulation time t is split into a finite number Nt of timesteps
of length δt = t/Nt. Hence, the effect of propagating the system for one
timestep is [106,163]

A(δt) = eıLδtA(0) ≈ eıL1δt/2eıL2δteıL1δt/2. (3.34)

In particular, we choose the two parts of the Liouville operator as ıL2 =∑
j ṙC,j

∂
∂rC,j

, only depending on position variables, and as ıL1 =
∑

j ṗC,j
∂

∂pC,j
,

only depending on momentum variables. To proceed, we consider the effect
of the operator eα

d
dy on any function f(y) [163]:

eα
d
dy f(y) =

∞∑
j=0

αj

j!

d(j)

dyj
f(y)

=
∞∑
j=0

αj

j!
f (j)(y)

= f(y + α). (3.35)

Applying the operator eα
d
dy to a function f(y) corresponds to shifting the

argument of f by α, which is independent of y [106, 163]. For the special
choice for L1 and L2 above the effect of one timestep is to first shift the
momenta by half a timestep, then to shift the positions by one timestep, and



68 CHAPTER 3. METHODS

again, to shift the momenta for half a timestep [106]:

eıL1δt/2A (rC(t),pC(t))

= A (rC(t),pC(t+ δt/2))

= A (rC(t),pC(t) + ṗC(t)δt/2) (3.36)

eıL2δtA (rC(t),pC(t+ δt/2))

= A (rC(t+ δt),p(t+ δt/2))

= A (rC(t) + ṙC(t+ δt/2)δt,pC(t) + ṗC(t)δt/2) (3.37)

eıL1δt/2A (rC(t+ δt),pC(t+ δt/2))

= A (rC(t+ δt),pC(t+ δt))

= A (rC(t) + ṙC(t+ δt/2)δt,pC(t) + ṗC(t)δt/2 + ṗC(t+ δt)δt/2)

(3.38)

We see that the overall effect of applying the Liouville operator on posi-
tions and velocities corresponds to that of employing the Verlet algorithm in
the velocity form [106,163,166,167]:

rC,j(t+ δt) = rC,j(t) +
pC,j(t)

mj

δt+
ṗC,j(t)

mj

(δt)2

2
; (3.39)

pC,j(t+ δt) = pC,j(t) +
ṗC,j(t+ δt) + ṗC,j(t)

2mj

δt. (3.40)

3.1.5 Molecular dynamics with constraints

So far, we have considered the time evolution of an isolated system, and we
have seen how the equations of motion can be integrated by means of the
velocity Verlet algorithm in the previous section. Regarding the molecular
dynamics technique we shall discuss two further situations of interest. On the
one hand, we shall place the system in contact with a heat bath in the next
section; the resulting system then serves to describe the canonical ensemble.
On the other hand, we shall treat constraints and how to incorporate them
into simulations in this section.
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Constraints are conditions that limit the motion of the system under
consideration [165]. A constraint could arise from the vessel in which a
chemical reaction takes place. In that case, the motion of the particles is
restricted to the volume inside the vessel. The limited motion is enforced
by forces of constraint, which are generally not explicitly known. What is
known about the forces of constraint is the effect they have on the motion of
the system [165].

In the realm of molecular simulations constraints are often introduced
for practical purposes. In particular, the timestep used in an integration
algorithm should be a small fraction of the fastest motion or shortest relax-
ation time [106]. Because intramolecular vibrations are typically much faster
than the remaining (translational and rotational) motions of the system, they
are usually decoupled from the slower motions and can be replaced by rigid
bonds [168]. It then becomes possible to employ a larger timestep than if
the fast internal degrees of freedom were not frozen [106]. In that case, the
effect of the constraints is to keep the bond lengths constant.

In the following we shall discuss how to incorporate constraints combined
with the velocity Verlet algorithm [167, 169]. In doing so we focus on holo-
nomic constraints. Holonomic constraints σc introduce a relation between
the particle positions rC = {rC,1, . . . , rC,N} = {rC,1, . . . , rC,Nf} and possibly
time and can be expressed as in equation (3.41) [165]:

σc(rC , t) = 0. (3.41)

Imposing holonomic constraints leads two difficulties. First, the condi-
tions of constraint result in a functional relationship between the physical
degrees of freedom. Hence, the variables become coupled and cannot be
varied independently any more [2, 113, 165]. Second, as mentioned above,
the forces of constraint are typically unknown. Yet, their determination is
required to solve the equations of motion for the system of interest [106,165].

To proceed, we introduce Lagrange’s equations of motion, which are con-
venient for the treatment of constraints. As in the case of Hamilton’s equa-
tions of motion in section 3.1.1, we focus on conservative systems. In that
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case (and for certain more general cases), the Lagrangian Lu of the uncon-
strained system can be expressed as [165]

Lu(rC , ṙC , t) =

j=Nf∑
j=1

mj (ṙC,j(t))
2

2
− V (rC(t)). (3.42)

By means of the calculus of variations Lagrange’s equations of motion can be
derived from a variational principle: Hamilton’s principle [165, 170]. Hamil-
ton’s principle states that the integral I of the Lagrangian along a trajec-
tory from an initial time ti to a final time tf with fixed endpoints is an
extremum [165]:

I =

∫ t=tf

t=ti

Lu(rC , ṙC , t) dt. (3.43)

To derive Lagrange’s equations of motion, we consider a family of one-
parameter functions rC,j(t, α) and seek the set of test functions that ex-
tremizes the integral [170]

I(α) =

∫ t=tf

t=ti

Lu(rC(t, α), ṙC(t, α), t) dt. (3.44)

We request (i) that the test functions rC,j(t, α) reduce to the desired extrem-
izing functions rC,j(t) for α = 0, (ii) that the endpoint of the functions is inde-
pendent of α and (iii) that they have continuous first and second derivatives
with respect to t and α [170]. Then, an extremum of I(α) requires [165,170]

dI(α)

dα

∣∣∣∣
α=0

=

∫ t=tf

t=ti

j=Nf∑
j=1

(
∂Lu
∂rC,j

drC,j
dα

+
∂Lu
∂ṙC,j

dṙC,j
dα

)
dt = 0. (3.45)

Using condition (iii) we obtain [170]

dI(α)

dα
=

∫ t=tf

t=ti

j=Nf∑
j=1

(
∂Lu
∂rC,j

drC,j
dα

+
∂Lu
∂ṙC,j

d

dt

drC,j
dα

)
dt, (3.46)
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which can be transformed into

dI(α)

dα
=

∫ t=tf

t=ti

j=Nf∑
j=1

(
∂Lu
∂rC,j

− d

dt

∂Lu
∂ṙC,j

)
drC,j
dα

dt, (3.47)

where we have integrated the second term by parts and where the bound-
ary term vanishes because of condition (ii) [170]. By construction, I is an
extremum for α = 0 and all test functions y(t, α) can be replaced by the
desired functions y(t). Defining

χj(t) =
drC,j
dα

∣∣∣∣
α=0

(3.48)

we obtain [170]

dI(α)

dα

∣∣∣∣
α=0

=

∫ t=tf

t=ti

j=Nf∑
j=1

(
∂Lu
∂rC,j

− d

dt

∂Lu
∂ṙC,j

)
χj(t) dt = 0. (3.49)

Because the functions χj(t) are independent and arbitrary as long as they
satisfy conditions (i) and (iii) above, equation (3.49) vanishes if [165,170]

d

dt

∂Lu
∂ṙC,j

− ∂Lu
∂rC,j

= 0 (3.50)

holds for all degrees of freedom j. The set of equations (3.50) corresponds
to the Euler-Lagrange equations extremizing the integral I and here become
Lagrange’s equations of motion [165,170].

We are now in a position to deal with a system with Nc holonomic con-
straints:

σc,k(rC , t) = 0. (3.51)

From a mathematical point of view constraints introduce a relation between
variables so that they are not independent any more. There are two ways to
approach this situation [165,170,171]. First, we could eliminate Nc variables
by means of the constraint equations, thereby reducing the number of degrees
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of freedom from Nf to Nf −Nc [165,171]. However, this approach might not
be practical for complex systems [168]. In addition, the original variables are
not treated in a symmetrical way [165]. Second, we could use the method of
Lagrange multipliers, as we shall do below.

The idea of the method of Lagrange multipliers is to increase the number
of variables to Nf + Nc and to find the extremum of a function that has
this number of variables. In that case, the problem of finding the extremum
can be cast in the usual form. We shall achieve this goal by using a family
of two-parameter functions rC,j(t, α1, α2) and again seek those test functions
that extremize the integral [170]

I =

∫ t=tf

t=ti

Lu(rC , ṙC , t) dt (3.52)

subject to the Nc conditions of constraint (k = 1, . . . ,Nc)

σc,k(rC , t) = 0. (3.53)

As above, the test functions rC,j(t, α1, α2) reduce to the extremizing functions
rC,j(t) for α1 = α2 = 0. In addition, they have fixed endpoints for any values
of α1 and α2 as well as continuous derivatives up to second order [170]. In
the same way as the test functions reduce to the extremizing functions the
integral

I(α1, α2) =

∫ t=tf

t=ti

Lu(rC , ṙC , t) dt (3.54)

becomes the desired integral I for α1 = α2 = 0 [170]. The set of equations
(3.53) constitutes a set of local constraints, which hold at any point t between
the endpoints [170]. These constraint conditions can be transformed into an
equivalent integral form by first multiplying by an arbitrary function y(t)

and then integrating from t = ti to t = tf . This procedure yields [170]

J(α1, α2) =

∫ t=tf

t=ti

k=Nc∑
k=1

y(t)σc,k(rC(t, α1, α2), t) dt. (3.55)
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Next, we form the overall function to extremize [170]

Itot(α1, α2) =I(α1, α2) +
k=Nc∑
k=1

λL,kJ(α1, α2), (3.56)

and we impose the necessary condition for an extremum [170]:

∂Itot
∂α1

∣∣∣∣
α1=0;α2=0

= 0 =
∂Itot
∂α2

∣∣∣∣
α1=0;α2=0

. (3.57)

Specifically, we have for m = 1, 2 [170]

∂Itot
∂αm

=

∫ t=tf

t=ti

j=Nf∑
j=1

(
∂Lu
∂rC,j

drC,j
dαm

+
∂Lu
∂ṙC,j

dṙC,j
dαm

+
k=Nc∑
k=1

λL,ky(t)
∂σc,k
∂rC,j

drC,j
dαm

)
dt.

(3.58)

If we again integrate by parts the second term on the right-hand side, we
obtain [170]

∂Itot
∂αm

=

∫ t=tf

t=ti

j=Nf∑
j=1

(
∂Lu
∂rC,j

− d

dt

∂Lu
∂ṙC,j

+
k=Nc∑
k=1

λL,ky(t)
∂σc,k
∂rC,j

)
drC,j
dαm

dt. (3.59)

We now define the derivative of a test function rC,j with respect to the
parameter αm for m = 1, 2 at the extremum as [170]

χm,j(t) =
drC,j
dαm

∣∣∣∣
α1=0;α2=0

. (3.60)

It is at this point that the difference between extremizing an integral with
and without constraints becomes apparent. In the absence of constraints,
the functions χj(t) were independent of each other. In the present case
with constraints, the conditions of constraint lead to functional relationships
between the test functions rC,j and thus χm,j(t) so that the functions rC,j and
χm,j cannot be varied independently [170]. However, we have not specified the
set of Lagrange multipliers λL,k yet. We can formally choose the Nc Lagrange
multipliers λL,k in such a way that the prefactors of Nc functions χm,j for
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j = 1, . . . ,Nc vanish [165,170]. Then, the remaining Nf −Nc functions χm,j
with j = Nc + 1, . . . ,Nf can be varied independently [165,170]. The overall
effect of this procedure is that all variables are treated in a symmetrical way
because the choice of the first Nc variables is arbitrary. We therefore have
for all variables χm,j [165,170]

∂Lu
∂rC,j

− d

dt

∂Lu
∂ṙC,j

+
k=Nc∑
k=1

λL,ky(t)
∂σc,k
∂rC,j

= 0, (3.61)

where we have used the condition that the test functions rC,j become the
desired functions rC,j at the extremum (α1 = α2 = 0). Together with the
Nc conditions of constraint (3.53) the equations (3.61) constitute a set of
Nf +Nc equations for Nf +Nc variables.

In principle, the set of linear equations given by equations (3.53) and
(3.61) could be solved by matrix inversion [106]. In practice, however, the dif-
ferential equations are approximated by difference equations during a molecu-
lar dynamics simulation. As a consequence, the constraints are not rigorously
satisfied due to the error of the integration algorithm [106, 168, 169]. As a
result, the Lagrange multipliers are approximated in such a way that the
constraint conditions (3.53) are satisfied arbitrarily closely at every timestep
[106,168,169]. Below we shall focus on the RATTLE algorithm, which enables
us to treat holonomic constraints with the velociy Verlet algorithm [167,169].

Following reference [169], we define the Lagrangian Lc of the constrained
system as [168]

Lc(rC , ṙC , t) = Lu(rC , ṙC , t)−
k=Nc∑
k=1

λL,k(t)σc,k(rC). (3.62)

Then, the equations of motion read [165]

d

dt

∂Lu
∂ṙC,j

− ∂Lu
∂rC,j

= −
k=Nc∑
k=1

λL,k(t)
∂σc,k
∂rC,j

. (3.63)

Switching to a description that is based on particle positions rC,j instead
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of Cartesian degrees of freedom rC,j, we obtain the following equations of
motion for the constrained dynamics [169]:

mj r̈C,j = F j + Gj, (3.64)

where mj is the mass associated with particle j. The force on particle j due
to the remaining particles is F j = −∇rC,jV , and the force on particle j due
to the conditions of constraints reads [169]

Gj = −
k=Nc∑
k=1

λL,k(t)∇rC,jσc,k. (3.65)

If we focus on bond constraints, the force due to constraints involves only
those constraints defining bonds connecting another particle k to particle j,
and we have [169]

Gj = −
∑
k bt j

λL,jk(t)∇rC,jσc,jk, (3.66)

where the sum is over all particles k bonded to (bt) particle j and the La-
grange multiplier λL,jk = λL,kj is associated with the constraint σc,jk = σc,kj

below. The bond constraints appearing in equation (3.66) are expressed as
follows [169]

σc,jk = (rC,j − rC,k)2 − d2
jk = 0. (3.67)

With the above framework and the specific choice for the constraints we
obtain the velocity Verlet prescription for updating the particle positions
[167,169]

rC,j(t+ δt) = rC,j(t) + ṙC,j(t)δt+
(δt)2

2mj

(
F j(t) + Grj(t)

)
, (3.68)

where δt is the timestep. The velocity of particle j is updated using the
forces F j at times t and t+ δt as well as the forces due to the constraints Grj
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and Gvj [169]

ṙC,j(t+ δt) = ṙC,j(t) +
δt

2mj

(
F j(t) + Grj(t) +F j(t+ δt) + Gvj (t+ δt)

)
.

(3.69)

The force of constraint Grj reads [169]

Grj(t) = −2
∑
k bt j

λrL,jk(t) (rC,j − rC,k). (3.70)

According to reference [169], the time derivative of the conditions of con-
straint (3.67) impose constraints on the velocities

(rC,j − rC,k) (ṙC,j − ṙC,k) = 0. (3.71)

Andersen’s choice for the forces of constraint for satisfying the velocity con-
straints (3.71) is as follows [169]

Gvj (t+ δt) = −2
∑
k bt j

λvL,jk(t+ δt) (rC,j(t+ δt)− rC,k(t+ δt)). (3.72)

Given the formal expressions (3.70) and (3.72) for the forces of constraint
and writing rC,jk = rC,j −rC,k, we have the following explicit expressions for
the update of the position and velocity of each particle j [169]:

rC,j(t+ δt) =rC,j(t) + ṙC,j(t)δt

+
(δt)2

2mj

(
F j(t)− 2

∑
k bt j

λrL,jk(t)rC,jk(t)

)
; (3.73a)

ṙC,j(t+ δt) =ṙC,j(t) +
δt

2mj

(
F j(t)− 2

∑
k bt j

λrL,jk(t)rC,jk(t)

+F j(t+ δt)− 2
∑
k bt j

λvL,jk(t+ δt)rC,jk(t+ δt)

)
. (3.73b)

The RATTLE algorithm then uses an iterative scheme to generate ap-
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proximations to the Lagrange multipliers λrL,jk(t) and λvL,jk(t + δt) so that
the constraints (3.67) and (3.71) are satisfied at each timestep to within a
desired tolerance [169]. We assume that the positions, velocities and forces
are given at time t and that all constraints are satisfied. Our task is then to
compute the positions and velocities satisfying the constraints at time t+ δt.
To proceed, we define the auxiliary quantity qa,j [169]

qa,j = ṙC,j(t) +
δt

2mj

F j(t)−
δt

mj

∑
k bt j

λrL,jk(t)rC,jk(t). (3.74)

We can then write equations (3.73) as [169]

rC,j(t+ δt) =rC,j(t) + δtqa,j; (3.75a)

ṙC,j(t+ δt) =qa,j +
δt

2mj

F j(t+ δt)− δt

mj

∑
k bt j

λvL,jk(t+ δt)rC,jk(t+ δt).

(3.75b)

Now the equations of motion can be solved by constructing the set of qa,j in
such a way that the constraints are fulfilled. At the beginning all Lagrange
multipliers are set to zero, and we have [169]

qa,j = ṙC,j(t) +
δt

2mj

F j(t). (3.76)

With this initial choice we check whether every pair of particles j and k

subject to a constraint σc,jk has the required distance djk. The instantaneous
approximation sjk to the particle distance between particles j and k is given
by [169]

sjk = rC,j(t) + δtqa,j − rC,k(t)− δtqa,k (3.77)

If sjk differs from djk by more than a desired tolerance, new trial positions
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rTC,j and rTC,k are generated as follows [169]:

rTC,j(t) = rC,j(t) + δt

(
qa,j −

δt

mj

λrL,jk(t)rC,jk(t)

)
; (3.78a)

rTC,k(t) = rC,k(t) + δt

(
qa,k +

δt

mk

λrL,jk(t)rC,jk(t)

)
. (3.78b)

The trial positions should satisfy the constraint [169]

(
rTC,j(t)− rTC,k(t)

)2
= d2

jk. (3.79)

Inserting equations (3.78) into equation (3.79), we obtain [169]

(
sjk −

(
m−1
j +m−1

k

)
(δt)2λrL,jk(t)rC,jk(t)

)2
= d2

jk. (3.80)

We could in principle solve this quadratic equation for λrL,jk(t). However,
adjusting one constraint typically leads to violating another one, requiring
subsequent adjustments of particle positions in an interative manner [168].
In practice, only the linear term in λrL,jk(t) is therefore retained for compu-
tational efficiency [168,169], leading to [169]:

λrL,jk(t) =
s2
jk − d2

jk

2(δt)2sjkrC,jk(t)
(
m−1
j +m−1

k

) . (3.81)

The approximate determination of the Lagrange multiplier is used to update
qa,j and qa,k [169]:

qa,j 7→ qa,j −
δt

mj

λrL,jk(t)rC,jk(t); (3.82)

qa,k 7→ qa,k +
δt

mk

λrL,jk(t)rC,jk(t). (3.83)

This iterative adjustment of the particle positions is repeated until all bond
distance constraints are satisfied simultaneously [169].

Now the positions at time t + δt are known, and the forces F j(t + δt)

in the absence of constraints can be computed to determine the velocities
at t + δt [169]. As in the case of particle positions, we start with vanishing
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Lagrange multipliers λvL,jk(t+ δt) [169]:

ṙC,j(t+ δt) =qa,j +
δt

2mj

F j(t+ δt). (3.84)

To test whether the constraints on the velocities are fulfilled, the dot product
between rC,jk(t) and ṙC,jk(t) is computed [169]. If it deviates from zero by
more than the desired tolerance, trial velocities are generated as follows [169]:

ṙTC,j(t+ δt) = ṙC,j(t+ δt)− δt

mj

λvL,jk(t)rC,jk(t+ δt); (3.85a)

ṙTC,k(t+ δt) = ṙC,k(t+ δt) +
δt

mk

λvL,jk(t)rC,jk(t+ δt). (3.85b)

Inserting the trial velocities (3.85) into the condition of constraint for veloc-
ities (3.71), we obtain [169]

rC,jk(t+ δt)
(
ṙTC,j(t+ δt)− ṙTC,k(t+ δt)

)
=rC,jk(t+ δt)

{
ṙC,j(t+ δt)− ṙC,k(t+ δt)

− δtλvL,jk(t)rC,jk(t+ δt)
(
m−1
j +m−1

k

) }
= 0. (3.86)

This results in the following choice for the Lagrange multiplier λvL,jk(t + δt)

[169]:

λvL,jk(t+ δt) =
rC,jk(t+ δt) (ṙC,j(t+ δt)− ṙC,k(t+ δt))

δtd2
jk

(
m−1
j +m−1

k

) . (3.87)

We then update the particle velocities by the current trial velocities [169]:

ṙC,j(t+ δt) 7→ ṙC,j(t+ δt)− δt

mj

λvL,jk(t+ δt)rC,jk(t+ δt); (3.88)

ṙC,k(t+ δt) 7→ ṙC,k(t+ δt) +
δt

mk

λvL,jk(t+ δt)rC,jk(t+ δt). (3.89)

Once all constraints on the velocities are satisfied, we proceed with the next
timestep.
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Having described how holonomic constraints can be combined with the
velocity Verlet algorithm, we now turn to molecular dynamics simulations in
the canonical ensemble.

3.1.6 Canonical molecular dynamics simulations

We shall restrict our attention to the extended-system approach [163] of the
Nosé-Hoover [172–175] thermostat to generate a trajectory according to the
canonical phase space distribution function. The original formulation of Nosé
[172] contains a time scaling parameter leading to virtual variables satisfying
the Hamiltonian form of the equations of motion. However, in this virtual
formulation, the time intervals in real time are not equally spaced, which
is inconvenient in a numerical simulation [174]. When transformed to real
variables, the equations of motion are no longer canonical, and the theoretical
framework of non-Hamiltonian dynamics [176,177], which is briefly described
in appendix G, proves useful.

Although the Nosé-Hoover thermostat does not yield a canonical dis-
tribution of phase space variables for all systems, it does so for systems
that conserve an energy specified below and whose centre of mass is at
rest [177]. Because periodic boundary conditions are used in all simulations
in this work, the total angular momentum is not conserved [107, 173], and
the Nosé-Hoover thermostat is sufficient to obtain equilibrium properties in
the canonical ensemble for the stable states [106]. If further conserved quan-
tities are present or the total linear momentum does not vanish, Nosé-Hoover
chains should be employed [112]. Our presentation will follow the discussion
of references [106,177].

The idea behind the Nosé-Hoover algorithm is to couple the physical
system to a heat bath, consisting of an additional degree of freedom [172,173].
Hence, we obtain an extended system in which the energy of the physical
system is allowed to fluctuate [172]. Later, the phase space of the extended
system is projected back onto that of the physical system by integrating out
the artificial degree of freedom [172,173].

The equations of motion of the Nosé-Hoover thermostat can be written
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in Cartesian coordinates as [106,177]

ṙC,j =
pC,j
mj

; (3.90a)

ṗC,j = −∇rC,jV −
pε
WNH

pC,j; (3.90b)

ṗε =

Nf∑
j=1

p2
C,j

mj

− CnkBT ; (3.90c)

ε̇ =
pε
WNH

. (3.90d)

The heat bath is characterized by the variables ε and pε, andNf is the number
of physical degrees of freedom. Cn denotes a constant to be specified later,
and WNH is a parameter describing the relaxation time of the thermostat.
According to reference [177], it reads

WNH = CnkBTτ 2
NH . (3.91)

Above, τNH is a timescale of the physical system. We see that the total force
on particle j has contributions from the potential V and from the heat bath
via the term pε/WNH pC,j.

As pointed out in references [173,175], the above equations of motion are
not Hamiltonian. However, they conserve the following energy [173,177]:

HNH =

Nf∑
j=1

p2
C,j

2mj

+ V (rC) +
p2
ε

2WNH

+ CnkBTε. (3.92)

To see this, we use the equations of motion (3.90) to obtain [173]

dHNH

dt
=
∂HNH

∂t
+

Nf∑
j=1

pC,j
mj

ṗC,j +
∑
j

ṙC,j∇rC,jV +
pε
WNH

ṗε + CnkBT ε̇

=

Nf∑
j=1

pC,j
mj

(
− pε
WNH

pC,j

)
+

pε
WNH

(∑
j

p2
C,j

mj

− CnkBT

)
+ CnkBT

pε
WNH

= 0. (3.93)
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Here, we shall follow the procedure for obtaining the phase space density
from the non-Hamiltonian equations of motion (3.90) outlined in appendix
G and in reference [177]. According to that scheme, all conserved quantities
need to be identified. In addition to the energy HNH , the total linear mo-
mentum PC =

∑j=N
j=1 pC,j of the N -particle system is conserved [172,177]:

dPC
dt

=
N∑
j=1

ṗC,j =

Nf∑
j=1

(
−∇rC,jV

)
+

Nf∑
j=1

(
− pε
WNH

pC,j

)
= − pε
WNH

PC .

(3.94)
The last identity in equation (3.94) above follows from the definition of
the total linear momentum and from the absence of external forces. Con-
sequently, the sum of all internal forces vanishes. We see from equation
(3.94) that the conserved quantity for non-vanishing total linear momentum
is PCeε = CP [174,177]:

dPC
dt

= −ε̇PC ; (3.95a)∫ PC(t)

PC(0)

d lnPC = −
∫ t

0

ε̇ dt
′
; (3.95b)

PC(t)

PC(0)
= e−(ε(t)−ε(0)); (3.95c)

PC(t) eε(t) = PC(0) eε(0) = CP . (3.95d)

As pointed out, for instance, in references [106,177], a canonical distribution
function is generated by the Nosé-Hoover equations of motion only if the
constant vector CP and the total linear momentum PC vanish. We restrict
our attention to that special case because it is the only relevant one for the
present work.

A conserved total linear momentum has two consequences. First, the indi-
vidual components of the total linear momentum are linearly dependent [177].
As a result, only one component is a linearly independent degree of freedom
for the phase space considered. Second, the centre-of-mass coordinates are
cyclic [177]. This means that they are not present in the equations of motion
and do not influence other variables. The physical meaning is that the state
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of the system is independent of the position of its centre of mass if external
forces are absent.

To eliminate cyclic and linearly dependent variables, we follow references
[106, 177] and introduce a new set of coordinates {p′

C ,PC , r
′
C ,RC}. The

centre of mass is characterized by its position RC = 1/M
∑j=N

j=1 mj rC,j

with total mass M =
∑j=N

j=1 mj and momentum PC =
∑j=N

j=1 pC,j . In
addition, the primed variables denote the positions and momenta of particles
relative to the centre of mass. Furthermore, the motion of the centre of mass
is represented by the variable PC =

√∑j=3
j=1P2

C,j. This yields the equations
of motion in the new coordinate system [177]:

ṙ
′

C,j =
p
′
C,j

mj

; (3.96a)

ṗ
′

C,j = −∇rC,jV −
pε
WNH

p
′

C,j; (3.96b)

ṖC = − pε
WNH

PC ; (3.96c)

ṗε =
3N−3∑
j=1

(
p
′
C,j

)2

mj

+
P2
C

2M
−CnkBT ; (3.96d)

ε̇ =
pε
WNH

. (3.96e)

Above, N is the number of physical particles in the system. The conserved
quantities are the total linear momentum PC eε = CP and the energy HNH

[177]:

HNH =
3N−3∑
j=1

(p
′
C,j)

2

2mj

+
P2
C

2M
+ V (r

′

C) +
p2
ε

2WNH

+ CnkBTε

= H(r
′

C ,p
′

C ,PC) +
p2
ε

2WNH

+ CnkBTε. (3.97)

Having identified the conservation laws and having eliminated linearly
dependent as well as cyclic variables, we now proceed to evaluate the gen-
eralized invariant measure. This requires the determination of the phase
space compressibility and the phase space metric. Using the equations of
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motion (3.96), we obtain the phase space compressibility given in equation
(3.98) [177]:

κ =
∑
j=1

∇r
′
C,j
ṙ
′

C,j +
∑
j=1

∇p
′
C,j
ṗ
′

C,j +∇PC ṖC +∇εε̇+∇pε ṗε

= −(3(N − 1) + 1)ε̇. (3.98)

The phase space metric follows immediately from the phase space com-
pressibility via equations (G.7) and (G.6) of appendix G, as discussed in
references [176,177]:

√
g = e(3(N−1)+1)ε. (3.99)

The invariant measure is obtained from combining the phase space metric
with the differential volume element dV describing the set of phase space
variables [176,177]:

√
g dV = e(3(N−1)+1)ε dr

′

C dp
′

C dPC dεdpε. (3.100)

We now proceed to construct the generalized microcanonical partition
function (G.12), denoting the constants for the conserved quantities HNH

and PCeε by CH and CP . As pointed out above, the latter will later be set to
zero. For the Nosé-Hoover thermostat system equation (G.12) can be written
as [176,177]

Ξ(CH , CP) =

∫
δ (HNH − CH) δ (PCeε − CP)

√
g dV

=

∫
δ

(
H
(
r

′

C ,p
′

C ,PC
)

+
p2
ε

2WNH

+ CnkBTε− CH
)

×δ (PCeε − CP) e(3(N−1)+1)ε dr
′

C dp
′

C dPC dε dpε. (3.101)

If we set CP to zero, PC vanishes, and the integration over PC yields
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[176,177]

Ξ(CH , 0) =

∫
δ

(
H
(
r

′

C ,p
′

C ,PC
)

+
p2
ε

2WNH

+ CnkBTε− CH
)

×δ (PCeε) e(3(N−1)+1)ε dr
′

C dp
′

C dPC dε dpε

=

∫
δ

(
H
(
r

′

C ,p
′

C , 0
)

+
p2
ε

2WNH

+ CnkBTε− CH
)

×e−ε e(3(N−1)+1)ε dr
′

C dp
′

C dε dpε. (3.102)

Here, the factor e−ε in the last line arises from property (C.6) of the δ-
distribution. The remaining restriction in phase space determines ε:

ε = − 1

CnkBT

(
H
(
r

′

C ,p
′

C , 0
)

+
p2
ε

2WNH

− CH
)
. (3.103)

Hence, integrating over ε, we obtain [106]

Ξ(CH , 0) =

∫
e
− 3(N−1)
CnkBT

(
H
(
r
′
C ,p

′
C ,0
)

+
p2ε

2WNH
−CH

)
dr
′

C dp
′

C dpε

= e
3(N−1)
CnkBT

CH
∫
e
− 3(N−1)
CnkBT

(
H
(
r
′
C ,p

′
C ,0
))
dr
′

C dp
′

C

×
∫
e
− 3(N−1)
CnkBT

p2ε
2WNH dpε. (3.104)

If we choose Cn = 3N − 3, the physical variables are distributed (within con-
stant prefactors) according to the canonical ensemble for a system consisting
of N − 1 particles. The ensemble averages obtained from the Nosé-Hoover
equations of motion are thus canonical if the total linear momentum vanishes
and the energy HNH is conserved [106,174,177].

3.2 Monte Carlo simulations

One aim of Monte Carlo (MC) simulations is to evaluate ensemble averages of
static equilibrium properties [72,106,107,178]. For instance, the average of an
observable A in the canonical ensemble can be computed as the Boltzmann
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weighted integral of instantaneous values A(ξ) over phase space [106,107]:

〈A〉 =

∫
A(ξ) e−βH(ξ)dξ∫
e−βH(ξ)dξ

. (3.105)

Contrary to the molecular dynamics technique, the Monte Carlo method in
its original form does not involve velocities or physical time [72,106,107,178].
Instead, it uses random numbers to evolve a system through phase space
[72, 106, 107, 178]. In the following, we discuss the theoretical foundations
of Monte Carlo simulations. Subsequently, we turn our attention to few
technical aspects. The spirit of the presentation is to provide the basis for
the description of the transition path sampling technique in the next section.
The basis of our exposition can be found in references [33,72,106,107,178].

3.2.1 Importance sampling

The Monte Carlo method evaluates the ensemble average 〈A〉 using impor-
tance sampling. The idea behind importance sampling is to visit states
in configuration space according to their (relative) equilibrium probabili-
ties [72,106,107,178]. In that case, the sample mean 〈A〉, used as an unbiased
estimate for the ensemble mean, is obtained from the unweighted average of
data points [72,106,107]:

〈A〉 =
1

Nd

Nd∑
j=1

A(tj). (3.106)

Here, Nd is the size of the sample, and tj denotes the Monte Carlo time,
which labels the random variables A(tj). The weighting is included by the
rules for visiting states in configuration space [72,106,107].

Importance sampling differs from random sampling in the following way.
In the case of random sampling, states in configuration space are sampled
with a uniform probability [106]. In particular, configurations with a low
statistical weight are visited with the same likelihood as configurations with
a high probability of occurrence [106]. Although the contribution of config-
urations with low statistical weight to the ensemble average is usually small,
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the computational effort to sample such configurations by means of random
sampling can be substantial for non-uniform probability functions. This use
of resources is undesirable, and importance sampling, which preferentially
visits configurations of large statistical weight, is thus the sampling method
of choice [72, 106].

3.2.2 Markovian stochastic processes

To determine the rules for visiting states in configuration space according
to their equilibrium probabilities, we first need to introduce the concept
of a stochastic process. A stochastic process is a time series of random
variables [33, 178]. In other words, it is a sequence of random variables
ordered by the parameter time. In the present case, the stochastic process
A(t) consists of the ordered sequence of random variables A(tj) whose values
are the instantaneous values of the observable A.

To proceed, we need to identify how the stochastic process evolves from
one random event to the next. This evolution is discussed below for the
important class of stochastic processes that have the Markov property.

Let us consider a stochastic process A(t). If the probability w(A(tj+1))

of finding the system at time tj+1 depends on the state A(tj) at the present
time tj only, the stochastic process is Markovian [33, 113]. In other words,
only the present affects the immediate future of the stochastic process; its
past has no influence. Mathematically, this corresponds to expressing the
transition probability wt(A(tj)→ A(tj+1)) of going from state A(tj) to state
A(tj+1) as a conditional probability [33,113,178]:

wt (A(tj)→ A(tj+1)) = w (A(tj+1)|A(tj))

=
w (A(tj+1) ∩ A(tj))

w (A(tj))
. (3.107)

As a consequence, the probability of observing the series of outcomes A(t) =
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{A(t1), . . . ,A(tN)} is [33]

w (A(t)) = w (A(t1) ∩ A(t2) ∩ · · · ∩ A(tNd−1) ∩ A(tNd))

= w (A(t1))

Nd−1∏
j=1

w (A(tj+1)|A(tj)). (3.108)

In summary, a Markovian stochastic process is characterized by the transition
probabilities wt connecting the current state to the next. Put differently,
the transition probabilities generate the Markovian stochastic process, an
example of which is the random walk [33, 178]. Next, we consider what
requirements the transition probabilities have to fulfill so that the random
walk generates configurations according to their equilibrium distribution.

3.2.3 Conditions for the random walk and detailed bal-

ance

Two requirements for the transition probability of a random walk can be
identified: ergodicity and generating the desired probability distribution [106,
178]. We shall discuss ergodicity first. Given any initial state with non-zero
probability according to the target weight function, the random walk must
ensure that any state belonging to the ensemble under consideration can
be reached in principle [106, 178]. In practice, this requirement means that
any point in configuration space must be accessible in a finite number of
steps. Also, the time series of random events generated must not contain
periodically reoccurring sequences [178].

We now turn our attention to the generation of the desired probability
function. At the beginning of the Markovian stochastic process the proba-
bility distribution w(t) will depend on time. For a sufficiently large random
walk the probability function should become stationary and identical to the
equilibrium distribution weq sought [106,178].

One condition the transition probabilities must satisfy is that they main-
tain the equilibrium distribution once it has been reached [106]. Conse-
quently, the number of systems going from state j to any other state k must
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be balanced exactly by the number of systems moving from any state k to
state j [106, 107]. This condition corresponds to the balance of occupation
numbers for any state in an ensemble [107]:∑

k

w(j)wt(j → k) =
∑
k

w(k)wt(k → j). (3.109)

In practice, one usually imposes the stricter constraint of detailed balance,
which requires that the number of systems leaving state j to state k is equal to
the number of systems going from state k to state j at any given time. This
establishes a dynamical equilibrium according to the following expression
[106,107]:

w(j)wt(j → k) = w(k)wt(k → j). (3.110)

If the transition probabilities are ergodic, satisfying detailed balance guaran-
tees that the equilibrium distribution is reached asymptotically [106,178].

3.2.4 Metropolis acceptance rule

The detailed balance condition (3.110) states that the ratio of transition
probabilities underlying the random walk equals the ratio of equilibrium
probabilities of the states involved [106, 178]. Hence, only relative proba-
bilities are needed to generate a sequence of random events according to the
desired probability distribution [106, 178]. In particular, the normalization
factor, which is related to the (accessible) phase space volume, need not be
computed [106,178]. This is the reason why Monte Carlo procedures can be
employed to evaluate ensemble averages [106,178].

In practice, it is common to decompose the transition probability wt(j →
k) of going from state j to state k into two factors: the probability of propos-
ing or generating a trial move wg(j → k) and the probability of accepting
the trial move wa(j → k) [106,178]:

wt(j → k) = wg(j → k)wa(j → k). (3.111)

As a consequence, the ratio of acceptance probabilities according to the de-
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tailed balance criterion becomes [72,106,178]

wa(j → k)

wa(k → j)
=
w(k)

w(j)

wg(k → j)

wg(j → k)
. (3.112)

In a computer simulation we need to have a rule for the acceptance prob-
ability wa(j → k) of going from state j to state k. The choice of Metropolis
and co-workers [179] is

wa(j → k) = min
{
w(k)

w(j)

wg(k → j)

wg(j → k)
, 1

}
. (3.113)

To show that the Metropolis criterion for acceptance probabilities obeys de-
tailed balance, we consider the two possible cases for the acceptance proba-
bility ratio [178]:

1. w(k)
w(j)

wg(k→j)
wg(j→k)

≥ 1 so that:

wa(j → k) = 1;

wa(k → j) =
w(j)

w(k)

wg(j → k)

wg(k → j)
;

wa(j → k)

wa(k → j)
=
w(k)

w(j)

wg(k → j)

wg(j → k)
;

2. w(k)
w(j)

wg(k→j)
wg(j→k)

< 1 so that:

wa(j → k) =
w(k)

w(j)

wg(k → j)

wg(j → k)
;

wa(k → j) = 1;

wa(j → k)

wa(k → j)
=
w(k)

w(j)

wg(k → j)

wg(j → k)
.

For the canonical ensemble and symmetric generation probilities the Metropo-
lis criterion becomes [72,106,107]

wa(j → k) = min
{
e−β(Ek−Ej), 1

}
. (3.114)
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Flexibility can be added to the Monte Carlo method by using asymmetric
generation probabilities [106]. One such example used in this work will be
presented in our treatment of transition path sampling below.

3.3 Transition path sampling

Transition path sampling [21,23,73–75] performs an importance sampling in
trajectory space [21,23]. In analogy to the Monte Carlo method presented in
the previous section for configuration space a biased random walk is carried
out in path space [21, 23]. Hence, pathways are visited according to their
weight in the transition path ensemble [23, 73].

As in our presentation of the theoretical foundations of transition path
sampling, we restrict attention to deterministic dynamics and equilibrium
probability functions. The latter are reached asymptotically in an ergodic
Markovian stochastic process as pointed out earlier. Our discussion follows
references [21, 23,73].

Transition path sampling generates a random walk in trajectory space by
imposing detailed balance [73]. In path space the detailed balance condition
implies that the ratio of transition probabilities wt equals the ratio of reactive
path weights wRP of trajectories x(t) [21, 73]:

wt(ξ
o(t)→ ξn(t))

wt(ξn(t)→ ξo(t))
=
wRP [ξn(t)]

wRP [ξo(t)]
. (3.115)

Here, properties associated with the current trajectory ξo(t) carry the super-
script o, whereas the superscript n indicates quantities related to the pro-
posed new trajectory ξn(t). For instance, wt(ξo(t)→ ξn(t)) is the transition
probability to move from the current trajectory to the new one. The prob-
ability wRP [ξo(t)] of observing the current pathway is related to the weight
w[ξo(t)] of any path given in equation (2.61) by [21,73]

wRP [ξo(t)] = θR(xo0) θP (xot )w[ξo(t)]. (3.116)

Hence, the indicator functions select reactive trajectories by probing whether
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the system is in the reactants at the initial time slice (t = 0) and whether it
is in the product state at the final time slice (t = t) [73].

To proceed, we express the transition probability as a product of gener-
ation (wg) and acceptance (wa) probabilities [21,73]:

wt(ξ
o(t)→ ξn(t)) = wa(ξ

o(t)→ ξn(t))wg(ξ
o(t)→ ξn(t)). (3.117)

The ratio of acceptance probabilities is obtained from the detailed balance
relation (3.115) [21, 73]:

wa(ξ
o(t)→ ξn(t))

wa(ξn(t)→ ξo(t))
=
wRP [ξn(t)]

wRP [ξo(t)]

wg(ξ
n(t)→ ξo(t))

wg(ξo(t)→ ξn(t))
. (3.118)

As in the case of configurations, the Metropolis criterion is used to generate
trajectories according to their weight in trajectory space [21,73]:

wa(ξ
o(t)→ ξn(t)) = min

{
1,
wRP [ξn(t)]

wRP [ξo(t)]

wg(ξ
n(t)→ ξo(t))

wg(ξo(t)→ ξn(t))

}
. (3.119)

We now turn to the question how trial pathways are generated. Transi-
tion path sampling usually uses two types of trial moves to propose a trial
trajectory: shooting and shifting moves [21,23,74]. We shall discuss these in
turn below.

3.3.1 Shooting moves

Given a current reactive trajectory ξo(t), shooting moves provide a means to
generate a trial trajectory ξn(t) that is accepted according to the Metropolis
criterion (3.119) stated above. Shooting moves are essential for ergodic sam-
pling because shifting moves, described in the next section, do not exhibit
this property [21,106].

The generation of a trial pathway involves the modification of a randomly
chosen phase space point, called shooting point, and the subsequent propaga-
tion of the system forward and backward in time. For Hamiltonian dynamics
the shooting point is commonly modified by changing the momenta [21]. As
a result, the initial conditions are different, leading to different phase space
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trajectories [33,165].14

We now discuss how large the momentum change should be. This issue
is affected by the Lyapunov instability. We have seen in section 3.1 that
the equations of motion of a Hamiltonian system are deterministic. In other
words, the time evolution of a system is known for all future and past times if
a single phase space point along the system’s trajectory is known exactly [165].
This implies that trajectories in phase space do not cross if their initial phase
space points are different [165]. The above remarks relate to the determinism
of dynamical trajectories [180]. However, although Hamiltonian dynamics are
deterministic, phase space trajectories might not be predictable [180]. The
lack of predictability is due to the possible instability of the trajectories [180].
Stability of the solution of the dynamical differential equations implies that
two trajectories that are initially close will deviate from one another more
slowly than a function linear in time [180]. If a system’s time evolution is
not stable in the above sense, the system is sensitive to the initial conditions
and its time evolution cannot be predicted [180]. This so-called Lyapunov
instability leads to an exponential divergence of initially close trajectories
after a characteristic time [21,106,134,180–183].

In practice, the numerical precision on a computer implies that we cannot
know the initial state of the system exactly. It therefore follows that the
time evolution of a complex system becomes unpredictable in practice [180].
As a result, if the momentum change is too large, the Lyapunov instability
causes the trial trajectory to be very different from the original one. Hence,
the probability that the trial pathway is reactive will be low, resulting in a
low acceptance probability. On the other hand, if the momentum change
is too small, the new trajectory will be very similar to the current one.
Consequently, the sampling through trajectory space will be slow [21].

The present work reports transition path sampling simulations in the mi-
crocanonical and canonical ensembles. We employ symmetric generation
probabilities for trial trajectories in the microcanonical ensemble and an

14The modification of the shooting point can be omitted if stochastic dynamics is em-
ployed. In that case, the stochastic elements of the propagation dynamics yield different
trajectories even for identical initial conditions [21].
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asymmetric generation probability [141] in the canonical ensemble. This
asymmetric generation probability and the motivation for employing it are
outlined in the next section. Here, we describe the shooting procedure for
the microcanonical ensemble and indicate where it differs from that for the
canonical ensemble.

As mentioned above, a shooting move consists of four steps: selecting
a shooting slice, modifying the shooting slice, dynamically propagating the
system, accepting or rejecting the trial move [21]. The only difference be-
tween ensembles involves the modification of the shooting slice. Below, we
describe the four steps of the shooting procedure in more detail.

In the first step a phase space point along the trajectory is selected at
random. The present work employs a uniform distribution to select the
shooting slice. The second step, namely the modification of the shooting slice,
is divided into three stages. First, we add a small momentum change drawn
from a normal distribution to the old momenta of the shooting slice [184].
Subsequently, possible constraints need to be satisfied, and the centre-of-
mass motion is removed [184]. We then scale the velocities to the desired
kinetic energy [184].

It is at this point that the procedure differs depending on the ensemble.
For the microcanonical ensemble the velocities are scaled in such a way that
the new kinetic energy equals the old one. On the other hand, the velocities
are scaled to a kinetic energy determined by the Maxwell-Boltzmann distri-
bution in the canonical ensemble. Hence, the kinetic energies differ between
the shooting points of the current trajectory and the trial pathway [21, 73].
As a result, another acceptance criterion is introduced for the shooting point
when the canonical ensemble is sampled. If the shooting point is rejected, we
reject the shooting move. If the shooting point is accepted, the procedures
for the canonical and microcanonical ensembles become identical again and
continue with the third step.

In particular, the trial pathway is propagated forwards in time from the
shooting slice up to time t of the path length. If the end point ξt is in
the product state, we pursue the trial move; otherwise, the shooting move
is rejected. To proceed, the trial path is grown backwards in time to the
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initial time slice ξ0 at time t = 0. This is done by inverting the momenta of
the shooting slice, propagating forwards in time, and inverting the momenta
of the added path segment. This ensures that the momenta of the entire
trajectory are in the forward propagation direction of time [21,73].

The last step is the acceptance or rejection of the trial trajectory. If the
initial phase space point belongs to the reactant region and if the final time
slice lies in the product region, the trial trajectory is accepted. It is rejected
otherwise [21, 73].

In summary, we accept a trial trajectory if the shooting point is accepted,
and if the new trajectory is reactive. The reactive trajectory then becomes
the current trajectory. If the shooting move is aborted at any time, the old
trajectory is kept as the current one, and a new trial move is attempted
[21,73].

Below, we quantify the criterion (3.119) for accepting a trial trajectory.
To do so, we write out the path weight wRP [ξ(t)] and note that the proba-
bility for generating a new trajectory from an old one is the probability of
generating a new shooting slice times the probability of dynamically growing
a new pathway [21]:

wg(ξ
o(t)→ ξn(t)) = wg(ξ

o
s → ξns )

N−1∏
j=s

ϕ(ξnj∆t → ξn(j+1)∆t)

×
s∏
j=1

ϕ̄(ξnj∆t → ξn(j−1)∆t). (3.120)

We denote the dynamical forward and backward transition probabilities by
ϕ and ϕ̄. Also, s indicates the shooting slice. The time slices carry indices
from 0 to N so that the total trajectory consists of N + 1 = t/∆t+ 1 phase
space points. Using a similar expression for the generation probability of the
old trajectory from the new one yields for the last term in the min-function
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of the Metropolis acceptance criterion (3.119) [21,73]

wRP [ξn(t)]

wRP [ξo(t)]

wg(ξ
n(t)→ ξo(t))

wg(ξo(t)→ ξn(t))

= θR(xn0 ) θP (xnt )
ρ(ξn0 )

ρ(ξo0)

∏N−1
j=0 ϕ(ξnj∆t → ξn(j+1)∆t)∏N−1
j=0 ϕ(ξoj∆t → ξo(j+1)∆t)

×
wg(ξ

n
s → ξos)

∏N−1
j=s ϕ(ξoj∆t → ξo(j+1)∆t)

∏s
j=1 ϕ̄(ξoj∆t → ξo(j−1)∆t)

wg(ξos → ξns )
∏N−1

j=s ϕ(ξnj∆t → ξn(j+1)∆t)
∏s

j=1 ϕ̄(ξnj∆t → ξn(j−1)∆t)

= θR(xn0 ) θP (xnt )
ρ(ξn0 )

ρ(ξo0)

wg(ξ
n
s → ξos)

wg(ξos → ξns )

×
∏s−1

j=0 ϕ(ξnj∆t → ξn(j+1)∆t)∏s−1
j=0 ϕ(ξoj∆t → ξo(j+1)∆t)

∏s−1
j=0 ϕ̄(ξo(j+1)∆t → ξoj∆t)∏s−1
j=0 ϕ̄(ξn(j+1)∆t → ξnj∆t)

. (3.121)

To reach the last equality, we have shifted the index by one unit and simplified
terms common in the path weight and the generation probabilities [21].

To proceed, we seek a relation between the transition probabilities for
dynamical forward and backward propagation. For Hamiltonian dynamics
this relation becomes [21,165]

ϕ(ξj∆t → ξ(j+1)∆t)

ϕ̄(ξ(j+1)∆t → ξj∆t)
= 1. (3.122)

This result can be understood as follows. Let us write the time evolution
operator φ∆t(ξ) = eıL∆t propagating the system from time slice j to j + 1

and its inverse φ−∆t(ξ) = e−ıL∆t according to equation (3.123) [21]:

ξ(j+1)∆t = φ∆t(ξj∆t); (3.123a)

ξj∆t = φ−∆t(ξ(j+1)∆t). (3.123b)

Then, equation (3.122) can be written as [21]

ϕ(ξj∆t → ξ(j+1)∆t)

ϕ̄(ξ(j+1)∆t → ξj∆t)
=

δ(ξ(j+1)∆t − φ∆t(ξj∆t))

δ(ξj∆t − φ−∆t(ξ(j+1)∆t))
=

∣∣∣∣∂φ∂ξ
∣∣∣∣−1

= 1. (3.124)

To arrive at the third term, we have regarded the argument of the δ-distribution
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in the numerator as a function of ξj∆t and used property (C.6) for δ-distributions.
The final equation results if we consider the time evolution of the system from
phase space point ξj∆t to ξ(j+1)∆t as a coordinate transformation between two
sets of variables. For Hamiltonian dynamics this coordinate transformation
is canonical [165]. Consequently, the absolute value of the Jacobian determi-
nant is unity [165].

Another way of obtaining equation (3.122) considers the principle of mi-
croscopic reversibility [21,107]:

ϕ(ξj∆t → ξ(j+1)∆t)

ϕ̄(ξ(j+1)∆t → ξj∆t)
=
ρ(ξ(j+1)∆t)

ρ(ξj∆t)
= 1. (3.125)

Because the Hamiltonian is conserved along a trajectory, the probabilities
ρ(ξ) of being at time slices j and j+1 are equal, and equation (3.122) follows
[21,165]. Hence, equation (3.119) for an arbitrary generation probability ratio
of shooting points reduces to [21]

wa(ξ
o(t)→ ξn(t)) = θR(xn0 ) θP (xnt )min

{
1,
ρ(ξn0 )

ρ(ξo0)

wg(ξ
n
s → ξos)

wg(ξos → ξns )

}
. (3.126)

Until now, the quantification above has been general for Hamiltonian dy-
namics. Below, we distinguish between the microcanonical and canonical
procedures used in the present document. In the microcanonical ensem-
ble we use symmetric shooting point generation probabilities. Furthermore,
the weight of the initial phase space point is the same for the old and new
trajectories because all allowed phase space points are equally likely in the
microcanonical ensemble [72, 113]. Consequently, equation (3.126) simplifies
to [21]

wa(ξ
o(t)→ ξn(t)) = θR(xn0 ) θP (xnt ). (3.127)

A trial trajectory is therefore accepted if it is reactive.

For the canonical case we note that the probability of finding the system
at any phase space point along a given trajectory is the same because the
system’s dynamics is Hamiltonian and Liouville’s theorem is satisfied. We
can therefore shift the ratio of phase space point weights from the initial slice
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to the shooting slice ξs and obtain [21,73]

wa(ξ
o(t)→ ξn(t)) = θR(xn0 ) θP (xnt )min

{
1,
ρ(ξns )

ρ(ξos)

wg(ξ
n
s → ξos)

wg(ξos → ξns )

}
. (3.128)

In this work we employ an asymmetric shooting slice generation probability,
described next.

3.3.2 Asymmetric generation probability for shooting

moves

As in reference [141], the trajectories in our transition path ensemble are
short. Hence, the Lyapunov instability is unlikely to produce sufficiently
large deviations for small momentum changes. Larger momentum changes
probably involve relatively large changes in energy and lead to low acceptance
probabilities [21, 141]. This difficulty is overcome by a method capable of
generating large momentum changes with moderate changes in the kinetic
energy [141].

The method concerns the shooting slice modification step of a shooting
trial move, as outlined in the preceding subsection. As mentioned there, the
shooting slice manipulation consists of changing the momenta and selecting
a new kinetic energy. The key feature of the method [141] is to propose a
new shooting point with an asymmetric generation probability. In particular,
we choose a symmetric generation probability for the momentum changes.
However, a Monte Carlo procedure (additional to the one for the overall
shooting attempt) is employed to obtain the new from the old kinetic energy
in an asymmetric manner. This key asymmetric generation probability is
summarized next and described in more detail below [21,141].

Given a randomly chosen shooting point along an old reactive trajectory,
the practical steps for obtaining the modified shooting slice are as follows:

1. Add a momentum displacement ∆pC,j = α
√
mjkBT (α governs the

magnitude of the momentum change) drawn from a normal distribution
to all Cartesian momentum components so that p(0)

C,j → p
(1)
C,j = p

(0)
C,j +

∆pC,j
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2. Apply the constraint of vanishing total linear momentum component
p

(1)
C,j → p

(2)
C,j = p

(1)
C,j −

mj
M
∑j=N

j=1 p
(1)
C,j

3. Satisfy the hidden constraints for the momenta resulting from the con-
straints for the bond lengths via the RATTLE algorithm p

(2)
C,j → p

(3)
C,j

4. Select a new kinetic energy Kn
s according to the canonical distribution

(a) Draw a random kinetic energy change ∆K = Kn
s − Ko

s from a
normal distribution

(b) Accept the new kinetic energy with probability

w
′
a (Ko

s → Kn
s ) = min

{
1, e−β(Kn

s −Ko
s )
(
Kn
s

Ko
s

)Nf/2−1
}

5. Scale the momenta so that p(3)
C,j → p

(4)
C,j =

√
Kn
s

Ko
s
p

(3)
C,j if the proposed

kinetic energy has been accepted

Our specific aim in this subsection is to compute the last term in the min-
function of equation (3.128). As in reference [21], our choice for the ratio of
the asymmetric generation probabilities is

wg(ξ
n
s → ξos)

wg(ξos → ξns )
=
ω(Ko

s )

ω(Kn
s )

dKo
s

dKn
s

∏Nf
j=1 δ

(
poC,j,s −

√
Ko
s

Kn
s
pnC,j,s

)
∏Nf

j=1 δ
(
pnC,j,s −

√
Kn
s

Ko
s
poC,j,s

) . (3.129)

Here, the kinetic energy probability density at the shooting slice s is denoted
by ω(Ks), and the δ-distributions impose constraints on the relationship
between the old and new momenta.

We shall discuss the individual contributions to equation (3.129) in turn,
namely the ratio of kinetic energy probability densities, the ratio of kinetic
energy differentials and the ratio of products of δ-distributions.

Starting with the ratio of kinetic energy probability densities, we employ
the above-mentioned additional Monte Carlo procedure of equation (3.130),
which is indicated by primed acceptance probabilities w′a, to generate kinetic
energies according to their equilibrium weight ω(K) (see equation (3.131)).
Following reference [141], we denote the current kinetic energy by Ko

s . The
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trial kinetic energy Kn
s = Ko

s + ∆K is obtained by adding a random kinetic
energy ∆K drawn from a normal distribution. As a consequence, the gen-
eration probabilities for the trial kinetic energies are symmetric, and their
ratio w

′
g(Kn

s→Ko
s )

w′g(Ko
s→Kn

s )
= 1 can be omitted from equation (3.130) if detailed balance

is imposed. The following acceptance probability ratio for the kinetic energy
results [141]:

w
′
a(K

o
s → Kn

s )

w′a(K
n
s → Ko

s )
=
ω(Kn

s )

ω(Ko
s )
. (3.130)

To proceed, we use the kinetic energy probability density in the canonical
ensemble, discussed in section C.3 [141]:

ω(K) = Ce−βKKNf/2−1. (3.131)

Above, Nf denotes the number of degrees of freedom, and C is a normalizing
factor. Inserting the kinetic energy probability density (3.131) into equa-
tion (3.130) for the acceptance ratio of kinetic energies and employing the
Metropolis acceptance criterion, we obtain [141]

w
′

a(K
o
s → Kn

s ) = min

{
1, e−β(Kn

s −Ko
s )

(
Kn
s

Ko
s

)Nf/2−1
}
. (3.132)

Because the inverse of equation (3.130) enters equation (3.129), the con-
tribution of the kinetic energy densities to the asymmetric kinetic energy
generation probability is

ω(Ko
s )

ω(Kn
s )

= e−β(Ko
s−Kn

s )

(
Ko
s

Kn
s

)Nf/2−1

. (3.133)

We now turn to the ratio of kinetic energy differentials whose contribution
to equation (3.129) reads

dKo
s

dKn
s

=
Ko
s

Kn
s

. (3.134)

This result follows from the definition of the kinetic energy K =
∑Nf

j=1

p2
C,j

2mj
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and from the constraints imposed by the δ-distributions on the momenta:

poC,j,s =

√
Ko
s

Kn
s

pnC,j,s; (3.135a)

dpoC,j,s =

√
Ko
s

Kn
s

dpnC,j,s. (3.135b)

To establish equation (3.134), we express the differential dKo
s of the current

kinetic energy at the shooting slice Ko
s in terms of the differential dKn

s of the
new kinetic energy:

dKo
s =

Nf∑
j=1

∂Ko
s

∂poC,j,s
dpoC,j,s =

Nf∑
j=1

poC,j,s
mj

dpoC,j,s =

Nf∑
j=1

Ko
s

Kn
s

pnC,j,s
mj

dpnC,j,s

=

Nf∑
j=1

Ko
s

Kn
s

∂Kn
s

∂pnC,j,s
dpnC,j,s =

Ko
s

Kn
s

dKn
s . (3.136)

Next, we consider the contribution arising from the ratio of products of
δ-distributions to equation (3.129). To simplify the ratio of δ-distributions,
we employ equation (C.6) for any function f(y):∫ ∞

−∞
δ (f(y)) dy =

∫ ∞
−∞

∑
yj :f(yj)=0

δ(y − yj)∣∣∣∣∂f∂y ∣∣∣
yj

∣∣∣∣ dy. (3.137)

We obtain for one momentum degree of freedom with f(poj,s) = pnj,s−
√

Kn
s

Ko
s
poj,s

δ

(
pnC,j,s −

√
Kn
s

Ko
s

poC,j,s

)
=
δ
(
poC,j,s −

√
Ko
s

Kn
s
pnC,j,s

)
∣∣∣−√Kn

s

Ko
s

∣∣∣ . (3.138)

Because there are Nf degrees of freedom, the ratio involving δ-distributions

contributes a factor
(
Kn
s

Ko
s

)Nf/2
to equation (3.129) for the ratio of asymmetric

generation probabilities. Collecting the contributions from all three ratios
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considered, we have for the generation probability ratio [141]

wg(ξ
n
s → ξos)

wg(ξos → ξns )
= e−β(Ko

s−Kn
s )

(
Ko
s

Kn
s

)Nf/2−1
Ko
s

Kn
s

(
Kn
s

Ko
s

)Nf/2
= e−β(Ko

s−Kn
s ). (3.139)

We are now in a position to insert the ratio of generation probabilities
(3.139) into the acceptance probability for a proposed shooting move (3.128)
using the Metropolis criterion [21,141]:

wa(ξ
o(t)→ ξn(t)) = θR(xn0 ) θP (xnt )min

{
1,
ρ(ξns )

ρ(ξos)

wg(ξ
n
s → ξos)

wg(ξos → ξns )

}
= θR(xn0 ) θP (xnt )min

{
1,
e−βH(ξns )

e−βH(ξos)

e−βK(ξos)

e−βK(ξns )

}
= θR(xn0 ) θP (xnt ). (3.140)

The last equation results because the modification of the shooting slice affects
momenta and kinetic energies only; the particle positions and the potential
energy remain unaltered. The proposed shooting slice is thus accepted if we
accept the kinetic energy proposed according to the asymmetric generation
probability described above. Consequently, we accept a trial trajectory in
the canonical ensemble if it is reactive.

3.3.3 Shifting moves

In this section we give a brief account of shifting moves following references
[21, 164]. A shifting move consists in moving the time origin of a pathway
by an amount ∆ts. If the path segment ∆ts is positive, we have a forward
shifting move. In contrast, a backward shifting move has a negative ∆ts [73].

We shall next describe the practical implementation of shifting moves [21].
To start, let us consider a forward shifting move. In that case, a path segment
of length ∆ts is appended at the end of the current trajectory. At the same
time, the first time slices whose combined length equals ∆ts are removed from
the trial trajectory. On the other hand, a backward shifting move deletes
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the final segment ∆ts of the original path. Then, the new path segment is
propagated backwards in time starting from the initial time slice [21]. In
practice, this is done in the following way. The momenta at the initial time
slice are inverted. Next, the equations of motion are integrated for a time
∆ts, and the momenta of all time slices of the newly grown trajectory segment
are reversed.

Irrespective of the shifting direction, trial trajectories are accepted if they
are reactive in the case of Hamiltonian dynamics [21]. To see this, we impose
detailed balance between a given forward shifting move and the corresponding
backward shifting move that reverts the effect of the former so that the final
pathway corresponds to the initial trajectory. In mathematical terms, we
have [21]

wa,f (ξ
o(t)→ ξn(t))

wa,b(ξn(t)→ ξo(t))
=
wRP [ξn(t)]

wRP [ξo(t)]

wg,b(ξ
n(t)→ ξo(t))

wg,f (ξo(t)→ ξn(t))
. (3.141)

In the above equation the subscripts f and b indicate properties referring to
forward and backward shifting moves. Here, we consider a pair of forward
and backward shifting moves that involves Ns time slices and label all time
slices in terms of the old pathway. In particular, the indices for the phase
space points run from 0 to N + Ns. With this notational convention we
obtain for equation (3.141) [21]

wa,f (ξ
o(t)→ ξn(t))

wa,b(ξn(t)→ ξo(t))
= θR(xn0 )θP (xnt )

ρ(ξn0 )

ρ(ξo0)

∏N−1+Ns
j=Ns ϕ(ξnj∆t → ξn(j+1)∆t)∏N−1
j=0 ϕ(ξoj∆t → ξo(j+1)∆t)

×
∏N−1

j=Ns ϕ(ξoj∆t → ξo(j+1)∆t)
∏Ns−1

j=0 ϕ̄(ξo(j+1)∆t → ξoj∆t)∏N−1
j=Ns ϕ(ξnj∆t → ξn(j+1)∆t)

∏N−1+Ns
j=N ϕ(ξnj∆t → ξn(j+1)∆t)

= θR(xn0 )θP (xnt )
ρ(ξn0 )

ρ(ξo0)

∏Ns−1
j=0 ϕ̄(ξo(j+1)∆t → ξoj∆t)∏Ns−1
j=0 ϕ(ξoj∆t → ξo(j+1)∆t)

. (3.142)

As mentioned in the section describing shooting moves, Hamiltonian dy-
namics conserves the total energy of the system and satisfy equation (3.122)
[165]. Accordingly, the acceptance probabilities for forward and backward
shifting moves reduce to equations (3.143), which state that a shifting move
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is accepted if it still connects the reactant and product states [21]

wa,f (ξ
o(t)→ ξn(t)) = θR(xn0 )θP (xnt ); (3.143a)

wa,b(ξ
n(t)→ ξo(t)) = θR(xo0)θP (xot ). (3.143b)

Shifting moves are employed to reduce the statistical noise of transition
path sampling simulations [73]. Shifting moves are not ergodic because they
do not alter the nature of a given trajectory [21,106,164]. Hence, they should
only be used in combination with shooting moves.

Having outlined shooting and shifting moves as part of a biased random
walk in trajectory space, we close our discussion of tools to harvest reactive
trajectories. In the following, we shall turn to the analysis of the transition
path ensemble.

3.3.4 Committor, reaction coordinate and transition state

Figure 3.1: The committor calculation of equation (3.145) is illustrated as a
set of fleeting trajectories (solid lines) from a configuration of a reactive path
(dashed line) to estimate the relaxation probability to the product state (P ).
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Once a set of reactive trajectories has been obtained, this transition path
ensemble can be analyzed to provide insight about the molecular mechanism
of the activated process under consideration [21,73]. A detailed understand-
ing of the reaction mechanism requires identification of the reaction coordi-
nate [21,73,82,140], which consists of dynamically relevant physical degrees
of freedom that drive the transition [21, 22, 73, 77, 82, 140]. Hence, motion
along the reaction coordinate is necessary to pass the dynamical bottleneck
of the reaction, namely the transition state, located between reactants and
products [22, 77, 123]. This dynamical relevance distinguishes reaction co-
ordinates from order parameters, used to separate (meta-)stable regions in
phase space [21, 73, 140]. In addition, the reaction coordinate provides both
a dynamical [22, 77, 140] and a statistical [21, 73, 77, 78, 81, 140, 185] measure
for the progress of the reaction.

One such statistical measure for the advancement of the reaction is the
committor [21, 73, 77–79, 81, 140, 185]. Two definitions of the committor
are common. In the first definition, the committor is the probability of
reaching the product state before reaching the reactant state if the system
is launched from a configuration with momenta randomly drawn from the
Maxwell-Boltzmann distribution [22, 77–79, 81–83, 140]. In that case, the
committor is time-independent and defined in terms of a configuration al-
though, in principle, it is a function of all phase space variables [22,81,140].
In the second definition, the committor is time-dependent and consists of
the fraction of trajectories launched from a given configuration reaching the
product state within a specified time tft [21, 73, 123]. If the specified time
satisfies the plateau time property τmol � tft � τrxn [9, 12] of an activated
process, the two definitions are essentially identical because the latter be-
comes insensitive to the exact length tft of the fleeting trajectories [21]. The
separation of timescales implies that the system relaxes to one of the stable
states on a molecular timescale τmol [21], whereas subsequent spontaneous
transitions typically require times of the order of the reaction time τrxn [21].
We shall therefore assume that the committor is independent of time for
τmol < tft � τrxn.
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Following references [21,73], we define the committor as

wP (rx, tft) =

∫
δ
(
r
′
x(ξ0)− rx

)
θP (xtft) ρ(ξ0) dξ0∫

δ (r′x(ξ0)− rx) ρ(ξ0) dξ0

≈ wP (rx). (3.144)

As illustrated in figure 3.1 and indicated above, the committor is approx-
imated as the fraction wP (rx) of Nft fleeting trajectories that reaches the
product state P from a configuration rx [21, 73]:

wP (rx, tft) ≈
1

Nft

Nft∑
j=1

θP
(
xtft,j

)
. (3.145)

To estimate the statistical uncertainty of equation (3.145), we can regard the
result of one fleeting trajectory as the outcome of a binomially distributed
random variable [21, 73]. Furthermore, we assume that the fleeting trajec-
tories are independent and identically distributed. If the number of fleeting
trajectories is sufficiently large, the standard deviation of the mean of the
committor can be estimated by the central limit theorem [21,73,137]:

σ (wP (rx)) ≈

√
wP (rx)(1− wP (rx))

Nft
. (3.146)

Transition states are configurations with equal probability of relaxing to
the reactant and product states [21, 73, 81–83, 140, 185]. In other words,
transition state configurations have a committor value of one half. This
criterion agrees with the expectation that the transition state is intermediate
between reactants and products [22,77,123].

The committor is sometimes considered as an ideal reaction coordinate
[77,78,81–83,140]. However, although the committor is universal, it does not
provide direct physical insight [21, 73, 82, 140]. What is needed to gain this
insight, is an approximation to the committor in terms of few physical col-
lective variables [82,140]. In practice, we shall use the reverse route. Instead
of parametrizing the committor in terms of collective variables, we usually
propose a reaction coordinate and subsequently test its validity [21, 22, 73,
77, 81, 82, 140]. This test exploits the property that dynamically relevant
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collective variables must closely approximate the statistically exact commit-
tor [77,82]. In particular, the configurations of the transition state according
to the proposed reaction coordinate are harvested. Then, the committor
wP is computed for every member of this set, and a histogram of the com-
puted committor values is constructed [21, 73, 81, 82, 140]. This histogram
approximates the committor distribution w(wP ) of equation (3.147), which
describes the committor values observed for configurations characterized by
a given value rx of the collective variable r′x. If the committor distribu-
tion (3.147) [21, 73] is sharply peaked around wP (rx) = 1/2, the proposed
collective variable rx is considered a good approximation to the reaction co-
ordinate [21, 73,81,82,140].

w(wP ) =

〈
δ
(
w
′
P (rx, tft)− wP

)
δ
(
r
′
x(ξ)− rx

)〉
〈δ (r′x(ξ)− rx)〉

(3.147)

The test of transition states and reaction coordinates via committor eval-
uations and their distributions is not restricted to transition path sampling
simulations. This procedure is generally applicable to microscopic configura-
tions and therefore provides a transition to complementary simulation tech-
niques for investigating activated processes, such as free energy calculations,
described next.

3.4 Computation of free energy differences and

profiles

The present section briefly discusses the challenge of evaluating free energy
differences and free energy profiles. We then present the ideas behind a few
techniques that address this challenge: thermodynamic perturbation [120],
thermodynamic integration [121], umbrella sampling [114,115]. The method
we use to construct free energy profiles is called umbrella integration [65,66];
it is based on umbrella sampling and thermodynamic integration and will be
presented as a fourth method.

As briefly mentioned in section 3.2, (absolute) free energies cannot be
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evaluated by simulation techniques [106]. The reason is that the Helmholtz
free energy and other thermal quantities, such as the entropy, cannot be
expressed as ensemble averages [106]. Instead, they are related to the phase
space volume accessible to the system [106]. This situation is analogous to
that for physical experiments; only free energy differences are measurable in
a laboratory [106].

The free energy difference ∆F = F1 − F0 between two regions in phase
space separated by a large free energy barrier and characterized by the Hamil-
tonians H0 and H1 can be written as an ensemble average of the exponential
of the energy difference ∆E = H1 −H0 over the state 0 [106,120,186]:

∆F = −kBT ln〈e−β(H1−H0)〉0. (3.148)

Hence, the situation is formally the same as that for mechanical properties
〈A〉0 =

∫
A(ξ)ρ0(ξ) dξ [114, 115]. However, evaluating ensemble averages

in the case of free energy differences requires special techniques [114]. To
see why, we compare the characteristics of ensemble averages for mechanical
properties with those for free energy differences.

In both cases, the weight ρ0 = e−βH0(ξ)/
∫
e−βH0(ξ) dξ of a phase space

point in the canonical ensemble is determined by the Boltzmann factor, which
is a rapidly varying function of the phase space variables [114]. Also in both
cases, the largest contributions to the ensemble average 〈A〉0 stem from phase
space points where the weight and the property of interest are large simul-
taneously so that their product, the integrand Aρ0, is non-negligible [114].
Mechanical properties tend to be smooth and slowly varying functions of
phase space variables [106,114]. Accordingly, the major contributions to the
ensemble average of mechanical properties are determined by those configu-
rations whose statistical weight is large because ρ0 determines the behaviour
of Aρ0. Because equilibrium simulations preferentially sample configurations
with large statistical weight, the evaluation of average mechanical properties
is accessible to molecular simulation techniques [107,115].

The evaluation of free energy differences is more challenging in the follow-
ing way. The function A = e−β∆E may change as rapidly with phase space
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coordinates as ρ0 [114]. This means that large contributions e−β∆Eρ0 to the
ensemble average may not only arise from configurations with high statistical
weight but also from phase space points with lower weight and correspond-
ingly large values of e−β∆E [107]. As a consequence, it is typically necessary
to sample configurations with relatively low values of ρ0 to accurately es-
timate the free energy difference ∆F [107, 114]. In particular, we wish to
sample phase space points that belong to both the reference state and the
target state to include all large contributions of e−β∆Eρ0 to the ensemble
average [115]. If the states are well separated in phase space, they will have
few configurations in common [106]. As a result, configurations that have a
high probability in one state will have negligible weight in the other state
and vice versa [106]. Thus, if a free energy barrier prevents sampling both
states, we cannot extract statistically firm information on the target state
from sampling the reference state if the two states are too dissimilar [107].

To overcome the difficulty of disjoint probability distributions of the states
involved, several strategies have been proposed. These strategies can be
divided into non-equilibrium and equilibrium approaches. The former involve
simulations evaluating the non-equilibrium work to connect the reference and
target states [106,187,188]. The latter include thermodynamic perturbation
[120], thermodynamic integration [121] and umbrella sampling [114,115]. In
this work we shall focus on equilibrium methods, which extract information
from simulations of systems in equilibrium with respect to their current,
possibly artificial, Hamiltonians.

We distinguish two types of free energy differences. On the one hand,
we have free energy differences between two different systems characterized
by different Hamiltonians. An example is the reversible work to charge a
solute in a polar solvent [189]. On the other hand, we consider free energy
differences between different regions of phase space of the same system. In
that case, the Hamiltonian of the system is the same in all states, which
are characterized by an order parameter [190]. The free energy of a given
state corresponds to the projection of the free energy onto the relevant part
of phase space [161] and is related to (an integral over) the Landau free
energy [106].
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In mathematical terms, the difference in Helmholtz free energy between
two systems characterized by the Hamiltonians H1 and H0 and by the par-
tition functions Q1 and Q0 reads [72,106]

∆F = F1 − F0 = −kBT ln
Q1

Q0

= −kBT ln
∫
e−βH1(ξ) dξ∫
e−βH0(ξ) dξ

. (3.149)

In contrast, the free energy difference between two states R and P of a system
characterized by the Hamiltonian H involves Landau free energies FL(x) and
restricted partition functions Q(x) as a function of the order parameter x, as
discussed in reference [33]:

∆rF = FP − FR = −kBT ln
QP

QR

= −kBT ln
∫
Q(x) θP (x) dx∫
Q(x) θR(x) dx

= −kBT ln
∫
e−βFL(x) θP (x) dx∫
e−βFL(x) θR(x) dx

. (3.150)

Above, we have used the definition of both the restricted partition func-
tion [33,161],

Q(x) =
1

h3NN !

∫
δ
(
x
′
(ξ)− x

)
e−βH(ξ) dξ, (3.151)

and the Landau free energy, which is also called the potential of mean force
[33,161]:

FL(x) = −kBT lnQ(x)

= F − kBT ln ρ(x)

= F − kBT ln
〈
δ
(
x
′
(ξ)− x

)〉
= F − kBT ln

∫
δ
(
x
′
(ξ)− x

)
e−βH(ξ)dξ∫

e−βH(ξ)dξ
. (3.152)

Here, the Helmholtz free energy F serves as an arbitrary reference energy
[118]. This reference energy is arbitrary because it cancels when free energy
differences or free energy profiles are evaluated. We also note that the free
energy difference (3.150) generally differs from the Landau free energy dif-
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ference between the minima of the two stable states. The latter involves the
differences between the free energies restricted to two single values of the
order parameter, whereas the former free energies characterize two extended
regions of phase space.

Whether we wish to compute free energy differences of the form (3.149)
or of the form (3.150), we will typically have to bridge the sampling from the
initial state to the final state. In the former case, equilibrium simulations are
performed with respect to a series of intermediate Hamiltonians. In the latter
case, the system is biased along the order parameter to reach the final state
from the initial state. These procedures enable us to sample configurations
with a large weight in different regions of phase space or for different systems,
resulting in a path connecting initial and final states.

3.4.1 Thermodynamic perturbation

The method of thermodynamic perturbation [120, 191] aims at evaluating
the free energy difference between the system of interest and the reference
system, indicated by the subscripts 1 and 0. Accordingly, we denote the
Hamiltonians of the target and reference systems by H1 and H0. The ther-
modynamic perturbation method exists as both a one-step and a multi-step
procedure [191]. In the one-step version we sample phase space points dis-
tributed according to the reference system and evaluate the exponential of
the difference in total energy between the target and the reference systems
∆H(ξ) = H1(ξ)−H0(ξ) [53, 120,192]:

∆F = F1 − F0 = −kBT ln
Q1

Q0

= −kBT ln
∫
e−βH1(ξ)dξ∫
e−βH0(ξ)dξ

= −kBT ln
〈
e−β∆H(ξ)

〉
0

= kBT ln
〈
eβ∆H(ξ)

〉
1
. (3.153)

Consequently, we directly face the challenges described above. To avoid
sampling configurations that have negligible weight in one or both of the
states involved, the multi-step procedure can be used. In that case, the free
energy difference between the target and reference states is written as a sum
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over free energy differences involving Nst − 2 intermediate states [191,193]:

∆F1,0 = F1 − F0 =
Nst−2∑
j=0

∆F j+1
Nst−1

, j
Nst−1

= −kBT ln
Nst−2∏
j=0

〈
e−β∆Hj+1,j

〉
j
. (3.154)

The total number of states is Nst, and the number of perturbation stages is
Nst − 1. For a linear variation of the parameter characterizing the system
the states j are often characterized by a Hamiltonian H j

Nst−1
[53, 191]:

H j
Nst−1

(ξ) = H0(ξ) +
j

Nst − 1
(H1(ξ)−H0(ξ)) . (3.155)

Starting from the reference system, we sample phase space points with non-
vanishing weight for the first intermediate state. The free energy difference
F 1
Nst−1

−F0 can be estimated, and state 1
Nst−1

becomes the next reference state
with respect to the intermediate state 2

Nst−1
and so on. With an arbitrary

reference free energy of the reference state 0 a series of free energies as a
function of the parameter j is constructed from the individual free energy
differences ∆F j+1

Nst−1
, j
Nst−1

.

3.4.2 Thermodynamic integration

The thermodynamic integration method [106, 121] introduces a control pa-
rameter ζ characterizing the Hamiltonian of the system:

H(ξ, ζ) = (1− ζ)H(ξ, 0) + ζH(ξ, 1)

= H(ξ, 0) + ζ (H(ξ, 1)−H(ξ, 0)) . (3.156)

The parameter varies from zero to unity. The reference system corresponds to
ζ = 0, and the target system is represented by ζ = 1. Intermediate values of
ζ define artificial systems bridging between the reference and target systems.
As the Hamiltonian of each system depends on ζ, so do the partition function
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and the (Landau) free energy. The idea behind thermodynamic integration is
now first to take the derivative of the free energy with respect to the control
parameter and second to integrate the averages given below numerically over
various values of the control parameter [191]. We have for the canonical
partition function of an atomic N -particle system characterized by H(ξ, ζ)

(compare appendix D) [106]

Q(ζ) =
1

N !h3N

∫
e−βH(ξ,ζ)dξ. (3.157)

The derivative of the (Landau) free energy with respect to ζ reads [53, 106,
121]

∂F (ζ)

∂ζ
= −kBT

∂lnQ(ζ)

∂ζ

= −kBT
1

Q(ζ)

∂Q(ζ)

∂ζ

=

∫ ∂H(ξ,ζ)
∂ζ

e−βH(ξ,ζ) dξ∫
e−βH(ξ,ζ) dξ

=

〈
∂H(ξ, ζ)

∂ζ

〉
ζ

. (3.158)

We see that the derivative of the (Landau) free energy with respect to the
control parameter ζ results in an ensemble average of the derivative of the
Hamiltonian with respect to ζ. The ensemble average is performed over the
generalized density ρζ(ξ) = e−βH(ξ,ζ)∫

e−βH(ξ,ζ)dξ
. Integrating the generalized force of

equation (3.158) over all values of ζ yields the free energy difference between
the system of interest and the reference state [53,106,121,190,191,193]:

∆F = F (ζ = 1)− F (ζ = 0) =

∫ ζ=1

ζ=0

〈
∂H(ξ, ζ

′
)

∂ζ ′

〉
ζ′
dζ
′
. (3.159)

As in the case of thermodynamic perturbation, a series of free energy differ-
ences can be obtained from simulations at different values of ζ.
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3.4.3 Umbrella sampling

Although umbrella sampling [114, 115] was first introduced to compute free
energy differences of the type (3.149), its primary current use seems to be
the evaluation of free energy profiles [118, 194]. In both cases, the central
idea of the method consists in employing a non-Boltzmann weight function
ρb = ωb e

−βH(ξ)∫
ωb e−βH(ξ) dξ

to sample configurations pertaining to both the initial and
final states [114, 115]. Then, the free energy difference between two systems
H1 and H0 reads [114,115]

∆F = F1 − F0 = −kBT ln
∫
e−βH1 dξ∫
e−βH0 dξ

= −kBT ln
∫

ωb
ωb
e−βH1 dξ∫

ωb
ωb
e−βH0 dξ

= −kBT ln

〈
1
ωb
e−β(H1−H0)

〉
b〈

1
ωb

〉
b

. (3.160)

Above, the subscript b indicates that the ensemble average is computed with
the weight function ρb = ωb e

−βH(ξ)∫
ωb e−βH(ξ) dξ

, where ωb, which is often expressed
as e−βVb in terms of a biasing potential Vb, is a factor describing the de-
viation from the unbiased phase space density ρ = e−βH(ξ)∫

e−βH(ξ) dξ
. Relation

(3.160) implies that the biased simulations are unbiased by ω−1
b to yield the

Boltzmann-weighted averages sought [115].
The same strategy of introducing a bias potential and correcting for it

applies for the computation of free energy profiles along an order parameter
x [47, 118, 194, 195]. According to equation (3.152), the free energy profile
is a function of the equilibrium probability density restricted to a given or-
der parameter value ρ(x). In a multi-stage umbrella sampling simulation
the equilibrium probability density is expressed in terms of the order pa-
rameter densities from several biased simulations [114, 115, 118]. The biased
simulations are performed along the order parameter, and the entire order
parameter range is divided into segments or windows. The bias is introduced
by adding the restraining potential Vb,j(x) to the HamiltonianH(ξ), resulting
in the following Hamiltonian for window j [118]:

Hj(ξ, x) = H(ξ) + Vb,j(x). (3.161)
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We note that the order parameter is a function of the phase space variables
x = x(ξ); however, this dependence has been left implicit for notational
convenience. With the above definition the biased probability density of the
order parameter for window j becomes [118,161]

ρb,j(x) =

∫
δ
(
x
′
(ξ)− x

)
e−βHj(ξ,x

′
)dξ∫

e−βHj(ξ,x
′ )dξ

=
〈
δ
(
x
′
(ξ)− x

)〉
b,j
. (3.162)

The last equation defines the average over the biased density ρb,j(ξ) =

e−βHj(ξ,x
′
)∫

e−βHj(ξ,x
′
)dξ

.

We now relate the equilibrium density ρ(x) to the biased density ρb,j(x)

in window j [118]:

ρ(x) =

∫
δ
(
x
′
(ξ)− x

)
e−βH(ξ)dξ∫

e−βH(ξ)dξ

=

∫
δ
(
x
′
(ξ)− x

)
e−βHj(ξ,x

′
)eβVb,j(x

′
)dξ∫

e−βHj(ξ,x
′ )eβVb,j(x

′ )dξ

=

〈
δ
(
x
′
(ξ)− x

)
eβVb,j(x

′
)
〉
b,j〈

eβVb,j(x
′ )
〉
b,j

= eβVb,j(x) ρb,j(x)〈
eβVb,j(x

′ )
〉
b,j

= eβVb,j(x)ρb,j(x)
〈
e−βVb,j(x

′
)
〉
. (3.163)

To reach the second line, we have multiplied the integrand by one and used
equation (3.161). To reach the third line, we divide numerator and denom-
inator by

∫
e−βHj(ξ,x

′
)dξ. We then obtain line four on noting that the order

parameter is restricted to the value x so that the term eβVb,j(x) is a constant
and can be taken out of the integral over phase space variables. This pro-
cedure is the same as that used in the electron-transfer case (see equation
(2.34) on page 37). The remaining integral is identified as relation (3.162).
The last line follows from the thermodynamic perturbation result for the
free energy difference between states characterized by Hamiltonians Hj and
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H [120]:

〈
eβVb,j(x)

〉−1

b,j
=

∫
e−βH(ξ)e−βVb,j(x)dξ∫

e−βH(ξ)e−βVb,j(x)eβVb,j(x)dξ

=
〈
e−βVb,j(x)

〉
= e−β∆Fj = e−β(F−Fj). (3.164)

With the above definitions and results the contribution to the free energy
profile (3.152) from biased simulations in window j reads [118]

Fj(x) = F − kBT ln ρb,j(x)− Vb,j(x) + ∆Fj. (3.165)

The free energy profile segments from each window need to be combined to
construct the Landau free energy or potential of mean force, which represent
the free energy subject to the constraint that the order parameter has a fixed
value [118], over the entire order parameter range of interest. One popular
way of doing so is to iteratively evaluate the unknown constants ∆Fj by using
the weighted histogram analysis method [117, 118]. However, the value and
the accuracy of the calculated potential of mean force depend on the bin size
for the order parameter [65, 119]. Consequently, we shall not describe the
construction of free energy profiles using self-consistent histogram methods.
Instead, we consider an alternative that converges with the number of bins
used for the order parameter, namely umbrella integration [65,66].

3.4.4 Umbrella integration

Umbrella integration [65,66] uses biased molecular simulation (umbrella sam-
pling) to sample phase space regions whose Boltzmann weight is vanishingly
small. Thus, the first step is identical to an umbrella sampling simula-
tion [106, 114, 115]. The methods differ when it comes to the reconstruction
of the free energy profile from the simulation data.

Umbrella integration [65, 66] is inspired by thermodynamic integration
[106,121]. Specifically, the generalized force (along an order parameter) from
each window is integrated using the extended version of Simpson’s rule [2,65,
66]. An important ingredient of the method is the assumption that the order
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parameter in each window is normally distributed to a good approximation
[65].

The equilibrium contribution to the potential of mean force from window
j can be expressed in terms of the probability density from the biased simu-
lation in window j as in equation (3.165). Following reference [65], we obtain
the generalized force by taking the derivative of the free energy in window j

with respect to the order parameter x:

∂Fj(x)

∂x
= −kBT

∂ln ρb,j(x)

∂x
− dVb,j(x)

dx
. (3.166)

Relation (3.166) is generally valid. As in reference [65], we restrict the
scope of equation (3.166) in two ways. First, we focus on harmonic restraining
potentials around the centre of window j at xcj [65]:

Vb,j(x) =
1

2
κb
(
x− xcj

)2
. (3.167)

Second, we approximate the order parameter density in window j by a normal
probability density with mean 〈x〉b,j and variance σ2

b,j [65]:

ρb,j(x) =
1√

2π σb,j
e
− 1

2

(
x−〈x〉b,j
σb,j

)2

. (3.168)

Inserting equations (3.167) and (3.168) into equation (3.166) for the gener-
alized force for window j yields [65, 66]

∂Fj(x)

∂x
= kBT

x− 〈x〉b,j
σ2
b,j

− κb
(
x− xcj

)
. (3.169)

Because the potential of mean force is constructed by integrating the
generalized force, we need to combine the different windows to obtain the
generalized force for the entire order parameter range. To do so, we divide the
order parameter range into bins so that they are independent of the windows
used to perform the biased simulations [65]. The generalized force at the
order parameter value x results from a weighted average over contributions
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from each window j [65]:

∂F (x)

∂x

∣∣∣∣
x

=
Nw∑
j=1

wj(x)

(
∂Fj(x)

∂x

)
x

. (3.170)

The weight of each window j at the order parameter value x is given in terms
of a histogram approximation wb,j to the biased density ρb,j [65]:

wj(x) =
Nd,j wb,j(x)∑Nw
k=1Nd,k wb,k(x)

. (3.171)

In equation (3.171) above the number of data points sampled in window j is
denoted by Nd,j, and the number of windows is Nw.

Finally, the Landau free energy difference ∆FL = FL(xP )−FL(xR) along
the free energy profile F (x) is obtained by numerical integration according
to the extended Simpson’s rule [2, 66]:

∆FL = FL(xP )− FL(xR) =

∫ xP

xR

∂F

∂x

∣∣∣∣
x

dx ≈ ∆x

3

Nbin∑
k=1

Ck
(
∂F (x)

∂x

)
k

. (3.172)

The order parameter value characterizing the minimum of the reactant state
is xR, whereas xP designates the minimum of the products. In addition, Nbin
is the number of bins for the order parameter and needs to be odd. The order
parameter interval reads ∆x = (xR−xP )/(Nbin−1), and the coefficients take
the values Ck = 1 for k = 1 and k = Nbin, Ck = 2 for odd k, and Ck = 4 for
even k. We thus see how the potential of mean force can be obtained without
iterations in a reliable and efficient way [65, 66]. In practice, the numerical
difference is negligible between the extended versions of Simpson’s rule and
the trapezoidal rule for the cases considered in the present work.

To obtain the free energy difference between the product and reactant
states, we use a crude numerical approximation to equation (3.150):

∆rF = FP − FR = −kBT ln
∫
e−βFL(x) θP (x) dx∫
e−βFL(x) θR(x) dx

. (3.173)
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This concludes our brief outline of methods (commonly) used to evaluate
free energy differences and profiles. In the next section we shall describe the
Ewald summation as a technique to overcome the difficulties associated with
computing long-ranged forces.

3.5 Ewald summation for dealing with long-

range interactions

Atomistic simulations of bulk properties of molecular systems are limited
by their computational cost [196]. One way of obtaining an approximate
description of a macroscopic system consists in simulating a small box with
a limited number of particles with periodic boundary conditions [196, 197].
As a result, the use of periodic boundary conditions eliminates surface effects
between the condensed phase and the surrounding vacuum [196,197].

If the system of interest contains charges, the long-range nature of the
Coulomb interaction requires special simulation techniques. In particular, a
given charged site will generally not only interact with nearby charged sites
but also with distant periodic images [197]. It is therefore not possible to
use simple truncation schemes because the contribution to the total potential
energy arising from interactions with distant image sites can be substantial
[197].

An infinitely periodically replicated system requires that the overall charge
within the simulation box vanishes [198]. Otherwise the interaction of one
box with any image box would be positive, and the sum over all boxes would
tend to infinity. In the following we shall focus on periodic boundary con-
ditions for cubic simulation cells of side length L and volume V = L3. The
distance from the central simulation cell will be governed by the integer triple
n = (nx, ny, nz). We further assume that the system has no net charge. The
case in which the system of interest carries a net charge will be discussed
afterwards.

The electrostatic contribution due to point charges to the potential energy
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of a unit cell of a periodic lattice is given by [106,199–201]

VES(r) = VES(rC) =
1

2

j=N∑
j=1

zjΨ(rC,j), (3.174)

where the symbol r denotes the set of all distances rjk = |rC,j−rC,k| = |rC,jk|
between interaction sites j and k. Furthermore, zj is the charge of particle
j and Ψ(rC,j) is the electrostatic potential at the position rC,j of ion j.
This electrostatic potential is due to all the remaining charged sites in the
central simulation cell (n = 0) and due to all charged sites in the image cells
(n 6= 0) [106,107]:

Ψ(rC,j) = Ψ(rC,jk) =
k=N∑
k=1

zk
4πε0

n=∞∗∑
n=−∞

1

|rC,jk + nL|
. (3.175)

Above, the asterisk indicates that the term for j = k is omitted for n = 0

to ensure that the ion j does not interact with itself [106]. For notational
convenience we summarize the distance dependence of the Coulomb potential
by introducing the following potential [201]:

ψ(rC,jk) =
n=∞∗∑
n=−∞

1

|rC,jk + nL|
(3.176)

Using equation (3.176), we can write the potential energy due to Coulomb
interactions as [106,107]

VES(r) =
1

2

N∑
j=1

N∑
k=1

zjzk
4πε0

ψ(rC,jk)

=
1

2

N∑
j=1

N∑
k=1

zjzk
4πε0

n=∞∗∑
n=−∞

1

|rC,jk + nL|
. (3.177)

It is clear that the sum (3.177), which extends over an infinitely large
system, cannot converge unless positive and negative contributions cancel
[199]. Even in that case, however, the sum is only conditionally convergent;
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the result depends on the order of summation [199]. Ewald proposed to
partition the sum (3.177) in such a way that one part contains only short-
ranged contributions and that the other part is long-ranged [199]. One way
to choose the short-ranged and long-ranged parts is [202]

∞∗∑
n=−∞

1

|rC,jk + nL|
=

∞∗∑
n=−∞

(
erfc(α|rC,jk + nL|)
|rC,jk + nL|

+
erf(α|rC,jk + nL|)
|rC,jk + nL|

)
,

(3.178)

where erf(y) is the error function [106,170,202]

erf(y) =
2√
π

∫ y

0

e−u
2

du, (3.179)

and erfc(y) = 1 − erf(y) denotes the error function complement. The nu-
merical evaluation of the long-ranged part of the Coulomb potential is carried
out in Fourier or reciprocal space [106, 107]. We will therefore discuss the
Fourier representation of equation (3.178) below.

Let us consider any function f(R) in real space. This function can be
represented in terms of a Fourier series with Fourier coefficients f(k) [106]:

f(R) =
1

V

∞∑
k=−∞

f(k)eıkR (3.180)

f(k) =

∫
V
f(R)e−ıkRd3R (3.181)

Above, R denotes a real space vector of length R, and d3R is the correspond-
ing volume element. In Cartesian coordinates it reads d3R = dRxdRydRz,
whereas it becomes d3R = R2sinθRdRdθRdφR in spherical coordinates [2].

To arrive at the Fourier representation of equation (3.178), we use Pois-
son’s equation [1], which relates the electrostatic potential Ψ(R) at a point
R to the charge density ρc(R) that causes the potential:

−∇2Ψ(R) =
ρc(R)

ε0
. (3.182)
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We now represent the electrostatic potential and the charge density as a
Fourier series and insert these expressions into the Poisson equation (3.182)
to obtain [106]

−∇2 1

V

∞∑
k=−∞

Ψ(k)eıkR =
1

ε0

1

V

∞∑
k=−∞

ρc(k)eıkR (3.183)

1

V

∞∑
k=−∞

|k|2Ψ(k)eıkR =
1

ε0

1

V

∞∑
k=−∞

ρc(k)eıkR (3.184)

Comparison of coefficients then yields Poisson’s equation in Fourier space
[106]

|k|2Ψ(k) =
ρc(k)

ε0
. (3.185)

Here, we consider a system of point charges, which can be represented as
[106,202]

ρc(R) =
N∑
k=1

zk

∞∑
n=−∞

δ(R− rC,k + nL). (3.186)

We can then write the electrostatic potential in Fourier space representation
because the term for k = 0 vanishes on both sides of equation (3.183).
The left-hand side is zero because k = 0, and the right-hand side vanishes
because the unit cell is neutral overall

∑N
k=1 zk = 0. We thus obtain for the

electrostatic potential in real space [106]

Ψ(R) =
1

ε0

1

V

∞∑
k=−∞
k 6=0

ρc(k)

|k|2
eıkR

=
N∑
k=1

zk
ε0V

∞∑
k=−∞
k 6=0

eık(R−rC,k)

|k|2
, (3.187)

where we have used the following expression for the Fourier representation
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of the charge density [106,171]:

ρc(k) =

∫
V
ρc(R)e−ıkRd3R

=
N∑
k=1

zk

∫
V

∞∑
n=−∞

δ(R− rC,k + nL)e−ıkRd3R

=
N∑
k=1

zk

∫
all space

δ(R− rC,k)e−ıkRd3R

=
N∑
k=1

zke
−ıkrC,k . (3.188)

The Coulomb operator can thus be represented as [198]

∞∑
n=−∞

1

|R− rC,k + nL| =
∞∑

k=−∞
k 6=0

4π

V|k|2
eık(R−rC,k) (3.189)

Our next task is to express the last term on the right-hand side of equation
(3.178) in Fourier representation. We proceed as above and obtain the Fourier
representation of the potential contribution from the corresponding charge
density. The latter is obtained from the Poisson equation in real space. We
shall work in spherical coordinates and exploit the identity ∇2f = ∂2f

∂R2 +
2
R
∂f
∂R

= 1
R
∂2(Rf)
∂R2 [2, 106]. The individual steps described above will be used

to show how the following result emerges. For the spherically symmetric
long-ranged part to the Coulomb operator we obtain [106,171]

ΨLR(R) =
N∑
k=1

zk
4πε0

∞∑
n=−∞

erf(α|R− rC,k + nL|)
|R− rC,k + nL|

=
N∑
k=1

zk
ε0V

∞∑
k=−∞
k 6=0

e−
|k|2

4α2

|k|2
eık(R−rC,k). (3.190)
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This result has been arrived at by means of the following charge density [106]:

ρc(R) = −ε0∇2ΨLR(R)

= −
N∑
k=1

zk
4π

∞∑
n=−∞

1

|R− rC,k + nL|
∂2erf(α|R− rC,k + nL|)

∂R2

= −
N∑
k=1

zk
4π

∞∑
n=−∞

1

|R− rC,k + nL|
∂2 2√

π

∫ α|R−rC,k+nL|
0

e−u
2
du

∂R2

= −
N∑
k=1

zk
4π

∞∑
n=−∞

1

|R− rC,k + nL|
∂ 2α√

π
e−α

2|R−rC,k+nL|2

∂R

=
N∑
k=1

zk

∞∑
n=−∞

(
α2

π

) 3
2

e−α
2|R−rC,k+nL|2 . (3.191)

As a result, the long-range part of the partitioning scheme (3.178) can be
thought of as arising from a sum of Gaussian-shaped charge clouds [106,107].
The Fourier representation of this charge density reads [106,107]

ρc(k) =

∫
V
ρc(R)e−ıkRd3R

=
N∑
k=1

zk

∫
V

(
α2

π

) 3
2

∞∑
n=−∞

e−α
2|R−rC,k+nL|2e−ıkRd3R

=
N∑
k=1

zk

∫
all space

(
α2

π

) 3
2

e−α
2|R−rC,k|2e−ıkRd3R

=
N∑
k=1

zk

∫
all space

(
α2

π

) 3
2

e−α
2(R+ ık

2α2−rC,k)
2

e
−α2

(
( ık

2α2 )
2
+

2ıkrC,k

2α2

)
d3R

=
N∑
k=1

zke
− |k|

2

4α2 e−ıkrC,k , (3.192)

where we have completed the square in the exponential and used the nor-
malization of the error function.

Until now the result (3.190) has been given for an arbitrary point in
space. In that case, the electrostatic potential stems from all Gaussian-
shaped charge clouds in the system. However, we require the electrostatic
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potential at the site of a point charge to evaluate the Coulomb potential
energy [199]. As already mentioned, the electrostatic potential at this point
must not include the charge density of the site where we wish to compute the
electrostatic potential energy. Consequently, we subtract a term in the limit
of R approaching a point charge site for the central simulation cell (n = 0).
Mathematically we have [171]

lim
R→rC,k

ΨLR(R) = lim
R→rC,k

N∑
k=1

zk
4πε0

erf(α|R− rC,k|)
|R− rC,k|

=
N∑
k=1

zk
4πε0

lim
R→rC,k

2

|R− rC,k|
√
π

∫ α|R−rC,k|

0

e−u
2

du

=
N∑
k=1

zk
4πε0

lim
R→rC,k

2α√
π
e−α

2|R−rC,k|2

=
N∑
k=1

zk
4πε0

2α√
π
. (3.193)

In going from the second to the third line we have used L’Hôpital’s rule
[2, 171]. The self-interaction term must be subtracted from the remaining
contributions. In practice, the short-range part of the right-hand side of
equation (3.178) will be evaluated in real space and need not be modified.
Hence, we can collect all terms that contribute to the Coulomb potential
energy [106,107]:

VES(r) =
1

2

N∑
j=1

N∑
k=1

zjzk
4πε0

( n=∞∗∑
n=−∞

erfc(α|rC,jk + nL|)
|rC,jk + nL|

+
4π

V

∞∑
k=−∞
k 6=0

e−
|k|2

4α2

|k|2
eıkrC,jk

)
− 1

4πε0

N∑
j=1

αz2
j√
π
. (3.194)

The above result holds if the surrounding medium is conducting with an
infinite dielectric constant [106,107,197]. The following physical picture cor-
responds to equation (3.194): The first term on the right-hand side describes
the interaction of point charges screened by a Gaussian charge density of
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equal magnitude and opposite sign; the second term represents the interac-
tion of Gaussian charge clouds with the same sign as the point charges; the
last term corrects for the interaction of the Gaussian charge densities with
themselves.

We now consider the case in which the system of interest is not neutral.
In that case, a uniform, neutralizing background charge density is added to
ensure that the overall charge in a simulation cell and thus in the entire
system vanishes [197,202]. The overall effect of the neutralizing background
depends on the total charge of the system of interest

∑
j zj. In particular,

the following correction term can be added to equation (3.194) [203]:

− π

2

(∑N
j=1 zj

)2

α2

1

4πε0
. (3.195)

To see how this correction arises, we consider how the potential ψ is
affected by the neutralizing background. In the presence of the neutralizing
background, the potential ψ becomes [197,198,201,203–205]

ψ(R) =
n=∞∑
n=−∞

erfc(α|R + nL|)
|R + nL|

+
∞∑

k=−∞
k 6=0

4π

V|k|2
e−
|k|2

4α2 eıkR − π

Vα2
. (3.196)

The last term in equation (3.196) has been omitted from equation (3.176)
because it cancels due to the assumed charge neutrality condition in the
final result (3.194) [197]. The term − π

Vα2 ensures that the potential ψ is
independent of the parameter α and that the average potential in a unit cell
vanishes [198, 203–205]. The resulting electrostatic potential energy reads
[197,198,203,205]

VES(r) =
1

2

N∑
j=1

N∑
k=1

zjzk
4πε0

ψ(rC,jk) +
1

2

N∑
j=1

z2
j

4πε0
lim
R→0

(
ψ(R)− 1

|R|

)
.

(3.197)

The last term in equation (3.197) corresponds to the Wigner potential [201,
205]. The Wigner potential gives the interaction energy of a point charge
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with all its periodic images and the uniform, neutralizing background charge
density [205]. Omitting the prefactors, we have [203]

lim
R→0

(
ψ(R)− 1

|R|

)
=

n=∞∑
n=−∞
n 6=0

erfc(α|nL|)
|nL|

+
4π

V

∞∑
k=−∞
k 6=0

e−
|k|2

4α2

|k|2
− π

Vα2

+ lim
R→0

(
erfc(α|R|)
|R|

− 1

|R|

)

=
n=∞∑
n=−∞
n 6=0

erfc(α|nL|)
|nL|

+
4π

V

∞∑
k=−∞
k 6=0

e−
|k|2

4α2

|k|2
− π

Vα2
− 2α√

π
.

(3.198)

According to reference [203], the correction term to Coulomb potential energy
due to the Ewald sum without a uniform, neutralizing background charge
density is precisely that given in equation (3.195).

Having discussed the basic theoretical framework of long-ranged interac-
tions with cubic periodic boundary conditions, we turn to the description of
the model systems in the next chapter.
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Chapter 4

Model and simulation details

A physical system can be studied by experiment, computer simulation and
analytical theory. Experiments study the real system, whereas simulations
and theory use a representation of the real system: a model [106,107]. Given
a model, characterized by the interactions of the components of the model
system, simulations provide essentially exact results. The outcome of the
simulations can be used in two ways. On the one hand, a comparison of
the simulation result and the outcome of a physical experiment provides a
test of the model [106, 107]. On the other hand, an approximate theory,
a set of consistent ideas to describe and explain a physical phenomenon
[72], can be constructed from a model using assumptions. The theory then
provides predictions of the properties of the system, and a comparison of
those predictions with simulation results tests the assumptions of the theory
[106,107]. I shall employ computer simulations in this second sense.

Two model systems are studied in this work. The first system consists
of a two-dimensional array of argon particles. This model system is used to
test the transition path sampling method and the temperature control de-
scribed in section 3.3.2. This procedure is adopted because the results are
known [76,164] and provide a reference. The second model system contains a
classical ferrous ion solvated by classical water molecules,15 which is oxidized
in a redox half-reaction. The model system is employed for the following

15I shall call the Fe2+
(aq)/Fe

3+
(aq) system also iron (ion) model throughout this work.

129
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purposes. First, the transition path sampling method is tested for a com-
plex model because the system is (assumed to be) well described by Marcus
theory. Second, the assumptions underlying Marcus theory can be tested by
comparing results from Marcus theory based simulations to those from um-
brella integration and (validated) transition path sampling because the latter
make fewer assumptions. Third, numerical results for activation parameters
and their derivatives are obtained for this model electron-transfer system.

Below, I describe the model systems and their interaction potentials. In
addition, the simulation details are presented. I shall start with the argon
model and turn to the iron system subsequently.

4.1 Argon

4.1.1 Argon model

The argon model system consists of nine atoms interacting via the purely
repulsive Weeks-Chandler-Andersen (WCA) potential, shown in figure 4.1
(solid line):

VWCA(r) =

4 εLJ

((
σLJ
r

)12 −
(
σLJ
r

)6
)

+ εLJ if r ≤ rWCA;

0 if r > rWCA.
(4.1)

The interaction potential corresponds to the potential of the reference
system in references [206, 207]. The interaction is isotropic and depends on
the distance r between two particles only. The strength εLJ and the range σLJ
characterize the interaction potential. The repulsion is limited to distances
up to rWCA = 21/6σLJ [206].

In addition, two of the nine argon atoms are held together via a double-
well potential [76, 164], shown in figure 4.2:

Vdw(r12) = Vh

(
1− (r12 − rWCA − rw)2

r2
w

)2

. (4.2)



4.1. ARGON 131

2 3 4 5 6 7 8
r [Å]

-2

0

2

4

6

8

V
(r

) 
[k

J 
m

ol
-1

]

ε
LJ

Figure 4.1: The Weeks-Chandler-Andersen (WCA) potential VWCA(r) of
equation (4.1) is shown as a function of the interparticle distance r (solid
line). It is repulsive up to rWCA = 21/6σLJ [206, 207]. For comparison the
Lennard-Jones potential VLJ(r) is represented by the dashed line. The in-
teraction strength εLJ is indicated at the potential energy minimum. The
Lennard-Jones parameters of argon [166] are used for this figure.

The parameter rw defines the width of the barrier separating the two stable
states. The minima of the potential are located at r12 = rWCA and r12 =

rWCA +2rw; the maximum between the stable states is found at r12 = rWCA +

rw. The barrier height Vh determines how rare transitions between reactants
and products are, and the bond length r12 of the dimer serves as reaction
coordinate.

4.1.2 Previous work related to the argon model

TheWeeks-Chandler-Andersen potential (4.1) was used to partition the Lennard-
Jones potential and to investigate the role of repulsive and attractive forces on
the structure and thermodynamics of a Lennard-Jones system [206]. It was
found that the repulsive forces determined the structural and thermodynamic
properties of the Lennard-Jones system at sufficiently high densities [206]. As
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Figure 4.2: The double-well potential Vdw(r12) of equation (4.2) for the argon
dimer is shown. The bond length is denoted by r12, whereas the height and
the width of the potential barrier are Vh and rw, as in [76,164]. The displayed
barrier height corresponds to the microcanonical case: Vh = 5.98 kJmol−1

[164].

a result, the Weeks-Chandler-Andersen (WCA) potential effectively mimics
the influence of a condensed phase environment. Furthermore, the Weeks-
Chandler-Andersen potential is convenient in numerical simulations because
it exhibits continuous forces.

The double-well potential (4.2) was employed to study the isomerization
of a dimer in a WCA fluid in the microcanonical ensemble [164]. In particular,
the rate constant was computed for this model system by molecular dynamics
and transition path sampling simulations. In that work, Dellago, Bolhuis,
and Chandler derived the rate constant (2.67) [164]

k+(t) =
〈θ̇P (xt)〉∗RP
〈θP (xt′ )〉∗RP

× 〈θR(x0)θP (xt′ )〉
〈θR〉

(4.3)

to improve the efficiency of rate constant calculations by means of transition
path sampling, which does not require knowledge of the reaction mechanism.
The rate constant evaluation consists of two parts. The first part evaluates
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the first fraction on the right-hand side of equation (4.3), which is also done
in the present work. The second part computes the second fraction on the
right-hand side of equation (4.3) by means of a series of transition path sam-
pling simulations for which the order parameter range of the final state is
moved from reactants to products [164]. This procedure yields the reversible
work to constrain the endpoint of the trajectories to the product region at
time t′ [164]. It was found that transition path sampling simulations became
more efficient than molecular dynamics simulations for sufficiently high bar-
riers separating the reactant and product states [164]. An additional conclu-
sion was that the transition path sampling method should be applicable to
chemical reactions in solution [164].

Dellago and Bolhuis studied the same isomerization reaction of the model
dimer in the canonical ensemble [76]. They derived equation (2.70) [76]

Ea(t) =
〈θ̇P (xt)H(ξ0)〉∗RP
〈θ̇P (xt)〉∗RP

− 〈H(ξ0)〉R (4.4)

to avoid the computation of rate constants at several temperatures for the
evaluation of activation energies. The calculation of activation energies could
therefore be performed directly from a single transition path sampling sim-
ulation at a single temperature without knowledge of the reaction coordi-
nate [76]. Dellago and Bolhuis foresaw the difficulty of obtaining statistically
accurate activation energies for larger systems due to the increasing fluctua-
tions in total energy with increasing system size [76].

The results of references [164] and [76] were reproduced in the present
work to test the implementation of the transition path sampling method.

4.1.3 Argon simulation details

Three types of simulations have been performed for the argon model system:
molecular dynamics (NVT-MD) computations in the canonical ensemble and
transition path sampling simulations both in the canonical (NVT-TPS) and
in the microcanonical ensemble (NVE-TPS). I shall first describe the aspects
common to the three simulation set-ups and then outline the specifics for
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each case.

In all cases, the simulation box is square with a length of L = 13.19Å and
periodically replicated. The Lennard-Jones parameters are taken from refer-
ence [166]; in particular, σLJ,Ar = 3.405Å and εLJ,Ar = kBT = 0.996 kJmol−1

with T = 119.8K. The argon mass is mAr = 39.948 gmol−1 and the num-
ber density ρn = 0.6σ−2

LJ,Ar [76, 164]. The width of the barrier is rw =

0.25σLJ,Ar = 0.85125Å. The timescale associated with the Lennard-Jones
potential for the argon system is τLJ,Ar =

√
mAr σ2

LJ,Ar/εLJ,Ar = 2.16 ps. The
integration timestep is 2× 10−3 τLJ,Ar = 4.31 fs [76, 164].

Transition path sampling simulations for the argon model

Transition path sampling in the microcanonical and canonical ensembles
employ trajectories of length 2 τLJ,Ar = 4.31 ps, which corresponds to 1000

timesteps, resulting in 101 time slices. A time slice comprises ten timesteps to
reduce the memory requirements for storing the transition paths. The max-
imum shifting length amounts to 20 time slices, and the momentum change
for each momentum degree of freedom in a shooting move is normally dis-
tributed with a width of 0.04

√
mAr εLJ,Ar. Shooting moves are attempted

with a probability of wshoot = 0.6. These simulation details are the same as
in reference [76].

In the microcanonical case, the total energy is fixed at E = 9 εLJ,Ar =

8.96 kJmol−1, and the height of the double-well potential is Vh = 6 εLJ,Ar =

5.98 kJmol−1. The boundaries of the stable states are r12 < 1.3σLJ,Ar =

4.4265Å for the reactants and r12 > 1.45σLJ,Ar = 4.93725Å for the products.
A total of 6 × 106 Monte Carlo steps are carried out, and shooting moves
are accepted with a probability of 0.59, whereas shifting moves are successful
in 75% of the attempted cases. The values for E, Vh and the stable state
boundaries correspond to those given in reference [164].

In the case of the canonical ensemble, the height of the double-well po-
tential is Vh = 10 εLJ,Ar = 9.96 kJmol−1, and the boundaries of the sta-
ble states are r12 < 1.35σLJ,Ar = 4.59675Å for the reactant state and
r12 > 1.45σLJ,Ar = 4.93725Å for the product state. These simulation details
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coincide with those reported in reference [76]. For the 2 × 106 attempted
Monte Carlo steps, shooting moves are accepted with an overall probability
of 0.24. In contrast, shifting moves are accepted with a higher probability;
they are successful in 81% of all cases. The probability of accepting the pro-
posed shooting point according to the asymmetric generation probability for
kinetic energies discussed in section 3.3.2 is 0.7, resulting in a conditional
probability of 0.35 for accepting a shooting move given that the shooting
point has been accepted.

Canonical molecular dynamics simulations for the argon model

The molecular dynamics simulation in the canonical ensemble is 109 timesteps
long, and the velocities are scaled every 103 timesteps in such a way that
the new kinetic energy is selected according to the canonical distribution.
In particular, the new kinetic energy is proposed by the same algorithm
that is employed to choose the kinetic energy of the shooting point in the
transition path sampling simulations discussed in section 3.3.2. Specifically,
a kinetic energy displacement ∆K is drawn from a normal distribution to
yield a trial kinetic energy Kn = Ko + ∆K from the old kinetic energy Ko.
The trial kinetic energy Kn is then accepted by means of a Monte Carlo
procedure according to the Metropolis criterion with respect to the kinetic
energy distribution in the canonical ensemble [141]. The barrier height is
again Vh = 10 εLJ,Ar = 9.96 kJmol−1 [76].

All argon simulations were carried out with a purpose-written molecular
dynamics program and an extended version of the transition path sampling
procedure provided by Phillip Geissler. A pseudo random number generator
written and provided by Nick MacLaran was employed. The iron simula-
tions were performed with the same transition path sampling and pseudo
random number generator programs. However, a modified version of the
DL_POLY_2.18 program [208] was used for the molecular dynamics simu-
lations. All programs and most analyzing tools were written in FORTRAN;
the remaining analyzing scripts were written in bash.
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4.2 Iron

4.2.1 Iron model

The iron model system consists of the oxidation half-reaction of the aqueous
ferrous ion (Fe2+

(aq)) to its ferric (Fe3+
(aq)) counterpart:

Fe2+
(aq) → Fe3+

(aq) + e−(µ). (4.5)

As mentioned in the introduction, the iron ions are characterized by charge-
localized, diabatic empirical valence bond states [105]. The mixing (γel)
between the diabatic states yields adiabatic potential energies, discussed on
page 139. The quantity µ represents an effective energy of the electron,
which is not treated explicitly. This energy can be varied continuously and
provides a means of controlling the effective reaction free energy ∆µ = µ−µ0.
The value ∆µ = 0, shown in figure 1.2, is reached for a vanishing reaction
free energy according to the Marcus formula of equation (2.41): ∆rF =
1
2

(〈∆E〉R + 〈∆E〉P ).

The electron is not treated quantum-mechanically because I focus on the
statistical mechanics of the nuclear dynamics. Therefore, I describe the inter-
action potential determining the forces on the nuclei and the corresponding
parameters for the iron ions and water molecules next. General aspects are
given below, followed by the diabatic and adiabatic potential energy surfaces.

The model system involves only intermolecular interactions because the
geometry of the water molecules is fixed by bond constraints. Long-ranged
interactions are electrostatic, whereas short-ranged forces are derived from a
Lennard-Jones potential. All interactions are pairwise additive and depend
on the distance between the interaction sites only. Also, polarization effects
are not taken into account.

Diabatic potential energy

The potential energy V (d)(rC) of an N -particle system with Nf degrees of
freedom of a configuration rC = {rC,1, . . . , rC,Nf} = {rC,1, . . . , rC,N} , where
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rC,j denotes the position vector of particle j in Cartesian coordinates, is the
sum of van der Waals and electrostatic contributions:

V (d)(rC) = VLJ(rC) + VES(rC); (4.6a)

V (d)(r) = VLJ(r) + VES(r). (4.6b)

Above, the set r = {r12, . . . , rNr−1,Nr} of distances rjk = |rC,j−rC,k| between
two interaction sites j and k is introduced because the interaction potential
depends on the distance between interaction sites only. The sum of interac-
tion sites arising from all species is Nr = NO +NH +NFe. Specifically, one
iron ion and 64 water molecules lead to Nr = 193 interaction sites.

The short-range contribution is accounted for by a Lennard-Jones poten-
tial [72, 106,107]

VLJ(r) =
Nr−1∑
j=1

Nr∑
k=j+1

4 εLJ,jk

{(
σLJ,jk
rjk

)12

−
(
σLJ,jk
rjk

)6
}
. (4.7)

Above, the εLJ denotes the interaction strength of the Lennard-Jones poten-
tial, whereas σLJ measures the range of the interaction potential [106, 107].
The short-range effect of a water molecule is condensed into a single inter-
action site, namely the oxygen atom, so that we have εHO = εHFe = σHO =

σHFe = 0. The short-ranged interaction potential thus reduces to

VLJ(r) =

NO−1∑
j=1

NO∑
k=j+1

4 εLJ,OO

{(
σLJ,OO
rjk

)12

−
(
σLJ,OO
rjk

)6
}

+

NO∑
l=1

4 εLJ,FeO

{(
σLJ,FeO
rFe,l

)12

−
(
σLJ,FeO
rFe,l

)6
}
. (4.8)

The first term on the right-hand side of equation (4.8) above includes a sum
over all unique pairs of water molecules, whereas the second term covers
the interaction of the iron ion with all water molecules. The Lennard-Jones
parameters for interaction potentials between unlike species j and k are con-
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σLJ,OO σLJ,FeFe σLJ,FeO εLJ,OO εLJ,FeFe εLJ,FeO
3.16549 2.2 2.63895 0.65073 0.13523 0.29665

Table 4.1: The Lennard-Jones parameters for water-water interactions of the
SPC [109] water model are as in [110]. The iron-iron interaction parameters
are taken from reference [49]. Iron-water interaction parameters are obtained
from the geometrical combination rules εLJ,jk =

√
εLJ,jj εLJ,kk and σLJ,jk =√

σLJ,jj σLJ,kk [49]. The Lennard-Jones interaction range parameters are in
Å, whereas the interaction strength parameters are in kJmol−1.

structed using the following combination rules [49,209]:16

εLJ,jk =
√
εLJ,jj εLJ,kk; (4.9a)

σLJ,jk =
√
σLJ,jj σLJ,kk. (4.9b)

The Lennard-Jones parameters used in the present work are summarized in
table 4.1. It is noteworthy that the Lennard-Jones parameters for the ferrous
and ferric ions are the same. Hence, the difference in interaction energy of
the water molecules with each iron ion stems from the long-range interaction
described below.

The electrostatic potential energy VES is given by the Coulomb interac-
tion between unique pairs of (partially) charged interaction sites with cubic
periodic boundary conditions [198], as described in section 3.5:

VES(r) =
1

2

Nr∑
j=1

Nr∑
k=1

zjzk
4πε0

n=∞∗∗∑
n=−∞

1

|rC,jk + nL|
. (4.10)

Above, the symbol ∗∗ in the last sum indicates that the Coulomb interaction
is omitted for interaction sites on the same molecule [208] and that the terms
for n = 0 are omitted if j = k. The distance between site j and site k
is denoted by |rC,jk|, and the charge of particle l is zl. The permittivity
in vacuum is ε0 = 8.854187817 × 10−12 As (Vm)−1, and e0 = 1.60217646 ×

16Note that the combination rule given in references [49, 209] for the interaction range
σLJ,jk of (4.9b) differs from the conventional Lorentz-Berthelot rule [107]: σLJ,jk =
1
2 (σLJ,jj + σLJ,kk).
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10−19 As denotes the elementary charge [1].

For the solvent a simple point charge (SPC) water model is employed
[109,110]. The partial charge on the oxygen atom is zO = −0.82 e0, that car-
ried by hydrogen atoms is zH = 0.41 e0. The geometry of the water molecules
is determined by imposing the following bond lengths via the RATTLE al-
gorithm described in section 3.1.5: rOH = 1.0Å and rHH = 1.63299Å. The
charges of the ferrous (zFe = 2 e0) and ferric (zFe = 3 e0) ions correspond to
the oxidation state of the iron species. The masses of the nuclear species are
mFe = 55.845 gmol−1, mO = 16 gmol−1 and mH = 1 gmol−1.

Adiabatic potential energy

The adiabatic potential energy of the model system is characterized by two
control parameters whose effects are described below: the coupling element
γel, mixing the diabatic states, and the effective energy µ, shifting the diabatic
states with respect to each other. I shall first deal with the coupling element.

Above, the potential energies of the iron ions correspond to those of
charge-localized, diabatic states. For the oxidation process of interest a
transition between the diabatic states must occur. In addition, molecular
dynamics simulations require smooth forces to ensure sufficient stability of
the integration algorithm. Both requirements can be met if the diabatic
states interact via a constant coupling element γel, yielding the ground state
adiabatic potential energy surface V (a), as in reference [108]:

V (a)(rC , γel) =
V

(d)

Fe2+(rC) + V
(d)

Fe3+(rC)

2
− 1

2

√
(∆E(rC))2 + 4 γ2

el. (4.11)

As above, the variable rC denotes the Cartesian coordinates of all particles in
the system, and the diabatic potentials V (d)

Fe2+ and V (d)

Fe3+ have the form given
in equations (4.6), (4.8) and (4.10). Because the energy difference ∆E is
instantaneously evaluated at a fixed nuclear configuration, the kinetic energy
remains unaltered, and the diabatic gap (2.30) is a function of positions only:

∆E(rC) = V
(d)

Fe3+(rC)− V (d)

Fe2+(rC). (4.12)
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The coupling element γel not only mixes the charge-localized states, but also
determines the energy difference between the diabatic and adiabatic states
at the crossing point (∆E = 0).

The description of the model electron-transfer reaction in terms of adi-
abatic potential energy surfaces implies that the system will evolve on the
ground-state potential enregy surface. At the beginning the solute will be
the ferrous ion (Fe2+), and after the barrier crossing the ferric ion (Fe3+) is
obtained. In the barrier region, the charge distribution of the solute depends
on the strength of the electronic coupling γel [35]. For very weak couplings
the interaction between the two diabatic states would only be important for
nearly degenerate states. In the opposite limit of very strong coupling, the
two diabatic states would mix significantly over a large range of energy differ-
ences so that their individual characters might not be recognizable [210]. As
a consequence from the above, the coupling strength determines how close
the diabatic states have to be in energy for significant mixing to occur [35].
In the present model, the coupling element is of the order of kBT , which was
considered by Marcus as a sufficiently weak coupling for the diabatic picture
to provide a rather accurate description of the electron-transfer process [35]
and by Hush as a sufficiently strong coupling to justify an adiabatic elec-
tron transfer [86]. As mentioned in the introduction, the physical situation
is likely to be the following. The electronic coupling is sufficiently strong
for the nuclear dynamics to occur on the ground-state potential energy sur-
face [38]. Furthermore, the electronic coupling is sufficiently weak that the
adiabatic state clearly has the character of the reactant diabatic state in the
reactants and the character of the product diabatic state after the barrier
crossing [35, 38]. In other words, the solute’s charge distribution resembles
that of the diabatic states in the corresponding regions of phase space and
the solute’s charge distribution is not a mixture between the reactant and
product diabatic states due to strong coupling. However, in the vicinity of
the barrier top the two diabatic states are close in energy and the electronic
coupling between them becomes effective so that the electron transfer can
occur [38]. The physical picture is then to a good approximation a transition
from the reactant diabatic state to the product diabatic state enabled by
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a suitable fluctuation of the solvent [35]. As mentioned earlier, the solvent
configuration at which the transition occurs would be in equilibrium with the
completely mixed solute charge distribution [38].

In the present model, the situation is as close as possible to the physical
picture described above in the following sense. The electronic coupling is so
small that it only effectively mixes the reactant and product diabatic states
in the barrier region. The resulting charge distribution could be described
as schematically illustrated in figure 4.3. The charge of the iron ion would
essentially correspond to that of the ferrous ion in the reactant well and
switch to a charge close to that of the ferric ion in the product well within a
narrow energy gap range around the barrier top. The instantaneous charge on
the iron ion would roughly correspond to the equivalent charge distribution
that would be in equilibrium with the instantaneous solvent configuration
[38]. However, due to the interaction of the system with a neutralizing,
homogeneous charge density, the correspondence between the relative weight
of the diabatic states and the amount of charge transferred between the
reactants and products is not exact [34].

The use of the diabatic energy gap as the reaction coordinate and of the
adiabatic potential energy (4.11) for the dynamics will result in the energy
gap being a dynamically relevant variable. However, this does not guarantee
that Marcus theory will be obeyed. As already mentioned, the validity of
Marcus theory requires that the gap as the reaction coordinate is normally
distributed in the reactant and product states with the same variance [68].
Hence, if the energy gap is not normally distributed or if the variances in
the two states differ, Marcus theory will not be obeyed. If the aim is only to
construct the free energy profile, alternative order parameters can be used.
For instance, Zhou and Szabo employed a charging parameter to efficiently
construct the free energy functions [48]. However, if dynamical trajectories
are required, the coupling of two potential energy surfaces seems the most
straightforward way unless a completely new adiabatic potential energy func-
tion is parametrized. In addition, any potential energy function would have
to allow for two stable states that can be distinguished by means of an order
parameter. In principle, different potential energy functions define different
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Figure 4.3: Schematic illustration of the charge distribution during the oxi-
dation of the ferrous ion in terms of the coefficients c(j) of the diabatic states
in the adiabatic state |Ψ1〉 = c(R)|ΨR〉 + c(P )|ΨP 〉 [85, 86]. The hypothetical
charge density of the transferring electron is shown for the reactant (|cR|2;
solid line) and for the product (|cP |2; dashed line) diabatic states assuming
negligible overlap between the two diabatic states [15,85,86].

systems so that the dynamics would differ for another choice of the potential
function.

The mixing of the diabatic states also affects the forces used in the molec-
ular dynamics simulations. The force F j on particle j derived from the
adiabatic potential energy (4.11) reads

F (a)
j = −∇rC,jV (a)

=
1

2
(FR,j +FP,j) +

1

2

∆E(rC)√
(∆E(rC))2 + 4 γ2

el

(FR,j −FP,j) , (4.13)

where the forces derived from the diabatic potential energies of the reactant
and product states are denoted by FR,j and FP,j. It is seen from equation
(4.13) that the forces correspond to those of the diabatic reactant state if
∆E � 0 in which case ∆E ((∆E)2 + 4γ2

el)
−1/2 is essentially unity. Similarly,
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for ∆E � 0, ∆E ((∆E)2 + 4γ2
el)
−1/2 approaches −1, and the forces essen-

tially coincide with those found in the diabatic product state. In the barrier
region the adiabatic force on particle j has contributions from both diabatic
states. This choice ensures that the forces near the barrier top are continu-
ous. In practice, the potential energies and the forces for both diabatic states
are computed at a given nuclear configuration. Then, the adiabatic potential
energy and the adiabatic forces are evaluated according to equations (4.11)
and (4.13). Subsequently, the integration according to the velocity Verlet
algorithm proceeds as usual.

Next, I describe the effective energy µ in more detail. I shall start with
a short motivation and turn to quantitative aspects subsequently. As noted
above, the short-range contribution to the potential energy is the same for
the present model ferric and ferrous ions. Consequently, the diabatic gap
is determined by the difference in electrostatic interactions. Because the
interaction among the water molecules is the same for both oxidation states,
the charge of the iron ion determines the potential energy difference between
the diabatic states via the difference in solvation energies. It then follows
from the Born solvation (free) energy formula (4.14) [33] that the ferric ion
has a lower energy than the ferrous ion for any solvent configuration:

Esolvation = − 1

4πε0

z2

2B

(
1− 1

εr

)
. (4.14)

In equation (4.14) B and z denote the radius and the charge of the solvated
ion. The permittivity in vacuum is again ε0, and εr denotes the relative di-
electric constant of the medium. The ferric ion is stabilized to such an extent
that the reaction free energy becomes very negative and that the system is
in the inverted regime of Marcus theory (dotted-dashed line in figure 4.4).
However, the present work aims at investigating thermal electron-transfer
processes in the normal regime (dashed line in figure 4.4) characterized by
moderate reaction free energies. Hence, the energy µ is introduced to increase
the potential energy of the ferric ion and to decrease that of the ferrous ion
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Figure 4.4: Schematic illustration of the different regimes in Marcus theory
[42]. The solid line represents the free energy curve of the reactant state,
whereas the three different product free energy curves are displayed. The
normal regime, in which −∆rF < λ, is represented by the dashed line. In
contrast, the inverted regime is illustrated by the dotted-dashed line. In
the inverted regime, −∆rF > λ and reactive transitions are always non-
adiabatic. The normal regime is characterized by increasing rate constants
as the reaction free energy decreases, whereas the free energy barrier increases
with decreasing reaction free energy in the inverted regime. The rate constant
reaches its maximum value if the reaction is barrierless: −∆rF = λ (dotted
line). The inverted regime is a consequence of the quadratic dependence of
the activation free energy on the reaction free energy.

according to equations (4.15):

V
(d)

Fe2+(rC ,∆µ) = V
(d)

Fe2+(rC)− µ

2
= V

(d)

Fe2+ −
µ0

2
− ∆µ

2
; (4.15a)

V
(d)

Fe3+(rC ,∆µ) = V
(d)

Fe3+(rC) +
µ

2
= V

(d)

Fe3+ +
µ0

2
+

∆µ

2
. (4.15b)

This procedure yields a controllable effective free energy difference ∆µ =

µ−µ0 for the iron model system that allows for reactive transitions. If Marcus
theory applies, the reaction free energy in the absence of any potential shift
is ∆rF (µ = 0) = 1

2
(〈∆E〉R + 〈∆E〉P ) = −µ0. Thus, the specific value µ0
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leads to a system with vanishing reaction free energy ∆µ = 0.

The shifting parameter µ is introduced for computational and theoretical
convenience. In the case of heterogeneous electron transfer, µ might be con-
sidered as being related to the potential applied at an electrode and ∆µ as
the overpotential. This phenomenological view would then effectively incor-
porate the interaction of the solute species with the electrode, thereby cir-
cumventing the difficulties associated with treating the electric double layer
explicitly. However, if the overpotential is non-zero, the system is not in
equilibrium any longer because a net current would arise. The present work
focuses on equilibrium systems and their dynamics, and the parameter µ is
therefore best regarded as a tool to aid establish a suitable thermally acti-
vated process.

In practice, the shift of the reaction free energy origin to µ0 gives for the
diabatic gap

∆E(rC ,∆µ) = V
(d)

Fe3+(rC ,∆µ)− V (d)

Fe2+(rC ,∆µ) = ∆E(rC , 0) + ∆µ. (4.16)

Also, the adiabatic potential energy surface is now characterized by

V (a) (rC , γel,∆µ) =
V

(d)

Fe2+(rC ,∆µ) + V
(d)

Fe3+(rC ,∆µ)

2

− 1

2

√
(∆E(rC ,∆µ))2 + 4 γ2

el

=
V

(d)

Fe2+(rC , 0) + V
(d)

Fe3+(rC , 0)

2

− 1

2

√
(∆E(rC ,∆µ))2 + 4 γ2

el. (4.17)

Above, the first term on the right-hand side is independent of the shifting
potential µ. The effect of the energy µ on the second term on the right-
hand side is to shift the system into the normal regime of Marcus theory.
The adiabatic potential (4.17) is close to that of the ferrous and ferric ions
for large positive and negative diabatic gap values. Furthermore, the largest
deviation (γel) from any diabatic state occurs at the assumed transition state,
where the diabatic gap vanishes, as mentioned earlier.
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Below, I shall consider the effect of ∆µ on the (diabatic) reaction and
reorganization free energies according to Marcus theory. If the linear response
approximation holds, the following relations are expected to be accurate:

∆rF (∆µ) =
1

2
(〈∆E(∆µ)〉R + 〈∆E(∆µ)〉P )

= ∆rF (0) + ∆µ = ∆µ; (4.18a)

λ(∆µ) =
1

2
(〈∆E(∆µ)〉R − 〈∆E(∆µ)〉P ) = λ(0) = λ. (4.18b)

As seen above, the shifting potential µ defines an effective reaction free
energy ∆µ. This feature will be exploited to investigate the dependence of
the activation parameters on the reaction free energy.

4.2.2 Previous work related to the iron model

Systems involving iron ions and classical water molecules have been examined
previously in the literature; some examples include references [34, 45, 49, 97,
211–214]. These works have focused on different aspects of the aqueous iron
ion model systems.

For instance, a realistic microscopic model for the iron ion self-exchange
reaction Fe2+ +Fe3+ −⇀↽− Fe3+ +Fe2+ in aqueous solution was constructed by
Kuharski and co-workers [45]. The model consists of two classical ferric ions,
430 classical SPC water molecules and an electron that is treated quantum-
mechanically [45]. The activation free energy was computed by means of
umbrella sampling, and it was found that Marcus theory was valid for that
model system [45]. In particular, the free energy curves were parabolas to
a good approximation, and the activation free energies obtained from um-
brella sampling and from extrapolation of gap fluctuations in the stable states
agreed well [45]. Furthermore, the ligand structure at the transition state was
studied. The average distance between the iron ions and the oxygen sites of
the first solvation shell was intermediate (2.08Å) between that of the single
ferric (2.02Å) and ferrous (2.15Å) ions [45]. In particular, the transition
state was assumed to exhibit two iron ions with a charge of zFe = 2.5 e0 [45].

The ferrous-ferric electron transfer was investigated in reference [211].
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In particular, the dependence of the free energy curves on the distance of
the iron ion from the electrode was considered [211]. It was found that the
model system of an iron ion and 216 water molecules between two conduct-
ing walls exhibited slight non-linearities and that the curvature of the free
energy functions depended weakly on the distance of the ion from the elec-
trode [211]. The dynamics were described in the non-adiabatic limit, and free
energy curves were obtained by molecular dynamics and umbrella sampling
simulations [211]. In addition, Smith and Halley evaluated the electrochem-
ical transfer coefficient, which corresponds to the charge-transfer symmetry
factor for elementary reactions, and found a value of 0.6± 0.2 [211].

Rose and Benjamin computed the free energy curves for a series of aque-
ous iron ions next to an electrode compared to the bulk behaviour [212].
The resulting free energy curves for the ferrous and ferric ions obey the lin-
ear response approximation [212]. Furthermore, it was found that even the
presence of an electric field did not lead to a breakdown of the linear re-
sponse behaviour [212]. The focus of Rose and Benjamin was on the relative
inner- and outer-shell contributions of the solvent to the free energy curves
to study the effect of the electrode compared to the bulk solution [212].
Molecular dynamics and umbrella sampling simulations of both the ferrous
and the ferric ion solvated by 512 flexible SPC water molecules between two
parallel Pt slabs showed that the solvent contribution from inner- and outer-
shell reorganization was essentially identical for the bulk and metal/solution
interface [212]. Deviations from the linear response behaviour were most pro-
nounced for the inner-shell reorganization around the neutral iron atom [212].

The adiabatic heterogeneous electron transfer from a ferrous ion to a ferric
ion was investigated in reference [213]. In particular, the classical activation
free energy was compared to the quantum activation free energy by means
of path integral simulations [213]. The molecular dynamics and umbrella
sampling simulations in the canonical ensemble involved 671 flexible SPC
water molecules and an iron ion next to a Pt electrode [213]. It was found that
the activation free energy in the quantum treatment was significantly larger
than that in the classical case, suggesting that quantum aspects might have
to be considered in the description of heterogeneous electron transfer [213].
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In addition, the transition state theory framework underlying Marcus theory
was tested by computing the transmission factor in the classical case. The
transmission factor was found to be approximately 0.6, thereby supporting
the transition state theory character of the electron transfer between the
ferrous ion and the electrode [213].

The iron ion self-exchange reaction was also studied by Yelle and Ichiye
[97]. They used 717 TIP3P [215] water mocules with truncated octahedral
periodic boundary conditions in the microcanonical ensemble and compared
molecular dynamics simulation results for the solvation free energy to a di-
electric continuum model and a model taking into account dielectric satu-
ration [97]. The solvation free energy of an ion depends on the presence
and distance of another ion, thus affecting the activation free energy [97].
In particular, it was found that the free energy curves were parabolic to a
good approximation and that the activation free energy decreases as the ions
approach each other from an infinite separation [97]. The latter effect arises
because the solvent rearranges around two ions at large separations; how-
ever, at small separations between the ions, the solvent far from the two ions
remains essentially unaltered, and only the solvent molecules close to the ion
pair reorganize, thereby reducing the activation free energy compared to the
large separation case [97].

The effect of high-frequency intramolecular vibrations of solvent molecules
in the first solvation shell on the reorganization free energy was studied by
Ando [49]. The simulations were performed in the microcanonical ensemble
and involved a ferrous and a ferric ion as well as 500 TIP3P [215] water
molecules contained in a cubic cell that was periodically replicated [49]. It
was found that the contribution from inner-shell solvent reorganization was
around 40% and that nuclear quantum effects were important to capture
the full dependence of the electron-transfer rate constant on the reaction free
energy [49].

Amira and co-workers investigated the solvation structure and dynamics
of SPC-like water molecules around a single ferrous or ferric ion in dilute
aqueous solution (512 water molecules) [214]. The iron ions were found to
exhibit a six-fold first coordination shell and corresponding iron-oxygen dis-
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tances of 1.96− 1.99Å for the ferric ion and 2.09Å for the ferrous ion [214].
A flexible SPC-like water model was constructed to account for the oxygen-
hydrogen vibrational spectra in pure liquid water and in the presence of an
iron ion [214]. Furthermore, the flexible water model enabled Amira and
co-workers to observe an increase in the oxygen-hydrogen bond length and
a decrease of the water bond angle for water molecules close to an iron ion
compared to the pure liquid. The effect was more pronounced for the ferric
ion than for the ferrous one [214]. Importantly, the structural properties
of the aqueous solutions were found to be rather similar for the different
SPC-based water models [214].

Ayala and Sprik investigated two half-reactions involving iron ions in
aqueous solution (Fe2+ → Fe3+ + e− and Fe+ → Fe2+ + e−) [34]. Their
main focus was on the dependence of oxidation free energies and reorganiza-
tion free energies on system size [34]. It was found from molecular dynamics
simulations involving a varying number of classical simple point charge wa-
ter molecules and Ewald summation including a uniform, neutralizing back-
ground charge density that the reaction free energy was relatively insensitive
to the system size; its dependence scales as the inverse volume in solvents
with high static dielectric constants [34]. In contrast, the reorganization free
energy varies with system size as the inverse length of the cubic simulation
cell [34]. Furthermore, the iron-oxygen distance of the first solvation shell
was 1.93Å for the ferric ion (Fe3+) and 2.03Å for the ferrous ion (Fe2+) [34].
Importantly, it was pointed out that the mixing of the diabatic potential en-
ergy surfaces and an increase of the charge on the ion are not equivalent if
the system is treated with periodic boundary conditions [34]. In particular,
a charge of zFe = 2.5 e0 on the iron ion and a Hamiltonian H = 1

2
(HR +HP )

are not exactly equivalent [34]. It was shown that the linear response ap-
proximation was obeyed for the half-reaction involving the oxidation of the
aqueous ferrous ion [34].

Free energy profiles for electron-transfer systems described by classical
nuclear dynamics and force fields have been computed and discussed many
times, for example in references [43–48,91,97,211–213,216]. It was found in
most cases that the linear response approximation is quite robust. However,
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if the charge transfer leads to neutral species, for example in charge recom-
bination or charge separation reactions, deviations from the linear response
behaviour have been observed [47,48,97,212,216].

The validity of Marcus theory has also been investigated from other view-
points. For instance, the transmission coefficient has been evaluated for a
model electron-transfer process to assess the importance of solvent dynamical
effects [108]. Furthermore, the effect of electronic friction on heterogeneous
electron-transfer rates [217] and the treatment of Coulomb interactions on
the potential of mean force between iron ions have been studied [218]. In ad-
dition, the solvent relaxation after photoinduced electron transfer from the
ferrous to the ferric ion was shown to exhibit moderate deviations from the
expected linear response behaviour [219].

Although the following studies did not consider small inorganic solute
species in polar solvents, I mention the evaluation of reorganization free
energies and reorganization entropies in polar solvents in the work of ref-
erences [51, 52]. These studies are examples of the comparatively infrequent
effort to determine the temperature dependence of the electron-transfer ac-
tivation free energy from which the activation entropy and the activation
energy can be obtained [220]. Ghorai and Matyushov found a positive re-
organization entropy for p−nitroaniline, which exhibits a large change in
dipole moment upon electron transfer, in water and acetonitrile [52]. In
a more complex system, which included a donor-spacer-acceptor complex
solvated by TIP3P water molecules mimicking a biological intramolecular
electron transfer, the reorganization entropy was also positive [51]. However,
the overall activation entropy was negative, indicating that the reorganiza-
tion entropy need not be the dominant factor [51]. In fact, Matyushov [220]
noted that the activation entropy has contributions from the reorganization
entropy and from the reaction entropy, which is in line with Marcus theory
whose corresponding expression is equation (2.50) [37]:

∆‡S
(d) =

(
1

2
+

∆rF

2λ

)
∆rS +

(
1

4
−
(

∆rF

2λ

)2
)

∆Sλ. (4.19)
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According to reference [37], the reorganization entropy ∆Sλ is typically neg-
ligible compared to the reaction entropy. The studies of Matyushov and
co-workers [51,52,220] go beyond this statement and provides evidence from
molecular simulation and analytical theory that the reorganization entropy
is positive, whereas dielectric continuum theory predicts a negative reorga-
nization entropy for solvents with high static dielectric constant [52].

4.2.3 Iron simulation details

Four types of simulations, divided into two groups, are carried out for the iron
model system. On the one hand, canonical molecular dynamics simulations
are performed, which include Marcus theory (MT) based simulations on the
diabatic potential energy surfaces (γel = 0) and biased molecular dynamics
simulations (umbrella integration) on the adiabatic potential energy surface
of equation (4.11) with an electronic coupling of γel = 3 kJmol−1. On the
other hand, molecular dynamics simulations in the microcanonical ensemble
are carried out in transition path sampling (TPS) simulations and during
the committor (COM) analysis. These simulations are also performed on the
adiabatic potential energy surface. The transition path sampling method
also uses Monte Carlo moves, as described in section 3.3. I shall describe
those features common to all simulations first and continue with the two
categories of simulations mentioned above in turn.

In all simulations the SPC water model [109, 110] described earlier is
employed, and the equations of motion are integrated by means of the velocity
Verlet/RATTLE algorithm [166, 167, 169] with a timestep of δt = 1 fs. One
iron ion is solvated by NW = 64 water molecules in a cubic box of side length
L = 12.69Å, which is periodically replicated. As discussed in section 3.5, a
neutralizing, homogeneous charge density background is added to obtain an
overall neutral system. The parameters of the interaction potential have been
given in the previous section. The electrostatic interactions are treated via
the Ewald summation technique [106,107,199]. Simulations are performed at
effective free energy (∆µ) values of −10 to 40 kJmol−1 in steps of 10 kJmol−1,
and we employ µ0 = 1944 kJmol−1.
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Molecular dynamics simulations in the canonical ensemble

The temperature in the MT and UI simulations is controlled by a Nosé-
Hoover thermostat [172–175] with a relaxation time of τNH = 1 ps. Equili-
bration runs last 1 ns, whereas production runs are 10 ns long, yielding 104

uncorrelated data points for subsequent analysis. Molecular dynamics simu-
lations in the canonical ensemble are performed at temperatures of 278.15K,
298.15K and 318.15K. Marcus theory based simulations, which evaluate
∆rF , λ and ∆‡F

(d) from the average diabatic gaps in the stable states ac-
cording to equations (2.41), (2.43) and (2.29), are also carried out at 338.15K
and 358.15K. This approach is further used to compute the free energies of
reaction according to Simpson’s rule (4.20), as an application of equation
(C.1):

∆rFSR =
〈∆E〉R + 4 〈∆E〉CP + 〈∆E〉P

6
. (4.20)

The subscripts indicate reactants (R), products (P ) and crossing points (CP),
for which the coupling parameter values of the Hamiltonian (3.156) are ζ = 0,
ζ = 1 and ζ = 0.5.

In the case of umbrella integration simulations, 27 windows have been em-
ployed. The window centres are located from −225 kJmol−1 to 225 kJmol−1

in steps of 25 kJmol−1. Additional windows close to the barrier top are cen-
tred at −20 kJmol−1 to 20 kJmol−1 in steps of 5 kJmol−1. The generalized
force constant for the harmonic restraining potential of equation (3.167) is
κb = 2.5 × 10−2 mol (kJ)−1. Umbrella integration [65] simulations yield the
free energy profile FL(∆E) along the diabatic gap, as described in section
3.4.4. This Landau free energy profile is employed to determine the free en-
ergy of reaction according to equation (3.150) with ∆E as order parameter
and θP (∆E) = θ(−∆E) = 1 − θR(∆E). In addition, the free energy profile
yields the Landau free energy of reaction (2.37) as an approximation to the
reaction free energy. As mentioned in section 2.2.1, the difference between
the reaction free energy and the Landau free energy of reaction for normally
distributed order parameters is given by equation (2.38). Here, the curvature
of the free energy profile is extracted from regions where the second deriva-
tive of the free energy curves are approximately constant. Furthermore, the
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adiabatic activation free energy ∆‡F
(a) is obtained as the Landau free energy

difference between the reactant minimum and the barrier top, as indicated
in equation (2.45).

Internal energies are obtained from the finite difference approximation
(4.22) [2] to the Gibbs-Helmholtz equation (2.49), whereas entropies result
from the finite difference temperature derivative of the corresponding free
energy according to equation (4.21) [2, 29, 54].

∆S(T ) = −∆F (T + ∆T )−∆F (T −∆T )

T + ∆T − (T −∆T )
(4.21)

∆U(T ) =

(
∆F (T + ∆T )

T + ∆T
− ∆F (T −∆T )

T −∆T

)
×
(

1

T + ∆T
− 1

T −∆T

)−1

(4.22)

In addition, Marcus theory based simulations employ graphical fits to extract
internal energies and entropies. Graphical fits are also used to determine the
charge-transfer symmetry factor and its energetic and entropic components.

Transition path sampling and committor analysis

Having outlined the simulations details for the canonical molecular dynamics
calculations above, I now turn to the transition path sampling and committor
simulations. In both cases, the boundaries for the stable states are ∆ER,min =

50 kJmol−1 for the reactants and ∆EP,max = −50 kJmol−1 for the products
because the diabatic energy gap (4.16) is defined as ∆E = V

(d)
P −V

(d)
R . These

boundary values contain the vast majority of equilibrium fluctuations of the
stable states. The time between two time slices amounts to two timesteps
and equals 2 fs.

The transition path sampling simulations in the canonical ensemble use
the kinetic energy control described in section 3.3.2 at a temperature of
T = 298.15K to compute the activation energy (2.70). Initial trajectories
are obtained by long molecular dynamics simulations where possible. Other-
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wise, a reactive trajectory can be obtained by either increasing the electronic
coupling γel or by decreasing the effective free energy of reaction ∆µ. In
practice, the second route turns out to be more effective. Transition path
sampling simulations at different values of ∆µ can then yield initial trajecto-
ries at the desired effective reaction free energies. After extensive equilibra-
tion, the production run consists of 2 × 106 Monte Carlo steps, from which
200 reactive trajectories are retained for geometrical and committor analyses.
The pathways consist of 101 time slices and are 200 fs long. The maximum
shifting length is 100 fs, whereas the shooting probability is 0.6. Momentum
changes for each Cartesian momentum degree of freedom amount to 0.1σpC,j ,
where σpC,j =

√
mjkBT denotes the width of the Maxwell-Boltzmann distri-

bution [76]. These simulations are carried out for ∆µ values ranging from
−10 kJmol−1 to 40 kJmol−1 in steps of 10 kJmol−1. Shifting moves are ac-
cepted in 70% of all attempts, whereas shooting moves exhibit an acceptance
probability of around 0.55. The proposed shooting points are accepted in 70

out of 100 cases.

The committor analysis consists of computing the relaxation probability
wP for all 101 configurations of the 200 harvested reactive trajectories accord-
ing to equation (3.145). For each configuration random momenta are drawn
from the Maxwell-Boltzmann distribution, and the system is then propagated
for 40 fs. The number of fleeting trajectories is 125, and only configurations
for which at least 100 trajectories reach one of the stable states are consid-
ered for the committor distribution. Configurations whose committor value
lies in the range 0.4 ≤ wP ≤ 0.6 are considered to be transition states in the
committor sense.

The committor analysis yields the committor of all configurations har-
vested. The committor as a function of the order parameter then indicates
whether the latter is a good reaction coordinate. In addition, a subset of these
data can be used to examine the transition state. To investigate whether the
crossing points are transition states in the committor sense, configurations
with a diabatic gap value lying in the range −2 kJmol−1 ≤ ∆E ≤ 2 kJmol−1

are selected to compute the committor distribution. A range of 10 kJmol−1

has been used to evaluate the gap distribution of transition states, which
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indicates whether dynamical transition states correspond to crossing points
according to Marcus theory.

Computational effort

I shall briefly comment on the computational effort to compute the activation
energy at a given reaction free energy value. Marcus theory based simulations
and umbrella integration calculations are needed at three temperatures if the
activation free energy is also evaluated. In contrast, transition path sampling
yields the activation energy from simulations at the temperature of interest.
However, the activation free energy is not available.

The computational effort will be given in the accumulated molecular dy-
namics time, namely the number of simulations required times the simulated
time per calculation. Molecular dynamics simulations based on Marcus the-
ory are less demanding by an order of magnitude and require an equivalent
simulation time of 60 ns. Transition path sampling simulations take 400 ns
and umbrella integration 810 ns. These estimates hold for the production run
times. If equilibration times are also taken into account, the computational
effort for transition path sampling and umbrella integration is of the same
order of magnitude. I stress that the above numbers are only intended as a
rough estimate to provide an overview.

4.2.4 Error estimates

In this section I shall briefly mention some of the errors that affect the results
of a measurement. Errors are generally divided into systematic and statistical
or random errors [1]. The former arise from a bias in the investigation so that
the outcome of a measurement is shifted away from its true value [1]. This
shift is reproducible. In contrast, random errors are due to the variability
of individual measurements, and the deviation from the true value can have
variable sign and magnitude [1,2,137]. In the following, I shall describe finite
size effects as an example of a systematic error relevant to the present work.
Subsequently, statistical errors are discussed.
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Systematic errors

Finite size effects arise because the number of particles in a simulation is
generally much smaller than Avogadro’s number [106, 107]. To simulate
bulk properties, periodic boundary conditions are typically applied [106,107].
However, bulk solutions are not periodic, and the enforced periodicity of the
system is artificial [196,205]. Short-range interactions are usually not severely
affected [106, 196]. In contrast, the accuracy of long-range electrostatic in-
teractions is affected by artificial periodicity and finite size effects [201]. I
shall focus on charged systems, described by Ewald summation, that consist
of simple ions and simple point charge water molecules.

The effect of imposing artificial periodicity can be thought of as fol-
lows [201, 205]. Without periodic boundary conditions the solute interacts
with the surrounding solvent molecules. When periodic boundary condi-
tions are applied, the solute interacts with solvent molecules in the central
simulation box and their periodic images further away. In addition, the
solute experiences the forces from the neutralizing background charge and
from its periodic images. These two aspects constitute the self-interaction
energy [201, 205]. As pointed out in reference [205], the central ion is un-
dersolvated because the solvent molecules in neighbouring boxes solvate the
image solute in that box. As a result, the stabilization of the ion in the
central box is lower than in a bulk environment [205].

It was shown in reference [201] that Ewald summation was responsible
for finite size effects in systems containing simple ions. Because of the large
dielectric constant in polar solvents the correction to the solvation free energy
was found to scale as the inverse volume of the system [196,201,205]. Subse-
quently, the reaction free energy was shown to exhibit the same dependence
on system size [34]. In contrast, the reorganization free energy scales as the
inverse of the box length and is thus more sensitive to finite size effects [34].

Ayala and Sprik [34] investigated a very similar model system to the one
studied in this work. It included rigid simple point charge water molecules
and one ferrous or ferric ion. This enables me to estimate the finite size
effects from their published data. The reaction free energy should be within
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5% of the largest system (1000 water molecules) studied in [34]. In contrast,
the reorganization free energy is too small by at least a factor of 2 [34] and
therefore strongly system size dependent.

It is clear from the above that the activation free energies computed in
this work, which are dominated by the term λ/4, will be too small. To obtain
more accurate reorganization free energies, which is not the aim of the present
work, a larger system would have to be employed. However, this would lead
to a very large imbalance between computational cost and statistical uncer-
tainty. As discussed in the next chapter in more detail (see page 186), the
statistical uncertainty of internal energy differences, and hence of activation
energies, increases with the square root of the number of particles [76, 221].
If the system size were increased to obtain reasonably accurate activation
free energies (requiring at least one order of magnitude more particles [34]),
no statement about the accuracy of the transition path sampling method
compared to equilibrium and biased molecular dynamics simulations would
be possible.

A larger system and a larger reorganization free energy would imply that
the range of ∆µ values chosen would describe situations closer to degenerate
diabatic free energy states. This should not lead to significantly different
results for the charge-transfer symmetry factor, however, because λ does not
depend on ∆µ. Accordingly, the variation of the activation free energy with
∆µ is governed by the reaction free energy, which is much less sensitive to
the system size. Similarly, the temperature dependence of the reorganization
free energy is found to be relatively weak. The error in the reorganization
free energy should thus only have a minor impact on the activation energies
and entropies.

In addition, a larger system would not alter the qualitative features of
the system. In particular, the present purposes require a thermally activated
process, and the free energy barriers are roughly one order of magnitude
larger than typical thermal fluctuations. I believe that it is more important
that the umbrella integration simulations are performed with exactly the
same potential energy function as the one employed in the transition path
sampling computations. In that case, the deficiencies of the system are the
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same so that the methods can be compared. Again, the system is not realistic
and does not mimic a specific physical experiment. However, the system is
well-defined in the sense that it should capture the qualitative features of the
nuclear dynamics of a thermally activated redox process in equilibrium.

Statistical errors

According to the ergodic hypothesis, an infinitely long simulation would yield
the correct average of a dynamical observable [106]. In that case, all possi-
ble states of an ensemble would be visited, and the probability distribution
function would effectively be known [137]. In practice, however, computer
simulations are finite and thus subject to statistical errors [106,107].

The central idea to estimating the statistical uncertainty of a (computer)
experiment is to regard data points as realizations of a random variable [137].
In that sense, computer simulations yield a random sample from a popula-
tion, namely the set of all possible outcomes of a given random experiment.
This sample is used to infer the properties of the population [137]. Now,
one sample is obtained from one computer experiment. Another simulation
would yield a different sample and so on. Hence, not only is one data point
the realization of a random variable, but also a sample mean is the realization
of a random variable [137]. Because sample means are the common observ-
ables of computer experiments, it is necessary to obtain information on their
sampling variation. In other words, the variance of the sample mean (and,
in principle, of the sample variance) should be determined [106, 107, 222].
Different methods for estimating the variance of the sample mean will be
described in the context of specific simulation techniques.

The error estimation described below will focus on the direct output of
simulations. If the simulation data are used as input to derive composite
quantities, their statistical error can also be estimated. In particular, the sta-
tistical error of a parameter y that depends on the observables uj is obtained
by the propagation of the statistical errors associated with the observables
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according to equation (4.23) [1, 223]:

σ2(y) =
∑
j

(
∂y

∂uj

)2

σ2(uj). (4.23)

Above, σ2(u) denotes the variance of the random variable u, whose unbiased
estimator is the sample variance [2, 137,222],

s2 =
1

Nd − 1

j=Nd∑
j=1

(yj −M)2, (4.24)

where we have used the mean of a sample of size Nd [2, 137,222]:

M =
1

Nd

j=Nd∑
j=1

yj. (4.25)

Below, I turn to specific estimates of the sampling variation.

Flyvbjerg and Petersen reviewed a particularly convenient method for
estimating the variance of a sample mean containing correlated data [224].
The idea is to start with a sample of a given size and to compute its mean
and variance. Next, a blocking transformation [224] is performed that groups
the mean of two successive data points of the original sample into a new data
point of the new sample. This new sample formally contains half the number
of data points of the old sample. However, the mean and the variance of
the mean remain the same for all data sets [224]. As the number of blocking
transformations increases, the correlation between transformed data points
decreases, and the estimate of the variance of the sample mean becomes
more and more accurate until it reaches a fixed point [224]. This method is
employed to estimate the variance of sample means computed from canonical
molecular dynamics and transition path sampling simulations. In the former
case, the original data set consists of 104 harvested data points. In the
latter case, the activation energy estimates from 20 transition path sampling
simulations of 105 Monte Carlo moves constitute the initial data set.

The statistical error from umbrella integration simulations is estimated as
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in references [66, 225]. This error estimate requires trend-free, uncorrelated
and normally distributed input data. As a result, the following statistical
tests are performed for every window of the biased molecular dynamics pro-
cedure. First, the Mann-Kendall test for trend in the sample mean and
sample variance is performed [66,225,226] to ensure that the data set is well
equilibrated. Next, the shape test for normality [225,227,228], which employs
the sample skewness and kurtosis, is carried out. Then, the von Neumann
test for serial correlation [225, 229, 230] is used to establish that data points
are uncorrelated. Given these characteristics of the data in each window,
the variance of the sample mean and variance are estimated by dividing the
data points into segments [66]. These estimates constitute the statistical in-
put quantities that are propagated to yield an error estimate of Landau free
energy differences [66].

All errror estimates are given in terms of one standard deviation. Due
to their approximate nature they are likely to be lower than the true statis-
tical error. Within the estimated errors, the models and simulation details
described in this chapter lead to the following results.



Chapter 5

Results

This chapter presents the results for the studied argon and iron model sys-
tems. The simulations for the argon model system have been performed to
validate the methodology, which is subsequently applied to the more complex
iron model system.

5.1 Argon

One aim of this work is to compute the activation energy of a given system
by means of transition path sampling. To ensure that the method works
correctly, the results presented in references [164] and [76] are reproduced for
the microcanonical case and for the activation energy in the canonical ensem-
ble. The first case demonstrates that the transition path sampling procedure
works accurately in the microcanonical ensemble; the second example shows
that the temperature control method from reference [141] implemented here
yields the same results for the activation energy as in reference [76]. These
two examples are presented below.

5.1.1 Microcanonical transition path sampling results

The path average 〈θP (xt)〉∗RP obtained according to the procedure outlined
in section 4.1.3 in the microcanonical case is displayed in figure 5.1. It is
seen that the path average enters the linear regime after about τLJ,Ar and
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Figure 5.1: The path average 〈θP (xt)〉∗RP is shown as a function of time, mea-
sured in units of τLJ,Ar = 2.16 ps, for the argon model system in the micro-
canonical ensemble. The total energy is E = 9 εLJ,Ar = 8.96 kJmol−1, and the
barrier height separating the stable states is Vh = 6 εLJ,Ar = 5.98 kJmol−1.
The transition path sampling simulation consists of 6×106 Monte Carlo steps
and reproduces the results of reference [164].

reaches a value of about 0.73 for t = 2 τLJ,Ar. Comparison to the upper
panel of figure 2 of reference [164] shows that the qualitative behaviour is
the same. The quantitative agreement is also satisfactory because the path
average reaches a value of about 0.74 after 2 τLJ,Ar. The error is thus within
about two percent.

The quantity κr = 1 − 〈 θP (xt)〉∗RP , which can be extracted from figure
5.1, is interpreted as the fraction of reactive trajectories that recross within
the path length 2 τLJ,Ar, showing that the argon model system exhibits re-
crossings. The recrossings indicate that transition state theory might not
hold for the present model system.

Next, the dimensionless quantity 〈 θ̇P (xt)〉∗RP × τLJ,Ar is shown in figure
5.2. The two curves correspond to how the numerical derivative is evaluated.
The solid line and crosses are obtained from the forward finite difference
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Figure 5.2: The path average 〈θ̇P (xt)〉∗RP τLJ,Ar is shown as a function of time,
measured in units of τLJ,Ar = 2.16 ps, for the argon model system in the mi-
crocanonical ensemble. The total energy is E = 9 εLJ,Ar = 8.96 kJmol−1,
and the barrier height separating the stable states is Vh = 6 εLJ,Ar =
5.98 kJmol−1. The dotted line and the plus signs indicate that the time
derivative has been obtained from the forward finite difference scheme of
equation (5.1), whereas the solid line and the crosses represent the time
derivative resulting from the central finite difference scheme of equation (5.2).
The transition path sampling simulation consists of 6×106 Monte Carlo steps
and reproduces the results of reference [164].

scheme (2.69)

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t)

∆t
. (5.1)

and the dotted line and the plus signs result from the central finite difference
scheme (2.68):

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t−∆t)

2∆t
. (5.2)

It is clear from figure 5.2 that the uncertainty for the time derivative is
larger than for the fraction of transmitted reactive trajectories in figure 5.1.
The larger error arises from the finite difference scheme used to compute
the derivative because the number of time slices is only moderately dense to
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minimize memory requirements. However, a plateau value can be identified
for the time derivatives whose values are 0.36 and 0.35 for the forward and
central finite difference schemes. The value extracted from the lower panel
of figure 2 of reference [164] is about 0.38. Consequently, the present re-
sults agree to within about five percent. Most importantly, the qualitative
behaviour is well reproduced.

The above results indicate that the transition path sampling method im-
plemented here works accurately. Next, the implementation of the asym-
metric generation probability, introduced in section 3.3.2, is tested for the
momentum displacements in the canonical case.

5.1.2 Canonical molecular dynamics calculations
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Figure 5.3: The kinetic energy histogram from an equilibrium constant tem-
perature (T = 119.8K) simulation for the argon model is displayed. It is
obtained from a simulation of 109 timesteps by scaling the momenta every
103 timesteps (see text). The kinetic energies are selected from the canonical
ensemble according to the same Monte Carlo procedure that controls the
temperature in the transition path sampling method, as discussed in section
3.3.2 and in reference [141].
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State 〈r12〉 〈H〉 〈K〉 〈V 〉
R 3.84 10.04 7.97 2.07
P 5.50 10.19 7.98 2.21
R + P 4.55 10.10 7.97 2.13
TS 4.66 19.48 8.65 10.82

Table 5.1: State-specific averages of the argon dimer bond length (〈r12〉 in
Å) as well as of the total (〈H〉), kinetic (〈K〉) and potential (〈V 〉) energies
(in kJmol−1) are shown for the reactants (R: r12 ≤ 4.59675Å), products (P :
r12 ≥ 4.93725Å), all states (R + P ) and transition state (TS: min(|r12 −
4.67323Å|)). The results are obtained for the argon model system from a
4.3µs-equilibrium molecular dynamics simulation at constant temperature
(kBT = εLJ,Ar).

I shall first present the computation of the average total energy in the
reactant state from molecular dynamics simulations in the canonical ensem-
ble. Then, the numerical results of the transition path sampling simulations
are described. Combining the two yields the activation energy according to

equation (2.70): Ea(t) = 〈θ̇P (xt)H(ξ0)〉∗RP
(
〈θ̇P (xt)〉∗RP

)−1

− 〈H〉R.

The simulation details for the molecular dynamics calculations have been
given in section 4.1.3. In particular, the system is propagated according
to Hamilton’s equations of motion for 109 timesteps; one timestep is 4.31 fs
long. The momenta are scaled every 103 timesteps to sample the canonical
ensemble. To this end, the new kinetic energy Kn = Ko + ∆K is obtained
from the old kinetic energy K0 according to the Monte Carlo procedure
described in section 3.3.2. The kinetic energy displacement ∆K is drawn
from a normal distribution, and the new kinetic energy is accepted according
to the Metropolis criterion [141,179], as in equation (3.132) with Nf = 16:

wa(K
o → Kn) = min

{
1, e−β(Kn−Ko)

(
Kn

Ko

)Nf/2−1
}
. (5.3)

This procedure leads to a time evolution on energy hypersurfaces that are
distributed according to the canonical ensemble. As can be seen from figure
5.3, the temperature control employed generates a kinetic energy distribution
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whose shape is that expected for the canonical ensemble; in particular, it is
skewed to the right [137]. The average kinetic energy also coincides with
that expected from classical thermodynamics [15], namely 〈K〉 =

Nf
2
kBT =

7.97 kJmol−1, where Nf = 16 denotes the number of degrees of freedom.
This result provides an independent test of the accuracy of the temperature
control method.

In table 5.1 the average properties for each region of phase space are sum-
marized. The kinetic (K), potential (V ), and total (E) energies vary by less
than two percent between reactants (R) and products (P ). Although only
five data points have been collected near the barrier top (TS), the data are
presented here as a first indication that the reactive parts of the equilibrium
trajectory exhibit a higher total energy than that accessible via typical fluc-
tuations (σE = 3.2 kJmol−1) in the stable states. It is noted that the exact
boundaries of the stable states do not affect the averages of the observables as
long as most fluctuations of the phase space region under consideration are in-
cluded. The relevant number entering the evaluation of the activation energy
is the average total energy in the reactant state: 〈H〉R = 10.04 kJmol−1.

5.1.3 Transition path sampling in the canonical ensem-

ble

I now turn to the transition path sampling simulations of the argon model
system in the canonical ensemble. The procedure is described in section 3.3,
and the simulation parameters are given in section 4.1.3.

The kinetic energy distribution w(K) from transition path sampling (TPS)
and molecular dynamics (MD) simulations in the canonical ensemble are
compared in figure 5.4. It is seen that the kinetic energy histogram near the
barrier top (dashed line and plus signs) from TPS calculations is very close to
that obtained from equilibrium MD simulations (solid line and crosses). In
contrast, the histogram resulting from the kinetic energies of the initial time
slice of reactive trajectories is broader with a larger mean (dotted line and tri-
angles). The differences in the average energetic properties are furthermore
displayed in tables 5.1 and 5.2.
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Figure 5.4: Kinetic energy histograms w(K) from molecular dynamics (MD)
and transition path sampling (TPS) simulations are displayed for the argon
model system. The simulations were performed in the canonical ensemble,
and the temperature was set to T = 119.8K. The solid line with the crosses
indicate equilibrium MD simulation results in the reactant state. The dashed
line and the plus signs correspond to the kinetic energy distribution of the
transition states from TPS simulations, whereas the kinetic energy histogram
of the initial time slice of all reactive trajectories in the transition path en-
semble is shown by the dotted line and the triangles.

The average energetic properties in the stable states are hardly sufficient
to overcome the barrier in the molecular dynamics simulations, whereas the
average kinetic and total energies in the stable state portions of the transition
path ensemble are larger than the barrier height Vh. That the average total
energy of the reactive trajectories (dashed line and plus signs) is roughly
twice as large as that in the stable states of a long molecular dynamics
simulation (solid line and crosses) is shown in figure 5.5. The difference
in average total energies between the reactant (R) and product (P ) states
in table 5.2 arises because the number of phase space points in each state
need not be the same for a given trajectory. For instance, if more time
slices are in the reactant region than in the product region for a pathway
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State 〈r12〉 〈H〉 〈K〉 〈V 〉
R 4.03 20.21 13.41 6.80
P 5.42 20.18 14.34 5.84
R + P 4.57 20.16 13.21 6.94
TS 4.67 20.06 8.45 11.62
BR 4.76 19.79 8.59 11.20

Table 5.2: State-specific averages of the argon dimer bond length (〈r12〉 in
Å) as well as of the total (〈H〉), kinetic (〈K〉) and potential (〈V 〉) energies
(in kJmol−1) are shown for the reactants (R: r12 ≤ 4.59675Å), products
(P : r12 ≥ 4.93725Å), all states (R + P ), transition state (TS: min(|r12 −
4.67323Å|)) and barrier region (BR: 4.59675Å < r12 < 4.93725Å). The
results are obtained for the argon model from reactive trajectories obtained
from transition path sampling simulations in the canonical ensemble (kBT =
εLJ,Ar) according to reference [76] with 2× 106 attempts.

with a high total energy, a higher average total energy for the reactant state
is expected from the contribution of that specific trajectory. As a result,
the displayed energetic averages can only indicate the energy partitioning
close to the rare event. This representation assumes that the transition time
slice is uniformly distributed over the trajectory length. Importantly, the
sum of average kinetic and potential energies in table 5.2 equals the average
total energy for each region in phase space for the transition path sampling
simulations because every pathway has a constant total energy.

As mentioned above, the average kinetic energy from the equilibrium
molecular dynamics calculations is smaller than the barrier height Vh. Even
the average total energy in the reactant state in equilibrium is barely higher,
thus preventing the system from crossing the barrier on average. Conse-
quently, only a small fraction of trajectories would cross the barrier if the
kinetic energy were fixed in the stable states. Here, I observe that the kinetic
energy is selected near the barrier top in the transition path sampling pro-
cedure. It then follows from the constant energy nature of the trajectories
and the lower potential energies in the stable states that the average kinetic
energy is significantly higher in the reactant and product wells than in the
barrier region. This leads to a higher energy reservoir in the stable states so
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Figure 5.5: Total energy histograms for the argon model system are shown
for molecular dynamics (crosses and solid line) and transition path sampling
(plus signs and dashed line) simulations in the canonical ensemble at a tem-
perature of T = 119.8K.

that transitions become more likely from an energetic point of view.

A canonical distribution of phase space points can be obtained from a
canonical distribution of initial conditions and the Hamiltonian time evo-
lution of all initial phase space points because Hamiltonian dynamics con-
serve the phase space distribution [165]. However, the transition path en-
semble does not yield a canonical distribution of trajectories; it yields the
subensemble of reactive trajectories. This means that the non-reactive tra-
jectories, which are required to describe the entire canonical ensemble, are
not taken into account. If the non-reactive trajectories were considered with
their proper statistical weight, the average kinetic energy according to the
defined temperature would be recovered in the stable states.

An alternative would consist in employing thermostatted dynamical tra-
jectories. These should yield a similar average kinetic energy in the stable
states and at the transition state. However, typical relaxation times of the
solvent in a condensed phase are on the order of picoseconds [33]. This means
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State 〈r12〉 〈H〉 〈K〉 〈V 〉
R 4.01 20.13 13.64 6.48
P 5.42 20.04 14.45 5.60
R + P 4.61 20.06 13.54 6.52
TS 4.67 20.06 8.45 11.62
BR 4.76 19.70 8.54 11.16

Table 5.3: State-specific averages of the argon dimer bond length (〈r12〉 in
Å) as well as of the total (〈H〉), kinetic (〈K〉) and potential (〈V 〉) energies
(in kJmol−1) are shown for the reactants (R: r12 ≤ 4.59675Å), products
(P : r12 ≥ 4.93725Å), all states (R + P ), transition state (TS: min(|r12 −
4.67323Å|)) and barrier region (BR: 4.59675Å < r12 < 4.93725Å). The
results are obtained for the argon model from the initial time slice of all Monte
Carlo attempts, reactive and non-reactive, obtained from transition path
sampling simulations in the canonical ensemble (kBT = εLJ,Ar) according to
reference [76] with 2× 106 attempts.

that the thermostatting effect for a given trajectory would be relatively small
unless a very fast-relaxing thermostat would be employed. In the iron model
system, the trajectories are only 200 fs long, and the use of thermostatted dy-
namics would seem rather artificial. Consequently, the choice has been made
to keep the system’s underlying Hamiltonian dynamics to avoid sampling
the thermostat’s dynamics even if this limits the sampling to the reactive
trajectory part of the canonical ensemble.

Another way of seeing this is to consider reactive trajectories harvested
from transition path sampling as cut from a long equilibrium molecular dy-
namics trajectory. Transition path sampling focuses on the reactive event
itself; however, this is only possible if an equilibrium fluctuation has brought
the system in a suitable situation to actually cross the barrier. In other words,
the activation might already have happened (in part) prior to the reactive
event. Hence, a small perturbation of the system by a momentum change
is likely to leave the system (partially) activated and in a state suitable for
reaction.

A comparison of the average properties displayed in tables 5.2 and 5.3
further indicates that reactive trajectories have a higher total energy than
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most parts of an equilibrium pathway. Specifically, the average total energy
for all phase space regions (R+P ) in table 5.2 is higher than the correspond-
ing average total energy in table 5.3. This difference is not expected to be
large because the non-reactive trajectories are obtained by modifying suc-
cessful pathways that have a relatively high energy. In other words, it is un-
likely that the energetics of the non-reactive paths are close to the energetics
of the equilibrium simulation in the canonical ensemble probing the stable
states alone. Alongside higher total energies, reactive trajectories exhibit,
on average, higher potential energies and lower kinetic energies than their
non-reactive counterparts. This becomes especially obvious when contrast-
ing averages from the transition path ensemble with those from molecular
dynamics simulations, as seen above.
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Figure 5.6: For the argon model system, the time derivative, multiplied by
τLJ,Ar of the path averages 〈θP (xt)H(ξ0)〉∗RP (crosses and plus signs) and
〈θP (xt)〉∗RP (triangles and circles) are shown as obtained from the numerator
and denominator of the first term on the right-hand side of equation (5.4)
from transition path sampling simulations in the canonical ensemble at T =
119.8K. The solid lines represent time derivatives from the central finite
difference scheme of (5.2), and the dotted lines indicate the use of the forward
finite difference scheme given in equation (5.1).
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Figure 5.7: The activation energy (5.4) for the argon model system is dis-
played as obtained from transition path sampling and molecular dynamics
simulations in the canonical ensemble (T = 119.8K; τLJ,Ar = 2.16 ps). Ac-
tivation energies obtained from the central (5.2) and forward (5.1) finite
difference schemes are indicated by the solid line through the crosses and by
the dotted line through the plus signs. The computed activation energies are
in good agreement with the potential barrier Vh = 10 εLJ,Ar = 9.96 kJmol−1

of the model. The transition path sampling simulation consists of 2 × 106

attempts and accurately reproduces the results of reference [76].

From a technical point of view, the influence of the stable state bound-
aries on the average values of the observables is considered. It is seen from
table 5.2 that the averages at the barrier top (TS) differ from those obtained
from phase space points in the entire barrier region (BR). The latter phase
space points can have any order parameter value that does not belong to
the stable states, whereas the former are restricted to order parameter val-
ues that deviate minimally from that corresponding to the barrier top at
r12 = rWCA + rw = 4.67Å. However, the effect is moderate and below 10%.
In addition, although the number of points near the barrier top from equilib-
rium molecular dynamics simulations is very small, the average values of the
computed properties are in rough agreement with those obtained from the
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〈θ̇P (xt)H(ξ0)〉∗RP
〈θ̇P (xt)〉∗RP

〈H〉R Ea

19.93 10.04 9.89
20.07 10.04 10.04

Table 5.4: The activation energy Ea is displayed for the argon model system.
According to equation (5.4), the activation energy is obtained from an average
over the transition path ensemble (first column) and the equilibrium total
energy in the reactant state (〈H〉R) from molecular dynamics simulations.
The simulations are performed in the canonical ensemble at a temperature
of kBT = εLJ,Ar. The path average requires a numerical time derivative,
which has been computed according to the central finite difference scheme
of equation (5.2) in the first data row and by means of the forward finite
difference scheme of equation (5.1). All quantities are in kJmol−1.

transition path ensemble. The transition path sampling method thus seems
rather robust with respect to the exact choice of the stable state boundaries
as long as the latter do not overlap [21].

The transition time for a reactive event is at most 0.4 τLJ,Ar so that
it is anticipated that the activation energy reaches a plateau value within
the length of the trajectories. Indeed, the time derivatives 〈θ̇P (xt)〉∗RP and
〈θ̇P (xt)H(x0)〉∗RP shown in figure 5.6 are in qualitative and quantitative agree-
ment with figure 1 of reference [76]. As in the microcanonical case, the time
derivative in figure 5.6 is obtained from the forward (dotted lines) and cen-
tral (solid lines) finite difference schemes of equations (5.1) and (5.2). The
ratio of their plateau values is given in table 5.4. The difference between the
ratio of time derivatives of path averages and the average total energy of the
reactant state from an equilibrium molecular dynamics simulation yields the
activation energy (2.70) [76]

Ea(t) =
〈θ̇P (xt)H(ξ0)〉∗RP
〈θ̇P (xt)〉∗RP

− 〈H〉R (5.4)

whose plateau value is displayed in figure 5.7. Both the procedure employing
the finite difference scheme and that using the central difference scheme yield
activation energies very close to the barrier height of 10 εLJ,Ar.
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It may be concluded from the kinetic energy histograms of figure 5.4, from
the transition path sampling simulation in the microcanonical ensemble and
from the activation energies obtained here that the temperature control and
the transition path sampling implementation work satisfactorily. In partic-
ular, the present implementation of the transition path sampling method is
capable of reproducing the activation energy values and graphs published
in reference [76] accurately. It is thus believed that the tools and analy-
sis protocols developed here allow for the investigation of a more complex
case, namely the oxidation of the classical aqueous ferrous ion, which I shall
describe next.
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5.2 Iron

As mentioned in the introduction, the present work aims at investigating
activation parameters controlling electron-transfer dynamics by means of
molecular simulation. The activation parameters are computed by (biased)
canonical molecular dynamics computations, which exploit knowledge of the
reaction coordinate for the present Marcus model. These simulations serve
as a reference for transition path sampling results, which is used as a more
general alternative because it does not require any knowledge of the reac-
tion coordinate. To check the validity of the reference data, the assumptions
underlying the simulation methods and the model system are tested first.

Hence, the results for the model oxidation half-reaction of the classical
ferrous ion are structured as follows. I shall describe the validation of the
methodologies first and turn to the physical results afterwards. In particular,
the validity of Marcus theory for the iron model is initially assessed by means
of unrestricted and biased canonical molecular dynamics simulations. Next, I
outline the validation of the transition path sampling method. Then, a test of
the reaction coordinate and the transition state is presented. The properties
of the transition state provide a bridge to the physical results, which include
the activation parameters and their dependence on the reaction free energy,
namely the charge-transfer symmetry factor and its entropic and energetic
components.

5.2.1 Validity of Marcus theory

Marcus theory applies whenever the underlying assumptions are fulfilled. As
detailed in section 2.2.1, Marcus theory assumes that the diabatic energy
gap (∆E) corresponds to the reaction coordinate [38] and that the crossing
point (∆E = 0) characterizes the transition state [35,42]. These assumptions
are equivalent to the knowledge of the reaction coordinate and the transition
state assumed in transition state theory and will be discussed in section
5.2.3. In the present section I shall consider Marcus’s additional assumption,
namely the linear response approximation [30,42].

The linear response approximation holds if the diabatic gap is normally
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distributed and if the variance of the diabatic gap is the same for reactants
and products. A breakdown of linear response could then be due to diabatic
gap variables that are not normally distributed or to normally distributed gap
variables whose variance is state-dependent [141,231,232]. I shall investigate
the validity of the linear response approximation by testing the two conditions
mentioned above, starting with the state-independence of the gap variances.
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Figure 5.8: The reaction free energies from canonical equilibrium simulations
at a temperature of T = 298.15K are displayed as the integral of the average
diabatic gap 〈∆E〉ζ over the coupling parameter ζ using the Hamiltonian
(5.5). Dotted lines show the reaction free energy according to Simpson’s rule
(5.8), whereas solid lines indicate the corresponding Marcus theory result
(5.7). The reaction free energies have been obtained for effective free energy
of reaction values (in kJmol−1) of -10 (plus signs), 0 (crosses), 10 (diamonds),
20 (circles), 30 (squares) and 40 (triangles).

Here, I assume that the diabatic gap is normally distributed and com-
pare the variances of the stable states from Marcus theory based molecular
dynamics simulations. In particular, 10 ns-long simulations are performed in
the canonical ensemble by employing a Nosé-Hoover thermostat for both the
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∆µ -10 0 10 20 30 40
∆rF -9.7 0.2 10.3 19.9 30.5 40.3
∆rFSR -12.1 -1.8 8.1 17.6 28.2 38.1
∆(∆rF ) 2.4 2.0 2.2 2.3 2.2 2.2
−kBT ln σP

σR
0.1 0.2 0.1 0.2 0.1 0.2

∆rU (GF) -41.5 -31.9 -22.7 -13.4 -1.9 7.6
∆rU (FD) -40.7 -28.7 -21.3 -9.1 1.2 11.7
−T∆rS (GF) 31.9 32.7 33.4 34.1 32.5 33.1
−T∆rS (FD) 31.0 29.2 31.8 29.5 29.0 28.6

Table 5.5: The reaction free energies computed from canonical equilibrium
molecular dynamics simulations at a temperature of T = 298.15K accord-
ing to equations (5.7) and (5.8) are shown as a function of the effective free
energy of reaction ∆µ for the iron model. In the third data row, the differ-
ence between the reaction free energy from Marcus’s formula and that from
Simpson’s rule (SR) is reported: ∆(∆rF ) = ∆rF −∆rFSR. This difference
is compared to the non-linearity arising from the difference in the variances
between the stable states given in the fourth data row. All quantities are in
kJmol−1, and computations used the diabatic Hamiltonian (5.5) with cou-
pling parameter values of ζ = 0 for the reactants, ζ = 1 for the products and
ζ = 0.5 for the crossing point. In addition, the entropies and internal energies
of reaction are shown, which are obtained from the temperature-dependence
of ∆rF both via the finite difference (FD) schemes of equations (5.14) and
(5.13) and from graphical fits (GF). The estimated statistical uncertainty of
the entropies and internal energies of reaction is around 2 kJmol−1 and thus
an order of magnitude larger than that for the reaction free energies.
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reactant and product diabatic states. Specifically, the Hamiltonian (3.156)

H(ξ, ζ) = H(ξ, 0) + ζ (H(ξ, 1)−H(ξ, 0))

= HR(ξ) + ζ∆E(ξ) (5.5)

is used with the diabatic potential energy functions corresponding to the
ferrous (R; ζ = 0) and ferric (P ; ζ = 1) ions. From these simulations the gap
variances are estimated from the sample variances of the time series of the
gap. The ratio of the gap variances σP/σR for different ∆µ values lies between
0.9 and 0.95, and the corresponding free energy difference is displayed in the
fourth data row of table 5.5. An alternative way of investigating the state-
independence of the Gaussian distribution of gap variables is to use equation
(3.159)

∆rF = F (ζ = 1)− F (ζ = 0) =

∫ ζ=1

ζ=0

〈
∂H(ξ, ζ

′
)

∂ζ ′

〉
ζ′
dζ
′

=

∫ ζ=1

ζ=0

〈∆E〉ζ′ dζ
′

(5.6)

for different numbers of intermediate states to compute the reaction free
energy. If the system obeys linear response, the reaction free energy is inde-
pendent of the number of intermediate states. The first three data rows of
table 5.5 and figures 5.8 and 5.11 (top left panel) compare the results from
no intermediate point, which corresponds to Marcus’s formula (2.41)

∆rF =
1

2
(〈∆E〉R + 〈∆E〉P ) , (5.7)

to those with one intermediate point, namely Simpson’s rule (4.20):

∆rFSR =
1

6
(〈∆E〉R + 4〈∆E〉CP + 〈∆E〉P ) . (5.8)

In practice, the sample means of the diabatic gap from canonical equilibrium
simulations employing the Hamiltonian (5.5) at ζ values of 0 (reactants), 1

(products) and 0.5 (crossing points) were used to estimate the reaction free
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energies from Marcus theory and from Simpson’s rule. It is seen that the
reaction free energies obtained from Simpson’s rule (second data row of table
5.5) differ from those obtained from Marcus’s formula (first data row of table
5.5) by less than kBT (third data row of table 5.5). Although this result
indicates a non-linearity, the effect is relatively small, and Marcus theory
might still provide a good approximation.

∆µ -10 0 10 20 30 40
∆rF -11.9 -2.0 7.6 17.5 27.5 37.7
∆rFL -12.0 -2.2 7.5 17.3 27.3 37.5
∆(∆rF ) 0.1 0.2 0.2 0.2 0.2 0.2
−kBT ln σP

σR
0.2 0.2 0.2 0.2 0.2 0.2

∆rU -34.7 -26.7 -18.8 -12.6 2.8 13.8
∆rUL -34.4 -26.3 -18.7 -12.6 3.3 14.1
−T∆rS 22.9 24.9 26.8 30.3 25.1 24.0
−T∆rSL 22.4 24.4 26.5 30.2 24.4 23.5

Table 5.6: The reaction free energies ∆rF (5.10) and the Landau free en-
ergies of reaction ∆rFL (5.9) for the iron model from umbrella integration
simulations at a temperature of T = 298.15K are shown as a function of the
effective free energy of reaction ∆µ. In the third data row, the difference
between the reaction free energy and the Landau free energy of reaction is
reported: ∆(∆rF ) = ∆rF−∆rFL. This difference is compared to the data in
the fourth data row obtained from equation (5.11) and quadratic fits (dotted
lines) to the free energy profiles of figure (5.9). All quantities are in kJmol−1,
and the estimated standard deviation for the Landau free energy of reaction
is σ = 0.6 kJmol−1. In addition, the entropies and internal energies of re-
action are shown, and their standard error is an order of magnitude larger
than that for the corresponding free energy differences.
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Figure 5.9: Free energy profiles from umbrella integration and canonical
equilibrium simulations are shown for the model oxidation half-reaction of
the aqueous ferrous ion at a temperature of T = 298.15 K. The free energy
profiles obtained from umbrella integration are represented by solid black
lines for all values of the effective reaction free energy ∆µ. The free energy
profiles from Marcus theory based canonical equilibrium simulations result
from the logarithm of the diabatic energy gap histograms. The line colours
red (-10), green (0), blue (10), magenta (20), dark green (30) and cyan (40)
correspond to the ∆µ values in brackets in kJmol−1. The dotted black
lines are fits to the umbrella integration results in regions where the second
derivative of the Landau free energy is approximately constant. The free
energy profiles have been shifted so that the reactant minimum for all ∆µ

values is set to zero. The diabatic energy gap is positive for reactants; hence,
the forward reaction (oxidation) proceeds from right to left in the present
figure.
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Figure 5.10: A schematic free energy profile is displayed. The barrier top
separating the reactant (R) and product (P ) regions is indicated by the
dashed line. The Landau free energy of reaction (5.9) is evaluated as the
difference between the Landau free energy values at the minima of the stable
states (indicated by the dotted lines at 〈∆E〉R and 〈∆E〉P ). The reaction
free energy (5.10) is obtained as the difference between the reactant and
product state free energies by summing e−βF (∆E) from the transition state
over the entire reactant and product wells, respectively (as indicated by the
horizontal dotted arrows).

Next, the normal distribution of the energy gaps is assessed indirectly.
To this end, I compare the Landau free energies of reaction ∆rFL (2.37)

∆rFL = FL,P (〈∆E〉P )− FL,R(〈∆E〉R) (5.9)

and the reaction free energies ∆rF (3.150)

∆rF = FP − FR = −kBT ln
QP

QR

= −kBT ln
∫
e−βFL(∆E) θP (∆E) d∆E∫
e−βFL(∆E) θR(∆E) d∆E

(5.10)
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from umbrella integration given in the first and second data row of table 5.6,
which are related by equation (2.38)

∆rF = ∆rFL − kBT ln
σP
σR

(5.11)

if the energy gap is normally distributed [48, 68]. For each value of the ef-
fective reaction free energy ∆µ, biased molecular dynamics simulations with
harmonic restraining potentials were carried out in 27 overlapping windows.
In each window, 104 independent data points were collected from 10 ns-long
molecular dynamics simulations coupled to a Nosé-Hoover thermostat. The
data points from all windows were combined by the umbrella integration
analysis [65, 66] to yield the free energy profile as a function of the diabatic
energy gap. The Landau free energy of reaction (5.9) is extracted as the
difference between the lowest free energy in the product and reactant wells.
In contrast, the reaction free energy (5.10) is obtained by numerically inte-
grating the exponentials of the Landau free energy in the entire region of a
given stable state, as indicated in figure 5.10. The data in table 5.6 reveal
that the difference in Landau free energies and free energies of reaction from
direct simulation and from equation (5.11) agree well. This supports the as-
sumption of the first test above that the diabatic gap is normally distributed
to a good approximation.

In addition, it can be noted that the ratio of variances obtained from
Marcus theory based equilibrium simulations and from umbrella integration
exhibit the same sign and are of the same order of magnitude. Another indi-
cation for this is provided by the similarity of the curvatures of the free energy
profiles shown in figure 5.9. We also see that the reaction free energies from
umbrella integration and from Simpson’s rule agree within statistical uncer-
tainty. Although these results show that there are slight non-linearities, the
two independent methods yield similar results, thus indicating that the de-
scription of the model oxidation half-reaction is reasonable and that Marcus
theory provides a good representation because the system responds approx-
imately linearly.17

17The extent to which simulation results indicate linear response or deviations from it
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The above discussion shows that the control parameter ∆µ is a suitable
effective reaction free energy. In particular, a given ∆µ value is within kBT
of the reaction free energy. More importantly, if the reaction free energies
from Marcus theory based molecular dynamics and umbrella integration sim-
ulations shown in tables 5.5 and 5.6 are considered for different values of ∆µ,
the change in ∆rF is the same as that in ∆µ, as expected from equation
(4.18a)

∆rF (∆µ) =
1

2
(〈∆E(∆µ)〉R + 〈∆E(∆µ)〉P ) = ∆µ, (5.12)

within statistical uncertainty. The latter is about 0.6 kJmol−1 for umbrella
integration and 0.2 kJmol−1 for molecular dynamics simulations in the stable
states.

I now turn to the results regarding the internal energies and entropies of
reaction, displayed in the right and left panel of the bottom row of figure
5.11, which are obtained from the temperature dependence of the reaction
free energies (top left panel of figure 5.11). In particular, Marcus theory based
molecular dynamics simulations on the diabatic potential energy surfaces in
the reactant and product minima were performed at temperatures of 278.15

and 318.15K. The reaction free energies (5.7) at 278.15 and 318.15K were
then used to estimate the internal energy of reaction via a finite-difference
approximation to the Gibbs-Helmholtz equation (4.22)

∆rU(T ) =

(
∆rF (T + ∆T )

T + ∆T
− ∆rF (T −∆T )

T −∆T

)
×
(

1

T + ∆T
− 1

T −∆T

)−1

(5.13)

and the reaction entropy according to equation (4.21)

∆rS(T ) = −∆rF (T + ∆T )−∆rF (T −∆T )

T + ∆T − (T −∆T )
. (5.14)

involves subjective elements. For instance, simulation results from reference [45] have been
described as showing non-linear behaviour by Zhou and Szabo [48]. In contrast, Geissler
and Chandler [141] characterize the same findings as results exhibiting linear response.
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Figure 5.11: Reaction free energies (top left), entropies (bottom left), inter-
nal energies (bottom right) and reorganization free energies (top right) are
shown as a function of the effective reaction free energy ∆µ. Results from
Marcus theory based simulations are indicated by circles, whereas umbrella
integration results are represented by plus signs (for Landau free energies
and the corresponding energetic and entropic components) and crosses (for
free energies obtained according to equation (5.10) and the corresponding
energetic and entropic components). In the top left panel, the reaction free
energy according to Simpson’s rule is indicated by squares. The reorganiza-
tion free energy was only estimated from Marcus theory based simulations
(top right panel). All displayed results correspond to canonical ensemble
averages at a temperature of 298.15K.

Umbrella integration simulations on the adiabatic potential energy sur-
face also yielded reaction free energies at 278.15 and 318.15K, shown in figure
5.12, which were used in equations (5.13) and (5.14) to estimate the internal
energies and entropies of reaction. It is seen from figure 5.12 that the reac-
tion free energies increase approximately linearly in the temperature range
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considered, thereby showing that the finite difference approximations (5.13)
and (5.14) should be reasonable.

It is seen from the internal energies and entropies of reaction presented in
figure 5.11 and in tables 5.5 and 5.6 that the control parameter ∆µ mainly
affects the internal energy of reaction. The variation of the internal energies
of reaction obtained from both Marcus theory based molecular dynamics sim-
ulations and umbrella integration over the entire range of ∆µ values follows
that of ∆µ, as seen in tables 5.5 and 5.6 and in the bottom right panel of
figure 5.11. In contrast, the reaction entropies show no systematic variation
with ∆µ if the statistical uncertainties are taken into account: 2.0 kJmol−1

for Marcus theory based simulations and 6.0 kJmol−1 for umbrella integra-
tion. It is expected that the variation of ∆µ only affects the energies (and
not the entropies) for equilibrium molecular dynamics simulations on the di-
abatic potential energy surface because a change in ∆µ simply results in a
shift in potential and total energy. However, the forces remain unaltered, and
the dynamics does not change. Consequently, the temperature dependence
of the average gaps in the stable states, which determine the reaction free
energy (5.7), is not affected, and the reaction entropy is independent of ∆µ

to a good approximation. Because ∆µ is linearly related to the reaction free
energy, it can be concluded that the reaction energy is most sensitive to that
control parameter. In the case of umbrella integration simulations on the adi-
abatic potential energy surface the situation is slightly different. Specifically,
a variation of the parameter ∆µ alters not only the relative energies but also
the forces acting on the system at a given nuclear configuration because the
diabatic states are coupled, as can be seen from equation (4.13):

F (a)
j =

1

2
(FR,j +FP,j) +

1

2

∆E(rC ,∆µ)√
(∆E(rC),∆µ)2 + 4 γ2

el

(FR,j −FP,j) .

(5.15)

It follows from the coupling between the two diabatic states that the dynam-
ics will be altered if the temperature is varied. Consequently, the entropy
is likely to change. However, the change in entropy is expected to be small
as long as the qualitative nature of the force acting on the system remains
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the same. In that case, the translational, vibrational and rotational degrees
of freedom will explore a similar volume in phase space, and the major in-
fluence of ∆µ on the reaction free energy will be due to the internal energy
of reaction. Hence, the parameter ∆µ might be interpreted as an effective
electrode potential regarding the equilibrium reaction energetics because it
alters the force acting on the donor solute species if the coupling to the (vir-
tual) electron acceptor does not vanish. Overall, the variation of the reaction
free energy with ∆µ is more regular than that of its components discussed
here. This might be attributed to the statistical uncertainty of the latter,
which is an order of magnitude larger than the standard error of the reaction
free energies for both simulation methods.

The observation that the statistical uncertainty of internal energy differ-
ences is about an order of magnitude larger that that for free energy differ-
ences is not new [191, 221]. The statistical challenge in computing internal
energy differences arises because we need to compute the difference of two en-
semble averages, each of which tends to be a relatively large number [191,221].
The associated fluctuations depend on the square root of the particle num-
ber [76,221]. As a result, the difference in internal energy, which is typically
small compared to the individual contributions from which it is computed,
exhibits a large statistical uncertainty [221]. This challenge becomes severer
as the system size increases [76]. In contrast, the statistical uncertainty for
free energy differences is smaller because a free energy difference involves, in
principle, a single average over that part of phase space where the initial and
final states differ [191, 221]. The fluctuations from the remainig regions of
phase space do not affect the computation of free energy differences because
they are the same for the initial and final states [191,221].

An additional observation from the reaction energetics data considered
above concerns the energy-entropy partitioning of the reaction free energy.
For instance, the internal energy of reaction at ∆µ = 0 is negative, which
reflects the stronger Coulombic interaction with the water molecules of the
ferric ion compared to the ferrous ion. This interaction also leads to the
negative reaction entropy for all ∆µ values because the Fe3+ ion limits the
orientational and translational freedom of the surrounding solvent dipoles,
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Figure 5.12: The temperature dependence of the reaction free energy is dis-
played for the iron ion system at a temperature of T = 298.15K. Results from
umbrella integration (UI) are indicated by plus signs connected by dashed
lines (∆rFL according to (5.9)) and by crosses connected by dotted lines
(∆rF according to (5.10)), whereas canonical equilibrium molecular dynam-
ics (MT) simulation results are marked by circles connected by dashed-dotted
lines. The effective free energy ∆µ increases from bottom to top from −10
to 40 kJmol−1.

thereby decreasing the entropy relative to the reactant state. It is noted that
the same physical phenomenon is responsible for the smaller gap variances in
the product state compared to the reactant state, which leads to the slight
non-linear effects discussed above.

In summary, Marcus theory provides a good description of the present
model system so that predictions from this theory should prove useful for
rationalizing further aspects of this work.
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5.2.2 Validation of transition path sampling
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Figure 5.13: The kinetic energy histograms w(K) are shown for the reactant
(R), product (P ) and crossing point (CP) configurations sampled from both
Marcus theory based molecular dynamics (MT) and transition path sampling
(TPS) simulations for the model oxidation half-reaction Fe2+

(aq) → Fe3+
(aq) +

e−(µ). The symbols corresponding to MT simulations are black squares (R),
red circles (P ) and green triangles (CP), whereas TPS results are represented
by blue plus signs (R), dark green crosses (P ) and cyan diamonds (CP). The
temperature is set to T = 298.15K, and the corresponding expected average
kinetic energy is 〈K〉 = 476 kJmol−1.

This section discusses the validity of the transition path sampling method.
The discussion comprises the temperature control, the definition of the stable
states, the path length and the accuracy of the activation energy. I start with
the temperature control below.

The effectiveness of the temperature control described in section 3.3.2 for
the transition path sampling method whose simulation parameters are given
in section 4.2.3 is discussed. To this end, the average kinetic energies from
molecular dynamics and transition path sampling simulations are compared
in table 5.7 for ∆µ = 0. It is seen that the Nosé-Hoover thermostat em-
ployed for the molecular dynamics simulations maintains a stable average
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Method 〈K〉R 〈K〉P 〈K〉CP

MT 476.3±0.3 476.4±0.3 475.9±0.3
TPS 484.3±0.3 493.5±0.3 477.4±0.3

Table 5.7: State-specific average kinetic energies of the reactants (R), prod-
ucts (P ) and crossing point (CP) for ∆µ = 0 are shown for the aqueous iron
model. The first data row displays average kinetic energies obtained from
Marcus theory (MT) based canonical equilibrium molecular dynamics simu-
lations (10 ns) on diabatic potential energy surfaces characterized by coupling
parameter values of ζ = 0 (reactants), ζ = 0.5 (crossing point) and ζ = 1
(products) in the Hamiltonian (5.5). The second data row shows average
kinetic energies from transition path sampling computations in the canonical
ensemble consisting of 2 × 106 Monte Carlo attempts. The temperature is
set to T = 298.15K, and all values are given in kJmol−1.
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Figure 5.14: The path average 〈θP (xt)〉∗RP obtained from transition path sam-
pling simulations in the canonical ensemble at a temperature of T = 298.15
K is shown as a function of time for various values of the effective reaction
free energy ∆µ (in kJmol−1): −10 (plus signs); 0 (circles); 10 (squares); 20
(crosses); 30 (triangles); 40 (diamonds). The linear regime is reached after
about 120 fs for the aqueous iron ion model system.

kinetic energy for all states. In contrast, the average kinetic energy from
transition path sampling at the crossing point is lower than in the stable
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Figure 5.15: The transition time histogram w(ttr) (in relative probability
units) is shown for 200 fs trajectories from transition path pampling sim-
ulations in the canonical ensemble at a temperature of T = 298.15K and
an effective reaction free energy of ∆µ = 0 for the oxidation of the model
aqueous ferrous ion.

states. As in the case of the argon model system, the kinetic energy of the
crossing point corresponds to that of the imposed temperature. Here, the
agreement with the average kinetic energy of the molecular dynamics sim-
ulations is better. This is probably due to the larger number of degrees of
freedom in the iron model system. The higher energies in the stable states
are caused by the constant-energy nature of the reactive trajectories in the
transition path ensemble, as discussed for the argon system in section 5.1.
The same behaviour is illustrated in figure 5.13. In particular, the kinetic
energy histogram is skewed to the right as expected. Furthermore, the aver-
age kinetic energy is higher in the product state than in the reactant state,
which is consistent with the negative internal energy of reaction reported in
tables 5.5 and 5.6. It should be noted that the data for the transition path
sampling at the crossing point in figure 5.13 are rather noisy. This noise
arises because the number of data points available at the crossing point in
the transition path ensemble is lower than for the stable states. In particular,
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Figure 5.16: The energetic and structural changes during a typical 200 fs re-
active transition (top left panel) are shown for the oxidation of the aqueous
ferrous ion at a temperature of T = 298.15K and an effective reaction free
energy of ∆µ = 0. The top row displays the potential (middle) and kinetic
(right) energies. The bottom row shows the average Fe − O distance in
the first (left) and second (middle) solvation shells. The bottom right panel
displays the average of the scalar product (〈cos(α)〉) of the unit vectors char-
acterizing the water dipole moment and the internuclear separation pointing
from the oxygen to the iron site.

not every reactive trajectory yields a configuration that corresponds to the
crossing point in the following sense. A reactive trajectory is represented
by a sequence of time slices that are stored. Because configurations are not
saved at every timestep along the trajectory and because the energy gap is a
rapidly varying function of phase space coordinates, the resolution of energy
gap values in the barrier region is limited. Accordingly, some trajectories
do not exhibit a configuration satisfying the criterion characterizing crossing
poins (|∆E| < 2 kJmol−1). These results provide supporting evidence that
the method proposed in reference [141] provides an effective means of control-
ling the temperature in the canonical transition path ensemble. As already
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mentioned, the constant energy nature of the dynamical trajectories and the
focus on the ensemble of reactive trajectories lead to different temperatures
in the stable states compared to the barrier top region. The inclusion of
non-reactive trajectories would most likely lead to a constant temperature in
all regions of phase space. Alternatively, the propagation of dynamical tra-
jectories could be achieved by means of thermostatted dynamics. However,
due to the short trajectories (200 fs) compared to typical relaxation times in
a condensed phase environment (1− 10 ps) I chose to focus on the Hamilto-
nian dynamics of the system rather than on the dynamics of a (strong) heat
bath. For larger systems, the ability of the system to distribute energy over
many degrees of freedom might decrease the effect that the average kinetic
energies from different regions of phase space differ if the focus is on reactive
trajectories. Indeed, the relative deviation from the target kinetic energy are
significantly smaller for the iron ion system than for the argon model.

The reactive trajectories of the transition path ensemble connect the sta-
ble states. As mentioned in section 4.2.3, a barrier region ranging from
−50 kJmol−1 to 50 kJmol−1 separates reactants and products. This defini-
tion of the stable states ensures that the vast majority of data points sampled
from equilibrium trajectories fall outside the barrier region, as can be seen
from the coloured curves in figure 5.9.

As an illustration, the energetic and structural properties of a typical
reactive trajectory are shown in figure 5.16. The top left panel shows that
the transition from reactants to products is fast. The middle and right panels
in the top row indicate that typical variations of the potential and kinetic
energy are of the order of 100 kJmol−1 along a given trajectory. The bottom
row displays the average Fe−O distance in the first (left) and second (middle)
solvation shell, whereas the right panel compares the orientational structure
for the first (solid line) and second (dashed line) solvation shells. As expected,
the average iron-oxygen distance decreases upon oxidation of the ferrous ion.
In addition, the Coulombic forces also lead to a higher alignment of the water
dipole moments along the Fe−O connection line for the ferric ion compared
to the ferrous ion. For both structural parameters considered here, the effect
is much less pronounced beyond the second solvation shell.
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The evaluation of the activation energy from transition paths requires
that the process is activated. As mentioned earlier, a process is activated if
a plateau time is observed for the rate constant, or equivalently, if a linear
regime is reached for the population decay. Such a behaviour is observed for
the path average 〈θP (xt)〉∗RP in figure 5.14, thus indicating that the model
oxidation half-reaction is thermally activated. The linear regime is reached
after about 120 fs. This observation is further supported by the histogram of
transition times displayed in figure 5.15. In particular, reactive trajectories
cross the barrier region within 40 fs, which will be exploited in the committor
analysis of section 5.2.3. Given that the process is activated and the path
length suitably chosen, I shall discuss the accuracy of the activation energy
below.

Anticipating the results for ∆µ = 0, I compare the activation energy ob-
tained from transition path sampling (TPS) with those from Marcus theory
based simulations (MT) and umbrella integration (UI). Contrary to the ac-
tivation energies obtained from equilibrium and biased canonical molecular
dynamis simulations, the activation energy was obtained from a transition
path sampling simulation at a single temperature T = 298.15K according to
equation (2.70) [76]:

Ea(t) =
〈θ̇P (xt)H(ξ0)〉∗RP
〈θ̇P (xt)〉∗RP

− 〈H〉R. (5.16)

The second term on the right-hand side of equation (5.16) is obtained from a
long canonical equilibrium molecular dynamics simulation, whereas the first
term on the right-hand side is extracted from the transition path ensemble of
200 fs-long reactive trajectories in the canonical ensemble. The time deriva-
tive of the path averages was taken numerically according to the central
(2.68)

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t−∆t)

2∆t
(5.17)

or the forward finite difference schemes (2.69)

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t)

∆t
. (5.18)
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The timestep was 1 fs, and the barrier region separating the stable states ex-
tended from −50 to 50 kJmol−1. The resulting activation energies from tran-
sition path sampling (TPS: 10.2 kJmol−1) agree within statistical uncertainty
with reference calculations (UI: 15.2 kJmol−1; MT: 15.7 kJmol−1). The
standard deviations from TPS, UI and MT are 2.1 kJmol−1, 3.0 kJmol−1,
1.2 kJmol−1. As a result, transition path sampling provides reasonably ac-
curate estimates of the activation energy for the present, moderately complex
activated process.

A consequence of practical importance for the present work is that the
transition path ensemble obtained here seems representative of the studied
redox process. Thus, the harvested reactive trajectories can be analyzed by
means of a committor analysis to obtain information about the reaction co-
ordinate and the transition state, which have been assumed known in the
discussion of the validity of Marcus theory above. I shall describe the com-
mittor analysis in the next section.
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5.2.3 Reaction coordinate and transition state

After the validation of the transition path sampling method and the lin-
ear response approximation I study the remaining assumptions of Marcus
theory. In particular, I investigate whether the transition state in the com-
mittor sense corresponds to the ensemble of configurations with vanishing
gap, as predicted by Marcus theory, and whether the energy gap constitutes
the reaction coordinate. I shall discuss the accuracy of the reaction coordi-
nate first and the characteristics of the transition state and crossing points
subsequently.
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Figure 5.17: The committor wP , which is the probability of reaching the
product state prior to the reactant state for a given configuration [21,22,79],
is displayed as a function of the diabatic energy gap ∆E. The datapoints
represent the committor values of all configurations of 200 representative tra-
jectories harvested from transition path sampling in the canonical ensemble
at a temperature of T = 298.15K. The red line is a fit using the function
f(y) = 1

2
− 1

2
(tanh(C1(y − C2)) as described in reference [185], where C1 and

C2 are fitting parameters and y is the order parameter whose suitability as a
reaction coordinate is tested.

A committor analysis as described in section 3.3.4 is carried out to test
whether the diabatic energy gap is a suitable reaction coordinate. The simu-
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Figure 5.18: The committor distribution for the aqueous iron model is dis-
played for crossing points defined as lying in an order parameter range of
2 kJmol−1 around the Marcus theory prediction for the transition state:
∆E = 0. The dashed line is a Gaussian fit to the data points, whose mean
is 0.47. The calculations were performed at ∆µ = 0 and T = 298.15K.

∆µ -10 0 10 20 30 40
FL(∆Emax) 21.2 25.8 30.7 36.2 42.1 48.8
∆Emax 2.3 0.6 -1.2 -2.9 -4.8 -6.7

Table 5.8: The maxima of the free energy profiles extracted from figure 5.9
and obtained from umbrella integration simulations at T = 298.15K are
displayed for all values of the effective free energy of reaction ∆µ. The
Landau free energy values in the first row and the corresponding diabatic
energy gap values ∆Emax in the second row are given in kJmol−1 for the
iron model system.

lation details are given in section 4.2.3, and the resulting plot of the commit-
tor against the diabatic gap is shown in figure 5.17. This figure exhibits all the
characteristics described in section 3.3.4 because the diabatic gap decreases
during the reaction and the figure should thus be read from right to left.
In particular, the committor increases steeply as a function of the diabatic
gap in the barrier region, namely for gap values from around −50 kJmol−1
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Figure 5.19: The gap distribution is shown for transition states identified
from transition path sampling simulations according to the committor cri-
terion. The data points for the aqueous ferrous-ferric ion model system at
∆µ = 0 and T = 298.15K are indicated by plus signs, and the dotted line
is a Gaussian fit to the data points. The mean of the diabatic energy gap is
−0.2 kJmol−1 for dynamical transition states in the range −10 kJmol−1 to
10 kJmol−1.

∆µ [kJmol−1] -10 0 10 20 30 40
κr 0.96 0.95 0.91 0.87 0.81 0.73

Table 5.9: The transmission coefficient κr from the reactive trajectories con-
tained in the transition path ensemble is shown as a function of the effec-
tive free energy of reaction ∆µ for the aqueous iron ion model system at
T = 298.15K.

to 50 kJmol−1. From the behaviour in the barrier region it would be con-
cluded that the diabatic gap constitutes a good reaction coordinate for the
present model system, as would be expected from Marcus theory. However,
the present committor analysis indicates that a few configurations outside
the barrier region are also dynamical transition states. A similar observation
was made in a study of ion pair dissociation pathways [233] and indicates
that degrees of freedom orthogonal to the diabatic gap contribute to the ex-
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Figure 5.20: The Fe-O radial distribution functions for reactants (black),
products (blue), and crossing points (red) are displayed. Solid lines repre-
sent configurations from the transition path ensemble, whereas dashed lines
denote configurations from Marcus theory based molecular dynamics sim-
ulations. The latter employ diabatic potential energies corresponding to
coupling parameter values of ζ = 0 (reactants), ζ = 0.5 (transition states)
and ζ = 1 (products) in equation (5.5). All simulations are performed at a
temperature of T = 298.15K.

act reaction coordinate. All attempts to understand why there are dynamical
transition states characterized as stable states by the order parameter failed
(as in reference [233]). In particular, these configurations exhibit neither
particularly high potential nor kinetic energies. Furthermore, evaluating the
committor for those configurations by means of fleeting trajectories coupled
to a strong heat bath did not change the committor value compared to using
Hamiltonian dynamics and momenta drawn from a Boltzmann distribution.
In other words, a lack of relaxation of energy from important degrees of
freedom to bath or spectator modes in the present system does not seem to
be the cause for dynamical transition states to lie outside the barrier region
according to the order parameter criterion. However, the vast majority of
configurations of the transition path ensemble shows the expected behaviour.
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Figure 5.21: The first peaks of the Fe-O radial distribution functions for reac-
tants (black), products (blue), and crossing points (red) are displayed. Solid
lines represent configurations from the transition path ensemble, whereas
dashed lines denote configurations from Marcus theory based molecular dy-
namics simulations. The latter employ diabatic potential energies corre-
sponding to coupling parameter values of ζ = 0 (reactants), ζ = 0.5 (tran-
sition states) and ζ = 1 (products) in equation (5.5). All simulations are
performed at a temperature of T = 298.15K.

It is thus concluded that the present committor analysis supports the diabatic
gap as a suitable reaction coordinate for the model oxidation half-reaction of
the aqueous ferrous ion.

Below, the relation between the crossing point configurations and the
transition state is investigated. As already mentioned in section 3.3.4, dy-
namical transition states are configurations whose committor value is 0.5.
In practice, a range of 0.4 to 0.6 is chosen to describe transition state con-
figurations in the committor sense. In contrast, the maximum of the free
energy profile may be called a static transition state according to transition
state theory if the reaction coordinate is known. Given the above results
from the reaction coordinate study of the diabatic gap, this is considered
a valid approach. I thus ask what the relation between the dynamical and
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Figure 5.22: The second peaks of the Fe-O radial distribution functions
for reactants (black), products (blue), and crossing points (red) are dis-
played. Solid lines represent configurations from the transition path ensem-
ble, whereas dashed lines denote configurations from Marcus theory based
molecular dynamics simulations. The latter employ diabatic potential ener-
gies corresponding to coupling parameter values of ζ = 0 (reactants), ζ = 0.5
(transition states) and ζ = 1 (products) in equation (5.5). All simulations
are performed at a temperature of T = 298.15K.

static transition state configurations and the set of crossing points in Marcus
theory is.

To answer this question three pieces of information are taken into account.
First, the location of the maximum of the free energy profile will be compared
to the vanishing gap value. Second, the committor distribution is computed
for a set of configurations with order parameter values satisfying |∆E| ≤
2 kJmol−1 obtained from transition path sampling simulations at ∆µ = 0

and T = 298.15K. Third, the gap distribution for dynamically determined
transition states is calculated.

A detailed analysis of the free energy profiles from umbrella integration,
displayed in figure 5.9, reveals that the location of the maximum of the free
energy profile, which corresponds to the transition state in transition state
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Figure 5.23: The histograms of structural properties of the iron ion model sys-
tem are shown for reactants (black), products (blue), crossing points (green;
|∆E| < 2 kJmol−1) and transition states (red) harvested by transition path
sampling. In each row, the structural properties are given for the first (left),
second (middle) and remaining (right) solvation shells around the iron ion.
The first row shows the average iron-oxygen distance, whereas the second
row displays the average of cos(α), where α is the angle between the water
dipole moment and the connection line from the oxygen to the iron site.

theory if the reaction coordinate is known, shifts towards more product-like
configurations for increasing reaction free energies. The numerical values are
given in table 5.8. This trend is in agreement with the Leffler-Hammond
postulate [17, 18] and Marcus theory predictions [158].

I now turn to the committor distribution of the crossing points, which
are defined as those phase space points for which the diabatic gap vanishes.
In contrast to an earlier study [108] that constrained the system to a phase
space hypersurface with vanishing diabatic gap, the time resolution of the
dynamical transitions from transition path sampling does not allow for col-
lecting exact crossing points. Instead, a range of the order parameter around
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Figure 5.24: An overlay of snapshots of a reactant, a product, and a transition
state configuration along a typical reactive trajectory (see top left panel of
figure 5.16) are shown. Oxygen atoms are displayed in red; hydrogen atoms
are shown in gray. The green sphere denotes the iron ion. For clarity, only
the first two solvation shells are shown.

zero is employed to identify approximate crossing points. It is found that the
precise numerical value of the order parameter range has little quantitative
influence on the resulting committor distribution. In practice, a histogram of
relaxation probabilities from all crossing points approximates the committor
distribution of equation (3.147). The committor distribution resulting from
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a gap range of 2 kJmol−1 around zero is shown in figure 5.18. The mean
committor value is 0.47, and its standard error is estimated to be 0.10. This
result provides support for the crossing points to be dynamical transition
states within statistical uncertainty.

The finding from the committor distribution of the crossing points is com-
pared to the distribution of the diabatic gap for dynamical transition states.
All configurations whose committor lies between 0.4 and 0.6 are considered
transition states. Their average committor is 0.50±0.05, and their gap distri-
bution is shown in figure 5.19. It is seen that this gap distribution for tran-
sition states in the barrier region (|∆E| ≤ 10 kJmol−1) is peaked at around
−0.2 kJmol−1, which is close to Marcus theory predictions. If all dynamical
transition states are included in the present analysis, the mean diabatic gap
becomes −2.9 kJmol−1. This finding might indicate that dynamical transi-
tion states tend to be more product-like (according to the diabatic energy
gap value) on average than crossing point configurations. This observation is
consistent with the above result from the committor distribution that cross-
ing points might be slightly more reactant-like according to the committor
criterion. However, the statistical uncertainty is too large for these observa-
tions to be conclusive. Overall, the crossing points from Marcus theory and
the dynamical transition states according to the committor description are
in satisfactory agreement with each other and with the maximum of the free
energy profile at ∆µ = 0.

Further support for the validity of Marcus theory is provided by the iron-
oxygen radial distribution function displayed in figures 5.20, 5.21 and 5.22
because they show that the crossing point configurations from transition path
sampling and from Marcus theory based molecular dynamics simulations
have properties in between those of the reactants and products. In particular,
the average iron-oxygen distance of the first solvation shell corresponds to an
equivalent charge distribution of the iron ion of approximately zFe = 2.5 e0

at the transition state, as predicted by Marcus and Hush [38, 85, 86]. This
result reflects the symmetry of the free energy barrier for ∆µ = 0 shown in
figure 5.9.

In figure 5.23, the histograms of structural properties are displayed ac-
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cording to different categories of configurations sampled via transition path
sampling. The top row provides essentially the same information as the ra-
dial distribution functions of figures 5.20, 5.21 and 5.22. However, it focuses
on the transition path ensemble and distinguishes between the dynamical
transition state configurations and crossing point configurations. The former
(red) have a committor between 0.4 and 0.6, whereas the latter configu-
rations satisfy |∆E| < 2 kJmol−1 (green). Results corresponding to con-
figurations of the reactant (black; ∆E > 50 kJmol−1) and product (blue;
∆E < −50 kJmol−1) states are also shown. The bottom row of figure 5.23
displays the average orientational structure for the first (left panel), second
(middle panel) and remaining (right panel) solvation shells. Compared to the
average Fe−O distance, the orientational structure seems to persist beyond
the second solvation shell to a certain extent. The results for the 202 crossing
points and 186 transition states according to the committor criterion from
200 reactive trajectories are statistically indistinguishable. The statistics are
better for the stable states because about 43 configurations per stable state
are available on average from each reactive event. Although the oxidation of
the ferrous ion leads to a higher alignment of the water molecules relative to
the iron ion and to a decrease of the radii of the first and second solvation
shells (electrostriction), the effect is not very pronounced. Indeed, an over-
lay of the first, the last and the transition state configurations of a typical
reactive trajectory in figure 5.24 shows that the structural changes are rela-
tively small. This is a further indication for the outer-sphere character of the
present model system. In particular, the first solvation shell remains almost
unchanged.

In addition, the low fraction of recrossings shown in table 5.9 for reactive
trajectories might point to the validity of transition state theory underlying
Marcus theory. This observation is only indicative in nature because the
exact transmission coefficient also includes unreactive trajectories that cross
and recross the dividing surface, which are not collected in this study.

In summary, the results presented here for the oxidation half-reaction of
the aqueous ferrous ion provide supporting evidence for the accuracy and
approximate validity of transition state theory and Marcus theory for outer-
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sphere electron-transfer reactions. Hence, I shall employ Marcus theory pre-
dictions in the discussion of the activation parameters, of the charge-transfer
symmetry factor and of its energetic and entropic components below.
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5.2.4 Activation parameters

Until now, I have discussed reaction energetics and the suitability of the
effective reaction free energy. In this section I shall focus on activation pa-
rameters including the reorganization free energy and entropy as well as the
effect of the coupling element, which does not appreciably affect the stable
states, as shown in section 5.2.1. I start with the discussion of the results on
the reorganization free energy and entropy below.

∆µ -10 0 10 20 30 40
∆rF (T = 278.15K) -11.8 -1.5 8.4 18.4 28.3 38.4
∆rF (T = 298.15K) -9.7 0.2 10.3 19.9 30.5 40.3
∆rF (T = 318.15K) -7.6 2.4 12.6 22.4 32.2 42.2
∆rF (T = 338.15K) -5.5 4.8 14.4 24.8 34.4 44.8
∆rF (T = 358.15K) -3.2 7.2 17.5 27.4 37.2 47.2
∆‡F

(d) (T = 278.15K) 26.0 30.9 35.9 41.6 47.4 53.7
∆‡F

(d) (T = 298.15K) 27.1 31.8 37.1 42.5 48.8 55.1
∆‡F

(d) (T = 318.15K) 28.1 33.0 38.5 44.0 49.9 56.4
∆‡F

(d) (T = 338.15K) 29.1 34.3 39.6 45.5 51.4 58.2
∆‡F

(d) (T = 358.15K) 30.3 35.6 41.4 47.2 53.3 60.0
λ (T = 278.15K) 126.6 126.3 126.3 126.8 126.7 126.4
λ (T = 298.15K) 127.2 126.9 127.0 126.9 126.9 127.0
λ (T = 318.15K) 127.4 126.9 127.4 127.5 127.3 127.0
λ (T = 338.15K) 127.3 127.6 127.7 127.6 127.6 127.2
λ (T = 358.15K) 127.9 127.8 128.2 128.0 128.1 128.3

Table 5.10: The free energies of reaction ∆rF , of activation ∆‡F
(d) and of

reorganization λ are shown as a function of temperature T and effective
reaction free energy ∆µ for the aqueous iron ion system. The results are
obtained from Marcus’s relations (5.22), (5.21) and (5.19) with canonical
equilibrium simulation data as input. All quantities are in kJmol−1, and
the statistical error for activation free energies (0.1 kJmol−1) is half that for
reorganization or reaction free energies.
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∆µ -10 0 10 20 30 40
∆rF (T = 278.15K) -13.3 -3.5 6.2 15.7 26.2 36.2
∆rF (T = 298.15K) -11.9 -2.0 7.6 17.5 27.5 37.7
∆rF (T = 318.15K) -10.3 -0.1 9.8 19.8 29.6 39.4
∆rFL (T = 278.15K) -13.5 -3.5 6.1 15.6 26.1 36.0
∆rFL (T = 298.15K) -12.0 -2.2 7.5 17.3 27.3 37.5
∆rFL (T = 318.15K) -10.5 -0.3 9.6 19.6 29.4 39.2
∆‡F

(a) (T = 278.15K) 20.5 25.1 29.8 35.1 41.4 47.7
∆‡F

(a) (T = 298.15K) 21.2 25.8 30.7 36.2 42.1 48.8
∆‡F

(a) (T = 318.15K) 22.1 26.9 32.1 37.6 43.6 50.1

Table 5.11: For the Fe2+
(aq)/Fe

3+
(aq) system the effective free energy of reaction

dependence of the Landau free energies of reaction (∆rFL) and activation
(∆‡F (a)) as well as free energies of reaction (∆rF ) obtained from umbrella
integration simulations at different temperatures are shown in kJmol−1. The
statistical uncertainty of reaction free energies is 0.6 kJmol−1 and about twice
that for activation free energies. These data underlie the evaluation of en-
tropies and internal energies according to equations (5.29) and (5.23).

∆µ -10 0 10 20 30 40
∆‡F

(d) (MT) 27.1 31.8 37.1 42.5 48.8 55.1
∆‡U

(d) (MT-GF) 11.1 14.1 17.3 21.8 27.3 31.9
∆‡U

(d) (MT-FD) 11.3 16.2 17.9 24.5 29.7 35.2
−T∆‡S

(d) (MT-GF) 16.0 18.0 20.1 21.2 21.7 23.5
−T∆‡S

(d) (MT-FD) 15.7 15.7 19.3 18.4 19.0 19.8
λ (MT) 127.2 126.9 127.0 126.9 126.9 127.0
−T∆Sλ (MT-GF) 4.1 5.3 6.8 4.7 5.3 6.0
−T∆Sλ (MT-FD) 5.5 4.3 8.5 5.2 4.5 4.3
∆‡F

(a) (UI) 21.2 25.8 30.7 36.2 42.1 48.8
∆‡U

(a) (UI) 10.3 12.7 14.9 17.8 26.7 31.0
−T∆‡S

(a) (UI) 11.0 13.3 16.0 18.5 15.8 17.9
∆‡F

(d) (UI) 24.4 29.6 34.5 40.3 46.2 53.2

Table 5.12: For the Fe2+
(aq)/Fe

3+
(aq) system the activation parameters obtained

from umbrella integration (UI; adiabatic: (a)) and Marcus theory (MT; dia-
batic: (d)) based simulations are shown in kJmol−1. The last row displays
hypothetical diabatic activation free energies from the curve crossings of the
dotted lines in figure 5.9.
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Estimates of the reorganization free energy and entropy have been ob-
tained from Marcus theory based simulations on diabatic potential energy
surfaces in the canonical ensemble at 298.15K. In particular, the reorganiza-
tion free energies were computed from the average gaps in the reactant and
product states according to equation (2.43)

λ =
1

2
(〈∆E〉R − 〈∆E〉P ) . (5.19)

The reorganization entropies were calculated from additional evaluations of
the reorganization free energy at 278.15 and 318.15K (so that ∆T = 20K)
as follows

∆Sλ = −
(
∂λ

∂T

)
N,V
≈ −λ(T + ∆T )− λ(T −∆T )

2∆T
. (5.20)

The dependence of the free energies of reaction, activation and reorga-
nization on temperature and reaction free energy for unbiased molecular
dynamics simulations is displayed in table 5.10. The resulting reorganization
entropies are reported in table 5.12. It is observed that the reorganization
free energy λ itself is remarkably insensitive to changes in the effective free
energy of reaction ∆µ (see also figure 5.11). This result is in agreement
with the expectation from equation (4.18b): λ 6= f(∆µ). The temperature-
dependence of the reorganization free energy, reported in the right panel of
figure 5.25 is weak, thus resulting in small values for the reorganization en-
tropy ∆Sλ. It is found that the reorganization entropy is negative for the
present model system. According to Ghorai and Matyushov [52], recent nu-
merical simulations and molecular theories predict that the reorganization
entropy should be positive. In particular, their work of p-nitroaniline in ace-
tonitrile and SPC/E water indicated small positive reorganization entropies
(T∆Sλ ≈ kBT ). However, they also indicate that negative reorganization
entropies have been observed for charged solute species [52]. Furthermore,
dielectric continuum theory predicts negative reorganization entropies for
high solvent polarities and positive reorganization entropies for low solvent
polarities [52]. Accordingly, the sign obtained for −T∆Sλ in this work would
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be in agreement with dielectric continuum theory [52]. Given the contro-
versy in the literature about which sign is expected, I shall restrict myself
to the observation that the reorganization entropy is small and negative in
the present case. It is seen from table 5.12 that the variation of the reorga-
nization entropy with ∆µ is within 1 kJmol−1 except for ∆µ = 10 kJmol−1.
This outlier value is within 2σ of the remaining −T∆Sλ results, where the
statistical error is σ = 2.0 kJmol−1.
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Figure 5.25: The temperature dependence of the activation (left panel) and
reorganization (right panel) free energies is displayed for the model oxidation
of the ferrous ion in aqueous solution at a temperature of T = 298.15K. In
the left panel, results from umbrella integration (UI) are indicated by plus
signs connected by dashed lines, whereas canonical equilibrium molecular dy-
namics (MT) simulations on the diabatic potential energy surface are marked
by circles connected by dotted lines. The effective free energy ∆µ increases
from bottom to top from −10 to 40 kJmol−1. The right panel shows reor-
ganization free energies from MT simulations for the following ∆µ values
(in kJmol−1): −10 (circles), 0 (plus signs), 10 (squares), 20 (crosses), 30
(triangles) and 40 (diamonds).
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In the following, I describe the free energy barrier and its energetic and en-
tropic components; I shall start with the activation free energies below. The
activation free energies obtained from Marcus theory (MT) based molecu-
lar dynamics simulation and umbrella integration (UI) are reported in table
5.12 (see also tables 5.10 and 5.11). The activation free energies according
to Marcus theory (2.29)

∆‡F
(d) =

(λ+ ∆rF )2

4λ
(5.21)

were computed from 10 ns-long canonical equilibrium molecular dynamics.
The reorganization free energy (5.19) and the reaction free energy (2.41)

∆rF =
1

2
(〈∆E〉R + 〈∆E〉P ) (5.22)

were extracted from the difference and the sum of the average diabatic gaps
〈∆E〉j in the stable states j = R,P .

It is seen from table 5.12 and from figures 5.9 and 5.26 that the dia-
batic activation free energy ∆‡F

(d) (MT) is larger than the adiabatic one
∆

(a)
‡ F (UI) by about 6 kJmol−1. To understand this difference, two aspects

are considered. First, as outlined in section 2.2.5, the dominant effect of
the electronic coupling is to lower the adiabatic free energy of the transi-
tion state with respect to the diabatic case by γel, which equals 3 kJmol−1

in the present study. Second, the results of section 5.2.1 indicate that the
reaction free energy from umbrella integration and Simpson’s rule is lower
by −2 kJmol−1 than the corresponding ∆µ value and Marcus theory esti-
mate. According to equation (5.21), this reduces the diabatic activation
free energy by 1 kJmol−1. Hence, the adiabatic activation free energy is
lower by around kBT compared to Marcus theory predictions. This differ-
ence might be due to non-linear effects. Support for this hypothesis stems
from the crossing points of the dotted lines in figure 5.9, which character-
ize the quadratic free energy curves with state-dependent curvatures from
umbrella integration simulations. The resulting hypothetical "diabatic" ac-
tivation free energies displayed in the last row of table 5.12 are about kBT
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smaller than those predicted from the equal curvature parabolas of Marcus
theory. Hence, if the corrections due to finite-size effects did not affect the
deviation from linear response, the non-linear behaviour due to the different
curvatures in the stable states could be one contribution to the difference
between Marcus theory based and umbrella integration simulations. In that
case, the difference between Marcus’s diabatic activation free energies and
the adiabatic activation free energies from umbrella sampling would arise
from two contributions: the first would be due to non-linear effects, and the
second would be caused by the electronic coupling.

∆µ -10 0 10 20 30 40 〈σ〉
Ea(UI) 12.8 15.2 17.4 20.3 29.2 33.5 3.4
Ea (MT-GF) 10.6 13.6 16.7 21.3 26.8 31.4 -
Ea (MT-FD) 10.9 15.7 17.4 23.9 29.1 34.7 1.3
Ea,ctr(t) (TPS) 9.6 10.2 20.6 21.0 25.1 33.7 2.4
Ea,fwd(t) (TPS) 10.0 8.8 20.0 20.6 22.7 37.5 2.8

Table 5.13: Activation energies for the aqueous iron model system in the
canonical ensemble at T = 298.15K are compared for transition path sam-
pling (TPS) simulations, umbrella integration (UI) and Marcus theory (MT)
based molecular dynamics simulations. The two latter methods use equations
(5.24) and (5.25) to relate the internal energy of activation ∆‡U , obtained
from equilibrium simulations at various temperatures via the finite difference
scheme (FD) of equation (5.23), to the activation energy. Marcus theory
based simulations also employ graphical fits (GF) and yield the adiabatic
activation energy Ea = ∆‡U

(d) + kBT − γel by assuming that the electronic
coupling γel affects the potential energy only. The activation energies from
transition path sampling results from the central (ctr) and forward (fwd)
finite difference schemes (5.27) and (5.28) employed to compute (5.26). The
average standard deviation is indicated by 〈σ〉, and all quantities are given
in kJmol−1.

Having discussed the activation free energies above, I turn to its com-
ponents next, starting with the activation energies. The activation energies
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from Marcus theory (MT) based equilibrium simulations and from umbrella
integration (UI) calculations are obtained from the corresponding activation
free energies at 278.15K and 318.15K, displayed in figure 5.25, according to
(4.22)

∆‡U(T ) =

(
∆‡F (T + ∆T )

T + ∆T
− ∆‡F (T −∆T )

T −∆T

)
×
(

1

T + ∆T
− 1

T −∆T

)−1

(5.23)

with ∆T = 20K. As already mentioned, equation (5.23) is an approximation
to equation (2.49):

∆‡U =

(
∂

∆‡F

T

∂ 1
T

)
N,V

. (5.24)

The computed internal energies of activation are then converted to activation
energies via equation (2.24):

Ea = ∆‡U + kBT. (5.25)

Transition path sampling activation energies are computed according to equa-
tion (2.70)

Ea(t) =
〈θ̇P (xt)H(ξ0)〉∗RP
〈θ̇P (xt)〉∗RP

− 〈H〉R, (5.26)

where the time derivative is performed numerically according to the central
(2.68)

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t−∆t)

2∆t
(5.27)

or the forward finite difference schemes (2.69)

Ȧ =
dA
dt
≈ A(t+ ∆t)−A(t)

∆t
. (5.28)

Similar to the activation energy, the activation entropy from MT and UI
simulations is obtained from the temperature dependence of the activation
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free energies according to equation (4.21):

∆‡S(T ) = −∆‡F (T + ∆T )−∆‡F (T −∆T )

2∆T
. (5.29)

It is seen from table 5.12 that the activation entropies computed from Marcus
theory (MT) based simulations and umbrella integration (UI) agree within
their statistical errors for −T∆‡S. The latter range from 1.1 to 1.4 kJmol−1

for MT and from 2.4 to 4.4 kJmol−1 for UI with increasing ∆µ.18 Impor-
tantly, the activation entropy significantly contributes to the free energy
barrier. For bimolecular processes this is expected because the reactants
approach to form the transition state, thereby decreasing the translational
freedom. However, the present model system describes a unimolecular pro-
cess so that this argument does not apply. Nonetheless, Marcus theory pro-
vides a means to rationalize these findings.

As emphasized by Weaver [58], half-reactions are asymmetric, and the
reaction entropies are therefore expected to be non-vanishing, as already
noted. In addition, a comparison of the reaction entropies shown in tables
5.5 and 5.6 with the activation entropies reported in table 5.12 illustrates
that the latter are well approximated by equation (2.50):

∆‡S
(d) =

(
1

2
+

∆rF

2λ

)
∆rS +

(
1

4
−
(

∆rF

2λ

)2
)

∆Sλ. (5.30)

This means that the activation entropies are mainly determined by half the
reaction entropies if the reorganization free energy is large, as in the present
case. Accordingly, only for symmetrical reactions is the reorganization en-
tropy expected to dominate the activation entropy. From a physical point
of view, the lower activation entropy for symmetrical reactions compared to
asymmetrical reactions can be rationalized as follows. In particular, the over-
all charge of the solute does not change for symmetric reactions, and the sol-
vent experiences similar forces due to the solute. In contrast, for asymmetric

18The variance of the umbrella integration results increases because the reactant min-
imum and the transition state become more separated as ∆µ increases (see figure 5.9).
Accordingly, the variance of more windows enters the error propagation formula (4.23).
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reactions, for example for a charge separation reaction (D+A→ D+ +A−),
the solute changes from approximately non-polar to strongly dipolar (ion-
pair) within the first solvation shell. As a result, the orientational restrictions
are likely to be higher in the ion-pair state compared to the less polar initial
state, resulting in a negative activation entropy. A physical explanation for
the non-vanishing activation entropy considers the effective transition state
charge. As seen from the iron-oxygen radial distribution functions, this effec-
tive charge lies between that of the reactants and the products. Specifically,
the transition state behaves as if it carried a higher positive charge than the
reactant ferrous ion. This leads to a reduced translational and orientational
freedom at the transition state compared to the reactants and thus explains
why the activation entropy is negative. It is approximately half that of the
reaction entropy if the transition state is half-way between the reactant and
product states.

It is clear from the above results for the activation entropy and for the ac-
tivation free energy that the activation energy is smaller than the latter. To
compare the different methods, the internal energies of activation from Mar-
cus theory based simulations and umbrella integration have been transformed
into adiabatic activation energies as obtained from transition path sampling.
In particular, equation (5.25) relates internal energies of activation and ac-
tivation energies. In addition, the electronic coupling, which is assumed to
affect the energy only, is subtracted from the diabatic estimate obtained from
Marcus theory [108,158]. The resulting activation energies and their average
standard deviations are reported in table 5.13. The statistical uncertainty
of Marcus theory based simulations is smaller than that of umbrella integra-
tion and transition path sampling simulations, which are around kBT for the
latter. The estimated activation energies are in reasonable agreement and
within statistical uncertainty. Hence, the transition path sampling method
implemented here is capable of providing the activation energy without prior
knowledge of the reaction coordinate.

It is noteworthy that the calculation of the activation energy in the tran-
sition path ensemble employed here [76] differs from a more recent approach
in reference [185]. There [185], the activation enthalpy was determined along
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a given trajectory as the difference between the average enthalpies of the
transition state and of the reactant state. This single-path activation energy
was then averaged over all harvested reactive trajectories [185]. During the
development stage of the present work the activation energy computed ac-
cording to equation (5.26) was compared to the difference in average total
energies of crossing points in the transition path ensemble and configurations
sampled from molecular dynamics simulations in the reactant state. This ap-
proach is similar to that employed in reference [185] and yielded activation
energies comparable to those reported in table 5.13.

Having presented the activation parameters in this section, I shall next
describe their variation with the effective reaction free energy.
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5.2.5 Charge-transfer symmetry factor and its compo-

nents

In this section I shall describe the charge-transfer symmetry factor (βct) as
well as its entropic (Tβct,S) and energetic (βct,U) components.
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Figure 5.26: The activation free energies ∆‡F are illustrated as a function of
the effective reaction free energy∆µ for the model oxidation of the ferrous ion
in aqueous solution at a temperature of T = 298.15K. Results from umbrella
integration (UI) are indicated by plus signs, whereas canonical equilibrium
molecular dynamics (MT) simulations on the diabatic potential energy sur-
face are marked by crosses. Quadratic fits to the data (dashed line: UI;
dotted line: MT) yield a charge-transfer symmetry factor value of 0.47 for
the former method and 0.49 for the latter. The solid line represents the Mar-
cus theory prediction for a reorganization free energy of λ = 127 kJmol−1

according to ∆‡F
(d) = (λ+∆µ)2

4λ
.

As noted previously, the charge-transfer symmetry factor βct (2.56)

βct =
∂∆‡F

∂∆rF
(5.31)

determines how the activation free energy varies with the reaction free en-
ergy. Although the numerical values of the activation free energies computed
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TPS TPS (fwd) UI MT (FD) MT (GF)
βct - - 0.47 ±0.005 0.49 ±0.007 0.49 ±0.007
βct,U 0.39 ±0.16 0.28 ±0.23 0.23 ±0.08 0.38 ±0.06 0.33 ±0.02
Tβct,S - - 0.25 ±0.08 0.13 ±0.06 0.18 ±0.02

Table 5.14: The charge-transfer symmetry factor for the oxidation half-
reaction Fe2+

(aq) → Fe3+
(aq) + e−(µ), denoted by βct, and its energetic (βct,U)

and entropic (βct,S) components are shown for transition path sampling
(TPS), umbrella integration (UI) and Marcus theory (MT) based equilib-
rium canonical simulations at T = 298.15K. The error estimates stem from
the asymptotic standard error calculated by the gnuplot program. For the
charge-transfer symmetry factor, no temperature derivative is required so
that Marcus theory based equilibrium simulations yield the same estimate
from graphical fits (GF) and finite difference (FD) schemes. The transition
path sampling calculations performed in this work yield the energetic com-
ponent of the charge-transfer symmetry factor only.

UI MT
βct 0.47 ±0.005 0.49 ±0.007(
∂βct
∂T

)
[K−1] 0.0008 ±0.00025 0.0004 ±0.00016

T
(
∂βct
∂T

)
0.25 ±0.08 0.13 ±0.05

Table 5.15: The charge-transfer symmetry factor βct and its temperature-
dependence are shown for umbrella integration (UI) and Marcus theory (MT)
based equilibrium canonical simulations for the model aqueous ferrous-ferric
oxidation half-reaction at T = 298.15K.
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Figure 5.27: The activation entropies (−T∆‡S) are illustrated as a func-
tion of the effective reaction free energy ∆µ for the aqueous ferrous-ferric
model system at T = 298.15K. Results from umbrella integration (UI) are
indicated by plus signs, whereas canonical equilibrium simulations on the
diabatic potential energy surface are marked by crosses for values obtained
from the finite difference scheme (FD) and diamonds for values resulting from
graphical fits (GF). Quadratic fits to the data (dashed lines) yield entropic
components of the charge-transfer symmetry factor of 0.25 (UI), 0.13 (FD)
and 0.18 (GF), which are also reported in table 5.14.

from Marcus theory based simulations and umbrella integration differ by an
amount discussed in section 5.2.4, their variation with reaction free energy
is very similar, as seen from tables 5.12 and 5.14. Likewise, a quadratic fit
to figure 5.26 yields βct = 0.47 for umbrella integration and βct = 0.49 for
Marcus theory based molecular dynamics simulations for ∆µ = 0.19 These
values are in good agreement with Marcus theory predictions according to

19The activation free energy as well as the activation entropy and the activation energy
are expected to depend quadratically on the reaction free energy. Therefore, I employ
quadratic fits of the activation parameters as a function of ∆µ. An alternative would con-
sist in evaluating the derivative of the symmetry factor (and its components) numerically
and fitting the result to a linear function. However, the numerical derivative is expected
to be very noisy so that the approach employed here seems more reliable.
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Figure 5.28: The variation of the activation energy with the effective reaction
free energy ∆µ as obtained from transition path sampling (TPS), umbrella
integration (UI) and Marcus theory (MT) based molecular dynamics simu-
lations is shown for the model oxidation reaction Fe2+

(aq) → Fe3+
(aq) + e−(µ) at a

temperature of T = 298.15K. The green diamonds and cyan squares denote
activation energies obtained from MT based molecular dynamics simulations
by means of the finite difference (FD) scheme (5.23) and from graphical fits
(GF). Activation energies computed from MT based canonical molecular dy-
namics simulations result from Ea = ∆‡U

(d) + kBT − γel because of equation
(5.25) (+kBT ) and because of the correction due to the difference between the
diabatic and the adiabatic activation energies (−γel). The transition path
sampling simulations yield activation energies obtained from central (ctr:
black plus signs) and forward (fwd: red circles) finite difference schemes
(5.27) and (5.28). Activation energies from umbrella integration are indi-
cated by blue crosses. The lines are quadratic fits to the data points shown
here and also reported in table 5.13. The fits yield the energetic component
of the charge-transfer symmetry factor given in table 5.14: 0.39 (TPS,ctr),
0.28 (TPS,fwd), 0.23 (UI), 0.38 (MT-FD) and 0.33 (MT-GF).

equation (2.57)

βct,MT =
1

2
+

∆rF

2λ
. (5.32)
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In addition, the charge-transfer symmetry factor is an indicator of the relative
location of the transition state with respect to the stable states. It agrees
with the average committor of crossing point configurations and with the
Fe − O radial distribution functions discussed in section 5.2.3. It is thus
found that the charge-transfer symmetry factors computed from umbrella
integration and molecular dynamics calculations are in qualitative and good
quantitative agreement with Marcus theory predictions.

In contrast, the variation of the activation entropy with reaction free
energy is less regular. Nonetheless, table 5.12 shows that the activation en-
tropy (−T∆‡S) increases over the entire range of ∆µ values. Although the
quantitative agreement from Marcus theory based simulations and umbrella
integration is smaller for Tβct,S than for βct, the sign and the order of mag-
nitude of Tβct,S are the same, as can be seen from tables 5.12 and 5.14 and
from figure 5.27. In particular, Tβct,S > 0.

That the entropic component of the charge-transfer symmetry factor is
positive can be understood from Marcus theory in two ways. First, the en-
tropic component of the charge-transfer symmetry factor is given by equation
(2.59)

Tβct,S,MT = −T ∂∆‡S
(d)

∂∆rF
=− T ∆rS

2λ
+ T∆Sλ

∆rF

2λ2
. (5.33)

From tables 5.5 and 5.12 it is seen that the reaction entropy (−T∆rS) is
larger than the reorganization entropy (−T∆Sλ) by about a factor of five.
Moreover, the prefactor of the reorganization entropy (−T∆Sλ) is signif-
icantly smaller than unity for the range of reaction free energies consid-
ered here. Thus, Tβct,S is expected to be positive. Its numerical value
is estimated from the first term of equation (5.33) to be around 1/8 with
−T∆S ≈ 30 kJmol−1 and λ ≈ 120 kJmol−1. Table 5.14 illustrates that the
simulation results are in reasonable agreement with this order of magnitude
estimate.

Second, as already noted, the transition state in Marcus theory can be
thought of as carrying an equivalent charge intermediate between that of the
reactant and product states. As the free energy of reaction increases, the
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transition state is expected to become more product-like [17, 18, 30, 85, 86].
In the present case, the equivalent charge of the transition state becomes
more positive, thus decreasing the entropy of the transition state by an ar-
gument similar to that given in section 5.2.4. If the entropy of the reactant
state remains approximately the same, the activation entropy decreases, and
Tβct,S is larger than zero. In summary, Marcus theory provides a means of
rationalizing the sign and the order of magnitude of the entropic component
of the charge-transfer symmetry factor for the model oxidation half-reaction
studied in this work.

I now turn to the description of the energetic component of the charge-
transfer symmetry factor, which, from the above argument that Tβct,S is
positive, is expected to be smaller than βct itself. In fact, this is found inde-
pendently from transition path sampling, umbrella integration, and Marcus
theory based molecular dynamics simulation results reported in tables 5.13
and 5.14 and shown in figure 5.28. Specifically, βct,U is positive and larger
than Tβct,S. Quadratic fits to the activation energies against ∆µ in figure
5.28 yield energetic components of the charge-transfer symmetry factor as
reported in table 5.14. Although the range of the βct,U values amounts to
0.16, this is still within the estimated errors. This situation arises because
the uncertainty on the activation energy leads to a large range of possible
slopes for the variation of Ea with the effective reaction free energy. Im-
portantly, the three methods are in qualitative agreement with one another
and consistent with the estimates of Tβct,S in the sense that the charge-
transfer symmetry factor of the present model reaction is predicted to be
temperature-dependent. This temperature-dependence is discussed next.

The Marcus theory expression for the charge-transfer symmetry factor
(5.32) indicates that the reorganization free energy λ and the reaction free
energy ∆rF might depend on temperature. The temperature-dependence of
the reorganization free energy is small, as seen from table 5.10. Therefore,
the temperature-dependence of βct reported in table 5.15 is mainly due to
the reaction free energy dependence on temperature. In fact, the present
simulations are carried out under equilibrium conditions at different reac-
tion free energies. At a given temperature ∆rF governs the equilibrium
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constant and the equilibrium populations. From classical thermodynamics
these properties are expected to depend on temperature if the internal en-
ergy of reaction does not vanish, which is the case in this work. In particular,
the temperature-dependence of the charge-transfer symmetry factor and its
entropic component displayed in tables 5.15 and 5.14 contain the same in-
formation for the present model system. As a result, the dependence of the
charge-transfer symmetry factor on temperature does not contradict Marcus
theory.

In summary, Marcus theory provides a good approximation for the model
system studied both from a qualitative and from a quantitative point of view.
The computation of the energetic component of the charge-transfer symmetry
factor by means of transition path sampling, umbrella integration and molec-
ular dynamics simulations yields results of the same order of magnitude. It is
found that the energetic component is smaller than the charge-transfer sym-
metry factor, thus indicating that the latter is temperature-dependent. This
conclusion is supported by the non-vanishing and positive values obtained
for Tβct,S.



Chapter 6

Conclusion

The aims of this work have been to determine the activation parameters
governing outer-sphere electron-transfer dynamics and to investigate whether
transition path sampling calculations of the activation energy, as reported in
reference [76], can be carried out accurately for a moderately complex system:
the model oxidation half-reaction of the classical aqueous ferrous ion.

This system has been chosen because it has been expected and confirmed
to be well described by Marcus theory. Therefore, Marcus theory has served
as a reference to evaluate the results obtained from transition path sam-
pling simulations. After its validation the transition path sampling method
has been applied to compute the energetic component of the charge-transfer
symmetry factor to gain insight into the activation process of outer-sphere
electron-transfer reactions.

To validate the transition path sampling implementation used here, lit-
erature results of a nine-atom argon system have been reproduced [76, 164].
Specifically, path averages in the microcanonical ensemble reported in [164]
have been calculated within statistical uncertainty. In addition, the acti-
vation energy in the canonical ensemble for the same model argon system
has been computed and compares favorably with the original values reported
in [76]. This provided supporting evidence that the temperature control for
the canonical ensemble proposed in reference [141] is correctly implemented.
Overall, the results obtained from the argon model system indicate that the
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transition path sampling method implemented in this work produces accurate
activation energies.

The validated methodology has then been used to compute the activation
energy for the model oxidation of the aqueous ferrous ion. Comparison of the
activation energy to umbrella integration and Marcus theory based molecular
dynamics simulations shows satisfactory agreement if the standard errors
for the activation energies are taken into account. The comparison of the
activation energy to the activation free energies computed from umbrella
integration and Marcus theory based equilibrium simulations indicates that
the activation entropy significantly contributes to the free energy barrier of
the present model system. This result agrees qualitatively with experimental
investigations of one-electrode processes [58].

Transition path sampling has also been applied to the computation of the
energetic component of the charge-transfer symmetry factor. The charge-
transfer symmetry factor itself from both umbrella integration and equilib-
rium molecular dynamics simulations is in excellent agreement with Marcus
theory predictions. The energetic component of the charge-transfer symme-
try factor ranges from 0.2 to 0.4 and is thus lower than the charge-transfer
symmetry factor, which is around 0.5. This result suggests that a change
in the reaction free energy is not completely reflected by a corresponding
change in the internal energy of activation. Instead, the activation entropy
also varies with the reaction free energy. Such a variation of the activation
entropy with reaction free energy indicates a temperature-dependent charge-
transfer symmetry factor [58]. The present work indeed finds that the charge-
transfer symmetry factor is temperature-dependent, thereby reflecting how
the equilibrium constant depends on temperature.

Furthermore, the validity of Marcus theory has been tested by various ap-
proaches. The traditional investigation of the linear response approximation
shows that fluctuations of the diabatic energy gap in the stable states are
Gaussian and that the variances differ only slightly. In addition, a commit-
tor analysis has shown that the diabatic gap is a good reaction coordinate.
However, the committor analysis also reveals that the short-time dynamics of
activated portions of equilibrium trajectories might be richer than expected
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from Marcus theory. The crossing points of Marcus theory correspond to
transition states in the committor sense to a good approximation, and the
maximum of the free energy profile computed from umbrella integration also
indicates that the transition state theory approximations underlying Marcus
theory are reasonable. In particular, the transmission factor of trajectories
in the transition path ensemble is close to unity. Furthermore, the geome-
try of the crossing points is intermediate between reactants and products,
as indicated by the iron-oxygen radial distribution function computed from
transition path sampling and equilibrium molecular dynamics simulations.
This result is in agreement with the (equivalent) charge distribution at the
transition state predicted by Marcus and Hush [38,85,86].

In summary, transition path sampling, umbrella integration and Marcus
theory based molecular dynamics simulations show that the present aqueous
ferrous ion model system is accurately described by Marcus theory.

The present work is limited by two major factors. First, the system size
is so small that finite-size effects are relatively large. Second, the artificial
aspects of the model do not provide a realistic description of an experi-
mental electron-transfer reaction. Nevertheless, this work has considered an
activated process for which energetic and entropic factors are important. It
therefore captures the essential features of a barrier crossing problem in terms
of classical nuclear motion and the associated statistical mechanics.

In particular, the present work has shown that the computation of ac-
tivation energies by means of transition path sampling is possible for mod-
erately complex systems. Transition path sampling and other methods will
always face the intrinsic statistical challenge of computing activation ener-
gies [76, 191, 221]. However, if the reaction coordinate of the system under
consideration is unknown, transition path sampling computations of the acti-
vation energy might provide a first insight into the mechanism. One possible
extension of this work could therefore be the investigation of systems for
which the reaction coordinate is unknown.

Another way to extend this work would be to replace the virtual electrode
by an explicit electron acceptor. If the electron acceptor were a chemical
species in solution, it might be possible to construct diabatic states with



226 CHAPTER 6. CONCLUSION

the empirical valence bond approach [105], as in this work. This would
allow for an investigation of the distance dependence between the donor and
acceptor species of the activation parameters. Alternatively, the electron
acceptor could be an electrode. In that case, the electronic structure would
have to be treated at a more sophisticated level. The advantage of such an
approach might be to get insight into the temperature dependence of the
charge-transfer symmetry factor in electrochemical systems, for which the
driving force can be controlled by an external electric potential [103]. Such
an approach would then require the treatment of a non-equilibrium system
for non-vanishing net current densities [33].



Appendix A

Random variables and probability

In this appendix we shall introduce some notions of probability theory. The
central concept of probability theory and statistics is a random variable.
Before we can define random variables, we need to discuss random experi-
ments, events and probabilities. In doing this, our presentation is inspired
by reference [2].

A.1 Random experiment and probability

We call a random experiment an experiment whose outcome we cannot pre-
dict. With this definition it does not matter whether we could do so in
principle. The important feature is that we cannot predict the outcome of
the experiment in practice. An example of a random experiment is rolling a
fair dice.

A random experiment has a result or outcome [2]. We shall call any
possible outcome of a random experiment an elementary event. The set of
all elementary events is the certain event E. In our example of rolling a fair
dice the elementary events are 1, 2, 3, 4, 5, 6, and the certain event is the
set E = {1, 2, 3, 4, 5, 6} [2].

From set theory [2] we can combine elementary events to new events. For
instance, the union A∪B of events A and B means that the events A or B or
both occur. In contrast, the cut of A and B is A ∩ B and denotes the event
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that both A and B occur. We also define the complementary event Ā to the
event A such that Ā ∪ A = E. As a special case, the complementary event
to the certain event E is the impossible event � = Ē.

We now associate a number w(A) with the event A and call it the prob-
ability that the event A is observed in a random experiment. Probabilities
obey the following axioms [2]:

1. Every event A has a probability 0 ≤ w(A) ≤ 1.

2. The certain event E has probability w(E) = 1.

3. If two events A and B are mutually exclusive, that is if A ∩ B = �,
then w(A ∪ B) = w(A) + w(B); in words, the probability of observing
A or B is the sum of probabilities w(A) and w(B) if the cut of A and
B is the empty set �.

A.2 Random variables and probability functions

Having introduced the concepts of random experiments and probability above,
we now turn to random variables and probability functions. A random vari-
able is a function that assigns a real number to every possible event. In other
words, the outcome of a random experiment is transformed into a finite, real
number [2].

Consequently, the probability w(Y = y) of observing a given value y of
the random variable Y equals the probability of observing the possible event
associated with that particular value y. The set of all possible probabilities
w(Y = y) defines the probability distribution. The probability distribution
function or distribution function characterizing the probability distribution
is defined as the probability WY (y) = w(Y ≤ y) that the random variable
Y assumes a value smaller than or equal to the real number y. From this
definition we obtain the probability of observing the values y1 < y ≤ y2 of
the random variable Y [2]:

w(y1 < Y ≤ y2) = w(Y ≤ y2)− w(Y ≤ y1) = WY (y2)−WY (y1). (A.1)
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We distinguish between two kinds of random variables: discrete and con-
tinuous ones. Discrete random variables can take only particular values,
often integers. The probability distribution function for a discrete random
variable Y is given by [2]

WY (y) =
∑
yj≤y

w(Y = yj). (A.2)

The sum of the probabilities of all events corresponds to the probability of
the certain event [2]: ∑

j

w(Y = yj) = 1. (A.3)

On the other hand, continuous random variables can have any real num-
ber as their values. The probability distribution function ΩY (y) for a con-
tinuous random variable Y is defined as the integral over the corresponding
probability density ω(Y ) [2]:

ΩY (u) =

∫ u

−∞
ω(y) dy. (A.4)

We see that the probability density ω(Y ) is normalized [2]:∫ ∞
−∞

ω(y) dy = 1. (A.5)

At all points where the probability distribution function ΩY (y) is differen-
tiable, we have for the probability density [2]

ω(y) =
d

dy
ΩY (y). (A.6)

A.3 Conditional probability

The conditional probability of observing event B given that event A has
already occurred is the probability of observing the events A and B divided
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by the probability of observing A (if this probability does not vanish) [2]:

w(B|A) =
w(B ∩ A)

w(A)
. (A.7)

Mutually exclusive events have no outcome of a random experiment in com-
mon. Because of w(B ∩ A) = 0 we have [2]

w(B|A) =
w(B ∩ A)

w(A)
= 0. (A.8)

Independent events are events that do not influence each other. For in-
stance, when we roll a fair dice twice, the outcome of the first roll and that
of the second are independent. For independent events the conditional prob-
ability becomes [2]

w(B|A) =
w(B ∩ A)

w(A)
=
w(B)w(A)

w(A)
= w(B). (A.9)



Appendix B

Expectation values, moments and
cumulants

The present appendix defines expectation values of a function of a random
variable as well as moments and cumulant-generating functions of a proba-
bility distribution. We shall discuss continuous random variables first and
turn to discrete random variables in the following. In section B.3 the cumu-
lant expansion of a Gaussian probability density is derived. Our presentation
follows references [2, 137].

B.1 Continuous random variables

We consider a continuous random variable Y and its probability density
ω(Y ). Then, the expectation value of a function f(Y ) of the random variable
Y is given by [2]

〈f(Y )〉 =

∫
f(y)ω(y) dy. (B.1)

For the special choice f(Y ) = Y k with k = 0, 1, 2, . . . the raw moments µ(r)
k

of the probability density are obtained [137]:

µ
(r)
k =

〈
Y k
〉

=

∫
yk ω(y) dy. (B.2)
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Most important for the present document are the cases k = 0 and k = 1. The
case k = 0 corresponds to the normalization of the probability density [2]:

µ
(r)
0 =

∫
ω(y) dy = 1. (B.3)

The population mean is obtained for k = 1 [2]:

µ
(r)
1 =

∫
y ω(y) dy. (B.4)

Contrary to raw moments, central moments µ(c)
k are expectation values around

the arithmetic mean µ(r)
1 [137]:

µ
(c)
k =

〈(
Y − µ(r)

1

)k〉
=

∫ (
y − µ(r)

1

)k
ω(y) dy. (B.5)

In particular, the variance σ2 is defined as the second central moment [137]:

σ2 = µ
(c)
2 = µ

(r)
2 −

(
µ

(r)
1

)2

= 〈Y 2〉 − 〈Y 〉2. (B.6)

Having introduced expectation values and moments above, we now turn
to moment-generating functions and cumulants. The moment-generating
function M(u) of a continuous random variable Y is defined as [137]

M(u) =
〈
euY

〉
=

∫
eu y ω(y) dy. (B.7)

To see why M(u) is called moment-generating function, we consider the kth

derivative with respect to u [137]:

d(k)M(u)

du(k)
=
〈
Y k euY

〉
=

∫
yk eu y ω(y) dy. (B.8)

For u = 0 this reduces to the raw moments given by equation (B.2).

For the present work it is more convenient to employ cumulant-generating
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functions K(u). They are related to moment-generating functions by [137]

K(u) = lnM(u) = ln
〈
euY

〉
= ln

∫
eu y ω(y) dy. (B.9)

The kth cumulant κck is given by the kth derivative with respect to u at
u = 0 [137]:

κck = 〈Y k〉c =
dkK(u)

duk

∣∣∣∣
u=0

. (B.10)

In particular, the first two cumulants equal the population mean κc1 = µ
(r)
1

and variance κc2 = σ2 [137]. To show this, the first two derivatives of the
cumulant-generating function K(u) are expressed in terms of the moment-
generating functions and their derivatives [137]:

dK(u)

du
=
d lnM(u)

du
=

M′
(u)

M(u)
; (B.11)

d2K(u)

du2
=

d

du

(
M′

(u)

M(u)

)
=

(
M′′

(u)
)

(M(u))−
(
M′

(u)
)2

(M(u))2 . (B.12)

Using equation (B.8) and setting u to zero for equations (B.11) and (B.12)
establishes the first and second cumulants [137].

B.2 Discrete random variables

In this seciton we consider a discrete random variable Y with associated
probability distribution function W (Y ≤ y). Furthermore, the probability
that the random variable takes the value Y = yj is denoted by w(Y = yj) =

w(yj). The expectation value of a function f(Y ) of the random variable Y
is given by [2]

〈f(Y )〉 =
∑
j

w(yj) f(yj). (B.13)

The special choice f(Y ) = Y k with k = 0, 1, 2, . . . yields the raw moments
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of the probability distribution function [137]:

µ
(r)
k = 〈Y k〉 =

∑
j

w(yj) y
k
j . (B.14)

As in the case of continuous random variables, the cases k = 0 and k = 1

correspond to the normalization of the probability distribution function and
the expected value of the random variable Y .

For the central moments µ(c)
k around the mean µ(r)

1 we find [137]

µ
(c)
k =

〈(
Y − µ(r)

1

)k〉
=
∑
j

w(yj)
(
yj − µ(r)

1

)k
. (B.15)

The first non-vanishing central moment defines the variance σ2 [137]:

σ2 = µ
(c)
2 =

〈(
Y − µ(r)

1

)2
〉

= µ
(r)
2 −

(
µ

(r)
1

)2

=
∑
j

w(yj)
(
yj − µ(r)

1

)2

=
∑
j

w(yj) y
2
j −

∑
yj

w(yj)yj

2

. (B.16)

B.3 Gaussian probability density and cumulants

The relations introduced above hold for arbitrary probability densities. Here,
the important special case of a Gaussian probability density will be consid-
ered. Most notably, it is shown that all cumulants beyond the second vanish
for a Gaussian probability density of a random variable Y with mean µ

(r)
1

and variance σ2 [137]:

ω(Y ) =
1√

2π σ2
e−

(Y−µ(r)
1 )

2

2σ2 . (B.17)
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Evaluating the cumulant-generating function by substituting (B.17) into (B.9)
yields [137]

K(u) = ln

∫
eu y ω(y) dy

= ln

∫
eu y

1√
2π σ2

e−
(y−µ(r)

1 )
2

2σ2 dy

= ln

∫
1√

2π σ2
e−

(y−µ(r)
1 )

2
−2σ2uy

2σ2 dy

= ln

∫
1√

2π σ2
e−

(y−(µ(r)
1 +σ2u))

2
+(µ(r)

1 )
2
−(µ(r)

1 +σ2u)
2

2σ2 dy

= ln

∫
1√

2π σ2
e−

(y−(µ(r)
1 +σ2u))

2

2σ2 eµ
(r)
1 u+ 1

2
σ2u2

dy

= µ
(r)
1 u+

1

2
σ2 u2. (B.18)

Proceeding from the third to the fourth line involves completing the square
in the argument of the exponential. To reach the last line, we note that the
second exponential in the integrand does not depend on Y and can be taken
out of the integral. The remaining integral evaluates to unity since the first
exponential is a Gaussian with a different mean, but with the same variance
as the original one. It is seen from equation (B.18) that the cumulant-
generating function of a Gaussian probability distribution is a parabola in u.
Consequently, the third and higher derivatives with respect to u vanish, and
so do the third and higher cumulants [137].
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Appendix C

Mathematical relations

In this appendix we present mathematical relations used in this work. Im-
portantly, our discussion is operational and not mathematically rigorous. It
merely serves as an internal reference.

C.1 Simpson’s rule

Given a function f(y), the integral over the range yb−ya can be approximated
by means of Simpson’s rule [2]:∫ yb

ya

f(u) du ≈ ∆y

3

(
f(ya) + 4 f

(
ya + yb

2

)
+ f(yb)

)
. (C.1)

Above, ∆y = yb−ya
2

divides the range yb − ya into two equal segments.

An extended version of Simpson’s rule imposes an odd number Nd of
y-values to approximate the integral over the function f(y) [2, 66]:

∫ yb

ya

f(u) du ≈ ∆y

3

Nd∑
j=1

Cjf(yj). (C.2)

Here, the function values are equidistant, and the separation is ∆y = yb−ya
Nd−1

.
The coefficients Cj assume the values 4 for even j, 2 for odd j, and 1 for the
first and last coefficients [66].
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C.2 δ-distribution

Following reference [2], we present an operational definition and selected
properties of the δ-distribution. The δ-distribution is a linear functional
acting on test functions f(y). A function associates a number with a number,
whereas a functional Φ(f) assigns a number to a function f . Given the
constants Cj and test functions fj(y) with j = 1, 2, a linear functional has
the following property [2]:

Φ[C1f1(y) + C2f2(y)] = C1Φ[f1(y)] + C2Φ[f2(y)]. (C.3)

The δ-distribution is defined as [2, 170]

∫ ub

ua

f(y) δ(y − y0) dy =

f(y0) for ua < y0 < ub;

0 otherwise.
(C.4)

Its domain of definition is that of the test function f(y).

Derivatives of the δ-distribution are given by [2]

∫ ub

ua

f(y) δ(n)(y − y0) dy =

(−1)nf (n)(y0) for ua < y0 < ub;

0 otherwise.
(C.5)

If the argument of the δ-distribution is a function f(y), we have [2]∫ ∞
−∞

δ (f(y)) dy =

∫ ∞
−∞

∑
yj :f(yj)=0

δ(y − yj)∣∣∂f
∂y
|yj
∣∣ dy. (C.6)

The sum is over all roots of the function f(y).

The δ-distribution can also be represented as a Fourier transform [170]:

δ(y − y0) =
1

2π

∫ ∞
−∞

eıu(y−y0) du. (C.7)
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C.3 Γ-function, hypersphere and canonical ki-

netic energy distribution

The Γ-function is defined as [2, 170,234]

Γ(n) =

∫ ∞
0

e−yyn−1dy

= 2

∫ ∞
0

e−y
2

y2n−1dy. (C.8)

According to reference [234], we can define an n-sphere or hypersphere of
radius R as the set of n-tuples satisfying

n∑
j=1

y2
j = R2. (C.9)

In particular, for a hypersphere of unit radius, the following relation holds
[234]: ∫ ∞

−∞
e−

∑n
j=1 y

2
j dy1 · · · dyn =

(∫ ∞
−∞

e−y
2

dy

)n
= Sn

∫ ∞
0

e−y
2

yn−1dy

=
1

2
Sn
∫ ∞

0

e−yy
n
2
−1dy. (C.10)

Above, Sn denotes the hypersurface area of an n-sphere with unit radius.

The properties of the hypersphere will be used below to rationalize the
Boltzmann distribution of the kinetic energy in a many-particle system.
Specifically, the Maxwell-Boltzmann distribution of Cartesian momenta in
the canonical ensemble is normalized (with β−1 = kBT ):

∫ ∞
−∞

e
−β
∑Nf
j=1

p2C,j
2mj

Nf∏
j=1

(√
β

2πmj

)
dpC,1 · · · dpC,Nf = 1. (C.11)

The massesmj are eliminated from equation (C.11) with the following change
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of variables:

p
(m)
C,j = pC,j

√
β

2mj

. (C.12)

Then, equation (C.11) is proportional to equation (C.10). In particular, if
we identify the yj of (C.10) with the p(m)

C,j of (C.12) and replace y in the last
line of equation (C.10) by βK, we obtain the kinetic energy distribution in
the canonical ensemble for a system with Nf degrees of freedom to within a
constant C [141]:

C
∫ ∞

0

e−βK K
Nf
2
−1 dK = 1. (C.13)



Appendix D

Statistical mechanics

This appendix introduces some of the basic results of statistical mechanics.
These results are well-known and stated here for reference, but no attempt
is made to derive these relationships. Our presentation is inspired by the
following textbooks [33,72,113].

D.1 Fundamentals

Statistical mechanics deals with how macroscopic observables can be ob-
tained from microscopic properties [113]. Suppose we know the properties
of microscopic particles, how they interact and evolve in time. We then ask
how a macroscopically large number of particles behaves on average [72].

To evaluate the average of any dynamical variable, two ingredients are
needed. First, we need to know the possible values of the dynamical variable
under consideration. Second, the probability is required for the system to
have a given value of the dynamical variable. In mathematical terms, the
average Aobs of a macroscopic observable A is [72]

Aobs = 〈A〉 =
∑
j

wj Aj. (D.1)

The sum in equation (D.1) is over all possible microstates j of the system,
which are characterized by their microscopic mechanical properties, whether
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quantum or classical. A dynamical variable A is a quantity that depends
on the microstate of the system and fluctuates as the system evolves. The
possible values Aj of the dynamical variable can be evaluated, in principle,
from quantum or classical mechanics. To determine the probability wj of
finding a system in a given microstate j is the role of statistical mechanics.

The weight wj depends on the ensemble under consideration. An en-
semble is characterized by all possible microstates that fulfill the constraints
imposed upon the system. The constraints are external control parameters
that we have at our disposal to describe the system macroscopically [72,113].

From quantum and classical mechanics we know that the time evolution of
a microscopic system is deterministic if its initial state is completely specified
[33,72]. In the quantum case, the time evolution is governed by Schrödinger’s
equation [235]; Newton’s equations of motion determine the future dynamics
of a classical system [33]. Given the deterministic dynamics, one may ask
why we need any statistical tool.

The reason for employing statistical methods lies in our incapacity to
know or control the microstate of a system completely when the number
of particles becomes macroscopically large [113]. Even for small systems
Heisenberg’s uncertainty principle prevents us from determining arbitrary
observables simultaneously in principle [113]. In addition, perturbations are
ubiquitous so that dynamical properties fluctuate. Although the system’s
time evolution is still deterministic, our description of the system’s dynamics
contains randomness because we cannot even characterize the initial state ex-
actly [33]. This randomness allows us to treat dynamical variables as random
variables. Despite that randomness, it is assumed that our description of the
system’s microstate is representative or close to any relevant physical state
of the system [106]. Consequently, we believe that the average behaviour
of the system under consideration can be described accurately if sufficient
representative microstates enter the ensemble average (D.1).

According to the ergodic hypothesis, the time average of a dynamical
variable approaches the ensemble average in equation (D.1) for long times
[72,113]. Another way of describing ergodicity is that the system approaches
every possible microstate arbitrarily closely for long trajectories. This means
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that there are two ways of estimating the average behaviour of a macroscopic
system. On the one hand, we can observe a system for a long time and
measure the dynamical variable of interest at various times. Alternatively,
we can determine the instantaneous state of a large number of subsystems
simultaneously, thus obtaining an ensemble average.

For any prediction to be accurate the individual measurements should be
independent. This will be the case if they are separated by times longer than
the relaxation time of the system in the case of the time average. Similarly,
the (macroscopic) subsystems must be larger than the correlation length for
their averages to approach the ensemble average [72].

Until now, we have not specified the nature of microstates. Consequently,
we briefly describe what is meant by this expression. In the quantum case,
a microstate is a pure quantum-mechanical state characterized by the linear
combination of any complete set of basis functions in Hilbert space [235]. In
the classical world, the microstate of a system is characterized by all positions
and momenta of all particles. The system’s microstate is a point in phase
space, which is spanned by all possible values of positions and momenta of
all particles [113]. This results in 6N dimensions, where N is the number of
particles. The factor 6 arises from the possible variation of the components
of the Cartesian coordinates and momenta for each particle.

D.2 Ensembles

Having set the scene of the general role of statistical mechanics, we now pro-
ceed to introduce some useful and fundamental relationships. As announced
above, statistical mechanics provides the probability functions for observing
microstates according to the ensemble under consideration. As we will be
concerned with the microcanonical and canonical ensembles in this work, we
shall restrict our attention to these cases.

First, we consider the microcanonical ensemble, which is characterized by
constant volume V , fixed particle number N and constant energy E [72,113].
According to the fundamental assumption of statistical mechanics, all mi-
crostates of an isolated system in thermodynamical equilibrium (microcanon-
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ical ensemble) are equally likely [72,113]. The probability of finding the sys-
tem in any microstate is the inverse of the microcanonical partition function
ΞNVE, which counts all microstates consistent with the constraints of the
ensemble. For an isolated system the number of microstates is related to the
entropy [113]:

S = kB lnΞNVE. (D.2)

Next, we turn to the canonical ensemble in which the particle number
N , the volume V and the temperature T are imposed upon the system. The
probability of finding a system in quantum state j with energy eigenvalue Ej
is [72]

wj =
e−βEj∑
j e
−βEj

. (D.3)

For a classical phase space point ξ = {rC,1, . . . , rC,3N , pC,1, . . . , pC,3N} the
corresponding expression is given by [72]

ρ(ξ) =
e−βH(ξ)∫
e−βH(ξ)dξ

. (D.4)

The integral is over phase space, and β−1 = kBT , where T denotes the
absolute temperature and kB the Boltzmann constant. Furthermore, H is
the classical Hamiltonian.

From the above equations we see that different microstates have different
probabilities in the canonical ensemble. Hence, the partition function in the
canonical ensemble is defined as a weighted counting of all microstates consis-
tent with the constraints of fixed particle number, volume and temperature.
The quantum partition function reads [113]

Q =
∑
j

e−βEj . (D.5)

Similarly, the classical limit in three physical dimensions yields equation
(D.6) [113]:

Q =
1

N !h3N

∫
e−βH(ξ)dξ. (D.6)
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Here, h denotes Planck’s constant, and h3N is a measure of the phase space
volume occupied by a microstate [106]. The central quantity in the canonical
ensemble is the Helmholtz free energy. For instance, it determines whether a
system is in equilibrium or how much reversible work is needed for a particular
chemical transformation. The Helmholtz free energy F is defined as [33,72]

F = −kB T lnQ. (D.7)

We see that the partition function and the Helmholtz free energy are related
to the volume of phase space. Such quantities are referred to as thermal
quantities [106].

We now turn to averages of a dynamical variable A in the canonical
ensemble. With the quantum (D.3) and classical (D.4) probability functions
we obtain the following expressions for the quantum and classical canonical
ensemble averages [72]:

〈A〉 =
∑
j

wj Aj =

∑
j e
−βEjAj∑
j e
−βEj

; (D.8)

〈A〉 =

∫
A(ξ) ρ(ξ) dξ =

∫
e−βH(ξ)A(ξ) dξ∫
e−βH(ξ) dξ

. (D.9)

The quantum ensemble average can also be computed via the trace of the
product formed by the operator associated with the observable of interest
and the density operator ρ̂. The trace is the sum of all diagonal elements of
a matrix representing an operator. It is invariant under basis transformations
and thus does not depend on the representation chosen [170]. The density
operator for a statistical mixture of pure quantum states |Ψk〉 occurring with
probability wk is [235]

ρ̂ =
∑
k

wkρ̂k =
∑
k

wk|Ψk〉〈Ψk|, (D.10)

where |Ψk〉〈Ψk| is the projection operator onto the pure state |Ψk〉. Conse-
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quently, the expectation value of the observable A is [33, 113,235]

〈A〉 = Tr(ρ̂A) =
∑
j

〈j|ρ̂A|j〉

=
∑
j,k

〈j|wk|Ψk〉〈Ψk|A|j〉 =
∑
j,k

wk〈Ψk|A|j〉〈j|Ψk〉

=
∑
k

wk〈Ψk|A|Ψk〉 =
∑
k

wk〈A〉k. (D.11)

We see from equation (D.11) that the trace operation is equivalent to per-
forming a weighted sum over expectation values 〈A〉k arising from individual
pure states for a given observable. In the last line, we have used the closure
relation of the complete set of functions {|j〉} [235]:

I =
∑
j

|j〉〈j|. (D.12)

D.3 Restricted phase space functions

The partition function provides the entire information of a system character-
ized by external control parameters. Equivalently, it describes the complete
phase space accessible to the system. However, it does not allow for the
distinction of different regions in phase space such as chemical composition
or native contacts of a protein. To distinguish regions of phase space, we
need internal constraints. Formally, internal constraints are introduced by
means of an order parameter x′(ξ), restricted to a particular value x′(ξ) = x

by means of a δ-distribution [68]. The restricted partition function then
reads [161]

Q(x) =
1

N !h3N

∫
δ
(
x
′
(ξ)− x

)
e−βH(ξ) dξ. (D.13)

Equation (D.13) comprises all microstates consistent with the external con-
straints of the ensemble and with the internal constraint, namely those phase
space points for which the order parameter has the value x. The unrestricted



D.4. VALIDITY OF CLASSICAL LIMIT 247

partition function is recovered by integrating the restricted ones over the or-
der parameter [33]:

Q =

∫
Q(x) dx. (D.14)

As seen above, the unrestricted partition function is associated with the
Helmholtz free energy. Similarly, we use the restricted partition function to
define the Landau free energy [68], also called the free energy profile or the
potential of mean force:20

F (x) = −kBT lnQ(x)

= −kBT ln
1

N !h3N

∫
δ(x

′
(ξ)− x) e−βH(ξ) dξ. (D.15)

An equivalent expression, often encountered in the literature, uses the re-
stricted phase space density ρ(x) = Q(x)

Q
of observing a given value of the

order parameter to write the potential of mean force as [33,68,118]

F (x) = F − kBT ln ρ(x) = F − kBT ln
Q(x)

Q

= F − kBT ln
∫
δ(x

′
(ξ)− x) e−βH(ξ) dξ∫
e−βH(ξ) dξ

= F − kBT ln 〈δ(x
′
(ξ)− x)〉. (D.16)

D.4 Validity of classical limit

Above, statistical mechanical results most relevant to the present work have
been described. We focused on equilibrium classical statistical mechanics
because this framework is used in the vast majority of expressions encoun-
tered. We close the discussion recalling under what circumstances classical
statistical mechanics is valid.

20In principle, a factor with the dimension of x should multiply the restricted partition
function Q(x) to render the argument of the logarithm dimensionless. For notational
brevity it is omitted here and throughout this document.
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Classical statistical mechanics is a good approximation if the particles
involved are sufficiently heavy and the temperature sufficiently high. As a
rule of thumb, particles heavier than Helium at temperatures above 4 K can
be treated classically. In that case, the thermal wavelength Λ =

√
h2

2πmkBT
,

indicating the spread of the quantum wavepacket, is smaller than atomic
dimensions so that quantum interference effects become negligible [113]. If
the hydrogen atoms are considered to be part of a larger compound, namely
a rigid water molecule carrying a dipole moment, the mass of the water
molecules and room temperature ensure that classical statistical mechanics
is reasonably accurate for the phenomena treated in this document.



Appendix E

Linear response theory

Equilibrium statistical mechanics provides a general description for time-
independent, reversible equilibrium properties. For time-dependent, irre-
versible non-equilibrium processes no such general theory exists [33,72]. The
reason for this is as follows. There is a unique equilibrium state for a system
subject to external constraints, whereas a system can deviate from equi-
librium in many different ways [148]. As a result, the description of the
non-equilibrium state will depend on the specific process investigated.

However, if the system is close to equilibrium, the non-equilibrium prop-
erties of the system can be described by linear response theory. Linear re-
sponse theory is a statistical-mechanical perturbation theory around equi-
librium. Our short presentation of it in this appendix follows the lines of
references [33, 72,106] and will focus on classical linear response theory.

Before beginning the quantitative description, we shall specify what is
meant by "weakly perturbed," "close to equilibrium" or "small deviations
from equilibrium." A system is considered close to equilibrium if the per-
turbation is so small that an accurate description of the non-equilibrium
behaviour is obtained by retaining only linear terms in the perturbative ex-
pansion. In other words, the deviations from equilibrium are linearly related
to the disturbance driving the system away from equilibrium [72].

Below, we shall consider in turn the response of a system to a time-
independent perturbation, the relaxation from a prepared non-equilibrium

249
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state to the unperturbed equilibrium state and the general dynamic response
to an arbitrary, small perturbation.

E.1 Static response

We consider an equilibrium system characterized by the Hamiltonian H. The
ensemble average of a dynamical variable A is given by [72]

〈A〉 =

∫
A(ξ)e−βH(ξ)dξ∫
e−βH(ξ)dξ

, (E.1)

where ξ denotes a point in phase space and integration is carried out over
the entire phase space.

Adding a perturbation F coupling to another dynamical variable B yields
the Hamiltonian of the perturbed system Hp = H + ∆H = H − F B. We
now ask how the average value of the dynamical variable A is affected by
the perturbation ∆H. Here we consider the system after it has relaxed to
the perturbed Hamiltonian. In other words, we compare two equilibrium
states; the first one is characterized by H, and the second one by Hp. To
this end, we express the ensemble average of A governed by the Hamiltonian
Hp in terms of ensemble averages governed by the unperturbed Hamiltonian
H. The exponential of the perturbed Hamiltonian Hp can be expanded
around the unperturbed Hamiltonian H because the perturbation ∆H is
small: e−βHp = e−βHe−β∆H ≈ e−βH(1−β∆H). Also, (1−β∆H)−1 ≈ 1+β∆H
for small ∆H around ∆H = 0. We obtain [33,72]

〈A〉p =

∫
A(ξ)e−βHp(ξ)dξ∫
e−βHp(ξ)dξ

=

∫
A(ξ)e−βH(ξ)(1− β∆H)dξ∫
e−βH(ξ)(1− β∆H)dξ

+O
[
(∆H)2

]
=
〈A〉 − β〈A∆H〉

1− β〈∆H〉
+O

[
(∆H)2

]
= (〈A〉 − β〈A∆H〉) (1 + β〈∆H〉) +O

[
(∆H)2

]
= 〈A〉 − β (〈A∆H〉 − 〈A〉〈∆H〉) +O

[
(∆H)2

]
. (E.2)
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To reach the third line from the second, we have divided the numerator
and denominator by the phase space integral

∫
e−βH(ξ)dξ to obtain averages

characteristic of the unperturbed system.
Expressing the deviation in the averages of the dynamical variable A as

Dp〈A〉 = 〈A〉p − 〈A〉 and substituting ∆H = −FB yields to first order in
F [33, 72]

Dp〈A〉 = β F (〈AB〉 − 〈A〉〈B〉)

= β F 〈DADB〉. (E.3)

The last line of the above equation is obtained on noting that every dynamical
variable A can be expressed as A = 〈A〉 + DA and on realizing that the
fluctuations DA vanish on average; namely, 〈DA〉 = 0.

E.2 Relaxation

We now turn to the phenomenon of relaxation. Relaxation is the time-
dependent evolution of a system from a non-equilibrium state towards equi-
librium. Let the equilibrium state be characterized by the unperturbed
Hamiltonian H. As in the static response case, we consider a perturbation
∆H = −FB driving the system from its original equilibrium state to a state
characterized by the Hamiltonian Hp = H+∆H. The equilibrium state with
respect to the perturbed Hamiltonian corresponds to a non-equilibrium state
with respect to the original, unperturbed Hamiltonian H. We now ask how
the system prepared in the non-equilibrium state characterized by Hp relaxes
back to its equilibrium state when the static perturbation is suddenly turned
off. We follow the time evolution of the dynamical variable A to monitor the
relaxation [33,72].

To quantify this process, we note that the initial non-equilibrium distribu-
tion with respect to H corresponds to the equilibrium distribution associated
with Hp, whereas the time evolution of the system is governed by the un-
perturbed Hamiltonian H [33, 72]. Denoting the non-equilibrium ensemble
average of A by 〈A(t)〉ne and performing similar mathematical operations as
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in the static response case above, we obtain [33,72]

〈A(t)〉ne =

∫
A(ξ, t)e−βHp(ξ)dξ∫

e−βHp(ξ)dξ

=

∫
A(ξ, t)e−βH(ξ)(1− β∆H)dξ∫

e−βH(ξ)(1− β∆H)dξ
+O

[
(∆H)2

]
= (〈A(t)〉 − β〈A(t)∆H〉) (1 + β〈∆H〉) +O

[
(∆H)2

]
= 〈A(t)〉 − β (〈A(t)∆H〉 − 〈A(t)〉〈∆H〉) +O

[
(∆H)2

]
. (E.4)

As equilibrium averages are independent of reference time t, we have 〈A(t)〉 =

〈A〉. Inserting the perturbing field F coupling to the dynamical variable B
according to ∆H = −FB yields the time-dependent relaxation Dne〈A(t)〉 =

〈A(t)〉ne − 〈A〉 [33, 72]:

Dne〈A(t)〉 = β F 〈DA(t)B(0)〉. (E.5)

In equation (E.5) the instantaneous fluctuations of the dynamical variables
A and B are DA(t) = A(t)− 〈A〉 and DB(0) = B(0)− 〈B〉.

We see that the relaxation of a macroscopic non-equilibrium perturbation
towards equilibrium occurs on the same timescale as the decay of correlations
between microscopic spontaneous fluctuations in equilibrium [33,72,236]. In
other words, for small deviations from equilibrium, one cannot distinguish
whether the system has been prepared in a non-equilibrium state by an exter-
nal perturbation or whether the system has undergone a spontaneous fluctu-
ation. Equation (E.5) is known as the fluctuation-dissipation theorem. This
theorem is a formal proof of Onsager’s regression hypothesis [145, 147] and
yields the remarkable result that relaxation is governed by equilibrium dy-
namics [72].

E.3 Dynamic response and response functions

In the discussion above we have restricted our attention to time-independent
perturbations. We now turn to a time-dependent perturbation F(t) that
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couples to the dynamical variable B. In the linear regime the response of the
system Dne〈A(t;F)〉 is linear in the disturbance F [72]:

Dne〈A(t;αF)〉 = αDne〈A(t;F)〉. (E.6)

The most general linear relationship satisfying equation (E.6) is [33,72,106]

Dne〈A(t)〉 =

∫ ∞
−∞
F
(
t
′
)
χ
(
t, t
′
)
dt
′
. (E.7)

In equation (E.7) above the macroscopic non-equilibrium response of the
system is written as an integral over the history of perturbations F and
the response function χ, which has the following characteristics. Since the
response function is a property of the equilibrium system, it does not depend
on the time-dependent perturbation F . In addition, the absolute time origin
is not relevant for equilibrium systems so that χ is a function of the time
difference t− t′ between the response and the perturbation only [72,106]:

χ
(
t, t
′
)

= χ
(
t− t′

)
. (E.8)

Finally, the principle of causality demands that the response function
vanishes before any disturbance is applied. This yields [72, 106]

χ
(
t− t′

)
=

0 for t ≤ t
′ ;

θ
(
t− t′

)
for t > t

′ .
(E.9)

Above, θ(y) is the indicator function. In summary, the response function
χ(t − t

′
) determines the response of the equilibrium system (in absence of

any disturbance) at time t to a perturbation at an earlier time t′ .

As mentioned above, the response function is independent of the distur-
bance applied. As a consequence, we can choose any form of F to find the
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general form of the response function. We choose [72]

F
(
t
′
)

=

F for t′ < 0;

0 for t′ ≥ 0.
(E.10)

Inserting (E.10) and the response function properties (E.8) and (E.9) into
equation (E.7) yields [72]

Dne〈A(t)〉 = F
∫ 0

−∞
χ
(
t− t′

)
dt
′
. (E.11)

Changing variables to t− t′ , we obtain [72]

Dne〈A(t)〉 = F
∫ ∞
t

χ
(
t
′
)
dt
′
. (E.12)

To proceed, we note that our choice of disturbance given by equation (E.10)
coincides with that of the relaxation case studied in the previous section.
In particular, the non-equilibrium state is prepared with the Hamiltonian
H−FB, the disturbance is turned off at t = 0, and the system relaxes back
to equilibrium with dynamics governed by the unperturbed Hamiltonian H.
The relaxation dynamics is given by equation (E.5). Comparing this result
to equation (E.12) above, we obtain [33,236]∫ ∞

t

χ(t
′
)dt

′
= β〈DA(t)DB(0)〉. (E.13)

We take the time derivative using "Leibniz’s rule" to obtain the response
function (E.14) [33,72,106]:

χ(t) = −θ(t)β〈DȦ(t)DB(0)〉 = θ(t)β〈DA(t)DḂ(0)〉. (E.14)

This completes our brief outline of linear response theory.
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Time correlation functions

Time correlation functions are an important tool for investigating the dy-
namics of a system [33,72]. They play a crucial role in linear response theory
(see appendix E), which is employed to express rate constants. Our presen-
tation of time correlation functions is guided by references [33,72]. We shall
restrict ourselves to stationary systems and classical mechanics because of
their central importance to the present document.

In stationary systems all times are equivalent because macroscopic ob-
servables are time-independent. However, it is meaningful to consider the
relation between a dynamical variable A(t0) at time t0 and another dynami-
cal variable B(t0 +t) at time t0 +t on average. This is exactly the information
contained in a time correlation function [33].

In the realm of classical mechanics the time evolution of a system in
phase space can be described by Hamiltonian dynamics [165]. In particular,
a dynamical variable A(t) = A(ξ(t)) = A(ξ; t) depends on time via the time
evolution of the phase space variables ξ(t), which is determined by a given
set of initial conditions ξ. Averaging over initial conditions in phase space
ρ(ξ) then yields the time correlation function [33,72]:

CAB(t0, t0 + t) = 〈A(t0)B(t0 + t)〉

=

∫
A (ξ, t0) B (ξ, t0 + t) ρ(ξ) dξ. (F.1)
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Below, we introduce some properties of time correlation functions. First,
the time origin is arbitrary because we consider stationary systems. Hence,
only the time difference between observations is relevant t = (t0 + t) − t0

[33, 72]:

CAB(t0, t0 + t) = 〈A(t0)B(t0 + t)〉

= 〈A(−t)B(0)〉

= 〈A(0)B(t)〉 = CAB(t). (F.2)

Second, it follows from equation (F.2) that the time derivative of the time
correlation function has the following property [33]:

〈
A(0) Ḃ(t)

〉
=

d

dt
CAB(t) =

〈
A(0)

d

dt
B(t)

〉
=

d

dt
〈A(0)B(t)〉

=
d

dt
〈A(−t)B(0)〉 =

〈
d

dt
A(−t)B(0)

〉
= −

〈
Ȧ(−t)B(0)

〉
= −〈Ȧ(0)B(t)〉. (F.3)

Third, if the dynamical variables are identical A = B, we have [33,72]

CAA(t) = 〈A(0)A(t)〉

= 〈A(−t)A(0)〉

= 〈A(0)A(−t)〉

= CAA(−t). (F.4)

Above, the second line follows from a shift in time origin, and the third
line is obtained by exchanging the order of the dynamical variables, which is
permissible for classical systems [72].

The properties presented here are the most relevant for this work. As
mentioned earlier, they are used in section 2.1 and in appendix E.



Appendix G

Non-Hamiltonian dynamics

The natural time evolution of a classical mechanical system is characterized
by Hamilton’s canonical equations of motion and generates the microcanon-
ical ensemble [165]. We have seen in section 3.1 that the time evolution of
a Hamiltonian system is generated by the Hamiltonian as a canonical trans-
formation that is continuous in time. The consequences of such Hamiltonian
dynamics include the conservation of an arbitrary phase space volume ele-
ment and the Liouville theorem [165].

G.1 Phase space compressibility

In contrast, the generation of other ensembles from a single long trajectory
requires non-Hamiltonian dynamics. In that case, the equations of motion
are not canonical and cannot be derived from the Hamiltonian [106]. Further-
more, the symplectic condition does not hold in general, and the magnitude
of a volume element in phase space is not conserved under dynamical prop-
agation [106].

However, generalizations of the Hamiltonian formalism to non-Hamiltonian
systems have been obtained, for example, in references [176, 177]. We shall
follow the lines of these presentations to introduce some of the concepts used
in non-Hamiltonian dynamics and their relation to classical statistical me-
chanics. To limit the scope of the present document, the reader is referred
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to references [176,177] for derivations of the relations presented.

As pointed out in reference [165], the time evolution of a system can
be viewed as a continuous coordinate transformation. For any coordinate
transformation (ξ0 → ξt) the volume element of the new coordinates dξt
is related to that of the old coordinates dξ0 by the absolute value |J | of
the determinant J (ξt; ξ0) of the Jacobian matrix J , whose elements are
Jjk =

∂ξjt
∂ξk0

[2, 176,177]:
dξt = |J (ξt; ξ0)| dξ0. (G.1)

For Hamiltonian systems the absolute value of the Jacobian determinant
is unity [165]. An equivalent way of expressing this property is to state that
the phase space compressibility κ, given in equation (G.2) below, vanishes
[106,176,177]:

κ(ξt, t) = ∇ξξ̇t =
∑
j

∂ξ̇j
∂ξj

. (G.2)

In contrast, the phase space compressibility does not generally vanish for
non-Hamiltonian systems.

G.2 Generalized invariant measure

However, there exists an invariant measure under dynamical propagation
in the case of non-Hamiltonian dynamics as well. It has been reported in
reference [176] that the absolute value of the determinant of the Jacobian
matrix equals the ratio of the metric determinant factors √g [176,177] of the
old and new sets of coordinates:

J (ξt; ξ0) =

√
g(ξ0)√
g(ξt)

. (G.3)
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Using equation (G.3) and the time derivative of the Jacobian determinant
and its inverse J −1 [176],

dJ (ξt; ξ0)

dt
= J (ξt; ξ0)κ(ξt, t); (G.4a)

dJ −1(ξ0; ξt)

dt
= −J −1(ξ0; ξt)κ(ξt, t), (G.4b)

it has been shown [176] that the generalized invariant measure under dy-
namical evolution for non-Hamiltonian systems is given by equation (G.5)
below: √

g(ξ0) dξ0 =
√
g(ξt) dξt. (G.5)

We note for reference that the metric determinant factor is related to
the phase space compressibility (assumed here not to be explicitly time-
dependent) as follows [176,177]:

J (ξt; ξ0) =

√
g(ξ0)√
g(ξt)

= eΥ(ξt,t)−Υ(ξ0,0) = e
∫ t
0 κ(ξu,u)du. (G.6)

The phase space compressibility is related to Υ by [176]

κ = Υ̇. (G.7)

G.3 Generalized Liouville equation

Given the generalized invariant measure in equation (G.5) above, the follow-
ing generalized version of the Liouville equation can be derived [176,177]:

∂(ρ
√
g)

∂t
+∇ξ(ρ

√
gξ̇) = 0. (G.8)

We combine the generalized invariant measure (G.5) and the time derivative
of the Jacobian determinant (G.4) to show that the phase space density ρ is
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conserved for non-Hamiltonian systems:

∂
(
ρ
√
g
)

∂t
+∇ξ

(
ρ
√
gξ̇
)

=
√
g

(
∂ρ

∂t
+ ξ̇∇ξρ

)
+ ρ

(
∂
√
g

∂t
+ ξ̇∇ξ

√
g +
√
g∇ξξ̇

)
=
√
g

(
dρ

dt

)
+ ρ

(
d
√
g

dt
+
√
gκ

)
= 0. (G.9)

According to reference [176], the time evolution of the metric factor reads

d
√
g(ξt)

dt
= −

√
g(ξt)κ(ξt, t). (G.10)

We thus see that the second bracket on the right-hand side in the last line
of equation (G.9) vanishes. Hence, the first bracket must also vanish. As a
consequence, the phase space density is time-independent even if the system’s
motion is governed by non-Hamiltonian dynamics [176,177]. This result leads
to the following expression for the ensemble average of any dynamical variable
A [176,177]:

〈A〉 =

∫
A(ξ)ρ(ξ)

√
g(ξ) dξ∫

ρ(ξ)
√
g(ξ) dξ

. (G.11)

G.4 Generalized distribution function

As discussed in reference [177], conservation laws restrict the system to ex-
plore a given subspace of phase space. If all conservation laws are identified
by the set of conserved quantities {Cc,k}, the phase space available to the
system can be specified by a generalized microcanonical-like partition func-
tion [177],

Ξ(Ck) =

∫ ∏
k

δ(Cc,k(ξ)− Ck)
√
g(ξ) dξ, (G.12)

where Ck denotes a set of constants. To obtain the correct phase space
density, it is essential to specify all conservation laws [106,177].
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Following reference [177], we present a general procedure for obtaining the
equilibrium phase space density describing a non-Hamiltonian system. First,
all conservation quantities need to be identified so that the microcanonical-
like partition function of equation (G.12) can be determined. Second, linearly
dependent variables are eliminated using the equations of motion and the
conservation laws. Third, the phase space compressibility κ is evaluated and
used to obtain the phase space metric

√
g(ξ) yielding the invariant measure√

g(ξ) dξ. Fourth, we construct the generalized microcanonical partition
function according to equation (G.12). If the system under consideration
contains artificial coordinates that extend the size of the phase space, inte-
gration over these variables in equation (G.12) enables us to obtain the phase
space density for the physical variables in the system.

In the present work the outline given in this appendix is used in section 3.1
to discuss molecular dynamics simulations in the canonical ensemble using
the Nosé-Hoover thermostat.
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