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Adsorption and Luminescence Properties of First 2D-

Cadmium MOF and Gismondine-Like Zinc 

Coordination Network Based on N-(2-tetrazolethyl)-

4'-Glycine Linker 

Alfonso Salinas-Castillo,a Antonio J. Calahorro,b David Briones,c David Fairen-
Jiménez,d,* Felipe Gándara,e Claudio Mendicute-Fierro,f José M. Seco,f Manuel 
Pérez-Mendoza,b Belén Fernándezb and Antonio Rodríguez-Diéguezb,*  

We designed and synthesized two new metal-organic-frameworks (MOFs) using the novel N-

(2-tetrazolethyl)-4'-glycine spacer (TeGly)2-. We report the in situ formation of cadmium- and 

zinc-based MOFs using hydrothermal routes. The cadmium-based MOF shows a bi-

dimensional network with luminescence emission while the zinc-based MOF exhibits a three-

dimensional structure with gismondine topology and intense blue-greenish photoluminescence 

emission at room temperature in the solid state. In addition, the porosity of the Zn-based MOF 

has been fully characterized using a combination of computational methods and experimental 

techniques. 

 

Introduction 

Metal-organic frameworks (MOFs) are a relatively new class of 
materials that have received great interest due to their structural and 
topological diversity as well as the properties that arise from their 
structural features.[1]  In particular, the study of Cd- and Zn-based 
MOFs has evolved enormously[2] in areas such as luminescence,[3] 
gas adsorption,[4] sensing, and optical storage.[5]  MOFs are generally 
prepared using solvothermal methods, by connecting metal ions with 
the appropriate bridging organic ligands. Still, there is a great 
interest in the design of new ligands for the preparation of novel 
MOFs. In the last years, we have designed and synthesized novel 
Cd- and Zn-based MOFs with different tetrazolate derivated ligands 
with luminescent properties.[6] These ligands have been obtained in 
situ during the MOFs synthesis by Demko-Sharpless [2+3] 
cycloaddition reactions of organonitriles and sodium azide.[7] 
Following these works, we report here the design and synthesis, 
using hydrothermal routes, of a new multidentate bridging dianionic 
ligand derivated from N-(2-cyanoethyl)-4'-glycine which contains 
one carboxylate group and one tetrazolate ring with a nitrogen atom 
in the middle of the spacer. Further, complexes containing 
polynuclear d10 metals have attracted extensive interest in recent 
years due to their abilities of exhibiting appealing structures[8].  The 
Cd2+ ion is particularly suited for the construction of coordination 
polymers since the spherical d10 configuration is associated with a 
flexible coordination environment and, therefore, the variety of 
geometries achievable by these complexes can be finely tuned, easily 

generating multiple types of MOFs with various topologies. Thanks 
to its extended aromaticity and to the presence of poly-
heterosubstituded penta-atomic ring, N-(2-tetrazolethyl)-4'-glycine 
spacer (TeGly)2- (Scheme 1) is a good candidate to show enhanced 
emissive properties, which are in principle tunable by coordination 
to different metals with different chemical environments. In addition 
to the organic ligand, we report the synthesis, structure, 
luminescence and adsorption properties of the 2D-MOF 
[Cd(TeGly)(H2O)]n (1) and the 3D-MOF [Zn(TeGly)]n (2), 
demonstrating the potential of this new linker to construct novel 
MOFs. 

 

 

 

 

 

Scheme 1. In situ preparation of the anionic (TeGly)2- ligand by 

hydrothermal routes 
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Results and Discussion 

The hydrothermal reaction of the appropriate metal chloride (1 
mmol) with the N-(2-cyanoethyl)glycine (1 mmol) and sodium azide 
(3 mmol) in water (10 ml) at 150 ºC for 12 h followed by cooling at 
room temperature over 3 h produced pris-matic colourless crystals of 
1 and 2 in 65% and 43% yields, respectively. Their crystal structures 
were determined using single crystal X-ray crystallography. 

Description of the structures. 

Compound 1 crystallizes in the monoclinic space group C2/c. The 
2D-MOF structure is composed of ditetrazolate double-bridged 
Cd(II) dimers connected by oxygen atoms pertaining to the 
carboxylate group of the (TeGly)-2 ligand (Figure S1). The distortion 
of the CdII coordination polyhedron is induced mainly by the angle 
(111.61º) generated by the tetrazolate groups in the dimeric ring 
(CdN1N2CdN1N2). The Cd atom is coordinated to three nitrogen 
atoms pertaining to two different (TeGly)-2 ligands (N1, N2 and N4), 
two oxygen atoms (O11 and O12) belonging to one carboxylate 
group from (TeGly)-2 ligand and one water molecule. Cd-N distances 
are in the range of 2.288(2)-2.324(2) Å, whereas Cd-O distances 
have values of 2.299(2), 2.373(2) and 2.426(2) Å, for O11, O12 and 
O1W, respectively. Cis and trans angles of metal environment are in 
the range of 72.81(8)-114.19(7)º and 153.48(7)-158.66(8)º, 
respectively, highlighting the N8A-Cd-O12A angle with a large 
value of 114.19(7). 

 

 

 

 

 

 

 

 

Figure 1. View down the bc plane of layers in compound 1. 
Hydrogen atoms have been omitted for clarity. Color code N = blue, 
O = red, C = grey and Cd = yellow. 

 

 CdII•••CdII distance through the tetrazolate ligand is 3.924 

Å, while CdII•••CdII distance across (TeGly)-2 ligand has a 

value of is 5.214 Å. The coordinated water molecule (O1W) is 

strongly hydrogen bonded to the N4A and O12A atoms (H 

bond: O1W•••N4 = 2.824 Å, O1W•••O12A = 2.825 Å). The 

dimers are formed by two cadmium atoms bridged through 

nitrogen atoms N1 and N2 from tetrazolate group, and are 

linked to others dimers through O12 atom of the same ligand. 

The dimers form a dihedral angle of 57.16º and generate 

honeycomb (hcb) layers with the Cd atoms at the nodes (Figure 

1). Within the dinuclear Cd2 units, each cadmium atom adopts a 

strongly distorted octahedral coordination geometry in which 

the CdN3O3 environment adopts a mer disposition. 

Compound 2 crystallizes in the tetragonal space group I41/a. The 
asymmetric unit consists of one zinc ion and one (TeGly)-2 ligand. 
Zn ion exhibits distorted trigonal bipyramidal ZnN3O2 geometry in 
which the apical positions are occupied by N1A and O11A atoms 
pertaining to the same (TeGly)-2 ligand. N4A, N8A and O12A atoms 
from three different (TeGly)-2 ligands are located in the equatorial 
positions (Figure 2). 

 

 

 

 

 

Figure 2. View of the metal environment and coordination mode of 
the (TeGly)-2 ligand for 2. 

In this case, the linker connects with three zinc ions, resulting in 
the formation of a 3D-MOF (Figure 3) with a gismondine (gis) 
topology (ESI), in which each tetrazolate moiety coordinates in a 
bidentate fashion (N1N4) to zinc atoms. Zn-N distances are in the 
range of 2.039(2)-2.099(2) Å, whereas Zn-O distances have values 
of 1.980(2) and 2.185(2) Å, for O11A and O12A, respectively. Cis 
bond angles of metal environment are in the range of 76.37(8)-
105.47(9)º and ZnII•••ZnII distances through carboxylate and 
tetrazolate groups are 5.062 and 6.121 Å, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Bottom, view down the c axis of the structure in the 
three-dimensional network. Hydrogen atoms have been omitted for 
clarity. Color code N = blue, O = red, C = grey and Zn = yellow. 
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In 2, we can observe two types of square-shaped channels formed 
by carboxylates, with 3 Å of diameter as calculated with 
PLATON,[9] and tetrazolate groups, with 2.2 Å of diameter (Figure 
S2). Remarkably, the channels formed by the tetrazolates are not 
closed, thus generating the mentioned gis topology. 

 

Luminescence Properties. 

The extended aromaticity of the (TeGly)-2 ligand coordinated with 
the Cd and Zn centers suggests the existence of enhanced emissive 
properties in 1 and 2. In this regard, it is known that d10 metal 
complexes can show excellent luminescent properties, and therefore 
have received great attention for chemical sensing, photochemistry 
and electroluminescence applications.[10] Figure 4 shows the 
emission spectra of compounds 1 and 2 in solid state at room 
temperature upon excitation at 310 nm. 1 exhibits a broad intense 
emission band centered at 540 nm, while compound 2 shows an 
intense emission band at 465 nm. 

 

 

 

 

 

 

 

 

 

Figure 4. Emission spectra of compound 1 (red solid line) and 2 
(black dotted line) at room temperature in the solid state. 

 

The emission in compound 1 can be tentatively assigned to a 
metal to ligand charge transfer (MLCT) and/or to a ligand to ligand 
charge transfer (LLCT). Emissions in compound 2 arise from ligand-
centered π-π* transitions, as it has been reported for analogous 
compounds.[11] The emission of 1 is significantly red-shifted 
compared to 2. This bathochromism may be due to Cd having higher 
d* energy levels, which is consistent with similar bathochromic 
shifts that have been observed in other compounds.[12] The 
luminescence decays curves of the compounds were obtained at 
room temperature (Figure S4). We try to fit the data to a mono 
exponential function: I = I0 + A exp (-t/τ), where I and I0 are the 
luminescent intensities at time t and 0, τ is defined as the 
luminescent lifetime. For this function, the best fit of the 
experimental luminescence intensities to the above equation led to 
the lifetimes of 0.8±0.2 ms and 2.0±0.5 ms for 1 and 2 complexes 
respectively, thus indicating phosphorescence. The parameter for 

complexes 1 and 2 are A1 = 736±93 I0 = 123±27, A2 = 189±12, I0 = 
20±5, respectively.. 

Adsorption Properties. 

 The adsorption properties of 2 were studied using grand canonical 
Monte Carlo (GCMC) simulations[13] to predict the N2 (77 K), H2 
(77 K) and CO2 (273 K) adsorption isotherms. GCMC simulation 
using a rigid MOF structure predicted no adsorption. In addition, it 
revealed an extremely low void fraction, obtained with He (rigid 
sphere size, σ = 2.64 Å) of 3.36 %.  When moving to experimental 
measurements, N2 adsorption at 77 K revealed no gas uptake. On the 
other hand, H2 adsorption at 77 K revealed an uptake of 1.8 wt.% at 
1 bar, whereas the CO2 adsorption isotherm at 273 K showed a first 
step with a loading ca. 3.5 wt.% at 10 bar, followed by another 
increment up to 6 wt.% uptake at 27 bar (Figure 5). This stepwise 
filling is associated to the filling of the microporosity followed by 
the filling of interstitial mesoporous cavities between particles. The 
fact that simulations were not able to predict the gas uptake of 2 
correctly, is probable related to the existence of small structural 
changes during the adsorption phenomenon, something that has been 
observed before in MOFs such as ZIF-8.[14] These flexible effects 
were not taken into account during our GCMC studies, since our 
models were assumed to be rigid. The successful experimental 
adsorption of H2 and CO2 at 77 and 273 K, respectively, is attributed 
to the narrow porosity (ca. 3 Å) of the carboxylate channels. While 
experimental N2 (77 K) adsorption is impeded due to the low 
temperature and the existence of kinetic barriers, a small molecule 
such as H2 (77 K) can diffuse through the narrow porosity, as well as 
CO2 (273 K) due to the higher temperature.[15] 

 

 

 

 

 

 

 

 

 

Figure 5. Experimental CO2 adsorption isotherms at 273 K on 2. 

 

Conclusions 

In this work, we have been successful in the synthesis of the 
two first Metal Organic Frameworks with the novel N-(2-
tetrazolethyl)-4'-glycine spacer, with strong luminescence 
emissions. While the cadmium-based polymer shows a bi-
dimensional network, the Zn-compound has a three-
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dimensional structure with gismondine topology. The latter 
material shows a non-porous behavior according to the H2 and 
CO2 adsorption isotherms though the porosity of the Zn-based 
compound has been fully characterized using a combination of 
computational methods and experimental techniques, revealing 
an extremely low void fraction obtained with He of 3.36 %. 
Work along this line using other paramagnetic/lanthanides 
metals and XR Diffraction measures with high pressure are in 
progress in our lab. 
 
 
 
 

Experimental Section 

General Procedures: Unless otherwise stated, all reactions 

were conducted by hydrothermal conditions, with the reagents 

purchased commercially and used without further purification. 

 

Preparation of complexes. 

 

N-(2-cyanoethyl)-4'-glycine: This compound was obtained by 

Cyanoethylation of Alpha Amino Acids reaction. See J. Am. Chem. 

Soc., 1950, 72 (6), pp 2599–2603. 

 

[Cd(TeGly)⋅⋅⋅⋅(H2O)]n(1): A mixture of CdCl2 (183.3 mg, 1 mmol), 

N-(2-cyanoethyl)-4'-glycine (128.1 mg, 1 mmol), sodium azide (195 

mg, 3 mmol) and water (14 mL) was sealed in a Teflon-lined acid 

digestion autoclave and heated at 135°C under autogenous pressure. 

After 12 h of heating, the reaction vessel was cooled down at room 

temperature during a period of 2 h. Prismatic colorless crystals of 1 

were obtained. Yield: 65% based on Cd. Anal. Calcd for 

(Cd2C5N5O3H9): C 25.45, H 2.49, N 14.85. Experimental: C 25.35, 

H 2.41, N 14.97. FT-IR (KBr pellet): 3388 (s), 1622 (m), 1575 (s), 

1450 (m), 1392 (s), 1244 (m), 1105 (w), 759 (m), 729 (m) cm-1. 

 

[Zn(TeGly)]n(2): Compound 2 was prepared similar to that of 

compound 1, but the ZnCl2 (136.3 mg, 1 mmol) was used instead of 

CdCl2. Prismatic colourless crystals of 2 were obtained. Yield: 43% 

based on Zn. Anal. Calcd for (ZnC5N5O2H7): C 33.89, H 2.73, N 

8.24. Experimental: C 33.99, H 2.76, N 8.21. FT-IR (KBr pellet): 

3416 (m), 3128 (s), 1626 (m), 1544 (s), 1400 (s), 1219 (w), 1020 

(m), 747 (m), 714 (m) cm-1. 

 

Physical measurements. 

 

Elemental analyses were carried out at the “Centro de 

Instrumentación Científica” (University of Granada) on a Fisons 

Carlo Erba analyser model EA 1108. IR spectra on powdered 

samples were recorded with a ThermoNicolet IR200FTIR using KBr 

pellets. 

 

Single-Crystal Structure Determination. 

 

Suitable crystals of 1 and 2 were mounted on a glass fibre and 

used for data collection on a Bruker AXS APEX CCD area detector 

equipped with graphite monochromated Mo Kα radiation (λ = 

0.71073 Å) by applying the ω-scan method. Lorentz-polarization 

and empirical absorption corrections were applied.  The structures 

were solved by direct methods and refined with full-matrix least-

squares calculations on F2 using the program SHELXS97.[16] 

Anisotropic temperature factors were assigned to all atoms except 

for hydrogen atoms, which are riding their parent atoms with an 

isotropic temperature factor arbitrarily chosen as 1.2 times that of the 

respective parent. 

Selected bond lengths and angles are given in Tables S1 and 

S2 (ESI). CCDC reference numbers for the structures of 1 and 2 

were 981722 and 981723. Copies of the data can be obtained free of 

charge upon application to CCDC, 12 Union Road, Cambridge CB2 

1EZ, U.K. (fax, (+44)1223 336-033; e-mail, deposit@ 

ccdc.cam.ac.uk). 

 

 

 

 

Luminescence measurements. 

A Varian Cary-Eclipse Fluorescence Spectrofluorimeter was 

used to record the fluorescence spectra. The spectrofluorimeter was 

equipped with a xenon discharge lamp (peak power equivalent to 75 

kW), Czerny-Turner monochromators, R-928 photomultiplier tube 

which is red sensitive (even 900 nm) with manual or automatic 

voltage controlled using the Cary Eclipse software for Windows 

95/98/NT system. The photomultiplier detector voltage was 700 V 

Table 1. Crystallographic Data and Structural Refinement 
Details for 1 and 2  

compound 1 2 

Chemical Formula C5H9N5O3Cd C5H7N5O2Zn 

CCDC 981722 981723 

M (g·mol-1) 299.57 234.53 

T (K) 273(2) 273(2) 

λ/Å 0.71073 0.71073 

Cryst Syst Monoclinic Tetragonal 

Space Group C2/c I41/a 

a/ Å 18.628(3) 21.710(3) 

b/ Å 7.5600(12) 21.710(3) 

c/ Å 14.269(2) 6.8793(11) 

α/deg 90.00 90.00 

β/deg 119.874(2) 90.00 

γ/deg 90.00 90.00 

V/ Å3 1742.4(5) 3242.3(9) 

Z 8 16 

ρ(g cm-3) 2.284 1.922 

µ(mm-1) 2.497 3.003 

Unique reflections 4393 17580 

R(int) 0.0191 0.0435 

GOF on F2 1.075 1.069 

R1 [I > 2σ(I)] 0.0204 0.0381 

wR2 [I > 2σ(I)] 0.0487 0.1001 
a R(F) = Σ||Fo| - |Fc||/Σ|Fo|, wR(F2) = [Σw(Fo

2 – Fc
2)2/ΣwF4]1/2 

Page 4 of 6New Journal of Chemistry

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 5  

and the instrument excitation and emission slits were set at 5 and 5 

nm, respectively. 

 

Computational Details. 

The material was characterized geometrically, starting from the 

crystallographic coordinates. The pore size distributions were 

calculated using the method of Gelb and Gubbins, where the largest 

sphere that can fit in a random point within a structure without 

overlapping the Van der Waals surface of the framework is recorded 

for a large number of random points.[17]  
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