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Abstract 

Using remote sensing to track resilience of subtropical 

rainforests against fires and tropical cyclones 

Chan Hei Yeung 

The large-scale restoration of tropical and subtropical rainforests is crucial for mitigating climate 

change and biodiversity loss. Disturbances such as fire and wind potentially undermine efforts to restore 

degraded landscapes, interacting with the existing vegetation and background topography to produce 

complex patterns of damage. It is therefore crucial for us to understand these interactions and study the 

factors that contribute to disturbance resilience. Rapid developments in the field of remote sensing have 

provided new tools to study forest-disturbance dynamics across unprecedented spatiotemporal scales. 

In this thesis, a range of high-resolution remote sensing products, including aerial imagery, satellite 

multispectral imagery, and airborne LiDAR scans, were used to evaluate how fires and tropical cyclones 

have affected vegetation in wet subtropical Hong Kong. Chapter 1 provides an overview of how forest 

disturbances interact with restoration ecology. It then describes the vegetation history of Hong Kong, 

highlighting how the region represents an interesting case study as a long-running restoration project 

over highly degraded landscapes in the wet tropics. Chapter 2 reconstructs the fire history of Hong 

Kong using a 34-year Landsat imagery time series. Burn area detection in the wet tropics and subtropics 

is challenging due to high cloud cover and rapid revegetation of burn areas. A pipeline was developed 

to process hundreds of satellite multispectral images and accurately map out thousands of burnt areas. 

The pipeline additionally dated every detected burn area polygon and estimated burn severity for pixels 

in the burn area. The final product is the first of its kind in wet tropical Asia. Chapter 3 proceeds to use 

this burn area and severity time series to study fire-vegetation feedbacks in Hong Kong. When early 

successional vegetation is more fire susceptible than late-successional closed-canopy forests, positive 

fire-vegetation feedbacks are created. These feedbacks can then form “fire traps” that undermine 

restoration of degraded landscapes. Here, fire occurrence and post-fire recovery in different vegetation 

types were investigated. The results provided compelling evidence for the presence of strong fire traps 

in Hong Kong. Chapter 4 describes a pipeline to model long-term mean and typhoon maximum wind 

speeds across the rugged topography of Hong Kong, as a precursor for Chapter 6. Specifically, wind 

models based on computation fluid dynamics (CFD) modelling were validated by wind data collected 

from a dense network of weather stations and our own anemometers. Chapter 5 analyses the resulting 

wind maps and a repeated LiDAR dataset (2010, 2017, 2020) to study forest resilience against strong 

tropical cyclones. The LiDAR dataset captured the forest damage incurred during Typhoon Mangkhut 

in 2018, which was the strongest tropical cyclone to affect Hong Kong in over 40 years. Plantations, 

tall forests, and normally wind-sheltered forests were found to be more susceptible to tropical cyclones. 

Effects of tropical cyclones and wind exposure cascaded through time to create strong wind-related 
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limits on local forest height. Chapter 6 provides a holistic discussion of the findings of this thesis by 

summarising how the two studied disturbance processes (fires and wind) act alongside other 

disturbances to shape restored subtropical landscapes. The chapter also describes planned future work 

on (1) modelling and extrapolating the effects of fire on restoration and (2) exploring effects of wind 

on forest structure. Overall, this thesis provides a detailed account of the patterns of resilience against 

fire and tropical cyclones in the wet tropics. Such knowledge on resilience could help land managers 

better plan and restore degraded landscapes in the wet tropics under changing climate and disturbance 

regimes. 
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Chapter 1: Introduction 

1.1 Introduction to forest restoration 

1.1.1 The decade of ecosystem restoration 

Tropical and subtropical forests provide crucial ecosystem services and house enormous biodiversity 

(Delgado-Aguilar et al., 2017; Gentry, 1992; Silvério et al., 2019). These ecosystems are, however, 

threatened by land conversion and degradation. The need to feed the rising population has led to 

extensive conversion of forests to arable land or pastures. Globally, 314 Mha of forests were lost 

between 2001 and 2015 (Curtis et al., 2018). Forests that escape land conversion are often logged to 

meet the strong demand for timber and firewood. A total of 500-600 million hectares, or 30-40% of 

remaining tropical forests, are now degraded by anthropogenic activity (Budiharta et al., 2014; Pan et 

al., 2011). Deforestation, degradation, and fragmentation of tropical forests need to be reversed to avert 

a biodiversity crisis and a sixth mass extinction (Barnosky et al., 2011). The restoration of degraded 

forests represents a race against time. The fragmentation of tropical forests creates extinction debts – 

species residing in fragmented forest patches tend to go extinct in the long term if the patches are not 

reconnected (Kuussaari et al., 2009; Tilman et al., 1994). Additionally, the global community has 

increasingly recognised the ability for tropical forests to mitigate anthropogenic climate change by 

acting as carbon sinks (Bastin et al., 2019; Pan et al., 2011; Wheeler et al., 2016). As a result, 

international initiatives have repeatedly called for the large-scale restoration of previously deforested 

or degraded landscapes in the wider tropics. The Bonn Challenge pledges to restore 350 Mha of forests 

by 2030 (Verdone & Seidl, 2017); the One Trillion Tree initiative aims to conserve, restore, or grow a 

trillion trees in the same time frame (Brancalion & Holl, 2020); and the UN has subsequently marked 

the years 2021 to 2030 as the Decade of Ecosystem Restoration (Abhilash, 2021). 

1.1.2 Types of restoration 

Various strategies have been implemented to promote forest restoration in the tropics, each with its own 

advantages and drawbacks. The simplest restoration strategy is natural regeneration. Sites earmarked 

for restoration are left alone, allowing for the natural colonisation of shrubs and trees to push the site 

through various stages of succession. Across much of the wet tropics, natural regeneration has been 

hailed to be the most cost-effective restoration strategy that delivers the greatest benefits to both carbon 

sequestration and local biodiversity (Lamb et al., 2005; Lewis et al., 2019). Several interventions could 

potentially increase the effectiveness of natural regeneration. The control of disturbances, such as fires 

or herbivory pressure, can reduce the mortality of seedlings (Florens, 2013; Flores & Holmgren, 2021; 

Wheeler et al., 2016). The selective removal of early successional tree species has also been explored 

as a solution to speed up the rate of succession (Swinfield et al., 2016). Despite the benefits, several 

factors could potentially undermine the efficiency of natural regeneration as a restoration strategy. The 
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soils on degraded landscapes can sometimes be heavily eroded and nutrient poor (Corlett, 1999; Davies 

et al., 2010; Jim, 2003). In some regions, this could lead to the formation of gullies and moon-like 

landscapes where trees do not naturally regenerate. Additionally, when landscapes are extensively 

deforested or degraded, much of the area may lack sufficient seed sources for effective regeneration 

(Herrmann et al., 2016; Levine & Murrell, 2003; Rogers et al., 2019). This could be further exacerbated 

by the dominance of early successional vegetation or invasive species, which could physically occlude 

the establishment of trees and lead to arrested succession (Florens, 2013; N. Liu et al., 2013; Pang et 

al., 2018; Rochimi et al., 2021). In such case, active restoration can sometimes provide an alternative 

to natural regeneration. Trees can be planted in the restoration site by either direct seeding or sapling 

plantation (Corlett, 1999; Lamb et al., 2005; Law et al., 2023; Scheper et al., 2021; Wheeler et al., 2016). 

This could be facilitated by the removal of grasses, ferns, or shrubs dominating the degraded site 

(Florens, 2013). There is also flexibility in how plantations are established. Due to its low cost and 

economic value, monocultures of fast-growing trees planted in neat rows currently represent the most 

popular restoration strategy (Lewis et al., 2019). The practice is, however, increasingly discouraged as 

mounting evidence shows that they fail to restore local biodiversity and have low resilience against 

disturbances (Jucker et al., 2014; Lewis et al., 2019; Tilman et al., 1994; Zhu et al., 2023). Alternatively, 

plantations formed by a mixture of different native species can deliver better biodiversity benefits but 

are often more costly to establish (Stephens & Wagner, 2007; Trauernicht et al., 2018). Agroforestry, 

the practice of planting economically valuable crops in restored forests, can offer a compromise in areas 

where the income generated by the crops are necessary to pay for the cost of restoration (Bhagwat et 

al., 2008). Previous studies have also explored the idea of changing the spatial arrangement of planted 

trees. Applied nucleation – planting trees in small clusters while leaving the rest of the landscape for 

natural regeneration – has been trialled in a number of sites (Corbin & Holl, 2012). This approach could 

accelerate the rate of natural regeneration by introducing seed sources into degraded landscapes, while 

still having the benefit of creating structurally and biologically diverse forests at lower costs than 

plantations (Corbin & Holl, 2012). 

1.2 Forest disturbances in the tropics and subtropics 

1.2.1  Introduction to forest disturbance and the ecosystem resilience 

Disturbances are events that negatively affect forest growth and productivity. The term usually refers 

to natural events, but some studies also consider anthropogenic disturbances that directly result from 

human activity (e.g. logging and coppicing) (FAO, 2018). Common disturbances in the tropics and 

subtropics include fires, wind, droughts, landslides, and pathogens (Brando et al., 2019; Seidl et al., 

2017). Disturbances create a dynamic equilibrium amongst forest systems (Mori, 2011). Most 

disturbances are discrete events manifested across short time scales, with return times ranging from 

years to centuries. When disturbance event occurs, it could cause retrogressions and push affected areas 

back to earlier stages of succession. In years without disturbances, vegetation tends to move along the 
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successional gradient to later stages of succession. By stochastically occurring through time and space, 

disturbances create a mosaic of habitat patches with different disturbance-recovery profiles (Mori, 

2011). Disturbances have a complicated relationship with biodiversity. The intermediate disturbance 

hypothesis (IDH), which states that sites subjected to moderate levels of disturbance supports the 

highest biodiversity, has received mixed support since its development in the 1970s. It is, however, 

generally accepted that recently disturbed sites support different species compositions compared to long 

undisturbed habitats (Fox, 1979; Grime, 1973; Moi et al., 2020; Sheil & Burslem, 2013). 

The responses of forests in face of disturbances can be described in the framework of resistance, 

recovery, and resilience (D. Hodgson et al., 2015; Holling, 1973) (Figure 1.1). Forests with low 

resistance (or high susceptibility) respond more strongly to disturbance events (Derose & Long, 2014). 

Depending on the context of study, this could mean larger changes in canopy height, species diversity, 

or other vegetation metrics (Jactel et al., 2017). After disturbances, forests slowly recover to pre-

disturbance conditions (D. Hodgson et al., 2015). Notably, different floral and faunal groups could have 

very different rates of recovery. For instance, the recovery time of epiphytes could be an order of 

magnitude longer than that of tree canopy height (Price et al., 2017). Realistically, it is not always 

possible to track forests through the entire recovery trajectory. In the context of forest restoration, an 

added complexity is the lack of a fixed pre-disturbance baseline for recovery rate estimations as the 

landscape is itself on a recovery trajectory without the disturbance (black dashed line, Figure 1.1). As 

such, there is no universal protocol for the estimation of recovery rates, and studies ought to set pre-

defined, measurable thresholds appropriate for the research question being answered (green dotted line, 

Figure 1.1). Finally, forest resilience is defined as the product of both resistance and recovery (D. 

Hodgson et al., 2015). It represents the overall ability of forest ecosystems to counter disturbances. 

Resilience could be achieved by being resistant to disturbances, having short recovery times, or a 

combination of both (D. Hodgson et al., 2015). 
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Figure 1.1: Diagram showing the different components that contribute to resilience against disturbances in a forest restoration 

context. The black dashed line represents the restoration trajectory without the disturbance and the black solid line represents 

the actual observed changes with the disturbance. 

1.2.2 Considering disturbance and resilience in forest restoration 

Forest restoration projects can potentially be undermined by disturbances. In some cases, disturbances 

could cause restoration targets to be missed. For instance, land managers could be expecting a certain 

amount of carbon being sequestered in restored forests, only to have a proportion of the stored carbon 

being removed by disturbances such as droughts or tropical cyclones. In other cases, disturbances could 

lead to outright failure in establishing forests on degraded landscapes (Abbas et al., 2016; Florens, 2013; 

Lamb et al., 2005; Zhuang & Corlett, 1997). Targeted studies on how disturbances affect forest 

restoration projects are necessary as degraded landscapes often have markedly different disturbance 

regimes compared to natural forests (Mark A. Cochrane, 2003; Ko & Lo, 2018; Mahood & Balch, 2019). 

For instance, these areas could have higher fire susceptibility due to the abundance of invasive grasses 

or have higher exposure to anthropogenic ignition sources due to its proximity to human settlements 

(Davies et al., 2010; Mahood & Balch, 2019; Tien Bui et al., 2016; Wheeler et al., 2016). These 

disturbance regimes are also expected to shift due to anthropogenic climate change (Seidl et al., 2017). 
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The rise in air temperatures is causing more intense droughts and higher fire occurrence due to the 

increase in vapor pressure deficit (Clarke et al., 2022). Similarly, increases in sea surface temperatures 

are leading to fewer but stronger tropical cyclones (Chand et al., 2022; Kossin et al., 2020) and poleward 

shifts in tropical cyclone hotspots (Murakami et al., 2020). Given these changes, there is a pressing need 

for us to better understand the factors that contribute to disturbance resilience within ecosystems 

undergoing restoration. Untangling these patterns is critical for setting appropriate restoration strategies 

and achievable restoration targets.  

1.3 Hong Kong as a case study for restoration in the wet subtropics 

1.3.1 Introduction to case studies in ecological research 

Due to the spatial extent of the study systems, ecological research relies on case studies to achieve 

generality. Concentrating resources to study smaller areas allow researchers to better scrutinise 

ecological patterns of interest in greater detail. Once the area accumulates a collection of studies and 

large amounts of data, it would also enable researchers to better control for confounding factors. Well-

known case studies include Cedar Creek for forest-prairie ecosystems (Pellegrini et al., 2021; Tilman 

et al., 2006), Barro Colorado Island for tropical rainforests in the Americas (Leigh, 1999), and Danum 

Valley for lowland dipterocarp forests in Southeast Asia (Reynolds et al., 2011). An ideal selection of 

case studies should produce results that could be generalisable and transferrable to cover the major 

biomes across the globe (Spake et al., 2022). In this section, we will present Hong Kong as a useful 

case study for forest restoration and disturbance ecology in the wet subtropics.  

1.3.2 The climate and geography of Hong Kong 

Hong Kong (22o 16’ 8’’ N, 113o 57’ 6’’E) is a Special Administrative Region located in south China. It 

borders the city of Shenzhen in the Guangdong province of China in the north and faces the South China 

Sea towards the south. The majority of the land area of Hong Kong (1114 km2) consists of a peninsula 

that includes Kowloon (47 km2) and mainland New Territories (747 km2) (HK Lands Department, 2019). 

Additionally, there are over 200 islands disconnected from the mainland. The largest being Lantau 

Island (147 km2) and Hong Kong Island (79 km2) (HK Lands Department, 2019). Housing over 7 

million inhabitants, Hong Kong has one of the highest population densities in the world. However, the 

rugged terrain largely prevented urban expansion into the countryside and instead squeezed much of 

the population into high-rise buildings. As a result, approximately 60% of the land area remains 

vegetated and undeveloped (Kwong et al., 2022). In total, the territory has over 300 steep sided 

hills >100 meters above sea level (m.a.s.l). The tallest mountain is Tai Mo Shan, located in central New 

Territories with a height of 957 m.a.s.l. Other notable peaks include Lantau Peak (934 m.a.s.l) and 

Sunset Peak (869 m.a.s.l.) on Lantau Island, Ma On Shan (702 m.a.s.l) in eastern New Territories, and 

Pat Sin Leng – Wong Leng ridgetop (489 to 639 m.a.s.l.) in the northeast.  
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The background geology of Hong Kong is diverse. The region is predominantly covered by igneous 

rocks (Fletcher, 1997). These rocks were mainly formed during repeated volcanic activity in the 

Mesozoic era. The tallest mountains of Hong Kong consist of extrusive igneous rocks, mainly tuff, 

expelled in violent volcanic eruptions (Fletcher, 1997). Much of these rocks originated from the now 

extinct High Island Supervolcano, which expelled an estimate of 1300 km3 of acidic volcanic ash (>400 

times that of the St. Helena eruption in 1980), representing a globally significant geological event 

(Sewell et al., 2012; Yan, 2018). The caldera of the volcano is still observable today, forming the various 

geological features in the Sai Kung district (Sewell et al., 2012). Apart from extrusive rocks expelled 

during eruptions, around a third of the land area is covered by intrusive igneous rocks, mainly granite 

(Fletcher, 1997). Finally, some sedimentary rocks, formed between the Devonian to late Cretaceous 

periods, are also found in Hong Kong. Overall, the rocks in Hong Kong weather into acidic (pH 4-5) 

soils with low cation exchange capacities (Jim, 2003; Luo et al., 2005). The red-yellow podzols found 

in many areas across Hong Kong are rich in iron and aluminium oxides, which trap anions and lead to 

low phosphate and nitrogen availability (K. C. Chau & Marafa, 1999; Luo et al., 2005). This lead to 

poor soils for plant growth even in well-developed soils in mature forests (Jim, 2003).  

The climate of Hong Kong is wet subtropical. The average temperature over the last century is 

approximately 23 oC with an average rainfall of 2400 mm (Hong Kong Observatory, 2023). The climate 

is also characterised by clear seasonal changes. Summers in Hong Kong are hot and wet, while winters 

are cool and dry. Temperatures in Hong Kong rarely drop below freezing, but frosts occasionally affect 

areas of high elevation (Abbas et al., 2017; Hong Kong Observatory, 2023). Geographically and 

climatically, Hong Kong lies within the Indo-Burma biodiversity hotspot, which makes the region 

floristically diverse (>2100 native vascular plants recorded) (Hong Kong Herbarium, 2012). The 

temperature gradient on mountains produces a two-tiered vegetation structure, with lowland forests 

dominated by tropical species and montane forests hosting more temperate flora (Dudgeon & Corlett, 

2004).  

Comprehensive meteorological and geological records in Hong Kong provide useful information for 

ecological research. Hong Kong Island and the Kowloon Peninsula was ceded to Britain under the 

Treaty of Nanking in 1841 and Treaty of Peking in 1860, respectively (Tsang, 2003). The increase in 

commercial activity and shipping prompted the establishment of the Hong Kong Observatory in 1883. 

Barring the second world war, the observatory made continuous records of temperature, rainfall, and 

wind speed for >140 years (Hong Kong Observatory, 2023). The economic importance of Hong Kong 

and the proximity of urban areas to the countryside created a large local demand for accurate weather 

monitoring and geological mapping to mitigate the risks of natural disasters such as flooding and 

landslides (Ho et al., 2009; Ko & Lo, 2018). With over 50 automatic weather stations, each providing 

decades of meteorological data, the region is now home to one of the densest networks of weather 
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stations in the tropics and subtropics (Hong Kong Observatory, 2023). These records are invaluable for 

understanding the ecology of forest disturbances.  

1.3.3 The vegetation history of Hong Kong  

Like many regions in the wet tropics, the vegetation history of Hong Kong is a story of degradation and 

restoration. Vegetation in the region has been profoundly transformed by the establishment of human 

settlements around 6000-7000 years ago (Cheung et al., 2022; Planning Department, 2001). Changes 

in vegetation structure were tightly linked to socioeconomic development of settlers. Before the arrival 

of humans, the landscape of Hong Kong was predominantly covered by subtropical rainforests 

(Dudgeon & Corlett, 2004). Pollen evidence from Ho Chung Valley identified large quantities of 

Quercus and Castanopsis pollen deposited during the Middle Neolithic period (Yang et al., 2018). This 

does not necessarily mean that the vegetation at the time were dominated by species in Fagaceae. 

Palynology tends to better represent wind-pollinated species and disadvantage insect-pollinated species 

(e.g. Lauraceae). However, it does suggest that even easily accessible lowland alluvial plains were 

covered by late-successional forests the Middle Neolithic period (Yang et al., 2018). There is 

considerable uncertainty in whether open habitats existed on mountaintops. However, given the 

relatively mild climate of Hong Kong, it is generally believed that open habitats would be rare in the 

region without human intervention (Dudgeon & Corlett, 2004; Zhuang & Corlett, 1997). In the first 

several thousand years after the arrival of humans, the population of Hong Kong is sparse and mostly 

confined to coastal areas (Planning Department, 2001). Archaeological excavations have shown that 

early settlers were mainly hunters, gatherers, and fishermen (H. W. Chau, 2003; Cheung et al., 2022). 

These settlers had limited impact on the local vegetation structure. The population in Hong Kong rose 

substantially during the Tang and Song dynasties (618 – 1276 AD). These new settlers brought more 

advanced agricultural practices and converted much of the lowland forests into rice paddies (F. Huang 

& Pei, 2001; Yang et al., 2018). Most of the settlements would be limited to fertile alluvial plains in the 

lowlands, but the demand for firewood might have led to increased logging activity on slopes. 

Additionally, the landscape was also impacted by two industries that developed over this period – salt 

and lime production. Shallow bays and inlets were converted to produce sea salt, while kilns were built 

to convert coral and shells to lime (Planning Department, 2001). Both industries required substantial 

fuelwood, which decimated much of the woodlands in the area (Corlett, 1997; Stokes, 1995). Between 

1661 – 1683 AD in the Qing Dynasty, the government at the time ordered residents to move inland in 

an effort to combat rebel forces that controlled coastal areas in the region. When the order ended, the 

government actively encouraged the population to move back into the area, which led to a large spike 

in population density in Hong Kong (Planning Department, 2001). One group, the Hakka people, settled 

in previously unoccupied mountainous regions. Villagers at the time kept patches of forests behind 

villages for various economical and non-economical purposes (Fung Shui Woods), but otherwise 

cleared much of the landscape for agriculture (Zhuang & Corlett, 1997). Rice terraces covered the 
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lowlands and tea plantations stretched to mountaintops. Slopes that were not used for agriculture were 

also logged to meet the demand for firewood. When the British arrived in 1842, the landscape of Hong 

Kong was mostly barren with patches of highly diverse forests in ravines and Fung Shui Woods 

(Dudgeon & Corlett, 2004). Under British rule, the government of Hong Kong led several reforestation 

campaigns. The new plantations mainly consisted of Pinus massoniana, a native conifer that survived 

in heavily eroded areas. These efforts were largely undone during the second world war. During the 

war, Hong Kong fell under Japanese rule in 1941, and the plantations were logged to provide fuelwood 

for the local populace both before and during the occupation. The end of the second world war in 1945 

marks the start of a >70-year restoration period (Abbas et al., 2016). Over this period, Hong Kong 

experienced rapid economic development marked by industrialisation and later a transition to a financial 

hub (Tsang, 2003). These changes led to a sharp fall in rural population and widespread agricultural 

abandonment. With the cessation of rural land management practices, shrublands and secondary forests 

expanded on the barren landscape mostly through natural regeneration. This transition was facilitated 

by a change in government policy, which abandoned commercial forestry for a purely restoration-based 

framework mid-1960s (Corlett, 1999; Daley, 1965). Pinus massoniana plantations were gradually 

phased out, especially after the Pinewood Nematode Bursaphelenchus xylophilus decimated most P. 

massoniana stands in the late 1970s (Kishi & others, 1995). However, plantations of exotic species, 

notably Acacia confusa, Lophostemon confertus, and the nematode-resistant Pinus elliottii, remained 

significant features of the landscape (Corlett, 1999). By the early 1990s, forests were estimated to make 

up approximately 14% of the total land area, with a third being plantations (Ashworth et al., 1993). The 

increased emphasis on conservation also led to the designation of vegetated areas as strictly protected 

Country Parks since the 1970s, which now cover over 40% of the land area (HK Lands Department, 

2019). The current vegetation in the countryside of Hong Kong consists of a mosaic of grassland 

(Figure 1.2a), shrubland (Figure 1.2c), secondary forests (Figure 1.2d-e), and plantations (Figure 

1.2f). 
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Figure 1.2: Different vegetation types found in Hong Kong: (a) Grasslands on Robin’s Nest, (b) Fern (Dicranopteris pedata) 

mats near Sheung Wo Hang, (c) Mixed shrublands on Lamma Island, (d) Montane forests on Tai Mo Shan, (e) Lowland forests 

in Mau Ping, (f) Plantations in Pak Fu Au.  

  

1.3.4 Disturbances in Hong Kong 

Efforts to restore the degraded landscapes in Hong Kong are often met with challenges due to the 

range of disturbances that affect the region. Most notably, the vegetation in Hong Kong is affected by 

fires, wind, landslides, frosts, droughts, and pathogens. In this section, we briefly introduce the scale 

and impact of these events on local vegetation. 

1.3.4.1 Fires 

Fires represent the most prominent disturbance in the degraded landscape of Hong Kong. As with 

most wet tropical and subtropical regions across the globe, natural fires are rare (Mark A. Cochrane, 

2003). Past research on fuel flammability in has suggested that fires could theoretically propagate 

through most habitats in Hong Kong after dry spells (K. L. Chau, 1994). However, natural ignition 

sources are rare. The most likely source of ignition, lightning strikes, occur mainly in the wet season 

and are usually accompanied by storms with heavy precipitation. Additionally, mature rainforests 

retain moisture well and are generally considered least flammable amongst the various types of 

vegetation in Hong Kong (K. L. Chau, 1994). Centuries of degradation and exposure to human activity 

has substantially changed the fire regime in Hong Kong due to two main factors. Firstly, wet biomes 

are characterised by positive fire-vegetation feedbacks – the phenomenon where early successional 

vegetation is more fire prone than late successional forests (Hoffmann et al., 2003; Hoffmann, Geiger, 
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et al., 2012; A. D. Miller et al., 2019; Tepley et al., 2018; Uhl et al., 1988). Degraded landscapes in Hong 

Kong are commonly colonised by Dicranopteris fern mats (Figure 1.2b), Miscanthus grasslands, or 

Baeckea shrublands (Hau & Corlett, 2002). These vegetation types tend to accumulate dry biomass 

that do not readily decompose, making them susceptible to fires. Secondly, humans introduce sources 

of ignition. Fires are regarded by villagers as a convenient way to keep sites open and accessible. 

Residents in Hong Kong also widely observe the traditional ritual of mourning the deceased by burning 

incense and joss paper around graves (K. L. Chau, 1994; Zhuang & Corlett, 1997) (Figure 1.3). Since 

many graves are in the countryside, this leads to spillover wildland fires each year. The drop in rural 

population after the second world war and government campaigns have led to fewer ignition sources 

in the countryside. However, at the time of writing, the Fire Services Department continue to receive 

hundreds of wildland fires reports every year (Fire Services Department, 2021). Various authors have 

suggested that hillfires are the main factor that delays forest restoration and maintain open habitats 

in Hong Kong (Au et al., 2006; K. L. Chau, 1994; Corlett, 1999; Dudgeon & Corlett, 2004; Fung & Jim, 

1993). However, other than several rough estimates of burnt areas in selected years (Fung & Jim, 1993; 

Marafa & Chau, 1999), a comprehensive burn area map for the region is currently lacking.  

 

Figure 1.3: Villagers lighting fires near natural vegetation during local festivals. Photo taken from Starling Inlet, Hong Kong. 

 



26 

 

1.3.4.2 Wind 

Strong winds represent another major disturbance in the forests of Hong Kong. Hong Kong sits within 

the Northwest Pacific tropical cyclone hotspot (Chand et al., 2022; Kossin et al., 2020). Between 1961 

and 2020, an average of 6.08 typhoons occurs within 500 km of Hong Kong, predominantly between 

June and October (Hong Kong Observatory, 2023). Stronger typhoons that make landfall close to Hong 

Kong bring destructive winds and heavy rainfall to the territory. Even tropical cyclones of categories 

1-2 on the five-point Saffir-Simpson scale bring sustained wind speeds of >125 km/h and could lead to 

defoliation, branch-breakage, bole-snapping, and uprooting of forest trees (Lin et al., 2020; Negrón-

Juárez et al., 2014; Tanner et al., 1991). Tropical cyclones reportedly led to the removal of 34% and 

23% of aboveground biomass in Mexican (Parker et al., 2018a) and Peurto Rican (J. Hall et al., 2020) 

forests, respectively. Large geographical discrepancies exist in forest resilience to tropical cyclones, 

with Taiwanese forests showing different patterns of damage in face of tropical cyclones of similar 

intensity (Lin et al., 2020; Mabry et al., 1998). Studies on the effects of typhoons on forests in Hong 

Kong and nearby Guangdong are scarce. The widespread destruction caused by Typhoon Mangkhut 

in 2018, the strongest tropical cyclone to affect Hong Kong in over 40 years, brought much needed 

attention to the issue (Figure 1.4). Abbas et al. (2020) provided a first quantification of forest damage 

after the event, finding that plantations and forests on south-facing slopes showed disproportionally 

large drops in Normalised Difference Vegetation Index (NDVI) between two relevant Landsat 8 scenes. 

In neighbouring Guangdong province, a field study conducted by Ni et al. (2021) found a higher 

susceptibility amongst old growth forests in Dinghushan Nature Reserve. Also using NDVI, Xu et al. 

(2021) found scattered urban trees to have suffered more damage during Typhoon Mangkhut and 

suggested that taller buildings partially protected trees from snapping and uprooting. The 

relationships between wind damage, background topography, and natural forests in forests 

restorations sites are, however, still poorly known.  
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Figure 1.4: Forests near Mui Tze Lam after Typhoon Mangkhut in 2018. 

1.3.4.3 Landslides 

Another disturbance that affects vegetation in Hong Kong is landslides. Landslides are failures of 

slopes along slip planes. The disturbance is estimated to affect 4% of the earth’s terrestrial surface every 

century (Restrepo & Alvarez-Berríos, 2006). Landslides are highly destructive disturbances as they 

remove the topsoil layer along with the vegetation and arbuscular mycorrhizal network (Figure 1.5). In 

many cases, plants need to be reestablished through lengthy primary succession, especially on the crown 

of the landslide (L. Walker & Shiels, 2013). The rugged terrain of Hong Kong creates many 

opportunities for slope failures, usually after heavy rainfall (Ko & Lo, 2018; Lee et al., 2001) (Figure 

1.5). Landslides receive much attention in the local research community due to the proximity of steep 

slopes to built-up areas. This includes the compilation of 110,000 landslides in the Enhanced Natural 

Terrain Landslide Inventory (ENTLI) by the Civil Engineering and Development Department (CEDD) 

of Hong Kong (Ho et al., 2009). Important factors that facilitate landslide occurrence include a >30o 

slope gradient, proximity to streams, and southern aspects (Dai et al., 2001; Ko & Lo, 2018; Haojie 

Wang et al., 2021). Historical deforestation and degradation of the natural vegetation also greatly 

increased landslide probability as forests tend to stabilise slopes (Dai et al., 2001; Haojie Wang et al., 
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2021). Several ongoing projects are investigating the recovery trajectory of landslides in Hong Kong 

(Pang et al., 2018) and potential solutions for targeted restoration (Law et al., 2023).  

 

Figure 1.5: A landslide scar in Chek Keng, Hong Kong. Note the removal of topsoil with only small patches of remanent 

vegetation. 

1.3.4.4 Droughts 

Droughts represent another notable disturbance in wet tropical and subtropical forests. In wet biomes, 

low hydraulic safety margins of forest trees often mean that extended dry spells could cause widespread 

mortality either directly or due to secondary causes on weakened trees. Seasonal droughts are known 

affect forest restoration efforts in Hong Kong, especially on seedlings in degraded sites (Hau & Corlett, 

2003). Notably, precipitation and typhoon landfall in Hong Kong are both correlated to El Niño 

Southern Oscillation (ENSO) cycle (Hong Kong Observatory, 2023; M. C. Wu et al., 2004; W. Zhou 

et al., 2012). Droughts related to ENSO cycles are known to impact many tropical forest ecosystems, 

inducing defoliation, branch shedding, and increased tree mortality (Holmgren et al., 2001; Miyamoto 

et al., 2021; Nunes et al., 2021). Some of these effects are presumably observable in Hong Kong but 

have not yet been systematically studied.  

1.3.4.5 Low temperatures and frosts 

Low temperatures and frosts also disturb vegetation in Hong Kong. Hong Kong lies on the boundary 

between subtropical and warm temperate biomes, with noticeable temperature gradients between the 

lowlands and mountaintops. In years with warmer winters, cold-sensitive tropical plants tend to move 
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up the elevation gradient and invade montane forests. On the other hand, cold snaps caused by 

northernly winds in winter periodically cool mountaintops to freezing temperatures. These weather 

events were observed to selectively disturb tropical genera in the region (Abbas et al., 2017; Corlett, 

1992; Dudgeon & Corlett, 2004). They also have a proportionately larger effect on exotic plantations. 

In particular, the cold snap in 2016 killed many Acacia confusa trees planted on the highest mountains 

in Hong Kong. The associated patterns of damage being dependent on elevation and forest type were 

clearly observable from satellite imagery (Abbas et al., 2017).  

1.3.4.6 Pests and pathogens 

Lastly, pests and pathogens also cause observable disturbances amongst forests in Hong Kong. While 

species-rich subtropical rainforests are resilient to large-scale diebacks caused by pests and pathogens, 

the same cannot be said for species-poor plantations. In Hong Kong, the Pinewood Nematode 

Bursaphelenchus xylophilus, which decimated widely planted Pinus massoniana in the late 1970s, 

represents the most prominent case of such disturbances (Corlett, 1999; Kishi & others, 1995). More 

recently, brown root rot caused by the fungus Phellinus noxius caused small-scale diebacks of a range 

of host tree species (Ribera et al., 2016) and the moth Phauda flammans induced dieback of Ficus 

trees (Lu et al., 2019).  

1.3.5 Hong Kong as a case study for forest restoration and disturbances 

Hong Kong provides a useful case study for forest restoration projects in the wet tropics and subtropics. 

Firstly, with the continuous deforestation and landscape degradation over thousands of years, Hong 

Kong acts as a benchmark for the “worst case scenario” in forest restoration (Abbas et al., 2016; 

Corlett, 1999; Zhuang & Corlett, 1997). If restoration strategies succeed in bringing forests back to 

Hong Kong, the same strategies are likely to work in regions with less severe environmental 

degradation (Hau et al., 2005). Secondly, compared to much of the wet tropics, Hong Kong has a long 

history of forest restoration. The British colonial government largely treated Hong Kong as a small 

trading port devoid of natural resources (Tsang, 2003). As a result, for over a century, land 

management has been centered around restoring forests for aesthetics, erosion control, water 

management, and biodiversity, with production only as a secondary objective (Corlett, 1999; Daley, 

1965; Dunn, 1906). The >70 years of uninterrupted forest restoration since the second world war 

provides invaluable insights for land managers in other wet tropical or subtropical regions hoping to 

envision how restored forests would develop in the future (Abbas et al., 2016). Thirdly, restored 

vegetation in Hong Kong faces many commonly encountered disturbances across the wider tropics. 

The high population density of the city and the continued existence of rural villages mean that the 

area is an exemplar of a wildland-urban interface, with many of the associated patterns of 

disturbances (Curran et al., 2017; van Butsic et al., 2015). The presence of different vegetation types, 
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topographical complexity, and its location in a typhoon hotspot provides opportunities to study how 

disturbances interact with various biophysical factors. Lastly, as a developed economy, there is 

sufficient demand and resources to justify the collection of environmental data. This includes long-

running meteorological records, detailed geological maps, LiDAR scans, and full-territory aerial 

imagery periodically collected since 1963 (HK Lands Department, 2020). While not all of these 

resources are used in this thesis, these datasets could potentially answer a large number of research 

questions that would be difficult to investigate elsewhere.  

1.4 New opportunities offered by remote sensing 

Developments in remote sensing provide new opportunities for studying forest disturbances across 

previously unthinkable spatiotemporal scales. Early studies in disturbance ecology depend on field 

surveys across a limited number of designated plots (K. C. Chau & Marafa, 1999; Cremer et al., 1982; 

Dalling & Tanner, 1995; Guariguata, 1990; Morrison et al., 1995; Tanner et al., 1991; Uhl et al., 1988; 

L. R. Walker, 1994). Increased availability of remote sensing data created new possibilities for 

monitoring various aspects of disturbed vegetation. Firstly, many disturbances operate on very large 

spatial scales. For instance, the largest recorded tropical cyclone (Typhoon Tip) spans a diameter of 

2200 km (Dunnavan & Diercks, 1980). To capture spatial patterns of resilience against disturbances, it 

is important to study these disturbances at large spatial scales. Many remote sensing technologies 

allow for large areas to be surveyed at relatively affordable costs (Franklin, 2013; Frolking et al., 2009; 

Sinha et al., 2015; Szpakowski & Jensen, 2019). Secondly, understanding disturbances requires 

measurements to be made at various times. For instance, estimating the burn severity of a fire 

requires measurements to be made before and after fires occur (Parks et al., 2014), and post-fire 

recovery requires long term monitoring after the actual fire event (Kurbanov et al., 2022; Szpakowski 

& Jensen, 2019). Many types of remote sensing data can be repeatedly collected at reasonable costs 

to capture changes over time. Even with certain caveats such as changes in atmospheric conditions, 

these datasets are generally comparable and could provide the necessary temporal depth for the 

study of long-term processes (J. D. Miller & Safford, 2012; Pérez-Cabello et al., 2021). A summary of 

the major types of remote sensing data used in forest ecology can be found in Table 1.1. 
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Carrier Sensor Resolution Vegetation properties detected 

Satellite 

(Frolking et 

al., 2009) 

Multispectral 

imagery 

Down to 0.5m • Calculate vegetative indices (VIs) (e.g. 

NDVI) to quantify properties such as 

canopy greenness, chlorophyll content, and 

water content  

• Monitor temporal changes in the vegetation 

• Obtaining soil information 

Synthetic 

aperture radar 

(SAR) 

L-band: 40m 

P-band: 200m 

X-band: 1m to 16m 

C-band: 5m x 20m 

• Calculating average canopy height 

• Measuring average vegetative structure 

Light detection 

and ranging 

(LiDAR) 

25 m 

(Dubayah et al., 

2020) 

• Canopy height 

• Full waveform data for canopy structure 

Hyperspectral 

imagery 

30m • Phenology and biochemical properties of 

vegetation 

Aircraft  

or drones 

Multispectral 

imagery 

<10cm achievable 

(Tang & Shao, 

2015) 

• Calculate vegetative indices (VIs) (e.g. 

NDVI) to quantify properties (e.g. canopy 

greenness, chlorophyll content, and water 

content) 

• Monitoring temporal changes 

• Soil information 

Hyperspectral 

imagery 

<0.5m achievable 

(Gonzalez-Dugo et 

al., 2015) 

 

• Species classification and distribution 

• Phenology 

• Leaf traits and biochemistry 

Light detection 

and ranging 

(LiDAR) 

Down to 1m 

(Dechesne et al., 

2017) 

• Canopy height (Individual tree crown) 

• Mapping canopy and understory structure 

Digital aerial 

photogrammetry  

<0.5m achievable 

(Bohlin et al., 

2012) 

• Low-cost alternative to LiDAR in mapping 

canopy height 
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Table 1.1: Common remote sensing techniques used in forest ecology. 

1.5 Thesis structure 

In this PhD thesis, we aim to utilise remote sensing data to track forest resilience against fires and 

tropical cyclones. Specifically, we explored how these disturbances interacted with the wet 

subtropical restored vegetation in Hong Kong.  

In Chapter 2, we reconstruct the fire history of Hong Kong using a 34-year Landsat imagery time series. 

We developed a pipeline to process hundreds of satellite multispectral imagery to allow for accurate 

burn area detection in areas with high cloud cover and rapid post-fire revegetation. The chapter aims to 

produce dated burn area polygons at 30 m ground resolution and estimate associated burn severity. 

These maps provide the background for studying fire dynamics in our study area. The chapter was 

submitted twice to Remote Sensing of Environment, but was rejected for the lack of cross-continental 

validation. The revised manuscript after addressing three rounds of reviewer comments has been 

published on Remote Sensing (A. H. Y. Chan et al., 2023).  

In Chapter 3, we investigated into fire traps in degraded wet subtropical landscapes. In many wet 

biomes, early successional vegetation is more fire-prone than closed canopy forests. These positive fire-

vegetation feedbacks can hinder forest restoration and trap landscapes in a degraded state. In the chapter, 

we leveraged the burn area maps produced in Chapter 1 and a set of Landsat-based vegetation map 

time series to quantify different components of the fire trap in Hong Kong. Specifically, we investigated 

how vegetation type, ignition sources, and other factors contributed to variations in fire occurrence. We 

also identified the environmental and biophysical factors that determined the rate of post-fire recovery. 

The manuscript produced from this work has been submitted to the Journal of Applied Ecology and has 

received generally favourable reviewer comments. This thesis chapter is derived from the manuscript 

after addressing reviewer comments. 

In Chapter 4, we describe a pipeline based on open-source computational fluid dynamics (CFD) 

software to model local near-surface wind speeds across the complex topography of Hong Kong. The 

modelled wind speeds were validated by anemometer measurements at 27 non-urban weather stations 

in the territory. We additionally set up our own anemometer to validate the modelled wind speeds on 

slopes. The chapter serves as a precursor to Chapter 5.  

In Chapter 5, we studied the factors that affected forest resilience against tropical cyclones using a 

repeated LiDAR dataset and the wind maps produced by the pipeline detailed in Chapter 4. Specifically, 

we investigated into the patterns of damage casted by Typhoon Mangkhut in 2018, the strongest tropical 

cyclone to affect Hong Kong in over 40 years. The answered three research questions – (1) whether 

plantations were more susceptible to tropical cyclones than natural forests, (2) what were the factors 

that contribute to wind resilience amongst natural forest patches, and (3) how important strong winds 
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and tropical cyclones were in defining long-term forest structure. We plan to submit the manuscript 

derived from the chapter for publication, with Global Change Biology as the target journal.  

In Chapter 6, we provide a holistic discussion of the findings in this thesis. We also outline future plans 

on modelling changes in vegetation structure using the results from Chapter 3 and further analyses of 

relationships between wind and forest structure based on results from Chapter 5.  

1.6 Co-author contributions 

The contents of this thesis represent my own work except for that described here or explicitly stated in 

the text. In Chapter 2, Alejandro Guizar-Coutiño and Michelle Kalamandeen assisted with the code in 

Google Earth Engine and reviewed the manuscript. In Chapter 4 and 5, Toby Jackson and E-Ping Rau 

provided supervision and guidance through the development of the CFD model and the subsequent 

analysis of the data. In Chapter 4, Ying Ki Law helped digitise the vegetation map developed by 

Ashworth et al., (1993), drafted Table 4.1 of the chapter, and helped organising fieldwork in Hong 

Kong. Also in Chapter 4, Rocky Leung and Jess Chung participated in several field trips and helped 

setting up the anemometer on steep slopes.  
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Chapter 2: Reconstructing 34 Years of Fire History 

in the Wet, Subtropical Vegetation of Hong Kong 

Using Landsat 

 

2.1 Abstract 

Burn-area products from remote sensing provide the backbone for research in fire ecology, management, 

and modelling. Landsat imagery could be used to create an accurate burn-area map time series at 

ecologically relevant spatial resolutions. However, the low temporal resolution of Landsat has limited 

its development in wet tropical and subtropical regions due to high cloud cover and rapid burn-area 

revegetation. Here, we describe a 34-year Landsat-based burn-area product for wet, subtropical Hong 

Kong. We overcame technical obstacles by adopting a new LTS fire burn-area detection pipeline that 

(1) Automatically uniformized Landsat scenes by weighted histogram matching; (2) Estimated pixel 

resemblance to burn areas based on a random forest model trained on the number of days between the 

fire event and the date of burn-area detection; (3) Iteratively merged features created by thresholding 

burn-area resemblance to generate burn-area polygons with detection dates; and (4) Estimated the burn 

severity of burn-area pixels using a time-series compatible approach. When validated with government 

fire records, we found that the LTS fire product carried a low area of omission (11%) compared with 

existing burn-area products, such as GABAM (49%), MCD64A1 (72%), and FireCCI51 (96%) while 

effectively controlling commission errors. Temporally, the LTS fire pipeline dated 76.9% of burn-area 

polygons within two months of the actual fire event. The product represents the first Landsat-based 

burn-area product in wet tropical and subtropical Asia that covers the entire time series. We believe that 

burn-area products generated from algorithms like LTS fire will effectively bridge the gap between 

remote sensing and field-based studies on wet tropical and subtropical fire ecology. 

2.2 Introduction 

Fire regimes in natural ecosystems have changed drastically over the past half century. The 

fragmentation of vegetation, as well as anthropogenic fire suppression, has reduced fire occurrence in 

some regions (Marlon et al., 2012), while land clearance by fire, and the associated degradation of fire-

resistant vegetation types, has increased fire frequency in other regions where natural fires were rare 

(Fernandes et al., 2011). In recent years, the feedback between fires and climate change has attracted 

much attention, with fires being recognized as a significant source of carbon emissions (Aragão et al., 

2018; Silva et al., 2020), while changes in temperature, precipitation, and wind patterns under climate 

change in turn exacerbate extreme fire events (Abatzoglou et al., 2019). Given the importance of fires 

as disturbance agents, both locally and globally, various aspects in the vegetation-fire feedback, 
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including fire susceptibility (K. L. Chau, 1994; Tien Bui et al., 2016), post-fire recovery trajectory 

(Johnstone et al., 2010; Kemp et al., 2016), and feedback direction/strength (Tepley et al., 2018), have 

been closely scrutinized. Understanding the influences of historical fire events on current vegetation 

composition and structure is essential for predicting how vegetation might respond to future fire regime 

shifts and managing existing landscapes in preparation for these changes. 

Accurate burn-area (BA) maps are critical to research on fire regime shifts and fire-vegetation feedback. 

The groundwork for large-scale BA maps was laid down by products based on SPOT and ASTER 

optical imagery, such as L3JRC (Kevin Tansey et al., 2008) and GLOBSCAR (Simon et al., 2004). 

These products were largely superseded by products based on MODIS, which provided longer-running 

multispectral imagery with a high temporal resolution (1–2 days) (Chuvieco et al., 2019). In particular, 

MCD64A, developed by NASA (Giglio et al., 2018), and FireCCI51, developed by the ESA, (Lizundia-

Loiola, Otón, et al., 2020) have been widely used in recent years. MCD64A1 has mapped burn areas 

over a 22-year period (2000–2022) at 500 m ground resolution by detecting the thermal signature of 

active fires and changes in surface reflectance each day. Temporal composites were built from multiple 

overlapping MODIS scenes. The spatiotemporal distribution of pixels experiencing large changes in 

surface temperature was then used to estimate burn probabilities. The probabilities were subsequently 

masked and refined to daily BA maps (Giglio et al., 2018). Similarly, FireCCI51 also combines thermal 

anomalies and surface reflectance detected by MODIS to create daily BA maps over a similar time 

frame. However, FireCCI51 differs from MCD64A1 in focusing specifically on growing active fire 

“seeds” using the NIR band, which produces BA maps with a finer 250 m ground resolution (Lizundia-

Loiola, Otón, et al., 2020). 

Several studies have used MODIS-based global BA products to analyze fire patterns on global-to-

regional scales (Archibald et al., 2010; Chuvieco et al., 2020; Lizundia-Loiola, Pettinari, et al., 2020; 

Zheng et al., 2021), but the uptake of these products in the ecological community has been relatively 

slow. The commission and omission errors of existing global BA products typically exceeded 40% and 

65%, respectively, with a significant discrepancy between different products (Luigi Boschetti et al., 

2019; Franquesa et al., 2022; Humber et al., 2019; Padilla et al., 2015; Szpakowski & Jensen, 2019). 

For studies concerning total burn area or carbon emissions, these errors can be estimated and corrected, 

but for many ecological applications, these errors make it difficult for researchers to reconstruct the fire 

history of their areas of interest within a reasonable degree of certainty. The issue is further compounded 

by the low ground resolution (250–1000 m) of MODIS products, which does not relate well to field 

survey plots at sub-hectare spatial scales. As a result, the research on fire ecology continues to focus on 

single-fire events or a small handful of local fire scars, seldom combining field data with MODIS-based 

fire maps (Busby et al., 2020; Fernández-García et al., 2018; Kibler et al., 2019; Polychronaki et al., 

2013). 
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In recent years, efforts in burn-area mapping have increasingly shifted to processing imagery of higher-

resolution imagery provided by the Landsat and Sentinel satellite programmes. Successive Landsat 

satellites have provided nearly uninterrupted global multispectral imagery at ≤ 30 m ground resolution 

since 1984 for six wavebands, namely blue, green, red, near-infrared (NIR), and two shortwave infrared 

(SWIR) bands. The long mission time and high spatial resolution compared to MODIS allows for the 

fire history of landscapes to be comprehensively reconstructed. Several regional Landsat-based fire 

datasets have emerged in the past few years, mostly in dry Mediterranean and temperate biomes, with 

burn-area maps constructed in the US (Hawbaker et al., 2017; Vanderhoof et al., 2017), Australia 

(Goodwin & Collett, 2014), and Greece (Tompoulidou et al., 2016). The high spatial resolution and 

accuracy of Landsat-based BA maps have enabled a large body of fire-related research (Chuvieco et al., 

2020), such as studies on fire frequency and severity trends (Abatzoglou et al., 2021; Daldegan et al., 

2019; Gibson et al., 2020; Hagmann et al., 2021; Mallek et al., 2013; Wimberly & Reilly, 2007), fire-

risk modelling (M. A. Cochrane et al., 2012), post-fire vegetation recovery (Bright et al., 2019; 

Fernández-García et al., 2018; Frazier et al., 2018), and post-fire community ecology (Mahood & Balch, 

2019). 

Despite these successes, there is a paucity of comprehensive Landsat-based BA maps in the wet tropics. 

The temporal resolution of Landsat satellites (16 days) is an order of magnitude lower than MODIS (1–

2 days), making it impractical to grow burnt areas from active fires picked up by thermal bands of the 

Landsat sensor (Luigi Boschetti et al., 2016). Thus, Landsat-based algorithms rely exclusively on 

changes in pixel reflectance or texture for BA detection. In some biomes, this does not greatly affect 

fire scar detectability. For instance, with relatively slow revegetation, BAs in temperate and 

arid/Mediterranean biomes are often distinguishable for years after a fire (Luigi Boschetti et al., 2016; 

Bright et al., 2019). As such, Landsat BA mapping has become routine in these ecoregions (Bastarrika 

et al., 2011; Goodwin & Collett, 2014; C. Huang et al., 2009; Mallinis & Koutsias, 2012; Mitri & Gitas, 

2004; Nelson et al., 2013). In tropical savannas, grasses readily resprout, but low cloud cover means 

that BAs are still easily mappable across a number of post-fire Landsat scenes (Bowman et al., 2003; 

Hudak & Brockett, 2010; J. Liu et al., 2018). However, in the wet tropics/subtropics, a high cloud cover 

(> 50%) often occludes Landsat imagery for months on end, leaving no more than a dozen of partially 

cloudless scenes each year (Brun et al., 2022). Coupled with rapid revegetation that obscures burnt 

patches within months (Figure 2.3), the task eludes many existing BA mapping approaches (Nelson et 

al., 2013). Several studies have attempted BA mapping in the wet tropics/subtropics using Landsat 

imagery, but these focus on pairs of pre-selected cloudless pre-fire and post-fire scenes (Supp. Table 

A.1). These single-scene algorithms are difficult to scale up as the effort to pre-select scenes increases 

markedly with the spatial and temporal breadth of the study. Additionally, in many regions of the tropics, 

it is not uncommon for all scenes in a year to be partially (> 30%) clouded, especially for years prior to 

the launch of Landsat 7 in 1999 (Asner, 2001). As a result, none of the single-scene studies have 
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managed to create wet tropical BA databases at temporal scales comparable to those in temperate or 

Mediterranean biomes (Supp. Table A.1). An alternative to the single-scene approach is to include all 

partially cloudless scenes and perform pairwise change detection across all unmasked pixels across 

every time step. Using this approach, Roteta et al. (2019) successfully generated a single year (2016) 

BA product for Sub-Saharan Africa with Sentinel 2 data but have not, as yet, produced a time series (E. 

Roteta et al., 2019). A compromise between using single scenes and the full-time series is to create 

multiple seasonal or yearly composites to reduce the size of the dataset while being temporally scalable. 

To date, the two main studies published long-term Landsat BA products in the wet tropics, and both are 

based on yearly composites (Daldegan et al., 2019; Long et al., 2019). Daldegan et al. (2019) created 

yearly medoid composites from Landsat 5/7/8 data in the Cerrado–Amazon transitionary zone in Brazil 

(Daldegan et al., 2019). Spectral mixture analyses were then performed on the composites to separate 

burnt and unburnt pixels. The final product resulted in 32 yearly BA maps (1985–2017) of the study 

area. Long et al. (2019) estimated the burnt probabilities from Landsat 5/7/8 imagery and created yearly 

burn-probability composites (Long et al., 2019). A seed-growing algorithm was then used to create a 

global Landsat-based BA product. At the time of writing, the dataset covers 26 years (1989, 1992, 1995, 

1996, 1998, and all years between 2000 and 2020) and is freely accessible through an FTP server. 

Despite these current advances in Landsat BA mapping in the tropics, neither study has estimated the 

time of fire, but instead provided annual maps of BA locations. Approximating the fire date through the 

date of detection provides crucial information for evaluating the relationship between weather patterns 

and fire susceptibility/post-fire recovery. Additionally, ecologists are often not only interested in the 

extent, but also the severity of the burnt patch. Common remotely sensed indices used to estimate 

severity, such as dNBR, RdNBR, and RBR (reviewed in (Szpakowski & Jensen, 2019)), are mainly 

based on single pairs of pre- and post-fire Landsat scenes. The modification and incorporation of burn 

severity into wet tropical BA maps would be invaluable to the ecological community. 

In this study, we generated a Landsat-based BA time series based on a new pipeline—LTSfire (Figure 

2.2). Specifically, we — 

(1) Developed a preprocessing pipeline that is robust in regions affected by high cloud cover and haze. 

(2) Minimized both commission and omission errors in burn-area detection and allowed small features 

to be accurately detected. 

(3) Approximated the fire dates of detected burnt patches by preserving the dates of detection 

throughout the pipeline. 

(4) Estimated burnt severity across pixels in the detected burnt patches. 
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The resulting product represents the first Landsat-based BA map in wet tropical/subtropical Asia 

that covers the entire Landsat 5/7/8 time series. It is also the first long-term Landsat BA map in the 

wet tropics/subtropics that estimated both BA detection dates and burn severity. 

 

2.3 Materials and methods 

2.3.1 Study area 

The study was conducted in Hong Kong (22°16′8″N, 113°57′6″E) over an area of 1110 km2. Despite 

its reputation as a densely populated city, Hong Kong has an extensive countryside with over 40% of 

the area protected as Country Parks (Figure 2.1). The climate is wet subtropical, with pronounced 

seasons and high cloudiness (68% average cloud cover) (Hong Kong Observatory, 2023). The region 

was historically covered by broad-leaved evergreen rainforest, but most of the natural vegetation was 

deforested and degraded after centuries of human settlement and agricultural activity (Dudgeon & 

Corlett, 2004). Under better protection following the second world war, the landscape gradually 

recovered into the mixture of grasslands, shrublands, and secondary forests seen today (Dudgeon & 

Corlett, 2004). Fires are common in Hong Kong, with the Fire Services Department (FSD) reporting 

over 1000 outdoor fires in 2018 alone, and these fires maintain grasslands and return forests to earlier 

stages of succession (Dudgeon & Corlett, 2004). Since natural fires are very rare under the wet 

subtropical climate of Hong Kong (1400–3000 mm rainfall per year), such fires are almost exclusively 

anthropogenic. Fire records are kept by the FSD and the Agricultural, Fisheries, and Conservation 

Department (AFCD), but detailed maps of fire extents have not been compiled. 
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Figure 2.1: Map showing the study area of Hong Kong. The top left panel indicates the geographical position of Hong Kong 

overlayed on country boundaries from Natural Earth. The land classification raster is derived from Kwong et al. (2022). 

2.3.2 Overview of the LTSfire pipeline 

The LTS fire pipeline is composed of five main sections to create BA maps with dates of detection and 

burn severity (Figure 2.2). We first collated input data, including relevant Landsat imagery and 

training/validation datasets (Section Input data2.3.3). Then, the Landsat scenes were preprocessed into 

seasonal date-traceable composites (Section 2.3.4). Training data were extracted from the composites 

to build random forest Δτ regression models (Section 2.3.5). The models were later used to identify 

potential areas that resembled BAs, which were polygonised and iteratively merged (Section 2.3.6). 

Finally, burn severity of detected BA pixels was estimated by time series-relativized burn ratio (ts-RBR) 

(Section 2.3.7). 
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Figure 2.2: Flow chart visualizing the LTS fire pipeline. The green boxes indicate input datasets; black boxes represent actions 

taken; grey boxes signify intermediate products; and orange boxes show end products. Numbering corresponds to the relevant 

section in the methods. 

2.3.3 Input data 

2.3.3.1 Known burnt and unburnt area 

A total of 94 known burn areas dating from 1988 to 2018 were used to train a regression model and 

validate BA maps. The Fire Services Department (FSD) provided a list of all 2036 reported fire events 

of 2017 and 2018. The database included the area burnt (in m2), date the fire was reported, and the 

approximate location in Universal Transverse Mercator (UTM) coordinates or nearest lamp post. Most 

of these fires were small, so we mainly focused on features > 4000 m2 (covering at least 4–5 Landsat 

pixels). In addition to the FSD records, we obtained a list of years and UTM coordinates for all major 

(>100 ha) fires between 2010 and 2017 from the Agricultural, Fisheries, and Conservation Department 

(AFCD). No exact fire dates were provided for this database, but the fires were significant enough so 

that fire dates could typically be found in local newspaper articles. Based on both the FSD and AFCD 

records, we manually delineated 75 burnt patches on high-resolution (<3 m) satellite images provided 

by Google Earth and Planet (Figure 2.3). When delineating the patches, we followed Stage 2 protocol 

outlined by the CEOS Land Product Validation (LPV) subgroup (L Boschetti et al., 2009; Franquesa et 

al., 2022). In particular, we checked images before and after the fire to ensure that the patch was not 

caused by earlier fire events. As fire dates were provided by FSD and AFCD, each polygon was 

associated with the exact fire data instead of temporal ranges between two images. Patches that were 
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not clearly visible on the high-resolution satellite imagery were excluded. Since one of the aims of the 

pipeline is to create BA time series that spans the entire Landsat dataset, we additionally included 19 

older burnt patches between 1988 and 2003 for training and validation. The UTM coordinates and fire 

dates of these patches were described in two local fire studies (W.-W. E. Chan, 2005; K. L. Chau, 1994). 

Neither Google Earth nor Planet data was available for these patches, so manual delineation was carried 

out on Landsat scenes. We recognize that CEOS LPV recommends having higher-resolution imagery 

when creating validation datasets, but we believe that it is still valuable to include validation data from 

the Landsat 5 era to test pipeline applicability across imagery collected by different Landsat sensors. 

 

Figure 2.3: A burnt patch in degraded shrublands near Tai To Yan, Hong Kong (22°27′15.51″N, 114°6′12.55″E) demonstrating 

the transient nature of local BAs. The fire broke out on 14/2/2017, according to Fire Service Department records, and was 

manually delineated on high-resolution Google Earth satellite imagery (light blue polygon). The patch was clearly visible on 

the Landsat scene captured shortly after the fire (18 February 2017) but rapidly revegetated and became undistinguishable 

after a few months (28 July 2017 and 3 October 2017). Panels (a–c) shows true colour RGB imagery recreated from the Landsat 

scenes, while panels (d–f) show NIR band as red, SWIR1 band as green, and SWIR2 band as blue. Note the importance of 

SWIR bands, which is used to calculate the normalized burn ratio (NBR), in enhancing the contrast of burnt patches. 

An additional 173 polygons were drawn to delineate unburnt pixels. Based on the premise that repeated 

burns within a year is rare, 94 of these polygons were derived from the same locations as the known 

burnt patches, but one season before the fire occurred. The remaining 79 polygons were urban areas 

and dense forests along with clouds and artifacts on the Landsat min-NBR composites. Together, these 

polygons cover a wide range of unburnt features, which is critical for accurate burn-area mapping 

(Franquesa et al., 2020). 
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2.3.3.2 Landsat 5, 7, 8 Surface Reflectance (SR) Scenes 

Landsat 5 ETM SR, Landsat 7 ETM+ SR, and Landsat 8 OLI/TIRS SR scenes between 1986 and 2020 

covering the study area were obtained through Google Earth Engine (GEE). Wavebands that were not 

shared between Landsat missions (e.g., the ultra-blue band in Landsat 8) were removed. The scenes 

already underwent basic radiometric/atmospheric correction. 

2.3.4 Pre-Processing 

2.3.4.1 Cloud Masking and Sorting by Season 

Pixels affected by clouds in the Landsat SR scenes were masked using the cloud and cloud shadow 

bitmasks provided by GEE. As a fail-safe, we additionally applied a brightness threshold based on the 

red, green, and blue (RGB) bands to remove remaining clouds. The bands were chosen since visible 

light is less likely to penetrate clouds. Pixels were masked out if any one of the three bands had a 

reflectance > 0.2. A total of 1297 scenes with no clear pixels were removed. The remaining scenes were 

then sorted by season. A total of 850 summer scenes (March–October) and 685 winter scenes 

(November–February) from the 1986–2020 period—each covering an area of 2952 km2—were 

analyzed separately to maximize the probability of detecting rapidly revegetating burnt patches under 

pronounced seasonal effects. 

2.3.4.2 Weighted Histogram Matching to Uniformize Landsat SR Scenes 

The Landsat SR scenes were uniformized by a novel weighted histogram matching approach to 

minimize inter-scene differences caused by haze and changing incident sunlight (weighted histogram 

matching, Figure 2.2). We first grouped the cloudless Landsat SR scenes into five seven-year image 

collections (1986–1992, 1993–1999, 2000–2006, 2007–2013, 2014–2020) and created a median 

composite for each collection on GEE. These composites were then used as “references” to uniformize 

individual Landsat SR scenes. Multiple references were used to avoid uniformizing recent Landsat 

scenes with references from another era. We specifically chose this time interval (seven years per 

composites) as it provided enough cloudless scenes to create stable composites of Hong Kong while 

still being able to reflect decadal changes in vegetation structure. Since Hong Kong has a high cloud 

cover (68%) (Hong Kong Observatory, 2023) and has recently experienced relatively drastic changes 

in vegetation structure (Abbas et al., 2016), we believe that the seven-year benchmark should generally 

be robust enough for other wet tropical or subtropical regions. Each Landsat SR scene was paired with 

two reference composites according to the date of capture. For instance, a scene taken on 24 July 2013 

was paired with the 2007–2013 and 2014–2020 summer reference composites. We then performed 

histogram matching using the histMatch function in the RStoolbox package (version 0.2.6)(Leutner et 

al., 2019) in R-4.1.0 (R core team, 2021) to match each scene with the two paired references to create 

two matched rasters. The histMatch function compares the distributions of pixel brightness (histograms) 

of the source raster with the reference. It then makes adjustments to the brightness of the source raster 
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such that the histogram matches that of the reference. The six bands were matched separately to correct 

systematic differences in reflectance ratios between different bands. Since urban areas and water bodies 

were often highly variable from scene to scene, non-vegetated pixels were masked out before matching. 

A weighted average was then taken between the two histogram-matched rasters based on time 

difference between the scene and the median date of the two references. This created a uniformized 

Landsat SR scene that was more inter-comparable with other uniformized scenes. Weighted histogram 

matching was repeated across all scenes to create 1535 uniformized Landsat SR scenes (865 summer 

and 685 winter). 

2.3.4.3 Date-Traceable Compositing (Using Min-NBR as Criterion) 

The uniformized Landsat SR scenes were distilled into 35 summer and 35 winter composites over the 

35-year study period by date-traceable min-NBR compositing (date-traceable compositing, Figure 2.2). 

We generated seasonal composites to increase the signal-to-noise ratio and reduce data volume by 

selecting the pixel in the season that most resembles burn areas. We used minimum normalized burn 

ratio (min-NBR), based on the NIR (0.77–0.9μm) and SWIR2 (2.08–2.35μm) bands, as the compositing 

criterion. The index is chosen for its ability to identify pixels that resemble burnt patches (Szpakowski 

& Jensen, 2019). 

NBR = (NIR − SWIR2)/(NIR + SWIR2) (1) 

For each pixel, we identified the scene in the season with the lowest NBR. We then transferred the 

reflectance of the six Landsat bands to the seasonal composite. We kept the date of capture and stored 

it as an extra seventh band. This allowed us to build regression models on burnt-area age using our 

training dataset and predict fire dates within seasonal composites in later stages of the pipeline (Sections 

2.3.5 and 2.3.6 in Figure 2.2). 

2.3.4.4 Vegetation Indices (VIs), Normalization, and Inter-Annual Changes 

Several additional steps were taken to preprocess the seasonal composites to suppress both commission 

and omission errors in BA detection. Seven vegetation indices (VIs), namely the Burned Area Index 

(BAI), Mid-Infrared Burn Index (MIRBI), Normalized Burn Ratio (NBR), Enhanced Vegetation Index 

(EVI), Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR), and Soil Adjusted 

Vegetation Index (SAVI) were added to the seasonal composites. These VIs utilize NIR and/or SWIR 

bands to highlight fire-affected regions (Figure 2.3) and have been shown to improve separability of 

burnt patches in the wet tropics (Penha et al., 2020). Additionally, the six Landsat wavebands were 

normalized by dividing them with the average reflectance of the same pixel as suggested by Wu (2004) 

and Chan et al. (2021) (A. H. Y. Chan et al., 2021; C. Wu, 2004). Finally, a distinctive feature of burn 

areas is the sudden change in spectral features from pre-fire vegetation and post-fire patches (Chuvieco 

et al., 2019; Gaveau et al., 2021). Hence, in addition to current-year data, inter-annual changes were 

calculated by subtracting the reflectance and VIs of the previous year from that of the current year. 
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2.3.5 Model Building 

We built random forest (RF) regression models to detect burn area from remotely sensed data (model 

building, Figure 2.2). The RF regression models were built using the randomForest package (version 

4.6-14) (Breiman et al., 2018) in R-4.1.0 (R core team, 2021) with ntree = 500 and mtry = 5. The 

explanatory variables of the models were normalized reflectance, VIs, and associated interannual 

changes. The response variable was the estimated number of days since the last fire (Δτ), ranging from 

0 to 365 days. The model took the form: 

Days since fire (Δτ) ~ reflectances (6 bands) + VIs (7 indices) + changes (6 bands, 7 VIs) 

We chose the number of days between the date of detection and the known fire date (Δτ) as the response 

variable, since it carries more information than a simple binary fire/non-fire variable: the long return 

time of Landsat and high cloud cover means that many known burnt areas were only detected from 

space months after the fire event, by which time they were partially revegetated. Δτ served as a useful 

proxy for pixel resemblance to burnt areas. A smaller Δτ indicated higher pixel resemblance to burnt 

areas, while a larger Δτ indicated resemblance to fully revegetated or unburnt pixels. For pixels in the 

94 known burn areas, we calculated Δτ and extracted the 26 explanatory variables from the date-

traceable Landsat composites. For pixels in the 173 unburnt polygons, we extracted the 26 explanatory 

variables and assigned pixels with a Δτ of 365 days, which is the largest value of Δτ a known BA pixel 

could take (i.e., a fire broke out in the first day of a season but was only detected in the last day of the 

next season) and an interval long enough for optical properties of BAs to recover (Figure 2.3). 

To estimate the accuracy of the LTS fire product the extracted data were randomly split into 10 folds 

for cross validation. Since there were way more unburnt than burnt pixels, we performed stratified 

random sampling in each fold to ensure that the ratio between unburnt and burnt pixels was capped at 

1.5. This prevented extreme class imbalances from biasing the model predictions (Khoshgoftaar et al., 

2007). In each of the 10 iterations, 9 out of the 10 folds were used to train an RF model. The remaining 

fold was kept unseen throughout the pipeline and was only used to validate the final burn-area map 

produced after shaping burn-area polygons (burn-area shaping, Figure 2.2). When creating the 10-folds, 

pixels extracted from the same polygon were always grouped into the same fold. This ensured that the 

cross-validation was always carried out across sites. In other words, if pixels from a BA polygon were 

used to build the fire map, we would avoid using other pixels from the same polygon to validate the 

results. We trained 10 RF models from the 10-folds, which were passed onto the next stage of the 

pipeline. Finally, to assess whether the preprocessing pipeline improved accuracies in burn-area 

detection, we repeated the 10-fold cross validation exercise and trained RF models using non-

uniformized/normalized Landsat SR bands and VIs as inputs (referred as no-preprocessing, or NPP 

below). 
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2.3.6 Burn Area Shaping 

2.3.6.1 Applying Models to Landsat Time Series and Thresholding Δτ Rasters 

The RF models were then used to predict Δτ from the time series of seasonal LS composites. Each 

model generated a seasonal time series of 68 Δτ rasters with pixel values ranging from 0 to 365 (Figure 

2.4). 

 

Figure 2.4: Raster showing estimated Δ𝜏 of Sai Kung Peninsula, Hong Kong (22°25′14.4″N, 114°19′51.4″E) for the summer 

of 1996. We trained a Random Forest model that estimated Δ𝜏 from bands in the seasonal min-NBR composites. Δ𝜏 is a proxy 

for burn area resemblance. A lower Δ𝜏 indicates closer resemblance to burn-area pixels, while a higher Δ𝜏 indicates closer 

resemblance to unburn pixels. Red and blue areas indicate the seed and growth pixels after thresholding. 

Burnt and unburnt pixels were not easily separable by a single threshold on Δτ, so burn-area polygons 

were created by twice thresholding the Δτ rasters followed by seed-growing (thresholding, Figure 2.2). 

As shown in Figure 2.4, some unburnt pixels often had lower Δτ than some of the less severely burnt 

pixels in BAs. Using a single threshold would either omit a substantial number of BA pixels or mistake 

many unburnt pixels as burnt (Figure 2.5). Hence, a two-phase region-growing algorithm, similar to 

that described in Bastarrika et al. (2011), was adopted (Bastarrika et al., 2011). In the first phase, two 

thresholdswere applied — one stringent and one lenient — on the estimated Δτ rasters. This created two 

sets of polygons: the seed polygons minimized commission errors by keeping only the most severely 

burnt pixels (red, Figure 2.5); the growth polygons minimized omission errors by including pixels that 

resembled burnt patches (blue, Figure 2.5). In the second phase, we removed small-seed polygons (less 



46 

 

than three pixels in size), which often represented artifacts (Long et al., 2019), then overlaid the two 

sets of polygons and grew the seeds with intersecting growth polygons. Since most burnt patches would 

at least contain a few severely burnt-seed polygons that unburnt patches were unlikely to possess, and 

less severely burnt pixels would be captured by the growth polygons, the algorithm boosts both 

specificity and sensitivity in BA detection (Bastarrika et al., 2011). The two thresholds adopted in this 

study were derived from the training datasets. For each iteration in the 10-fold cross validation, we 

performed a smaller nine-fold cross validation within the training dataset, creating nine RF models that 

estimated Δτ from the holdout. We then applied thresholds ranging from 0 days to 365 days on the 

estimated Δτ and plotted the error-threshold curves for (1) pixel-omission error, (2) patch-omission 

error, and (3) pixel-commission error (Figure 2.5). The stringent threshold was set after the sharp drop 

in site-omission errors, while the lenient threshold was set after the drop in pixel-omission errors. We 

observed that the error-threshold curves were similar across different folds, so for simplicity, we set a 

single set of stringent (70 days for summer; 60 days for winter) and lenient (160 days) thresholds across 

all 10 folds (Figure 2.5). Thresholds were chosen by qualitative assessment of the error-threshold 

curves in this study, but these thresholds could potentially be derived mathematically in the future. 

 

Figure 2.5: Effects of varying the Δτ threshold of summer pixels. Δτ is the predicted time interval between a fire and date of 

detection from Landsat, which acts as a proxy variable for burn-area resemblance. A lower Δτ indicates closer resemblance to 

burn-area pixels, while a higher Δτ indicates closer resemblance to unburn pixels. We trained random forest (RF) models that 

predicted Δτ from either (1) Landsat data that went through the entire preprocessing pipeline (PP) or (2) reflectance/VIs that 

had not underwent uniformization by weighted histogram matching (NPP). Different thresholds were applied to convert the 

continuous Δτ to binary fire/non-fire predictions. Errors of commission (unburnt pixels misclassified as burnt), pixel omission 

(proportion of burnt pixels missed), and patch omission (proportion of known burnt patches that had < 6 correctly classified 

pixels) were calculated. The vertical dash lines represent the thresholds (70/160) we adopted to seed and grow fire scars in 

LTS fire. 
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2.3.6.2 Iterative Polygon Merging 

BA polygons over the 34-year study period were iteratively merged to create a single shapefile with a 

single dated polygon per BA. Despite quick vegetative recovery in the wet tropics/subtropics, it is not 

uncommon for the same burnt patch to be detected across multiple seasons, with complex overlapping 

of polygons. To prevent repeated observations from erroneously inflated estimated burn area, polygons 

needed to be appropriately dated and merged. Figure 2.6 shows the decision tree used to handle seed 

and growth polygons based on two criteria: seed detection date (T) and seed area (A). We used attributes 

from seed polygons rather than growth polygons as merging criteria, since seed polygons represent 

areas with high confidence in detection and were less affected by artifacts. The seed-detection date (T) 

was calculated by taking the earliest date of detection amongst encapsulated pixels; the seed area (A) 

was the area of the entire seed polygon (Figure 2.6). For each growth polygon, we first checked whether 

it contained seed polygons from the same season. If it did not, we checked whether it intersected with 

polygons from the previous season. Growth polygons that do not intersect with seed polygons of the 

same season or merged polygons from last season were discarded (rightmost branch, Figure 2.6). 

Growth polygons that only intersected with merged polygons from last season often represented 

genuine burnt patches, though many were not fully detected last season due to cloud occlusion or gaps 

between Landsat 7 scan lines. Hence, we merged these polygons together and adopted the seed date and 

seed area of polygons from last season (second branch from the right, Figure 2.6). For growth polygons 

that contained seed polygons from the same season, we first merged the growth polygons with the seed 

polygons. The resulting polygon took the date and area from the seed polygon. If the growth polygon 

contained more than one seed polygons, we took the date from the largest seed polygon and the area by 

summing areas of all intersecting seed polygons (black box after first split, Figure 2.6). We then 

checked whether the polygon overlaps with polygons from last season. If it did not, the feature likely 

resulted from a new fire this season, so we kept it as a separate polygon (third branch from the left, 

Figure 2.6). If it did, the polygon either resulted from two fires at close proximity or was part of a burnt 

patch from last season. We did not have enough information to separate the two scenarios, so we opted 

for an area-based approach to ensure that the dates of large patches would not be unduly dragged behind 

by small fires or artifacts. If the polygon from this season carried a significantly (> 50%) larger seed 

area, we merged the polygons and adopted the new seed date and area (leftmost branch, Figure 2.6). 

Otherwise, we still merged the polygons but adopted the date from the largest overlapping polygon 

from the last season and the seed area from all overlapping polygons from last season (second branch 

from the left, Figure 2.6). Once all polygons from a particular season were sorted and merged following 

the criteria set out by Figure 2.6, we moved on to the next season. By iteratively adding polygons from 

all 68 seasons, we condensed all features into a single vector layer with overlapping features ± 1 season 

apart merged, and fire date estimated for each feature. In our validation exercise, iterative polygon 

merging was repeated 10 times for both the preprocessed and no-preprocessing datasets, creating 20 
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LTS fire maps. All steps were carried out in R-4.1.0 with polygons merged using the sf package (version 

1.0-1) (Pebesma, 2018; R core team, 2021). 

 

Figure 2.6: Decision tree for iterative polygon merging based on the date (T) and area (A) of seed polygons. 

2.3.7 Burn Severity Estimation 

The burn severity of pixels in the burn-area polygons were estimated by a modified version of 

Relativized Burn Ratio (RBR) described in Parks et al. (2014) (Burn severity estimation, Figure 2.2). 
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The existing RBR described by Parks et al. (2014) is calculated in three steps based on a pair of Landsat 

scenes captured before and after the fire. 

NBR = (NIR − SWIR2)/(NIR + SWIR2) (1) 

dNBR = (NBRprefire − NBRpostfire) × 1000 − dNBRoffset (2) 

RBR = dNBR/(NBRprefire + 1.001) (3) 

The dNBRoffset term represents the change in NBR unrelated to fire and is usually estimated from pixels 

outside the burn area. Other terms are self-explanatory. In this study, we kept the general structure of 

the equations but replaced the terms in (2) and (3) to create the time series Relative Burn Ratio (ts-

RBR), a new variant of RBR derived from multiple, instead of single, pre- and post-fire scenes. This is 

critical in our wet subtropical study area as cloudless scenes capturing the entire landscape pre- and 

post-fires were often unavailable. An approach that calculates burn severity by combining information 

from multiple overlapping scenes is, therefore, needed. 

ts-dNBR = (NBRmed prefire − NBRmin postfire) × 1000 − dNBRmed min offset (4) 

ts-RBR = ts-dNBR/(NBRmed prefire + 1.001) (5) 

For pre-fire conditions, we replaced the NBRprefire term with the median pre-fire NBR (NBRmed prefire) 

calculated across all uniformized Landsat scenes (Section 2.3.4, Figure 2.2) in the season before the 

fire. We then replaced the NBRpostfire term with the minimum NBR (NBRmin prefire) across all uniformized 

Landsat scenes in the two seasons after the date of detection. The minimum was taken to prioritize the 

pixels showing the highest burn severity over those recorded after the patch starts to revegetate. An 

issue with differencing NBRmed prefire and NBRmin postfire is that the pre-fire median is expected to be larger 

than the post-fire minimum, resulting in overestimated burn severity. This was accounted for by 

adjusting the dNBRoffset term, which now represents the mean difference between NBRmedian and 

NBRminimum amongst unburnt pixels. Different dNBRoffset values were used for the three vegetation types 

(grasslands, shrublands, forests) based on a Landsat-based vegetation map time series of the area 

(Appendix B:). A comparison was made between the ts-RBR across grasslands, shrublands, and forests 

to assess whether the approach properly relativized burn severity across various vegetation types. We 

did not conduct field surveys to validate the burn severity estimated by ts-RBR, but mathematically, ts-

RBR is near-equivalent to RBR and is expected to perform similarly as RBR. 

2.3.8 Comparison with Other Burn Area Products 

The accuracy of the LTS fire map and three global BA products (MCD64A1 version 6, FireCCI51, and 

GABAM) were assessed by comparing detected BAs with known fire/non-fire polygons (see Section 

2.3.3). We polygonised and downloaded all three datasets from Google Earth Engine and the GABAM 

FTP server. The attributes of polygon contained estimated fire date (for MCD64A1 and FireCCI51) or 
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year (GABAM). We overlaid the detected BA polygons onto the known fire/non-fire polygons 

delineated based on government fire records (Section 2.3.3) and analyzed the degree of overlap. For 

LTS fire, since all the known fire/non-fire polygons were used to train the final product, we instead 

carried out 10-fold cross-validation using LTS fire maps built from different subsets of the training data 

(see Section 2.3.5). In other words, we overlaid the set of validation polygons on the version of the LTS 

fire map built from an RF model that was not trained by pixels in the validation polygons. Since 

estimated fire dates were not always accurate, especially for the temporally coarse GABAM dataset, 

we matched features that were ± 1 year apart. We then calculated site omission (proportion of known 

BA polygons completely omitted), area omission (proportion of burnt area omitted), area commission 

(proportion of unburnt area mistaken as burnt patches), and overall accuracy (proportion of correctly 

classified area) from the confusion matrix. Additionally, we investigated into how accurately the 

iterative polygon merging algorithm dated the LTS fire polygons by plotting a histogram showing the 

difference between LTS fire estimated date of detection and actual fire date. 

Apart from comparing burn-area products with a small number of manually delineated fire/non-fire 

polygons, we also evaluated the LTS fire dataset through a full intercomparison with established global 

burn-area products. We followed the protocol of matching features dated ± 1 year from each other. For 

GABAM, no fire dates were estimated, so we dated the features to the middle of the year and matched 

LTSfire features dated ± 365 days from the 1st of July. Additionally, at the time of writing, GABAM 

only included several scattered years before 2000, making it difficult to accurately match features with 

LTS fire. Hence, we focused our comparison on years after 2001. For each pairwise comparison 

between LTS fire and existing burn-area maps, we tallied the number of overlapping and non-

overlapping features to obtain feature agreement. We also calculated the overlapping and non-

overlapping area to get area agreement. 

Finally, we used videos, figures, and graphs derived from the LTS fire map to visualize the seasonal-

to-decadal trends in fire occurrence across Hong Kong. We created a time-lapse video that plots LTS 

fire polygons against yearly Landsat median composites at the estimated date of detection. The 

Temporal Controller functionality in QGIS 3.18 (QGIS Development Team, 2021) was used to date 

vector and raster datasets, with the output converted to .mp4 format with FFmpeg (Tomar, 2006). The 

LTS fire map was also used to provide a holistic overview of the fire regime of the study area. We 

investigated the change in burn area between 1987 and 2020, analysed seasonal fire prevalence, and 

tallied the number of times each pixel burnt throughout the study period. 

2.4 Results 

2.4.1 Validation with Known Burnt Patches 

LTS fire with the full pre-processing pipeline had the highest overall accuracy and lowest omission 

errors amongst the burn-area products compared (Table 2.1). The full LTS fire map detected 96.8% of 
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all validation burn-area polygons and 88.8% of the known burnt area. The Landsat sensor type does not 

seem to significantly affect burn-area detection. Lower-area omission errors were observed before the 

launch of Landsat 8 in 2013 (5.6%) or before the launch of Landsat 6 in 1999 (6.3%). The algorithm 

misclassified 2.42% of the unburnt pixels. It is important to note that out of the 173 non-fire polygons, 

94 were created by encircling pixels a few months before fires broke out (pre-fire). These polygons 

could easily be misclassified if the fire events were misdated during iterative polygon merging. If these 

polygons were excluded, errors of commission were very low (0.5% by area). If we adopted a less 

rigorous preprocessing pipeline and skipped weighted histogram matching (no pre-processing, Section 

2.3.4), commission errors slightly increased and omission errors approximately doubled (Table 1.1). 

GABAM, a Landsat-based global burn-area product, detected 43.5% of the known burnt patches, or 

50.7% of the burnt area in the validation dataset. A higher site omission than area omission indicates 

that the dataset disproportionally omitted smaller patches. The errors of commission were low overall 

(1.2% by area) but higher than the two LTS fire datasets if we excluded pre-fire polygons prone to 

misdating (1.18%). The two MODIS-based burn-area products generally had very high omission errors 

(Table 1.1), likely due to the low spatial resolution of the source data, while commission errors were 

negligible (0%) for both datasets. 

Table 2.1: Accuracies of LTS fire and existing global burn-area products. The burn-area maps were compared with 94 known 

burn-area polygons and 173 unburnt polygons. Site omission errors refer to the proportion of undetected burn-area polygons 

(no overlap at all); area omission errors refer to the proportion of burnt area omitted; commission errors refer to the proportion 

of unburnt area misclassified as burnt; and the overall accuracy refers to the overall proportion of correctly classified area. 

Numbers representing the highest accuracy or lowest error are bolded. 

Dataset 
Overall  

Accuracy 

Site Omission 

Error 

Area Omission 

Error 

Commission 

Error 

LTSfire 0.952 0.0319 0.112 0.0242 

LTSfire no pre-

processing 
0.935 0.0851 0.175 0.025 

GABAM 0.860 0.565 0.493 0.012 

FireCCI51 0.720 0.987 0.960 0 

MCD64A1 0.799 0.949 0.720 0 

The date of BA detection derived from iterative polygon merging was moderately successful in 

estimating the actual fire date. Some 62.6% of the estimated date of BA detection was within one month 

(± 30 days) of the actual fire date, and some 76.9% of the dates were within two months (± 61 days) of 

the actual fire event (Figure 2.7). Given the low (16-day) temporal resolution of the input Landsat data, 

the dates of BA detection were usually later than the actual fire date. However, a small number of BA 

polygons were misdated to dates earlier than the actual fire, possibly due to erroneously adopting the 

wrong date of detection from nearby fires or artifacts (Figure 2.7). 
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Figure 2.7: Accuracy of estimated fire dates amongst LTS fire polygons. The time difference is the time (in days) between the 

estimated fire date in LTS fire and the date of the fire event in the governmet (FSD/AFCD) fire records. 

2.4.2 Evaluating the LTSfire Map against the MCD64A1, FireCCI51, and GABAM 

Comparisons with existing burn-area products highlighted the ability of LTS fire in accurately 

identifying smaller BA features. MODIS-based MCD64A1 and FireCCI51 only detected 3% and 3.6% 

of LTSfire features, respectively (Supp. Figure A.1). The datasets did manage to detect several of the 

largest fires (Figure 2.8a-b), but even by area, the omitted patches accounted for > 80% of the total 

burnt area detected by LTS fire (Supp. Figure A.1). In comparison, LTS fire detected a majority of 

features in both MCD64A1 (73.1%) and FireCCI51 (57.7%), and most features undetected by LTSfire 

were not fires but artifacts associated with the airport, urban fringes, and fishponds (Figure 2.8a-b). A 

relatively higher agreement was observed between LTS fire and GABAM. The two datasets agreed on 

40.7% of the burnt patches and had a Sørensen–Dice coefficient of 0.521 (Supp. Figure A.1). However, 

the dataset, still omitted most of the smaller local fires (Figure 2.8c). Several large Landsat 7 scan lines 

were mistaken as burnt patches in GABAM (Figure 2.8c), while LTSfire commission errors were 

mainly smaller features at fringes of urban areas and water bodies (Figure 2.8c). 
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Figure 2.8: Comparing the burn area map produced in this study (LTSfire) with three existing global BA products, (a) 

FireCCI51, (b) MCD64A1, and (c) GABAM. Areas delineated by the green polygons corresponds to the areas where LTSfire 

agrees with the existing dataset (Denoted by Ai ∩ Bi, or grey shading, in Supp. Figure A.1). Polygons with blue or orange 

fill represent burnt patches only detected by the existing (Bd in Supp. Figure A.1) or LTSfire (Ad in Supp. Figure A.1) map, 

respectively. Darker shades of orange represent repeated fires in the same area omitted by the existing dataset. A 2013–2014 

land classification map of Hong Kong (22°16′8″N, 113°57′6″E) derived from the Landsat data is shown in the background. 

2.4.3 Overview of the Fire Regime in Hong Kong 

The 34-year Landsat burn-area time series was visualized by a time-lapse video (A. H. Y. Chan et al., 

2023), a fire-frequency map (Figure 2.9), and summary graphs (Figure 2.10), which together revealed 

spatial and temporal patterns of fires in Hong Kong. The total detected burnt area was 909.9 km2, against 

a total vegetated area of 728.4 km2, which would amount to 125% of land if fires never occurred at the 

same location twice. In reality, repeated fires often occur. In fact, most (60.6%, or 441.1 km2) of the 

vegetated pixels were unburnt throughout the study period (Figure 2.9), while a majority of burnt pixels 

(65.4%) burnt more than once, suggesting strongly positive fire-vegetation feedback dynamics. 

Spatially, the forested vegetation on the highly urbanized Hong Kong Island appeared to be better 

protected and was the least-burnt region in the study area. Grasslands and shrublands on the Sai Kung 

Peninsula and near Plover Cove burnt frequently before 2000 but has since seen reduced fire occurrence, 

likely due to a drop in rural population and associated land-management practices. Vegetation in the 

Northern District, along with the mountains near Kai Kung Leng and Castle Peak, burnt frequently 

across the entire study period, with many of the grassy slopes burning ≥ 6 times in the last 34 years 

(Figure 2.9). 
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Figure 2.9: Frequency of fires over different regions of Hong Kong (22°16′8″N, 113°57′6″E). Pixels were coloured according 

to the number of times it burnt over the 34-year study period (1987–2020). The proportions of vegetated area being burnt 0–

6+ times were tallied and plotted on the bottom right panel. The background is a 2013–2014 land classification map derived 

from Landsat data. 
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Figure 2.10: Fire prevalence in Hong Kong over time. (a) The burnt area detected by LTS fire in 33 fire seasons (15th July–

15th July of the next calendar year). (b) The burnt area detected by LTS fire in each calendar month over the entire study 

period. Note that there might be a delay between the fire and patch detection. 

Fires have become less prevalent over time. Fire-affected area dropped from 20–50 km2 per fire season 

before 2000 to 5–25 km2 per fire season in 2008–2020 (Figure 2.10a). The trend highlights an overall 

success in fire suppression in Hong Kong. Fire prevalence oscillated strongly, usually in 2–3-year cycles, 

possibly due to fuel accumulation entrained by weather patterns. Despite cool ambient temperatures, 

most fires broke out in the drier autumn and winter months (October–January). Notably, albeit with the 
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delay in detection (Figure 2.9), the peaks in fire occurrence could be attributed to the traditional Ching 

Ming (early April) and Chung Yeung (October) Festivals (Figure 2.10b). During these festivals, locals 

clear vegetation around graves, light candles, and burn joss paper to pay respect to their ancestors, which 

often led to spillover fires if weather conditions are dry (W.-W. E. Chan, 2005; K. L. Chau, 1994). 

2.4.4 Burn Severity Estimation 

Burn severity estimated by ts-RBR was effectively relativized across different types of vegetation. 

Figure 11 demonstrates burn severity estimated by ts-RBR over a burnt patch near Discovery Bay, 

Lantau Island in 2004. No field surveys were carried out to verify ts-RBR patterns observed, but we 

generally found lower burn severity near the edge and patchy distribution of severity across the rest of 

the burn area. ts-RBR values typically ranged between 50–500. With a large sample size (n = 179,713), 

the vegetation type was found to significantly affect ts-RBR (F = 300, p < 0.001, ANOVA). However, 

the effect sizes were very small (Supp. Figure A.2). Ω2 of the model shows that the vegetation type 

only accounts for 0.3% of the variance in ts-RBR, indicating that the metric was effectively relativized 

and ts-RBR values were comparable across different types of vegetation. 

 

 

Figure 2.11: Burn severity estimated by time series relativized burn ratio (ts-RBR) of two fires near Discovery Bay, Lantau 

Island (22°18′35.19″N, 114°0′25.95″E) in 2004. The background map is a Landsat-based vegetation map of the area in the 

same year. 
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2.5 Discussion 

Our LTS fire map of Hong Kong represents the first regional Landsat BA map in wet 

tropical/subtropical Asia that covers the full Landsat 5/7/8 time series (Supp. Table A.1). It is also the 

first long-term Landsat BA map in the wet tropics/subtropics that incorporated estimated date of BA 

detection and burn severity (Supp. Table A.1). When validated with government fire records, the LTS 

fire map was found to carry very low omission errors, omitting only 11.2% of the burnt area compared 

with MCD64A1 (72%) and FireCCI51 (96%). The high omission errors of MODIS-based BA maps 

were partially due to the low spatial resolution MODIS, as 4.1% and 18.1% of the burnt area in the 

ancillary dataset were found in patches that were smaller than the pixel size of FireCCI51 (250 m) and 

MCD64A1 (500 m), respectively. However, most of the pixels omitted (74.9% of MCD64A1 omissions 

and 95.7% of FireCCI51 omissions) were attributable to larger patches. Many of these fires were 

probably still too scattered to be readily detectable or were extinguished before the MODIS satellite 

returned. The results revealed the limitations of algorithms that grow BAs based on MODIS active fire 

data. It is also worth noting that the mean area of burnt patches detected by LTS fire (13.3 ha) was 

significantly smaller than the patches delineated for validation (31.1 ha) (Supp. Figure A.3). Had we 

sampled the true size distribution of burnt patches, the omission errors of the two MODIS BA products 

would be even higher. While burnt patches in Hong Kong tend to be smaller than other 

tropical/subtropical regions due to habitat fragmentation and government fire suppression (Supp. 

Figure A.3) (Hantson, Pueyo, et al., 2016; Morton et al., 2011), the results nonetheless highlighted the 

importance of incorporating higher-resolution datasets if fire histories of landscapes were to be 

accurately reconstructed. 

LTS fire also performed well compared to Landsat-based GABAM, omitting 11.2% rather than 49.3% 

of burnt area while keeping commission errors low (Table 1.1). We do acknowledge that direct 

comparisons between locally trained BA maps with global datasets may lead to biases, even with 

independent cross-validation. However, we believe that the stark differences in accuracies could at least 

be partially attributed to methodological differences in preprocessing. Most existing BA mapping 

algorithms, including GABAM, do not directly classify pixels into binary burnt/unburnt maps. Rather, 

continuous proxies of BA resemblance, such as VIs, predicted burnt probabilities, or, in this study, the 

equivalent number of days after fire (Δτ), which are thresholded into BA products. Thresholding makes 

BA mapping more flexible. For instance, our study adopted the two-phase seed-growing approach 

proposed by Bastarrika et al. (2011) (Bastarrika et al., 2011). The approach elegantly incorporates 

spatial information into feature selection by overlaying polygons created by two thresholds, reducing 

both omission and commission errors (Figure 2.5). GABAM additionally incorporated a number of 

additional thresholds that could vary according to land cover (Long et al., 2019). However, existing 

approaches rarely explicitly address the issue of temporal stability. When a single set of thresholds is 

applied across multiple scenes in the time series, the balance between omission and commission errors 
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can change drastically. Depending on incident sunlight and haze, some scenes have lower baseline 

NIR:SWIR ratios across all pixels, leading to bursts in commission errors (Figure 2.8c and Supp. 

Figure A.4). Similarly, burnt pixels in a particular season can be omitted if the scenes had a high 

baseline of NIR:SWIR ratios. At smaller spatial-temporal scales, this issue could be avoided by 

preselecting Landsat scenes that are unaffected by atypical incident sunlight or atmospheric effects. In 

fact, most existing Landsat BA maps in the wet tropics and subtropics operate on preselected scenes 

(Supp. Table A.1). However, we believe that scene preselection makes algorithms difficult to 

generalize. Moreover, the high cloud cover in the wet tropics and subtropics means that it is not 

uncommon for seasons to be only covered by a single atypical scene. GABAM addressed this by adding 

more thresholds and adopting relatively conservative thresholds (Long et al., 2019). Even so, atypical 

Landsat 7 scenes still caused bursts in commission errors in the GABAM time series (Figure 2.8c). In 

LTS fire, we developed a new weighted histogram matching approach to address this issue (Section 

2.3.4, Figure 2.2). By uniformizing Landsat scenes, we effectively minimized these sudden bursts in 

commission errors (Supp. Figure A.4). The preprocessing also ensured that the model performance 

was comparable across imagery collected by different sensors in Landsat 5, 7, and 8. LTS fire did not 

perform significantly worse for known burnt patches in the Landsat 5 era, even when most training 

pixels were derived from Landsat 7/8 years. We also did not observe any significant changes in size 

distribution of detected patches across time, indicating that LTS fire was equally sensitive to smaller 

features when applied to Landsat 5 data (Supp. Figure A.5). This temporal stability allowed us to adopt 

less conservative thresholds when mapping BAs, which in turn significantly suppressed omission errors 

without the expense in commission errors (Table 1.1). One potential concern of weighted histogram 

matching is the possibility of the process smoothing out BA features when burnt pixels are adjusted to 

match the histogram of the unburnt reference composite, increasing omission errors. Since burnt pixels 

are scarce relative to unburnt pixels, we found this to be a relatively minor issue in our study site. The 

benefits of temporal stability, which suppressed omission errors by allowing for less conservative 

thresholds, significantly outweighed the potential increase in omissions caused by smoothing (Table 

1.1). Nevertheless, minor changes to the algorithm would probably be needed if burn patches are large 

enough to span significant portions of Landsat scenes. In this case, the function to adjust pixel brightness 

could be derived from vegetated pixels only, then applied to both vegetated areas and potential burnt 

patches. This would uniformize the scenes without forcing output Landsat scenes with large burnt 

patches to have the exact histogram of the unburnt reference composite. 

Another important addition to the pipeline is the coupling of date-traceable compositing with iterative 

polygon merging to estimate dates of detection of BA polygons. Date stamps facilitate temporal 

analyses on fire occurrence (Figure 2.10) to be carried out at a level of detail previously only available 

in MODIS-based datasets or after cross-validation with government fire records (Hawbaker et al., 2017; 

K. C. Ryan & Opperman, 2013; Szpakowski & Jensen, 2019). Considering the low temporal resolution 
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of Landsat (16 days), the fact that the algorithm dated most polygons within a month and 76.9% of 

polygons within two months of the actual fire exceeded expectations (Figure 2.7). This is achieved by 

incorporating the full time series, including many heavily clouded or hazy scenes, when creating the 

date-traceable composites (Section 2.3.4, Figure 2.2). These min-NBR composites preserved the dates 

of pixels once they were captured by Landsat, even when many BAs were at the time only partially 

visible through cloud gaps or amongst Landsat 7 scan lines. Creating a set of criteria to decide how 

these dated BA polygons should be merged was by far the most challenging part in fire date estimation. 

Specifically, two separate issues were in play. Firstly, pixels burn repeatedly (Figure 2.9). The 

minimum interval between two separate fires depends mainly on landcover type and the rate of fuel 

accumulation. In Hong Kong, grassy slopes could occasionally burn repeatedly within a year, but apart 

from rare exceptions, repeated fires were usually more than a year apart. Hence, we designed the 

iterative polygon merging process such that overlapping polygons were merged if seed-polygon dates 

were ± 1 season apart. We are aware that the rate of revegetation and fuel accumulation can be vastly 

different in other biomes. In regions with rapid revegetation, quick fuel accumulation, and frequent 

repeated fires, the definitions of seasons would have to be shortened, while in regions with sluggish 

revegetation, slow fuel accumulation, and infrequent repeated fires, polygons dated more than one 

season apart ought to be merged. The second issue concerns neighboring burnt areas. Even if pixels do 

not burn repeatedly, two separate burnt patches ± 1 season apart could intersect at the border. It is 

challenging to determine whether intersecting patches with different dates of detection were (1) Caused 

by the same fire but were scattered across more than one Landsat scenes; or (2) Caused by two different 

fires. In this study, we did not make this distinction, and, occasionally, BA polygons were dated earlier 

than the actual fire (negative time differences in Figure 2.7). However, we did adopt an area-based 

algorithm such that if two separate polygons were wrongfully merged, at least the fire dates of large 

patches would not be dragged by much smaller ones. A solution to this issue is to extract additional data 

from the Landsat scenes before they were made into seasonal min-NBR composites, but that would 

likely come at the expense of computational time. Finally, it is worth noting that the accuracy of 

estimated dates depends on the temporal resolution of the input Landsat time series. In earlier years 

with only Landsat 5 data, or in cloudy seasons, the estimated dates of detection would unavoidably be 

less accurate. Nevertheless, the estimated dates of BA detection at its current form should be robust 

enough for a large range of ecological applications, such as how seasonal weather patterns affect fire 

susceptibility or post-fire recovery in the wet tropics and subtropics. 

The LTS fire pipeline also incorporated the time series relativized burn ratio (ts-RBR) as a burn severity 

metric. The index was developed as a variant of relativized burn ratio (RBR) (Parks et al., 2014) but 

made robust against poor data quality by considering multiple pre- and post-fire scenes in the Landsat 

time series simultaneously (Section 2.3.7 and Figure 2.11). The search for appropriate remotely sensed 

indices to represent burn severity has received much attention in recent years. Earlier studies often 
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directly used NBR (Equation (1)) or its difference pre- and post-fire, dNBR (Equation (2)), to estimate 

burn severity (Cocke et al., 2005; Escuin et al., 2007; Key & Benson, 2006; Soverel et al., 2010). 

However, these metrics do not address the issue of shifting NBR baselines across different vegetation 

types. Grasslands or short shrublands often have lower absolute NBR and, hence, smaller dNBR values 

compared to forests, regardless of relative severity (Parks et al., 2014; Szpakowski & Jensen, 2019). 

Recognizing these issues, many studies started adopting relativized dNBR, or RdNBR, to estimate burn 

severity (Busby et al., 2020; Chu & Guo, 2013; Kemp et al., 2016; Mallek et al., 2013; J. D. Miller & 

Thode, 2007). In recent years, the robustness of RdNBR in accurately quantifying burn severity has 

come into question (Parks et al., 2014; Soverel et al., 2010). In particular, Parks et al. (2014) pointed 

out that RdNBR is mathematically unstable and introduced RBR (Equation (3)) as a more reliable 

alternative that better echoed field-measured severity (Parks et al., 2014). In this study, we hope to 

contribute to this discussion by proposing the use of ts-RBR in areas where single cloudless pre- and 

post-fire scenes are not readily available. By consulting multiple pre- and post-fire scenes, the approach 

maximizes the chance of reconstructing burn severity patterns that would otherwise be partially 

occluded by clouds and artifacts. We are aware that more sophisticated methods have been developed 

to better match remotely sensed fire severity with a field-measured composite burn index (CBI). 

However, many are contingent upon calibrations to local climate regimes (Parks et al., 2018; 

Szpakowski & Jensen, 2019). This makes such approaches less generalizable, especially in the 

tropics/subtropics where data needed to calibrate the burn severity models are not readily available. 

Therefore, we decided to make less assumptions and adopt ts-RBR in the pipeline instead. Finally, it is 

important to note that RBR was mainly validated in the US (Parks et al., 2014). The caveats of applying 

the metric outside its validation window would also apply to ts-RBR. Moreover, ts-RBR should be 

viewed as a method to obtain RBR from time series data, not as a new and fully validated severity 

metric. Nevertheless, we believe that the severity data provided here could act as a rough baseline for 

future ecological studies, and we hope that this could elicit further discussions to find the best practice 

in estimating burn severity across wet tropical and subtropical BAs. 

Looking into the future, we believe that the LTS fire pipeline can be adopted more widely to provide 

ecologically relevant BA maps for researchers. Our results demonstrated how over three decades of fire 

history could be accurately reconstructed using Landsat data in a wet subtropical landscape with a 

highly diverse vegetation structure (Figure 2.9 and Figure 2.10). The seasonal, decadal, and spatial 

trends that we observed, such as the overall changes in fire abundance and seasonal peaks near local 

festivals, closely echoes what was reported by local ecological studies in Hong Kong (W.-W. E. Chan, 

2005; K. L. Chau, 1994; Marafa & Chau, 1999). Compared with most previous studies on 

Landsat/Sentinel BA mapping the wet tropics and subtropics, LTS fire is comparatively close to being 

data agnostic as it does not require preselection of Landsat scenes (Supp. Table A.1). We do, 

nonetheless, recognize five areas where the LTS fire pipeline needs further modification before it could 
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be applied more widely. Firstly, as mentioned above, the weighted histogram matching approach might 

need slight adjustments if the area of interest contains very large BAs. Secondly, we adopted Δτ, the 

equivalent number of days after fire, as the proxy for pixel resemblance to BAs. While Δτ is a more 

information-rich proxy and should be adopted, if possible, it cannot be derived from training datasets 

without exact fire dates. An alternative that trains RF models from binary burnt/unburnt pixels may be 

useful. Thirdly, the two thresholds used to create seed and growth polygons are currently chosen by 

eyeballing the threshold-error curves (Figure 2.5). A mathematical expression to derive the threshold 

from the curves will make the pipeline more automatable. Fourthly, as briefly discussed above, the rate 

of revegetation and fuel accumulation affects the minimum temporal interval between fires. In this study, 

the Landsat scenes were grouped by seasons, and resulting BA polygons are merged accordingly. An 

option to change seasonal boundaries and merging criteria based on the rate of revegetation would make 

the pipeline more generalizable. Finally, the current pipeline was mainly written in R and implemented 

in a local cluster. While R provides ample flexibility for pipeline development, a translation that allows 

the pipeline to be implemented on cloud computing platforms such as GEE would greatly lift limitations 

in computational capacity. Overall, these five areas of future work are not insurmountable. In addition 

to the compilation of BA training data, such as the newly developed Burned Area Reference Database 

(BARD) (Franquesa et al., 2020), we believe that the LTS fire pipeline can be a step toward creating a 

new generation of Landsat-based BA maps in the wet tropics and subtropics. By providing relevant and 

specific information on thousands of BAs across decadal time scales, these maps will bridge the missing 

link between remotely sensed and field data, providing a new bedrock for tropical fire ecology. 

2.6 Conclusions 

A 34-year Landsat-based BA time series was created to reconstruct the fire history of Hong Kong by 

recording the location, date, and severity of burnt patches. To generate the product, a new BA detection 

pipeline was developed and tested on the challenging wet subtropical landscape where high cloud cover, 

diverse habitat types, and rapid revegetation commonly obscures BAs. The map successfully captured 

the fire regime of the area at a level of detail unmatched by existing global satellite-based burn-area 

maps. A wider availability of such long-term fire-severity maps with fine temporal and spatial 

resolution will greatly benefit studies in fire ecology, global climate modelling, and fire management. 
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Chapter 3: Fire traps in the wet subtropics: a 

perspective from Hong Kong 

3.1 Abstract 

1. Fires undermine efforts to restore degraded forests in the wet tropics and subtropics.  Grasslands 

and shrublands established after fires are more fire-susceptible than forests and tend to be set 

alight more often, creating a feedback loop that curbs succession. Understanding the factors 

that underpin the strength of these fire traps could transform restoration programmes by 

identifying the steps needed to escape them. 

2. Fire traps are notoriously challenging to quantify because multiple factors influence fire 

occurrence and vegetation recovery.  Here we used multi-decadal satellite imagery from 

Landsat to create a 34-year time series of burn areas and vegetation dynamics in wet subtropical 

Hong Kong. These dynamic maps were then used to characterise (1) the influence of 

successional stage on fire occurrence, having accounted for topographical and ignition source 

imbalances using neighbourhood analyses and entropy balancing (EBAL) weights, and (2) 

recovery time to the next successional stage by survival analysis with EBAL weights.   

3. Our analyses revealed that fire regimes in the wet subtropics are defined by strong fire-

vegetation feedbacks. Grasslands and shrublands were 20 and 9 times more susceptible to fires 

than forests in similar topographic positions. Human activities compounded these differences 

by disproportionally introducing more ignition sources to grasslands (2.3 times) and shrublands 

(2.0 times) than to forests.  

4. Burnt shrublands recovered to forests faster (19 years) than grasslands (40 years). Proximity to 

forest patches had strong positive effects on recovery rates, highlighting the importance of seed 

sources. Post-fire recovery was faster on wetter northwest-facing sites and valleys. Overall, 

topography strongly influenced recovery processes but hardly affected fires occurrence. 

5. Synthesis and applications. Our study provides the first quantification of fire-trap processes in 

the wet subtropics, which provides new opportunities for evidence-based fire suppression and 

post-fire restoration. Our results suggest that (1) fire traps could be mitigated by fire-

supression programmes as they are currently exacerbated by ignition source imbalance; (2) 

establishing green fire breaks represent an effective fire suppression measure in the wet 

subtropics; and (3) active restoration could target areas where models predict sluggish post-

fire natural regeneration. 
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3.2 Introduction 

Humans have fundamentally changed fire regimes in the wet tropics and subtropics. Naturally, pristine 

rainforests retain moisture well. Barring extreme droughts, these forests are naturally fire-resistant with 

fire return intervals of 100-1000 years (Mark A. Cochrane, 2003; J. G. Goldammer & Seibert, 1989; 

Johann Georg Goldammer, 1990). However, up to 30-40% of all tropical forests are now degraded by 

logging and agricultural activities (Budiharta et al., 2014). Dominated by C4 grasses, Dicranopteris 

fern mats, short bamboos, and shrublands, degraded wet tropical landscapes retains moisture poorly and 

are much more likely to burn during dry spells (Haberle et al., 2010; Hoffmann, Geiger, et al., 2012; 

Hoffmann, Jaconis, et al., 2012; Matos et al., 2002). Fires, in turn, disproportionately kill saplings of 

fire-sensitive late-successional tree species. Meanwhile, grasses, forbs and shrubs tend to have basal 

meristems, lignotubers, or other forms of underground energy stores (De Moraes et al., 2016; Paula et 

al., 2016; Simpson et al., 2016). These features help plants survive by exploiting the steep temperature 

gradients created by soil insulation (Beadle, 1940). By resprouting and dispersing into burnt patches, 

grasses and shrubs reinforce its dominance in fire-disturbed habitats (Paula et al., 2016; Simpson et al., 

2016).  In many degraded landscapes, this lead to positive fire-vegetation feedbacks, which could create 

"fire traps" that perpetuate early-successional vegetation in areas where the climate supports closed-

canopy forests (Bell, 1984; Flores et al., 2016; Hoffmann, Geiger, et al., 2012; Mata et al., 2022; Staal 

et al., 2018; Van Nes et al., 2018). These effects are further compounded by the abundance of 

anthropogenic ignition sources (Mark A. Cochrane, 2003; Tien Bui et al., 2016) and stronger droughts 

under climate change (Clarke et al., 2022; Hoffmann et al., 2003; Lizundia-Loiola, Pettinari, et al., 2020; 

Seidl et al., 2017).  

Properly describing and quantifying fire-trap dynamics in the wet tropics is crucial for the management 

and restoration of degraded wet tropical landscapes. International initiatives, such as the Bonn 

Challenge, UN Decade of Ecosystem Restoration, and the One Trillion Tree initiative, have repeatedly 

called for large-scale restoration in the wet tropics (Lamb et al., 2005; Secretariat, 2010; Verdone & 

Seidl, 2017). Understanding fire-trap dynamics in degraded wet tropical and subtropical sites is critical 

for developing viable, cost-effective, and climate-resilient local restoration strategies (Scheper et al., 

2021). Assessing the relative importance of vegetation structure, anthropogenic ignition source 

distribution, and local topography on fire occurrence is the first step towards targeted fire suppression 

(Carmo et al., 2011). Similarly, evaluating how post-fire recovery rate is affected by pre-fire vegetation 

structure, burn severity, and topographical factors helps land managers decide where and when 

intervention is needed (Souza-Alonso et al., 2022).  

Fire susceptibility and post-fire recovery in the wet tropics and subtropics are currently understudied. 

Despite evidence showing that degraded sites in the wet tropics are reasonably fire-prone (Flores et al., 

2016; Mata et al., 2022; Uhl et al., 1988), there is still a prevailing perception of these bioregions being 
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"too wet to burn". Existing studies on fire dynamics continue to focus on naturally fire-adapted 

Mediterranean, boreal, and savanna ecosystems (Kibler et al., 2019; Kurbanov et al., 2022; Mallek et 

al., 2013; Qiu et al., 2021; van Butsic et al., 2015). Since wet tropical landscapes are rarely fuel-limited 

and have distinctive fire-vegetation dynamics (Tepley et al., 2018), it is questionable whether patterns 

observed in other ecosystems hold true in wet tropical and subtropical biomes. Existing studies also 

does not fully address the issue of covariate imbalance when evaluating fire susceptibility amongst 

different vegetation types. For instance, it is reasonable to expect forests to disproportionally occupy 

wetter valleys, while grasslands dominate the drier ridgetops. This is further complicated by the non-

random distribution of ignition sources (Oliveira et al., 2012; Tien Bui et al., 2016). Grasslands and 

shrublands could be more exposed to ignition sources as they are closer to settlements and more 

accessible to humans. To accurately quantify fire traps, these relationships need to be carefully 

untangled. Similarly, post-fire recovery trajectories in the wet tropics are worth re-evaluating as they 

determine whether sites could escape the fire trap. Previous studies have identified fire frequency, 

distance from forest patches, burn severity, soil type, species composition, and several topographical 

variables as factors that affect rate of post-fire recovery (Araújo et al., 2017; Bright et al., 2019; Goosem 

et al., 2016; Ireland & Petropoulos, 2015; Kurbanov et al., 2022; Marsh, Crockett, et al., 2022; Rochimi 

et al., 2021), but a systematic evaluation of the importance of these variables in the wet tropics is 

currently lacking. Most existing studies Crucially, many existing studies quantified post-fire recovery 

by tracking the rebound of remotely-sensed indices, such as the normalized difference vegetation index 

(NDVI) or normalized burn ratio (NBR), to pre-disturbance values (Bright et al., 2019; Fernández-

García et al., 2018; Gouveia et al., 2010; Ireland & Petropoulos, 2015; Kurbanov et al., 2022; Pérez-

Cabello et al., 2021). In the degraded wet tropics, however, the background landscape is itself on a 

succession trajectory. Burnt areas rapidly revegetate and return to pre-fire conditions quickly (A. H. Y. 

Chan et al., 2023; Idris et al., 2004; Melchiorre & Boschetti, 2018), but returning the system to the pre-

fire degraded condition is often not the goal of land managers. Instead, it is more appropriate to study 

recovery time to forests after fire, yet none of the existing studies have adopted such an approach to 

analyse post-fire recovery over large scales (Kurbanov et al., 2022). 

Methodological advances in remote sensing and biostatistics have made it increasingly manageable to 

track fire susceptibility and post-fire recovery across large spatiotemporal scales. Accurate burn area 

mapping in the wet tropics and subtropics is technically challenging (A. A. C. Alencar et al., 2022; A. 

H. Y. Chan et al., 2023). High cloud cover and rapid burn area revegetation have largely limited full 

burn area mapping across decadal time scales to satellites with short return times (e.g. MODIS), which 

led to tradeoffs in accuracy and ground resolution (A. H. Y. Chan et al., 2023; Franquesa et al., 2022; 

Humber et al., 2019; Szpakowski & Jensen, 2019). Advances in imagery processing have, however, 

lifted many of these restrictions. Long-term Landsat-based burn area products, which have 30 m ground 

resolutions and are better at detecting small burnt patches than MODIS-based maps, are now available 
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for parts of the wet tropics and subtropics (A. A. C. Alencar et al., 2022; A. H. Y. Chan et al., 2023). 

Additionally, new statistical tools have also made it easier to handle data extracted from burn area and 

vegetation time series. There are now standardised workflows to handle covariate imbalance, such as 

the tendency for forests to be found in wetter valleys, by matching or reweighting (Cannas & Arpino, 

2019; Markoulidakis et al., 2022). Survival analysis, which is used to model fire-vegetation feedbacks 

(Reed et al., 1998; Tepley et al., 2018) and vegetation succession (Longpre & Morris, 2012), has also 

developed rapidly. The integration with machine learning to create random survival forests now make 

it possible to easily visualise variable importance and make survival time predictions, especially for 

large datasets with non-linear or covarying predictors of survival (Ishwaran et al., 2008).  

In this study, we utilised these remote sensing and statistical approaches to (1) quantify the strength of 

fire-vegetation feedbacks relative to other predictors of fire occurrence and (2) describe how different 

factors affect post-fire recovery rates. We conducted the study in the extensive wet subtropical 

landscapes of Hong Kong, which was heavily degraded in the past and experiences a large number of 

anthropogenic fires despite restoration efforts. The objective is to use the results to identify effective 

approaches for fire suppression and active restoration of burnt areas. 

3.3 Methods 

3.3.1 Study area 

The study was conducted in the wet subtropical countryside of Hong Kong (22o 16’ 8’’ N, 113o 57’ 

6’’E) (Figure 3.1). On average, the region receives over 2400 mm of rainfall per year and would have 

historically been covered by evergreen broadleaved subtropical rainforests (Abbas et al., 2016; 

Dudgeon & Corlett, 2004; Yang et al., 2018). However, centuries of human settlement and agricultural 

activity had decimated >90% of the natural forests, creating a barren landscape of grasslands and short 

shrublands (Dudgeon & Corlett, 2004; Zhuang & Corlett, 1997). After the second world war, an 

economic transition led to a sharp fall in the rural population and associated land management practices 

(Hau et al., 2005). Widespread agricultural abandonment, along with the designation of strictly 

protected Country Parks over 40% of the land area, led to over 70 years of natural and assisted 

regeneration (Abbas et al., 2016). The current vegetation of Hong Kong consists of a mosaic of 

grasslands, shrublands, secondary forests, and plantations (Kwong et al., 2022).  

Natural fires are rare in Hong Kong as the main natural ignition source (lightning) is usually 

accompanied by torrential rain, but anthropogenic fires are frequent (A. H. Y. Chan et al., 2023; 

Dudgeon & Corlett, 2004; Fung & Jim, 1993). Common anthropogenic ignition sources include joss 

paper burnt around graves in local festivals, cigarette butts, and campfires (W.-W. E. Chan, 2005; K. L. 

Chau, 1994). The Fire Services Department received 4561 reports of vegetation fires between 2016 and 

2020. Overall, 287 km2 (39%) of the 728 km2 of vegetated area burnt at least once between 1986 and 
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2020, with 65% of the affected area burning more than once (A. H. Y. Chan et al., 2023). The diverse 

vegetation structure coupled with notable fire occurrence creates a convenient setting to study fire traps.  

 

Figure 3.1: The study area of Hong Kong. Burnt areas detected by the LTSfire pipeline between 1986 and 2020 are overlaid 

on a Landsat based land cover map of 2013-2014 (A. H. Y. Chan et al., 2023). 

3.3.2 Overview of methods 

Overall, we used (1) Landsat imagery to create burn area and vegetation maps for the study period 

(1986 – 2020) and (2) LiDAR data to calculate topographical variables. We then used these products to 

study how different factors affected fire occurrence, fire susceptibility, and post-fire recovery rates. 

Figure 3.2 provides a methodological flow chart with numbers serving as a guide to the relevant 

sections where the detailed methodologies are described. 
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Figure 3.2: Methodology flow chart showing how fire trap processes were evaluated by remote sensing data. Numbers indicate 

the relevant section in the main text. Green boxes are input data; black boxes represent steps taken; orange boxes indicate 

intermediate products; and purple boxes are the fire trap processes quantified. 

 

3.3.3 Vegetation map time series 

A Landsat-based vegetation map time series was produced to track changes in vegetation structure over 

the 35-year study period (1986-2020). We distilled 1537 relevant Landsat surface reflectance scenes 

into 17 biennial (every two years) composites. Weighted histogram matching, band normalisation and 

vegetation indices were adopted to make the scenes and composites intercomparable (A. H. Y. Chan et 

al., 2021, 2023; C. Wu, 2004). We then built random forest (RF) classification models based on pixels 

with known vegetation cover. For every biennial composite, the RF model classified the landscape into 

five classes (forest, shrubland, grassland, non-vegetation, and water). Detailed methodology can be 

found in the Appendix B:, with RF model accuracies listed in Supp. Table B.1. Finally, we 

hypothesised that distance to nearest forest patch may affect post-fire recovery trajectories. Hence, we 
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calculated this distance for all grassland and shrubland pixels using the distance function in the raster 

package. Unless otherwise specified, all geospatial analyses were carried out in R-4.1.0 (R core team, 

2021). 

3.3.4 Burn area and burn severity time series 

Burn areas (BAs) in Hong Kong were mapped across a 35-year Landsat multispectral time series (1986-

2020) using the LTSfire pipeline (A. H. Y. Chan et al., 2023). The pipeline was designed to accurately 

detect small BAs in regions with high cloud cover and rapid burn area revegetation. The product of 

LTSfire includes two components – (1) a shapefile of BA polygons with dates of detection and (2) 

rasters containing estimates of burn severity, time series relativized burn ratio (ts-RBR), for all burnt 

pixels. We refer readers to Chan et al. (2023) for details on the LTSfire pipeline, but an overview of the 

pipeline and accuracies can be found in the Appendix B: and Supp. Table B.2. We further manually 

inspected the dataset and removed 1179 dubious features that were potential artifacts and modified the 

shape of 137 polygons. The final dataset contained 5654 burnt patches. 

3.3.5 LiDAR background topography 

To investigate how background topography affected vegetation fire susceptibility and post-fire 

recovery, we built rasters for four topographical variables – slope, aspect, topographic position index 

(TPI), and SAGA wetness index (SWI). The rasters were generated from a digital terrain model (DTM) 

based on an airborne LiDAR dataset collected in 2010. Slope and aspect were calculated using the 

terrain function in the raster package; TPI was generated by the gdaldem function in GDAL; while SWI 

was calculated by calling the rsaga.wetness.index function through the RSAGA package in R-4.1.0. 

Since many of these topographical variables were resolution-dependent, we selectively downsampled 

the DTM before generating the topographical layers. Aspect was calculated from a DTM downsampled 

to 30 m resolution. We then tested how different DTM resolutions affected the TPI and SWI to ensure 

that the indices (1) did not focus exclusively on highly local topographical features such as boulders or 

rocks, while (2) not smoothing out the effects of valleys and ridges in the mountainous terrain (Supp. 

Figure B.1). From the analysis, DTMs of 20m and 15m ground resolutions were used to generate TPI 

and SWI, respectively. Since local steepness has been reported to affect fire propagation (Viegas & 

Viegas, 2004), we used the original 1m DTM when calculating slope. After generation, all topographical 

variables were eventually tidied to 30m ground resolutions to match that of Landsat images. Finally, 

as the effect of aspect is cyclical, we linearized the variable by calculating cos_aspect with the local 

optimum aspect of 5.795 in radians (Stage, 1976). The optimum aspect was identified by analysing 

forest growth rates as measured by photogrammetry- and lidar-based digital surface models (Hong 

Kong Observatory, 2023) (Supp. Figure B.2). 

Cos_aspect = cos(Aspect – 5.795) 
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3.3.6 Fire susceptibility, ignition source distribution, and fire occurrence 

3.3.6.1 Overview 

Pixel values were extracted from the vegetation, burnt area, and topographical rasters to analyse how 

different factors shaped the fire regime of the study area. We defined fire susceptibility as the likelihood 

for pixels to burn given the same exposure to ignition sources. It is an inherent property of the site 

defined by the vegetation type and background topography. This differs from fire occurrence, which 

represents the actual proportion of burnt pixels after considering the non-random distribution of ignition 

sources. We conducted two separate analyses to estimate the differences in (1) fire occurrence and (2) 

fire susceptibility amongst different vegetation types. By comparing the two estimates, we quantified 

the contribution of ignition source imbalance on fire patterns. For instance, if grasslands and forests are 

equally fire prone, but villagers only set fire to easily accessible grasslands not dense forests, we would 

see a large difference between grassland and forest fire occurrence, while observing no difference in 

fire susceptibility. The approach avoids the use of indirect proxies, such as distance to roads, to model 

ignition source distribution. This makes the analysis more robust and generalisable as the relationship 

between distance to roads and ignition source density is region-specific and dependent on socio-

economic factors. Lastly, we also investigated into how topography interacted with vegetation type in 

determining fire susceptibility on a site level. All analyses below were carried out in R-4.1.0 (R core 

team, 2021). 

3.3.6.2 Fire occurrence 

For each of the 17 biennial vegetation maps in the time series, we filtered out grassland, shrubland, and 

forest pixels, then tracked whether the pixels experienced a fire within the two-year window. We also 

took note of the TPI, TWI, cosine aspect, and slope of the pixels. The WeightIt package was used to 

assign entropy balancing (EBAL) weights to tackle topographical covariate imbalance amongst the four 

vegetation types (Greifer, 2019). The reweighting process is akin to matching grasslands, shrubland, 

and forest pixels with comparable background topography, but without discarding or synthetically 

creating data. We then used the reweighted data to build a logistic regression model that predicted fire 

occurrence from vegetation type and background topography. Odds ratios were calculated to estimate 

how fire occurrence differed between different vegetation types as result of both fire susceptibility and 

ignition source imbalance. 

3.3.6.3 Fire susceptibility 

Neighbourhood analysis was performed to estimate how vegetation type and background topography 

affected fire susceptibility when pixels were exposed to the same ignition source. To achieve this, we 

focused on the vicinity of detected burn areas where ignition sources were known to have existed. For 

each burn area polygon, we first located the centroid using the st_centroid function in the sf package. 
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We then drew the longest line between the centroid and the edge of the polygon. Using the line as the 

radius, we created a circle representing the theoretical maximum fire extent (orange circle, Supp. 

Figure B.3). The circle was modified by removing regions that were cut off by non-vegetated areas 

such as roads or other fire breaks. Pixels within the modified circle would have been exposed to the 

ignition source, with the vegetation fire susceptibility determining whether it actually burnt. We 

recognise that pixel fire susceptibility is affected by variables other than vegetation type, and the 

exposure of the encircled pixels to the ignition source may still vary (directed acyclic graph, or DAG, 

in Supp. Figure B.4). We addressed these measured and unmeasured confounding variables using do-

calculus logic (Pearl, 1995, 2009; Shrier & Platt, 2008; Suttorp et al., 2015) (see Appendix B: for 

details). EBAL weights were assigned to the pixels to ensure that pixels of the four different vegetation 

classes were comparable with respect to the four topographical covariates and distance to fire centroid 

(Greifer, 2019; Markoulidakis et al., 2022; Matschinger et al., 2020). Using the weighted data, we built 

a logistic regression model that predicted fire susceptibility from vegetation type, topographical 

variables, and distance from burn area centroid. All continuous variables were scaled such that the 

coefficients reflected the effect sizes and variable importance. A forest plot was generated to evaluate 

variable importance using odds ratios calculated from the model coefficients. The detailed structure of 

models can be found in Supp. Table B.3. 

3.3.7 Survival analysis on post-fire recovery 

Post-fire vegetation recovery rates were quantified by running survival analysis on the times it took for 

burnt pixels to reach the next successional stage. We chose survival analysis as the data is temporal and 

right censored (Muenchow, 1986; Tepley et al., 2018; Therneau, 2019). Two types of right censorship 

were observed – pixels might have not reached the next successional stage by 2020 or might have 

experienced another fire. The latter type of censorship was problematic as repeated fires would 

disproportionally censor pixels that failed to recover. This violated the assumption of non-informative 

censorship in survival analysis (Therneau, 2019). Hence, we focused our study on the recovery 

trajectory after the last observed fire between 1986 and 2020. Another assumption made was the 

unidirectional vegetative succession without retrogressions. The assumption was largely met, with 97.1% 

of the pixels either staying in the same vegetation class or transitioning to a later successional stage 

over time (grasslands to shrublands to forests), so we proceeded after filtering out retrogressed pixels.  

Median post-fire recovery times after grassland and shrubland fires were estimated by constructing 

Kaplan-Meier survival curves using the survival package (Therneau, 2019). The curves were built from: 

(1) survival time – the number of years the pixel “survived” as grassland or shrubland before 

transitioning into forest and (2) censorship – binary variable that records whether a pixel ever became 

forest in the observed period. The approach worked well for shrubland fires, but for grasslands, it was 

complicated by the median post-fire recovery time being longer than the 34-year study period. This was 

problematic as Kaplan-Meier curves are non-parametric and could not be easily extrapolated (Therneau, 
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2019). To tackle this, we estimated the grassland > young shrubland and young shrubland > forest 

recovery times separately. “Young shrubland” represented pixels that just transitioned from grassland 

to shrubland in our vegetation maps. While these pixels have not necessarily experienced a fire in the 

study period, it is likely that these pixels burnt in the past given the historical fire frequency in Hong 

Kong (A. H. Y. Chan et al., 2023). To ensure that the young shrubland pixels have the same 

topographical profile as the grassland burnt in our study period, we used the WeightIt package to 

generate EBAL weights based on cosine aspect, slope, TPI, and SWI (Greifer, 2019). Finally, we 

estimated the median grassland to forest recovery time by adding the survival times obtained from the 

two sets of Kaplan-Meier curves.  

To investigate the relative importance of different factors in determining post-fire recovery rates, we 

used the randomForestSRC package to build a random survival forest (RSF) model (Ishwaran et al., 

2023). The RSF model predicted recovery time from pre-fire vegetation type, burn severity (ts-RBR), 

distance to the nearest forest patch, cosine-aspect, slope, topographical position (TPI), and wetness 

(SWI). We used RSF as the non-parametric machine learning approach was more robust against 

multicollinear and non-linear relationships while still being able to handle right-censored temporal data 

(Ishwaran et al., 2008). Variable importance was estimated from the RSF model with subsampling 

inference and the delete-d jackknife estimator. 

To visualise the partial effects of biophysical and topographical variables on post-fire recovery, we 

constructed 240 Kaplan-Meier curves based on stratified and reweighted datasets. Hypothesising that 

biophysical and topographical variables may have different effects on grassland and shrubland fires, we 

analysed grassland to shrubland and shrubland to forest transitions separately. We then stratified the 

two datasets by ts-RBR, forest distance, TPI, SWI, slope, and aspect, with 20 groups per variable. To 

isolate the effect of the variable in question, we reweighted the groups to tackle the imbalance of 

potentially confounding variables. For instance, it is reasonable to expect pixels with low TPI (valleys) 

being closer to forests and have lower burn severity (ts-RBR), so we assigned EBAL weights to pixels 

in the 20 TPI groups such that weighted pixels would have the same ts-RBR and forest distance 

distribution across the groups. Finally, we constructed 20 Kaplan-Meier curves per variable and 

quantified how changes in the variable affected median post-fire succession time. Further details 

regarding the Kaplan-Meier curves and EBAL weights can be found in Supp. Table B.3. 

3.4 Results 

3.4.1  Fire susceptibility, ignition source distribution, and fire occurrence 

Our results support the existence of strong fire-vegetation feedbacks (fire traps) in the wet subtropics 

that were exacerbated by anthropogenic ignition source imbalance. From the neighbourhood analysis, 

it is estimated that the fire susceptibility of grasslands and shrublands were 19.5 and 8.5 times higher 

than that of forests, respectively, given the same exposure to ignition sources (Figure 3.3). Ignition 
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sources were not randomly distributed. Grasslands and shrublands were 2.3 and 2.0 times more likely 

to be exposed to ignition sources compared to forests, respectively. The compounding effects of high 

fire susceptibility and increased exposure to anthropogenic ignition sources led to much larger 

differences in actual fire occurrence across vegetation types. Fire occurrence was 44.5 and 16.9 times 

higher amongst grassland and shrubland pixels, respectively, compared with forest pixels with similar 

background topographies. Background topography had relatively minor effects on vegetation fire 

susceptibility. Slope and topographical position had nearly no effect on fire susceptibility (Figure 3.3). 

Wetter (high SWI) pixels were less fire susceptible (Figure 3.4a) and aspect had vegetation-specific 

effects on fire susceptibility (Figure 3.4b), but their effect sizes were small compared to that of 

vegetation type and ignition source abundance (Figure 3.3). Overall, our results show that local fire 

regimes in the wet subtropics are defined by fire-vegetation feedbacks (fire traps) interacting with 

ignition source distribution, not background topography. 

 

Figure 3.3: Effects of vegetation type and topographical variables on fire susceptibility in wet subtropical Hong Kong. Odds 

ratios represent how the variables change the likelihood of a pixel burning, given a fixed exposure to ignition sources. The 

odds ratios of the two categorical variables (grassland and shrubland) refers to the fire susceptibility compared to that of forests. 

“TPI” represents topographical position index. “SWI” represents SAGA wetness index.  “Dist. to centroid” refers to the 

distance between the pixel and centroid of the burnt area in the neighbourhood analysis. All pixels in the neighbourhood 

analysis would have been close to known ignition sources, but a longer distance to centroid would indicate lower exposure at 

a local level. The 95% confidence intervals were too small to be visible. 
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Figure 3.4: The effects of SAGA wetness index (SWI) and linearised aspect on fire susceptibility modelled by logistic 

regression. The shaded area (barely visible due to the large sample size) represents the 95% confidence interval.  

3.4.2 Post-fire recovery 

Pre-fire vegetation type significantly affected post-fire recovery rates, indicating strong legacy effects. 

The proportion of pixels in each vegetation class before and after detected fires were tallied in Figure 

3.5, which shows how pixels moved through the stages of succession over time. Note that while some 

shrubland pixels retrogressed to grasslands after fires, most tended to stay in the same class. The median 

time required for grasslands to recover back to forests after fires was 40 years, while shrublands on 

similar topographies recovered in 19.2 years.  

 

Figure 3.5: Area plot to visualise post-fire recovery trajectories in wet subtropical Hong Kong. The y-axis represents the 

proportion of pixels in each vegetation class before (left of the magenta line) and after (right of the magenta line) the fire.  

Post-fire recovery rates were highly variable and correlated with a range of vegetative, biophysical, and 

topographical factors (Figure 3.6). Post-fire distance to the nearest forest patch strongly affected rate 
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of recovery (Figure 3.6 and Figure 3.7). Sites closer to forest patches recovered significantly faster 

than those further away from forest patches (Supp. Figure B.5a-b and Figure 3.7). The effects were 

strongest for pixels between 0-250 m from forest patch, but levelled off after 250 m. Aspect had a 

significant cyclical effect on post-fire recovery rates (Figure 3.7). For both grassland to shrubland and 

shrubland to forest transitions, sites facing the northwest recovered the quickest (Figure 3.7). 

Interestingly, burn severity was found to have significant but opposite effects on post-fire recovery rates 

in grasslands and shrublands. Severe fires (high ts-RBR) promoted recovery to shrubland after grassland 

fires, but inhibited recovery to forests after shrubland fires (Figure 3.7). These effects persisted through 

the Kaplan-Meier curves (Supp. Figure B.5c-d). Finally, pixels in valleys (low TPI) recovered quicker 

than those on ridges (high TPI), and, given the same topographical position, wetter pixels (high SWI) 

recovered quicker than drier ones (low SWI). The variable importances of both TPI and SWI were 

smaller than other variables assessed (Figure 3.6), but both factors seem to be proportionally more 

important for the transition to shrublands after grassland fires (Figure 3.7). Slope was found to be a 

non-significant predictor in the RSF model (Figure 3.6), with the slope-stratified dataset generating 

broadly negative but messy relationships between slope and median recovery times (Figure 3.7). The 

multitude of factors influencing recovery contrast with the analyses of fire susceptibility, in which a 

single factor –  vegetation type – stood out as the predominant driver. 

 

Figure 3.6: Variable importance derived from a random survival forest (RSF) model that predicts median post-fire recovery 

times back to forests. All variables were statistically significant (p < 0.05) except for slope. Confidence intervals for variable 

importances were calculated by subsampling the dataset and using the delete-d jackknife estimator.  
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Figure 3.7: Plots showing how different variables affect median recovery times for the transition from burnt grassland to 

shrubland and burnt shrubland to forest. The median recovery times were estimated by stratifying the dataset by the variable 

in question and building Kaplan-Meier curves for each stratified group. Pixels in the groups were assigned entropy balancing 

(EBAL) weights to tackle the imbalance of relevant covariates to isolate the effect of the variable in question (see Supp. Table 

B.3). The error bars represent 95% confidence intervals. 

 

3.5 Discussion 

3.5.1 Quantifying the strength of the fire trap 

This study demonstrates the existence of strong fire-vegetation feedbacks in the wet subtropics. 

Degraded grasslands and shrublands were 20 and 9 times more fire-susceptible than forests. Previous 

research showed that grassy fuels have three times lower bulk densities compared to litter fuels (Prior 

et al., 2017), and shrubs produce finer litter fuels than forest trees (Plucinski et al., 2010). Given that 

wet subtropical vegetation is not generally fuel limiting, the lower fuel bulk densities in grasslands and 
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shrublands lead to high ignitability and rapid rate of fire spread (Hoffmann, Jaconis, et al., 2012; Iván 

et al., 2023; Prior et al., 2017; Uhl et al., 1988). Additionally, as more open habitats, grasslands and 

shrublands tend to retain moisture poorly (Hoffmann, Jaconis, et al., 2012; Iván et al., 2023). In 

particular, Dicranopteris fern mats and C4 grasses are commonly found in open habitats in Hong Kong. 

These vegetation types accumulate dead biomass that decompose slowly and desiccate easily, making 

them particularly fire-prone (Hoffmann, Jaconis, et al., 2012; Matos et al., 2002). Th high fire 

susceptibility of early successional vegetation creates fire traps that make degraded wet tropical and 

subtropical landscapes inherently difficult to restore. 

Anthropogenic ignition source imbalance – the tendency for humans to set fire to open grassland and 

shrubland habitats – greatly exacerbated natural fire traps. In our study area, humans introduced 2.3 and 

2 times more ignition sources to grasslands and shrublands, leading to the actual fire occurrences of the 

two early successional vegetation types being 45 and 17 times higher than in forest patches of 

comparable background topography. Using distance to roads and settlements as proxies, previous 

studies also reported the importance of anthropogenic ignition sources in affecting fire occurrence 

(Oliveira et al., 2012; Tien Bui et al., 2016). Our results further demonstrates that these ignition sources 

are not evenly distributed across different vegetation types. Grasslands and shrublands receive more 

sources of ignition either because they are more accessible to humans or, alternatively, sites closer to 

settlements tend to be more degraded and less forested.  

Surprisingly, background topography hardly affected fire susceptibility. The effect size of the strongest 

topographical predictor, wetness (SWI), was an order of magnitude smaller than vegetation type and 

ignition source exposure. This echoes other studies in the region (Tien Bui et al., 2016) but is in stark 

contrast with results from Mediterranean Europe, where several studies reported clear effects of slope 

or aspect on fire susceptibility, with effect sizes in the same order of magnitude as that of background 

vegetation type (Barros & Pereira, 2014; Carmo et al., 2011; Oliveira et al., 2013). These differences 

highlight how fire regimes in the wet tropics and subtropics fundamentally differ from that in other 

biomes.  

3.5.2 Factors influencing post-fire recovery rates 

Pre-fire vegetation type was the strongest predictor of post-fire recovery rate, with shrublands 

recovering much quicker than grasslands after experiencing a fire (median recovery time 19 years vs 

40 years). Many shrubs and pioneer trees tend to survive the fires and resprout, even in the ecoregions 

where fires are naturally scarce (K. L. Chau, 1994; Teixeira et al., 2020; Van Nieuwstadt et al., 2001). 

The ability to re-establish itself using basal or epicormic regrowth might partly have evolved against 

rare natural fires, but it is more likely to be a general trait that helps these species recovery from other 

disturbances posed by large herbivores or windstorms (K. L. Chau, 1994; Teixeira et al., 2020).  
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Other than pre-fire vegetation type, the distance from the nearest forest patch after fires had an equally 

strong effect on post-fire recovery rates. The relationship between forest distance and recovery time 

was found to be non-linear and flattens out over distances >250m. This resembles the inverse of seed 

dispersal kernels, which indicates limitations in seed availability (Flores & Holmgren, 2021; Herrmann 

et al., 2016; Levine & Murrell, 2003; Rogers et al., 2019). Unlike regions were serotiny is the norm, 

burnt patches in the wet tropics and subtropics rely heavily on external seed sources to move along the 

recovery trajectory (Flores & Holmgren, 2021; Van Nieuwstadt et al., 2001). Au et al. (2006) quantified 

the seed rain in degraded grasslands and shrublands in the study area and found large variations in the 

number of seeds per m2 per year, ranging from 47 in open grasslands to >6000 under female shrubs on 

grasslands. While one might argue that 47 seeds per m2 per year might be sufficient to push the 

landscape through succession, many seeds would fail to penetrate the dense mats of early successional 

grasses or ferns to reach the mineral soils, and established seedlings can get smothered under the thick 

vegetation (Pang et al., 2018; Rochimi et al., 2021). Many seeds may also belong to shorter shrub 

species that may not necessarily help the site recover back to forests. Most species in the four dominant 

tree families in Hong Kong (Lauraceae, Moraceae, Fagaceae, Euphorbiaceae) rely on animals for seed 

dispersal (Dudgeon & Corlett, 2004). The lack of perch sites for birds and suitable habitats for scatter-

hoarding mammals could prevent the seed dispersal kernels from extending into large burnt areas far 

from forest patches (Au et al., 2006; Levine & Murrell, 2003; Rogers et al., 2019).  

Interestingly, high burn severities promoted post-fire recovery in burnt grasslands but inhibited 

recovery in burnt shrublands (Supp. Figure B.5c-d, and Figure 3.7). Past studies have generally found 

post-fire recovery times to be longer for more severely burnt sites, even if recovery rates were higher 

(Bartels et al., 2016; Bright et al., 2019; Ireland & Petropoulos, 2015). Severe fires tend to cause higher 

plant mortality, especially for fire-sensitive late successional tree saplings (Bright et al., 2019; 

Hoffmann et al., 2003). This corroborates with the patterns observed in shrublands in our study (Supp. 

Figure B.5d and Figure 3.7). The opposite relationship observed in grasslands was, however, 

unexpected. One possible explanation is that dense grasslands might have arrested succession (Rochimi 

et al., 2021). More severe fires could open the habitat for shrub or tree encroachment, though targeted 

field surveys would be needed to test this hypothesis.   

Background topography also had strong influences on post-fire recovery rates. Echoing previous studies 

conducted in the northern hemisphere (Ireland & Petropoulos, 2015; Pausas & Vallejo, 1999; 

Wittenberg et al., 2007), we found post-fire recovery to be faster on north-facing slopes. This could be 

attributable to more sheltering on north-facing slopes, which dampen local fluctuations in temperature 

and humidity (Ireland & Petropoulos, 2015; Stage, 1976; Stage & Salas, 2007). We would also expect 

such sheltering to benefit east-facing slopes, as it warms up quicker in the morning but avoids 

overheating during the day (Stage, 1976). The optimal aspect for post-fire recovery was, however, 

skewed to the northwest in Hong Kong (Figure 3.7). This might be due to the prevailing wind direction 
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in Hong Kong from the southeast, which leaves westward slopes better sheltered (Hong Kong 

Observatory, 2023). We also found that sites in valleys (low TPI) and wetter areas (high SWI) had 

quicker post-fire recovery. Research have demonstrated that DTM-based position and wetness indices 

serve as effective proxies of variations of microclimates (Jucker et al., 2018; Man et al., 2022; Marsh, 

Crockett, et al., 2022; Marsh, Krofcheck, et al., 2022). A recent study by Marsh, Crockett, et al. (2022) 

found DTM-based topographical variables to be almost as accurate as direct microclimatic 

measurements in predicting post-fire seedling survival in New Mexico. The study reported high 

seedling survival in areas with high topographical wetness and low TPI, which corroborates with 

patterns in post-fire recovery observed in Hong Kong. Our results further suggest that TPI and SWI 

may be affecting post-fire recovery in slightly different ways despite the two variables being correlated 

with each other. TPI did not fully capture the variation in wetness. Even after reweighting by TPI, SWI 

was still negatively correlated with recovery times (Figure 3.7). SWI may have captured edaphic factors 

better (e.g. soils in slopes at the foot of mountains may be wetter than valleys near mountaintops) 

(Böhner & Selige, 2006). On the other hand, TPI was a more important variable for predicting recovery 

times in the RSF model (Figure 3.6), indicating that it might have captured information other than 

wetness, such as sheltering from wind or direct sunlight (Dobrowski, 2011; Jucker et al., 2018). 

Interestingly, wetness seems to have a stronger effect on the grassland to shrubland transition than in 

the shrubland to forest transition (Figure 3.7). Research in nearby Guangdong suggests that shrubs act 

as both facilitators and competitors to tree saplings in wet subtropical environments (N. Liu et al., 2013). 

In drier sites, shrubs moderate post-disturbance microclimates by reducing irradiance and ameliorate 

temperature fluctuations (Crockett & Hurteau, 2022; N. Liu et al., 2013; Urza et al., 2019). In wetter 

sites, shrubs compete with tree saplings and undermine the topographical benefits (N. Liu et al., 2013). 

Our results indicate that these biotic buffering effects of shrubs may have overridden topographical 

determinants of post-fire recovery rates, which, over a landscape scale, might smooth out spatial 

variations in rates of forest establishment after shrubland fires.  

3.5.3 Escaping the fire trap 

Fire traps make it inherently difficult for land managers to suppress fires on degraded wet subtropical 

landscapes, but several policy actions could help overcome these traps. While our results supported the 

existence of strong natural fire-vegetation feedbacks, it also revealed the observed difference in fire 

occurrence to be partly anthropogenic due to ignition source imbalance. In other words, fire suppression 

campaigns would not only reduce fire occurrence across all habitats but would also disproportionally 

reduce fire occurrence in early successional vegetation. Hong Kong also provides a valuable case study 

for how fire suppression should be carried out in the wet tropics and subtropics. Over the past 70 years, 

the government set up a Fire Danger Warning System based on weather and fuel conditions (Hong 

Kong Observatory, 2023). Public education campaigns were launched to prompt citizens to properly 

handle potential ignition sources and heed any fire warnings. The government then established a 
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network of 11 fire lookouts on mountaintops such that fires are quickly detected and tackled. The results 

of these efforts were substantial, with yearly fire occurrence more than halved over the last three decades 

(A. H. Y. Chan et al., 2023). While the approach would be costly to implement over larger areas in 

developing countries, it nevertheless provides a viable pathway towards effective fire-suppression. Fires 

could also be managed by controlling their spread. Fire breaks can stop ignition sources in other areas 

from spilling over to sites designated for restoration (Scheper et al., 2021). A common approach to 

establish fire breaks is to remove vegetation across a strip of land to create “fuel breaks” (Shinneman 

et al., 2019). Our results, however, suggest that this might be ineffective in the wet subtropics. 

Vegetative regrowth on fuel breaks is fast in wet ecoregions, which makes them difficult to maintain 

(A. H. Y. Chan et al., 2023; Rochimi et al., 2021; Scheper et al., 2021). If not properly maintained, 

grasses and shrubs would be highly susceptible to fires regardless of the background topography of the 

fuel break (Figure 3.4). Green fire breaks may provide a viable alternative in the wet tropics. These fire 

breaks are created by planting strips of secondary forest or connecting fragmented forest patches 

(Curran et al., 2017). This could be effective in the wet subtropics by levying the fire-vegetation 

feedback and the fire-resistance of close-canopied forests to stop fire spread, although the ideal width 

of these breaks would need to be determined by further investigation and experimentation.  

Results from this study also have direct implications on vegetation management after fires. Firstly, 

rather than using the rebound time of vegetation indices such as NDVI, we quantified post-fire recovery 

rates by estimating recovery time back to the next successional stage or close-canopied forests. This is 

much more relevant for land managers hoping to restore the landscape past its pre-fire degraded 

condition. Unlike fire-susceptibility, post-fire recovery in the wet subtropics is significantly affected by 

a range of vegetation, biophysical, and topographical factors. Land managers may consider using the 

results to perform direct seeding in regions where natural seed sources are rare. Resources could be 

redirected to replant burnt sites that would not have naturally recovered within a reasonable time frame 

(Law et al., 2023; Rurangwa et al., 2021). Alternatively, under budget limitations, managers could also 

consider using the model to identify areas that could readily undergo natural regeneration. These areas 

could be prioritised and protected from further disturbances before attempting to restore areas that 

require active interventions.   
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Chapter 4: Modelling wind speeds across complex 

topographies using open-source computational 

fluid dynamics (CFD) software 

 

4.1 Abstract 

Modelling near-surface wind speeds across complex topographies is technically challenging and 

expensive. The development of free and open-source computational fluid dynamics (CFD) modelling 

software provides new opportunities to model wind speeds, but validated wind maps remain scarce. We 

used WindNinja, a free CFD solver based on open-source programmes, to build wind models for 

different wind scenarios across the rugged subtropical landscape of Hong Kong. We estimated near-

surface wind speeds by averaging multiple CFD-modelled scenarios based on actual wind data collected 

from 27 weather stations in Hong Kong. The estimated wind speeds were cross validated by wind data 

from weather stations and our own anemometers. Compared to a null model that used elevation and 

wind speeds in nearby stations as predictors, the CFD-based models were better at estimating near-

surface wind speeds (RMSE of 4.22 km/h vs 3.77 km/h). The advantage of the CFD models were 

especially apparent when the study area was affected by strong winds from typhoons or monsoons. We 

highlighted several areas in the wind modelling pipeline that could be improved in future work, such as 

better inclusion of surface roughness into the modelling pipeline and subdividing the study area to 

improve local wind speed estimations. Despite the shortfalls, the study demonstrated how open-sourced 

software could generate reasonable validated wind maps across complex topographies at affordable 

computational and monetary costs.  

4.2 Introduction 

Near-surface wind speed is an important environmental factor for research on forest ecosystems, fire 

management, renewable energy, and hydrology. Our understanding of wind begins with direct 

measurements of surface wind speeds using anemometers in weather stations or mounted on masts. 

However, the limitations of these measurements are apparent. Even with the rapid development of 

doppler wind LiDAR systems that remotely measure wind speeds (Z. Liu et al., 2019), measurements 

still have limited spatial coverage and does not provide wall to wall surface wind estimations required 

in many use cases. We thus rely on wind modelling to expand our understanding of wind regimes across 

the landscape.  

Wind modelling requires an understanding and approximation of how wind flows through the landscape, 

including the speed and direction at different heights. In flat terrains with low roughness, wind follows 

a power law or logarithmic wind profile, with higher wind speeds at higher heights above ground 
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(Wieringa, 1986). These profiles are shifted or stretched when objects like houses or tall vegetation 

increases the roughness length of the landscape (Wieringa, 1986). Wind profiles are quickly 

complicated under complex background terrains in mountainous areas. Wind speeds increase 

significantly on windward slopes but are sheltered on leeward slopes (Belcher et al., 2011; Finnigan et 

al., 2020; Lemelin et al., 1988; C. A. Miller & Davenport, 1998). Mountains cast wind shadows based 

on incoming wind direction. The size of these wind shadows depends on wind speed and the associated 

deflection of wind (Belcher et al., 2011; Finnigan et al., 2020). On steeper hills, separation bubbles 

could form on leeward slopes, which cause wind near the boundary layer to reverse direction (Belcher 

et al., 2011; Finnigan et al., 2020; Kaimal & Finnigan, 1994). In narrow valleys, the Venturi effect is 

known to speed up incoming wind (Mikkola et al., 2023). To create useful estimations of surface winds, 

these processes need to be considered and approximated in computational fluid dynamics (CFD) 

modelling.  

Several numerical models to model surface wind have been developed and made available to 

researchers, but the adoption of these products remain challenging for several reasons. Firstly, 

computational fluid dynamics (CFD) modelling is very computationally expensive. Many use cases, 

such as the mapping of microclimates of forest habitats, require sub-hectare level spatial resolutions of 

wind models. Modelling wind at fine scales could easily overwhelm even the most powerful computers 

available. Secondly, due to the complexity of CFD modelling, the task could be technically formidable 

for non-experts. Most CFD programmes are not free or open-source. The cost of acquiring CFD solver 

software or even commissioning experts to produce wind models could be prohibitive for non-

commercial applications (Clifton et al., 2022; Jasak, 2009). Thirdly, the use of CFD surface wind 

models is often hindered by the difficulty in validation. Existing software is often only validated in the 

areas where the software has been developed before being published. For instance, the Wind Analysis 

and Application Program (WAsP) was mainly validated in Denmark and later several locations in 

continental Europe (Berge et al., 2006; Lange & Højstrup, 2001; Mortensen et al., 1993); WindSim is 

validated in two sites of undisclosed location (Wallbank, 2008); and WindNinja is developed and 

validated with wind measurements from three sites in the US (Wagenbrenner et al., 2019). The accuracy 

of these models far from its validation window (e.g. in mountainous regions covered by tropical 

vegetation) needs to be better investigated. Validation data in sites of interests could, however, be scarce 

and expensive to collect (Clifton et al., 2022). In particular, a recent review on the use of CFD modelling 

to study effects of tropical cyclones have found a general lack to sufficient model validation (Shah et 

al., 2023).  

This chapter aims at exploring the use of free and open-source software to generate reasonable surface 

wind models for sites with complex topographies. We experimented with the use of WindNinja, a free 

surface wind solver built upon an open-sourced CFD software (OpenFOAM), on building surface wind 

maps for the rugged subtropical countryside of Hong Kong. The resulting wind models were validated 



83 

 

using an extensive collection of anemometer data. The wind models developed in this Chapter are used 

in Chapter 6 to understand the impacts of wind on forest dynamics. 

4.3 Methods 

4.3.1  Study area 

We conducted the study in the complex topography of Hong Kong (22o 16’ 8’’ N, 113o 57’ 6’’E). The 

2755 km2 special administrative region boarders the city of Shenzhen in the north, faces the South China 

Sea in the south, and faces the Pearl River estuary to the west (Figure 4.1). The sea accounts for 60% 

of the total area of the territory, with the land area mainly comprised of islands and peninsulas. The land 

area has a diverse set of different land cover types. As a financial centre, urban areas in Hong Kong are 

exceptionally dense and is filled with high rises. The territory is, however, very rugged so much of the 

territory (ca. 60%) remains vegetated. Most of the vegetated area is protected as country parks and is 

covered by subtropical rainforests, shrublands, or grasslands. Dotted across the countryside are the >300 

steep sided hills of heights >100 meters above sea level (m.a.s.l.), with the tallest (Tai Mo Shan) rising 

to 957 m.a.s.l.. Compared to many subtropical regions of similar latitude (e.g. Hawaii), the wind regime 

in Hong Kong is complex and shows strong seasonality. Prevailing winds sweep through Hong Kong 

from the east, but as the territory is sandwiched between a large landmass towards the north and the 

ocean towards the south, strong monsoons bring substantial variation to local winds. Summer monsoons 

bring wind from the southwest, while winter monsoons bring northeasterly winds. Located within the 

Northwest Pacific tropical cyclone hotspot, typhoons are a common occurrence in Hong Kong, with 

several of these storm systems bringing very high wind speeds to the territory each year. Together, these 

features make Hong Kong a challenging yet interesting landscape for wind modelling.  
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Figure 4.1: The network of non-urban weather stations (n = 28) and our own anemometers (n = 8) across the complex 

topography of Hong Kong. The code names of the weather stations refers to that used by the Hong Kong Observatory (Hong 

Kong Observatory, 2023). The background shows the LiDAR-derived digital terrain model of Hong Kong with the land area 

being outlined in white. 

4.3.2 Background topography 

The background topography of Hong Kong was mapped using a LiDAR-derived digital surface model 

(DSM). The LiDAR dataset was collected by a manned aircraft commissioned by the Civil Engineering 

and Development Department of the Hong Kong government in early 2020. The LiDAR point cloud 

(point density = 54.5 points/m2) was processed using LAStools (Isenburg, 2020). In particular, we used 

the las2dem function to create spike-free DSMs from all LiDAR returns. The detailed principles of the 

approach can be found in Khosravipour et al. (2016). Since mountains located outside Hong Kong could 

affect wind speeds in the territory, we further expanded the 2020 LiDAR-based DSM using SRTM 

Digital Elevation Data Version 4 (Jarvis et al., 2008). Specifically, we added a 15 km buffer to the 

existing DSM to include parts of Shenzhen, including Wutong Mountain (943.7 m.a.s.l.) and Dapeng 

Peninsula.  

4.3.3 Wind data 

Local wind data for model validation were obtained from two sources: (1) the local observatory and 

(2) our own anemometers. The dataset collected by the Hong Kong Observatory was obtained from 
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38 automatic weather stations and spans over 37 years (1984-2022). For each of the 38 stations, the 

wind speed, direction, and gust were continuously measured at 10 m aboveground averaged across 

hourly time steps. We removed 10 urban stations that were within 500 m of high-rising buildings, 

leaving anemometer data collected from 28 non-urban weather stations. While the 28 stations 

represent one of the densest local anemometer networks in TC-prone regions, they are mainly located 

on mountaintops, rooftops of man-made structures, or near the coast. To ensure that our wind models 

accurately estimate wind speeds on slopes, we additionally placed a temporary cup anemometer 

linked to a HOBO U30 data logger on eight hillslope sites. The sites were chosen such that the 

surrounding area was devoid of tall vegetation to avoid local wind shadows cast by trees. The 

anemometer was secured on a plastic pipe mounted on a tripod at a height of 2.4 m aboveground and 

measures wind speed and gusts every 30 seconds. The locations where wind data was collected are 

shown in Figure 4.1. 

 

4.3.4 Wind modelling 

We modelled surface winds in Hong Kong by combining outputs of the “conservation of mass and 

momentum solver” in WindNinja. WindNinja (available on https://weather.firelab.org/windninja/) is a 

free CFD modelling software developed by the Missoula Fire Sciences Laboratory (Forthofer et al., 

2014). The programme provides solvers to estimate wind speeds across the landscape at user-

specified heights above ground based on two inputs – (1) a digital surface model (DSM) of the area 

and (2) a set of initial conditions (domain average wind speed and direction). Two separate solvers are 

available in WindNinja – the “conservation of mass” and the “conservation of mass and momentum” 

solver. While the former is designed to maximise computational speed for wildfire behaviour 

modelling, we would focus on the latter as previous validation efforts have found it to provide more 

realistic approximations of surface winds, especially on leeward slopes in complex terrains 

(Wagenbrenner et al., 2019). The “conservation of mass and momentum” solver is a numerical model 

based on Reynolds-Averaged Navier-Stokes (RANS) equations, assuming steady, incompressible, 

turbulent, and neutrally-stratified wind flows. Its mesh creation and CFD calculations are built upon 

OpenFOAM, a free and open-sourced CFD modelling software (Jasak, 2009; Wagenbrenner et al., 

2019).  

Using WindNinja, we modelled wind speeds for 128 domain average wind scenarios. Specifically, we 

generated wind speed and direction rasters from the products of 8 compass directions (0o, 45o, 90o, 

135o, 180 o, 225o, 270o, 315o) and 16 wind speeds in km/h (1, 8, 13, 17, 21, 24, 28, 32, 37, 44, 50, 70, 

100, 150, 200, 250). The mesh resolution was set to 60 m; background vegetation type was set to “-

brush”; and both the input and output wind height was set to 10 m aboveground to match that of the 

https://weather.firelab.org/windninja/
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anemometer data. The modelling was carried out in a Windows workstation with 48 cores and 1TB 

RAM. 

We then used combinations of the 128 domain average wind scenarios to estimate time-resolved 

surface wind speeds. In order to cross-validate the results, we first split the wind data collected from 

the 28 weather stations into 10 folds. In each of the 10 iterations, we took the wind measurements 

from 9 folds as training and used the remaining fold for validation. During every hour in the 37 years 

for which we have data, we identified the four scenarios where wind directions and speeds most 

closely matched that of the training data. We then took a weighted average of the four scenarios to 

obtain a time-specific estimation of surface wind direction and speed. We then applied a roughness 

correction on these estimations as WindNinja currently does not incorporate variations in surface 

roughness in its CFD model, which makes it prone to overestimating wind from rough urban areas and 

underestimating wind from smoother oceans. Following Wieringa (1986), we assigned roughness 

lengths to pixels based on its land cover class. For each pixel, we then estimated directional roughness 

by calculating distance-weighted roughness of the eight compass directions. We then corrected the 

estimated wind speeds using a simple linear regression model (prediction error ~ roughness + 

roughness:predicted wind speed). The accuracy of the roughness-corrected wind speed estimates 

were validated using the holdout validation dataset. 

Alternatively, we built a null model where we used (1) the mean wind speed across all stations and (2) 

elevation to predict location-specific wind speeds. We compared the performance of the CFD-based 

model and the null model in predicting (1) overall mean wind speeds of weather stations and (2) wind 

speeds during typhoons or monsoons. The accuracies of the wind models were evaluated by 

calculating the absolute root mean square error (RMSE) and percentage root mean square error 

(%RMSE) between the actual and predicted wind speed. 

Finally, apart from cross validating the wind models using the weather station data, we also validated 

the models with our own anemometer measurements on slopes.  We used the weather station data 

to produce time-resolved hourly estimates of surface wind speeds at the locations where we set up 

our own anemometer. The estimated surface wind speed, both by the CFD model and the null model, 

were compared to the wind speeds we observed at the site. It is important to note that our 

anemometers were measuring wind speed at approximately 2.4 m above ground. Although wind 

speeds 2.4 m above ground (observed) would be correlated with speeds at 10 m above ground (model 

prediction), local surface roughness caused by vegetation could easily introduce location-specific, 

systematic biases. Hence, RMSE and %RMSE is not a good measurement of model accuracy. We 
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therefore used an alternative way to validate the models and relied on the R2 of linear regression 

models through the data (actual ~ predicted wind speeds) instead. 

4.4 Results 

4.4.1 Validation with weather station data – mean wind speed 

Results from the 10-fold cross validation using the weather station anemometer data showed that the 

the computational fluid dynamics (CFD) model performed better than the null model in estimating 

long-term mean wind speeds. The root mean square error (RMSE) of the CFD model was 3.77 km/h, 

representing a percentage RMSE (%RMSE) of 30%. Meanwhile, the null model had a higher RMSE of 

4.22 km/h, representing a %RMSE of 41%. The results are summarised in Figure 4.2, where the 

vertices of each polygon represent the predicted and actual mean wind speeds for wind blowing from 

the eight compass directions. An ideal wind model should produce points close to blue line, with edges 

of polygons parallel to the blue line. While elevation does capture some variation of wind speed, the 

null model was making predictions at the 10-15 km/h range for most weather stations at low 

elevations. The CFD model, being able to capture the effects of wind shadows, produce more 

reasonable estimates that line up better with the blue 1:1 line. 

 

Figure 4.2: Predicted and actual long-term mean wind speeds of 28 non-urban weather stations. Each point represents wind 
approaching from one of the eight compass directions. The blue line indicates perfect prediction. 

4.4.2 Validation with weather station data – during typhoons 

The CFD model also performed better during periods when a typhoon or strong monsoon warning was 

issued by the Hong Kong Observatory (Figure 4.3). With higher wind speeds, the RMSE was slightly 

higher (4.22 km/h), but the %RMSE dropped to 22%. Under these scenarios, the advantages of the 
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CFD model over the null model were also more apparent. The null model generated many near-vertical 

polygons far from parallel with the 1:1 line (Figure 4.3).  

 

Figure 4.3: Predicted and actual mean wind speeds when typhoon or strong monsoon warnings were issued. The coloured 
polygons represent 38 non-urban weather stations. Each point represents wind approaching from one of the eight compass 
directions. The blue line indicates perfect prediction. 

4.4.3 Validation with data from our own anemometers 

Lastly, we validated the wind models using our own anemometers placed on eight slope locations. 

Overall, the performance of the CFD model was similar to the null model that used mean wind speed 

and elevation as predictors. The CFD model performed better at four locations (Wo Tong Kong, Keung 

Shan, Cape D’Aguilar, and Yin Ngam Teng), while the null model better predicted wind speeds at 

Robin’s Nest, Pak Kung Au, Ha Fa Shan, and Luk Keng (Table 4.1). While the sample size was small for 

statistical analysis, there was a trend of the CFD model performing better when the wind speeds were 

strong at the times of measurement (Table 4.1). Finally, it is also important to note that we only had 

four hours of data from Robin’s Nest, and the Luk Keng site was partially occluded by trees, but we 

still included the data here for completeness. 

Table 4.1: Validating the wind models with our own anemometer measurements. We built linear models for actual wind speed 

against predicted wind speed. Higher R2 values indicates better agreement between model predictions and actual wind speed. 

Mean wind represents mean wind speed across all measurements from that anemometer. Duration represents how long the 

anemometer had been place out. 

Location  Duration (h)  Mean wind (km/h)  CFD model R2  Null model R2  

Wo Tong Kong  73  13.7  0.23  0.17  
Keung Shan  116  11.6  0.45  0.40  
Cape D’Aguilar  77  9.0  0.80  0.75  
Robin’s Nest  4  7.5  -0.47  0.94  
Pak Kung Au  30  7.1  0.06  0.13  
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Ha Fa Shan  23  7.0  0.81  0.85  
Yin Ngam Teng  21  5.8  0.70  0.30  
Luk Keng  28  0.7  0.08  0.10  

 

4.5 Discussion 

Our study showed the possibility to use free and open-source CFD programmes to estimate surface 

wind speeds over complex topographies. The validation exercise showed that, for predicting both 

long-term mean wind speeds and winds during monsoons or typhoons, these models outperformed a 

null model that used elevation and overall mean wind speed in other weather stations as predictors. 

Our results indicate that explicitly modelling wind flows, even using a coarse and highly simplified 

model, has advantages over indirect proxies of wind speed and exposure. We did, however, found the 

RMSE (3.77 km/h) and %RMSE (30%) of the CFD model to be higher than that reported from other 

validation studies for WindNinja and WAsP (Berge et al., 2006; Wagenbrenner et al., 2019). This likely 

stems from the complexity of the landscape in Hong Kong. Extensive seas, steep hills, sophisticated 

vegetation structure, and the >600 skyscrapers in urban areas makes Hong Kong one of the most 

challenging landscapes for wind modelling.  

The CFD model was found to excel in high wind scenarios. Its advantage against the null model was 

more apparent when the typhoon or monsoon warning signal was hoisted by the local observatory 

(Figure 4.2). Similarly, when validating the wind models using our own anemometer data, the CFD 

model performed better if wind speeds were strong at the times of measurement (Table 4.1). In calm 

days, local wind regimes are likely dominated by diurnal winds caused by the differences in heating or 

cooling across different types of terrain. Since the conservation of mass and momentum solver in 

WindNinja assumes neutrally stratified wind flows and does not model for diurnal winds, it is not 

designed to model these flows. Rather, the CFD solver stands out when the landscape is exposed to 

stronger unidirectional winds driven by larger low- or high-pressure systems. 

We identified four factors could have contributed to errors in the CFD model. Firstly, variations in 

roughness of the landscape were not considered in WindNinja. Although the post-hoc roughness 

correction partially addressed these effects, including roughness into the CFD model would create 

more realistic estimations of wind flows (Finnigan et al., 2020). Secondly, due to limitations in 

computational capacity, we only modelled wind from eight compass directions in our study. In reality, 

wind could approach from any direction. We simulated this by taking the weighted average of wind 

flows from two of the eight compass directions, but modelling wind from more compass directions 

could have improved accuracies of the model (Berge et al., 2006). Thirdly, many weather stations in 

Hong Kong are located at mountaintops or ridges. This means that they lie at the border between the 
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windward slope and the wind shadow on the lee side. Where this border was placed heavily affects 

the modelled wind speeds at these weather stations. In several cases, weather stations were placed 

in the wind shadows by the CFD model but received strong winds sweeping up from the windward 

slopes. This does not affect the accuracy and utility of the CFD model, but could inflate the RMSE 

figures in validation. Finally, our approach involved taking weighted averages between different 

incoming wind speed and direction scenarios. Although a total of 128 different scenarios were 

produced, they all implicitly assumed a single dominant wind speed and direction affecting the entire 

study area. Despite the relatively modest size of Hong Kong as a study area, this assumption does not 

necessarily hold. This is less of an issue when predicting long-term wind speeds – regional differences 

would be cancelled out when wind data were to be averaged across long periods of time. However, it 

could be an issue when the model is used to generate time-resolved wind speed predictions for 

specific events or time periods. This likely affected the accuracy of the CFD model when we validated 

it using our own anemometer data as the validation exercise was carried out at specific locations over 

short time periods. WindNinja does provide a “point-initialization” functionality that models wind 

flows based on a set of anemometer measurements taken from known locations across the landscape. 

However, the functionality is yet to be compatible with the “conservation of mass and momentum” 

CFD solver. Additionally, to build a wind flow model for every time step is extremely computationally 

expensive, which makes it impractical for most use cases. Another approach would be to keep the 

current pipeline (i.e. averaging relevant “wind scenarios” to estimate wind speed), but choose 

different representative “scenarios” for different subregions of the study area. The issue with such an 

approach is the difficulty in spatially interpolating the results from different subregions (for both wind 

direction and speed) to create one single wall-to-wall wind map, though the idea could very much be 

further explored in future work.  
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Chapter 5: Tall, wind-sheltered forests and 

plantations suffered more damage during 

Typhoon Mangkhut 

5.1 Abstract 

In many regions across the globe, forests are periodically damaged by tropical cyclones (TCs). Due to 

the difficulty in monitoring forest damage and modelling wind flows, we know very little about the 

factors contributing to forest resilience to TCs, especially on rugged landscapes with localised wind 

regimes. In 2018, rainforests in subtropical Hong Kong were hit by Typhoon Mangkhut, the strongest 

TC to affect the region in >40 years. Remarkably, its effect was captured by repeated LiDAR surveys in 

2010, 2017, and 2020. The region is also home to one of the densest networks of anemometers in the 

tropics for wind modelling. We differenced the LiDAR-based digital surface models to quantify changes 

in canopy heights across >400000 30m-by-30m pixels. We then estimated both long-term mean wind 

speed and maximum wind speed during Typhoon Mangkhut for every pixel by building computation 

fluid dynamics (CFD) models. Our results show that plantations were more heavily damaged than 

natural forests of comparable stature and on similar topographical position (0.86 m vs 0.39 m average 

height loss). Amongst natural forests, height was by far the strongest predictor of damage, with taller 

forests being less resistant to typhoons. Interestingly, wind-exposed forests subjected to relatively 

high long-term mean wind speeds suffered less damage during the typhoon, consistent with 

acclimation to wind. Over the decade studied, growth in years without strong TCs largely offset 

damage incurred during extreme typhoons, except for the tallest forests. This placed strong limits on 

local forest height, with the tallest trees in sheltered sites ~50% taller than those in exposed sites. The 

limits were stronger than that posed by any other environmental factor considered. Our study 

highlights that forest resilience to TCs is highly dependent on local wind-topography-forest 

interactions, which needs to be considered if we were to predict how changing TC regimes might affect 

the structure of forest ecosystems. 

5.2 Introduction 

Tropical cyclones (TCs), also known as typhoons or hurricanes, are rotating storm systems that bring 

strong winds and heavy rainfall, often causing substantial damage to natural ecosystems. Even TCs 

graded 1-2 on the five-point Saffir-Simpson scale bring sustained wind speeds of >125 km/h, leading 

to defoliation, branch-breakage, bole-snapping, and uprooting of forest trees (Everham & Brokaw, 1996; 

Lin et al., 2020; Negrón-Juárez et al., 2014; Tanner et al., 1991). TCs caused substantial loss of 

aboveground forest biomass, with losses after Category 3-4 TCs estimated at 34% in a west Mexican 
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study (Parker et al., 2018a) and 23% in a Puerto Rican study (J. Hall et al., 2020). TCs have long-term 

impacts on forest structure, not only by damaging trees but also by triggering changes in architecture 

amongst survivors (Bonnesoeur et al., 2016).  Regions that frequently experience strong TCs were 

reported to have shorter forests with higher stem densities (De Gouvenain & Silander, 2003; Ibanez et 

al., 2019; Lin et al., 2020). Trees exposed to TCs may additionally invest into larger basal areas relative 

to their heights (Ibanez et al., 2019).  The structural changes could, in turn, increase the resilience of 

forests to future TC events (Lin et al., 2020; Mabry et al., 1998). Under climate change, TCs have 

become less frequent but more intense in recent decades (Chand et al., 2022; Kossin et al., 2020) and 

have shifted towards higher latitudes (Chand et al., 2022; Murakami et al., 2020). To predict how these 

changes might affect forests in the future, it is critical that we have a comprehensive understanding of 

wind-forest dynamics at various spatiotemporal scales (Lin et al., 2020).  

We currently have limited knowledge on how wind, topography, and forest structure affect TC-

resistance at a landscape scale. Previous studies have shown that canopy height, soil type, stock density, 

and management action (e.g. thinning) could all affect forest resistance against strong winds (Cremer 

et al., 1982; Gardiner, 2021; Martin & Ogden, 2006). However, most of these studies were carried out 

in coniferous monocultures on flat terrain. We now know that the most valuable forests from the 

biodiversity, carbon, and ecosystem services stand points are those with complex canopy structure. 

Given that many of these forests grow on rugged landscapes, where sites a mere few hundred meters 

apart could have vastly different wind profiles, there is a pressing need to re-assess wind resistance in 

these forest systems. Only a handful of studies have investigated into the factors affecting TC-resistance 

in these complex forests (Boucher, 1990; Lin et al., 2020; Martin & Ogden, 2006; Ni et al., 2021; Tanner 

et al., 1991). While these studies have identified a few variables that affect resistance, such as forest 

stature and prior wind exposure, most are based on field observations with small sample sizes and none 

have explicitly modelled wind (both long-term or during TCs) across the landscape. Thus, the 

relationship between site-level exposure to wind and the patterns of damage remains poorly resolved. 

We also have very little understanding of how these patterns of forest damage affect forest structure 

through longer time scales. At a regional level, Eric B. Gorgens et al. (2021) found that wind determines 

the distribution of giant trees in the Amazon basin. Chi et al. (2015) suggested that typhoons reversed 

the elevation-tree height gradient in Taiwan by disproportionally impacting lowland vegetation. 

However, to our knowledge, no studies have explored whether effects of TCs on long-term forest height 

operate on finer spatial scales. It is also unclear whether these wind-effects are more important than 

other environmental variables, such as wetness or aspect, in shaping local forest structures. 

The paucity of studies investigating the landscape-level effects of TCs is partly down to two technical 

challenges: measuring damage to forests in the immediate aftermath of storms and mapping wind 

exposure on complex terrain. Monitoring forest damage after TCs is no trivial task. Many existing 

studies are based on field measurements in established forest inventory plots, which provide detailed 
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measurements of tree damage and mortality but only over limited spatial scales (Everham & Brokaw, 

1996; Tanner et al., 1991). A few recent studies have turned to analysing changes in satellite 

multispectral imagery, but changes in vegetation indices such as NDVI and EVI reflect defoliation and 

are only indirectly linked to structural damage (Abbas et al., 2020; J. Hall et al., 2020; Rossi et al., 2013; 

Xu et al., 2021). The development of repeated airborne laser scanning provides a solution to this. By 

generating point clouds from millions of returns, LiDAR datasets can produce detailed maps of both 

canopy structure and background topography across large spatial scales. Comparing repeated LiDAR 

scans can provide unparalleled information on forest structural responses against wind. The main 

constraint of LiDAR is that we cannot predict the arrival of extreme TCs. Hence, datasets that capture 

forest condition both before and after devastating TCs are rare.  

Similarly, wind modelling across a forested, mountainous site is notoriously difficult (Finnigan et al., 

2020). Fundamental models of wind flow across flat terrain assume that wind speeds exhibit a 

logarithmic height profile, depending on the roughness of the surface (Wieringa, 1986), but these 

models fail to capture how wind interacts with complex terrain. Wind speeds increase significantly on 

windward slopes but are sheltered on leeward slopes (Belcher et al., 2011; Finnigan et al., 2020; 

Lemelin et al., 1988; C. A. Miller & Davenport, 1998). The position of wind shadows casted by 

mountains is dependent on incoming wind direction, while the size of the shadows depends on wind 

speed and associated deflection of wind (Belcher et al., 2011; Finnigan et al., 2020). On steeper hills, 

separation bubbles could form on leeward slopes, which cause wind near the boundary layer to reverse 

direction (Belcher et al., 2011; Finnigan et al., 2020; Kaimal & Finnigan, 1994). In narrow valleys, the 

Venturi effect is known to speed up incoming wind (Mikkola et al., 2023). Modelling these effects is 

difficult, and actual wind data for training and validation are often unavailable (Shah et al., 2023). As a 

result, most studies on TCs avoid modelling local wind speeds and rather resort to simple proxies of 

wind exposure, such as aspect, elevation, or topographical exposure (TOPEX) (Albrecht et al., 2019; 

Gardiner, 2021; Wilson, 1984). To our knowledge, no study has combined modelling of local wind 

speeds with repeated LiDAR surveys of wind damage to assess impacts of TCs on forest.  

New datasets available for the mountainous countryside around the city of Hong Kong provide a unique 

opportunity to model local wind speeds during TCs and measure their impacts on native and planted 

forests of different ages. In September of 2018, subtropical rainforests on the rugged landscape of Hong 

Kong were hit by Typhoon Mangkhut. The typhoon was the strongest TC to affect Hong Kong in over 

four decades, bringing 10-min average wind speeds of >190 km/h in exposed areas (category 3 on the 

Saffir-Simpson scale) (Hong Kong Observatory, 2023). Remarkably, the whole area was surveyed by 

airborne LiDAR scans in 2010, 2017, and 2020. These LiDAR scans captured changes in the vertical 

structure of forests through time and provide a rare opportunity to study pre-typhoon growth and post-

typhoon damage across large areas. Furthermore, hourly wind data is available from 28 non-urban 

automatic weather stations distributed across the mountains (Hong Kong Observatory, 2023). This 



94 

 

allowed us to properly validate wind maps generated by computational fluid dynamics (CFD) modelling 

software, which estimates near-surface wind speeds from a given digital terrain model. In this study, 

we utilise the rare availability of repeated LiDAR and wind data to advance our understanding of how 

TCs affect forests on rugged terrains. In particular, we address four research questions: 

(1) Were natural forests more resistant to Typhoon Mangkhut than plantations? 

(2) How did forest height, local wind profile, and background topography affect forest resistance 

against Typhoon Mangkhut? 

(3) Did the effect of strong TCs produce long-term limits in local forest height? 

(4) How important was wind compared to other environmental variables in limiting local forest 

height? 

 

5.3 Methods 

5.3.1  Study area and Typhoon Mangkhut 

Hong Kong (22o 16’ 8’’ N, 113o 57’ 6’’E) has a wet subtropical climate, receiving over 2400 mm of 

rainfall per year with an average temperature of 23.3 oC (1961-2022). Despite its reputation as a densely 

populated city, over 60% of the total land area (1110 km2) is covered with natural vegetation, with 

another 4% covered by tree plantations. The landscape was almost devoid of forests by the close of the 

Second World War, but forests have subsequently recovered following widespread agricultural 

abandonment and better protection of the countryside for nature and the ecosystem services it provides. 

As of 2020, the vegetated countryside was composed of a mosaic of broadleaved-evergreen rainforests 

(53%), shrublands (41%) and grasslands (6%) based on the vegetation classification system in Abbas 

et al. (2016). With a median slope of 0.47, the countryside of Hong Kong is rugged. Dotted across the 

territory are the over 300 steep-sided hills of heights >100 meters above sea level (m.a.s.l.), with the 

tallest, Tai Mo Shan, rising to 957 m.a.s.l.. Hong Kong lies within the west Pacific TC hotspot, 

experiencing multiple TCs each year. Typhoon Mangkhut on the 16th September, 2018 represents the 

strongest typhoon that affected the territory in decades (Figure 5.1). Anemometers in exposed areas 

recorded hourly average wind speeds of >150 km/h, 10-min average wind speeds of >190 km/h, and 

gusts >250 km/h (category 3 on the Saffir-Simpson scale) (Hong Kong Observatory, 2023).  
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Figure 5.1: Typhoon Mangkhut is the strongest TC that affected Hong Kong in decades. Wind data was derived from 28 

automatic weather stations. Hourly wind speeds and gusts were averaged across stations to produce two numbers per hour. 

The maximum averaged hourly wind speed and gust each year were then plotted out. 

5.3.2 Repeated LiDAR surveys of canopy heights and topography  

Three repeated LiDAR scans were used to reconstruct background topography and changes in forest 

structure. The first scan was conducted in late 2010, covering the entire territory of Hong Kong. The 

second scan was carried out in late 2017 and covers approximately half of the territory. The third scan 

was a repeat of the first scan and was conducted in early 2020, 1.5 years after Typhoon Mangkhut. 

Technical specifications of the LiDAR surveys are listed in Table 5.1. 

Table 5.1: Technical specifications of the three LiDAR datasets. 

Dataset 2010 2017 2020 

Date Acquired Dec 2010 – Jan 2011 Nov 2017 Dec 2019 – Feb 2020 

Coverage Whole territory 500 km2 Whole territory 

Carrier Manned aircraft Manned aircraft Helicopter 

Scanner Optech Gimini ALTM RIEGL LMS-Q780 N/A 

Flight height 1000 – 1200 m 2147 – 2893 m 600 m 

Point density 5.3 points/m2 5.9 points/m2 54.5 points/m2 

Returns per pulse 4 returns  Up to 7 returns 8 returns 

  

LiDAR point clouds were processed using LAStools (Isenburg, 2020). Digital terrain models (DTMs) 

were created by ground-classifying LiDAR returns with lasground_new and triangulating ground 

returns with blast2dem. Canopy height models (CHMs) were created by triangulating the point cloud 

layer by layer to avoid empty pits due to the lack of returns following the methodology of Khosravipour 
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et al. (2014). Finally, digital surface models (DSMs) were built using the -spike_free option in las2dem, 

which identifies relevant returns amongst all returns to generate smooth 3D surfaces based on 

Khosravipour et al. (2016). Canopy height changes between 2010, 2017, and 2020 were calculated by 

differencing the relevant DSMs. We specifically chose to difference DSMs (absolute heights) instead 

of CHMs (heights relative to ground elevation) since it avoids errors in ground classification. However, 

DSMs are more sensitive to errors in absolute height, so we differenced the DTMs to check whether 

there were significant biases in absolute heights. One region of the 2017 dataset was found to have a 

systematic but consistent bias in absolute heights, so we isolated the flightline and corrected the bias 

using geodetic control points of known elevations (HK Lands Department, 2019).  

We also addressed two minor issues with the LiDAR data before analysis. Firstly, variations in point 

densities could undermine comparability of DSMs as point clouds with a higher density are more likely 

to include treetops or valley bottoms. Hence, we carried out a sensitivity analysis to investigate how 

point densities affected the DTMs, DSMs, and CHMs (Section C.1; Supp. Figure C.1; Supp. Figure 

C.2; Supp. Figure C.3). Following the results, we thinned the dense 2020 point cloud to 5.4 points per 

m2 before generating the three LiDAR products. In contrast, edges of the 2017 dataset had exceptionally 

low point densities, so we masked out areas with <1.5 points per m2 to ensure that errors of DSM 

differencing were <1m. The second issue was urban features, especially power lines that encroach into 

the countryside. We therefore excluded areas classified as urban in the zoning map of Hong Kong 

(Town Planning Board, 2020) or areas within 40 m of power lines mapped on OpenStreetMap 

(OpenStreetMap contributors, 2022).  

We also generated rasters for four topographical variables: slope, aspect, topographic position index 

(TPI), and SAGA wetness index (SWI). Aspect, which is a cyclical variable, was linearised by 

subtracting the reported local optimal aspect for forests (5.795 radians) and taking the cosine 

(cos_aspect = cos(aspect – 5.795)) (Chapter 3:). TPI is a variable calculated from the DTM that refers 

to whether the site sits in valleys (low TPI) or on ridges (high TPI). SWI, also calculated from the DTM, 

refers to the catchment area of a pixel in question (i.e. how much water flows to the pixel). Compared 

to other wetness indices, SWI does not treat flow as a thin film and hence gives more realistic wetness 

estimates for pixels close to, but not exactly at, valley bottoms (Mattivi et al., 2019). The technical 

details regarding the calculation of topographical variables could be found in (Chapter 3:). The 

resulting rasters have different resolutions – (elevation (1m), slope (1m), aspect (30 m), TPI (15 m), 

SWI (15 m) – but were all tidied and down-sampled to 30 m resolution before subsequent analyses.  

5.3.3 Wind modelling 

The aim of wind modelling was to obtain two maps, one showing the mean long-term wind speed across 

Hong Kong and one showing maximum wind speeds during Typhoon Mangkhut. To build the wind 

maps, we followed the pipeline described and validated in Chapter 4:. Specifically, based on the 
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SRTM-expanded DTM of Hong Kong, we used the Conservation of Mass and Momentum solver in 

WindNinja (Forthofer et al., 2014; Wagenbrenner et al., 2019) to estimate near-surface wind speeds 

across every 60 m x 60 m pixel across the study area (Chapter 4:). We did this for 128 wind scenarios 

that correspond to 8 compass directions and 16 domain average wind speeds (Chapter 4:). We then 

compared the scenarios with actual wind data collected from the 28 anemometers at non-urban weather 

stations. For each hour across the last 37 years, we identified the four scenarios that best matched the 

observed wind direction and speed. From the predicted and actual wind speeds at the weather stations, 

we additionally built a simple roughness correction model to adjust wind speed predictions based on 

terrain roughness in the upwind direction (Chapter 4:). To create a long-term mean wind speed map 

for Hong Kong, we applied the roughness correction model on the 128 modelled wind speed scenarios. 

We then took the weighted average across the scenarios based on the frequency of those wind scenarios 

occurring throughout the 37-year study period. To create the map showing maximum wind speed during 

Typhoon Mangkhut, we first went through the wind data collected by the 28 non-urban weather stations 

and took note of the times between 2017 and 2020 with the strongest observed wind speed (24 hourly 

time steps identified per station). As one might expect, these time steps were overwhelmingly from 16th 

September 2018 when Typhoon Mangkhut hit Hong Kong. For every hourly time step, we built wind 

maps by taking a weighted average across the relevant roughness-corrected wind scenarios. We then 

overlaid these hourly wind maps and calculated the maximum.  The final raster represents the maximum 

hourly wind speed during Typhoon Mangkhut for every 60 m x 60 m pixel across Hong Kong. Both 

wind maps (long-term mean and Mangkhut maximum) were subsequently resampled to 30 m resolution 

to match that of the topographical rasters.  

5.3.4 Vegetation and plantation maps 

We gathered a vegetation map time series of the study area to focus our investigation on forests. The 

maps were generated by classifying Landsat composites into five classes (forest, shrubland, grassland, 

water, and non-vegetation) using a supervised random forest (RF) model. Technical details of the 

vegetation maps can be found in Chapter 3: and Appendix B:. The full dataset contains 17 biennial 

vegetation maps spanning 34 years (1986-2020), but in this study we only used the maps of relevant 

years (2009-2020, 2017-2018, and 2019-2020). Non-forest pixels were excluded from the analysis.  

To evaluate differences in the response of plantations and natural forests to typhoons, we created a 

plantation database by manual delineation. Most plantations in Hong Kong are monospecific stands of 

exotic species such as Acacia confusa, Lophostemon confertus, Melaleuca quinquenervia, and Pinus 

elliottii, though mixtures of native species have been increasingly planted in recent years. These 

plantations were used for afforestation and to combat erosion, so they were not harvested for timber. 

We identified plantations by visually inspecting aerial photos collected in 2014(0.3 m ground resolution) 

(HK Lands Department, 2019) and the LiDAR-derived CHMs. Google Satellite, Streetview, and 

photospheres were also widely available across the countryside of Hong Kong and provided additional 
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ways to check the species composition of various forest stands. We also consulted an older vegetation 

map produced by Ashworth et al. (1993). The map only existed in paper format as the digital maps were 

lost, so we scanned, georeferenced, classified, and polygonised the document. Most of the 566 polygons 

were redrawn, but the dataset nevertheless provided a point of reference for older plantations now 

partially encroached by native trees. The final plantation map contains 3442 polygons covering an area 

of 42.3 km2.  

5.3.5 Comparing TC-resistance of natural forests and plantations 

To test whether natural forests were more resilient to extreme TCs than plantations, we started by simply 

calculating the 2017-2020 height change and comparing the results between natural forests and 

plantations. This gave a holistic overview of typhoon-related damage amongst the two forest types. The 

problem with this approach is that the results could be confounded by covariate imbalances. For instance, 

it is reasonable to expect plantations to suffer more damage simply because they are taller or 

disproportionally planted on exposed ridges for erosion control. To investigate whether the structure of 

natural forests was inherently more wind resilient than plantations after accounting for these differences, 

we repeated our analysis after reweighting.  

Reweighting is a statistical technique akin to pixel matching and commonly used in medical research 

(Markoulidakis et al., 2022; Matschinger et al., 2020). It tackles covariate imbalance by assigning 

weights to each datapoint such that the weighted dataset has comparable covariate distributions across 

categories of interest. In our case, the goal is to assign weights to pixels such that weighted natural 

forest pixels are comparable to plantations in terms of (1) height, (2) TPI, (3) SWI, (4) mean wind speed, 

and (5) maximum wind speed during the typhoon. By doing so, we could isolate the effect of forest 

type on typhoon-resistance. We followed the protocol outlined in Markoulidakis et al. (2022) in 

assigning weights. Firstly, we removed parts of the dataset for which there was too little overlap (e.g. 

tall plantations >23 m that had insufficient analogous natural forest pixels for meaningful comparison). 

Secondly, entropy balancing (EBAL) weights were assigned to the data using the WeightIt package in 

R (Greifer, 2019) based on the five covariates. Thirdly, the weights were trimmed at the 99.9th percentile 

such that results were not overwhelmed by several heavily weighted pixels. Fourthly, the cobalt package 

was used to confirm that, after weighting, plantation and natural forest pixels had comparable 

distributions of covariates (mean differences <0.05 and variance ratios <2) (Greifer, 2020). Lastly, we 

used the weighted heights to conduct a like-for-like comparison of typhoon-resistance between natural 

and planted forests.  

5.3.6 Factors affecting natural forest resistance against typhoons 

We investigated the factors that affected forest resilience against extreme TCs using a multiple 

regression model. We first removed plantations and focused on natural forests as the two forest types 

have different height and structural profiles. We then built a multiple regression model that predicted 
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forest damage during Typhoon Mangkhut, measured as the canopy height change between 2017 and 

2020, using different environmental variables. Recognising that multicollinearity could undermine the 

results by inflating or even flipping the signs of coefficients, we transformed and removed several 

predictor variables. Firstly, maximum wind speed during Typhoon Mangkhut correlated with long-term 

mean wind speed (R2 = 0.9, Supp. Figure C.4), so we normalised the variable by subtracting the 

maximum wind speed by that predicted by mean wind speed. After the transformation, the variable 

represented whether the site was disproportionately exposed to Typhoon Mangkhut and was less 

correlated with mean wind speed (R2 = 0.32, Supp. Figure C.4). Secondly, SWI, TPI, and slope were 

moderately correlated (Supp. Figure C.4). We dropped TPI as a predictor as the variable had a small 

effect size by itself but significantly affected the coefficients of SWI and slope when included (Supp. 

Figure C.4). The final model contained five predictor variables, namely (1) 2017 canopy height, (2) 

long-term mean wind speed, (3) normalised maximum wind during Mangkhut, (4) wetness (SWI), and 

(5) slope. Last but not least, to better understand how the two wind variables and forest height interacted 

and shaped patterns of forest damage, we included the two-way interaction terms between (1), (2), and 

(3). All predictor variables were scaled by subtracting the values by the mean and dividing them by the 

standard deviation. This ensured that the model produced comparable coefficients that accurately 

represented the effect sizes of the variables.  

5.3.7 Long-term implications of strong typhoons 

We explored how differences in TC-resistance amongst natural forests cascaded into the long term. We 

started by visualising the short-term destruction of Typhoon Mangkhut across pixels with different 

height and wind profiles. To do so, we binned the pixels by (a) maximum wind speed experienced 

during Typhoon Mangkhut and (b) tree height in 2017 prior to the typhoon (n =191744, 816 bins). For 

all bins with >10 pixels, we calculated the average change in canopy height between 2017 and 2020 

and plotted the results in a heatmap. We then used a similar approach to visualise how these effects 

were relayed into the long term. We again binned the pixels, but this time by (a) tree height in 2010 and 

(b) long-term mean wind speed (n = 406482, 816 bins). For all bins with >10 pixels, we calculated the 

average change in canopy height across the decade-long study period (2010 – 2020) to create another 

heatmap. A comparison between the two heatmaps revealed the balance between short-term TC damage 

and long-term growth. Finally, the 97.5th percentiles of forest heights were overlaid on the heatmaps to 

reveal limits on local forest stature. 

5.3.8 The importance of wind on local forest height limits 

We used quantile regression to evaluate whether these wind-dependant limits on local forest heights 

were important compared to limits posed by other environmental variables. Regression through the top 

quantiles is a powerful tool to study limiting factors in ecology due to its robustness against other 

measurable or unmeasurable confounding factors (Cade et al., 1999; Cade & Noon, 2003; Coomes & 

Allen, 2007). For example, in our case forest height in a particular location could be constrained by one 



100 

 

of many environmental variables (e.g. soil nutrients, forest age, disturbance history, etc.). Even if wind 

strongly constrains forest height, the heights of many forest stands may have been constrained by other 

variables before the wind constraint takes effect. If we perform ordinary least squares regression, these 

stands would confound the results and produce a very weak effect size regardless of whether the wind 

poses a hard limit on forest height. Quantile regression through the top percentiles avoids this by 

focusing only on the tallest trees. Forest stands that have reached these heights would be those that are 

least constrained by other environmental variables, thus allowing us to better isolate the effects of the 

variable of interest. In this study, we performed quantile regression through the 97.5th percentile of 2010 

canopy heights using six environmental variables as predictors, namely (1) mean wind speed, (2) 

elevation, (3) cosine aspect, (4) slope, (5) wetness (SWI), and (6) topographical position (TPI). Second-

order polynomials were fitted through the data as several factors had non-linear effects on maximum 

canopy height. We used the results to evaluate the importance of wind limits on local forest heights 

compared to the other variables. The analysis was also repeated with canopy heights from 2020 to 

ensure that the patterns observed were robust across different years.  

5.3.9 Local effects of wind and topography on typhoon damage 

To further uncover how different variables shaped local patterns of wind damage after Typhoon 

Mangkhut, we built a multiple regression model on canopy height change between 2017 and 2020. The 

model included five predictors, namely (1) 2017 canopy height, (2) long-term mean wind speed, (3) 

normalised maximum wind during Mangkhut, (4) wetness (SWI), and (5) slope. Several steps were 

taken to minimise the effects of multicollinearity. Firstly, maximum wind speed during Typhoon 

Mangkhut correlated with long-term mean wind speed (R2 = 0.9, Supp. Figure C.4), so we normalised 

the variable by subtracting the maximum wind speed by that predicted by mean wind speed. After the 

transformation, the variable represented whether the site was disproportionately exposed to Typhoon 

Mangkhut and was less correlated with mean wind speed (R2 = 0.32, Supp. Figure C.4). Secondly, 

SWI, TPI, and slope were moderately correlated (Supp. Figure C.4). We dropped TPI as a predictor 

as the variable had a small effect size on itself but significantly affected the coefficients of SWI and 

slope when included. Finally, to better understand how the two wind variables and forest height 

interacted to produce the patterns of forest damage observed, we included the two-way interaction terms 

between (1), (2), and (3).  

5.4 Results 

5.4.1 Mean and maximum wind maps 

The rugged topography of Hong Kong created variable wind profiles across the landscape. Both the 

modelled long-term mean wind speed and 2017-2020 maximum wind speed (Typhoon Mangkhut) 

showed over three-fold differences across pixels. Overall, exposed sites such as ridges and 

mountaintops with higher long-term mean wind speed also experienced higher wind speeds during 
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Typhoon Mangkhut (Figure 5.2). However, the typhoon brought disproportionally strong winds from 

the east and created prominent wind shadows towards the western slopes of mountains (Figure 5.2b). 

Therefore, there was considerable variation in maximum wind speed even amongst pixels with similar 

long-term wind regimes, which can be visualised by normalising the maximum Typhoon Mangkhut 

wind speed raster by the long-term mean wind speed raster (Figure 5.2c). 
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Figure 5.2: Modelled (a) long-term mean wind speed, (b) maximum wind speed during Typhoon Mangkhut, and (c) the 

normalised difference between the two. The grey lines represent the outline of the terrestrial areas of Hong Kong. 
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5.4.2 Natural forests were more wind-resilient than plantations 

Compared to natural forests, plantations were more heavily hit by Typhoon Mangkhut. On average, 

plantations lost 0.86 m in height between 2017 and 2020, equivalent to 45% of the growth in the 

previous seven years. In contrast, natural forests only lost 0.1 m in height between 2017 and 2020, or 

10% of the growth between 2010 and 2017. Part of these differences could be attributed to the imbalance 

of covariates, such as plantations being taller and being disproportionally planted on ridges. 

Nevertheless, after accounting for these differences by reweighting, we found that plantations were still 

more than twice as susceptible to typhoons (-0.86 m) compared to natural forests of similar heights and 

topographical positions (-0.39 m) (Figure 5.3a). In particular, a larger proportion of trees were either 

snapped or uprooted in plantations, creating a fat tail in violin plot of 2017-2020 height change (Figure 

5.3a). Visually assessing the relevant rasters revealed how entire stands of planted trees were wiped out 

by the typhoon (Figure 5.3b-c). The scale of damage seen in these sites was not observed in natural 

forests in the same region (Figure 5.3b-c). 

 

Figure 5.3: Plantations suffered heavier losses during Typhoon Mangkhut. Panel (a) contains a violin plot of height changes 

between 2017 and 2020. The pixels were reweighted such that the natural forests had comparable height, TPI, SWI, and wind 

distribution as the plantations. Effective sample sizes (ESS) were 114838 for natural forests and 16381 for plantations. Panel 

(b) shows the canopy heights of forests near Tate’s Cairn, Hong Kong in 2017. Panel (c) shows the height changes of the same 

region between 2017 and 2020. The linear features in panels (b) and (c) are power lines, which were masked out before data 

analysis. 

5.4.3 Taller and wind-sheltered forests were more susceptible to Typhoon Mangkhut 

Coefficients of the multiple regression model built on 2017 – 2020 canopy height change revealed how 

forest stature, wind, and topography shaped the resistance of natural forests to wind damage during 

Typhoon Mangkhut. Among the variables investigated, canopy height had by far the strongest effect on 



104 

 

forest resistance against wind. Taller forests were much more heavily damaged during Typhoon 

Mangkhut (Figure 5.4).  

Wind-sheltered forests with low long-term mean wind speeds suffered more damage during the typhoon, 

while forests on exposed sites were relatively unscathed, presumably due to better acclimation to wind 

(mean wind, Figure 5.4). This acclimation effect was especially pronounced in taller, more mature 

forests (height : mean wind, Figure 5.4). On the other hand, sites that experienced stronger than 

expected maximum wind speeds during Typhoon Mangkhut suffered more damage during the storm 

(norm. max, Figure 5.4). Interestingly, forests appeared to over-acclimate to their long-term wind 

regime. Sites with higher long-term mean wind speeds were less sensitive to disproportionally strong 

maximum wind speeds during Mangkhut (mean: norm. max, Figure 5.4). Finally, we identified two 

topographical factors that were largely orthogonal to the wind variables (Supp. Figure C.4) and had 

substantial effects on forest typhoon resistance – wetter sites were more susceptible to typhoons (SWI, 

Figure 5.4), while steeper sites were more resistant to damage (slope, Figure 5.4) 

 

 

Figure 5.4: Coefficients of multiple regression model predicting damage after Typhoon Mangkhut (measured as drop in canopy 

height between 2017 and 2020). Norm. max wind is a variable created by normalising the maximum modelled wind speed 

during Typhoon Mangkhut with the long-term mean wind speed and reflects whether the site was disproportionally affected 

by the event. SWI represents Saga Wetness Index. The variables were scaled such that effect sizes and directions are 

comparable. Error bars (barely visible) are the standard errors of the coefficient estimate. 
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5.4.4 Low typhoon resistance of tall forests created long-term height limits 

The effects of high TC-susceptibility amongst taller forests cascade into the long term to limit local 

forest height. Amongst the variables studied, forest height was identified as the most important in 

defining resistance against TCs (Figure 5.4). Figure 5.5 provides a visualisation of the interplay 

between forest stature, wind, and change in canopy height. Taller forests (over 15 m) lost height (-27.9 

cm/year) between 2017-2020, while shorter forests under 7 m in height maintained growth (+3.1 

cm/year) over the same period (Figure 5.5a). The positive growth of shorter forests also demonstrates 

that the differences in resilience were not due to taller forests having more height to lose during Typhoon 

Mangkhut. The trend of taller forests being more wind-susceptible was robust across a range of different 

maximum wind speeds (Figure 5.5a).  

In the long term, natural forests acclimate to local wind conditions by adjusting both height and structure 

(Figure 5.5b). Sites with higher mean wind speeds tend to have a lower maximum height measured as 

the 97.5th quantile (black line, Figure 5.5b). These height limits were at least partly produced by tropical 

cyclones. In forests below these height limit, Typhoon Mangkhut did cause losses in canopy height 

(Figure 5.5a), but the losses were more than offset by growth in years without strong TCs (Figure 

5.5b). However, in forests close to or exceeding these height limits (above black line, Figure 5.5b), 

growth could no longer offset the disproportionate damage incurred during Typhoon Mangkhut, leading 

to a stall or even drop in long-term canopy height (Figure 5.5b). Lastly, these figures also provide 

further support for structural wind-acclimation affecting forest resistance to typhoons. Amongst forests 

of similar heights, those on more exposed sites suffered relatively little damage during Typhoon 

Mangkhut compared to forests in more sheltered sites (Figure 5.5a). The trend is even more apparent 

if we replot the typhoon damage data in Figure 5.5a with long-term mean wind speed on the x-axis 

(Supp. Figure C.5).  
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Figure 5.5: The change in canopy height (a) during the period affected by Typhoon Mangkhut (2017-2020, n=191744) and (b) 

over the entire study period (2010-2020, n = 406482). The max wind speed represents the strongest hourly mean wind speed 

between 2017-2020, mostly reflecting the effects of Typhoon Mangkhut. The mean wind speed represents modelled long-term 

wind speeds over more than three decades. The black lines represent the maximum canopy height (97.5th percentile) estimated 

by second order quantile regression. 
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5.4.5 Local wind regimes more strongly limited forest height than other environmental 

variables 

Quantile regression analysis on the 2010 dataset revealed that the 97.5th quantile of forest height 

strongly and unidirectionally correlated with mean wind speed. The tallest forests in the least windy 

sites were ~50% taller than those in the windiest sites (Figure 5.6). Topographical position (TPI) was 

the second most important variable limiting forest height, with forests in valleys (low TPI) having a 

higher height limit than ridges (high TPI). These patterns were not driven by collinearities with the 

other variables studied. Wetness (SWI), aspect, and slope all had relatively weak effects on maximum 

height. Elevation and temperature regimes were also not responsible for the wind-height relationship. 

Forests at higher elevations reached greater maximum heights despite having higher wind speeds and 

cooler temperatures (Figure 5.6). We repeated the quantile regression analysis on the 2020 canopy 

heights (Supp. Figure C.6), and the same patterns emerged. Overall, our results suggest that forests 

tend to adjust their heights in response to local wind conditions, more so than to other environmental 

variables 

 

Figure 5.6: Wind strongly limits local canopy height. Each point represents the maximum average canopy height 

(97.5thpercentile) amongst 2000 pixels in 2010 (n = 324186, each pixel 30 x 30 m in size). The blue lines were second order 

97.5th quantile regression lines through the entire dataset. SWI = SAGA wetness index; TPI = topographical position index. 
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5.5 Discussion 

5.5.1 Plantations were more susceptible to wind damage than natural forests during 

Typhoon Mangkhut 

Natural forests in Hong Kong were surprisingly resistant to Typhoon Mangkhut. Even the tallest (>15 

m), most wind susceptible faction of natural forests lost <5% of its height between 2017 and 2020. This 

comes in contrast with reports of forests losing 23-33.7% of aboveground biomass in Mexico and Puerto 

Rico in face of category 2-4 hurricanes (J. Hall et al., 2020; Parker et al., 2018a). Our findings are more 

in line with Mabry et al. (1998), who reported a 1.4% forest mortality in Fu-Shan Experimental Forest, 

Taiwan after a category 3 typhoon. Lin et al. (2020) suggested that this may be attributable to the higher 

TC frequency and therefore better wind acclimation of forests in the west Pacific typhoon hotspot.  

Plantations were much more susceptible to strong TCs, losing 0.86 m height between 2017 and 2020. 

Our results compliment those of two recent studies in the region, both based on satellite multispectral 

data, which reported larger reductions of greenness in plantations after typhoons compared to natural 

forests (Abbas et al., 2020; Stas et al., 2023).  

The high susceptibility of plantations to wind damage is likely due to differences in tree architecture 

(Jackson et al., 2019; Tanner et al., 1991). Under higher stocking densities , trees tend to maintain height 

growth in the expense of diameter growth, leading to slender allometries (Cremer et al., 1982). 

Furthermore, trees in dense canopies are sheltered and therefore don’t acclimate by increasing their 

diameter growth rates (Bonnesoeur et al., 2016; Cremer et al., 1982). This sheltering protects trees from 

wind damage in most conditions, but when a strong TC creates gaps in the canopy, this exposes the 

previously sheltered trees to the full force of the wind. Several studies have found that wind damage 

can propagate quickly in even-aged monocultures where trees have similar critical wind speeds (Dupont 

et al., 2015; Gardiner, 2021; Kamimura et al., 2019). When Typhoon Mangkhut hit Hong Kong, wind 

damage propagated through several planted stands and led to stand-replacing level of damage in some 

sites (Figure 5.4). The same patterns of damage propagation were not observed in mixed species 

broadleaved rainforest, probably due to large variations in critical wind speeds (i.e. the wind speed that 

causes bole snapping or uprooting) across trees of different species and age classes (Jackson et al., 

2019).  

Finally, it is important to recognise that not all plantations are the same. In recent years, Hong Kong 

gradually pivoted towards using native trees to create mixed-species plantations. The shift was mainly 

biodiversity-motivated, but mixed species stands with more complex vertical structures were also found 

to be more stable under strong winds (Gardiner, 2021; Gardiner et al., 2005; Jactel et al., 2017; but also 

see Tanner & Bellingham, 2006). Overall, plantations are less wind-resistant compared to natural forests 

due to structural weaknesses. Monocultures suffered much more damage during Typhoon Mankhut 
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despite the use of wind-resistant species (e.g. Lophostemon confertus), but mixed species native 

plantations could potentially fortify planted stands against future TCs. 

5.5.2 Taller forests suffered more damage during Typhoon Mangkhut 

Within natural forests, canopy height prior to Typhoon Manghkut was the strongest predictor of wind 

damage. Taller trees have been reported to be more susceptible to wind in the past. Foresters have long 

recognised that taller monoculture stands had lower critical wind speeds compared to shorter ones 

(Cremer et al., 1982; Gardiner, 2021). Similar patterns have also been reported in natural forests affected 

by TCs or storms (Halder et al., 2021; Martin & Ogden, 2006; Ni et al., 2021; Sánchez Sánchez & 

Islebe, 1999; Tanner et al., 1991). The evidence is, however, far less conclusive as these studies often 

lack direct measurements of height. Halder et al. (2021) focused on DBH measurements in the study on 

typhoon-resistance of mangrove trees in the Sundarbans. Sánchez Sánchez & Islebe (1999) also 

reported heavy damage amongst small understory trees. Ni et al. (2021) studied the effects of Typhoon 

Mangkhut in neighboring Dinghushan and concluded that mature forests suffered heavily compared to 

younger secondary forests. The patterns were likely related to forest stature, but the study made no 

explicit measurements of tree height. By summarising results derived from >190000 plots (30 m by 30 

m in size), our study provided clear evidence supporting taller natural forests being more susceptible to 

TCs, with effect size over twice that of the next more important variable studied. 

5.5.3 Wind-sheltered forests were less resistant to wind damage during Typhoon 

Mangkhut 

Interestingly, wind-sheltered forests with lower long-term mean wind speeds suffered less damage 

during Typhoon Mangkhut. Previous studies have reported contrasting evidence on whether forests in 

wind-exposed locations were more resistant to TCs. In New Zealand, forests on leeward slopes were 

found to suffer more wind damage than their windward counterparts (Martin & Ogden, 2006). Similarly, 

both Weaver (1986) and Scatena & Lugo (1995) reported more windthrow in valleys and lowlands in 

hurricane-prone forests in Puerto Rico. On the other hand, Bellingham (1991) observed heavy damage 

amongst forests on ridges in Jamaica after Hurricane Gilbert, while Ostertag et al. (2005) found forests 

on ridges and valleys to suffer more heavily than those on slopes when Hurricane Georges hit Puerto 

Rico. These seemingly conflicting results from previous studies likely stems from the tangled effects 

of several confounding factors. Estimating wind exposure by aspect, elevation, or topographical 

position tends to mix up the effects of forest height, long-term mean wind speed, and exposure to the 

TC in question. The sample sizes of field-based studies were also insufficient to resolve the effects of 

all these factors with confidence. Our study overcame many of these limitations by analysing a large 

repeated LiDAR datasets. Our results demonstrate that, given the same height, forests in sheltered 

locations were indeed more susceptible to typhoons (Figure 5.4 and Figure 5.5). Sites that experienced 

higher wind speeds during Typhoon Mangkhut than expected were still more heavily damaged, but 

prior wind exposure substantially alleviates the damage suffered (Figure 5.4). We speculate that this is 
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due to wind acclimation of forest trees. Forests exposed to strong winds tended to change their species 

composition, canopy structure and tree architectures over time, which facilitated resistance to extreme 

typhoon events (Bonnesoeur et al., 2016; Coomes et al., 2018; Jackson et al., 2019; Telewski & Jaffe, 

1986).  

5.5.4 Typhoon damage cascades through time to limit local forest height 

Strong TCs such as Typhoon Mangkhut cause long-term effects on local forest structure. In Hong Kong, 

much of the landscape is still covered by secondary forests moving through the successional stages 

(Abbas et al., 2016). Hence, when averaged across longer periods of time, the growth of forests largely 

offset damage incurred during strong typhoons. This was, however, not the case for the tallest forests 

that were reaching the height limits of their respective local wind regimes (Figure 5.5b). The failure 

for growth to offset wind-damage created a strong height limit on local forest height (Figure 5.5b and 

Figure 5.6). These height limits are most likely strengthened by the known pattern of slower height 

growth with respect to radial growth in sites with very strong winds (Coomes et al., 2018; Telewski & 

Jaffe, 1986; Thomas et al., 2015; Wadsworth, 1959; Haoyu Wang et al., 2022). Putting the effects of 

wind into context, we found that mean wind speed more strongly limited tree height than the five other 

environmental variables studied. The effects of wind were not driven by collinearities with temperature 

and elevation gradients as the forests in higher elevations had taller maximum heights (Figure 5.6). 

Interestingly, topographical position (TPI) also had clear unidirectional, albeit smaller, effects on 

maximum canopy height. Since topographical wetness (SWI), which better represents nutrient and 

water availability, had relatively minor effects on maximum canopy height, we speculate that the effects 

of TPI might also be wind-related. Our wind models were based on a relatively coarse (60 m ground 

resolution) DSM, so it is possible that some localised wind sheltering effects might be better captured 

by TPI in the highly rugged landscape of Hong Kong.  

Our results suggest that wind regimes are more important than other recognised limitations on tree 

height in TC-prone areas. Growth in years without TCs stopped balancing out wind damage before 

canopy heights even reached 30 m (Figure 5.5b and Figure 5.6). Forests in Hong Kong would rarely 

reach heights where hydraulic (Fernández-de-Uña et al., 2023; Eric Bastos Gorgens et al., 2019; M. G. 

Ryan & Yoder, 1997), temperature (Chi et al., 2015; Saremi et al., 2014), or nutrient (Gower et al., 

1996) limits are significant. Wind regimes therefore largely displaced other factors in defining forest 

height limits. Given the localised wind regimes in rugged landscapes (Figure 5.2) and the varied TC-

resilience across different forest patches (Figure 5.4), we further speculate that wind would be a main 

driver of forest structural diversity in TC-prone regions, a notion worth further exploring in future 

research. 
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5.5.5 The implications of climate change 

Our results shed light on how changes of TC regimes under climate change might affect forest structure 

in the future. The frequency of TCs in the west Pacific typhoon hotspot is currently on a downward 

trajectory and is projected to further decrease in the future (Chand et al., 2022; Knutson et al., 2010), 

while intensity of TCs is expected to increase (Knutson et al., 2010; Kossin et al., 2020). These changes 

imply that forests would have fewer opportunities to wind-acclimate during weaker TCs before being 

affected by extreme TCs. Overall, forests are expected to grow taller but suffer from more damage 

during individual TC events. Nevertheless, our study demonstrates that local topography creates very 

diverse wind patterns across the landscape (Figure 5.2), so the associated local variations in forest 

stature will persist. Noteworthily, plantations are relatively ill-adapted to extreme TCs (Figure 5.3). 

This is concerning as fast-growing plantations are widely used to meet carbon sequestration targets 

(Lewis et al., 2019). Their higher susceptibility to wind needs to be properly considered, especially in 

TC-prone areas, to ensure that restoration objectives are not undermined by wind disturbance under a 

changing climate.  
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Chapter 6: General Discussion 

6.1 Summary of findings 

In this thesis, we demonstrated how we could utilise remote sensing to track resilience of wet subtropical 

vegetation against disturbances, with a focus on wildland fires and tropical cyclones. The lack of 

comprehensive burnt area maps represents a major stumbling block in studying wet tropical and 

subtropical fire ecology. In Chapter 2:, we tackled the issue by developing the LTSfire pipeline to 

reconstruct 34 years of fire history in Hong Kong using Landsat satellite imagery time series. Despite 

the high cloud cover and quick revegetation of burnt patches, we detected over 5500 burn areas with 

estimated burn severity and date of detection. The dataset represents the first comprehensive burn area 

time series in wet tropical and subtropical Asia. In Chapter 3:, we carried out a time series analysis on 

both the burn area and vegetation maps in Hong Kong. We found strong evidence supporting the 

existence of fire traps in the wet subtropics. Grasslands and shrublands were 20 and 9 times more 

susceptible to fires than closed canopy forests, respectively (Figure 3.3). Grasslands also took 

significantly longer to recover back to forests after fire events compared to shrublands (40 years vs 19 

years) (Figure 3.7). These positive fire-vegetation feedbacks represent significant challenges in the 

restoration as the fires trap the degraded vegetation in an early state of succession. The chapter 

represents the first study to quantify fire-vegetation feedbacks in the wet tropics and subtropics, which 

provides land managers with clear and robust numbers to plan restoration projects. In Chapter 4:, we 

demonstrated how open-source computation fluid dynamics (CFD) modelling software could be used 

to estimate near-surface wind speeds in complex topographies. Validation with anemometer 

measurements at weather stations revealed that explicit CFD modelling of wind flows are more realistic 

than that predicted by elevation and nearby wind measurements alone (Figure 4.2). The approach was 

particularly useful for studying wind disturbances as it performed better under strong winds (Figure 

4.2; Figure 4.3). In Chapter 5:, the wind maps produced were coupled with a repeated LiDAR dataset 

to study the forest resilience against Typhoon Mangkhut – the strongest typhoon to affect Hong Kong 

in over 40 years. By studying canopy height changes across >400000 30m x 30m pixels, the study 

revealed many hidden patterns in forest resilience against strong winds. Tall forests in wind-sheltered 

locations were found to be significantly less resistant to strong typhoons (Figure 5.4). Plantations also 

suffered more damage than natural forests of similar stature (-0.86 m vs -0.39 m) (Figure 5.3). Over 

longer periods of time, the wind speed of the site, as determined by the wind flows through the complex 

topography, posed strong limits on local canopy heights, more so than the other environmental variables 

studied (Figure 5.5). In this chapter, we aim to provide a holistic discussion of our findings, with an 

emphasis on the implications on disturbance and restoration ecology. Additionally, we will outline 

potential work that could be carried out in the future.  
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6.2 Opportunities provided by remote sensing time series 

The rapid development of remote sensing over the past few decades is expanding the possibilities in the 

fields of disturbance and restoration ecology (Chuvieco et al., 2020; Kurbanov et al., 2022; Stone & 

Mohammed, 2017; Szpakowski & Jensen, 2019). In particular, results from this thesis highlight the 

potential of analysing remote sensing time series data to unveil patterns that are otherwise difficult to 

describe (Kuenzer et al., 2015). Due to the lack of data and limitations in computational capacity, the 

first generation of remote sensing studies on disturbance ecology focused on single or a handful of pre-

selected images (Supp. Table A.1). In recent years, more and more multidecadal remote sensing data 

archives, such as AVHRR, MODIS, and Landsat satellite multispectral imagery time series, are being 

opened up for public use (Chuvieco et al., 2020; Gorelick et al., 2017; Kuenzer et al., 2015; Wulder et 

al., 2019). Coupled with the increase in computational speeds and the development of cloud computing 

(Gorelick et al., 2017), remote sensing time series analysis is becoming increasingly accessible to 

ecologists. The application of these time series in disturbance ecology could be mainly classified into 

two use cases. Firstly, these time series could be used to identify disturbances by change detection 

across thousands of temporally continuous time steps (A. A. C. Alencar et al., 2022; A. H. Y. Chan et 

al., 2023; Long et al., 2019; Ekhi Roteta et al., 2021). This is exemplified by the LTSfire pipeline 

described in Chapter 2:, which allowed us to fully reconstruct the fire history of Hong Kong over long 

time scales (1986-2020) with low omission (0.11) and commission (0.02) errors (Table 2.1). Having 

these databases of where and when disturbances occurred is tremendously important in ecological 

research (Bastarrika et al., 2011; Goodwin & Collett, 2014; Ho et al., 2009; C. Huang et al., 2010; Mitri 

& Gitas, 2004; Nelson et al., 2013; Stone & Mohammed, 2017). It not only allows us to understand 

risks and susceptibility (Chapter 3:; Figure 3.3) (Ko & Lo, 2018; Oliveira et al., 2013; Haojie Wang 

et al., 2021), but also enables ecologists to correlate measurements of vegetation structure, biomass, 

biodiversity, species composition, or other environmental variables with past disturbance history 

(Chapter 3:; Figure 3.6; Figure 3.7) (Bright et al., 2019; Fernández-García et al., 2018; Mahood & 

Balch, 2019). Secondly, remote sensing time series could be used to track post-disturbance recovery 

trajectories (Bright et al., 2019; Kennedy et al., 2010, 2012). While disturbances are mostly transient 

events, the effect of disturbances could be long-lasting, spanning into decadal or even centennial time 

scales (Crausbay & Martin, 2016; Price et al., 2017; L. Walker & Shiels, 2013). For instance, in our 

study system of Hong Kong, post-fire recovery back to forest was estimated to take 19 years after 

shrubland fires and 40 years after grassland fires (Chapter 3:; Figure 3.5), with rates depending on a 

suite of environmental and biophysical factors (Figure 3.7). The quantification of these processes 

would not have been possible without the Landsat time series, which provided continuous five-band 

multispectral imagery at 30 m ground resolution since the launch of Landsat 5 in 1984 (Wulder et al., 

2019).  
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The types of remote sensing time series data available goes beyond optical multispectral imagery. 

Satellite Synthetic Aperture Radar (SAR) systems, such as SRTM, Tandem-X, and Sentinel 1, have 

now been continuously collecting data for decades (Paek et al., 2020). Similarly, spaceborne LiDAR 

systems, such as ICESat, ICESat-2, and GEDI, have also accumulated considerable amount of 

information on canopy height and structure (Dubayah et al., 2020; Simard et al., 2011). While none of 

these datasets currently provide easily interpretable data with high spatial resolution for our use case of 

studying forest resilience against typhoons (Chapter 5:), our analysis demonstrated the importance of 

having repeated measurements of forest structure in studying disturbances, and it is possible that future 

developments in remote sensing could provide the temporal depth and resolution to investigate the 

patterns observed in greater detail.  

Analysing time series data for disturbance ecology requires a rethink of established statistical 

methodologies (Kennedy et al., 2010; Kuenzer et al., 2015; J. Zhou et al., 2016). The added temporal 

dimension in the data structure creates unique challenges in the data analysis and interpretation. For 

instance, the post-fire successional trajectories (grassland to shrubland to forest) observed in Chapter 

3: were heavily right-censored. When estimating recovery times, one might be tempted to discard pixels 

that have not reached the next stage of succession and average the succession times of pixels that did. 

However, this intuitive approach leads to an underestimation of recovery times as the pixels that have 

not recovered by the end of the study period might do so in the future and should be considered. The 

analysis of these datasets requires statistical approaches that explicitly consider time (Kennedy et al., 

2010, 2012; Kuenzer et al., 2015; Muenchow, 1986). In our analysis of largely unidirectional recovery 

trajectories, we used a suite of tools based on survival analysis to obtain unbiased survival times and 

variable importances (Muenchow, 1986; Therneau, 2019). More complex data structures where pixels 

transition between multiple vegetation classes might require alternative approaches such as those based 

on Markov Chains and Queuing Theory (Keshav, 2012). The integration of these techniques into 

disturbance and restoration ecology merits further exploration.  

6.3 Disturbances and forest restoration under a changing climate  

Fires and landslides pose challenges in the early stages of forest restoration in the wet subtropics, while 

wind and pathogens disproportionately affect the later stages of restoration projects. Early successional 

grasses and shrublands are highly susceptible to fires over dry spells (Figure 3.3). As a result, fires 

represent one of the main disturbances that prevent the establishment of forest trees at the early stages 

of restoration (Mark A. Cochrane, 2003; Scheper et al., 2021; Souza-Alonso et al., 2022; Wheeler et al., 

2016). Similarly, landscapes devoid of trees are particularly prone to landslides and erosion (Dai et al., 

2001; Haojie Wang et al., 2021). Landslides affect approximately 4% of the terrestrial surface of the 

earth every century (Restrepo & Alvarez-Berríos, 2006) and could leave scars on degraded landscapes 

if the topography is rugged (Figure 1.5). Disturbance regimes shift as we enter the later stages of forest 



115 

 

restoration projects. Closed canopy rainforests have high resilience against fires by retaining moisture 

over dry spells (Figure 3.3). By intercepting precipitation and producing a tangled mat of roots, forests 

also stabilise slopes and prevent landslides (L. Walker & Shiels, 2013). On the other hand, forests of 

taller stature tend to suffer heavier damage during typhoons and storms (Figure 5.4; Figure 5.5). 

Forests also tend to be more susceptible to pests and pathogens, especially if restored forests are 

monocultures or have low tree diversity. To ensure that restoration objectives are met, land managers 

ought to be aware of these shifts in the relative importance of different disturbances throughout the life 

cycle of a restoration project.  

Importantly, past experiences regarding the impacts of disturbances on forest restoration might not be 

applicable in the future. Disturbance regimes are rapidly changing under climate change (Seidl et al., 

2017). The rise in air temperatures is leading to higher vapour pressure deficits, which increases fire 

and drought occurrence (Clarke et al., 2022; Koch & Kaplan, 2022; Nolan et al., 2021). Warmer sea 

surface temperatures are modifying tropical cyclone (TC) regimes, leading to poleward shifts in TC 

trajectories, overall drop TC frequency, and intensification of TC events (Chand et al., 2022; Kossin et 

al., 2020; Murakami et al., 2020). The global trade of forest products causes more accidental 

introductions of pests and pathogens, which benefit from the warming climate (Gandhi & Herms, 2010; 

R. J. Hall et al., 2016; Seidl et al., 2017). The shortening of the return periods of disturbances demand 

a reevaluation of disturbance ecology in a forest restoration context.  

6.4 Concluding remarks: a shift towards evidence-based 

restoration 

Results from this thesis demonstrate that, with the development of remote sensing, we now have cost 

effective ways to estimate forest resilience against fire (Chapter 3:) and wind (Chapter 5:) at a 

landscape scale. The hope is that these advances could contribute towards the development of evidence-

based forest restoration (Sutherland et al., 2004). The forest restoration community is now entering the 

era where disturbances can be quantitatively described with large empirical datasets. Looking into the 

future, we expect more studies that estimate risks posed by disturbances on forest restoration projects 

by parameterising models based on remotely-sensed data. These models can be adjusted to achieve 

various research objectives. For instance, typhoons lead to substantial losses in aboveground biomass 

(J. Hall et al., 2020; Parker et al., 2018b), but the same event might enhance biodiversity by allowing 

native trees to establish in more heavily damaged exotic plantations (Figure 5.3) (Zhu et al., 2023). 

Different objectives of restoration (e.g. carbon and biodiversity) can be modelled separately using 

different sets of remote sensing data. Models can also be adjusted to account for the effects of climate 

change on disturbance regimes. Overall, we are hopeful that an improved quantitative understanding of 

forest resilience against disturbances could bring more certainty towards future forest restoration 

projects in the wet tropics and subtropics. 
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6.5 Future work 

6.5.1 Towards a general theory on fire-vegetation feedbacks 

It has long been known that the direction and strength of fire-vegetation feedbacks varies across 

different biomes (Tepley et al., 2018). The wet subtropical climate in our study area created strongly 

positive fire-vegetation feedbacks, but in some fuel limited systems, negative fire-vegetation feedbacks 

prevail as the accumulation of fuels in later stages of succession increases vegetation fire susceptibility 

(Héon et al., 2014; Kelly et al., 2013). In Chapter 3:, we outlined a methodology to estimate the 

differences in fire susceptibility between various types of vegetation. The approach, which is based on 

neighbourhood analysis and reweighting, isolated and quantified the effects of fire-vegetation feedbacks 

by minimising the imbalance of covariates (e.g. ignition sources). It would be valuable to repeat the 

analysis in other biomes and investigate how these feedbacks correlate with local climatic variables, 

such as temperature, precipitation, and seasonality. Additionally, it is noteworthy that the burnt areas in 

Hong Kong are relatively small due to the fragmentation of the countryside and active fire suppression 

(Supp. Figure A.3). In other ecosystems, large fires could sometimes lead to very different fire-

vegetation interactions. For instance, in many temperate coniferous forests, smaller fires tend to be 

confined to open habitats and the understory, while larger events develop into crown fires with the 

presence of ladder fuels and cause much more damage on forest trees (Agee & Skinner, 2005; 

McKelvey et al., 1996). The relationship between the size distribution of burnt patches and the fire-

vegetation feedback strength could be a topic worth investigating in the future. By untangling these 

relationships, we can move towards a general theory to quantitatively describe fire-vegetation feedbacks 

across different climates and biomes.  

6.5.2 Escaping fire traps under climate change 

In Chapter 3, we saw how positive fire-vegetation feedbacks create fire traps that arrest the landscape 

at early stages of succession. Land managers in the wet tropics and subtropics are generally aware that 

fires represent a stumbling block towards forest restoration and need to be controlled (Mark A. 

Cochrane, 2003; Scheper et al., 2021; Souza-Alonso et al., 2022; Wheeler et al., 2016). However, there 

is currently little information on (1) how much fire suppression or active restoration is necessary to 

bring forests back in these fire-ridden landscapes and (2) how long does it take for the landscape to 

reach forest cover targets under a given level of fire suppression. The current literature on the issue 

mainly surrounds the development of fire-enabled dynamic global vegetation models (DGVMs) 

(Hantson, Arneth, et al., 2016). However, existing models have a broad focus and are based on coarse 

MODIS-based burnt area maps that omit the vast majority of small fires (72% - 96% burnt area omitted 

in Hong Kong; Table 2.1). These models are therefore not particularly suitable to guide local forest 

restoration projects. Alternatively, Tepley et al. (2018) proposed a theoretical model that estimates 

equilibrium forest cover in a landscape based on three variables – (1) fire occurrence in forests (λ1), (2) 
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strength and direction of fire-vegetation feedbacks (λ1), and (3) post-fire recovery time (r). The study 

also provided a mathematical framework to model how forest cover varies over time after a change 

in fire occurrence. Our results on fire occurrence (Figure 2.10), strength of fire-vegetation feedbacks 

(Figure 3.3), and post-fire recovery rate (Figure 3.7) in Hong Kong provide an exciting opportunity to 

parameterise the theoretical models and test whether the models could accurately capture forest 

restoration trajectories in the wet subtropics. The models could also be adjusted to predict our ability to 

meet restoration targets under changing fire regimes. By providing tangible suppression targets for land 

managers to operate on (e.g. restoring 75% of the landscape back to forest would require a 50% 

suppression of fires over three decades), land managers could reallocate resources to better meet forest 

restoration objects.   

6.5.3 Further evaluating typhoon damage using different sources of data 

In Chapter 5, we analysed changes in canopy height measured by repeated LiDAR scans to evaluate 

damage incurred during Typhoon Mangkhut. While the airborne LiDAR scans provided datasets of 

unparalleled scale and accuracy, there remain several questions in wind disturbance that could be better 

answered by combining multiple data sources. Firstly, forests are increasingly recognised as important 

carbon stores, and accurately estimating carbon losses over tropical cyclone (TC) events is of great 

importance to land managers (Bastin et al., 2019; Hernandez et al., 2020; Pan et al., 2011; Wheeler et 

al., 2016). Existing studies on the topic are mainly based on measurements from a handful of forest 

inventory plots extrapolated by optical remote sensing data (J. Hall et al., 2020; Hernandez et al., 2020; 

Parker et al., 2018b). This approach is not ideal as the vegetation indices derived from optical remote 

sensing imagery often correlates poorly with biomass (Patenaude et al., 2005). LiDAR-derived canopy 

heights could theoretically provide much more robust estimates of biomass loss. However, the 

relationship between the loss of canopy height observed in the LiDAR dataset and the loss of biomass 

is currently not well described. Existing allometric equations on the height-biomass relationship does 

not consider the potential changes in tree allometries after TCs (Coomes et al., 2017; Jucker et al., 2017). 

For instance, branch breakage could cause very large drops in canopy height, but may not indicate a 

corresponding drop in biomass if the stems remain intact. Comparisons between field estimates of 

biomass loss and changes in LiDAR-derived canopy height represent a notable knowledge gap that 

needs to be filled in the future.  

6.5.4 Wind and forest structure 

In this thesis, we demonstrated that local wind regimes created by complex topographies strongly limit 

maximum canopy height (Figure 5.6). With reference to findings from previous studies (Coomes et al., 

2018; Ibanez et al., 2019; Telewski & Jaffe, 1986; Thomas et al., 2015; Haoyu Wang et al., 2022), it is 

reasonable to hypothesise that these effects might extend to other forest structural characteristics, such 

as the standard deviation in height and tree allometries. Forest structure, in turn, affects biodiversity and 
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species composition (Bohn & Huth, 2016; Cleary et al., 2005). The importance of wind-topography-

forest interactions in shaping habitat diversity merits further investigation.  
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Appendix A: Supplemental Information for Chapter 2  

Supp. Table A.1: Major studies that mapped burn areas using medium to high resolution satellite imagery in the wet tropics 

and subtropics. 

Sensor Location Biome Years Product Reference 

Landsat 5 Brazil Tropical 

rainforest and 

pastures 

'85 Burnt pixels Pereira and 

Setzer (1993) 

Landsat 8 Indonesia Tropical 

peatlands 

3 years 

('15, '16, '18) 

Burnt area 

(single scenes) 

Sofan et al. 

(2019) 

Sentinel 1 

Sentinel 2  

Pakistan Subtropical dry 

forest 

6 years 

('15-'20) 

Burnt area (single 

scenes), 

severity 

Tariq et al. 

(2021) 

Landsat 8 Madagascar Tropical dry 

forest 

1 year 

('13) 

Burnt area 

(single scenes) 

Axel (2018) 

Sentinel 1 Indonesia Tropical 

rainforest, peat 

swamp forest, 

shrubland 

1 year 

('15-'16) 

Burnt area (single 

scenes) 

Carreiras et al. 

(2020) 

Landsat 8 

Sentinel 1 

Indonesia Tropical 

rainforest 

1 year 

('19) 

Burnt area 

(single scenes) 

Prasasti et al. 

(2020) 

Landsat 7 

Landsat 8 

Brazil, 

Guinea 

Bissau, DR 

Congo 

Tropical 

rainforest 

3 years 

('02, '13, '15) 

Burnt area 

(single scenes) 

Cabral et al. 

(2018) 

Sentinel 1 

Sentinel 2 

Tropical 

Africa 

Tropical forests, 

shrubland, 

grassland, 

savannas 

1 year 

('15-'16) 

Burnt area 

(time series) 

Tanase et al. 

(2020) 

Landsat 7 Brazil Tropical 

rainforest 

1 year 

('02) 

Burnt area 

(single scenes) 

Shimabukuro et 

al. (2014) 

Landsat 5 Brazil Tropical 

rainforest, 

savanna, 

wetland 

1 year 

('10) 

Burnt area 

(single scenes) 

Shimabukuro et 

al. (2015) 
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Landsat 8 

MODIS 

Ghana Tropical 

rainforest, dry 

forest 

1 year 

('16) 

Burnt area 

(single scenes) 

Dwomoh et al. 

(2019) 

Landsat 8 

Planet 

Africa Tropical and 

subtropical 

forest, 

shrubland, 

savanna 

1 year 

('14-'15) 

Burnt area 

(single scenes) 

Martins et al. 

(2022) 

Sentinel 2 

MODIS 

Sub-Saharan 

Africa 

Tropical, 

subtropical, and 

temperate forest, 

savanna, 

grassland 

1 year 

('16) 

Burn area (time 

series), 

Fire date 

Roteta et al. 

(2019) 

Disaster 

monitorin

g 

constellati

on DMC 

Landsat 5 

Indonesia Tropical peat 

swamp forest 

3 years  

('02, '04, '05) 

Burn area (single 

scenes and 20-day 

composites) 

Tansey et al. 

(2008) 

Sentinel 2 Indonesia Tropical 

rainforest, peat 

swamp forest 

1 year 

('19) 

Burn area, burn 

severity (single 

composites) 

Gaveau et al., 

(2021) 

Sentinel 1 Indonesia Tropical 

rainforest, peat 

swamp forest 

1 year 

('15) 

Burn area (single 

scenes) 

Lohberger et al. 

(2018) 

Landsat 5 

Landsat 7 

MODIS 

Brazil Tropical 

rainforest 

9 years 

('97-'05) 

 

Burn area 

(yearly single 

scenes) 

Morton et al. 

(2011) 

Landsat 5 

Landsat 7 

Brazil Tropical 

rainforest 

13 years 

('92-'04) 

Burn area 

(yearly single 

scenes) 

Matricardi et al. 

(2010) 

Landsat 5 

Landsat 7 

EO-1 

Brazil Tropical 

rainforest 

13 years 

('90-'02) 

Burn area, 

severity 

(yearly single 

scenes) 

Numata et al. 

(2011) 
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Landsat 5 

Landsat 7 

Brazil Tropical 

rainforest 

23 years 

('83-'06) 

Burn area 

(yearly single 

scenes) 

Alencar et al. 

(2011) 

Landsat 5 

Landsat 7 

Landsat 8 

Brazil Tropical 

savannas, 

grassland, 

rainforest 

32 years 

('85-'17) 

Burnt area 

(yearly medoid 

composites) 

Daldegan et al. 

(2019) 

Landsat 5 

Landsat 7 

Landsat 8 

Global Global 26 years 

('89, '92, '95, 

'96, '98, '00-
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Supp. Figure A.1: Table comparing the burn area map produced in this study (LTSfire) with three global burn area products 

– GABAM, FireCCI51, and MCD64A1. A hypothetical diagram is included to better visualise the metrics used. The circles 

represent hypothetical burnt patches. Patches could be detected in the LTSfire map and do not intersect with the features in the 

existing dataset (Ad); detected in the LTSfire map and intersects with features in the existing dataset (Ai); detected in the 

existing dataset and do not intersect with features in LTSfire (Bd); or detected in the existing dataset and intersect with features 

in LTSfire (Bi) 
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Supp. Figure A.2: Comparing ts-RBR values across three different vegetation classes. The vegetation classes were obtained 

from 1986-2020 land classification maps derived from Landsat data (Chapter 3:). 
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Supp. Figure A.3: Size distribution of burnt patches in Hong Kong detected by LTSfire by (a) patch size category and (b) 

cumulative burnt area. 
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Supp. Figure A.4: Examples of sudden bursts in commission errors in the burn area time series if Landsat scenes were not 

uniformised in preprocessing. The panel on the left shows the burn areas detected by the full LTSfire pipeline in the summer 

of 2002 in the Tai Lam and North Lantau region (background shows the seasonal min-NBR composite from scenes uniformised 

by weighted histogram matching). The panel on the right shows the burn areas detected in the same region by an alternative 

LTSfire pipeline without weighted histogram matching (background shows the seasonal min-NBR composite of non-

uniformised scenes). This particular burst in commission errors in the no pre-processing dataset was mainly caused by a single 

poorly radiometrically corrected scene on the 4/3/2002. 
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Supp. Figure A.5: Mean and median sizes of burnt patches detected by the LTSfire pipeline over time. 
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Appendix B: Supplemental Information for Chapter 3 

B.1 Methods to create the Landsat-based vegetation map time series 

The five-class vegetation map time-series underpinning the study was created from a total of 1537 

Landsat 5, 7, and 8 surface reflectance (SR) scenes captured between 1986 and 2020. The scenes were 

downloaded through Google Earth Engine (Gorelick et al., 2017). Clouds were masked out using the 

in-built cloud bitmask and by removing pixels with mean RGB reflectances >0.2.  We carried out 

weighted histogram matching to make the scenes more intercomparable to one another (A. H. Y. Chan 

et al., 2023). The scenes were then distilled into 17 biennial (every two years) median composites. We 

created separate composites for winter (November – February) and summer (March – October) as 

winter browning is locally important for distinguishing grasslands from other vegetation types. To 

minimise the effects of pixel brightness on classification accuracy, two vegetation indices (VIs), the 

normalised difference vegetation index (NDVI) and enhanced vegetation index (EVI), were added as 

extra bands to the raster. Additionally, the reflectances of the six Landsat bands were normalised by 

dividing the reflectance of each band by the mean reflectance of all the bands for any given pixel (A. 

H. Y. Chan et al., 2021; C. Wu, 2004).  

A training dataset was created by extracting the reflectances and VIs from sites with known vegetation 

and landcover types. The vegetation and land cover of these sites were determined by a combination of 

field data and historical aerial photo interpretation. Field data consisted of 85 plots, each 10x10 m in 

size, selected from a vegetation survey conducted in 2020. The plots were grouped into forest, shrubland, 

or grassland classes based on species composition. A canopy height model (CHM) derived from LiDAR 

data collected by the Civil Engineering and Development Department (CEDD) was used to ensure that 

all forest plots had median heights >3m, following Abbas et al. (2016). We are aware that some studies 

adopt a higher 5m threshold for forests (Di Gregorio, 2005), but forests in Hong Kong tends to be of 

lower statue due to frequent typhoons, and forests would have grown significantly between the LiDAR 

survey in 2010 and vegetation survey in 2020. An additional 59 points were collected by interpretating 

historical aerial imagery. The images used were collected by the Lands Department to periodically 

cover the entire territory of Hong Kong over a 59-year period (1963–2021). Accessible images were 

mostly not orthorectified, but the high spatial resolution (up to 10 cm) made it possible to locate patches 

of grasslands, shrublands, or forest by matching local geological features. The final training dataset 

consisted of data extracted from 144 (85 field plots + 59 historical points) pixels. 

Based on the training dataset, we then built a supervised random forest (RF) model that classified pixels 

into the five vegetation and landcover classes, namely forest, shrubland, grassland, water, and non-

vegetation. The accuracy of the model was assessed by 17-fold cross validation. Validation was carried 

out across years (i.e. training and validation data were never from the same set of Landsat composites). 
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The results of the cross-validation exercise could be found in Supp. Table B.1. Finally, we built an RF 

model based on the entire training dataset. This model was applied to all 17 biennial LS composite to 

produce the five-class vegetation map time series (1986-2020). 

B.2 A note on Plantations 

Plantations were not analysed as a separate vegetation class in this study. Plantations in Hong Kong are 

not commercial and were mainly established in Hong Kong to accelerate restoration of degraded 

landscapes. Many older plantations consist of monocultures of Lophostemon confertus, Acacia confusa, 

and Pinus elliottii. In recent years, however, native trees are increasingly used to create mixed-species 

forests. We recognise that plantations could have different fire properties as native forests. However, 

these properties are dependent on the species composition, and relevant records do not currently exist. 

In practice, plantations are difficult to distinguish from native forests or shrublands based on Landsat 

imagery (Kwong et al., 2022). Since plantations only accounts for a small proportion of the landscape 

(Kwong et al., 2022), we decided against analysing them separately.  

B.3 Accuracy of the LTSfire product 

LTSfire is a burn area (BA) detection algorithm designed to map BAs in challenging wet tropical and 

subtropical regions with high cloud cover and rapid post-fire revegetation (A. H. Y. Chan et al., 2023). 

In the pipeline, we first uniformised the 1537 Landsat 5, 7, 8 surface reflectance scenes by weighted 

histogram matching (Section 2.2.1). We then produced a total of 68 seasonal composites from the scenes. 

Minimum normalised burn ratio (min-NBR) was used as the criterion for compositing to highlight burnt 

areas. The scenes were also composited in a date-traceable manner, with dates of capture carried 

forward from scenes to composites. Random forest (RF) models were then trained to predict pixel 

resemblance to BAs based on 94 known BAs. The RF model predictions were later thresholded twice 

to get seed polygons and growth polygons, which were iteratively merged into a final BA product. Burn 

severity of pixels encircled by the BA polygons were estimated by the time series relativized burn ratio 

(ts-RBR), a modified version of the relativized burn ratio (RBR) (Parks et al., 2014) for time series data. 

The accuracy of the LTSfire product was estimated through a 10-fold cross validation with reference to 

known burn areas (BAs) cataloged in government databases. We specifically ensured that the training 

and validation dataset consisted of pixels from different fire events, not from different parts of the same 

BA. We also used these known BAs to evaluate global MODIS- and Landsat-based BA products, 

including MCD64A1 released by NASA, MCD64A1 produced by ESA, and GABAM by Long et al. 

(2019). Overall, the omission error of LTSfire was low (11%) compared with global BA products such 

as GABAM (49%), MCD64A1 (72%), and FireCCI51 (96%). Commission errors were also low, 

accounting for 0.5-2.4% of total area. Temporally, most estimated fire dates were accurate to within a 

month of the actual fire, and 76.9% of dates were accurate to ±2 months of the actual fire. Further details 

on the LTSfire pipeline and product validation could be found in Chan et al. (2023). 
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Supp. Table B.1: Confusion matrix showing the accuracy of the random forest (RF) vegetation classification model. 

Accuracies were assessed by 17-fold cross validation of training data from different years. The overall accuracy was 0.87 with 

a Kappa of 0.84. 

 

Reference 
User’s 

accuracy Forests Grasslands 
Non-

vegetation 
Shrublands Water 

P
re

d
ic

ti
o

n
 

Forests 38 1 0 3 0 0.91 

Grasslands 0 26 0 1 0 0.96 

Non-vegetation 0 0 26 0 0 1 

Shrublands 3 14 0 36 0 0.68 

Water 0 0 1 0 27 0.96 

Producer’s accuracy 0.93 0.63 0.96 0.9 1  

 

Supp. Table B.2: Accuracy of the LTSfire burn area (BA) product compared to that of other BA products (adapted from Chan 

et al. (2023)). The accuracies were estimated by 10-fold cross validation or direct comparison with manually delineated BA 

polygons in government fire records. Site omission error refers to the proportion of BA polygons omitted. Area omission error 

refers to the proportion of omitted BA pixels. Commission error refers to the proportion of unburnt pixels being misclassified 

as burnt. Numbers in bold represents the highest accuracy or lowest error. More details on the training and validation of the 

BA datasets can be found in Chan et al. (2023). 

Dataset 
Overall  

Accuracy 

Site Omission 

Error 

Area Omission 

Error 

Commission 

Error 

LTSfire 0.952 0.0319 0.112 0.0242 

GABAM 0.860 0.565 0.493 0.012 

FireCCI51 0.720 0.987 0.960 0 

MCD64A1 0.799 0.949 0.720 0 
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Supp. Figure B.1: The effect of resolution on TPI and SWI. 

 

Supp. Figure B.2: The effect of resolution on TPI and SWI. 



131 

 

 

Supp. Figure B.3: Neighbourbood analysis to estimate fire susceptibility. 

B.4 A note on covariate imbalance and do-calculus 

When attempting to estimate the difference in fire susceptibility amongst different vegetation types 

(grasslands, shrublands, and forests), covariate imbalance could affect the interpretation of the results. 

For instance, forests could disproportionately occupy wetter valleys, and its low fire susceptibility may 

be due to topography not vegetation type. Another covariate that remained was the difference in 

exposure to ignition sources. Although we selected pixels in the neighbourhood of existing burnt areas, 

which ensured that all pixels have some level of exposure to the source of ignition, the different 

vegetation types could still have some residual differences in ignition source exposure. It is reasonable 

to speculate that forests could be further away from the source of ignition amongst all pixels in the circle 

(Supp. Figure B.3). A fair comparison of fire susceptibility between the different vegetation types 

could be achieved by reweighting pixels such that the reweighted pixels have the same statistical 

distribution of covariate values across vegetation types.  

When a large number of variables are present, it is often difficult to keep track of which variables need 

to be addressed or controlled. Pearl (1995) pointed out that it is often unnecessary to control for all 

variables that could potentially confound our inference. Rather, we could use a graphical approach with 

a set of logical steps (do-calculus) to identify the correct variables to address before testing how the 

exposure variable (independent variable) affects the response variable (dependant variable). The 
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approach involves first drawing a directed acyclic graph (DAG) that includes the exposure variable, 

response variable, and all other relevant measured or unmeasured variables. We connect the variables 

by how they relate to each other. The goal is to identify the paths that connect the exposure variable to 

the response variable (also known as “back doors”). These paths need to be addressed and blocked by 

approaches such as matching or reweighting. Each of these paths only has to be blocked once, which 

would be necessary and sufficient to make reliable causal inference between the two variables of interest 

(Pearl, 2009; Shrier & Platt, 2008; Suttorp et al., 2015). 

Supp. Figure B.4 shows the DAG for the study of fire susceptibility amongst different vegetation types 

and how variables are controlled to minimise the bias when making the causal inference.  

 

 

Supp. Figure B.4: Directed acyclic graph (DAG) of the study on fire susceptibility amongst different vegetation types 
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Supp. Table B.3: Structure of models built. The section number corresponds to where the model was described. TPI refers to 

topographical position index; SWI refers to SAGA wetness index; cos_aspect refers to aspect linearised by a cosine function; 

EBAL refers to entropy balancing weights. 

Section Model Predictor variables Outcome variable Notes 

2.5.2 Logistic 

regression 

Vegetation type 

(Forest, shrubland, 

grassland), TPI, 

SWI, cos_aspect, 

slope 

Probability of the 

pixel experiencing a 

fire 

For estimating how fire 

occurrence differs between  

different vegetation types 

(no correction for ignition 

source imbalance). Training 

pixels was assigned EBAL 

weights to minimise 

covariate imbalance between 

different vegetation types. 

2.5.3 Logistic 

regression 

Vegetation type 

(Forest, shrubland, 

grassland), distance 

from burn area 

centroid, TPI, SWI, 

cos_aspect, slope 

Probability of pixel 

burning given fire 

source in 

neighbourhood 

For estimating how different 

variables affect fire 

susceptibility after 

correcting ignition source 

imbalance (Figure 3.3). 

Training pixels was assigned 

EBAL weights to minimise 

covariate imbalance between 

different vegetation types. 

Interaction terms were not 

included here for better 

visualisation. 

2.5.3 Logistic 

regression 

Vegetation type 

(Forest, shrubland, 

grassland), distance 

from burn area 

centroid, TPI, SWI, 

cos_aspect, slope, 

interaction terms 

between vegetation 

type and other 

variables 

Probability of pixel 

burning given fire 

source in 

neighbourhood 

For estimating how different 

variables affect fire 

susceptibility (Figure 3.4). 

Training pixels was assigned 

EBAL weights to minimise 

covariate imbalance between 

different vegetation types.  
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2.6 Kaplan-

Meier 

survival 

function 

NA Burnt shrubland 

recovery rate (years 

to 50% forest) 

For estimating median 

recovery time after 

shrubland fires 

2.6 Kaplan-

Meier 

survival 

function 

NA Burnt grassland 

recovery rate to 

young shrubland 

(years to 50% young 

shrubland) 

For estimating median 

recovery time after grassland 

fires 

2.6 Kaplan-

Meier 

survival 

function 

NA Young shrubland 

recovery rate (years 

to 50% forest) 

For estimating median 

recovery time after grassland 

fires 

2.6 Kaplan-

Meier 

survival 

function 

Stratified TPI Burnt grassland to 

young shrubland 

succession rate 

 

Burnt shrubland to 

forest succession 

rate 

Stratified into 20 TPI groups 

for Figure 3.7. Pixels were 

assigned EBAL weights 

such that each TPI stratum 

had the same distribution of 

ts-RBR and distance from 

nearest forest patch 

2.6 Kaplan-

Meier 

survival 

function 

Stratified SWI Burnt grassland to 

young shrubland 

succession rate 

 

Burnt shrubland to 

forest succession 

rate 

Stratified into 20 SWI 

groups for Figure 3.7. 

Pixels were assigned EBAL 

weights such that each SWI 

stratum had the same 

distribution of TPI, slope, ts-

RBR and distance from 

nearest forest patch 

2.6 Kaplan-

Meier 

survival 

function 

Stratified slope Burnt grassland to 

young shrubland 

succession rate 

 

Burnt shrubland to 

forest succession 

rate 

Stratified into 20 slope 

groups for Figure 3.7. 

Pixels were assigned EBAL 

weights such that each slope 

stratum had the same 

distribution of SWI, ts-RBR 
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and distance from nearest 

forest patch 

2.6 Kaplan-

Meier 

survival 

function 

Stratified aspect Burnt grassland to 

young shrubland 

succession rate 

 

Burnt shrubland to 

forest succession 

rate 

Stratified into 20 aspect 

groups for Figure 3.7. 

Pixels were assigned EBAL 

weights such that each 

aspect stratum had the same 

distribution of ts-RBR and 

distance from nearest forest 

patch 

2.6 Kaplan-

Meier 

survival 

function 

Stratified ts-RBR Burnt grassland to 

young shrubland 

succession rate 

 

Burnt shrubland to 

forest succession 

rate 

Stratified into five ts-RBR 

groups for Supp. Figure 

B.5c-d and 20 ts-RBR 

groups for Figure 3.7. 

Pixels were assigned EBAL 

weights such that each ts-

RBR stratum had the same 

distribution of TPI, SWI, 

slope, cos_aspect, and 

distance from nearest forest 

patch 

2.6 Kaplan-

Meier 

survival 

function 

Stratified distance 

from nearest forest 

patch 

Burnt grassland to 

young shrubland 

succession rate 

 

Burnt shrubland to 

forest succession 

rate 

Stratified into five distance 

groups for Supp. Figure 

B.5a-b and 20 distance 

groups for Figure 3.7. 

Pixels were assigned EBAL 

weights such that each ts-

distance stratum had the 

same distribution of TPI, 

SWI, slope, cos_aspect, and 

ts-RBR 

2.6 Random 

survival 

forest 

Prefire vegetation 

type, post-fire 

distance to nearest 

forest patch, ts-RBR, 

Expected time it 

takes (years) for 

burnt pixels to 

recover to forests 

For assessing the importance 

of different variables in 

predicting post-fire recovery 
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TPI, SWI, 

cos_aspect, slope 

rate. Results were plotted in 

Figure 3.6 

  

 

Supp. Figure B.5: Kaplan-Meier survival curves built from a dataset stratified by distance to the nearest forest patch (a and 

b) or by burn severity (c and d). Panels (a) and (c) represent burnt grassland to shrubland succession probability over time, 

while panels (b) and (d) represent burnt shrubland to forest succession probability over time. 
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Appendix C: Supplemental Information for Chapter 5 

C.1 Effects of point density on repeated LiDAR data  

Context  

This section describes the sensitivity analysis where we tested how the point densities of the LiDAR 

datasets might affect DTM, CHM, and DSM construction. Previous studies have identified the point 

density as an important metric that affects the quality of LiDAR-derived products, with datasets of 

higher point densities being able to more accurately reconstruct the 3D structure of background 

topographies and forest canopies (Aguilar et al., 2010; Balsa-Barreiro & Lerma, 2014; M. E. Hodgson 

& Bresnahan, 2004). In our study the three LiDAR surveys had notably different point densities (5.3 

points/m2 in 2010, 5.9 points/m2 in 2017, and 54.5 points/m2 in 2020). The purpose of this exercise is 

to investigate whether thinning or resampling is necessary to ensure that the three DSMs are 

comparable.  

Analyses  

The analysis was carried out in the 10.8 km2 Mau Ping region of Hong Kong, which includes vegetation 

ranging from short shrublands to mature secondary forests. The 2020 LiDAR dataset, which has the 

highest point density amongst the three datasets, was repeatedly thinned using the lasthin function 

in LAStools. More specifically, we lowered the point densities (pd) to 50, 30, 10, 7, 3, 2, 1, 0.5, and 0.25 

points per m2. We then constructed DTMs, CHMs, and DSMs using the same functions described in 

the main text.   

As a first step, we used the DTM, CHM, and DSM constructed from pd = 50m2 point cloud as a 

benchmark and measured how heights changed when the pd was lowered. The results are presented 

in Supp. Figure C.1. Overall, the lower the point density, the smaller the chance for some of the 

points to hit the ground layer, so the DTM gets overestimated (Supp. Figure C.1). In contrast, a 

sparser point cloud makes it difficult to capture the tops of trees, so DSMs tend to be underestimated 

(Supp. Figure C.1). CHM suffers from the largest drop in height as point density drops, as it is sensitive 

to both the overestimation of the ground layer and the underestimation of top of canopy height (Supp. 

Figure C.1). The results support our use of the DSM in estimating height changes as it was more 

robust to variations in point density.    
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Supp. Figure C.1: Changes in heights of the canopy height model (CHM), digital surface model (DSM), and digital terrain 

model (DTM) across different point densities of the LiDAR dataset. We used the CHM, DSM, and DTM estimated from the 

pd = 50 dataset as the benchmark to calculate changes in height as we lowered the point density. 

Secondly, we tested whether the strength of point density effects correlated with forest height. As 

expected, given the same point density, the heights of taller forests tend to be underestimated more. 

The magnitude of this point density effect was, however, manageable as long as point densities do 

not fall too low. For all height classes, the errors were <1m when pd = 2 and <0.5m when pd = 3.   
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Supp. Figure C.2: The effects of lowering LiDAR point density on DSM heights. The DSM generated from the pd = 50 m-2 

point cloud was used as the benchmark to calculated height differences. The four lines represent pixels of different canopy 

heights.   

Part of these errors could be mitigated by lowering the resolution of the DSMs. The results from Supp. 

Figure C.2 represent the errors of the original DSM with 1 m ground resolution. If the DSMs were 

resampled to a larger pixel size by taking the maximum, there might be a better chance of capturing 

the tops of trees. Supp. Figure C.3 demonstrates how increasing the ground resolution from 1 m to 

2-5 m could reduce the effects of low point densities on DSM height estimates.   

 

 
Supp. Figure C.3: Lowering the ground resolution of the DSMs by maximum resampling mitigates the drop in DSM due to 

lower LiDAR point densities. This graph represents trees in the 10-15 m height class. The DSM created from the pd = 50 m2 

was used as a benchmark.  
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In light of the results from the sensitivity analysis, we adjusted our methodology in estimating changes 

in canopy height. Firstly, we differenced the DSMs instead of the CHMs as DSMs were less sensitive to 

changes in point density. Secondly, we lowered the point density of the 2020 dataset to 5.4 m-2 to 

match that of the two other datasets. Thirdly, when relevant, we excluded regions that had point 

densities <1.5 m-2 from the 2017 dataset, which should control the errors of the DSM to <1 m. Fourthly, 

to further mitigate these errors, we resampled the DSMs to 2 m ground resolution before differencing 

DSMs to estimate canopy height change. Lastly, it is important to note that errors in Supp. Figure 

C.1-3 were calculated by comparing the DSMs with another DSM created from the pd = 50 m-2 point 

cloud. In our actual analysis, we were differencing DSMs created from similar point densities (i.e. all 

datasets would have been slightly underestimating height). After differencing, these errors would 

have partially been cancelled out. Hence, in the 2010-2017-2020 height change dataset, the actual 

errors attributable to differences in point density would be substantially smaller than that presented 

in Supp. Figure C.1-3.   

C.2 Multiple regression model of 2017 – 2020 height change  

Context  

In the main text we described a multiple regression model that use different variables to predict 

canopy height change between 2017 and 2020 (damage by Typhoon Mangkhut). Here we (1) provide 

additional information on the variable selection process and (2) detail the results of the model.  

Analyses  

A number of environmental variables relevant to typhoon damage were measured or estimated in the 

study, namely 2017 canopy height, aspect, cosine aspect, elevation, mean wind speed, maximum 

Mangkhut wind speed, normalised maximum Mangkhut wind speed, Saga wetness index (SWI), 

topographical position index (TPI), and slope. Amongst these variables, elevation and aspect were 

used to build the wind models. Aspect additionally had a cyclical effect on forests and its linearised 

form (cosine aspect) would have complicated correlations with the wind variables. Hence, we 

excluded elevation, aspect, and cosine aspect from the model. We then generated a correlation matrix 

with the remaining variables (Supp. Figure C.4). We observed that long-term mean wind speed had 

a strong correlation with maximum wind speed during Typhoon Mangkhut (Supp. Figure C.4). Hence, 

instead of using both variables in the model, we predicted maximum wind speed from the long-term 

mean wind speed, then subtracted these predicted values from the maximum Mangkhut wind speed 

to create a normalised variable (norm. max). The new variable was more orthogonal to long-term 

mean wind speed. The three remaining topographical variables (SWI, TPI, and slope) were also 
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somewhat correlated with each other (Supp. Figure C.4). We built the models with different 

permutations of these topographical variables and found that TPI had relatively small effect sizes on 

its own but significantly affected the coefficients of the other two variables. Hence, we built the final 

model without TPI. The resulting coefficients and the variance inflation factors (VIFs) for all variables 

in the final model could be found in Supp. Table C.1.   

 

Supp. Figure C.4: Correlation matrix between various environmental variables 

Supp. Table C.1: Summary statistics from the multiple regression model on 2017 – 2020 canopy height change. The sample 

size was 191704 pixels, each 30 m by 30 m in size. VIF = Variance Inflation Factor. 

Variable  Estimate  Std. error  t value  p-value  VIF  

(Intercept)  -0.091  0.0016  -57.8  <0.0001  N/A  

2017 canopy height  -0.212  0.0015  -138.5  <0.0001  1.10  

Mean wind   0.033  0.0016   20.5  <0.0001  1.25  

Norm. max wind  -0.054  0.0016  -34.7  <0.0001  1.17  

Height : Mean wind   0.035  0.0016   22.6  <0.0001  1.18  

Height : Norm. max wind  -0.020  0.0016  -12.5  <0.0001  1.18  

Mean : Norm. max wind   0.020  0.0016   12.3  <0.0001  1.07  

SWI  -0.036  0.0018  -20.6  <0.0001  1.48  

Slope   0.056  0.0018   31.7  <0.0001  1.45  
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C.3 Long-term wind acclimation increases forest typhoon resistance  

 

Supp. Figure C.5: The change in canopy height between 2017-2020 (n = 191744) against long-term mean wind speed and 

canopy height in 2017. The black line represents the maximum canopy height (97.5th percentile) estimated by second-order 

quantile regression. This is an alternative version of Figure 5a in the main text, but with long-term mean wind speed instead 

of maximum typhoon wind speed on the x-axis.   
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C.4 Quantile regression with 2020 canopy heights  

 

Supp. Figure C.6: Quantile regression on maximum canopy heights (97.5th percentile) in 2020. The patterns were very similar 

to that produced from 2010 canopy heights (Figure 5.6). Each point represents the maximum average canopy height 

(97.5thpercentile) amongst 2000 pixels. The blue lines were second order 97.5th quantile regression lines through the entire 

dataset. SWI = SAGA wetness index; TPI = topographical position index. 
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