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Preface
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sequent chapters present original research that is published or submitted for publi-

cation as follows:

Chapter 3: Hannah M. Price and Nigel R. Cooper, Mapping the Berry curvature

from semiclassical dynamics in optical lattices, Phys. Rev. A 85, 033620 (2012) [1]

Chapter 4: Hannah M. Price and Nigel R. Cooper, The Effects of Berry Curvature

on the Collective Modes of Ultracold Gases, arXiv:1306.4796 [2]

Chapter 5: Hannah M. Price and Nigel R. Cooper, Skyrmion-antiskyrmion pairs

in ultracold atomic gases, Phys. Rev. A 83, 061605(R) (2011) [3]

Chapter 5 was begun as a Part III project and was continued from October

2010 to January 2011. Chapters 3 & 4 describe work carried out between January

2011 and August 2013. This dissertation is the result of my own work and includes

nothing which is the outcome of work done in collaboration except where specifically

indicated in the text. This thesis does not exceed 60,000 words.
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Summary

Topological phenomena arise in a wide range of systems, with fascinating phys-

ical consequences. There is great interest in finding new ways to measure such

consequences in ultracold atomic gas experiments. These experiments have signif-

icant advantages over the solid-state as ultracold atoms are controllable, tuneable

and clean. They can also be used to investigate properties which are inaccessible in

other quantum systems.

We explore some of the novel features of topological energy bands and topologi-

cal solitons in ultracold gases. Topological energy bands have important geometrical

properties described by the Berry curvature. Bands with nonzero Berry curvature

arise in key areas of current research, such as optical lattices with more than one

band; strong artificial magnetic fields and 2D spin-orbit coupling. Topological soli-

tons are also relevant to cutting-edge experiments as they can be created and studied

with high temporal and spatial resolution.

In this thesis, we investigate the consequences of Berry curvature for the semi-

classical dynamics of a wavepacket and the collective modes of an ultracold gas.

We also study theoretically the dynamics of skyrmion-antiskyrmion pairs in a Bose

Einstein condensate.

Firstly, we propose a general method by which experiments can map the Berry

curvature across the Brillouin zone, and thereby determine the topological properties

of the energy bands of optical lattices. The Berry curvature modifies the semiclassi-

cal dynamics and hence the trajectory of a wavepacket undergoing Bloch oscillations.

Our general protocol allows a clean measurement from the semiclassical dynamics

of the Berry curvature over the Brillouin zone. We discuss how this protocol may

be implemented and explore the semiclassical dynamics for three relevant systems.

We discuss general experimental considerations for observing Berry curvature effects

before reviewing some of the progress in the field since the publication of our work.
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Secondly, we show that the Berry curvature changes the hydrodynamic equations

of motion for a trapped Bose-Einstein condensate, and causes significant modifica-

tions to the collective mode frequencies. We illustrate our results for the case of

two-dimensional Rashba spin-orbit coupling in a Zeeman field, where we also apply

both a sum rule and an operator approach to the dipole mode. Extending the op-

erator method, we derive the effects of Berry curvature on the dipole mode in very

general settings. We show that the sizes of these effects can be large and readily de-

tected in experiment. Collective modes therefore provide a sensitive way to measure

geometrical properties of topological energy bands.

Lastly, we study theoretically the dynamics of two-component Bose-Einstein

condensates in two dimensions, which admit topological excitations related to the

skyrmions of nuclear physics. We explore a branch of uniformly propagating solitary

waves, which, at high momentum, can be viewed as skyrmion-antiskyrmion pairs.

We study these solitary waves for a range of interaction regimes and show that, for

experimentally relevant cases, there is a transition to spatially extended spin-wave

states at low momentum. We explain how this can be understood by analogy to the

two-dimensional ferromagnet and discuss how such solitary waves can be generated

and studied in experiment.
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Chapter 1

Introduction

1.1 Topological Phenomena in Quantum Mechanics

Topology is an important area of mathematics that studies the global characteristics

of a manifold. Let us consider the surface of a torus. Locally, a torus is described by

geometrical properties, such as the curvature of the surface. Globally, the curvature

is related to a genus; an invariant which counts the number of “holes” in the surface.

However, unlike local geometrical properties, the genus is a topological feature. It

cannot be changed by continuously deforming or stretching the surface; instead, a

new hole must be ripped in the torus or the old hole must be sealed up.

Topological features therefore have several very special properties. They are

global, discrete and robust against small perturbations. They also allow us to clas-

sify and distinguish objects; for instance, tori have a genus of one, while spheres have

a genus of zero. When applied to quantum mechanics, such properties have many

powerful consequences. For example, topological robustness underlies the remark-

able quantisation of conductance in the quantum Hall effect[4], while topological

invariants have helped us to predict, classify and understand new quantum phases

of matter, such as topological insulators[5, 6].

In this thesis, we discuss two classes of phenomena which are currently of great

interest in ultracold atomic gases: solitons and energy bands. Physically, these

phenomena are very different. On the one hand, solitons in ultracold gases are

localised excitations of the Gross-Pitaevskii wave-function, |ψ(r)〉; types of solitons

4



Section 1.1 Topological Phenomena in Quantum Mechanics 5

include quantum vortices and skyrmions[7]. On the other hand, optical lattices can

be used to impose periodic potentials on an ultracold gas. The eigenstates then form

energy bands in momentum space. These are the Bloch functions over the Brillouin

zone[8].

However, these seemingly disparate areas can be united through the mathe-

matics of topology. Topological solitons are those defects which cannot be removed

from the ground-state by continuously deforming the wave function. They are char-

acterised by an integer topological index or winding number[7]. Likewise, energy

bands can be described by topological invariants, which cannot be changed without

closing the gap to another band[5, 6]. When non-zero, these invariants have fasci-

nating consequences such as the quantum Hall effect and the topological insulators

mentioned above1.

Topology is an important unifying concept in quantum mechanics. As we discuss

in Sections 1.1.1 and 1.1.2, both topological energy bands and topological solitons

have many applications in condensed matter physics, and are currently of great

interest in ultracold atomic gases. We introduce some relevant properties of ultracold

gas experiments in Section 1.2, and outline in Section 1.3 how this thesis will explore

the novel features of topological energy bands and topological solitons in ultracold

atomic gases.

1.1.1 Topological Energy Bands

One of the most interesting and surprising developments in band theory was the

realization that the physical properties of any resulting energy band are not only

encoded in its energy spectrum, En(p), for all momenta, p, and bands, n (the

“bandstructure” in the usual sense). In addition, there are important physical con-

sequences related to the topology and geometry of the eigenstates that form the

band[4, 5, 6].

1We can also see the underlying connections between these phenomena by considering mappings
from a physical “base space” onto a “target manifold”[7]. For solitons, we map real space, r, onto
the wave function |ψ(r)〉, while for energy bands, momentum space, p, is mapped onto |ψ(p)〉.
Then, in both cases, mappings are topologically distinct if they cannot be continuously deformed
into each other. Classifying mappings in this way is known as homotopy theory[7].
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As hinted at above, there is a deep connection between topology and geometry.

In this section, we begin by introducing the local geometrical Berry curvature (which

is the central focus of Chapters 3 and 4). We show how this can be connected to

the global topology of the band, and discuss some of the exotic phenomena that can

result when a band has nontrivial geometrical and topological properties.

The Berry Phase & the Berry Curvature

To understand the Berry curvature, we shall begin with the Berry phase. A system

picks up a Berry phase when the parameters of its Hamiltonian are varied adiabati-

cally around a closed contour[9]. We consider a general single-particle Hamiltonian,

H(p), which has eigenstates, |np〉, and non-degenerate eigenvalues, En(p). This

energy dispersion could be from an optical lattice, where p = ~k is the crystal mo-

mentum in the Brillouin Zone, or a spin-orbit coupling Hamiltonian, where p is the

single-particle momentum.

Under the application of a weak external force, the momentum, p, evolves with

time. For sufficiently slow evolution, p(t), the quantum adiabatic theorem states

that a system initially in eigenstate |np(t = 0)〉, will remain in an instantaneous

eigenstate |np(t)〉 up to a phase factor, i.e. there will be no transitions between

bands2[10]. Therefore at a time t, the state of the particle is:

|ψn(t)〉 = eiγn(t)e−
i
~

∫ t
0 dt′En(p(t′))|np(t)〉 (1.1)

where the second exponential is the dynamical phase factor that depends on how

fast the particle moves. The first exponential is a geometrical phase factor, which

only depends on the path travelled. This can be seen by substituting Eq. 1.1

into the time-dependent Schrodinger equation, i~ ∂
∂t |ψn(t)〉 = H(p(t))|ψn(t)〉, and

multiplying by 〈np(t)|. Then:

γn =

∫

C
dp ·An(p) (1.2)

An(p) ≡ i〈np| ∂
∂p

|np〉, (1.3)

2The adiabaticity conditions are that the eigenstates remain non-degenerate at all times and
that ~|〈mp|∂H

∂t
|np〉| ≪ |Em(p)−En(p)|2, where m,n are two different bands.
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where γn is the Berry phase, An(p) is the gauge-dependent Berry connection and

C is the path travelled. For an open contour, this phase can always be gauged

away3 [11]. However, the geometric phase is gauge-invariant (modulo 2π) for cyclic

evolution along a closed contour4[9]. This is commonly known as the Berry phase:

γn =

∮

C
dp ·An(p) =

∫

S
dS ·Ωn(p) (1.4)

Ωn(p) ≡ ∇p ×An(p) = i
∂

∂p
× 〈np| ∂

∂p
|np〉, (1.5)

where S is the surface enclosed by the contour, and we have used Stokes’ theorem to

introduce the Berry curvature, Ωn(p) (see also Figure 1.1). The Berry curvature is a

local geometrical property of the eigenstates; it is gauge-invariant and so observable.

It vanishes when both time-reversal and inversion symmetries are present. The Berry

phase is similar to the Aharonov-Bohm phase, with the Berry curvature playing the

role of a magnetic field in momentum space.

Hereafter, we consider the two-dimensional(2D) xy plane, where the Berry cur-

vature is a scalar: Ωn(p) = Ωn(p)ẑ. The Berry curvature can also be written as:

Ωn(p) ≡ i
∑

n′ 6=n

〈np| ∂H∂px |n
′p〉〈n′p| ∂H∂py |np〉 − 〈np| ∂H∂py |n

′p〉〈n′p| ∂H∂px |np〉
(En − E′

n)
2

(1.6)

where we have used the relation 〈n|∂H∂p |n′〉 = 〈∂n∂p |n′〉(En − E′
n) on Eq. 1.5 [12].

This gives additional physical insight into the origin of this geometrical property.

Under the adiabatic approximation, we project our system into a single band. The

effect of higher bands is then represented by the Berry curvature. Another way

to view this is in terms of “fast” and “slow” evolving wave functions. The motion

of the “fast” subsystem alters the behaviour of the “slow” subsystem through the

Berry effects. A good example of this is in the Born-Oppenheimer procedure, where

a Berry connection appears naturally when the fast electronic motion is separated

3Under a gauge transformation |np〉 → eiζ(p)|np〉, the Berry connection transforms as An(p) →
An(p) − ∂

∂p
ζ(p). The Berry phase is changed by ζ(p(t = 0)) − ζ(p(t = T )), where T is the final

time. The gauge, ζ, can be chosen to cancel out the geometric phase accumulated along an open
path.

4For cyclic evolution, the initial point, p(t = 0), and the final point, p(t = T ) is the same.
However, we require at every point that eiζ(p) is single-valued. This implies that ζ(p(t = 0)) −
ζ(p(t = T )) = 2π × integer. Therefore the geometric phase can only be changed by 2π under a
gauge transformation for a closed contour.
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Figure 1.1: An intuitive example of a geomet-
rical phase factor: the rotation of a vector af-
ter parallel transport around a closed path on a
sphere. The mismatch angle (anholonomy) de-
pends on the surface enclosed and its Gaussian
curvature. The Berry phase is the analogous
phase factor that arises from quantum mechan-
ical parallel transport.

from the slow nuclear motion[9, 13, 14].

Finally, we note that a degenerate sub-space of bands can be described by a

matrix Berry curvature with non-Abelian gauge structure[15]. The Berry connection

and curvature become:

Amn(p) ≡ i〈mp| ∂
∂p

|np〉, (1.7)

F(p) ≡ ∇p ×A(p)− iA(p)×A(p) (1.8)

where m and n are degenerate bands. In this thesis, we focus on non-degenerate

bands, and so only consider the Abelian Berry curvature (Eq. 1.5). However, we

shall return to these concepts briefly when discussing the generation of spin-orbit

coupling in ultracold gases (Section 2.2).

Connection to Topology

The deep connection between geometry and topology is well-known from mathemat-

ics. The Gauss-Bonnet theorem relates the Gaussian curvature of a closed manifold

to the Euler characteristic, a global topological invariant related to the genus of the

surface. We shall now see that a similar relation holds between the Berry curvature

and the Chern number, a topological invariant of an energy band[16].

Let us consider the 2D Brillouin Zone of a periodic lattice, where p = ~k is the

crystal momentum. As k is also periodic, this manifold is a torus; e.g. for a unit

cell of dimensions a× a, the BZ is defined as −π/a < kx/y ≤ π/a. If we choose the

surface in Eq. 1.4 to be the whole BZ, we are integrating the Berry curvature over a
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closed manifold. The contour, C, is then equivalent to a point, and the Berry phase

must be quantised as 2π × integer (Figure 1.2). This integer is called C, the Chern

number. It is a topological invariant: its value cannot be changed by continuous

evolution of the physical system without closing the gap to another band. The Chern

number can be nonzero when time-reversal symmetry is broken. For systems with

additional global symmetries (time reversal, particle/hole, or chiral) other forms of

topological invariant can appear[5, 6].

Physical Consequences of Topological Energy Bands

The importance of the topological features of energy bands was first pointed out

in the seminal work of Thouless et al.[4] in the context of the integer quantum

Hall effect. The integer quantum Hall effect is the exact quantisation of the Hall

conductivity, σxy, of a 2D electron system in a strong magnetic field. In their work,

Thouless et al. showed that this remarkable quantisation was topological: a filled

band has σxy = C e2

~
, corresponding to the existence of C chiral edge modes. Since

this discovery, topological invariants have been found to have many other important

physical consequences. For example, they underlie the quantum spin Hall effect and

topological insulators[5, 6].

The local geometrical properties of the eigenstates can also have direct physical

Figure 1.2: How to see the quantisation of the Berry phase intuitively.
The dashed rectangle indicates the Brillouin zone. To find γ for the black
contour, we integrate over the surface in blue. For the left hand picture, this
gives γ1, and for the right, γ2 (as the Brillouin zone is a closed manifold).
The Berry phase is defined modulo 2π, and so γ1−γ2 = 2π× integer. If the
contour encloses the whole Brillouin zone, the left surface grows to fill the
dashed rectangle and the right vanishes. Then γ2 → 0 and γ1 is quantised.
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effects when a band is partially filled. The Berry curvature plays an important

role in the anomalous quantum Hall effect [17, 18, 19]. This is the appearance of a

large spontaneous Hall current in a ferromagnet in an electric field but without a

magnetic field. There has been much controversy over the interpretation of this effect

and there are various mechanisms responsible (for a recent review, see Ref. [20]).

One of these is the so-called intrinsic contribution, originally due to Karplus and

Luttinger[21]. This has since been interpreted in terms of the Berry curvature of

the energy bands due to the spin-orbit(SO) interaction (for more about SO coupling

and the Berry curvature see Section 2.2)[18, 17]. The anomalous contribution to

the Hall conductivity is found by integrating the Berry curvature over all occupied

states below the Fermi energy in the partially filled bands5. Therefore, in some sense

this is an “unquantized” quantum Hall effect [12].

In this thesis, we will focus on two other important physical consequences of the

Berry curvature. Firstly, the Berry curvature can strongly modify the semiclassical

dynamics of a wavepacket[22, 23, 24] as we shall introduce in Chapter 3. Secondly, in

Chapter 4, we derive how the Berry curvature changes the hydrodynamic equations

of motion for a trapped Bose-Einstein condensate, and causes significant modifica-

tions to the collective mode frequencies.

1.1.2 Topological Solitons

Above, we have discussed how the topology of a band can affect even a single non-

interacting particle. Now we turn to collective many-body physics and the topologi-

cal excitations of a condensate which rely intrinsically on mean-field interactions. A

soliton or solitary wave is a localised, non-singular excitation that can move through

a system without distortion6 [25, 8]. These excitations are possible when both dis-

persion and nonlinearity are present. Bose-Einstein condensates can support solitons

as the nonlinearity is provided by the weak interactions and the dispersion by the

5Haldane also incorporated this into Landau-Fermi liquid theory by showing that the Hall con-
ductivity is a Fermi surface property; it can be found from the Berry phase of the Fermi surface
quasiparticles (modulo 2π) [19].

6We use the terms soliton and solitary wave interchangeably as is common in the literature of
BECs[8]. Formally, however, solitons are a sub-class of solitary waves, with the extra property that
they can interact with each other and emerge undistorted. Solitons can have this property when
the underlying field theory is integrable, which is not applicable to the 2D BEC considered here.
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Figure 1.3: Figure taken from [31].
Schematic illustration of a skyrmion
configuration. Arrows indicate the lo-
cal spin vector field, ~ℓ(r). The spins
sweep over the unit sphere and rotate
by π from the centre to the outer edge.

kinetic energy (see the mean-field Gross-Pitaevskii equation below: Eq. 1.11). A

solitary wave is also topological if it cannot be removed by continuous deformation

of the wavefunction.

Topological defects have long been a very rich and interesting subject in theo-

retical physics, with applications in many disciplines[26]. The simplest topological

defect is a vortex, around which the phase of an order parameter winds in units of

2π. In a superfluid, the density drops to zero in the core of a vortex, while outside,

the circulation is quantised[8]. If there are extra degrees of freedom, even more ex-

otic topological solitons are possible, such as the skyrmion. The skyrmion was first

introduced in the 1960s as a topological soliton describing nuclei[27] and variants

have since been found to be important in condensed matter systems: they describe

the charged excitations of certain quantum Hall ferromagnets[28]; and lattices of

skyrmions have been observed in chiral magnets[29, 30].

In this thesis, we study a branch of uniformly propagating solitary waves in a

2D Bose Einstein condensate, which at large momentum are skyrmion-antiskyrmion

pairs. For two spatial dimensions, a skyrmion is a topological soliton in the local

spin vector field, ~ℓ(r), characterised by a non-zero topological index of the map

S2 → S2 (in 3D, the map is S3 → S3[27])7. A non-zero index arises when the local

spin vector field rotates by π from the centre to the outer edge of the soliton, such

that the 2D configuration sweeps over the unit sphere (Figure 1.5). An antiskyrmion

carries a topological index of the opposite sign. In ultracold gases, such a local spin

vector field, ~ℓ(r), can be defined for a multi-component condensate (Section 1.2.2).

Then skyrmions are a type of coreless vortex, analogous to the Anderson-Toulouse

vortex in 3He-A[32].

7For a full introduction to homotopy theory and topological excitations in Bose-Einstein con-
densates see Ref. [7].
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Figure 1.4: Velocity dis-
tribution of rubidium as
the gas is cooled through
the transition into a Bose-
Einstein condensate(Figure
from Ref. [43])[33]. In the
centre and right pictures,
the BEC appears as a peak
around zero momentum, as
the lowest energy state be-
comes macroscopically occu-
pied.

1.2 Ultracold Atomic Gases

Ultracold atomic gases are dilute clouds of atoms cooled close to zero temperature,

where quantum effects are important8. For sufficiently low temperatures, bosons

condense into a Bose-Einstein condensate (BEC)[33, 34, 8], while fermions can form

a degenerate Fermi gas[35, 36]. BECs were first experimentally created in 1995, for

a gas of rubidium[33] and a gas of sodium atoms[34]. Since then, the Nobel prize has

been awarded for these important achievements and there has been an explosion of

experimental and theoretical research in the field. There is an accompanying wealth

of resources; key books include Refs. [37, 8, 7], while some useful review articles are

Refs. [38, 39, 40, 36, 41, 42].

Ultracold gases have been used to study many important areas of quantum

physics, such as superfluidity and vortices[44], matter-wave interference[45], the ef-

fects of dimensionality[46, 47] and the superfluid-Mott insulator transition[48, 49].

This has been possible because ultracold atomic gases are excellent experimental

systems: they are controllable, tunable and clean, and they can be studied with

high temporal and spatial resolution. Thanks to these properties, ultracold atomic

gases provide the opportunity now and in the future to explore interesting phe-

nomena from solid-state systems in new and exciting ways. In particular, ultracold

gases should open up new possibilities for research into strongly correlated physics

in quantum many-particle systems. For the purposes of this thesis, we briefly intro-

8This is when λT > ā where ā is the average interparticle distance, λT =
√

2π~2

MkBT
is the

thermal de Broglie wavelength, M is the particle mass, kB is the Boltzmann constant and T is the
temperature[8].
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duce some relevant aspects of Bose-Einstein condensates9. We begin by discussing

trapping, dimensionality and interactions, before turning to multi-component BECs

and the creation and detection of skyrmions. We then introduce optical lattices

and explore how they may be used to realise energy bands with nontrivial Berry

curvature.

1.2.1 Trapping, Dimensionality and Interactions

Trapping and Dimensionality

Ultracold atoms can be trapped by magnetic and optical fields. For typical exper-

imental traps, the resulting potential is well approximated by a simple harmonic

potential:

V (x, y, z) =
1

2
M(ω2

xx
2 + ω2

yy
z + ω2

zz
2) (1.9)

where ωx,y,z is the harmonic trapping frequency along that direction10. By control-

ling the trapping frequencies, the dimensionality of the cloud can be changed. For

example, the motion along the z direction is frozen out for bosons if ~ωz ≫ kBT ,

where kBT is the thermal energy. This corresponds to requiring that the thermal

energy is much less than the energy difference between the ground and first excited

state[8]. Freezing out the motion along one direction leads to a quasi-2D condensate,

while freezing out along two leads to a quasi-1D system. This is important as in

this thesis we primarily consider quasi-2D systems. An alternative route to lower

dimensions is provided by optical lattices, as discussed below.

Interparticle Interactions

Interactions in dilute BECs can be effectively described by two-body scattering. This

is because for cold temperatures and low densities, the inter-particle separations

are typically several orders of magnitude larger than the length scale of the inter-

9For a discussion of Fermi gases, see, for example, Refs. [8, 36].
10Many common experimental traps will be anisotropic. For example the time-averaged orbiting

potential(TOP) trap, has ωz/ωx,y =
√
8, where the axis of symmetry is chosen along ẑ.
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Figure 1.5: Figure taken from [50].
The two-channel model for a Fesh-
bach resonace. Two atoms interact
with energy E, in the open chan-
nel (represented by the background
potential curve, Vbg). They couple
resonantly to the molecular bound
state at energy Ec in the closed chan-
nel (represented by Vc). This cou-
pling mixes the channels and shifts
the scattering length.

atomic interaction11[8]. At low energies, two-body interactions can be replaced by

an effective contact interaction. In 3D, for particles of equal mass this is:

geff(r, r
′) = gδ(r − r′) =

4π~2as
M

δ(r − r′) (1.10)

where δ is a Dirac delta function, as is the scattering length and M is the particle

mass[8]. A BEC is stable for repulsive interactions and a positive as. The scattering

length can be tuned by changing the atomic species or by using a Feshbach resonance.

A Feshbach resonance occurs if the energy of a scattering state in an open channel

approaches the energy of a molecular bound state in a closed channel12 [8, 50]. By

changing the energy of the atomic scattering state relative to the molecular state, the

coupling, and hence the effective scattering length, is varied. This can be controlled,

for example, by an external magnetic field if the magnetic moments of the states are

different. The Feshbach resonance has consequently become a very important tool

in ultracold atomic gases, as it can tune the effective interaction for a large range of

positive and negative values[50].

A weakly interacting BEC at zero temperature can be described by the mean-

field Gross-Pitaevksii equation[8]. The Hartree approximation assumes that all N

particles are condensed in the same single-particle state, ψ(r) (normalised such

that
∫

dr|ψ(r)|2 = N). Then the many-body wave-function is Ψ(r1, r2, ...rN ) ∝

11The requirement of diluteness can be expressed as |as| ≪ ρ−1/3, where as is the scattering
length and ρ is the density[37].

12Channels represent the sets of possible internal states of the atoms in the scattering process[8].
Two incoming particles have an energy, E. If this is larger than the dissociation energy of two
particles in that channel, the channel is “open” and if this is less, than the channel is “closed”[50].
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∏N
i=1 ψ(ri), and the Gross-Pitaevskii equation is:

− ~
2

2M
∇

2ψ(r) + Vext(r)ψ(r) + g|ψ(r)|2ψ(r) = µψ(r) (1.11)

where Vext is any external potential, µ is the chemical potential and ψ(r) is the

condensate wave-function. This is a non-linear Schrödinger equation which takes

into account interactions through the mean-field potential, g|ψ(r)|2. This equation

can exhibit some types of topological excitations, including vortices. However, more

degrees of freedom are required to support skyrmions; therefore we now introduce

multicomponent BECs.

1.2.2 Multicomponent Bose-Einstein Condensates

A multicomponent BEC consists of two or more bosonic species. These can be

different atoms, isotopes or hyperfine states13. With these additional degrees of

freedom, the wave-function becomes a “spinor”. For two species, it is:





ψ1(r)

ψ2(r)



 =
√
ρ0





χ1(r)

χ2(r)



 (1.12)

where ψi is the condensate wave function in component i, ρ0 is the total density

and r is the spatial position. As the name “spinor” suggests, this extra degree of

freedom plays the role of the spin, i.e. a local spin vector field, ~ℓ, can be defined

as a function of position r[51, 52] (Section 5.1.1). Multicomponent BECs provide

a rich area for the study of skyrmions in three dimensions (3D)[53, 54] and two

dimensions[44, 51, 55, 56]. At zero temperature and for weak interactions, the two-

component system is described by two coupled Gross-Pitaesvkii equations:

− ~
2

2M
∇

2ψi(r) + Vext(r)ψi(r) +
∑

j

gij |ψj(r)|2ψi(r) = µiψi(r). (1.13)

13Hyperfine states are internal states of the atoms; they are eigenstates of the hyperfine interaction
∝ I · J where I and J are respectively the operators for the nuclear spin and electronic angular
momentum[8]. The eigenvalues of F 2 (where the total angular momentum operator F = I + J)
are F (F + 1): F is a good quantum number as the hyperfine energy splitting is generally much
larger than the BEC transition temperature[7]. The transitions between hyperfine states can be
well controlled by lasers and external magnetic fields, so different hyperfine levels can represent
different bosonic species.
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The interaction strength of different species will not be the same in general (i.e.

g11 6= g12 6= g22). As we shall see in Section 5, these interaction imbalances can have

interesting physical effects.

Creating and Studying 2D Skyrmions in BECs

Multicomponent BECs present an exciting opportunity to study skyrmions in ultra-

cold gases. In this thesis, we investigate theoretically the dynamical properties of a

2D skyrmion-antiskyrmion pair in a two-component condensate. Our work is moti-

vated by the recent experimental advances in the field, which will allow skyrmions

to be imprinted in a gas and their dynamical properties to be studied.

Skyrmions can be created in two-dimensional BECs using various experimental

techniques[44, 51, 57, 58]. For example, a 2D skyrmion has been imprinted in an

untrapped BEC of 87Rb using two spatially modulated Raman beams[51]. In this ex-

periment, the BEC was initially prepared as a spin-polarized gas in the |F=2,mF=2〉
hyperfine state. The Raman lasers coupled this state with the |F=2,mF=− 2〉 and
|F=2,mF=0〉 hyperfine states to create a multicomponent condensate14. The den-

sity and phase profile of a 2D skyrmion was imprinted over the three states by

choosing the spatial variation and orbital angular momentum of the Raman lasers

appropriately. Even more exotic spin textures, including a skyrmion-antiskyrmion

pair, have been imprinted using holographically produced Raman lasers[57]. How-

ever, a limitation of these schemes is that the gas is untrapped when the texture

is imprinted. Therefore another experiment has used a spin rotation technique15 to

imprint a 2D skyrmion in a trapped polar BEC of 23Na[58, 60].

The dynamical properties of skyrmion-antiskyrmion pairs would then be directly

accessible in experiments, as BECs can be imaged and controlled with high temporal

and spatial resolution[61, 63]. For example, the real-time dynamics of vortices can

14In a Raman process, an atom absorbs a photon from one beam, and emits a photon into a
second beam. By tuning the frequency difference of the lasers to the hyperfine level splitting, the
atoms are transferred from one state to another via a (virtual) excited state. Raman transitions
are thus very important tools in the manipulation of ultracold gases.

15Adiabatically varying a real magnetic field drives transitions between the hyperfine states and
imprints a state-dependent Berry phase[9, 58]. The result is to rotate the local spin vector field.
Note a similar method was used much earlier to prepare 2D coreless vortices with Mermin-Ho
boundary conditions[59].
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Figure 1.6: Sketch of the quan-
tum gas microscope[61] (Figure
taken from Ref. [62]). The 2D
quantum gas is placed in a high
aperture optical system. In this
schematic there is also a holo-
graphically produced lattice po-
tential. The atoms are measured
in-situ with an optical resolution
∼ 600nm.

be observed by repeatedly extracting, expanding and imaging small fractions of a

trapped cloud[63]. Alternatively, the quantum gas microscope images 2D ultracold

gases with a spatial resolution of ∼ 600nm[61] (Figure 1.6). This has already been

used to study the superfluid-to-Mott insulator transition at the single atom level,

where fast local dynamics could be resolved[49]. It is now intended to combine

this technique with the imprinting of spin textures using holographically produced

Raman beams[57]. This would allow for a full study of the dynamical properties of

these excitations.

1.2.3 Optical Lattices

Optical lattices are another crucial ingredient of many ultracold atom experiments

(for reviews see Refs. [8, 40, 41, 64, 65]). These periodic potentials enable experi-

ments to mimic and explore the behaviour of electrons moving through crystalline

materials. For example, optical lattices have been able to simulate such important

condensed matter models as the quantum Ising model[66] and the Bose-Hubbard

model with its superfluid-to-Mott insulator transition[48, 49].

An optical lattice is created through the interference of laser beams. The atoms

experience an a.c. Stark shift as the oscillating electric field of the light induces a

dipole moment in each atom. The interaction shifts the energy of the atom, as if it

were moving in a potential[8, 41]:

V = −1

2
α′(ω)〈E(r, t)2〉t (1.14)

where α′ is the real part of the dynamical polarizability of the atomic level and ω is
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Figure 1.7: Optical lattices of dif-
ferent dimensionalities: figure taken
from Ref. [67]. (a) A 2D lattice splits
the cloud into many tightly-confined
quasi 1D systems. (A 1D lattice,
which is not shown here, would split
the cloud into many 2D systems).
(b) A 3D lattice leads to a cubic 3D
array of harmonic oscillator poten-
tials at each site.

the frequency of the electric field, E(r, t). The brackets 〈〉t denote an average over a

time much longer than the period. This potential is periodic in space if 〈E(r, t)2〉t is
periodic. However, in addition to this conservative potential, there is also dissipation

and heating due to spontaneous emission of photons. This is minimised by ensuring a

large detuning between the laser beams and any atomic resonances16[64]. In optical

lattices, the natural energy scale is set by the recoil energy, ER = h2/2mλ2, where

λ is the optical wavelength[8]. Similarly, we can define a recoil velocity, vR = h/mλ,

and a unit of force, FR = h2/2mλ3.

Optical lattices are very controllable and adaptable experimental tools. The ge-

ometry, lattice constants and barrier heights can all be tuned directly in experiments,

for instance, by varying the intensity, frequency or phase of the laser beams[8, 65].

By combining several lasers, optical lattices can also be created in one, two or three

dimensions[8, 41] (Figure 1.7). This is directly relevant to this thesis, as we focus

primarily on quasi-2D systems. Most importantly, as we shall now describe, optical

lattices can also be engineered to have energy bands with nonzero Berry curvature.

Optical Lattices with Multiple Sites per Unit Cell

The Berry curvature vanishes for the simplest forms of optical lattice that have only

one site per unit cell and hence only one energy band (see Eq. 1.6). Thanks to recent

16The photon scattering rate can be estimated as ∝ I/∆2 where I is the intensity, and ∆ is the
detuning[64]. The dipole potential is correspondingly ∝ I/∆. Large detuning minimises photon
scattering relative to the potential strength.



Section 1.2 Ultracold Atomic Gases 19

advances, optical lattices with multiple sites per unit cell are now realisable, includ-

ing triangular[68], hexagonal[69, 70] and Kagomé[71] lattices as well as superlattice

structures[72]. These systems have multiple energy bands and the Berry curvature

can be non-zero, provided either inversion or time-reversal symmetry is broken17.

To illustrate this, we consider the tuneable honeycomb lattice, created experi-

mentally in Ref. [70] and used as one of our example systems18 in Section 3.3.1. A

honeycomb lattice has two sites per unit cell, and its two lowest bands touch at two

“Dirac” points in the Brillouin zone19. By adjusting the lattice anisotropy, the Dirac

points were moved experimentally around the BZ, and for high enough anisotropy,

merged and annihilated[70]. This experiment was also able to introduce an onsite

energy difference between the two sites in the unit cell. This energy difference breaks

inversion symmetry, which is protecting the Dirac points. When inversion symmetry

is broken, band gaps open at the Dirac points, and the energy bands have nonzero

Berry curvature[12]. While the effects of Berry curvature were not studied in this

experiment, this system will allow for the future investigation of the geometrically

nontrivial bands as proposed, for example, in Section 3.3.1.

Breaking inversion or time-reversal symmetry is also closely linked to the pur-

suit of artificial gauge fields. For example, time-reversal symmetry must be broken

to generate an artificial magnetic field in an ultracold gas, while Rashba spin-orbit

coupling requires broken inversion symmetry. Energy bands with nontrivial geomet-

rical and topological properties therefore play an important role in systems with

artificial gauge fields. This is a key motivation for our work on topological energy

bands, and so we introduce the concepts and schemes behind artificial gauge fields

in more depth in the next chapter.

17The Chern number can only be nonzero if time-reversal symmetry is broken.
18To be precise, we shall study the asymmetric hexagonal lattice. The honeycomb lattice in this

experiment does not have the full hexagonal symmetry although it shares the qualitative features.
19At a Dirac point, two bands intersect with a linear dispersion. The particles close to a Dirac

point can be described by the relativistic Dirac equation for massless spin-1/2 particles. Dirac
points are particularly important in graphene, for which the asymmetric hexagonal lattice serves
as a simple model[73].
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1.3 Outline of Thesis

In this chapter, we have introduced topological band theory, topological solitons,

and ultracold atomic gases. We have seen how energy bands can have important

geometrical features encoded in the Berry curvature, with remarkable physical con-

sequences. We have discussed how such bands can arise for optical lattices with

multiple sites per unit cell. In addition, we have introduced skyrmions: topologi-

cal excitations with applications in many areas of physics. We have also described

how skyrmions may be experimentally created and studied in multicomponent Bose-

Einstein condensates.

In Chapter 2, we continue our introduction by reviewing artificial gauge fields

in ultracold gases. This is a very important area of current research, where many

schemes involve energy bands with nontrivial topological and geometrical properties.

The purpose of this chapter is two-fold; we shall further motivate our work on

topological energy bands, and introduce many of the experimental systems that will

be used later as examples.

The experimental interest in realising topological energy bands in ultracold gases

presents an excellent opportunity to study the properties of these bands in new

ways. We propose in Chapter 3 a general “time-reversal” protocol for mapping out

the Berry curvature from the semiclassical dynamics of a wavepacket. This method

would allow experiments to measure the Berry curvature over the Brillouin zone for

the first time. We demonstrate this protocol on three experimentally relevant mod-

els, discuss general experimental considerations and, finally, review developments in

the field since the publication of our work.

We also show that the Berry curvature has other novel physical consequences

in ultracold gases. In Chapter 4, we demonstrate that the Berry curvature changes

the hydrodynamic equations of motion for a trapped Bose-Einstein condensate, and

causes significant modifications to the collective mode frequencies. We illustrate our

results for an example system and discuss various alternative theoretical approaches.

Using an operator method, we derive the effects of Berry curvature on the dipole

mode in very general settings, and show that these effects may be large. Collective
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modes may therefore be a powerful tool for determining the geometrical properties

of the condensate wave function.

Finally, in Chapter 5, we explore the dynamical properties of a two-component

two-dimensional Bose-Einstein condensate. We identify a uniformly propagating

branch of solitary waves, which at high momentum, can be viewed as skyrmion-

antiskyrmion pairs. These solitary waves could be imprinted and studied with the

experimental techniques described above. We study the dynamical properties of

these excitations, and show that they are within current experimental capabilities.



Chapter 2

Artificial Gauge Fields

The pursuit of artificial gauge fields in ultracold atoms brings with it many fresh

opportunities for studying energy bands with nontrivial topological and geometrical

properties. The Berry curvature can only be non-zero if either time-reversal or

inversion symmetry is broken. These are also the symmetries we break to create

artificial magnetic fields and artificial Rashba spin-orbit coupling respectively. The

current interest in generating artificial gauge fields is therefore a key motivation for

our work on energy bands with interesting geometry and topology.

The aim of this chapter is to briefly introduce the main ideas and experiments in

this area, and to provide the background for many of the example systems explored

later in the thesis. We first discuss artificial magnetic fields in Section 2.1, before

turning to artificial spin-orbit coupling in Section 2.2.

2.1 Artificial Magnetic Fields

Ultracold atoms are electrically neutral and do not experience the Lorentz force

in a magnetic field1. Without this, phenomena such as the quantum Hall effect

are inaccessible. Simulating artificial magnetic fields is therefore an important step

towards exploring bands with interesting topology and nonzero Chern numbers.

The energy bands of a quantum Hall system are flat Landau levels. In flat

1A real magnetic field has other important physical effects on the atoms, for example, in the
Zeeman shift on their internal energy levels.

22
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bands, interactions dominate and strongly correlated many-body states can arise.

Strong correlations can lead to the fractional quantum Hall(FQH) effect, where

the conductance is quantised in rational fractions, rather than integer values, of

e2/h[74, 75]. FQH states can have many exotic properties, such as fractionalised

excitations[75]. There is therefore also great interest in simulating quantum Hall

physics in order to access interesting many-body physics in both fermionic and

bosonic systems[76]. We shall consider the accessibility of strong correlations when

reviewing current schemes.

2.1.1 Artificial Magnetic Fields in Rotating Gases

Artificial magnetic fields were first generated in rotating gases. The single-particle

Hamiltonian of a trapped gas in a frame rotating at angular frequency, Ωr, around

the z axis is [76]:

Hr =
|p|2
2M

+
1

2
Mω2

⊥(x
2 + y2) +

1

2
Mω2

‖z
2 −Ωr · r × p

=
|p−MΩr × r|2

2M
+

1

2
M(ω2

⊥ − Ω2
r)(x

2 + y2) +
1

2
Mω2

‖z
2 (2.1)

This is identical to the Hamiltonian of a particle with charge q in a magnetic field,

B = 2MΩr/q, and a modified harmonic trap: V (r) = 1
2M(ω2

⊥ − Ω2
r)(x

2 + y2) +

1
2Mω2

‖z
2. Therefore, rotation leads to an effective magnetic field in the rotating

frame, with the Coriolis force mimicking the Lorentz force. Experimentally, a gas can

be rotated at low frequencies by stirring it with laser beams[77, 78] or by rotating the

confining magnetic potential[79]. Above a critical rotation frequency, the artificial

magnetic field nucleates vortices and regular vortex arrays can be observed[77, 78].

For useful reviews discussing rotating gases see Refs. [76, 80, 40].

As B is proportional to Ωr, rotating the gas faster generates larger artificial

magnetic fields and higher vortex density. However, the centrifugal force appears

in the modified trapping potential and so limits the rotation rate. When Ωr >

ω⊥, the modified trap disappears and the atoms fly apart2. Achieving the rapid

rotation limit is experimentally demanding[76, 80, 40]. It can be done, for example,

2At the centrifugal limit, when Ωr = ω⊥, the gas is effectively 2D and uniform perpendicular to
the rotation axis, so the eigenstates are macroscopically degenerate Landau levels.
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with an additional quartic trapping potential[81] or using an evaporative spin-up

technique[82].

To explore strongly correlated physics, the 2D particle density must be compara-

ble to the mean vortex density3[76]. The centrifugal limit places an upper bound on

the vortex density: nv = |Bmax|q/h = 2Mω⊥/h. However, in practice this is very

small compared to the achievable particle densities for large particle numbers[76].

Therefore the strongly correlated regime is so far inaccessible in rotating gases4. An-

other key disadvantage of this approach is that the magnetic field generated is in the

rotating frame. Any non-axisymmetric perturbations in the lab frame will translate

into time-dependent potentials in the rotating frame[76]. These are difficult to treat

and can lead to heating. To avoid this problem, focus has shifted towards simulating

effective magnetic fields in the lab frame, for example, by using the dressed state

schemes that we shall now discuss.

2.1.2 Artificial Magnetic Fields with Dressed State Schemes in the

Continuum

These schemes use a spatially varying atom-light coupling to generate an artificial

magnetic field. In Eq. 1.5, we saw that the Berry curvature, Ω(p), acts like a

magnetic field in momentum-space. This definition could equally be applied to any

parameter-space of the Hamiltonian. Replacing the momentum, p, in Eq. 1.5 with

the position, r, we specify a real-space Berry curvature5 which is then analogous to a

magnetic field in co-ordinate space. Dressed state schemes aim to engineer nonzero

real-space Berry curvature and hence realise an artificial real-space magnetic field.

These schemes have three main characteristics:

1. The system contains two or more internal states that are coupled and split in

energy.

3The mean vortex density perpendicular to the axis of rotation, nv, is equivalent to the effective
magnetic flux density as nv = 2MΩ/h = |B|q/h.

4Rotating optical lattices will be discussed in Section 2.1.3. There is also promise in recent
proposals that discuss how to achieve strongly correlated states using three-body dissipation[83] or
deformations of the trapping potential[84], rather than trying to access the centrifugal limit.

5Note: real-space and momentum-space Berry curvature are not mutually exclusive.
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2. There is an appropriate basis of states with respect to which the particles are

moving adiabatically in one state6. The effects of Berry curvature arise from

adiabatically eliminating all other states. The Schrodinger equation for the

remaining state contains the real-space Berry connection7[42].

3. The state in which the atoms are moving adiabatically varies spatially in such

a way that both its real-space Berry connection and curvature are nonzero.

In an ultracold gas, the internal states can be different hyperfine electronic states

of the atom[85, 42]. These may have different energies, or their energies can be split

by the Zeeman effect in a real magnetic field. The states can then be coupled

via optical lasers. As the name of this section suggests, a useful basis is that of

the dressed states: the eigenstates of the atom-light coupling. If we assume that

interactions are negligible and that the kinetic energy and trap potential are small

compared to the dressed state energy spacing, the atoms move adiabatically in a

dressed state[85]. These states inherit spatial dependence from the optical coupling,

so a nonzero real-space Berry curvature can be achieved with a suitable spatial

variation of the coupling lasers.

Let us illustrate the above for the simplest case of a ground, |g〉, and excited

state, |e〉, coupled by a laser[42]. In the rotating wave approximation, the atom-light

coupling has the form:

U =
~ΩR

2





cos θ e−iφ sin θ

eiφ sin θ − cos θ



 (2.2)

in the basis {|g〉, |e〉} and where ΩR is the Rabi frequency, φ is the phase of the

laser, ΩR cos θ is the detuning from atomic resonance and ΩR sin θ is the atom-laser

6Isolating a degenerate sub-space of states rather than a single state produces non-Abelian Berry
curvature and hence non-Abelian gauge fields, such as spin-orbit coupling (Section 2.2). We also
note that the condition of adiabaticity can be relaxed for the optical flux lattices (Section 2.1.3).

7The real-space Berry phase is then like the Aharanov-Bohm phase, completing the analogy.
Note: in general, there will also be an additional geometric scalar potential, but, for simplicity, we
shall not discuss this further here.
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Figure 2.1: A multipod configuration coupling (Fig-
ure taken from Ref. [87]). Lasers couple an excited state
to N different atomic states. Diagonalising the atom-
light interaction leads to the dressed states. There is a
N − 1 manifold of degenerate dark states.

coupling strength. The dressed states are then:

|χ1〉 =





cos(θ/2)

eiφ sin(θ/2)



 , |χ2〉 =





−e−iφ sin(θ/2)

cos(θ/2)



 . (2.3)

Upon adiabatically eliminating |χ2〉, atoms in the dressed state, |χ1〉, experience an

artificial magnetic vector potential and field8:

qA(r) = i~〈χ1|
∂

∂r
χ1〉 =

~

2
(cos θ−1)∇φ, qB(r) = q∇×A(r) =

~

2
∇(cos θ)×∇φ

(2.4)

It is important to note that, as expected, the effective magnetic field, B(r), is geo-

metrical: it does not depend on the laser intensity, but only on the spatial variation

of the laser through θ and φ[42]. For this model, a nonzero effective magnetic field

requires that θ and φ have nonzero and non-collinear gradients. For the discussion

of schemes to implement this model, see the recent review paper Ref. [42] and ref-

erences within. We also mention that adding weak interactions to such a model can

lead to a density-dependent vector potential with novel consequences[86].

An important consideration of this simple scheme is that the dressed state is a

weighted combination of |g〉 and |e〉. Practically, this requires the rate of spontaneous
emission from |e〉 to be negligible on the time-scales considered, to make the excited

state very long-lived and to avoid excessive heating. This assumption is reasonable

for the intercombination line of ytterbium or alkaline earth atoms, where this lifetime

is typically on the order of seconds or longer[42].

One way to eliminate the contribution from excited states is to use the so-

called “dark” state(s)[85, 42]. For the coupling of N ground states to one excited

8Note that the definition of the magnetic vector potential and field differ from the Berry con-
nection and curvature by the effective charge, q. We shall use these terms interchangeably in what
follows, but this distinction should be kept in mind.



Section 2.1 Artificial Magnetic Fields 27

state, there are N − 1 eigenstates with zero energy which are uncoupled from the

excited state and so are robust with respect to spontaneous emission (Figure 2.1).

For the “lambda” scheme, N = 2 and there is a single dark state. As before, the

other dressed states can be adiabatically eliminated, leading to an artificial magnetic

field and vector potential (similar to Eq. 2.4). Various proposals describe how a

non-zero effective magnetic field could be achieved using lasers with orbital angular

momentum[88, 89] or spatially shifted light beams[90, 91].

Alternatively, an artificial magnetic field can be realised using two-photon cou-

plings with sufficient detuning from the excited states. Experimentally, this has been

achieved with the scheme in Figure 2.2[92]. Instead of a dark state, this scheme uses

the lowest dressed eigenstate of the hyperfine basis {|mF=1〉, |mF=0〉, |mF= − 1〉}
for the F=1 states of 87 Rb. Contributions from the excited state manifold are

reduced by ensuring that ∆, the single-photon detuning from the manifold, is very

large compared to the Rabi frequencies. The real-space Berry curvature for the

lowest dressed state can be controlled, for example, through the spatial variation

of the two-photon detuning, δ (c.f. the simpler model, Eq. 2.4). This detuning

derives from a real magnetic field which Zeeman-shifts the energies of the sublevels,

breaking the degeneracy. If the “Zeeman field” is uniform, the effective vector po-

tential is uniform and the effective field is zero[93]. However, if the Zeeman field

is inhomogeneous, the detuning varies spatially and the effective magnetic field is

nonzero9[92]. By making the vector potential time-dependent, a synthetic electric

field can be generated[95]. However, a key drawback is the significant heating and

loss due to spontaneous photon emission10[94].

Finally, we note the intrinsic difficulty of reaching the strongly correlated regime

with these schemes. As mentioned above, the spatial variation in the dressed states

derives from the optical coupling fields. Following Ref. [96], if the wavelength of

the atom-light coupling is λ, the vector potential will vary smoothly as |qA| . h/λ

9We note that this experiment can also be discussed within a complementary framework appli-
cable even outside the adiabatic approximation[92, 94]. The adiabatic limit requires that the Rabi
frequencies are much larger than the photon recoil energy.

10For large detunings, both the photon scattering rate and the two-photon Raman coupling
strength decrease approximately as I/∆2, where I is the light intensity, for alkali atoms[42]. There-
fore while spontaneous photon emission is reduced by increasing the detuning, this comes at the
cost of the coupling strength.
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Figure 2.2: Scheme of [92](Figure from
Ref. [42]). Two lasers, with wavevectors k1

and k2 couple the F=1 sub-levels in 87Rb.
In the two-photon Raman process, an atom
absorbs a photon from one beam and emits
into the second by stimulated emission. ∆
is the single-photon detuning from the ex-
cited states and δ is the spatially-varying
two-photon detuning.

(see Eq. 2.4). Using Stokes’ theorem, this can be related to the mean magnetic flux

density, n̄φ, through a region of sides Lx, Ly:

∫

nφd
2r = n̄φLxLy =

q

~

∮

A · dr .
(Lx + Ly)

λ
. (2.5)

Then n̄φ . 1/Lλ, where L = min(Lx, Ly)[96]. These schemes are in the continuum,

so L is set by the radius of the cloud. For typical values, L ≃ 10µm and λ ≃ 500nm,

the mean flux density is: n̄φ . 2×107cm−2. For strongly correlated physics, the 2D

particle density must be comparable to the mean flux density, but this is too low

to be experimentally realisable. As we shall now see, much stronger magnetic fields

are possible when considering schemes with optical lattices.

2.1.3 Artificial Magnetic Fields With Optical Lattices

Magnetic Fields in Tight-Binding Lattices

Before discussing specific proposals, we briefly review how magnetic fields affect

particles in deep lattices. A magnetic vector potential can be incorporated into the

Hamiltonian via the substitution: p → p − q
cA. Atoms then gain a Peierls phase

factor when tunnelling between sites on a lattice[97]. The phase, θ, can be viewed

as the Aharanov-Bohm phase accumulated while tunnelling:

θn,m =
q

~

∫ rn+1,m

rn,m

A · ds, (2.6)

where ds joins the sites of a 2D lattice and A = (−By, 0, 0): the Landau gauge for

a perpendicular magnetic field, Bẑ. As in Section 1.1.1, this phase is only gauge-
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Figure 2.3: The coloured Hof-
stadter butterfly (Figure from
Ref. [98]). The horizontal axis is
the chemical potential, while the
vertical is the flux per plaque-
tte (running between 0 and 1).
For rational flux, (i.e. nφ = p/q
with p, q ∈ N), the lowest band
splits into q magnetic sub-bands.
For non-rational nφ, the spec-
trum is fractal. Warm colours
indicate positive Chern numbers,
and cool colours negative.

invariant and physical if we consider hopping around a plaquette (which we now

take to be of dimensions a× a). Then:

∑

�

θn,m =
qBa2

~
= 2πnφ (2.7)

where nφ is the flux per plaquette and � indicates that the sum is around a plaquette.

For sufficiently strong lattice potentials, when the bandwidth is much less than the

energy gaps between bands, the Hamiltonian can be described by a single-band

(non-interacting) tight-binding model:

H = −J
∑

n,m,±
e±iθn,m â†n±1,mân,m − J

∑

n,m,±
â†n,m±1ân,m (2.8)

where J is the tunnelling energy, ân,m(/â†n,m) is the annihilation(/creation) operator

for a particle in the spatially localised state at site (n,m). The spectrum is the

Hofstadter butterfly[99]. Thouless et al.[4] studied this Harper-Hofstadter model in

their seminal work on the role of Chern numbers in the quantum Hall effect (Section

1.1.1). This can be visualised by colouring each state in the butterfly according to the

quantised Hall conductance (Figure 2.3), revealing a remarkable phase diagram[98].

Many proposals in ultracold gases therefore seek to simulate an artificial magnetic

field by engineering the Hamiltonian (Eq. 2.8) directly. The key challenge is to

create the appropriate Peierls phase factors in the absence of the Lorentz force.
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Figure 2.4: Figure from Ref. [103], describing the experiment of Ref. [101].
(Top) The optical lattice potential. There is an energy offset between al-
ternate sites, A and B, along x. This offset is large compared to the band-
width and so freezes tunnelling along this direction. (Hopping along y is
unaffected). A pair of Raman laser beams couple A and B states, turning
back on the tunnelling along x. This tunnelling gains a Peierls phase (like
Eq. 2.8), which depends on δk, the difference between the wave-vectors of
the Raman beams. By varying the wavelength or angle between the beams,
δk is varied and the “magnetic flux” is controlled. (Bottom) The arrows
indicate the direction of the effective magnetic field. This alternates be-
tween sites because the sign of the phase factor switches between A → B
and B → A.

Laser-Assisted Tunnelling in Tight-Binding Lattices

One way to realise complex tunnelling phase factors is to use laser-assisted tun-

nelling, as first proposed in Ref. [100] and recently experimentally implemented in

Refs. [101, 102] (Figure 2.4). Such schemes are able to reach very strong effective

magnetic fields. In the experiment of Ref. [101], the magnetic flux density per pla-

quette11 is |nφ| = 1/4. For electrons in condensed matter systems, such high flux

densities are inaccessible, and so ultracold gas experiments will open the way for

studying many novel phenomena[103].

However, in the experiment of Ref. [101], the artificial magnetic field is also

staggered, with the sign of the flux alternating along the direction of laser-assisted

tunnelling. Therefore, the spatial average of the magnetic field remains zero. The

Bloch band has a Chern number of zero and is topologically trivial. While the Bose-

Hubbard model with a staggered magnetic flux can still have novel properties[104,

11For comparison to the discussion above, this is of the order |n̄φ| ≃ 1× 108cm−2. Also note: the
phase around a plaquette is defined modulo 2π, so the maximum flux density is |nφ| = 1/2.
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105], there is great interest in extending these schemes to uniform fields where topo-

logically nontrivial bands may be realised. In the new experiment of Ref. [102], the

staggered flux was rectified by adding a linear tilt potential12; this development will

allow experiments to study the Harper-Hofstadter model in ultracold atomic gases.

Optical Flux Lattices

Optical flux lattices provide an alternative route to access strongly correlated frac-

tional quantum Hall physics. The optical flux lattices consist of a state dependent

potential in register with an inter-species coupling, and lead to effective magnetic

flux with a high non-zero average (with a non-zero integer number of magnetic flux

quanta per unit cell)[96, 107, 108, 109]. Optical flux lattices have the advantage

of requiring small numbers of lasers, and so can be easier to experimentally imple-

ment than other schemes[96]. They also apply outside of the tight-binding limit,

i.e. for weaker lattice potentials and lower light intensities, and so suffer less from

heating[65].

It is useful to connect optical flux lattices to the dressed states schemes of

Section 2.1.2, although we emphasise that these are also valid outside of the adiabatic

limit. As we saw in Eq. 2.5, the effective magnetic flux through a unit cell can be

expressed as the integral of the real-space Berry connection of the lowest dressed

state around the cell. If the Berry connection varies smoothly, this will vanish due to

the periodicity of the cell. It will be nonzero only if there are singularities inA(r)[96].

These singularities are gauge-dependent and contribute to a nonsingular effective

magnetic field. (The Berry connection singularities are analogous to Dirac strings

for a magnetic monopole[96].) In the optical flux lattices, the atom-light coupling is

chosen such that these singularities are present. This allows the realisation of high

effective magnetic fields13.

The specific optical coupling depends on the geometry and atomic species cho-

sen. For atoms with a ground state and long-lived metastable excited state, such

12This technique was first proposed in Ref. [100]. Alternatively a uniform flux could be achieved
using an additional superlattice with a period of twice the lattice spacing[106].

13This can be seen by replacing L in Eq. 2.5 with λ (i.e. the flux density will be of the same
order as the tight-binding lattices with laser-assisted tunnelling).
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as an alkaline earth atom or ytterbium, a simple one-photon coupling scheme can

be implemented[96]. For more commonly used atomic species, such as alkali atoms,

two hyperfine states can be used with coupling via two photon processes[107]. In

Section 3.3.2, we shall discuss an example of each: the square one-photon optical

flux lattice and the F = 1/2 two-photon optical flux lattice. The lowest energy

band in both lattices can have a Chern number of one and hence be topologically

equivalent to the lowest Landau level. Optical flux lattices can also be designed

with bands of Chern number greater than one or very narrow topological bands

with highly uniform magnetic flux[108]. These narrow bands closely mimic Landau

levels and so will be ideal for investigating fractional quantum Hall physics. This

has been further explored in recent exact diagonalisation studies, which show that

FQH many-body ground states can be realised for particular optical flux lattices

with nearly dispersion-less bands[109].

Other Experimental Approaches

While Berry phase schemes rely on a separation of energy-scales, artificial magnetic

fields can also be created using a separation of time-scales[110, 111, 112, 113]. An

illustrative example is shown in Figure 2.5, where a 1D deep optical lattice is shaken

periodically[114]. The period, T , is much shorter than any other timescale of the

system, such as the time taken to tunnel between sites. Then the system on long

timescales can be described by a time-independent Hamiltonian where the effective

hopping gains a Peierls phase due to the shaking[114, 112]. The advantage of such a

scheme is that it does not rely on the internal structure of the atoms, and so can be

applied to a wide-range of species. In 1D, this Peierls phase is trivial as it can always

be gauged away. However, this fast lattice shaking has also successfully been applied

in 2D to generate artificial gauge fields and investigate both classical magnetism[111]

and Ising-XY models[115] in a triangular lattice. Such schemes can also be gener-

alised to generate non-Abelian gauge fields and topological insulators[116].

Alternatively, a Peierls phase can be introduced by rotating the lattice[76, 117,

118]. As we saw in Section 2.1.1, rotation gives rise to an effective magnetic vector

potential, A ∝ Ωr×r. In the deep lattice regime, this appears as the Peierls phase, as
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Figure 2.5: Figures taken from Ref. [114]. (a) A 1D lattice is shaken
periodically by modulating one of the lattice beams. (b) Resulting periodic
inertial force F = −mẍ, where x(t) is the path of the lattice shaking.
This force has zero mean so there is no net acceleration of the lattice. By
breaking reflection and shift symmetries, the Peierls phase, θ, can be varied
smoothly between 0 and 2π by increasing the forcing amplitude, K (for
sinusoidal forcing only: θ = 0 or π). (c) The effective tunnellings with
complex Peierls phases. (d) The effect of the artificial gauge potential, A, is
to shift the single-particle dispersion from k = 0 to k = A/~ = θ/d (where
d is the lattice spacing). (e) The quasimomentum distribution after 27ms
time of flight. As K increases, θ increases and the dispersion minimum
shifts[114].

explored experimentally in Ref. [118]. However, there are still key difficulties: there

are many particles per vortex, so current experiments are far from the strongly

correlated regime and there is significant heating from lattice imperfections and

fluctuations14 [118].

Finally a combination of radio frequency and Raman coupling fields can be

14Heating may be reduced by making the artificial magnetic field stationary in the lab-frame. In
Ref. [119], it was proposed that a lattice of impurity atoms could be immersed in a rotating BEC.
Collisions between the impurity atoms and the condensate atoms create phonons, inducing effective
interactions between the impurity atoms. For a rotating condensate, these effective interactions led
to Peierls phases for the impurity atoms in the lattice[119].
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used to create a 1D “Zeeman” lattice for the F = 1 states of 87Rb[120]. Under

the rotating wave approximation, the combined fields contribute a “Zeeman”-like

term to the Hamiltonian. (Note: there is no additional optical lattice, instead the

1D lattice potential arises from the spatially varying Zeeman energy shift.) This

Zeeman-like term can be viewed as arising from an effective magnetic field coupling

to F̂ , the angular momentum operator for F = 1. As atoms tunnel between sites,

the effective field precesses and atoms gain a Berry phase proportional to the solid-

angle enclosed by the precession15[120]. Tunnelling therefore gains a Peierls phase

factor which is controllable through the Raman detuning from resonance. Again,

this is only a 1D Peierls phase, but an extension to 2D has been proposed[120].

2.2 Spin-Orbit Coupling in Ultracold Gases

Energy dispersions with nontrivial geometrical properties can also arise in spin-orbit

(SO) coupled systems. In particular, we will focus in Section 4.3 on 2D Rashba spin-

orbit coupling:

HR = λR(pxσ̂y − pyσ̂x), (2.9)

where λR is the Rashba coupling and σ̂x/y are the Pauli spin-1/2 matrices16. This

breaks inversion symmetry while preserving time-reversal symmetry. When an ex-

ternal field lifts the degeneracy between the spin states, the energy dispersion has

nonzero Berry curvature which can have important consequences. We therefore now

introduce spin-orbit coupling in ultracold gases, focusing in particular on how 2D

Rashba SO might be experimentally achieved.

Spin-orbit coupling links the spin of a particle to its momentum. In the solid-

state, SO interactions are a relativistic quantum effect, arising from the motion of

electrons through electric fields such as that of the charged nucleus or the crystal

15The geometric phase gained by a spin in a slowly changing magnetic field was first found by
Berry in Ref. [9].

16In Section 4.3, we also include a Zeeman field to introduce an energy off-set between the spin
states. This ensures that the usual Abelian non-degenerate formulation of the momentum-space
Berry curvature(Eq. 1.5) can be applied.
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field of a material17. To give an intuitive argument, an electric field leads to a

magnetic field, B, in the reference frame of the electron. Therefore the energy gains

an additional momentum-dependent Zeeman interaction, −µ · B, where µ is the

magnetic moment of the electron parallel to the spin.

There is great interest in exploring spin-orbit coupling in ultracold atoms as

it would allow the simulation of many fascinating condensed-matter phenomena.

Spin-orbit interactions have important applications in spintronics and spin quan-

tum computation[121], while most famously, spin-orbit coupling is essential for the

quantum spin Hall effect and for many classes of topological insulators[5, 6]. It is

expected that adding strong interactions could also lead to fractionalized topologi-

cal insulators (analogous to the FQH effect) about which little is known[122, 123].

Ultracold gases would therefore provide an important way to learn about these

new systems. In addition, spin-orbit coupled ultracold Fermi gases could support

novel excitations such as Majorana[124] and Weyl[125] fermions. SO coupling in

ultracold gases would also lead to physics with no solid-state analogue[123]. For

example, spin-orbit bosons can have a degenerate ground-state, that could exhibit

exotic many-body states[126, 123, 127].

2.2.1 Experimental Implementation of 1D Spin-Orbit Coupling

Spin-orbit coupling in ultracold gases cannot be achieved by simply mimicking

solid-state physics, as the electric fields required are too high to be created in the

laboratory[123]. Instead, experiments use two-photon Raman transitions to couple

two internal “spin” states of an ultracold gas (see Figure 2.6 and 2.7)[129]. We

note that this coupling can be interpreted as equal-parts Rashba and Dresslhaus.

This technique has been successfully applied in both BECs[129, 130] and Fermi

gases[131, 132]. However, this approach is limited by spontaneous emission of pho-

tons, which will lead to heating or loss. This dispersion also does not have interesting

geometrical properties, as the Berry curvature (Eq. 1.5) is zero. Therefore we now

turn to schemes for higher-dimensional SO coupling.

17In a crystal, SO-coupling requires there to be a broken spatial symmetry. If there is broken
inversion symmetry, Rashba SO coupling is possible. If the material is non-centrosymmetric, there
can be Dresselhaus SO coupling ∝ (σxpx − σypy).
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Figure 2.6: Figure from Ref. [128], describing the basic scheme for 1D spin-
orbit coupling in an ultracold gas. A two-photon Raman transition couples
the two spin states via an excited state (the detuning from resonance is
δ). A spin-up atom flips its spin by absorbing a photon from laser L and
emitting a photon into laser R. Momentum must also be conserved, as a
photon carries a recoil momentum of magnitude kR = h/λ. Therefore the
Raman process couples states | ↑, kx=q + bkR〉 and | ↓, kx=q − bkR〉, where
b is a numerical factor depending on laser-beam alignment and we have
introduced a mapping onto q, the quasi-momentum. This is a 1D spin-orbit
coupling as it depends only on the velocity along x.

2.2.2 Higher-Dimensional Spin-Orbit Coupling in Ultracold Gases

Dressed State Schemes

A series of proposals[133, 134, 87, 135, 136] build on the dressed state schemes for the

continuum, as introduced in Section 2.1.2[42]. There, a real-space Berry connection

acts as an artificial magnetic vector potential. Unlike magnetic fields, 2D Rashba

spin-orbit coupling can be viewed as a non-Abelian gauge field18. Therefore, this

can be generated by coupling a degenerate manifold of states to make the real-

space Berry connection non-Abelian[42] (see Eq. 1.8). As two degenerate states

can represent spin-1/2 particles, using more degenerate states would also generalise

spin-orbit coupling to larger spins[87]. However, these schemes have disadvantages:

some of them are susceptible to decay and relaxation as they do not work with the

ground-state[133, 134, 87], while others require many coupling lasers[135, 136].

18A non-Abelian gauge field is a field, A, with non-commuting components (i.e. AxAy 6= AyAx).
For Rashba spin-orbit coupling, this is satisfied because of the non-commutativity of the Pauli spin
matrices[137]. Note the 1D spin-orbit coupling described above is Abelian[138].
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Figure 2.7: Figure taken from Ref. [129]: first experimental realisation of
1D SO coupling. (a) The level diagram. Note the similarities to Figure 2.2;
here the |mF=1〉 state has been neglected due to a large quadratic Zeeman
shift, leaving an effective two-level system. (b) The computed energy dis-
persion for the quasi-momentum, q at δ = 0 and a range of Raman strength
couplings, ΩR (= 0−5ER). The grey curve indicates ΩR = 0, the uncoupled
spectrum. At small non-zero coupling, the lower band has two minima at
nonzero quasi-momenta, with associated dressed spin states | ↑′〉 and | ↓′〉.
For large enough Raman coupling (ΩR > 4ER) the double-well merges into
a single minimum. (c) Experimentally measured minima corroborating the
predicted dispersion. (d) Spin-momentum decomposition. These experi-
mental results clearly show the coupling between spin and momentum.

Taking the 1D Experiment Further

Since the experimental realisation of 1D spin-orbit coupling, theoretical proposals

have shown how similar set-ups can be extended to 2D coupling. In Ref. [139], two

bichromatic lasers along x and y couple hyperfine states in the F = 9/2 manifold

of 40K. As in Figure 2.7, an effective two-level system is isolated via the quadratic

Zeeman shift. The Raman lasers are reflected to create a periodic coupling, that

depends spatially on the phase of the lasers. In the limit of small Raman coupling,

the spin-orbit interaction can be tuned between 2D Rashba and Dresselhaus types.

Operating at weak ΩR also reduces heating from spontaneous emission. However,

unlike previous schemes, the resulting spin-orbit coupling is not purely geometric;
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Figure 2.8: 2D Rashba SO-
coupling through pulsed inho-
mogenous magnetic fields (Figure
from [141]). The magnetic field,
B, during one pulse sequence.
Top Left: Between 0 ≤ t < τ ,
|B| ∝ yx̂. Top Right: Between
τ ≤ t < 2τ , |B| ∝ xŷ. Bottom:
The amplitude modulation of B

over the pulse sequence. The net
result is to couple the momentum
along y with the spin along x dur-
ing the first half of the sequence
and momentum along x and spin
along y during the second.

it depends on the laser strength, ΩR. Therefore SO coupling strength is limited in

the regime of operation[139]. Another scheme[140] suggests dynamically switching

between pairs of lasers like those used in the 1D experiment of Ref. [129]. By alter-

nating fast pulse sequences and pseudo-spin rotations, the time-averaged effective

Hamiltonian will have 2D spin-orbit coupling that is geometrical and is not limited

by ΩR.

Pulsed Inhomogeneous Magnetic Field Gradients

All the schemes discussed so far rely on Raman beams to couple internal states.

Key disadvantages of these include the complicated coupling schemes required and

the heating and loss associated with spontaneous emission. Recently, two related

proposals have shown how these problems might be avoided in a fresh approach,

using pulsed magnetic field gradients[142, 141]. For atoms in a (pseudo)spin-F

hyperfine manifold, the interaction with a weak magnetic field, B, is:

HB(r, t) = gFµBF ·B, (2.10)

where F is the spin vector, gF is the Landé g-factor and µB is the Bohr magneton. A

magnetic field with a linear gradient19 therefore imparts a uniform spin-dependent

19Linear-gradient magnetic fields cannot exist within an atomic cloud as the divergence and curl
of B vanishes in the absence of currents. Refs. [141, 142] both suggest how this problem might be
overcome in experiments.



Section 2.3 Summary 39

force, coupling momentum and spin as required[141]. Sequential short pulses couple

the momentum and spin along different directions. As the pulses are fast, the evolu-

tion of the system can then be approximated by an effective 2D spin-orbit coupled

Hamiltonian on longer time-scales[141, 142]. An example protocol for generating

2D Rashba spin-orbit coupling is shown in Figure 2.8. These proposals have several

other advantages over previous methods. They can implement arbitrary couplings,

can be applied to any spin, F , and are straightforwardly generalised to 3D SO cou-

plings. They also do not rely on the quadratic Zeeman shift (see Figure 2.7), which

is absent for species with zero nuclear spin, such as 52Cr and 164Dy[142].

Spin-Orbit Coupling in Optical Lattices

Finally we briefly note that non-Abelian gauge fields could be realised in optical

lattices by generalising concepts from Section 2.1.3[143, 144, 145, 42]. Previously,

we saw that an artificial magnetic vector potential could be simulated via a complex

tunnelling in the Hamiltonian, introduced, for example, by laser-induced hopping. A

non-Abelian field requires there to be a degenerate manifold of states in the lattice.

Then tunnelling is replaced by unitary matrices describing hopping along x and y.

To be non-Abelian, these matrices must not commute. The tunnelling can then be

interpreted in terms of a non-Abelian vector potential and an artificial spin-orbit

coupling[143].

2.3 Summary

In summary, artificial gauge fields in ultracold gases are an important area of cur-

rent research. Artificial magnetic fields have been realised experimentally in ro-

tating gases, with dressed state schemes in the continuum, and with laser-assisted

tunnelling in optical lattices. Furthermore, there are useful theoretical proposals for

how to extend these achievements to reach the strongly correlated regime. When

time-reversal symmetry is broken, energy bands in optical lattices can have nonzero

Chern numbers. This nontrivial topology makes these ideal systems for investigating

the novel consequences of Berry curvature discussed in this thesis. In particular, we
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take the proposed optical flux lattices as relevant experimental example systems in

the following chapters.

The outlook for achieving 2D Rashba spin-orbit coupling in ultracold gases is

also promising. There is a great interest in this goal because of the many fascinating

effects to be explored. While only 1D spin-orbit coupling has so far been achieved

experimentally, there are a wide variety of proposals for achieving this in 2D. We

therefore discuss the 2D Rashba Hamiltonian in a Zeeman field in Section 4.3 as a

useful system in which to explore the effects of Berry curvature.



Chapter 3

Mapping the Berry Curvature from

Semiclassical Dynamics

in Optical Lattices

In this chapter, we present a general method for mapping the Berry curvature

from the semiclassical dynamics of a wave packet. As introduced in Chapters 1 & 2,

ultracold gas experiments can now explore optical lattices with nontrivial topolog-

ical and geometrical features. This presents an excellent opportunity to study the

topology of bands directly. To achieve this, new tools are required to characterise

and study the novel properties of the lattices. Here, we propose how experiments

would be able to use semiclassical dynamics to map the Berry curvature over the

entire Brillouin zone for the first time. This work was published as Ref. [1].

We begin by introducing the Bloch oscillations of a wavepacket, and reviewing

how the semiclassical dynamics are modified by the presence of Berry curvature

(Section 3.1). We discuss the complications of two-dimensional Bloch oscillations

and, in Section 3.2, outline a “time-reversal” protocol to map out the Berry cur-

vature experimentally. We illustrate this discussion with numerical results for the

Berry curvature and semiclassical dynamics for three interesting specific models: the

asymmetric honeycomb lattice (Section 3.3.1) and two optical flux lattices (Section

3.3.2). In Section 3.4, we discuss general experimental considerations and time-of-

flight experiments. Finally, in Section 3.5, we place our work in the context of the

41
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wider field, focusing on important developments since our publication, such as the

experimental measurement of the Zak phase using a similar method[146].

3.1 The Semiclassical Dynamics of a Wavepacket

The Semiclassical Dynamics of a Wavepacket without Berry curvature

To describe semiclassical dynamics, we consider a gas of non-interacting fermions or

bosons that is prepared in a wavepacket with a centre of mass at position, rc, and

momentum, kc [147, 148]. For atoms initially prepared in the bottom of the lowest

band, the temperature contributes to the initial momentum spread of the atoms.

We therefore assume that the temperature is less than the bandwidth so that the

wavepacket does not cover the whole Brillouin zone.

We consider the wavepacket under a constant external force, F . In a solid

state system, this force would usually be due to an electric field. However, ultra-

cold gases are neutral, and this force may instead come from linearly accelerating

the lattice[148, 149], from gravity[150, 151, 152, 153] or from a real magnetic field

gradient [146]. It is assumed that the force is sufficiently small that the motion is

adiabatic and that the atoms remain in the lowest band. This means that the rate

of Landau-Zener tunnelling to the next lowest band must be small. The probability

of a Landau-Zener transition where the bands almost touch is given by [154]:

p = e−ac/aF (3.1)

where aF is the acceleration of the atoms moving under the external force, ac =

(δE)2λ/8~2, λ is the optical wavelength and δE is the bandgap. This can therefore

be neglected when the force is small or the bandgap is large.

The semiclassical equations of motion are [147]:

ṙc =
1

~

∂E(kc)

∂kc

~k̇c = F . (3.2)
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Under a constant force, F , the wavepacket will execute Bloch oscillations. Bloch

oscillations have not been observed for bulk crystalline electrons due to electronic

scattering off lattice defects, but they have been seen in other physical systems

including semiconductor superlattices [155] and ultracold gases [148, 150].

To demonstrate how Bloch oscillations arise from Equation 3.2, let us consider

the motion of a wavepacket in a one-dimensional (1D) lattice. The momentum of

the wavepacket evolves as kc(t) = kc(0) + Ft/~. However, the crystal momentum

lies within the Brillouin zone: kc ∈]− π/a, π/a]. Therefore, the evolution will have

a periodicity, τB = h/(Fa) (where a is the lattice constant); this is the time taken

for the wavepacket to evolve across the whole Brillouin zone. In real space, the

wavepacket will perform periodic Bloch oscillations.

The Semiclassical Dynamics of a Wavepacket with Berry Curvature

The equations of motion are crucially modified by Berry curvature [23]:

ṙc =
1

~

∂E(kc)

∂kc
− (k̇c × ẑ)Ω(kc),

~k̇c = F . (3.3)

We shall refer to the first term in Eq. 3.3 as the group velocity and to the second as

the Berry velocity1. We note that these semiclassical equations are further modified

if there is an external “magnetic” field[23] in addition to the external force F . We

shall not discuss this further here, assuming that any magnetic field has the periodic-

ity of the lattice and is incorporated into the bandstructure through the (magnetic)

Bloch states |nk〉 (see Section 3.3.2). The effect of a magnetic field on Bloch oscil-

lations has also been analysed directly from the tight-binding Hamiltonian in Refs.

[157, 158]. Equations 3.3 were first derived using the Lagrangian formalism for a

semiclassical wavepacket[23]. Recently a more transparent and elementary deriva-

tion has been presented for the Harper-Hofstadter model2 in an external electric

field[156].

1We note that there exist variants of these equations in the literature with different signs [156, 12].
We believe this to be the correct version as stated in [23].

2This model was introduced briefly in Section 2.1.3.
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To theoretically simulate the semiclassical dynamics, we must be able to calcu-

late the Berry curvature. In general, a simple analytic expression is not possible and

the Berry curvature is calculated numerically. This requires a discretised version of

(1.5), as eigenfunctions are found computationally over a grid in k-space. There is

an inherent phase ambiguity in the Bloch states, and so a gauge must be chosen to

calculate the Berry connection. The Berry curvature is gauge-invariant, and can be

found on this grid by the method of Fukui et al.[159], which applies a geometrical

formulation of topological charges in lattice gauge theory, where the Berry curvature

is calculated from the winding of U(1) link variables around each plaquette in the

Brillouin zone. We have used this method throughout this chapter for the numerical

calculations.

It is of interest to note that the effects of Berry curvature also arise in the

semiclassical dynamics of a wavepacket in a time-dependent one-dimensional optical

lattice [12, 113, 160]. The Berry curvature is then defined over a 2D parameter space

made up of the one-dimensional quasi-momentum and time. The Bloch oscillations

of a wavepacket in such a potential were theoretically studied in Ref. [160].

3.1.1 Lissajous-like Bloch Oscillations in 2D

The pioneering experiments on Bloch oscillations in ultracold gases were (quasi-)one

dimensional [148, 150], and only recently has the extension to 2D been investigated

[70]. In 2D, Bloch oscillations have various interesting features in their own right,

even before the Berry curvature is considered.

One important consequence of dimensionality is that the real-space Bloch os-

cillations in 2D become Lissajous-like [161, 162, 163]. For separable potentials,

1D Bloch oscillations along the x and y axes are simply superposed. For an arbi-

trary force F = (Fx, Fy), the wavepacket’s motion is periodic along ki with periods

τBi = h/|Fi|a (where i runs over x,y). The ensuing motion depends on the ratio

Fx : Fy.

We illustrate this with the example of a wavepacket in a simple dispersion:
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Figure 3.1: The real space motion of a wavepacket in the energy disper-
sion, E(kc) = −2J [cos kxa+ cos kya], under a constant external force. The
trajectories are shown for three different ratios of Fx : Fy. (The figures are
not to the same scale). These are Lissajous curves and even for a simple 2D
energy dispersion, the resulting trajectories can be complicated.

E(kc) = −2J [cos kxa+ cos kya], where 2J is the bandwidth. The velocity is:

ṙc =
1

~

∂E(kc)

∂kc
=

2Ja

~
(sin kxa, sin kya) =

2Ja

~

(

sin
Fxta

~
, sin

Fyta

~

)

. (3.4)

In Figure 3.1, we show the corresponding trajectories for different ratios of Fx : Fy.

Each trajectory will have a bounding box of lengths: 2J/|Fi|, or more generally, the

ratio of the bandwidth to the component of the force. For nonseparable potentials,

studies show that similar behaviour can be expected when the force applied is weak

and Landau-Zener tunnelling is negligible [161, 162]. Figure 3.2 gives one such

example for the experimentally-relevant square optical flux lattice (Section 3.3.2).

The real-space Bloch oscillations can therefore be complicated two-dimensional

Lissajous-like figures. For the Berry curvature to change this trajectory significantly,

it would be necessary to wait until the wavepacket drifts outside of the bounding box.

As a result, experiments would measure only the net Berry curvature encountered

along a path. Information would be lost about how the Berry curvature is distributed

in momentum space and notably whether its sign changes.

Furthermore, in 2D there can be an additional drift in the wavepacket’s position,

independent of the Berry curvature, if the wavepacket does not start at high sym-

metry points such as the zone centre k0 = (0, 0) [163, 164]. Thus, merely observing

a transverse drift is not, by itself, conclusive evidence of nonzero Berry curvature.
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Figure 3.2: An example of a Lissajous-like figure for the square optical
flux lattice (Section 3.3.2). The ratio Fx : Fy is 9 : 10, and a low force
of |F | = 0.05FR is used to minimise the effects of Berry curvature over
one oscillation (FR = h2/2mλ3 where λ is the optical wavelength and m is
the mass of the atomic species). The Lissajous-like figure is approximately
bounded by the Bloch oscillation lengths, and so it obscures the effects of
Berry curvature within this box.

3.2 A “Time Reversal” Protocol to Extract The Berry

Curvature

Berry curvature effects can be isolated by considering the dynamics under a reversal

of “time”. In doing so, it is important to be able to measure the velocity of the

wavepacket. We shall discuss in Section 3.4 how this may be done in experiments:

for instance through tracking the position of the wavepacket in real space or through

the momentum distribution, as in the seminal paper of Ben Dahan et al.[148].

We consider first measuring the velocity for a given force, F , at a particular

point, k, in the Brillouin zone. This can be achieved in an experiment in which

the wavepacket has evolved according to k(t) = k(0) + F t/~. This velocity is

uniquely defined (within the single band approximation) at each point k along the

trajectory and we denote it as vk(+F ). We now consider measuring the velocity in

an experiment in which the wavepacket passes through the same point k, but with

opposite direction of the force, −F , which we denote vk(−F ). This can be achieved,

for example, by evolving along the line k(0) + F t/~ for a time T that moves past

the point of interest (e.g. to the Brillouin zone boundary), and then retracing this

path using the reversed force −F . From (3.3), we can see that the Berry velocity
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changes sign, while the group velocity remains invariant. The two effects can then

be separated:

v
k
(+F )− v

k
(−F ) = −2

~
(F × ẑ)Ω(k) (3.5)

v
k
(+F ) + v

k
(−F ) =

2

~

∂E(k)

∂k
(3.6)

This transformation is equivalent to a time reversal operation, and it cleanly removes

the effects of the complex Lissajous-like figures in 2D.

The Berry curvature can now be found at each point along the wavepacket’s

path. By varying the path across the whole Brillouin zone, the Berry curvature is

mapped out and the Chern number is directly measured. The path of the wavepacket

may be chosen in various ways, two of which are illustrated in Figure 3.3. Firstly, the

alignment of the force with the lattice may be rotated so that different trajectories

are successively explored. In such a scheme, the measurement time can be short,

corresponding to the time taken for the wavepacket to travel once across the Brillouin

zone. However, it would be important to align the force precisely each time. An

alternative scheme would be to make the ratio Fx : Fy large. The wavepacket will

cover a large area of the Brillouin zone during a single Bloch oscillation. The force

needs to be aligned only twice (for +F and −F ) but longer measurement times

would be required. A combination of these methods may be most suitable.

(a) (b)

Figure 3.3: Two methods for mapping the Brillouin zone. (a) Rotating the
force with respect to the lattice between experiments allows each wavepacket
to travel a different path. (b) With a large ratio Fx : Fy, a single wavepacket
successively travels many paths within the Brillouin zone.
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3.2.1 Relation to the Chern Number

By this approach, measurements of the velocity of the wave packet can be used to

extract the Berry curvature. Measurements of the net drift of the wave packet in

position space can be used to measure the Chern number of the band. To illustrate

the idea, it is convenient to consider a BZ of rectangular symmetry, and the set of

paths k = (0, ky) → (Kx, ky) that are traced out by a force +F in the x-direction,

for different values of the initial wave vector ky. Here Kx denotes the size of the

reciprocal lattice vector in the x direction, so the path traverses the full width of the

Brillouin zone once. The net drift of the wave packet in the y direction, ∆y =
∫

vydt,

is:

∆y(ky,+F ) =

∫ Kx

0

1

F

∂E

∂ky
dkx +

∫ Kx

0
Ω(kx, ky)dkx. (3.7)

Note that, for general ky, there is a transverse displacement not only from the Berry

curvature but also from the group velocity[163, 164]. Reversing the force, such that

the set of paths run in the opposite direction, over k = (0, ky) → (−Kx, ky), the

displacement becomes:

∆y(ky,−F ) =
∫ Kx

0

1

F

∂E

∂ky
dkx −

∫ Kx

0
Ω(kx, ky)dkx. (3.8)

Thus, the contribution from the group velocity stays the same, but the contribution

from the Berry curvature changes sign. Averaging the difference:

∆y(ky,+F )−∆y(ky,+F )

2
=

∫ Kx

0
Ω(kx, ky)dkx (3.9)

extracts the part that depends on the Berry curvature. It is interesting to note

that this contribution is independent of the magnitude of the force. The size of the

transverse displacement is just set by the length scale of the underlying lattice (the

lattice constant), and a numerical factor that involves the average Berry curvature

along the trajectory. Furthermore, the total Chern number can be found by summing

over the set of trajectories with different values of ky, which can be used to represent

an evaluation of the integral:

C =
1

2π

∫ Ky

0
dky

∫ Kx

0
dkxΩ(kx, ky) (3.10)
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at discrete points in ky. (Clearly this approach can be readily adapted to a lattice

of any symmetry, provided the set of paths spans the entire Brillouin zone once.)

Note that, if instead of a wavepacket, the band is filled (e.g. by non-interacting

fermions) the Chern number may be measured from the net current density when a

force, F , is applied:

J =
1

2πh

∫ Ky

0
dky

∫ Kx

0
dkxΩ(kx, ky)(F × ẑ) =

C

h
(F × ẑ). (3.11)

For a trapped gas, this result can be applied locally, with F set by the local potential

gradient to give equilibrium currents.

3.3 Example Systems

In this section, we illustrate our proposed method for measuring the Berry curva-

ture for three example systems that are of experimental interest: the asymmetric

hexagonal lattice; and two optical flux lattices[96, 107] for which the Chern number

is nonzero.

The magnitude of the external force significantly affects the dynamics, as dis-

cussed further in Section 3.4. In previous experiments, the force has been introduced

by linearly accelerating the lattice [148, 149], where the magnitude can be varied,

or by gravity [150, 151, 152, 153]. In our units, |mg| = 0.7FR for 174Yb and for

λ = λ0 ≈ 578 nm, the resonance wavelength coupling the ground and excited state

in 174Yb [106]. This choice of parameters is especially relevant to the optical flux

lattices discussed below. We therefore primarily focus on the representative case

|F | = 1FR. We also note that, as discussed above, the rate of Landau-Zener tun-

nelling must be small for the evolution to be adiabatic (Eq. 3.1).This will be the

case when the force is small or the bandgap is large.

3.3.1 The Asymmetric Hexagonal Lattice

The tight-binding hexagonal lattice has long been studied in condensed matter

physics as a simple model for graphene [73]. Thanks to recent advances, optical
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Figure 3.4: The asymmetric hexagonal lattice in real space (on the left)
and reciprocal space (on the right). The real space lattice vectors are a1 =
a(
√
3/2,−1/2) and a2 = a(0, 1) where a is the lattice spacing (and for this

geometry, a = 2λ/3). The sublattices are connected byR1 = a(1/2
√
3, 1/2),

R2 = a(1/2
√
3,−1/2) and R3 = a(−1/

√
3, 0). The dotted lines indicate the

unit cell. The reciprocal lattice vectors are then K1 = (4π/
√
3a)(1, 0) and

K2 = (4π/
√
3a)(1/2,

√
3/2).

lattices of hexagonal symmetry (or closely related forms) can be imposed on ultra-

cold gases and phenomena associated with the interesting band topology can be

directly studied [69, 70, 165] (Section 1.2.3).

In the presence of both inversion and time-reversal symmetry, the bands touch

at two Dirac points in the corners of the hexagonal Brillouin zone. If either of these

symmetries is broken, band gaps open and Berry curvature appears at these points,

as in the Haldane model where time reversal symmetry is broken [166]. The Chern

number has also been observed experimentally for time-reversal symmetry breaking

in graphene [167, 168].

The asymmetric hexagonal lattice instead breaks inversion symmetry by intro-

ducing an onsite energy difference between the two lattice sites, A and B. The

opening of band gaps with asymmetry has already been studied experimentally in

graphene[169], but Berry curvature effects have not been observed directly. Theo-

retically, the Berry curvature can lead to a quantum valley Hall effect, which may

be useful for valley-based electronic applications [73, 170, 12]. It would therefore

be of great interest to study this system in ultracold gases, where it is already very

relevant to current experiments (see Section 1.2.3).

The honeycomb lattice can be viewed as two interpenetrating triangular sub-

lattices, for A and B, each with one site per unit cell (Figure 3.4). With onsite
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energies of ±W on A/B sites, and including only nearest neighbour hoppings, the

Hamiltonian is:

H(k) =





W V (k)

V ∗(k) −W



 (3.12)

where V (k) = −J [eik·R1 + eik·R2 + eik·R3 ]. The two energy bands are then:

E(k) = ±
√

W 2 + |V (k)|2 . (3.13)

For W = 0, the energy bands have two Dirac points at which |V (k)| = 0: these

are at k = (4π/
√
3a)(1/2, 1/2

√
3) and k = (4π/

√
3a)(0, 1/

√
3) which we label as K

andK ′. Near each of the Dirac points, the effective Hamiltonian takes a simple form.

Close to the Dirac point K, writing k = (4π/
√
3a)(1/2, 1/2

√
3) + q, the effective

Hamiltonian is:

H(q) =





W −~vF (qx − iqy)

−~vF (qx + iqy) −W



 (3.14)

where ~vF = (
√
3/2)aJ : a Dirac equation with mass. The bandstructure is shown in

Figure 3.5(a) for W = 0.5ER and J = 1.0ER. For this value of W , the bandgap at

the Dirac points is 1.0ER and the Landau-Zener tunnelling probability is less than

0.05 for |F | = mg or less than 0.09 for |F | = 1FR. Near the Dirac point, the Berry

curvature is [12]:

Ω(q) =
~
2v2FW

2(W 2 + ~2v2F q
2)3/2

(3.15)

For the Dirac point K ′, writing k = (4π/
√
3a)(0, 1/

√
3) + q, the Berry curvature

has the same form but opposite sign.

The resulting map of Berry curvature for the asymmetric hexagonal lattice is

displayed in Figure 3.5(b). This was previously found analytically in Ref. [171]. The

Berry curvature around points K and K ′ has opposite signs such that the net Chern

number of the band is zero. This vanishing Chern number is required by the fact

that the system is time-reversal invariant.

From the Berry curvature and bandstructure, we can now calculate the semi-

classical motion of a wavepacket in this system (Figure 3.6). To illustrate clearly
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(a) (b)

Figure 3.5: (a) Bandstructure of the lowest band of the asymmetric hexag-
onal lattice for W = 0.5ER and J = 1.0ER, and the energy in units of ER

(for this geometry, a = 2λ/3). Due to the asymmetry, gaps have opened at
the Dirac points at the corners of the Brillouin zone. (b) The Berry cur-
vature mapped out for W = 0.5ER, using the method of Ref. [159]. Light
shading indicates Ω > 0 and dark shading indicates Ω < 0. Positive and
negative regions cancel, giving a net Chern number of zero.

the effects of Berry curvature, we start the wavepacket at k = (0, 0) and consider a

force aligned along the y-direction, so that the 2D Bloch oscillation is also simply

directed along y. This real space trajectory was previously obtained in Ref. [172],

where the effects of a perturbing “magnetic” field were also discussed.

The velocities along x and y are shown in Figure 3.7. As the wavepacket passes

through K ′, the negative Berry curvature gives it a positive velocity in the x di-

rection. In between K ′ and K, there is no curvature and it moves with a group

(a) (b)
20

x / a

2

0

4

y 
/ a F

Figure 3.6: (a) The trajectory of a semiclassical wavepacket through the
Brillouin zone, starting from k = (0, 0) with F = (0.0, 1.0FR). The numbers
indicate the order in which the path is travelled. (b) The corresponding real-
space trajectory of the wavepacket, starting from the origin, forW = 0.5ER.
This result was previously obtained in Ref. [172]. The motion along x is
due to the Berry curvature, while that along y is due to the bandstructure.
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Figure 3.7: (a) Velocity along x of a wavepacket moving under the force
F = ±(0.0, 1.0FR) with W = 0.5ER. ky is measured along the path trav-
elled (which is periodic in 4π). (b) Velocity along y. (c) Applying the
time-reversal protocol to extract the Berry velocity: v(+F ) − v(−F ) =
−2/~(F × ẑ)Ω(k). (d) Applying the time-reversal protocol to extract the
group velocity: v(+F ) + v(−F ) = (2/~)∂ǫ(k)/∂k.



54
Chapter 3 Mapping the Berry Curvature from Semiclassical Dynamics

in Optical Lattices

velocity along y. When it passes through K, the positive curvature gives it negative

x velocity. As the regions of curvature have the same magnitude, the effects cancel

and there is no net drift.

For F = (0, F ) it is simple to determine the Berry curvature because the group

and Berry velocities are perpendicular. For more general directions of the force,

Lissajous-like oscillations will make it difficult to extract any information about the

Berry curvature from the real space motion.

As proposed above, the Berry curvature may be cleanly mapped from the ve-

locities using a time-reversal protocol. This is illustrated in Figure 3.7(c) and (d).

Here the velocities along x and y for +F and −F are combined to show the Berry

velocity and the group velocity respectively.

3.3.2 Optical Flux Lattices

One of our main motivations for mapping the Berry curvature is to find a way

of experimentally characterising optical flux lattices. These have been introduced

in Section 2.1.3, as schemes to access fractional quantum Hall physics in ultracold

gases [96, 107, 109]. Here we discuss the one-photon square optical flux lattice,

which would be suitable for alkaline earth atoms or ytterbium, and the F = 1/2

two-photon scheme for alkali atoms.

One-Photon Square Optical Flux Lattice

In this scheme, the electronic ground state and a long-lived excited state are coupled

via a single photon process[106]. The Hamiltonian in the rotating wave approxima-

tion is:

Ĥ =
p2

2m
1̂ + V̂ (r), (3.16)

where 1̂ and V̂ are 2 × 2 matrices acting on the two internal states of the atom.

We neglect interactions, an assumption that is discussed further in Section 3.4. The

square optical flux lattice is generated when [96]:

V̂sq = V (cos(κx)σ̂x + cos(κy)σ̂y + sin(κx) sin(κy)σ̂z) (3.17)
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where V sets the energy scale of the potential, κ = 2π/a and the lattice vectors are

a1 = (a, 0), a2 = (0, a). The flux density is everywhere of the same sign, and leads

to a total flux per unit cell of Nφ = 2 [96].

(a) (b) (c)

Figure 3.8: Bandstructure of the lowest band in the magnetic Brillouin
zone for the one-photon square optical flux lattice with (a) V = 0.0ER, (b)
V = 1.0ER and (c) V = 3.0ER, and the energy in units of ER. At V =
0.0ER, the lowest band touches the second lowest band at k = (π/a,±π/a).
As V is turned on, band gaps open at these points and Berry curvature is
formed.

We consider the regime where V . ~
2κ2/2m = 4ER (for this geometry a = λ/2).

We expand the periodic Bloch functions over a set of reciprocal lattice vectors, K:

un,k(r) =
1√
N

∑

K

e−iK·r





c
1(n,k)
K

c
2(n,k)
K



 (3.18)

and diagonalise the resulting Hamiltonian to find the bandstructure. As we consider

low V , a small, finite set of K vectors will give the eigenfunctions and values to

within the required numerical accuracy.

The eigenfunctions are everywhere two-fold degenerate, corresponding to two

magnetic sub-bands. To distinguish between these states, we reinterpret the system

within the magnetic Brillouin zone (MBZ) [173, 23, 96]. The optical coupling is
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(a) (b)

Figure 3.9: Contour maps of the Berry curvature, Ω(k), for the square
optical flux lattice when (a) V = 1.0ER and (b) V = 3.0ER. Ω is in units
of 1/[MBZ area] = a2/8π2. Ω is concentrated at points k = (π/a,±π/a),
spreading out with increasing V .

invariant under the magnetic translation operators:

T̂1 ≡ σ̂ye
1
2
a1·∇ T̂2 ≡ σ̂xe

1
2
a2·∇ (3.19)

which do not commute but satisfy T̂2T̂1 = −T̂1T̂2. These operators represent rota-

tions in spin space and translations by 1
2a1,2, which enclose half a flux quantum (as

Nφ = 2) [96, 173]. The magnetic Brillouin zone is defined by a unit cell containing

an integer number of flux [173]; we choose a cell containing a single flux with vectors

a1 and a2/2. The corresponding commuting operators are T̂ 2
1 and T̂2, with eigen-

values eik·a1 and eik·a2/2. This defines the Bloch wavevector, k, and the associated

magnetic Brillouin zone [96]. Now the first Brillouin zone covers −π/a < kx ≤ π/a

and −2π/a < ky ≤ 2π/a, doubling in size. Thanks to this unfolding, the lowest

band is nondegenerate at each Bloch wavevector k. The resulting bandstructure is

shown in Figure 3.8 for V = 0.0ER, V = 1.0ER and V = 3.0ER.

The Berry curvature is shown over the magnetic Brillouin zone for the lowest

band in Figure 3.9, for V = 1.0ER and V = 3.0ER. For nonzero V , the Chern

number of this band is one, so it is analogous to the lowest Landau level. For small

V the Berry curvature, Ω, is highly peaked at positions k = (π/a,±π/a); as V

increases, Ω spreads out while remaining centered on these two points.
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Figure 3.10: (a) The trajectory of a semiclassical wavepacket through
the magnetic Brillouin zone, starting from k = (0, 0) with |F | = 1.0FR

directed along (1,1). The numbers indicate the order in which the path
is travelled. The dotted line indicates the simple Brillouin zone, while the
dashed lines shows the extension into the magnetic Brillouin zone. (b)
The corresponding real-space trajectory of the wavepacket starting from
the origin, for V = 0.4ER and V = 3.0ER. The motion perpendicular to F

is due to the Berry curvature, while that parallel is due to the bandstructure.
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Figure 3.11: The velocity of the wavepacket (a) perpendicular and (b)
parallel to the applied force for |F | = 1.0FR directed along (1,1) and V =
0.4ER. k is measured along the path travelled. For this simple alignment of
the force, (a) contains the effects of Berry curvature along the path, while
(b) shows the group velocity.
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In Figure 3.10(b) we illustrate the real-space trajectory for semiclassical motion

of a wavepacket in this optical flux lattice, for V = 0.4ER and V = 2.0ER. As

discussed above, we take |F | = 1.0FR, which is representative of the gravitational

force |F | = mg for 174Yb and λ = 578 nm, parameters which are particularly

relevant for this scheme [96, 106]. As shown in Figure 3.10(a), in momentum space

the wavepacket starts at k = (0, 0) and moves under a force F parallel to the (1, 1)

direction such that it passes through the points k = (π/a,±π/a) at which there is

large positive Berry curvature. With F aligned along (1,1), the group velocity is

parallel to the force, while the Berry velocity is perpendicular (Figure 3.11).

As the Berry curvature is everywhere positive, there is a net drift as successive

regions of high Ω are traversed. For low potentials such as V = 0.4ER and V =

2.0ER, the bandgap is small and the probability of Landau-Zener transitions on

crossing the Brillouin zone boundaries is large. In an experiment where |F | = mg,

this probability can be reduced below 0.1 by increasing the potential above V =

3.2ER. With higher V , the Berry curvature spreads out and hence the trajectory

bends along more of its length. For clarity, we therefore discuss V = 0.4ER where

the effects of Berry curvature and the group velocity are easiest to understand. The
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Figure 3.12: Trajectory for a wavepacket travelling with (a) |F | = 1.0FR

and (b) |F | = 5.0FR where the force is aligned such that Fx : Fy = 1 : 16
and V = 0.4ER. The Bloch motion is no longer purely along the direction
of the force, and the resultant trajectory is complex. The net drift between
Bloch oscillations is a measure of the total Berry curvature along a path,
but other information is obscured. The trajectory due to the group velocity
increases in size relative to the trajectory due to the Berry curvature with
decreasing force (Section 3.4), leading to more complicated motion in (a)
than (b).
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Figure 3.13: (a) Velocity along x of a wavepacket moving under the force
|F | = 1.0FR with Fx : Fy = 1 : 16 and V = 0.4ER. k is measured along the
path travelled. (b)Velocity along y. (c) Applying the time-reversal protocol
to extract the Berry velocity. The Berry velocity calculated from vx and vy
differ by a factor of 16 from the ratio of the forces, and by a sign, due to
the cross product. (d) Applying the time-reversal protocol to extract the
group velocity. As expected, there are 16 oscillations from vy for every one
from vx.

dynamics will be qualitatively the same for higher V , and we discuss the dependence

of the motion on both V and |F | in more detail in Section 3.4.

As before, the simplicity of the trajectories and velocities relies on the alignment

of F along a special direction. More generally in 2D, the Bloch velocity will not be

parallel to the force and complex Lissajous-like figures will be observed; an example

of this was previously shown in Figure 3.2 for one oscillation at a low force, |F | =
0.05FR, where the effects of Berry curvature are small.

Here we demonstrate the effect of Lissajous-like figures on the motion for pa-

rameter ranges of interest. Figure 3.12 shows the real-space trajectories for (a)

|F | = 1.0FR and (b) 5.0FR, when the force is aligned such that Fx : Fy = 1 : 16.
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Figure 3.14: As in Figure 3.13 but now for |F | = 5.0FR.

Figure 3.15: |vx(+F ) − vx(−F )|/2 = 1/~(FyΩ) plotted along the path
taken by the wavepacket in the Brillouin zone for |F | = 1.0FR with Fx :
Fy = 1 : 16 and V = 0.4ER. This technique will enable experiments to
directly map out the Berry curvature.
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The Bloch motion is no longer purely parallel to the force and while an average drift

may be measured, the details of the motion due to Berry curvature have been lost.

We illustrate how our time-reversal protocol may be used to extract the local

Berry curvature. Figures 3.13 and 3.14 show the velocities along x and y over

the path through the Brillouin zone. By comparing the time-reversed velocities,

quantities proportional to the Berry velocity and the group velocity are extracted.

Figure 3.15 shows the resulting map of Berry curvature over the Brillouin zone for

|F | = 1.0FR. The same result is obtained (up to a scale factor) from either of these

two cases for different magnitudes of force.

Two-Photon Optical Flux Lattice for F = 1/2

To generate optical flux lattices for the more commonly used alkali atoms one must

employ dressed states involving a two-photon coupling [107]. We consider the rep-

resentative case of a lattice with triangular symmetry where the hyperfine states

coupled have angular momentum F = 1/2, as in species like 171Yb. Qualitatively

similar semiclassical dynamics are expected for other values of F , such as the ex-

perimentally important case of F = 1 for 87Rb [107]. The two-photon optical flux

lattice we study leads to an net effective magnetic field in real space in which there

is one flux quantum per unit cell. Semiclassical motion within a similar scheme has

previously been studied in Ref. [143]. In that scheme, the artificial magnetic field

is still locally non zero, but the flux per unit cell vanishes [143, 107] and the Chern

number of each band is zero. For the optical flux lattice described here, the energy

bands may have non-zero Chern numbers.

For the F = 1/2 optical flux lattice, two hyperfine ground states, g±, with

angular momentum Jg = 1/2, are coupled to an excited state, e, also with angular

momentum Je = 1/2, via an off-resonance excitation that ensures the population

of e remains negligible. The Hamiltonian then acts in the g± manifold, with the

form of (3.16). The details of the optical coupling and the resulting Hamiltonian

are discussed in Ref. [107] and in Appendix A.
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The final Hamiltonian can be written as:

Ĥ ′ = Û †ĤÛ =
(p − σ̂z~k3/2)

2

2m
+ V̂ ′, (3.20)

where k3 = k(0, 1, 0), and Û is a unitary transformation that is applied to expose

the full symmetry of the system. The transformed optical potential V̂ ′ has the

maximal translational symmetry, causing p̂/~ to be conserved up to the addition of

the reciprocal lattice vectors K1/2 = −k/2(±
√
3, 3, 0) (Appendix A). The resulting

Brillouin zone, defined by K1/2, is equivalent to the asymmetric hexagonal lattice

in Section 3.3.1. As can be seen, an important feature of the two-photon optical

flux lattice is that, under this unitary transformation, the momenta of g± are offset

by ±~k3/2. This offset does not affect the semiclassical equations of motion, which

determine the rate of change of (crystal) momentum under an applied force (3.3),

and which still apply for the bands formed from the eigenstates of Ĥ ′.

The optical coupling, V̂ ′, is characterised by parameters ǫ and θ as well as the

overall strength of the potential V (Appendix A). When θ = ǫ = 0, the optical

potential does not couple the states g+ and g−, and acts on each simply as a scalar

potential, with the same symmetries as the hexagonal lattice discussed above when

inversion symmetry is unbroken. The offsets of the momenta of g± shift the Dirac

points of these two states relative to each other. A small non-zero θ breaks inversion

symmetry and opens up gaps at the Dirac points in such a way that the pairs of

bands are topologically trivial, i.e. have a net Chern number of zero. Non-zero ǫ

and θ together break time-reversal symmetry and lead to bands with non-zero Chern

number.

We have numerically calculated the bandstructure and Berry curvature of the

lowest band for a case of large coupling, when V = 1.8ER, θ = 0.3 and ǫ = 0.4, for

which this band has Chern number of one (Figure 3.16). Note that in this case, the

energy minimum of the band is not at k = (0, 0). Applying the force along (0, 1),

the wavepacket will follow the same path as in the asymmetric hexagonal lattice

(Figure 3.6). We choose |F | = 0.1FR to ensure that the Landau-Zener tunnelling

probability is small (below 0.1). The resulting real-space trajectory is shown in

Figure 3.17. Due to the simple alignment of the force, we can again associate the
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(a) (b)

Figure 3.16: (a) The energy (measured in ER) of the lowest band for
V = 1.8ER, θ = 0.3 and ǫ = 0.4. For these parameters, the lowest band
has Chern number of one. (b) The corresponding Berry curvature. Ω(k) is
in units of 1/[BZ area]. In this case, the Berry curvature is significant over
much of the Brillouin zone and has regions of both positive and negative
sign.
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Figure 3.17: The real space trajectory of a wavepacket under a force
F = (0.0, 0.1FR) over one period, for V = 1.8ER, θ = 0.3 and ǫ = 0.4.
The wavepacket follows the path described in Figure 3.6. While the group
velocity is again purely along y, the motion due to the Berry curvature is
more complicated due to the varying sign of Ω.
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y motion with the group velocity and the x motion with the effects of the Berry

curvature.

As the Berry curvature is substantially spread out through the Brillouin zone

(Figure 3.16), there is now a continual drift along x over the trajectory. Since the

Chern number is one, the Berry curvature is (largely) of the same sign along the

trajectory, leading to a net drift of the wavepacket over one period of the Bloch

oscillation. In this lattice, there are also regions of both positive and negative Berry

curvature. When the Berry curvature is positive, the wavepacket travels in the

negative x direction, while when Ω is negative, the wavepacket moves along the

positive x axis. The sign change will therefore not be detected if only the total

drift is measured. Instead, the time-reversal procedure described above can again

be applied to cleanly map out the local Berry curvature.

3.4 Experimental Considerations

We now consider how the velocity may be measured and how feasible it will be to

observe the Berry curvature effects experimentally.

The mean atomic velocity may be extracted from the time-of-flight expansion

image. This measures the momentum distribution[40], from which the mean mo-

mentum 〈p〉 may be deduced by the weighted average. The mean atomic velocity

of the initial wavepacket then follows from Ehrenfest’s theorem as 〈v〉 = 〈p〉/m.

This approach was successfully experimentally applied by Ben Dahan et al.[148] to

detect Bloch oscillations in a one-dimensional lattice. The same approach applies

for dressed states of internal atomic states, governed by (3.16); in this case the mean

velocity can be obtained from the average momentum over all internal states.

Alternatively, it is possible to extract the velocity directly from measurements

of the centre of mass motion in real-space. Thanks to recent experimental advances,

the position of the wavepacket’s centre of mass may be imaged with a high resolution,

on the order of a lattice spacing [174]. For bands with nonzero Chern number, the

Berry curvature can cause the wavepacket to have a net drift in space over each

period of the Bloch oscillation; this leads to large cumulative effects on the position
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of the wavepacket over many oscillation periods. As described in Section 3.2.1,

measurements of the position of the wavepacket therefore offer a sensitive way to

show that the Chern number of the band is nonzero. Indeed measurements of these

drifting trajectories in constant applied force are equivalent to measurements of the

edge states that must arise for a band with non-zero Chern number.

To this end, we consider how to maximise the importance of the effects of

the Berry curvature relative to those of the group velocity. In the cases described

above where the bands almost touch, we can consider the bandgap, δE, as a small

parameter. This applies to the hexagonal lattice when asymmetry is small and to

the square one-photon optical flux lattice for small potential, V . (Note that the

two-photon optical flux lattice is considered far from the band closing regime.) In

the small bandgap limit, the momentum width, δk, over which the band is changed

will be δk ≃ δE/(~vR), where vR is the typical group velocity at the zone boundary

for vanishing bandgap. The Berry curvature is therefore nonzero over the area,

A ≃ (δk)2. Assuming the Berry curvature is uniform within this, the invariance

of the Chern number means Ω ≃ 1/A ≃ 1/(δk)2. The Berry velocity is vΩ =

(k̇ × ẑ)Ω so, as the wavepacket traverses this region in one Bloch oscillation, the

Berry curvature leads to a displacement of size
∫

vΩdt ≃ δkΩ ≃ 1/δk ≃ ~vR/δE.

Conversely, the typical group velocity is ≃ vR so over the period of one Bloch

oscillation, τB ≃ h/(Fa), the typical amplitude of displacement is vRτB ≃ hvR/(Fa).

Thus, these contributions to the real-space trajectory have different dependences on

δE: the Berry curvature contribution scales as 1/δE, while the contribution from

the group velocity is independent of δE. This is found in our numerical results, but

is shown only qualitatively in the results presented in Figure 3.10, as in this case

δE is not that small. The effects of Berry curvature can therefore be maximised

with respect to those of the group velocity by choosing a small bandgap. Note also

that the two contributions have different dependences on the size of the force: the

displacement due to the Berry curvature is independent of force, while that due to

the group velocity is inversely proportional to it. Therefore, the Berry effects will be

most evident for a high external force. Note, however, that there are some practical

limitations on both the choice of force and bandgap. To ensure that the evolution of

the wavepacket is adiabatic, the rate of Landau-Zener tunnelling to the next lowest
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band should be negligible (3.1). The assumption of adiabatic evolution is therefore

violated when the applied force is too high and the bandgap is too small. Also, for

small δE, when the bands nearly touch, the Berry curvature becomes concentrated

in small regions, of area (δk)2. This then requires the momentum of the wavepacket

and the alignment of the force to be precisely controlled in order to direct the

wavepacket through this region. For intermediate bandgaps, the curvature is spread

out. A natural compromise is to choose the bandgap such that δk is as small as the

momentum uncertainty 1/w with which a wavepacket can be prepared (here w is

the spatial width of the wavepacket); one then expects the displacement due to the

Berry curvature to be 1/δk ≃ w on the order of the spatial extent of the wavepacket.

From our numerical calculations, we can quantitatively estimate the length-

scales of the dynamics. For example, we consider the dynamics of 174Yb atoms in

the one-photon optical flux lattice, with F = mg along (1,1), λ = 578 nm and

V = 3.2ER. For this choice of parameters, the Landau-Zener tunnelling probability

given by (3.1) is approximately 0.1. The wavepacket follows the Brillouin zone path

in Figure 3.10(a) and has a real-space trajectory similar to that of the dashed line in

Figure 3.10(b). As the wavepacket moves along section 1 of its path (from k = (0, 0)

to k = (π/a, π/a)), it moves with an average group velocity of 1.0 mm s−1, travelling

approximately 0.6 µm in the direction of the force in real-space. For V = 3.2ER,

the Berry curvature is substantially spread out over the Brillouin zone, and so the

wavepacket’s trajectory bends as it travels, moving it 0.3 µm perpendicular to the

force. As the wavepacket continues from k = (−π/a, π/a) to k = (0, 2π/a), the

group velocity changes sign and the wavepacket travels 0.6 µm in the opposite di-

rection to the force. The Berry velocity does not change sign, and so the wavepacket

moves a further 0.3 µm perpendicular to the force. This behaviour repeats for sec-

tions 3 and 4 of its path. The average Berry velocity over one complete oscillation

is therefore approximately 0.3 mm s−1. If the force is slightly misaligned, the tra-

jectory will instead be a Lissajous-like oscillation, approximately bounded by a box

of diagonal length 0.6 µm. For the same Berry velocity, the wavepacket would then

take approximately 2.0 ms to drift this distance. These length and time scales are

within current experimental capabilities.
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Figure 3.18: (a) Oscillation in expectation value of σ̂x for the one-photon
optical flux lattice, as the wavepacket travels along (1, 1). The dashed line is
for V = 0.04ER, while the smooth line is V = 0.4ER. The area over which
the transfer occurs decreases with potential in a similar way to how the Berry
curvature area decreases. k is measured along the path of the wavepacket.
(b) Oscillation in population in the two states for the two-photon optical
flux lattice as the wavepacket travels along (0, 1) for V = 1.8ER, θ = 0.3
and ǫ = 0.4. The maximum population imbalance appear to be around
points K and K ′. ky is measured along the path of the wavepacket.

Two additional practical considerations are the effects of dispersion and inter-

actions. The wavepacket will spread as it travels, and this dispersion could obscure

the dynamics described. However, provided the centre of mass of the wavepacket

can be measured to an accuracy greater than its width, this should not prevent the

observation of Berry curvature effects.

Interactions destroy the coherence of a wavepacket over time and can have a

strong dephasing effect on Bloch oscillations [151, 175, 150]. Nonlinearity in BECs

can also lead to the collapse of the wavepacket into discrete solitons3 [175, 176]. We

have ignored the effects of interactions in our analysis, an approximation suitable

over these time-scales for fermionic atoms [151], for species with low scattering

lengths [153] or where the interaction strength can be tuned to zero by means of a

Feshbach resonance [177, 152].

One can also look for distinct features in the momentum distributions of atoms

undergoing Bloch oscillations in the optical flux lattices discussed above (Figure

3.18). In the two-photon optical flux lattice, the population of atoms oscillates

between the two internal states as the wavepacket moves through the Brillouin zone.

3This is particularly important when the effective mass, M∗, of the optical lattice is negative[41]
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Near the points K and K ′, the population imbalance is maximum but of opposite

sign, reflecting the characteristics of the Berry curvature. In the one-photon optical

flux lattice, the unfolding into the full magnetic Brillouin zone means the Bloch

states are eigenstates of σ̂x. As a result, the oscillation takes place between those

superpositions of the internal states that are eigenstates of σ̂x (and not between the

internal states themselves). The transfer between eigenstates occurs over an area

which decreases with potential, in a similar way to how the Berry curvature area

decreases.

3.5 Further Developments in Characterising the

Topological Bands of Optical Lattices

In the last two years, there has been much theoretical and experimental interest in

characterising the topological and geometrical features of energy bands of optical

lattices in ultracold gases. Prior to our work, theoretical papers had shown how to

detect the Chern number for certain tight binding models in time-of-flight measure-

ments [178, 179]. Our protocol, published in Ref. [1], shows how the Berry curvature

can be mapped over the Brillouin zone for any form of underlying lattice. We shall

now briefly discuss some of the recent developments in the field since this published

work.

One new method combines Bloch oscillations and Ramsey interferometry for

particles with two internal “spin” states (an example protocol is described in Figure

3.19) [146, 180]. This procedure performs the evolution under F and −F simultane-

ously to separate out the Zak phase. The Zak phase is the total Berry phase along a

closed trajectory, where the trajectory lies along some reciprocal lattice vector G1.

A version of this method has been used to measure the Zak phase experimentally for

a 1D dimerised optical lattice where the Zak phase can be viewed as the topological

invariant of the band [146]. In 2D, this method could also be used to extract the

Chern number of band [180]. While this protocol has the advantage of experimental

simplicity, we note that there are constraints on its applicability. For instance, the

dispersion must be symmetric with respect to F and −F in order to eliminate the
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Figure 3.19: Bloch oscillations and Ramsey interferometry: figure taken
from Ref. [180]. The wavepacket is initially prepared in a spin-up state at
a given quasi-momentum, k0. (a) A π/2 pulse creates a coherent superpo-
sition of spins, (| ↑〉 + | ↓〉)/

√
2, after which the spin-selective force (e.g. a

real magnetic field gradient) is applied. This pushes the spins in opposite
directions along the reciprocal lattice vector G1. (b) Following half a Bloch
oscillation, the two spins are again at the same point in the BZ, and the
π/2 pulse is repeated. The phase of the Ramsey interference fringes then
contains the difference in geometrical phase picked up by the two species.
This is the total Berry phase along the closed trajectory G1 (also known as
the Zak phase).

effect of the dynamical phase from the Ramsey fringes [180]. Also additional steps

may need to be introduced to remove the magnetic Zeeman phase, for example by

combining the above with a spin-echo procedure [180, 146].

Another way to characterise the topology of a band is to directly detect its topo-

logical edge states. The bulk-boundary correspondence relates the Chern number,

C, of a bulk energy band to the number and chirality of robust gapless edge states on

the boundary4. These edge states could be directly detected, for example, through

light scattering [181, 182, 183]. By generalising Bragg spectroscopy to probe angu-

lar momentum, the topological edge states would be distinguished by their chirality

[183]. Another recent theoretical proposal shows how to image the dynamics of the

edge states through in-situ density measurements (Figure 3.20) [184].

Finally, there have been efforts to observe the quantum Hall effect directly in

4As mentioned above the measurements of drifting trajectories in our method are equivalent to
measuring these edge states.
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Figure 3.20: Measuring edge states: figure taken from Ref. [184]. (A)
Cold trapped gas of fermions on an optical lattice with a synthetic uniform
magnetic flux. The gas is confined by a circular potential and two additional
repulsive regions. (B) The edge states travel around the inner walls and
outer boundary. When the walls are removed suddenly at t = 0, the chiral
edge states propagate around the new boundary, encircling the initially
empty regions. For a dispersion-less band, the bulk is motionless and the
states would be visible through in-situ imaging of the density. For dispersive
bands, the bulk will also flow into the empty regions, and additional steps
can be used to extract the contribution of the edge states.

ultracold gases. The current-carrying topological edges states lead to a quantised

Hall conductance, σxy, which is proportional to the Chern number of a filled band.

In the solid-state, σxy is measured through transport experiments as jx = σxyEy,

where jx is the current along x̂, and Ey is the electric field along ŷ. In an ultracold

gas, the analogous experiment is technically demanding, as it is difficult to couple an

ultracold cloud to reservoirs and measure atomic currents. However, the first steps

in this direction have been made with measurements of the conduction of fermions

through a mesoscopic channel [185]. Alternatively, the Chern number might be

measured from the drift of a cloud of fermions initially prepared as the filled band of

a Chern insulator and confined in a sub-region of a larger trap [186]. Upon release

into the larger trap, the velocity of the centre-of-mass is then proportional to the

force applied and an approximate Chern number5. (This is Eq. 3.11 above.)

Another experiment has measured a superfluid Hall effect in a weak artificial

magnetic field using collective modes[187]. They excite a mode along x̂ and, after

5The Chern number measured is approximate due to the effects of the finite-size of the initial
region, non-linearity, band-mixing and variations in atomic filling fraction [186].
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driving for a varying length of time, measure the atomic density either by time-of-

flight or in-situ absorption imaging. It is then possible to reconstruct the motion

of the cloud and observe correlated transport along ŷ when the magnetic field is

present: the signature of the Hall behaviour. While the synthetic field is very weak

(the system is still vortex-free), such a technique could be extended to explore quan-

tum Hall physics. We shall show in Section 4 how in the general case of an atomic

gas in a bandstructure with topological features there are important modifications

of the collective modes. Our analysis will include systems threaded with many flux

quanta, as well as optical lattices with uniform [100] or nonuniform flux [101].

3.6 Conclusions

In summary, we have proposed a general method for mapping the local Berry cur-

vature over the Brillouin zone in ultracold gas experiments. The Berry curvature

crucially modifies the semiclassical dynamics and so affects the Bloch oscillations of

a wavepacket under a constant external force. In particular, the Berry curvature

may lead to a net drift of the wavepacket with time. However, two-dimensional

Bloch oscillations are interesting in their own right, and we may lose information

about the Berry curvature due to the complicated Lissajous-like figures that may

arise.

We have shown that this information can be recovered via a “time-reversal”

protocol. The group velocity at a point in the Brillouin zone is invariant under a

reversal of force, while the Berry velocity changes sign. As a result, the velocities

under positive and negative force can be compared to extract either one or the other.

This protocol will allow the local Berry curvature to be cleanly mapped out over the

path of the wavepacket through the Brillouin zone.

We have demonstrated this protocol using the semiclassical dynamics of three

model systems which are currently of experimental interest: the asymmetric hon-

eycomb lattice and two optical flux lattices. We have also discussed various exper-

imental considerations, including how the velocity may be measured and how to

maximise the magnitude of the Berry curvature effects on the dynamics. Finally we
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have reviewed recent efforts in the field to characterise the topological properties of

energy bands. There are many promising avenues of research, including the success-

ful experimental use of Bloch oscillations and Ramsey interferometry to measure

geometrical phases.



Chapter 4

The Effects of Berry Curvature

on the Collective Modes of

Ultracold Gases

Collective modes are powerful tools for exploring the properties of ultracold

gases[8]. The high precision with which oscillation frequencies can be measured [188]

affords high sensitivity to the underlying physical properties, such as the equation

of state over the BEC-BCS crossover[188, 189, 190, 36]. Recently, collective modes

have been used to measure the superfluid Hall effect in a weak artificial magnetic

field[187]. In this chapter, we show that, in the general case of an atomic gas in

a bandstructure with topological features, there are important modifications of the

collective modes which are entirely controlled by the Berry curvature. This work

has been submitted for publication as Ref. [2].

In Section 4.2, we show how the Berry curvature shifts oscillation frequencies

for a Bose-Einstein condensate and splits otherwise degenerate modes. We extend

our analysis to other systems with a polytropic equation of state. The effects of

Berry curvature are illustrated with the model of 2D Rashba spin-orbit coupling

in Section 4.3. We also analyse this using sum rules (Section 4.4) and a dipole

operator approach (Section 4.5). Furthermore, we demonstrate using the operator

approach how the effects of Berry curvature arise naturally for a general multi-band

Hamiltonian. Our results show that Berry curvature can have sizeable effects on

experimental mode frequencies (Section 4.6). Hence measurements of the collective

73
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modes of a trapped BEC can be used to determine the geometrical properties of the

condensate wave function.

4.1 Introduction to Collective Modes

4.1.1 The Basic Properties of Collective Modes

Collective modes are emergent many-body oscillations of an ultracold cloud of atoms.

The motion of a BEC is collective if the wavelength of the excitation is longer than

the coherence length, ξ = (~2/2Mρg)1/2. At distances shorter than ξ, the kinetic

energy is larger than the mean-field interaction energy, and the atoms behave like

free particles[8]. Collective modes are therefore the low energy, long wavelength

excitations of the BEC, dominated by interactions rather than the kinetic energy.

In a uniform untrapped gas, the collective modes are phonon-like at low fre-

quency. The presence of a trap breaks translational invariance, so momentum is

no longer a good quantum number. Instead, modes in a spherically symmetric 3D

trap are characterised by l, the total angular momentum; m, the projection of an-

gular momentum on the polar axis and nr, the number of radial nodes. To neglect

the kinetic energy in a trap, the BEC must contain a sufficiently large number of

particles[8]. Then we can make the Thomas-Fermi approximation1 and neglect the

kinetic energy in the Gross-Pitaevskii equation:

[V (r) + g|ψ(r)|2]ψ(r) = µψ(r). (4.1)

Re-arranging this, we find the local density: ρ(r) = |ψ(r)|2 = [µ − V (r)]/g, where

V (r) is the (harmonic) trapping potential and ρg is the interaction energy. This

is valid provided that the wave function varies on length scales much longer than

the local coherence length. This approximation also breaks down within a distance

δc of the edge of the cloud, where the kinetic energy term is again important[8].

Therefore to describe collective behaviour in a trap, we use the Thomas-Fermi ap-

proximation and require that modes have wavelengths longer than the local ξ and

1This is valid when Nas/aosc ≫ 1, for repulsive interactions in a harmonic trap (with aosc =
√

~/Mω0)[8].
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are not concentrated in the boundary region, δc.

4.1.2 Collective Modes in Experiments

Collective modes can be excited in experiments by adding a small time-dependent

perturbation to the trapping potential[191, 192, 193] or by modulating the inter-

action strength[194]. Different modes are induced by applying a driving force with

the appropriate frequency and symmetry. The frequencies of the modes can then

be extracted using, for example, in-situ phase-contrast imaging[193] or absorption

imaging after expansion of the cloud[191, 188]. Thanks to the high precision pos-

sible in such measurements[188], collective modes serve as excellent experimental

probes of the many-body physics of ultracold gases. As previously mentioned, col-

lective modes have been used to measure the equation of state across the BEC-BCS

crossover[189, 190, 36] and the effects of a weak magnetic field[187]. Other applica-

tions include the study of rotating gases[195, 196, 197], superfluidity[198, 199], lower

dimensions[200] and random potentials[201].

Collective modes have a finite life-time due to interactions with thermal exci-

tations or nonlinear interactions with other modes[8]. Damping rates ≃ 2s−1 have

been observed for low frequency modes of low temperature condensates[193, 188].

While we do not include thermal and nonlinear effects in our theoretical work, we

do show that the effects of Berry curvature can be large and may be observed within

these experimental constraints (Section 4.6).

4.1.3 Theoretical Approaches to Collective Modes

The dynamics of a weakly interacting dilute Bose-Einstein condensate are described

at the mean-field level by the time-dependent Gross-Pitaevskii equation. This can be

solved directly with numerical techniques[202] or a variational trial wave-function[8,

203, 204]. However, for small amplitude oscillations, the calculation is simplified by

linearising the GP equation. This leads to the Bogoliubov equations for the quasi-

particle amplitudes (see Refs. [37, 8]), or equivalently, the hydrodynamic equations
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of motion for ρ, the local density and v, the local velocity2(Section 4.2).

Other complementary approaches do not require us to solve the full equations

of motion. In Section 4.4, we discuss a sum rule approach, based on linear response

theory, while in Section 4.5, we employ an operator method using the Heisenberg

equations of motion. These methods also have the advantage of not relying intrin-

sically on the Thomas-Fermi approximation3.

There can also be beyond-mean-field corrections, although we do not include

these effects in our theoretical work. To lowest order, strong interactions lead to

quantum depletion of the ground state, and introduce a correction to the equation

of state[205, 206]. This shifts the frequencies of some collective modes by a few

percent for relevant system parameters[207, 208]. Such beyond mean-field effects

have been observed in precision measurements of the collective modes of a Fermi

gas in Ref. [188].

4.2 The Hydrodynamic Equations of Motion

The Hydrodynamic Equations Without Berry Curvature

The standard hydrodynamic equations of motion for a weakly interacting dilute

Bose-Einstein condensate at zero temperature are[8]:

ρ̇+∇ · (ρv) = 0

M v̇ = F = −∇

(

V + ρg − ~
2

2M
√
ρ
∇

2√ρ+ 1

2
Mv2

)

(4.2)

where F is now the local force per particle. These resemble the classical equations

of fluid dynamics. The first equation is the familiar continuity equation, expressing

the conservation of mass. The second equation is analogous to the Euler equation,

applied to potential flow of an ideal fluid with pressure: P = ρ2g/2 [37, 8]. This is

a statement of the conservation of momentum.

2For vanishing Berry curvature, the hydrodynamic variables are introduced via the substitution
ψ(r) =

√
ρeiφ in the GP equation, where v = ~

M
∇φ. Then we obtain Eq. 4.2.

3This is particularly useful for attractive interactions, as the condensate collapses before the
Thomas-Fermi limit, Nas/aosc ≫ 1, is reached[38].
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However, unlike classical hydrodynamics, the second equation contains a quan-

tum pressure term: ~2

2M
√
ρ∇

2√ρ. Whereas the other kinetic term, 1
2Mv2, describes

particle currents, the quantum pressure captures ‘zero point motion’ and is a con-

sequence of the Heisenberg uncertainty principle[8, 37]. This term can be neglected

when the wave function varies on lengths much longer than the coherence length:

ξ = (~2/2Mρg)1/2. This is the Thomas-Fermi approximation for large N intro-

duced above. If we assume that the quantum pressure is negligible, the analogy to

the Euler equation is complete4. For the standard treatment of the hydrodynamic

equations without Berry curvature see Ref. [209, 37, 8].

The Hydrodynamics Equations with Berry Curvature

We now consider a BEC formed in a minimum of some single-particle energy dis-

persion, E(p). This dispersion could be the lowest band of an optical lattice, where

p is the crystal momentum, or of a spin-orbit coupling Hamiltonian (like Eq. 4.10).

We assume that the radius of the cloud is much larger than any other length scale

and that the band-gap is much larger than any other energy scale, such that all

properties of the BEC are well-described by those at the minimum. The energy

dispersion is characterised by the effective mass, M∗
αβ = ~

2/
(

∂2E/∂pα∂pβ
)

, where

α, β run over the spatial coordinates. This will renormalize the collective mode

frequencies[210]. Furthermore, the eigenstates are characterised by the Berry cur-

vature (Section 1.1.1):

Ωn(p) ≡ i
∂

∂p
× 〈np| ∂

∂p
|np〉, (4.3)

where |np〉 is the energy eigenstate in band n at p (i.e. the periodic Bloch function

for an optical lattice)[12]. Thus, the energy minimum must also be characterized by

the value of the Berry curvature at that point. To simplify presentation, we assume

that the effective mass is isotropic, M∗
αβ ≡ M∗δαβ , and choose axes such that the

local Berry curvature is Ωẑ, but all results can be readily extended to the anisotropic

case.

4This analogy is very useful as it will allow us to analyse both condensates and normal gases
within the same basic hydrodynamic framework in Section 4.2.1.
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To determine the effects of Berry curvature on the collective modes, we derive

the new hydrodynamic equations at zero temperature for a weakly interacting Bose

condensate. By including the so-called “anomalous contribution” to the velocity [12]

we find:

ρ̇+∇ · (ρv) = 0

v̇ =
F

M∗ −
(

Ḟ

~
× ẑ

)

Ω, (4.4)

where F is given in Eq. 4.2, and where we have included the modification by

the effective mass[210]. We are interested in small deviations from equilibrium,

ρ = ρ0 + δρ. We assume that the particle number, N , is large so that quantum

pressure is negligible and the Thomas-Fermi approximation is valid. Then ρ0(r) =

|ψ(r)|2 = [µ − V (r)]/g and δF = −g∇δρ. Linearizing Eq. 4.4 with respect to δρ,

we find:

δρ̈ = −∇V ·∇δρ

M∗ +
ρ0g∇

2δρ

M∗ +
∇V · (∇δρ̇ × ẑ)Ω

~
. (4.5)

For a uniform gas, with no trap potential V (r) = 0, the collective oscillations are

sound modes, with frequencies ω =
√

ρ0g/M∗|k| that are unaffected by Berry cur-

vature.

For a harmonic trap, V (r) = 1
2κ|r|2, the modes have the form δρ = D(r)Ylm(θ, ϕ)e−iωt

where Ylm(θ, ϕ) is a spherical harmonic[209, 38]. (As mentioned above, the three

quantum numbers are: l, the total angular momentum, m, the projection of angular

momentum on the polar axis and nr, the number of radial nodes.) In Appendix B,

we solve Eq. 4.5 to find:

ω = −mκΩ
2~

+
1

2

√

(

mκΩ

~

)2

+
4κ

M∗ (l + 3nr + 2nrl + 2n2r). (4.6)

The corresponding eigenstates have D(r) ∝ rlF (−nr, l + nr + 3/2; l + 3/2, r2/R2),

where F is the hypergeometric function and R =
√

2µ/κ the radius of the cloud.

When Ω = 0, we recover the expected mode energies [209, 38]. Non-zero Berry

curvature affects the frequencies of only those modes with m 6= 0, breaking the
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(2m+ 1) degeneracy.

4.2.1 Polytropic Equation of State

We extend the hydrodynamic approach to a general polytropic equation of state:

P ∝ ργ+1, where P is the pressure and F = −1
ρ∇P−∇V . For the weakly interacting

Bose condensate, P = 1
2gρ

2 and γ = 1. The exponent γ = 2/3 describes a dilute

Fermi gas, an ideal normal Bose gas under adiabatic conditions and Bose and Fermi

gases5 in the strongly interacting (unitarity) limit [211, 212, 190]. In Appendix C,

we derive the following equation for the velocity from the hydrodynamic equations

with the polytropic equation of state:

∂2v

∂t2
=

(γ + 1)

M∗
P0

ρ0
∇(∇ · v)− 1

M∗∇(∇V · v)− γ

M∗∇V (∇ · v)

−Ω

~

[

(γ + 1)
P0

ρ0
∇

(

∇ · ∂v
∂t

)

−∇

(

∇V · ∂v
∂t

)

− γ∇V

(

∇ · ∂v
∂t

)]

× ẑ (4.7)

As is known without Berry curvature[211, 8], this equation differentiates between

three classes of modes: incompressible modes (∇ · v = 0), which are system-

independent; compressible modes with ∇(∇ · v) = 0, which depend only on γ,

and all other modes which depend on both γ and the equilibrium properties of the

gas through P0/ρ0. The Berry curvature contributes a divergence-free (and rota-

tional) component to the velocity (Eq. 4.4) and so preserves these three classes.

Below, we use this equation to derive the frequencies for important specific modes

in a general system.

If the polytropic equation of state governs both variations in the density, δρ,

and the equilibrium density, ρ0, we also find (Appendix C):

∂2δρ

∂t2
+∇ ·

(

ρ0

(

−ap(γ + 1)

M∗ ∇(ργ−1
0 δρ) +

ap(γ + 1)

~

(

∇
∂

∂t
(ργ−1

0 δρ) × ẑ

)

Ω

))

= 0 (4.8)

where ap is a dimensionful constant. This condition is fulfilled by a non interact-

ing, low temperature Fermi gas (Appendix C) and a weakly interacting dilute Bose

5Our results can be extended to Fermi systems, provided the atoms only occupy states near
the minimum of the energy dispersion, and so are described by the same effective mass and Berry
curvature.
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gas6. However, it is not valid for other systems, such as an ideal normal gas. The

equilibrium properties of the gas are then isothermal, and P0 and ρ0 are set by the

ideal gas law. The polytropic equation of state describes only adiabatic deviations

of an ideal gas from equilibrium. With this restriction in mind, we solve Eq. 4.8 for

the mode frequencies7 of weakly interacting Bose and Fermi gases:

ω = −mκΩ
2~

+
1

2

√

(

mκΩ

~

)2

+
4κ

M∗ (l + γnr(2l + 2nr + 1) + 2nr). (4.9)

(Again, this is a more general form of Eq. 4.6.) Therefore, under these conditions,

we see that the effects of Berry curvature on the collective mode frequencies do not

depend on particle statistics.

4.2.2 Important Classes of Modes

The most important collective modes in experiments are those at low frequency

which are easiest to excite and observe[8, 191]. One significant class of modes are

the surface waves which have nr = 0 and δρ ∝ rl−1Ylm(θ, ϕ)e−iωt ∂ρ0
∂r . These include

the low frequency dipole (l = 1) and quadrupole modes (l = 2). We find that, as in

the case without Berry curvature [211, 212], the mode frequencies are independent

of the equation of state. This can be seen from Eq. 4.7, when we note that surface

modes are incompressible, ∇ · v = 0, and that all system-dependence drops out.

Surface modes are also valid solutions for an anisotropic trap: V (x, y, z) =

1
2κ

2(x2 + y2) + 1
2κ

2
zz

2. The anisotropy lifts the degeneracy between modes with

different values of |m|. For example, without Berry curvature, the dipole modes for

the weakly interacting Bose condensate are δρ ∝ (x± iy) ∝ rY1±1(θ, ϕ) at frequency

ω =
√

κ/M∗, and δρ ∝ z ∝ rY10(θ, ϕ) at frequency ω =
√

κz/M∗ [38]. In what

follows, we shall refer to δρ ∝ (x ± iy) as the (quasi)-2D dipole modes. Figure 4.1

shows schematically how the Berry curvature splits these modes. In the absence of

Berry curvature, the quadrupole modes withm = ±2 or m = ±1 can also be linearly

6Eq. 4.8 becomes Eq. 4.5 when γ = 1 and ap = g/2.
7The general density variation is: δρ ∝ D(r)Yl,j(θ, ϕ)(R

2 − r2)(γ−1)/γe−iωt. The extra factor of
(R2 − r2)(γ−1)/γ is nonzero for Fermi gases but vanishes for weakly interacting Bose condensates
as expected. This ensures that the density variation vanishes continuously at the edge of the cloud
for a degenerate Fermi gas. This is important as, for this system, the kinetic energy of the wave
function cannot be neglected. For a full discussion of this issue, see for example Ref. [213].
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Figure 4.1: The Berry curvature splits degenerate modes, as shown here
for the 2D dipole oscillations in a weakly interacting Bose gas: δρ±1 = (x±
iy)e−iωt (i.e. nr = 0, l = 1, m = ±1). An element of fluid (pink circle) feels
a restoring force, F±1 = −g∇δρ±1 = −g (1,±i) e−iωt, around the dashed
curve. Without Berry curvature, the acceleration, v̇n, and velocity, vn, have
the same magnitude for both modes and ω+1 = ω−1. The Berry curvature
couples to the time-dependent force, giving an additional acceleration, v̇Ω,
and velocity, vΩ ∝ (F × ẑ)Ω. This is analogous to the “guiding centre”
velocity of a particle in electromagnetic fields (c.f. v ∝ (E × B)). The
resultant frequencies are split; ω+1 is lowered and ω−1 is raised.

combined to give the scissors modes [198](with δρ ∝ xy, yz, xz). The existence of the

scissors modes relies on the degeneracy between ±|m|. Here these mode frequencies

are split, and so the modes must retain their angular symmetry.

Another important low-lying mode is the breathing mode (nr = 1 and l = m =

0). Without Berry curvature, the velocity field is purely radial (v ∝ r), and the

density oscillation resembles a “breathing” of the cloud [38]. The mode frequency

now depends on the equation of state8: ω =
√

(3γ + 2)κ/M∗[211, 212]. Solving Eq.

4.7, we find that this mode frequency is unchanged for Ω 6= 0, since it has no angular

momentum along ẑ. However, it is interesting to note that the mode velocity field

is changed, gaining an extra rotational (divergence-free) component ∝ r × ẑ.

4.3 2D Rashba Spin-Orbit Coupling

We illustrate the effects of the Berry curvature on collective modes for a simple model

of Rashba spin-orbit coupling. We have discussed the achievability of this coupling

8We note that the breathing mode falls into the second class of modes: it is compressible with
∇(∇·v) = 0. Therefore its frequency depends on γ but is independent of the equilibrium properties
of the gas.
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in current and future ultracold gas experiments in Section 2.2. We consider a 2D

interacting spin-1/2 gas described by the Hamiltonian

Ĥ =
∑

i

ĥ0(i) +
1

2
g2D

∑

i 6=j

δ(xi − xj)δ(yi − yj)

ĥ0 =
p2

2M
+ λR(pxσ̂y − pyσ̂x)−∆σ̂z + V (x, y). (4.10)

where g2D is the effective contact interaction in 2D, i = 1, ..., N is the particle index,

and σ̂x,y,z are the Pauli spin matrices. We assume that the interaction strength is

independent of spin, which is a good approximation for 87Rb. The single-particle

Hamiltonian, ĥ0, is characterised by a Rashba spin-orbit coupling, λR, and a Zeeman

field, ∆. The effects of spin-orbit coupling on the collective modes have previously

been studied for 1D [130, 214, 215] (where there can be no Berry curvature) and for

the 2D dipole mode in a thermal gas using a Boltzmann approach [216].

Without a trap, the single-particle energy spectrum is ε± = p2

2M ±
√

λ2Rp
2 +∆2.

The corresponding Berry curvature is [12]:

Ω± = ∓ λ2R∆~
2

2(λ2Rp
2 +∆2)3/2

. (4.11)

When ζ ≡ λ2
RM
∆ < 1, there is a single minimum in the lower band at p = 0. This

minimum has effective mass M∗ = M
1−ζ , and Berry curvature Ω =

λ2
R~2

2∆2 [12]. We

consider the collective oscillations of a BEC formed in this single minimum. In ad-

dition to ζ, the mean-field theory for the Hamiltonian (Eq. 4.10) is characterised by

two other dimensionless parameters: χ ≡ ~ω0
∆ (where ω0 =

√

κ/M ), which compares

the trap and the band-gap, and G ≡ Ng2DM
~2

, which compares the interactions to

the trap. We assume that G≫ 1 to justify the Thomas-Fermi approximation which

improves with increasing particle number, N . We also take χ . 1, to avoid mixing

with higher bands.

4.3.1 Collective Modes from Hydrodynamics

The three lowest sets of 2D surface mode frequencies (nr = 0, l = |m| = 1, 2, 3 in Eq.

4.6) are shown in Figure 4.2 for intermediate trapping, χ = 0.2, where the splitting
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due to Berry curvature is significant. Without Berry curvature (in the limit χ≪ 1),

the mode frequencies are ω/ω0 =
√

(M/M∗)l for both m = ±l). As ζ → 1, the

effective mass, M∗ = M
1−ζ , diverges and ω/ω0 → 0. This is the transition from the

single minimum to the ring of degenerate minima at nonzero momenta in the energy

spectrum. When Berry curvature is present, the modes split. The energy splitting

between surface modes with m = ±l is δω
ω0

= 1
2ζχl (Eq. 4.6). As discussed above, it

is necessary that χ . 1 and 0 < ζ < 1; this sets an upper limit of δω
ω0

. 50%× l. Note
that this splitting can be large (especially for large l). It is also interesting to note

that, while the mode frequencies without Berry curvature all go to zero at ζ = 1

(where M∗ → ∞), for non-zero Berry curvature there remain modes at nonzero

frequency9.
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Figure 4.2: The three lowest-energy sets of 2D surface modes (nr = 0,
l = |m| = 1, 2, 3) for the Rashba Hamiltonian for a weakly interacting Bose
condensate. The modes are shown in the single-minimum regime, 0 < ζ < 1,
for intermediate trapping, χ = 0.2 (the Ω− = 0 results are for weak trapping
χ≪ 1). The Berry curvature breaks the degeneracy and splits the modes.

Complementary Approaches

We now consider two other approaches for calculating the collective mode frequencies

of this model. We first discuss a sum rule approach, which was used to investigate

1D spin-orbit coupling in Ref. [215]. We find that the 2D problem is much more

9For clarity, we have not shown higher-lying modes in Figure 4.2, although some of these go soft
as the effective mass diverges.
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difficult and so far we have not been able to explore the regime where the effects

of Berry curvature are significant. Instead, we develop an operator method as an

alternative approach.

We shall focus in both methods on the dipole mode: the lowest energy mode,

which has nr = 0, l = 1. For a gas in a harmonic potential, a dipole mode is a

centre-of-mass mode, for which a generalised version of Kohn’s theorem[217] can be

applied[218]. Two-body interactions drop out and the motion of the centre-of-mass

is equivalent to that of a single particle. Then the frequency of this mode without

Berry curvature is simply equal to the trap frequency (see Eq. 4.6 for Ω = 0 and

M∗ = 1)[38].

4.4 Sum Rules for 2D Rashba Spin-Orbit Coupling

Introduction to Sum Rules

To calculate collective modes directly, we need to solve the full equations of motion of

the many-body system. Sum rules provide an ingenious alternative; this approach

often only requires knowledge of the ground-state and its properties. The first

application of this technique was in the Thomas-Reiche-Kuhn (TRK) sum rule,

calculated in 1925 for the interactions of light with atoms[219, 220, 221]. Since

then sum rules have found applications in many areas including the solid-state[222],

nuclear[223], and particle physics[224].

Sum rules are used to evaluate the moments of the dynamic structure factor,

SF̂ (ω). For a sufficiently weak perturbation, the response of the system is directly

proportional to the perturbing field and can be described by linear response theory. If

the field couples to the system via the linear operator, Ĝ, the perturbing Hamiltonian

can be written as[37]:

Hpert(t) = −hĜe−iωteηt − h∗Ĝ†eiωteηt (4.12)

where h is the (weak) perturbing field strength, ω is the frequency of the field and η is

positive and small so that Hpert(−∞) = 0. This perturbation can cause deviations
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from equilibrium in the expectation values of another linear operator, F̂ †:

δ〈F̂ †〉 = 〈ψ(t)|F̂ †|ψ(t)〉 − 〈ψ(−∞)|F̂ †|ψ(−∞)〉

= he−iωteηtχF̂ †,Ĝ(ω) + h∗eiωteηtχF̂ †,Ĝ†(ω) (4.13)

where χF̂ †,Ĝ is the response function or the dynamic polarizability10. If F̂ = Ĝ, the

result can be written as:

χF̂ †,F̂ = χF̂ ≡ −
∫ +∞

−∞
dω′

[

SF̂ (ω
′)

ω − ω′ + iη
− SF̂ †(ω

′)

ω + ω′ + iη

]

SF̂ (ω) =
∑

n

|〈0|F̂ |n〉|2δ(~ω − ~ωn0) (4.14)

where |n〉 and ~ωn0 = (En−E0) are the eigenstates of the unperturbed Hamiltonian.

SF̂ (ω) is the dynamic structure factor (at zero temperature), which gives the excita-

tion spectrum of the operator F̂ . We can define moments of the dynamic structure

factor as[37]:

mp(F̂ ) = ~
p+1

∫ +∞

−∞
dωωpSF̂ (ω) =

∑

n

(En − E0)
p|〈0|F̂ |n〉|2. (4.15)

These are very useful because they provide a rigorous upper bound on the lowest

excitation energy, ~ωmin, of the operator F̂ :

(~ωmin)
r ≤ mp(F̂ )

mp−r(F̂ )
. (4.16)

for any value of p and r. This upper bound will become an equality if there is only

one excited state (with energy ~ω̄), such that SF̂ (ω) ∝ δ(~ω − ~ω̄). For positive

values of p, the moments can often be related to commutators or anti-commutators

10The form of the response function is found by considering the time evolution of the system
under the action of Hpert(t) up to first order in h.
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of the operator, F̂ , with Ĥ, the total Hamiltonian11:

m1(F̂ ) =
1

2
〈0|[F̂ , [Ĥ, F̂ †]]|0〉

m2(F̂ ) =
1

2
〈0|{[F̂ , Ĥ, ], [Ĥ , F̂ †]}|0〉

m3(F̂ ) =
1

2
〈0|[[F̂ , Ĥ], [Ĥ, [Ĥ, F̂ †]]|0〉 (4.17)

These sum rules demonstrate how the ground-state can be used to evaluate the

dynamical properties and collective excitations of a system. However, moments

with p ≥ 1 are most sensitive to the large ω and short time behaviour[225]. If there

is indeed only one excited state, Eq. 4.16 will give the lowest excitation energy

regardless of the value of p used. However, usually this is not the case and so p must

be chosen with care.

4.4.1 A Sum Rule Approach to the 2D Dipole Mode

We are interested in the dipole mode in the 2D Rashba spin-orbit coupled sys-

tem. Using moments with p ≥ 1, gives a large upper bound on the collective mode

frequency that is insensitive to the effects of spin-orbit coupling and Berry cur-

vature. This indicates that the single-mode approximation is not valid and that

higher energy excitations contribute to the dynamic structure factor. To improve

this calculation, we have therefore focused on:

~ωmin ≤
√

m−1(D̂±1)

m−3(D̂±1)
(4.18)

where we have introduced the dipole operator D̂±1 = X̂ ∓ iŶ (corresponding to

the modes δρ±1) and the many-body particle operators: X̂ =
∑

i x̂i (all defined at

t = 0). The moments are sensitive to the low-energy part of the dynamic structure

factor, and have been used to investigate the dipole mode in the 1D spin-orbit

coupled system[215] described in Section 2.2.1, where there is no Berry curvature.

In Appendix D, we derive the moments for the dipole operator and the Hamiltonian

11For more detail on when these relations are valid see Ref. [225].
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in Eq. 4.10:

m−1(D̂±1) =
N

ω2
0M

± 1

ω2
0~M

〈0|L̂z|0〉

m−3(D̂±1) =
N

M~2ω4
0

± 1

M~3ω4
0

〈0|L̂z|0〉 +
∑

n

4λ2R
~2ω4

0(En −E0)
|〈0|Σ̂∓|n〉|2

± λR
~3ω4

0

〈0|(X̂ + iŶ )Σ̂− + Σ̂+(X̂ − iŶ )|0〉 (4.19)

where N is the number of particles in the ground-state |0〉, Σ̂± are the many-body

particle spin raising and lowering operators.

The m−1(D̂±1) moment is known as the inverse energy-weighted moment12. It

is related to the static polarizability as[37]:

χD̂±1
(0) ≡ χD̂±1

(ω)ω→0 = m−1(D̂±1) +m−1(D̂
†
±1)

= m−1(D̂±1) +m−1(D̂∓1) =
2N

ω2
0M

(4.20)

where we have used that D̂†
±1 = D̂∓1. As in the 1D SO case, this is insensitive to

both the two-body interactions and the spin-orbit coupling[215].

The moments in Eq. 4.19 depend on both ground-state properties and:

∑

n

|〈0|Σ̂∓|n〉|2
(En − E0)

= m−1(Σ̂∓). (4.21)

This quantity is related to the static spin polarizability per particle as: χΣ̂∓
(0) =

m−1(Σ̂+) + m−1(Σ̂−). Guided by this connection, we find that this term can be

calculated by applying linear response theory to the ground-state wave function (see

Appendix E). Therefore, only knowledge of the ground-state is needed to find an

upper bound on the lowest excitation energy (Eq. 4.18). However, this is still non-

trivial as the ground-state depends on two-body interactions. In Section 4.4.3, we

shall therefore employ an appropriate ansatz for the wave-function. Before this, we

shall confirm Eq. 4.19 by exploring the single-particle problem, which can be easily

solved numerically.

12For the density operator, this is known as the compressibility sum rule, as the static density
response can sometimes be related to the thermodynamic compressibility[37].



88
Chapter 4 The Effects of Berry Curvature on the Collective Modes of

Ultracold Gases

4.4.2 The Non-Interacting Case

We consider the single-particle Hamiltonian:

ĥ0 =
p2

2M
+ λR(pxσ̂y − pyσ̂x)−∆σ̂z + V (x, y). (4.22)

The collective modes can be directly calculated from the numerically obtained

eigenenergies. This allows us to confirm the expressions in Eq. 4.19. The dipole

operator, D̂†
±1, changes the angular momentum of the system (m→ m± 1). There-

fore, we consider a spin-1/2 particle in a 2D quantum harmonic oscillator potential,

where the eigenstates are characterised by the spin, a radial quantum number, nr,

and the azimuthal angular momentum, m. In this basis, we can recast Eq. 4.22 as:

ĥ0 = ~ω0(â
†
dâd + â†gâg + 1)1̂− σ̂z∆+ λR

√

M~ω0

[

σ̂+(â
†
g − âd) + σ̂−(âg − â†d)

]

(4.23)

where we have introduced the 2D operators:

σ̂+ = 1
2 (σ̂x + iσ̂y) σ̂− = 1

2(σ̂x − iσ̂y)

âd = 1√
2
(âx − iây) âg = 1√

2
(âx + iây)

â†d = 1√
2
(â†x + iâ†y) â†g = 1√

2
(â†x − iâ†y)

based on the usual 1D ladder operators:

âx =

√

Mω0

2~

(

x̂+
i

Mω0
p̂x

)

, â†x =

√

Mω0

2~

(

x̂− i

Mω0
p̂x

)

(4.24)

(and similarly for y). The Hamiltonian can be visualised in Figure 4.3. The az-

imuthal angular momentum is â†dâd − â†gâg = m. In this basis, the dipole operators

can be written as:

d̂+1 = x̂− iŷ =

√

~

Mω0
(âd + â†g), d̂−1 = x̂+ iŷ =

√

~

Mω0
(âg + â†d) (4.25)

The spin-orbit interaction couples infinite ladders of states of increasing energy. The

lowest six states in the ground-state ladder is shown in Figure 4.3. For sufficiently

weak λR, the Hamiltonian can be diagonalised numerically to high accuracy with

a finite number of states. The dipole frequency can be directly determined by
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σ̂−

21 3−3 0−2 −1

m

2~ω0 −∆

3~ω0 −∆

4~ω0 −∆

2~ω0 + ∆

3~ω0 + ∆

4~ω0 + ∆

E

~ω0 + ∆
| ↓〉

(0, 1)

(2, 0)(0, 2)

(1, 0)(0, 1)

â†g

| ↑〉
â†d

(0, 0)

(0, 2) (2, 0)

(1, 1)

(1, 0)

~ω0 −∆

(nd, ng) = (0, 0)

(1, 1)

−λR

√
M~ω0

21 3−3 0−2 −1

m

2~ω0 −∆

3~ω0 −∆

4~ω0 −∆

2~ω0 + ∆

3~ω0 + ∆

4~ω0 + ∆

~ω0 + ∆
| ↓〉

| ↑〉
~ω0 −∆

(1, 0)

(1, 1)

(0, 0)

(2, 1)

E
(3, 2)

(2, 2)

Figure 4.3: (Above) A schematic of the lowest single-particle, 2D har-
monic oscillator energy levels for each spin state. Each state can be labelled
by the spin and (nd, ng), where nd = â†dâd and ng = â†gâg. These 2D opera-
tors are defined in the main text and are related to the azimuthal angular
momentum as: â†dâd − â†gâg = m. Note that ∆ & ~ω0 (i.e. χ . 1). (Be-
low) The spin-orbit coupling flips the spin and couples states with different
azimuthal momentum. This links the states in infinite ladders (shown here
are the first six states of the ground-state ladder). To find the energies with
spin-orbit coupling, we numerically diagonalise the single-particle Hamilto-
nian within each ladder.
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Figure 4.4: The dipole mode
for the 2D Rashba Hamilto-
nian in the non-interacting case
(nr = 0, |m| = 1). The
modes are shown in the single-
minimum regime, 0 < ζ <
1, for intermediate trapping,
χ = 0.2 (the Ω− = 0 re-
sults are for weak trapping χ≪
1). The dotted lines indicate
the semiclassical results (S.C.),
while the smooth lines are the
sum rule and numerical results
(S.R. & N.). The red lines in-
dicate the mode excited by d̂+1

and the blue those excited by
d̂−1. The splitting due to Berry
curvature appears for all ap-
proaches, with excellent agree-
ment for very small ζ.
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comparing the numerical energies of the ground and first excited states.

We compare this with the sum rule approach (Eq. 4.19):

m−1(d̂±1) =
N

Mω2
0

± 1

~Mω2
0

〈0|l̂z |0〉

m−3(d̂±1) =
N

M~2ω4
0

± 1

M~3ω4
0

〈0|l̂z |0〉+
∑

n

4λ2R
~2ω4

0(En − E0)
|〈0|σ̂∓|n〉|2

± λR
~2ω4

0M

√

M

~ω0
〈0|(âg + â†d)σ̂− + σ̂+(â

†
g + âd)|0〉. (4.26)

These are computed from the numerically calculated eigenstates. For χ . 0.3, the

sum rule approach and the direct numerical frequencies agree closely. These two

sets of results are compared in Figure 4.4 with the semiclassical approach13. All

three calculations show a clear splitting of the modes due to the Berry curvature.

The energy splitting between dipole modes from the semiclassical approximation is

δω
ω0

= 1
2ζχ (Eq. 4.6). For small ζ, there is good quantitative agreement between

this and the other two approaches14. For large ζ ≃ 1, the sum rule and numerical

13In the non-interacting case, we apply the semiclassical equations rather than the hydrodynamic
approach. Using F = −∇V in Eq. 3.3, we recover the hydrodynamic frequencies for the dipole
mode (Eq. 4.6).

14Using second-order perturbation theory in λR on the energy state scheme of Figure 4.3, we find
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approach diverge significantly from the semiclassical approach. This is because we

assume semiclassically that the cloud has a large width and so is well-described by

the properties of the minimum in the energy dispersion. However, as the dispersion

flattens and the effective mass diverges, the width of the non-interacting cloud in a

trap becomes narrower, and this approximation breaks down.

4.4.3 The Interacting Case

To include interactions, we look for an appropriate ansatz for the ground-state. The

simplest ansatz would be:

Ψ =





ψ1

ψ2



 = f
( r

R

)





1

0



 (4.27)

where f
(

r
R

)

encodes the spatial variation due to the trap15. This assumes that in

the ground-state, all particles are in the | ↑〉 state. However, the spin-orbit coupling
mixes the spin states; this is therefore a bad ansatz, unable to capture even the

effective mass behaviour for a vanishing trap (χ → 0). A better choice is:

Ψ =







√

µ+∆−V (x,y)
g2D

λR
4∆

√
g2D

Mω2
0~√

µ+∆−V (x,y)
(x+ iy)






(4.28)

where µ is the chemical potential, normalised so that there are N particles in com-

ponent ψ1 within the Thomas-Fermi volume. This ansatz can be justified by con-

sidering the interacting Gross-Pitaevskii equations under the constraint that the

occupation of ψ2 is still much less than that of ψ1. For the details of this ansatz and

the accompanying sum rule calculation see Appendix E. The dipole mode frequencies

within the sum rule approach (Eq. 4.18) then become:

ω2
±1 = (1− ζ)ω2

0 =
M

M∗ω
2
0, (4.29)

the splitting 2χζ/(4− χ2). This reduces to δω
ω0

= 1
2
ζχ for sufficiently small χ.

15This ansatz was sufficient to capture the simpler 1D SO coupling behaviour in Ref. [215].
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(i.e. the |m| = 1, Ω = 0 line in Figure 4.2). Unfortunately, the ansatz is still

insufficiently accurate to discern the effects of Berry curvature. This is because the

splitting due to Berry curvature is proportional to χ = ~ω0/∆. As ∆ is the Zeeman

energy splitting the spin-states, increasing χ breaks our assumption that there are

a negligible number of atoms in the | ↓〉 component.

We have not been able to extend the sum rule approach beyond Eq. 4.29, to

the regime where the effects of Berry curvature are significant. While even the

simplest ansatz (Eq. 4.27) was able to capture the important physics of 1D spin-

orbit coupling[215], we see that the 2D problem is substantially more difficult and

a much more sophisticated ansatz is required. We therefore leave this problem as

an open question. Instead, we now develop an alternative approach, which shares

many of the advantages of the sum rules, but avoids this drawback.

4.5 Dipole Operator Approach

We derive the frequencies of the dipole mode using an operator approach, which

captures the effects of Berry curvature. We calculate the Heisenberg equations of

motion for an operator, F̂ :

˙̂
F =

i

~
[Ĥ, F̂ ] +

∂F̂

∂t
. (4.30)

In general, the commutator, [Ĥ, F̂ ], generates terms involving other operators. By

considering the equations of motion of these operators too, we seek a closed set of

equations that can be solved for the mode frequencies.

For particles in a quadratic band minimum, the dipole mode is a centre-of-mass

oscillation[217, 218]. It is therefore unaffected by interactions (which depend only

on interparticle separations). As we now show, the dipole mode remains a centre-of-

mass oscillation for non-zero Berry curvature. Hence, interactions can be neglected

provided they do not excite particles to high-energy states which lie beyond the

effective mass approximation, which we now assume. For a BEC in an optical lattice,

we require interactions to be sufficiently weak that ξ ≫ a, where ξ = (~2/2Mρ0g)
1/2

is the healing length and a is the lattice spacing. For the 2D Rashba model, the
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effective mass approximation breaks down for momenta p ≃ ∆/λR, and so we require

that the healing length is much greater than ~λR/∆.

We first apply the dipole operator method to the 2D Rashba model, where we

confirm the splitting of the dipole modes due to Berry curvature. In Appendix F,

we also calculate the mode for 1D spin-orbit coupling. While this system does not

have Berry curvature, we show that in this system too, the dipole operator method

captures the behaviour expected from a hydrodynamic and a sum rule approach.

Finally, we discuss a general multi-band Hamitlonian, where we see how Berry cur-

vature effects arise naturally as the next-order correction after the effective mass.

4.5.1 2D Rashba Spin-Orbit Coupling

We begin from the full many-body Hamiltonian in Eq. 4.10. As D̂±1 commutes

with the interacting term, the interactions drop out and the centre of mass motion

is equivalent to that of a single particle. The Heisenberg equations of motion are

then:

ˆ̇D+1 =
1

M
P̂+1 +

2iλR
~

Ŝ+1

ˆ̇P+1 = −ω2
0MD̂+1

ˆ̇S+1 =
iλR
2

∑

i

(−2ipxσ̂z + 2pyσ̂z) +
2i∆

~
Ŝ+1 (4.31)

where P̂+1 = P̂x − iP̂y and Ŝ+1 = ~

2 (Σ̂x − iΣ̂y). Without approximations, this set

of operator equations does not close, but contains products of the momentum and

spin. We assume that the atoms are in the lower band minimum. Then we can

replace the spin operator, σ̂z with the expectation value at this point, 〈0|σz |0〉 ≃ 1,

where we have neglected terms of order 1/∆2. Then:

iλR
2

∑

i

(−2ipxσ̂z + 2pyσ̂z) ≃ λRP̂+. (4.32)

Then we have a set of three coupled equations. Using the approximation again that

we neglect terms of order 1/∆2, we can further reduce this to two equations. We
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find:

−iωD̂+1 =

(

1

M
− 2λ2R

(~ω + 2∆)

)

P̂+1 ≃
(

1

M
− λ2R

∆
− λ2R~ω

2∆2

)

P̂+1

−iωP̂+1 = −ω2
0MD̂+1 (4.33)

where we have substituted in for Ŝ+1 and expanded to first order in ~ω/2∆. We

have also taken the operators to vary harmonically as e−iωt. Similar equations can

be found for D̂−1. Then the dipole mode frequencies are:

ω2
±1 =

(

1

M
− λ2R

∆
∓ λ2R~ω

2∆2

)

ω2
0M =

M

M∗ ∓ ΩωMω2
0

~
(4.34)

where we have used the effective mass and Berry curvature introduced in Section

4.3. This therefore confirms the hydrodynamic results (Eq. 4.6) for the dipole mode.

In Appendix F, we apply this approach to the 1D spin-orbit coupled Hamiltonian,

where we reproduce theoretical results from a hydrodynamic and sum rule approach.

4.5.2 General Multi-Band Hamiltonian

For the particular case of the dipole mode, we now show how the effects of Berry

curvature arise naturally for a very general multi-band system. We assume that

the minimum of the lowest band is at a high symmetry point (e.g. the Brillouin

zone centre, p = 0). We choose axes such that the local Berry curvature is Ωẑ,

and discuss motion in the xy plane (motion along z decouples). The single-particle

Hamiltonian is H = − ~2

2M∇
2 + V (r) + U(r), where U(r) is the periodic lattice po-

tential. Following the usual effective mass theory[226], we expand the wave function

in terms of functions eik·r|n〉, where |n〉 ≡ |n0〉 is the Bloch function of the n-th

band at p = 0. We find

Ĥ =
∑

n

(

En +
~
2|k̂|2
2M

+
1

2
Mω2

0|x̂|2
)

|n〉〈n|+
∑

α,n,n′

~k̂α

M
παn,n′ |n〉〈n′| (4.35)

where En is the n-th band energy at the zone centre, and α runs over spatial di-

mensions. The operator ~k̂ is the crystal momentum (with eigenvalues ~k for the

states eik·r|n〉) and x̂ is the conjugate crystal position. The last term in Ĥ is of the
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familiar “k · p” form [226], with παn,n′ ≡ 〈n|p̂α|n′〉 the interband matrix elements16

of p̂.

For a quadratic band minimum, the Heisenberg equations of motion are then:

ˆ̇Xα =
1

M
P̂α +

1

M

∑

n,n′

Π̂α
nn′

ˆ̇Pα = −Mω2
0X̂

α

ˆ̇Πα
nn′ =

i

~
(En − En′)Π̂α

nn′ +
i

~

P̂ β

M

∑

j

παnn′

(

πβjn|j〉〈n′| − πβn′j |n〉〈j|
)

(4.36)

for the crystal position, X̂α ≡ x̂α
∑

n |n〉〈n|, crystal momentum, P̂α ≡ ~k̂α
∑

n |n〉〈n|,
and Bloch momentum, Π̂α

nn′ ≡ παnn′ |n〉〈n′| (all defined at t = 0).

These equations of motion describe coupling of motion of the centre-of-mass of

the atoms to interband transitions. We now again assume that all interband transi-

tion energies En −E0 are large compared to ~ω, in which case we can approximate

the last line, replacing P̂ βÔ with P̂ β〈0|Ô|0〉. (This assumes that all atoms are in

the lowest band, n = 0.) The last line becomes ∝ P̂ β
(

πβ0nπ
α
n0δn′0 − πβn′0π

α
0n′δn0

)

,

such that only Π̂α
n0 and Π̂α

0n′ couple to P̂ . Taking the operators to vary harmonically

with e−iωt, and eliminating Π̂α
nn′ , we find:

−i ωP̂α = −Mω2
0X̂

α

−i ωX̂α ≃ 1

M
P̂α − P̂ β

M2

∑

n>0

[

πβ0nπ
α
n0

[~ω + (En − E0)]
− πα0nπ

β
n0

[~ω − (En − E0)]

]

.(4.37)

We expand this to first order in ~ω/(En − E0) and find:

−iωX̂ ≃
(

1

M∗

)

xx

P̂ x +

(

1

M∗

)

xy

P̂ y +
iωΩ

~
P̂ y

−iωŶ ≃
(

1

M∗

)

yy

P̂ y +

(

1

M∗

)

yx

P̂ x − iωΩ

~
P̂ x (4.38)

where we have introduced the effective mass [227] and Berry curvature [12] for the

16Note that πα
n,n =M(∂En/∂p

α) = 0 at a band minimum.
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lowest band at the Brillouin zone centre:

(

1

M∗

)

αβ

≡ 1

M
δαβ − 1

M2

∑

n>0

πβ0nπ
α
n0 + πα0nπ

β
n0

(En − E0)

Ω ≡ i~2

M2

∑

n>0

πx0nπ
y
n0 − πy0nπ

x
n0

(En −E0)2
. (4.39)

This expression for Ω can be derived from Eq. 4.3 using the relation 〈n|∂H∂p |n′〉 =
〈∂n∂p |n′〉(En −E′

n) [12]. From Eq. 4.38, we calculate the dipole frequencies of D̂±1 =

X̂∓iŶ (corresponding to the modes δρ±1). For an isotropic effective mass, the dipole

mode frequencies are given by Eq. 4.6 (with nr = 0, l = 1 and m = ±1), confirming

the hydrodynamic result. Moreover, since all atoms oscillate in the same way, the

dipole mode remains a centre-of-mass oscillation, so this result is independent of the

regime or equation of state. Our derivation shows that the Berry curvature appears

as the next-order correction after the effective mass17.

4.6 Size of the Effects of Berry Curvature on Collective

Modes

Finally we discuss the size of the effects of Berry curvature on collective modes. We

illustrate this for the Harper-Hofstadter model of a tight-binding lattice with a flux

nφ = 1/q (where q is an integer) per plaquette of dimensions a×a [99]. The magnetic

unit cell contains one flux quantum, so its area is A = a2/nφ. The corresponding

magnetic BZ has an area ABZ = (2π)2nφ/a
2. The average Berry curvature, Ω̄, scales

as ∝ 1/nφ (because Ω̄ABZ = 2πC, where C is the Chern number, which is C = 1 in

this case). Therefore, the mode splitting due to Berry curvature is bigger for smaller

flux density (Eq. 4.6). Decreasing nφ will maximise the size of this effect, so long

as the energy gap between bands (∝ nφ) is always greater than ~ω0. Beyond this

limit, our assumption that the occupation of higher bands is negligible breaks down

and Eq. 4.6 will not be valid.

The effects of the Berry curvature can be large even when the flux per unit cell

17Away from high symmetry points, there can also be cubic corrections to the effective mass
which will scale on the same order as the Berry curvature (∝ 1/(En −E0)

2) as discussed further in
Appendix G.
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is of order 1, as for the optical flux lattices [96, 107]. For example, we take 87Rb

atoms condensed in the minimum of the F = 1 two-photon coupling scheme (with

the parameters of Fig. 4(a) in Ref. [107]). The splitting between two surface modes

with m = ±l then is δω/ω0 ≈ 3.4% × l for ω0/2π = 150Hz (Eq. 4.6). For the

quadrupole modes (with m = ±2), δω/2π ≈ 10Hz, which is larger than measured

damping rates and should be experimentally observable [193]. Hence, measurements

of the collective mode frequencies of a BEC can efficiently be used to characterise

geometrical properties of these novel lattices.

4.7 Conclusion

In conclusion, we have shown that Berry curvature has important effects on the

collective modes of ultracold gases. We have derived the splitting of these modes

within the hydrodynamic approach for a BEC and extended the results to other

systems using a general polytropic equations of state. We have analysed important

classes of modes, and shown that the splitting due to Berry curvature is independent

of the system. Our results were illustrated on the 2D Rashba model with a Zeeman

field. We also analysed the dipole mode in this model using a sum rule approach and

dipole operator method. For a general multi-band system, we have then shown how

the Berry curvature arises naturally as the next-order correction to the collective

modes, after the effective mass. These effects can be large and should be readily

detectable with current experimental capabilities. Their observation would allow a

characterisation of the geometrical properties of BECs in topological energy bands.



Chapter 5

Skyrmion-antiSkyrmion Pairs in

Ultracold Atomic Gases

In this chapter we investigate the dynamical properties of topological excita-

tions in 2D spinor BECs. We focus on a two-component BEC, which admits con-

figurations with the topology of skyrmions[44]. We study a branch of uniformly

propagating solitary waves, which at large momentum are skyrmion-antiskyrmion

pairs moving perpendicular to the line separating their centres. As introduced in

Section 1.2.2, trapped BECs can be imaged and controlled with high temporal and

spatial resolution[61, 63] and skyrmion-antiskyrmion pairs can be imprinted on a

BEC with holographically produced light beams[57]. Applied to a trapped gas, this

imprinting technique would allow for a full study of the dynamical properties of

these excitations[57].

We begin in Section 5.1 by introducing the Gross-Pitaveskii energy functional for

a 2D two-component Bose-Einstein condensate. We show how this can be usefully

re-written in the pseudo-spin representation, and we specify the physical constraints

on the dynamics of the condensate. In Section 5.2, we use these conservation laws

to identify and study a branch of uniformly propagating solitary waves, which, at

high momentum, can be viewed as skyrmion-antiskyrmion pairs. We study these

solitary waves for a range of interaction regimes and show that, for experimentally

relevant cases, there is a transition to spatially extended spin-wave states at low

momentum. We also show how our results can be understood by analogy to the

98
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2D ferromagnet[228], establishing the importance of topology in describing these

systems. This work was published as Ref. [3].

5.1 The Gross-Pitaevskii Energy Functional for a 2D

two-component BEC

We study the Gross-Pitaevskii energy functional in 2D for a two-component con-

densate of atoms:

E =

∫

d2r
∑

i,α

~
2

2Mi
|∇αψi|2 +

1

2

∑

i,j

gij |ψi|2|ψj |2 . (5.1)

(Summation convention is assumed throughout, with i, j running over the two com-

ponents and α, β over the two spatial dimensions.) We neglect the trapping poten-

tial, and study the properties in the central region of the cloud where the density

is uniform. Since skyrmions can be imprinted by exciting atoms between differ-

ent hyperfine states(Section 1.2.2), we take Mi = Mj for simplicity. The interac-

tion parameters gij for a quasi-2D harmonically confined gas can be expressed as

gij = (~2
√
8πaij)/Maz[229], where aij are the s-wave scattering lengths and az is

the oscillator length along the kinematically frozen axis. We are guided by the ex-

perimentally relevant system of 87Rb in the |1,−1〉 and |2, 1〉 hyperfine states[57],

hereafter denoted component 1 and 2 respectively. For these states, g11 ∼ g12 ∼ g22

and so stationary solutions vary on lengthscales much larger than the healing length,

allowing us to neglect variations in the total density[54].

5.1.1 The Pseudo-Spin Representation

The two-component condensate wavefunction is a spinor which we choose to param-

eterise as:





ψ1

ψ2



 =
√
ρ0





χ1

χ2



 =
√
ρ0





cos(θ/2)ei(ǫ−φ/2)

sin(θ/2)ei(ǫ+φ/2)



 (5.2)
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where ρ0 is the total density and θ ∈ [0, π], φ ∈ [0, 2π) and ǫ ∈ [0, 2π) are functions

of position r. We can then define the local spin as:

~ℓ = χ†~σχ = sin θ(cosφ~̂x+ sinφ~̂y) + cos θ~̂z (5.3)

where ~σ is the vector of Pauli matrices. Following [55, 52], we use this to recast Eq.

5.1:

E =

∫

d2r

[

~
2ρ0
8M

(∇~ℓ)2 +
ρ0Mv2

s

2
+
ρ20
2
(c0 + c1ℓz + c2ℓ

2
z)

]

(5.4)

where vs = (2∇ǫ − cos θ∇φ)~/2m is the superfluid velocity and c0 = (g11 + g22 +

2g12)/4, c1 = (g11 − g22)/2 and c2 = (g11 + g22 − 2g12)/4. The first term of Eq. 5.4

corresponds to the non-linear σ model, previously studied for a ferromagnet[228].

The second term is the hydrodynamic kinetic energy of the superfluid flow. The c0

term is a uniform energy shift, while, in the analogy to the ferromagnet, the c1 and

c2 terms can be interpreted as a magnetic field and an anisotropy respectively[52].

c1 just shifts the chemical potentials for N1 and N2, so, like c0, it has no physical

consequences and we henceforth define the energy (Eq. 5.4) with c0 = c1 = 0.

As skyrmions can be imprinted by selectively exciting atoms from one hyperfine

component into a second[57], we consider only solutions with all atoms in a single

component at large radii. In this case, ~ℓ(r) is uniform for r → ∞. The local

spin vector field is then equivalent to a mapping from S2 → S2 (Figure 5.1). The

topological index of this mapping is an integer counting how many times the local

Figure 5.1: Figure taken from Ref. [7]. A mapping from the real space
two-sphere, Σ, to the Bloch sphere for ~ℓ(r). Real space can be represented
as a two-sphere because we are concerned with solutions that have all atoms
in one component at large distances. These solutions have finite energy and
a uniform ~ℓ(r) as r → ∞. Under these circumstances, the 2D plane is
topologically equivalent to the two-sphere[230].
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spin vector wraps over the sphere[230]:

Q =
1

8π

∫

d2rεαβ(∂β~ℓ× ∂α~ℓ) · ~ℓ (5.5)

where εαβ is the 2D Levi-Civita symbol. A skyrmion is a configuration which has

Q = 1, while an anti-skyrmion has Q = −1.

5.1.2 Dynamics of the Condensate and Conserved Quantities

The condensate dynamics are described by the two coupled time-dependent Gross-

Pitaevskii equations:

i~
∂χi

∂t
=

[

− ~
2

2M
∇

2 + giiρ0|χi|2 + gijρ0|χj|2
]

χi . (5.6)

These equations conserve particle number in each component, Ni, as well as the

energy. We will look at configurations where χ → χ∞ ≡ (1, 0)T at spatial infinity,

so that the particle number in component 2

N2 = ρ0

∫

d2r|χ2|2 (5.7)

is finite, and related to the excitation size. (Since ρ0 is constant, N1 is automatically

conserved when N2 is conserved.) Two additional important conserved quantities

are the topological index, which we re-write here in terms of the wave function, and

the linear momentum, Pα:

Q =

∫

d2rq(r) (5.8)

Pα = 2~πρ0εαβ

∫

d2rrβq(r) (5.9)

where q(r) = 1
2πiεαβ∇αχ

∗
i∇βχi is the topological density[230]. (The definition of

momentum is related to the hydrodynamical impulse of classical fluid dynamics[231].)

As we consider the condition χ → χ∞ at spatial infinity, the topological index, Q,

is an integer.

For given Pα, Q and N2, we find the wavefunction configurations which minimise
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the energy E. The time evolution of these configurations follows from Eq. 5.6 as:

∂χi

∂t
= −vα∇αχi − iωχ2δi2 (5.10)

where vα and ω are Lagrange parameters, introduced to enforce the constraints

on Pα and N2. It is straightforward to demonstrate that this is consistent with

travelling wave configurations, which uniformly propagate through the system with

a constant velocity vα, while the local spin precesses around ℓz at angular frequency

ω. The “energy dispersion” E∗
Q(Pα, N2) is the minimal energy for given Pα, N and

Q, and so:

vα =

(

∂E∗
Q

∂Pα

)

N2

ω = −1

~

(

∂E∗
Q

∂N2

)

Pα

. (5.11)

Following Ref. [228], we note that under translation, χi(rα) → χi(rα +Rα), the

momentum transforms as Pα → Pα −QRα. Therefore, for a system which is trans-

lationally invariant, as we assume here, E∗
Q 6=0(Pα, N2) = E∗

Q 6=0(0, N2). Propagating

solutions with non-zero velocity therefore exist only for Q=0. Solutions with Q=1,

which include static skyrmions, were previously theoretically studied in Ref. [55].

Henceforth we restrict our analysis to the topological subspace Q=0, and drop the

subscript Q. We shall find that some of the extremal configurations are localised,

and these are therefore the uniformly propagating solitary waves[228, 25].

5.2 A Uniformly Propagating Branch of Solitary Waves

We have investigated the discretised energy functional E∗(Pα, N2) numerically over

a square lattice of length L. Here, we present results for a system of size 115 by

115, with the boundaries set to χ = χ∞. The scale-invariance of the theory requires

that under a scaling λ, E∗(P,N2, L) = E∗(Pλ,N2λ
2, Lλ)[228]. This implies that the

energy can only depend on the “scaled momentum” p = P/
√

N2ρ0~2, the “boundary

parameter” η = N2/(ρ0L
2) and the “anisotropy” c̃2 = N2c2M/~2. Hereafter we use

these dimensionless variables, and express the energy in units of ~2ρ0/M . The results

for an infinite system are obtained by taking the limit η → 0.



Section 5.2 A Uniformly Propagating Branch of Solitary Waves 103

0 10 205 15
Scaled momentum p

0

E
ne

rg
y 

E
* 

(h_  
2 ρ 0/M

)

η = 0.015
η = 0.030
E

SW
 for η=0

Figure 5.2: The energy dispersion of a two-component condensate for η
=0.015 and 0.030 and c̃2=0. The energy for a system of free spin waves,
Eq.5.12, is shown for comparison in the limit of an infinite system, η → 0.

5.2.1 Dynamical Properties without Anisotropy

Figure 5.2 shows the minimum energy as a function of p for c̃2=0, at two values of

the boundary parameter, η. Although this behaviour is still weakly dependent on

η, it is clear that E∗ is tending to a limit as η → 0.

We have analysed the extremal configurations and find that as η → 0, there is

a transition from spatially extended configurations at small p to localised structures

at large p. A study of the polar angle at the centre of the system, θc, shows that

for p & 2.4, θc tends to a finite value in the limit of an infinite system indicating

localised solutions. Below p ≃ 2.4, the system contains delocalised configurations

with θc extrapolating to zero as η → 0. From this, we identify a transition at p∗=2.4,

consistent with that found for the ferromagnet[228]. The energy of delocalised states

below p∗ can be understood within a linearized continuum theory[228], which gives:

ESW =
p2

2
+ π2η (5.12)
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corresponding to a system of length L filled with N2 free, non-interacting spin

waves1. Numerically, we find that E∗ approaches this form as η → 0, and the

particle densities in each component match those for free spin waves.

Above p∗, the spatially localised configurations form the branch of uniformly

propagating solitary waves. Typical spin configurations and particle densities in

component 2 are shown in Fig. 5.3 (a) & (b) for intermediate and high p respectively.

At intermediate momentum, the structure resembles free spin-waves with a finite

spatial extent and so is referred to as a “spin-wave droplet”[228]. Solutions of this

type were first found for the 2D two-component BEC at large negative anisotropy

in Ref. [232], where they were called “bubbles”.

At high momentum, the local spin configuration matches that for a skyrmion-

antiskyrmion pair2. From Eq. 5.9, the scaled momentum, p, is related to the

separation of a skyrmion-antiskyrmion pair, r, by p = 2rπ
√

ρ0/N2. For wide sepa-

rations (i.e. large momenta), the dominant contribution to the energy, E∗, is from

the kinetic energy of the superfluid flow. The properties of this regime therefore

differ from those of the ferromagnet previously studied[228]. Outside the core re-

gions of size r0 (wherein ~ℓ describes a skyrmion or anti-skyrmion), the superfluid

flow is that of a vortex-antivortex pair. The scaled energy, E∗, then includes the

term 2π ln(r/r0)[231]. The energy dispersion curve at high p approaches this result

continuously as η → 0 and the velocity, v, of the skyrmion-antiskyrmion pair (Eq.

5.11) tends to v = ~/Mr.

5.2.2 Dynamical Properties in the Presence of Anisotropy

We have investigated how the anisotropy, c̃2, affects these results. Figure 5.4 shows

the minimum energy as a function of p for c̃2 = −2.0, 0.0 and 2.0, calculated with

respect to χ = χ∞. Negative values of c̃2 represent an “easy-axis” anisotropy,

preferring spatial separation of the components. The ground state is one in which

all atoms are in a single component, and the extremal configurations correspond

1The momentum of a single free spin wave is P/N2. Therefore N2 free spin waves have energy
P 2/2MN2 or p2/2 in units of ~2ρ0/M . The term, π2η, is the finite size energy offset for a system of
length L. In the linearised continuum theory, we derive these results by expanding Eq. 5.2 around
the ground-state.

2These configurations are also the 2D analogues of 3D vortex rings in spinor BECs[54, 233].
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(a)

(b)

Figure 5.3: The local spin vector ~ℓ(r) projected onto the xy plane, and
contours of the typical particle density in component 2, for η=0.015 and (a)
p=4.0 and (b) p=8.5. For clarity, one spin in five is plotted. The direction
of the velocity, v, and momentum, P , of the solitary wave is indicated.

to those discussed above. As the anisotropy is decreased below zero, the critical

scaled momentum, p∗, shifts down, until below a critical value, c̃∗2, the solitary

waves exist for all values of momentum3. We apply the radially symmetric ansatz

of Ref. [228] for the spin-wave droplet state just above the transition. We then find

that p∗ =
√
5.8 + 4c̃2 from the solution of a 1D nonlinear equation[234]. Hence,

the transition point, p∗, vanishes below a critical anisotropy, c̃∗2 ≃ −1.5, which is

consistent with our numerical results.

A positive c̃2 represents an “easy-plane” anisotropy, preferring component mix-

ing. The ground state will be an equal mixture of both components. Solitary waves

with these boundary conditions were studied in Ref. [235]. However, even for pos-

itive c̃2, skyrmions can be created and can be dynamically stable: starting from a

3Solitary waves below this critical value were first discussed in Ref. [232].
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Figure 5.4: The energy dispersion of a two-component condensate for
c̃2 = −2.0, 0.0 and 2.0 for η =0.015. Energy is measured relative to the
uniform system χ = χ∞. The value c̃2 = −2.0 is below c̃∗2 = −1.5, and so
solitary waves exist at all momenta, p, for η → 0. Inset: Enlargement of
the bifurcation region for c̃2 = 2.0, within which we find two branches of
excitations for the same momenta.

single component BEC, such as χ = χ∞ ≡ (1, 0) (with N2 = 0), excitation into a

state with non-zero N2 and P can lead to a solitary wave which cannot relax to

the ground state due to the conservation laws. This situation is relevant experi-

mentally as a skyrmion-antiskyrmion pair may be imprinted by selectively exciting

atoms from a single component[57]. The energy dispersion curve for these solitary

waves is shown in Fig. 5.4. We find that a positive value of c̃2 increases the critical

scaled momentum, p∗. Furthermore, it introduces a bifurcation region, where two

excitation branches exist for the same momenta. From our numerical results, we

find that excitations in the higher momentum branch always have the form of the

skyrmion-antiskyrmion pair described above.
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5.3 Experimental Considerations

Recent experimental advances[51, 57, 61] should allow the imprinting of a skyrmion-

antiskyrmion pair on a quasi-2D multicomponent BEC and the study of the inter-

esting dynamical properties we predict. Using holographic beams, the separation of

the imprinted pair and hence the momentum may be varied, permitting the dynam-

ics of these topological solitons to be investigated with high spatial and temporal

resolution.

The anisotropy, c̃2, controls the position of the cross-over and the type of ex-

tremal configuration. For the |1,−1〉 and |2, 1〉 states of 87Rb, the scattering lengths

are: a22 = 95.00a0, a11 = 100.40a0 and a12 = 97.66a0 where a0 is the Bohr

radius[236], giving a small positive value of c2. For a density of ρ3D ≃ 1014cm−3, the

anisotropy healing length is ξ2 ≃ 30µm. Anisotropy is important (c̃2 & 1) only for

excitations with L & ξ2, where L is the scale over which the density of component

2 varies. Recent experiments have demonstrated a spatial resolution on scales as

small as 0.5µm[61], and so would allow an exploration of regimes of both weak and

strong c̃2 (for L . 30µm and L & 30µm respectively)4.

The solitary waves travel through the system with a uniform velocity, v, while

the local spin precesses around ℓz with angular frequency, ω. For an excitation with

size L ≃ 3µm at p = 8 for 87Rb, our results typically show that v ≃ 0.2mm s−1

and ω ≃ 0.3rad ms−1 (Eq.5.11). Thus, the temporal resolution required to resolve

ω is ≃ 20ms and it will take ≃ 50ms to move a distance of 10µm, both of which are

within current experimental capabilities[63].

The creation and characterisation of the solitary waves predicted here will allow

subsequent experimental studies of their scattering properties. It would be especially

interesting to investigate the general prediction coming from high energy physics,

that pairs of (related) 2D solitary waves of equal and opposite momenta should

scatter at right angles after colliding head-on[237, 232, 238].

4To neglect total density variations, imprinted excitations should be larger than the healing
length, ξ0 ≃ (~2/2c0ρ3DMaz)

1/2 ≃ 400nm for 87Rb
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5.4 Conclusion

We have explored theoretically the dynamical properties of two-component Bose-

Einstein condensates in two dimensions, which can support excitations with the

topology of skyrmions. We have investigated a branch of uniformly propagating

solitary waves which, at high momentum, can be viewed as skyrmion-antiskyrmion

pairs. We have studied these excitations for all interaction regimes and found that

above a critical interaction anisotropy, c̃∗2, there is always a transition to delocalised

states at low momentum. We have also discussed how the dynamics of these solitary

waves could be accessed with current experimental capabilities and techniques.



Chapter 6

Conclusions

Summary

In this thesis, we have explored some of the fascinating consequences of topology for

ultracold atomic gases. We have focused on two key areas of current experimental

research: topological energy bands and topological solitons. We have shown that

these phenomena have novel features in ultracold gases and proposed how these

features might be investigated in experiments. We have also discussed how ultracold

gases present the ideal opportunity to probe some properties which are inaccessible

in other physical systems.

Our research has been motivated by the direction of current experiments. En-

ergy bands with nontrivial geometrical and topological properties play an important

role in artificial gauge fields and optical lattices with more than one site per unit

cell. Such bands have long been of interest in the solid-state, where they underlie

remarkable phenomena such as the quantum Hall effect. However, ultracold gas

experiments require innovative tools to probe these properties, as transport mea-

surements, standard in the solid-state, are hard to achieve. Therefore, in Chapter

3, we have proposed a general method for mapping the Berry curvature from the

semiclassical dynamics of a wave packet. We have outlined a “time-reversal” pro-

tocol that would allow the Berry curvature to measured over the Brillouin zone for

the first time. We have demonstrated this method for several example experimental

systems and shown that these measurements would be within current capabilities.

Since the publication of this work, a related method has been successfully used to
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measure a geometrical phase for the first time in an ultracold atomic gas.

Furthermore, we have shown, in Chapter 4, that the geometrical properties of

energy bands can crucially modify the collective mode frequencies of an ultracold

gas. Collective modes are an important experimental probe of a system, as they

can be measured with high precision. We have demonstrated in this thesis that

collective modes may be used characterise the geometrical properties of BECs in

topological energy bands. We have determined how the Berry curvature changes the

hydrodynamic equations of motion for a trapped Bose-Einstein condensate, shifting

oscillation frequencies and splitting otherwise degenerate modes. Using an operator

approach, we have derived the effects of Berry curvature on the dipole mode in very

general settings. We have also shown that these effects can be large in experiments

and so should be readily detected.

In the final chapter of this thesis we have studied the dynamical properties of a

two-component 2D Bose-Einstein condensate, which supports excitations with the

topology of skyrmions. Skyrmions are topological solitons with applications in many

areas of physics. Here, we have identified a branch of uniformly propagating solitary

waves, which, at high momentum, can be viewed as skyrmion-antiskyrmion pairs.

We have investigated the key features of this branch, and shown that, for experi-

mentally relevant cases, there can be a transition to spatially extended spin wave

states at low momentum. These dynamical properties could soon be investigated in

experiment as skyrmion-antiskyrmion pairs can be imprinted on BECs and ultracold

gases can be studied with high temporal and spatial resolution.

Outlook

There are many interesting open questions still to be explored, both in the wider

field and in extensions to this thesis. It would be useful, for example, to ask how we

could extend our proposal to map the non-Abelian Berry curvature over the Brillouin

zone using semiclassical dynamics. This would allow experiments to reconstruct the

invariants associated with topological insulators[5, 6, 239], which are another hot

topic of current research. We might also consider whether we can combine the

two types of topological phenomena discussed in this thesis, and study the effects
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of Berry curvature on the behaviour of solitons. When we discussed semiclassical

dynamics in Section 3, we neglected the effects of non-linear interactions. However,

around the band maximum, where the effective mass is negative, a wavepacket can

decay into discrete solitons, as is known without Berry curvature[175, 176, 41]. How

would this behaviour be modified if we include a nonzero Berry curvature?

It would also be interesting to expand our work on collective modes. One open

question from this thesis is how to obtain the dipole mode splitting using the sum

rule method (Section 4.4). This requires an improved ansatz for the interacting

wave function. Understanding how to go further with this approach would develop

our physical insight into the effects of Berry curvature for a BEC with 2D Rashba

spin-orbit coupling.

We could also take our research in new directions and ask, for example, what

happens if there are degenerate minima with Berry curvature in the energy dis-

persion. This would be directly relevant to 2D Rashba spin-orbit coupling with a

sufficiently small Zeeman field, where the minima form a degenerate ring at finite

momenta and exotic Bose-condensed states are expected[123]. How would this affect

the collective modes? Another interesting direction would be to ask what are the

lowest-order corrections to the collective mode frequencies when we include beyond

mean-field interactions. Without Berry curvature, beyond mean-field effects have

been probed in high precision collective mode experiments[188], and so this could

be a question of practical interest.

In the wider field, many of the immediate challenges are being faced by exper-

imentalists. It will be a great achievement to reach the strongly correlated regime

with artificial magnetic fields, to explore the exotic phenomena associated with 2D

SO coupling and to investigate the dynamical properties of topological excitations.

While there are various exciting theoretical proposals to reach these goals, it remains

to be seen which can be implemented successfully in practice. These experiments will

then drive fresh lines of inquiry and probe novel physical phenomena. We hope that

new tools, such as those discussed in this thesis, will help to further this endeavour.

Theoretically too there are many interesting avenues of research to be pursued.

To give a few examples, one important direction is the realisation of exotic topologi-
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cal phases of matter, such as topological insulators, in schemes proposed for ultracold

atomic gases. Another area of interest is the creation of artificial dynamical gauge

fields, where the field evolves in time through a coupling to the condensate[65]. This

may open up opportunities for simulating lattice gauge theories and interesting phe-

nomena more familiar from high energy physics. A third possible avenue of research

is to consider topological systems out-of-equilbrium and to ask if any interesting

effects are possible when adiabaticity is broken.

Topology will therefore continue to be an fascinating area of research in ultracold

atomic gases. There are interesting natural extensions to the work in this thesis,

and there are important questions in the wider field for both experiment and theory.
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Appendix A

Hamiltonian for the Two-Photon

Optical Flux Lattice for F = 1/2

The Hamiltonian acts in the g± manifold, with the form of (3.16). The optical

potential, V̂ (r), is characterised by the Rabi frequencies κm, m = 0,±1, where m~

is the angular momentum along z gained by the atom when it absorbs a photon

[107].

The potential is formed from laser beams at two frequencies: ωL and ωL + δ

where δ is the Zeeman splitting of the ground states. The laser beams at ωL are

linearly polarised and travelling in the xy plane, while the laser at ωL + δ gives a

plane wave propagating along the z axis with σz polarisation. The resulting potential

takes the form:

V̂ =
~κ2tot
3∆

1̂ +
~

3∆





|κ−|2 − |κ+|2 Eκ0

Eκ∗0 |κ+|2 − |κ−|2



 (A.1)

where κ2tot =
∑

m |κm|2, ∆ = ωL − ωA, with ωA as the atomic resonance frequency

and it is assumed that |∆| ≫ |δ|, |κm|. The field of the laser at frequency ωL + δ is

characterised by E, which serves as a uniform, adjustable coupling.

The laser field at frequency ωL is formed from the superposition of three travel-

ling plane waves of equal intensity and wavevectors ki in the xy plane. The set-up

discussed in Ref. [107] has triangular symmetry, with an angle of 2π/3 between the

beams. The wavevectors are then k1 = −k/2(
√
3, 1, 0), k2 = k/2(

√
3,−1, 0) and
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k3 = k(0, 1, 0). Up to a scale factor and rotation, this is the same geometry as the

asymmetric hexagonal lattice in Section 3.3.1.

Each beam is linearly polarised at an angle θ to the z-axis, giving

κ = κ

3
∑

i=1

eiki·r[cos θẑ+ sin θ(ẑ× k̂i)], (A.2)

where κ is the Rabi frequency of a single beam. The relative strength of the laser

fields at frequencies ωL and ωL + δ will henceforth be denoted as ǫ = E/κ. The

overall strength of the potential is V = ~
2κ2/3∆.

To define the unit cell, we consider a unitary transformation: Û ≡ exp(−ik3 ·
rσ̂z/2). This gauge transformation is state dependent and leads to the Hamiltonian

in Eqn. 3.20, where V̂ ′ = Û †V̂ Û has the same form as V̂ , with κ0 replaced by

κ′0 = e−ik3·rκ0. The coupling then only includes the momentum transfers K1,2 ≡
k1,2−k3. These define the reciprocal lattice vectors of the largest possible Brillouin

zone, and the smallest possible real space unit cell. This unit cell is that of the

hexagonal lattice discussed in Section 3.3.1.



Appendix B

Collective Modes in a Trapped

Gas from Hydrodynamics

In a spherically symmetric trap, V (r) = 1
2κ|r|2, and general modes have the

form: δρ = D(r)Ylm(θ, ϕ)e−iωt where Ylm(θ, ϕ) is a spherical harmonic[209]. To find

the mode frequencies, we solve Eq. 4.5:

δρ̈ = −∇V ·∇δρ

M∗ +
ρg∇2δρ

M∗ +
∇V · (∇δρ̇× ẑ)Ω

~
. (B.1)

Following Ref. [8], we define a new radial function G(r) = D(r)/rl. This leads to a

differential equation for the radial function:

ω2G(r) =
κ

M∗

[

lG(r) + rG′(r)− 1

2
(R2 − r2)

[

G′′(r) +
2(l + 1)G′(r)

r

]]

− mκωΩ

~
G(r),

where we have introduced R2 = 2µ/κ, and where a prime is used to denote a spatial

derivative. To solve, we change variables to u = r2/R2[8]. The differential equation

becomes:

u(1− u)G′′(u) +

[

l +
3

2
−
(

l +
5

2

)

u

]

G′(u)

+
1

2

(

M∗

κ
ω2 − l +

M∗mωΩ
~

)

G(u) = 0. (B.2)
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This can be identified[8] as the equation for the hypergeometric function F (α, β; Γ;u):

u(1− u)F ′′(u) + [Γ− (α+ β + 1)u]F ′(u)− αβF (u) = 0. (B.3)

To ensure that the function is well-behaved, either α or β must be a negative integer,

−nr. By convention, we choose α = −nr[8]. Comparing Eq. B.2 and Eq. B.3, we

can read off: β = l + nr + 3/2, Γ = l + 3/2 and:

1

2

(

M∗

κ
ω2 − l +

M∗mωΩ
~

)

= −αβ = nr(l + nr + 3/2). (B.4)

Rearranging for the frequency, we find:

ω2 =
κ

M∗ (l + 3nr + 2nrl + 2n2r)−
κωΩ

~

ω = −mκΩ
2~

+
1

2

√

(

mκΩ

~

)2

+
4κ

M∗ (l + 3nr + 2nrl + 2n2r) (B.5)

for the general modes:

δρ = CrlF (−nr, l + nr + 3/2; l + 3/2, r2/R2)Ylj(θ, ϕ)e
−iωt (B.6)

where C is an arbitrary constant and we have chosen the positive energy root of the

spectrum by convention. When Ω = 0, we recover the expected mode energies[209].



Appendix C

Hydrodynamics for a General Poly-

tropic Equation of State

C.1 The Velocity Equation

The velocity equation was first derived for a normal gas without Berry curvature

in Ref. [211]. In the following derivation, we are also guided by the presentation of

Ref. [8]. For reference, we begin by repeating Equation 4.4:

ρ̇+∇ · (ρv) = 0

v̇ =
F

M∗ −
(

Ḟ

~
× ẑ

)

Ω.

In general, the local force per particle is:

F = −1

ρ
∇P −∇V

∂F

∂t
= −1

ρ
∇
∂P

∂t
+

1

ρ2
∂ρ

∂t
∇P. (C.1)

We substitute this into the Euler equation and linearize with respect to the density

and pressure, ρ = ρ0 + δρ and P = P0 + δP :

ρ0
∂v

∂t
= −∇δP

M∗ − δρ

M∗∇V +

(

1

~
∇
∂δP

∂t
× ẑ

)

Ω−
(

1

ρ0

∂δρ

∂t

∇P0

~
× ẑ

)

Ω. (C.2)
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This is the linearized form of the conservation of momentum. In equilibrium, the

local force is zero and so ∇P0 = −ρ0∇V [8]. Substituting this in we find:

ρ0
∂v

∂t
= −∇δP

M∗ − δρ

M∗∇V +

(

1

~
∇
∂δP

∂t
× ẑ

)

Ω+

(

∂δρ

∂t

∇V

~
× ẑ

)

Ω. (C.3)

Taking another time derivative gives:

ρ0
∂2v

∂t2
= − 1

M∗∇
∂δP

∂t
− ∂δρ

∂t

∇V

M∗ +

(

1

~
∇
∂2δP

∂t2
× ẑ

)

Ω+

(

∂2δρ

∂t2
∇V

~
× ẑ

)

Ω. (C.4)

To eliminate the time derivatives of pressure and density, we use the continuity

equation, ∂δρ
∂t +∇ · (ρ0v) = 0, as well as:

∂δP

∂t
= −(γ + 1)P0∇ · v + ρ0∇V · v, (C.5)

a statement of the linearised conservation of energy[240, 211, 212, 8]. Substituting

into Eq. C.4, we find:

ρ0
∂2v

∂t2
=

(γ + 1)

M∗ ∇(P0∇ · v)− 1

M∗∇(ρ0∇V · v) +∇ · (ρ0v)
∇V

M∗

−Ω

~

[

(γ + 1)∇

(

P0∇ · ∂v
∂t

)

−∇

(

ρ0∇V · ∂v
∂t

)

+∇ ·
(

ρ0
∂v

∂t

)]

× ẑ.

To find the final form of the velocity equation, we use that: (∇V · v)∇ρ0 = ∇V (v ·
∇)ρ0[8]. Then we have:

∂2v

∂t2
=

(γ + 1)

M∗
P0

ρ0
∇(∇ · v)− 1

M∗∇(∇V · v)− γ

M∗∇V (∇ · v)

−Ω

~

[

(γ + 1)
P0

ρ0
∇

(

∇ · ∂v
∂t

)

−∇

(

∇V · ∂v
∂t

)

− γ∇V

(

∇ · ∂v
∂t

)]

× ẑ. (C.6)

This is a vector equation for the velocity field, which can be solved for the collective

mode frequencies. (To first calculate the velocity field, we insert our ansatz for the

density variation into the continuity equation (Eq. 4.4) and find the corresponding

v.) As discussed in the main text, modes are separated into three classes. There

are incompressible modes (∇ · v = 0), such as the surface modes, which are system-

independent. Compressible modes with ∇(∇ · v) = 0, such as the breathing mode,

depend only on γ. And finally, higher energy modes with nr > 1 for l = 0 and
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nr > 0 for l > 0 which depend on both γ and the equilibrium properties of the gas

through P0/ρ0.

C.2 The Density Equation for Weakly Interacting Bose

and Fermi Gases

For a weakly interacting Bose and Fermi gases, the polytropic equation of state

describes both the equilibrium properties and linear deviations from equilibrium.

Therefore, we can use the equation of state to calculate the local force per particle:

F = −1

ρ
∇P −∇V = −ap

ρ
∇(ργ+1)−∇V = −ap(γ + 1)

γ
∇(ργ)−∇V

∂F

∂t
= −ap(γ + 1)

γ
∇
∂

∂t
(ργ) (C.7)

where ap is a dimensional constant (from: P = apρ
γ+1). We substitute this into Eq.

4.4 and linearize to find:

∂v

∂t
= −ap(γ + 1)

M∗ ∇(ργ−1
0 δρ) +

ap(γ + 1)

~

(

∇
∂

∂t
(ργ−1

0 δρ)× ẑ

)

Ω. (C.8)

Taking the time derivative of the continuity equation, we can eliminate the velocity

to obtain the density equation:

∂2δρ

∂t2
+∇ ·

(

ρ0

(

−ap(γ + 1)

M∗ ∇(ργ−1
0 δρ) +

ap(γ + 1)

~

(

∇
∂

∂t
(ργ−1

0 δρ)× ẑ

)

Ω

))

= 0

General Modes in Dilute Quantum Gases

As in Appendix B, we can compute the general modes of a condensed gas from

the density equation. This depends on the equilibrium density, ρ0. For a large

enough N , a weakly interacting dilute BEC can be described by the Thomas-Fermi

approximation: ρ0 = [µ − V (r)]/g, where we have neglected the kinetic energy. A

similar semiclassical treatment can also be applied to fermions, where to a good

first approximation, we can assume that they are non-interacting1. Then, in the

1This is appropriate for a one-component Fermi gas as there is no s-wave scattering between two
fermions in the same internal state.
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Thomas-Fermi approximation, the local Fermi energy is that of a homogeneous gas,

giving the density[8]:

ρ0 =
1

6π2

(mκ

~2
[R2 − r2]

)3/2
. (C.9)

This is valid provided that the Fermi wavelength is small compared to the size of

the cloud (i.e. N1/3 ≫ 1)[8]. We write the Thomas-Fermi density for both bosons

and fermions in one general equation:

ρ0 =

(

γ

2(γ + 1)ap
κ[R2 − r2]

)1/γ

. (C.10)

Using this, the density equation becomes:

∂2δρ

∂t2
+∇ · (−

(

R2 − r2
)1/γ γκ

2M∗∇
(

(

R2 − r2
)(γ−1)/γ

δρ
)

+
(

R2 − r2
)1/γ γκΩ

2~

(

∇

(

(

R2 − r2
)(γ−1)/γ ∂δρ

∂t

)

× ẑ

)

) = 0 (C.11)

which reduces to Eq. 4.5 for the Bose gas (γ = 1). As in Appendix B, we solve this

for general modes:

δρ ∝ rlG(r)Yl,j(θ, ϕ)(R
2 − r2)(γ−1)/γe−iωt (C.12)

where the factor of (R2 − r2)(γ−1) has to be introduced to ensure that the density

variation in a Fermi gas vanishes smoothly at the cloud boundary[213]. Otherwise, a

large kinetic energy cost is incurred, which cannot be neglected. (This is in contrast

to the Bose gas[213]). The derivation of the mode frequencies then follows closely

that in Appendix B: we substitute δρ into Eq. C.11 and obtain a differential equation

for G(r). After a variable substitution, u = r2/R2, the radial equation becomes:

u(1− u)G′′(u) +

[

l +
3

2
−
(

l +
3

2
+

1

γ

)

u

]

G′(u) +
1

2γ

[

M∗

κ
ω2 − l +

M∗mωΩ
~

]

G(u) = 0

(c.f. Eq. B.2). The solution is the hypergeometric function, F (α, β; Γ;u), now with:

α = −nr, β = l+nr+1/γ+1/2, Γ = l+3/2. Therefore the polytropic index enters
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the function only through the parameter β. The frequencies of the modes are:

ω2 =
κ

M∗ (l + γnr(2l + 2nr + 1) + 2nr)−
κωΩ

~

ω = −mκΩ
2~

+
1

2

√

(

mκΩ

~

)2

+
4κ

M∗ (l + γnr(2l + 2nr + 1) + 2nr) (C.13)

Again this reduces to Eq. 4.6 as required γ = 1. This shows that for dilute con-

densates, the effect of Berry curvature is independent of the polytropic index. The

mode frequencies shift and split regardless of the statistics of the gas.
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A Sum Rule Method for the 2D

Rashba Dipole Mode

We derive the frequency of the dipole mode in the 2D Rashba model (Eq. 4.10)

using a sum rule approach. We are guided by Ref. [215] which considers the simpler

case of 1D SO-coupling. As our aim is to find an expression for:

~ω±1 ≤
√

m−1(D̂±1)

m−3(D̂±1)
, (D.1)

we begin with the inverse energy weighted moment:

m−1(D̂±1) =
∑

n

|〈0|D̂±1|n〉|2
En − E0

= −
∑

n

i

2ω2
0~M

[〈0|D̂±1|n〉〈n|[Ĥ, P̂x ± iP̂y]|0〉+ 〈0|[Ĥ, P̂x ∓ iP̂y]|n〉〈n|D̂†
±1|0〉]

En − E0

= −
∑

n

i

2ω2
0~M

(En − E0)[〈0|D̂±1|n〉〈n|P̂x ± iP̂y |0〉 − 〈0|P̂x ∓ iP̂y]n〉〈n|D̂†
±1|0〉]

En − E0

= − i

2ω2
0~M

〈0|[X̂, P̂x] + [Ŷ , P̂y]± i2X̂P̂y ∓ i2Ŷ P̂x|0〉

=
N

ω2
0M

− 1

ω2
0~M

〈0| ∓ X̂P̂y ± Ŷ P̂x|0〉 =
N

ω2
0M

± 1

ω2
0~M

〈0|L̂z |0〉 (D.2)

where we have the closure relation
∑

n |n〉〈n| = 1, as well as the commutation

relations:

[Ĥ, P̂x] = iω2
0~MX̂, [Ĥ, P̂y] = iω2

0~MŶ . (D.3)
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Note, the second term in Eq. D.2 has no analogue in 1D spin-orbit coupling[215]. It

arises naturally because the 2D dipole operator is not Hermitian (unlike the operator

in 1D). Now we turn to the inverse cubic energy weighted moment:

m−3(D̂±1) =
∑

n

|〈0|D̂±1|n〉|2
(En −E0)3

=
∑

n

1

ω4
0~

2M2

|〈0|[Ĥ , P̂x ∓ iP̂y]|n〉|2
(En −E0)3

=
1

ω4
0~

2M2

∑

n

|〈0|P̂x ∓ iP̂y|n〉|2
(En − E0)

(

=
m−1(P̂x ∓ iP̂y)

ω4
0~

2M2

)

.

Here we shall use that:

(P̂x ∓ iP̂y) =
iM

~
[Ĥ, D̂±1)] +MλR(∓iΣ̂x − Σ̂y). (D.4)

Substituting this in, we find:

m−3(D̂±1) =
i

2ω4
0~

3M

∑

n

[〈0|P̂x ∓ iP̂y|n〉〈n|D̂†
±1|0〉 − 〈0|D̂±1|n〉〈n|(P̂x ± iP̂y)|0〉]

+
1

2ω4
0~

2M2

∑

n

〈0|P̂x ∓ iP̂y|n〉〈n|MλR(±iΣ̂x − Σ̂y)|0〉
En − E0

+
1

2ω4
0~

2M2

∑

n

〈0|MλR(∓iΣ̂x − Σ̂y)|n〉〈n|P̂x ± iP̂y|0〉
En − E0

Substituting once again for (P̂x ∓ iP̂y) and using
∑

n |n〉〈n| = 1, we have:

m−3(D̂±1) =
i

2ω4
0~

3M
[〈0|(P̂x ∓ iP̂y)D̂

†
±1|0〉 − 〈0|D̂±1(P̂x ± iP̂y)|0〉]

+
1

2ω4
0~

2M2

∑

n

〈0| iM
~
[Ĥ, D̂±1]|n〉〈n|MλR(±iΣ̂x − Σ̂y)|0〉

En − E0
+

λ2R
ω4
0~

2

∑

n

|〈0|(∓iΣ̂x − Σ̂y)|n〉|2
En − E0

+
1

2ω4
0~

2M2

∑

n

〈0|MλR(∓iΣ̂x − Σ̂y)|n〉〈n| iM~ [Ĥ, D̂†
±1]|0〉

En − E0
. (D.5)

We expand and simplify to find:

m−3(D̂±1) =
N

M~2ω4
0

± 1

M~3ω4
0

〈0|L̂z|0〉 ±
λR
~3ω4

0

〈0|(X̂ + iŶ )Σ̂− + Σ̂+(X̂ − iŶ )|0〉

+
∑

n

4λ2R
~2ω4

0(En − E0)
|〈0|Σ̂∓|n〉|2 (D.6)



Appendix E

Applying the Sum Rule Approach

for 2D Rashba Dipole Mode to

an Ansatz

Choice of Ansatz

We begin with the interacting Gross-Pitaevskii equations (Section 1.2.2):

p2

2M
ψ1 −∆ψ1 − λR(ipx + py)ψ2 + V (x, y)ψ1 + g(|ψ1|2 + |ψ2|2)ψ1 = µψ1

p2

2M
ψ2 +∆ψ2 + λR(ipx − py)ψ1 + V (x, y)ψ2 + g(|ψ1|2 + |ψ2|2)ψ2 = µψ2

where ψ1 is the component in | ↑〉, ψ2 is the component in | ↓〉 and we have taken

g2D = g. Within the Thomas-Fermi approximation, we neglect the kinetic energy

terms compared to the interactions and trapping potential. Then if we assume that

to lowest order only ψ1 is occupied, we find that:

|ψ1| =

√

µ+∆− V (x, y)

g
(E.1)

where we can normalise µ so that there are N particles within the Thomas-Fermi

volume. In reality, all the atoms are not in | ↑〉, so we relax this constraint to lowest
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order:

λR(ipx − py)ψ1 ≃
(

µ−∆− V (x, y)− g|ψ1|2
)

ψ2 = −2∆ψ2 (E.2)

where we neglect both the kinetic energy and |ψ2|2. Then we can write:

ψ2 = −λR
2∆

(ipx − py)ψ1 = +
λR

4∆
√
g

Mω2
0~

√

µ+∆− V (x, y)
(x+ iy) (E.3)

The ansatz is therefore:

Ψ =







√

µ+∆−V (x,y)
g

λR
4∆

√
g

Mω2
0~√

µ+∆−V (x,y)
(x+ iy)






(E.4)

This ansatz has key similarities to the non-interacting states discussed in Section

4.4.2. There too the spin-orbit coupling leads to a ground-state of | ↑〉 atoms with

no angular momentum mixed with | ↓〉 atoms with one unit of angular momentum.

This suggest that the ansatz has captured some of the important physical features

of this system. As calculating the dipole mode frequencies is long and involved, we

shall break it up into intermediate steps. For a summary of the results, see Section

E.3.

E.1 Inverse Energy Weighted Moment: m−1

We begin with:

m−1(D̂±1) =
N

mω2
0

± 1

m~ω2
0

〈0|L̂z |0〉 =
N

mω2
0

± 1

mω2
0~

〈0|X̂P̂y − Ŷ P̂x|0〉 (E.5)

The second term vanishes when operating on ψ1 (as expected). However, we can

see from the form of the ansatz, that all atoms in ψ2 have one unit of angular

momentum. Then we find:

(X̂P̂y − Ŷ P̂x)ψ2 =
λR

4∆
√
g

Mω2
0~

2

√

µ+∆− V (x, y)
(x+ iy) , (E.6)
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and so:

〈0|X̂P̂y − Ŷ P̂x|0〉 =
λ2RM

2ω4
0~

3

16∆2g

∫

(

x2 + y2
)

µ+∆− V (x, y)
d2r = ~N2, (E.7)

where we have recognised N2 ≡ 〈ψ2|ψ2〉. Above, we assumed that N2 ≪ N when

we neglected the interaction terms due to |ψ2|2. From this integral, we can estimate

that N2 ∝ ζχ
G N . As we are interested in the regime of G≫ 1, χ . 1 and 0 < ζ < 1,

neglecting N2 seems a reasonable approximation. Therefore:

m−1(Da) =
N

mω2
0

± N2

mω2
0

≃ N

mω2
0

(E.8)

E.2 Inverse Cubic Energy Weighted Moment: m−3

Let us now consider the other moment:

m−3(D̂±1) =
N

M~2ω4
0

± 1

M~3ω4
0

〈0|L̂z |0〉 ±
λR
~3ω4

0

〈0|(X̂ + iŶ )Σ̂− + Σ̂+(X̂ − iŶ )|0〉

+
∑

n

4λ2R
~2ω4

0(En − E0)
|〈0|Σ̂∓|n〉|2 (E.9)

The first two terms have just been considered above, so now we focus on the third

and fourth terms.

The Third Term in m−3

The Pauli spin matrix operators in this term couple ψ1 and ψ2. Therefore we can

write:

∫

[ψ†
2(X̂ + iŶ )ψ1 + ψ†

1(X̂ − iŶ )ψ2]d
2r

=
λR
4∆g

Mω2
0~

∫

[(x− iy) (x+ iy) + (x+ iy) (x− iy)] d2r

=
λR
2∆g

Mω2
0~

∫

[x2 + y2]d2r =
λRπ

∆g
Mω2

0~

∫ R

0
r3dr =

λRπ

4∆g
M~ω2

0R
4 (E.10)
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where R is the radius of the cloud. As we have assumed N2 is negligible, R is set by

the equation for ψ1 only. From Eq. E.1, this is radius at which ψ1 drops to zero:

R2 =
2(µ +∆)

Mω2
0

(E.11)

We can determine µ, through the normalisation: N =
∫

|ψ1|2d2r. Then we find:

N =

∫

µ+∆− 1
2Mω2

0r
2

g
rdrdθ =

2π

g

[

(µ+∆)2

Mω2
0

− (µ+∆)2

2Mω2
0

]

=
π(µ +∆)2

gMω2
0

(µ+∆) =

√

NgMω2
0

π

R =

(

4Ng

Mω2
0π

)(1/4)

(E.12)

So putting this all together, we find:

± λR
~3ω4

0

〈0|(X̂ + iŶ )Σ̂− + Σ̂+(X̂ − iŶ )|0〉 = ± λ2RN

~2ω4
0∆

. (E.13)

Fourth Term in m−3

Finally, we consider:

∑

n

4λ2R
~2ω2

0(En − E0)
|〈0|Σ̂∓|n〉|2 =

4λ2R
~2ω2

0

m−1(Σ̂∓). (E.14)

As mentioned in the main text, this is related to the static spin polarizability per

particle as: χΣ̂±
(0) = m−1(Σ̂+) +m−1(Σ̂−).

Linear Response Theory

We are guided by the standard procedure within linear response theory for calcu-

lating static spin polarizabilities. We consider the perturbation of the ground-state

wave function under the influence of a weak magnetic field. To find the spin re-

sponse function, we can then differentiate the expectation value of the spin in the

new perturbed ground-state with respect to the magnetic field. Mathematically, the
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wave function in first order perturbation theory will become:

|0〉′ ≃ |0〉+ |δΨ〉 = |0〉+
∑

n 6=0

|n〉〈n|
∑

α hαΣ̂α|0〉
E0 − En

, (E.15)

where the weak perturbing field is h. Therefore to lowest order:

δ〈Σ̂α〉 ≃
∑

n 6=0

〈0|Σ̂α|n〉〈n|
∑

β hβΣ̂β|0〉
E0 − En

+
〈0|
∑

β hβΣ̂β|n〉〈n|Σ̂α|0〉
E0 − En

. (E.16)

Then we have:

χαβ ≡ ∂〈Σ̂α〉
∂hβ

∣

∣

∣

∣

h→0

=
∑

n 6=0

[

〈0|Σ̂α|n〉〈n|Σ̂β|0〉
E0 − En

+
〈0|Σ̂β |n〉〈n|Σ̂α|0〉

E0 − En

]

. (E.17)

Using the above expressions we can re-write the term appearing in m−3 as:

∑

n

4

(En − E0)
|〈0|Σ̂∓|n〉|2 = m−1(∓iΣ̂x − Σ̂y) =

∑

n 6=0

|〈0| ∓ iΣ̂x − Σ̂y|n〉|2
En −E0

=
∑

n 6=0

1

En − E0
[|〈0|Σ̂x|n〉|2 + |〈0|Σ̂y|n〉|2 ± i〈0|Σ̂x|n〉〈n|Σ̂y|0〉 ∓ i〈0|Σ̂y |n〉〈n|Σ̂x|0〉]

= −χxx

2
− χyy

2
± i

∂

∂hy
[〈0|Σ̂x|δΨ〉 − 〈δΨ|Σ̂x|0〉] (E.18)

We shall therefore calculate these parts in turn.

Variational Perturbed Wavefunction

We would like to calculate |δψ〉 without knowledge of the higher many-body states

|n〉. We therefore proceed by taking a variational wave-function based on the ground-

state. We minimise the energy of this wave-function with the external perturbing

magnetic field. To be consistent, we assume that all atoms are in | ↑〉 when we

carry out this variational calculation. We then use the interacting Gross-Pitaevskii

equations and include the perturbed ψ̄2 to lowest order, to find the complete final

perturbed wave function.

In the limit of χ → 0, where only ψ1 is occupied, we can write the wave function
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variationally as:

Ψ ∝





cos(θ)

− sin(θ)eiφ



 eik·r. (E.19)

In the ground state, we have k = 0 and θ = 0 (φ can take any value). To find the

effects of a small external field, we expand this variational wave function around

these equilibrium values as:

cos(θ) → 1− (δθ)2

2
, sin(θ) → δθ, k → 0 + δk (E.20)

where we neglect terms above second order. The energy density ǫ = ε/N , as calcu-

lated with respect to our variational wave function, is:

ǫ0 =
~
2δk2

2M
+ 2~λRδθδky cosφ− 2~λRδθδkx sinφ−∆(1− 2δθ2) +

gρ

2
(1− 2δθ2) + gρδθ2

=
~
2δk2

2M
+ 2~λRδθδky cosφ− 2~λRδθδkx sinφ−∆(1− 2δθ2) +

gρ

2
(E.21)

where again only keep up to second order. The external field, h, couples to our

system as:

∆H =
hxΣ̂x + hyΣ̂y

~
, (E.22)

giving the energy contribution:

δǫ = −2hxδθ cosφ− 2hyδθ sinφ. (E.23)

We minimise the total energy ǫ = ǫ0 + δǫ with respect to φ, δθ and δk to find

tanφ =
hy

hx
and:

δky = −2λRmδθ cosφ

~
, δkx =

2λRmδθ sinφ

~
, δθ =

2hx cosφ+ 2hy sinφ

−4λ2Rm+ 4∆
.

The perturbed wave function, ψ̄1 can therefore be written to first order in the per-

turbing field:

ψ̄1 ≃
√

µ+∆− V (x, y)

g
eiδk·r. (E.24)
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To find ψ̄2, we turn to the interacting Gross-Piteavskii equations. In the presence

of an external magnetic field, Eq. E.2 becomes:

λR(ipx − py)ψ̃1 + (hx + ihy)ψ̃1 ≃
(

µ−∆− V (x, y)− g|ψ̃1|2
)

ψ̃2 = −2∆ψ̃2.(E.25)

Rearranging this, we find:

ψ̃2 = +
λR

4∆
√
g

Mω2
0~

√

µ+∆− V (x, y)
(x+ iy) eiδk·r − i

λR~

2∆
(δkx + iδky)

√

µ+∆− V (x, y)

g
eiδk·r

− 1

2∆
(hx + ihy)

√

µ+∆− V (x, y)

g
eiδk·r (E.26)

Calculating χxx

Now that we have an expression for the perturbed wave function, we can calculate

all the terms in Eq. E.18. We begin with χxx ≡ ∂〈Σ̂x〉
∂hx

|h→0. Therefore we consider:

〈Σ̂x〉 =

∫

(ψ̃†
1ψ̃2 + ψ̃†

2ψ̃1)d
2r

=

∫

[

2λR
4∆g

Mω2
0~r cos θ +

δkyλR~

∆

µ+∆− 1
2Mω2

0r
2

g
− hx

∆

µ+∆− 1
2Mω2

0r
2

g

]

rdrdθ

=
δkyλR~

∆
N − hx

∆
N

where we have used the normalisation: N =
∫

|ψ1|2d2r. After substituting for δky ,

we find:

〈Σx〉 = −λ
2
RMN

∆

1
2

[

hx−
h2y
hx

1+
h2y

h2x

+ hx

]

+
h2y
hx

1+
h2y

h2x

−λ2RM +∆
− hx

∆
N. (E.27)

We differentiate with respect to hx, and take the limit h → 0 to calculate:

χxx = −λ
2
RMN

∆

1

−λ2RM +∆
− N

∆
(E.28)
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Calculating: χyy

Now we repeat the above procedure for χyy ≡ ∂〈Σ̂y〉
∂hy

|h→0. Then we have:

〈Σ̂y〉 =

∫

(−iψ̃†
1ψ̃2 + iψ̃†

2ψ̃1)d
2r

=

∫

[

2λR
4∆g

Mω2
0~r sin θ −

δkxλR~

∆

µ+∆− 1
2Mω2

0r
2

g
− hy

∆

µ+∆− 1
2Mω2

0r
2

g

]

rdrdθ

= −δkxλR~
∆

N − hy
∆
N. (E.29)

Again we substitute for δkx to find:

〈Σ̂y〉 = −λ
2
RMN

∆

hy

1+
h2y

h2x

+ 1
2



hy −
hy−

h3y

h2x

1+
h2y

h2x





−λ2RM +∆
− hy

∆
N

χyy = −λ
2
RMN

∆

1

−λ2RM +∆
− N

∆
(E.30)

As expected, these results are isotropic i.e. χxx = χyy.

Calculating ∂
∂hy

[〈0|Σ̂x|δΨ〉 − 〈δΨ|Σ̂x|0〉]

To lowest order in h, the perturbation in the wave function can be written as:

δΨ ≈ Ψ− Ψ̃ =





0

iλR~

2∆ (δkx + iδky)
√

µ2

g + 1
2∆(hx + ihy)

√

µ2

g





−iδk · r







√

µ2

g

+ λR
4∆

√
g
mω2

0~√
µ2

(x+ iy)− iλR~

2∆ (δkx + iδky)
√

µ2

g − 1
2∆(hx + ihy)

√

µ2)
g







where we have expanded eiδk·r and introduced the notation µ2 = µ +∆ − V (x, y).

Then we see that:

[〈0|Σ̂x|δΨ〉 − 〈δΨ|Σ̂x|0〉] =
∫

[ψ†
1δψ2 + ψ†

2δψ1 − δψ†
1ψ2 − δψ†

2ψ1]d
2r

=
ihyN

∆
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where we have omitted all of the (straightforward) algebraic steps between the first

and second lines for compactness. Then:

∂

∂hy
[〈0|Σ̂x|δΨ〉 − 〈δΨ|Σ̂x|0〉] =

iN

∆
(E.31)

Combining all these results, we find that the fourth term in m−3 is proportional to:

∑

n

4

(En − E0)
|〈0|Σ̂−|n〉|2 = −χxx

2
− χyy

2
+ i

∂

∂hy
[〈0|Σ̂x|δΨ〉 − 〈δΨ|Σ̂x|0〉]

=
λ2RMN

∆

1

−λ2RM +∆
∑

n

4

(En − E0)
|〈0|Σ̂+|n〉|2 = −χxx

2
− χyy

2
− i

∂

∂hy
[〈0|Σ̂x|δΨ〉 − 〈δΨ|Σ̂x|0〉]

=
λ2RMN

∆

1

−λ2RM +∆
+

2N

∆

(E.32)

E.3 The Dipole Mode Frequencies

We can calculate an upper bound on the dipole mode frequencies through:

~ω±1 ≤
√

m−1(D̂±1)

m−3(D̂±1)
. (E.33)

When we put together all the above results, we find:

ω2
−1

ω2
0

=
1

1− λ2
RM
∆ +

(λ2
RM)2

∆
1

−λ2
Rm+∆

+ 2
λ2
RM
∆

=
1

1 +
λ2
RM
∆ +

(λ2
RM)2

∆
1

−λ2
RM+∆

ω2
+1

ω2
0

=
1

1 +
λ2
RM
∆ +

(λ2
RM)2

∆
1

−λ2
RM+∆

. (E.34)

From this we can see that:

ω2
±1

ω2
0

= (1− ζ) =
M

M∗ (E.35)

Therefore, this ansatz perfectly captures the behaviour of our system as χ → 0.

However, exploring the splitting due to Berry curvature effects is more difficult as
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this is proportional to χ. To go further, we would need to find a better ansatz which

does not assume |ψ2|2 is negligible.



Appendix F

The Dipole Operator Approach

for 1D Spin Orbit Coupling

In this Appendix, we demonstrate how the dipole operator approach can also

be used to derive the effects of 1D spin-orbit coupling on the dipole mode. This was

previously studied theoretically in Ref. [215, 241] using a sum rule method. Our

method is significantly easier and is able to replicate all results for spin-independent

interactions. For ease of comparison, we are guided by the notation of these refer-

ences. The Hamiltonian is:

Ĥ =
∑

i

ĥ0(i) +
1

2
g2D

∑

i 6=j

δ(xi − xj)δ(yi − yj)

ĥ0 =
1

2

[

(px − k0σ̂z)
2 + p2⊥

]

+
ΩR

2
σ̂x +

∆

2
σ̂z + V (x, y). (F.1)

where M = ~ = 1 and k0 is the spin-orbit coupling strength. This Hamiltonian

has been realised experimentally (Section 2.2.1), where ΩR corresponds to the Ra-

man coupling strength and k0 is the momentum transfer in from the two Raman

beams. We have taken the interactions to be independent of spin1, which is a good

approximation for 87Rb. We also set ∆ = 0 to compare our results with those of

Ref. [215].

The Hamiltonian in Eq. F.1 has a phase diagram depending on k0, Ω and the

spin-dependent interactions[241]. The three possible states are the “spin-polarized”

1The effects of spin-dependent interactions on the dipole mode was also discussed in Ref. [215].
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phase, the stripe phase and the single-minimum phase. In the spin-polarized phase

(Phase II in the terminology of Ref. [241]), the Bose-Einstein condensate forms at one

nonzero momentum. In the stripe phase, condensation occurs in a superposition of

plane waves with opposite nonzero momenta. However, this phase is only stabilised

by spin-dependent interactions and does not occur for the spin-independent interac-

tions that we consider in this Appendix. Finally, the single minimum phase (Phase

III) consists of a Bose-Einstein condensate at zero momentum; this is analogous to

the phase considered for 2D Rashba spin-orbit coupling in the main text.

There is no Berry curvature for 1D spin-orbit coupling and so the dipole mode

is always given in hydrodynamics by: ω =
√

M
M∗ω0 (Section 4.2). We can calculate

the effective mass from the single-particle spectrum of ĥ0:

ε(px) =
1

2

(

k20 + p2x + p2⊥ −
√

Ω2
R + 4k20p

2
x

)

(F.2)

For ΩR > 2k0, this has a single minimum at px = 0 and Phase III will form[241].

For ΩR < 2k0, there are two minima at px = ±k0
√

1− Ω2
R

4k40
. One minimum will be

selected by a discrete symmetry breaking and the condensate will appear in Phase II.

In the zero momentum phase, the effective mass is 1
M∗ = 1− 2k20

ΩR
, while in the spin-

polarized phase, it is 1
M∗ = 1 − Ω2

R

4k40
. In what follows, we will use the dimensionless

parameters of our system. Two of these are χ = ω0/ΩR and ζ = k20/ΩR in direct

analogy to those chosen in Section 4.3. Hence, the hydrodynamic mode frequency

can be written as ω = ω0
√
1− 2ζ in Phase III, and ω = ω0

√

1− 1/4ζ2 in Phase II.

In 1D, the dipole operator is simply X̂ =
∑

i x̂i. Therefore the Heisenberg

equations of motion are:

˙̂
X = P̂x − k0Σ̂z

˙̂
P = −ω2

0X̂

˙̂
Σz = ΩRΣ̂y

˙̂
Σx = 2

∑

i

k0pxσ̂y

˙̂
Σy = −ΩRΣ̂z − 2

∑

i

k0pxσ̂x (F.3)
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1/ζ

0

0.5

1.0
ω

/ω
0

Dipole Mode in Phase II
Dipole Mode in Phase III

Phase II
Phase III

Figure F.1: The dipole mode from the dipole operator approach for Eq.
F.1 with k20 = 2π × 4.42 Hz and ω0 = 2π × 45 Hz. These parameters
are chosen to match the experiment of Ref. [130] and to allow a direct
comparison with Fig 2 of Ref. [215]. For this purpose, the x axis is chosen
to be 1/ζ rather than ζ. Our results show excellent agreement both with the
hydrodynamic approach described in the text and with Ref. [215] which uses
a sum rule approach. (For a comparison to the experiment of Ref. [130],
see Fig 2 of Ref. [215]). The dashed line shows the transition from the
spin-polarized phase (Phase II) to the zero-momentum phase (Phase III).
However, as we assume spin-independent interactions, we have not included
the transition to the stripe phase. Ref. [215] predicts this transition occurs
for very low 1/ζ ≈ 0.2 for 87Rb (for which a↑↑ = a↓↓ = 101.20aB , a↑↓ =
100.99aB). (We also note that greater spin-dependence in the interactions
would change the transition point between Phases II and III[215].)

As in Section 4.5.1, to go further we must make certain approximations. These now

depend on the phase of the system, so we shall treat each phase in turn.

Zero Momentum Phase (Phase III)

In the single-minimum phase, we can use that 〈0|σx|0〉 ≃ −1, 〈0|σy|0〉 ≃ 0 and

〈0|px|0〉 ≃ 0, i.e. the atoms are at zero momentum and are all polarised along the x

direction[215]. Then we have:

˙̂
Σx ≃ 0,

˙̂
Σy = −ΩRΣ̂z + 2k0P̂x. (F.4)
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So we see that Σ̂x decouples, and we are left with four equations. We assume that

the time dependence goes as e−iωt, and write our set of operator equations in the

form of an eigenvalue problem:

−i ω
ω0

















X̂ ′

P̂ ′
x

Σ̂z

Σ̂y

















=

















0 1 −
√

ζ
χ 0

−1 0 0 0

0 0 0 1
χ

0 2
√

ζ
χ − 1

χ 0

































X̂ ′

P̂ ′
x

Σ̂z

Σ̂y

















where we have defined the dimensionless operators X̂ ′ =
√
ωxX̂ and P̂ ′ = 1√

ωx
P̂

(as M = ~ = 1). The low energy dipole mode2 is shown in Figure F.1. This mode

shows excellent qualitative agreement with the results of Ref. [215] which uses a sum

rule approach. Quantitatively, we expect from hydrodynamics that the mode should

have frequency:

ω2 =
M

M∗ω
2
0 =

(

1− 2k20
Ω

)

ω2
0 = (1− 2ζ)ω2

0 . (F.5)

The Taylor series expansion of the mode found in the dipole operator approach is:

ω = ω2
0(1− 2ζ)− ω2

0

(

2

ζ
− 4

)

χ2ζ2 +O(χ4). (F.6)

The dipole operator agrees perfectly with the sum rule and hydrodynamic result in

the limit that χ is small. For larger values of χ, we expect our approximations to

break down as different spin eigenstates are mixed.

“Spin-Polarized” Phase (Phase II)

Now let us turn to Phase II, the “spin-polarized” phase. The key difference to the

zero-momentum phase is that the Bose-Einstein condensate has formed at nonzero

2The other mode found is high in energy and represents transitions to the higher band.
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momentum. We take this into account by approximating:

˙̂
Σx ≃ ±2k20

√

1− Ω2
R

4k40
Σ̂y

˙̂
Σy ≃ −ΩRΣ̂z + 2k0

ΩR

2k20
P̂x ∓ 2k20

√

1− Ω2
R

4k40
Σ̂x, (F.7)

where we have used that in this phase[215]:

〈0|Σ̂x|0〉 ≃ −ΩR

2k20

〈0|P̂x|0〉 ≃ ±k0

√

1− Ω2
R

4k40

〈0|Σ̂y|0〉 ≃ 0. (F.8)

The resulting set of operator equations can be written in the dimensionless form:

−i ω
ω0























X̂ ′

P̂ ′

Σ̂z

Σ̂y

Σ̂x























=

























0 −1
√

ζ
χ 0 0

1 0 0 0 0

0 0 0 − 1
χ 0

0 −
√

1
ζχ

1
χ 0 ±2 ζ

χ

√

1− 1
4ζ2

0 0 0 ∓2 ζ
χ

√

1− 1
4ζ2

0















































X̂ ′

P̂ ′

Σ̂z

Σ̂y

Σ̂x























(F.9)

Upon solving these equations, we now get a zero mode, as we have not used the

constraint that the magnitude of the spin vector is fixed (i.e. σ2x + σ2y + σ2z = 1).

This mode is therefore not physical and can be neglected. The low energy dipole

mode is shown in Figure F.1. This also shows excellent agreement both with the

sum rule approach of Ref. [215] and the hydrodynamic prediction:

ω2 =
M

M∗ω
2
0 =

(

1− Ω2
R

4k40

)

ω2
0 = (1− 1

4ζ2
)ω2

0. (F.10)

The Taylor series expansion of the mode in the dipole operator approach is for

comparison:

ω2

ω2
0

=

(

1− 1

4ζ2

)

+

(

1
ζ2

− 4
)

χ2

64ζ4
+O(χ4), (F.11)
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which again agrees for small χ.

Therefore, in summary, we have shown how the dipole mode can be derived from

the dipole operator approach for 1D SO-coupling for spin-independent interactions.

This has allowed direct comparison with the experimental results of Ref. [130], as well

as two other theoretical methods: the sum rule approach[215] and hydrodynamics.



Appendix G

Higher-Order Corrections Beyond

the Effective Mass

In Section 4, we have assumed that the energy dispersion is completely charac-

terised by an isotropic effective mass, M∗ = ~
2/
(

∂2E/∂p2
)

. In most systems, the

dispersion is not perfectly quadratic and so there can be cubic, quartic and further

higher order contributions to this approximation. In this Appendix, we investigate

these terms in more detail for the models considered in the main text. We first

discuss 2D Rashba spin-orbit coupling and then a general multi-band Hamiltonian.

G.1 2D Rashba Spin-Orbit Coupling

We begin from the Hamiltonian in Eq. 4.10. The single-particle energy spectrum is

given by ε± = p2

2M ±
√

λ2Rp
2 +∆2. When ζ ≡ λ2

RM
∆ < 1, there is a single minimum

in the lower band at p = 0. The effective mass at this point is:

1

M∗ =
∂2ε−(p)
∂p2

=
1

M
− λ2R

(λ2Rp
2 +∆2)1/2

+
p2λ4R

(λ2Rp
2 +∆2)3/2

p=0−−→ 1

M
− λ2R

∆
(G.1)

From the single-particle energy spectrum, we can also compute the cubic correction:

∂3ε−(p)
∂p3

=
λ4Rp

(λ2Rp
2 +∆2)3/2

+
2pλ4R

(λ2Rp
2 +∆2)3/2

− 3p3λ6R
(λ2Rp

2 +∆2)5/2
p=0−−→ 0, (G.2)
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and the quartic correction:

∂4ε−(p)
∂p4

=
λ4R

(λ2Rp
2 +∆2)3/2

− 3λ6Rp
2

(λ2Rp
2 +∆2)5/2

+
2λ4R

(λ2Rp
2 +∆2)3/2

− 6p2λ6R
(λ2Rp

2 +∆2)5/2

− 9p2λ6R
(λ2Rp

2 +∆2)5/2
+

15p4λ8R
(λ2Rp

2 +∆2)7/2
p=0−−→ 3λ4R

∆3
. (G.3)

Higher order corrections scale with increasing powers of the Zeeman shift, ∆. We

compare these corrections to the Berry curvature at p = 0 for the lower band:

Ω =
λ2
R~2

2∆2 . Therefore, for a large band-gap, ∆, the Berry curvature will always be

the next-order correction after the effective mass.

G.2 A General Multi-Band Hamiltonian

We can use “k ·p” perturbation theory to ask when cubic and higher-order contribu-

tions from the dispersion may be important. We shall compare these contributions

to the Berry curvature:

Ωn ≡ i~2

M2

∑

l 6=n

πxnlπ
y
ln − πynlπ

x
ln

(El − En)2
. (G.4)

where παnl ≡ 〈n|p̂α|l〉 is the inter-band matrix element of p̂ and where |n〉 = |nk0〉 is
the Bloch function at k0.

Review of k · p Perturbation Theory

We consider the simple Hamiltonian Ĥ = p̂2

2M + U(r) where U(r) is the lattice

potential[227]. The wave function is eik·r|nk〉and the Schrödinger equation is then:

[

p̂2

2M
+ V +

~
2k2

2M
+

~k

M
p̂

]

|nk〉 = Enk|nk〉 (G.5)

Then we expand in k = k0 + δk up to third order:

Enk = Enk0 + δkα∂αEn +
1

2
δkαδkβ∂α∂βEn +

1

3!
δkαδkβδkγ∂α∂β∂γEn + ...

|nk〉 = |n〉+
∑

m6=n

a(1)m |m〉+
∑

m6=n

a(2)m |m〉+
∑

m6=n

a(3)m |m〉+ ...
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where |n〉 = |nk0〉 and ∂α means the partial derivative with respect to k as evaluated

at k0. Now we collect terms of different orders; the zeroth order terms give[227]:

[

p̂2

2M
+ V +

~
2k2

0

2M
+

~k0

M
p̂

]

|n〉 = Enk0 |n〉. (G.6)

The first order terms are:

δkα
[

~
2kα0
M

+
~

M
p̂α
]

|n〉+
∑

m6=n

Emk0a
(1)
m |m〉 = δkα∂αEn|n〉+ Enk0

∑

m6=n

a(1)m |m〉. (G.7)

To proceed, we dot this equation with the state 〈l| and perform the integration over

one unit cell[227]. If we take n = l this gives the group velocity:

~kα0
M

+
1

M
παnn =

1

~
∂αEn ≡ vαn (G.8)

If we take n 6= l, we find:

δkα
~

M
παln + Ela

(1)
l = Ena

(1)
l

a
(1)
l =

~

M

δk · πln

En − El
(G.9)

We shall use this co-efficient a
(1)
l when we proceed to second order:

∑

m6=n

Emk0a
(2)
m |m〉+ δkαδkα

~
2

2M
|n〉+ δkα

[

~
2kα0
M

+
~

M
p̂α
]

∑

m6=n

a(1)m |m〉 =

1

2
δkαδkβ∂α∂βEn|n〉+ δkα∂αEn

∑

m6=n

a(1)m |m〉+Enk0

∑

m6=n

a(2)m |m〉 (G.10)

Again we dot with 〈l| and perform the integration over one unit cell[227]. If we take

n = l this leads to:

∂α∂βEn =
~
2

M
δαβ +

∑

m6=n

~
2

M2

παnmπ
β
mn + πβnmπαmn

En − Em

1

M∗ ≡ δαβ
M

+
1

M2

∑

m6=n

παnmπ
β
mn + πβnmπαmn

En − Em
(G.11)

This is where a standard text-book[227] leaves the calculation. As we are interested

in higher-order corrections we continue following the same procedure.
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Cubic Corrections in k · p Perturbation Theory

We dot Eq. G.10 with 〈l| (with l 6= n) to find:

Ela
(2)
l + δkα

~
2kα0
M

a
(1)
l + δkα

∑

m6=n

~

M
παlma

(1)
m = δkα∂αEna

(1)
l + Ena

(2)
l

(El − En)a
(2)
l = δkα

(

∂αEn − ~
2kα0
M

)

a
(1)
l − δkα

∑

m6=n

~

M
παlma

(1)
m

(El − En)a
(2)
l = δkα

~

M
παnna

(1)
l − δkα

∑

m6=n

~

M
παlma

(1)
m . (G.12)

We manipulate this further to give:

a
(2)
l = − ~

2

M2

δkαπαnnδk
βπβln

(En − El)2
+
∑

m6=n

~
2

M2

δkαπαlmδk
βπβmn

(En − Em)(En − El)

=
~
2

M

δkα(vαl − vαn)δk
βπβln

(En − El)2
+
∑

m6=l,n

~
2

M2

δkαπαlmδk
βπβmn

(En − Em)(En − El)
. (G.13)

We can use this to calculate the cubic correction from the dispersion. The third

order terms are:

∑

m6=n

Emk0a
(3)
m |m〉+ δkαδkα

~
2

2M

∑

m6=0

a(1)m |m〉+ δkα
[

~
2kα0
M

+
~

M
p̂α
]

∑

m6=n

a(2)m |m〉 =

1

6
δkαδkβδkγ∂α∂β∂γEn|n〉+

1

2
δkαδkβ∂α∂βEn

∑

m6=n

a(1)m |m〉

+δkα ∂αEn

∑

m6=n

a(2)m |m〉+ Enk0

∑

m6=n

a(3)m |n〉 (G.14)

We dot this with 〈l| and take n = l to find:

1

6
δkαδkβδkγ∂α∂β∂γEn = δkα

∑

l 6=n

~

M
παnla

(2)
l

=
~
3

M2

∑

l 6=n

δkγ(vγl − vγn)δkβπ
β
lnδk

απαnl
(En − El)2

+
∑

m6=l,n

∑

l 6=n

~
3

M2

δkγπγlmδk
βπβmnδkαπαnl

(En − Em)(En − El)

These terms are proportional to the inverse squared power of the band-gap and

so would enter the dynamical equations at the same order as the Berry curvature.

However, we know that cubic corrections will vanish when we are at a high symmetry
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point in the Brillouin zone, as cubic terms do not preserve inversion symmetry. Away

from high symmetry points, we see that these terms need not vanish and could play

an important role.

Finally, we can go further and find that each higher order scales with one higher

inverse power of the band gap. For example, quartic corrections scale like (En−E0)
−3

(as in the 2D Rashba model). All these higher order corrections will therefore be

smaller than the Berry curvature when the band-gap is large, and so they can be

neglected.
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[198] D. Guéry-Odelin and S. Stringari, Phys. Rev. Lett. 83, 4452 (1999).
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