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Abstract

The provision of healthcare in rural African communities is a highly complex and largely unsolved problem. Two main
difficulties are the identification of individuals that are most likely affected by disease and the prediction of responses to
health interventions. Social networks have been shown to capture health outcomes in a variety of contexts. Yet, it is an
open question as to what extent social network analysis can identify and distinguish among households that are most likely
to report poor health and those most likely to respond to positive behavioural influences. We use data from seven highly
remote, post-conflict villages in Liberia and compare two prominent network measures: in-degree and betweenness. We
define in-degree as the frequency in which members from one household are named by another household as a friends.
Betweenness is defined as the proportion of shortest friendship paths between any two households in a network that
traverses a particular household. We find that in-degree explains the number of ill family members, whereas betweenness
explains engagement in preventative health. In-degree and betweenness independently explained self-reported health and
behaviour, respectively. Further, we find that betweenness predicts susceptibility to, instead of influence over, good health
behaviours. The results suggest that targeting households based on network measures rather than health status may be
effective for promoting the uptake of health interventions in rural poor villages.
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Introduction

Infectious diseases remain a leading cause of morbidity and

mortality in developing countries. Over one billion people, mostly

in rural areas, are currently afflicted with one or more

communicable diseases.[1–5] Many of these maladies are

preventable with access to safe water, sanitation, and health-

care.[6] However, identification of people that are ill is a strenuous

task in rural poor areas where access to formal medical care is

scarce and infectious diseases are chronic.[7] Furthermore,

behavioural modification to improve preventative health, such as

the persuasion of households to use protected instead of open

water sources and to use pit latrines instead of engaging in open

defecation, proves challenging in practice.[8] Monitoring such

behaviours is difficult, in particular for open defecation, as many of

these behaviours are conducted in private. Therefore, indirect

indicators, such as social popularity and influence, may offer a

useful alternative to identify who is ill and whom to target for

behavioural health interventions [9].

Social networks have been widely studied for understanding

peer effects and the spread of behaviours in a variety of

contexts.[10–15] The study of complex networks aims to provide

insight into the connectivity of physical, natural, or social

systems.[16] Two commonly examined network properties are

degree and betweenness. The degree of an individual, or node, is

the number of incoming and outgoing connections. Of primary

focus for social networks is in-degree, the number of incoming

connections.[17] In-degree conveys the popularity of individuals,

by counting the number of people that have named that person as

a friend. Betweenness is the proportion of shortest paths (here, a

set of lines connecting two households) in a network that traverses

the node of interest.[17] In contrast to in-degree, betweenness is a

global measure of the network. High betweenness commonly is

viewed as an indicator of information spreading in social

networks.[18] However, it is an open question as to what extent

betweenness and in-degree are important factors in determining

self-reported physical health and actual health behaviours. These

centrality indicators are particularly important in distinguishing

how social placement affects health, as households that traverse

the most paths connecting other households (high betweenness)

need not have many friends (high in-degree) [19].

Existing studies [20–23] on social networks and health identified

the dependencies between dyads of people in single non-

interacting networks and showed that individuals were connected

with other individuals of similar physical health. For example,

Christakis et al. [22] and Liljeros et al. [23] found that high degree

nodes were more likely to be sick or infected than low degree

nodes. We expand upon this literature and study a set of remote

villages in rural Liberia. Liberia is recovering from a civil war,

which resulted in high levels of mortality and morbidity and broke

down the delivery of basic health services. While important steps
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have been taken to rebuild the country, Liberia still ranks amongst

the lowest in the world with respect to health indicators. Under-

five mortality is 110 out of every 1000, the childhood malaria rate

is 32%, reduced growth in children (stunting) is 42%, and access to

formal health services is below 40% in remote areas.[24] We

demonstrate the ability of social network indicators to predict

health outcomes and to explain the susceptibility of a household to

partake in health interventions in one of the most impoverished

and under-researched developing country contexts. Especially, we

find that in-degree predicts household physical health status and

betweenness identifies individuals susceptible to positive behav-

ioural influence and likely to respond to health interventions.

Methods

Ethical approval
We obtained verbal informed consent from the respondents.

Research assistants went through an explanation of the research

and asked respondents if they understood and agreed to go ahead.

Respondents were informed that they were not obliged to answer

questions if they did not want to and were free to stop the

interview at all times. In rural Liberia very few people can read or

write. The research assistant recorded the answer of the

respondent and any remarks made on the survey form. We

obtained Institutional Review Board (IRB) approval for this

consent procedure and a Gola Forest study that encompasses the

trans-boundary area of Sierra Leone and Liberia under the IRB of

the University of Chicago, number H10076.

Data sample and network construction
During February – March 2012, we surveyed friendship

networks in seven highly remote villages in post-conflict Liberia

(Figure 1). One week in advance of survey activities, runners were

sent to each village with a letter of invitation for the village chief.

The runner reviewed the letter in detail with the chief, explained

the proposed date of arrival, number of enumerators to be hosted,

and a summary of proposed activities. Permission was requested

from the chief for activities to be undertaken as planned. If

permission was denied, the runner sought to determine whether an

alternative date was available. If the chief refused the research

team to visit at all, the runner informed the project leader

immediately and a new village was selected from within the same

geographical quadrant; however, refusal to conduct research in the

village never occurred. Scheduled activities only were undertaken

with permission from the chief. After securing approval to carry

out the program, a project leader walked around the village and

created a numbered household list, which contained names of all

household heads.

The full household list was used in a public lottery to randomly

select households. Paper slips with household numbers were placed

in an opaque bag. During a public meeting of all households in the

village, a child was invited to draw household numbers from the

bag one-by-one. Participation rates where high; yet, if a selected

household refused to participate, another number was drawn until

a willing household agreed to participate. The procedure

continued until at least 15 households were selected (30 households

in one village, 26016). For villages smaller than 15 households, all

households were included. In all study villages, the final sample

ranged from 9–30 households.

The study catchment consisted of small villages surrounding the

Gola Rainforest, which is located in the post-conflict region

bordering Sierra Leone and Liberia (Figures S1–S2 in File S1). A

summary of the demographic characteristics and health variables

of the study area is provided in the Tables S1–S2 in File S1.

Friendship ties were elicited by asking household heads to ‘‘Please
give the full names of eight close friends that do not live in your
household and that you would feel comfortable to either turn to for
advice, ask for an interest-free loan, or ask for help with harvest
without paying (only feeding). Please indicate if the person named
lives in the village.’’ Directed edges between pairs of households

were generated if any member of the receiving household was

named. When a household head named more than one friend

from a particular household, these multiple edges were treated as

one edge. Friends named within the same household as the

respondent (self-loops) were ignored in the analysis.

To allow for reciprocation of a connection, only the households

interviewed were used to construct the village networks. Further-

more, only households that either named a connection within our

sample, or were named by a household within our sample were

included in the network. Network summary statistics are presented

in Table S3 in File S1. The nodes (N = 83) represent households

and the edges (N = 124) represent friendship connections between

them (Figure 1).

Interviewed households included in the derived networks were

compared to interviewed households that were not used to

construct the networks and were found to be balanced across a

wide range of socio-economic variables except for the number of

years the household has been in the village, agricultural

occupation, social status, and belonging to the village 26007

(Tables S4–S5 in File S1). We account for this variation in sample

selection by including these differences in extended models

presented below to show that our findings uphold. To access the

study data and code, please refer to the following supplementary

information: Study Data S1, and Regressions S1.

In-degree and betweenness variables
The directed network parameters of betweenness and in-degree

were calculated and visualized using the Network Analyzer Plugin

from Cytoscape version 2.8.3. We analyze subnetworks where the

namers and named fall within the same sample. Both in-degree

and betweenness depend on the number of nodes included in the

derived network. The subnetworks result in a small number of

nodes with many connections (high in-degree) and a small number

of nodes with high connectivity (high-betweenness). We examined

these properties, which are found in complete named networks

[16], to identify trends across seven villages. Further, there is not a

clearly defined one-unit increase of betweenness that is compara-

ble to a one-unit increase of in-degree, which is the addition of one

friend. Accordingly, we focused on the significance and direction

of the coefficients of betweenness and in-degree to explain the

associations found in this paper. We find that in-degree and

betweenness are correlated, but are not perfectly collinear (Table

S6 in File S1), which further supports that each centrality indicator

independently explains different health outcomes.

Statistical Analysis
Statistical analyses are conducted using Stata version 12.1. The

regressions presented in Tables 1–2 and Figure 2, use general

linear models with iterated least squares maximization and village-

level fixed effects. Below, we discuss the relative importance of in-

degree and betweenness for various health outcomes in a

comparative analysis of regression models containing both

variables.
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Results

In-degree as a self-reported health indicator
In-degree positively predicts the number of people sick in a

household (Table 1 Panel 1A and Figure 2A). Households with

high in-degree (many close friends) report a higher number of total

people sick in their home during the previous month than

households with few or no incoming friendship links. The

difference in the logs of the expected number of sick people

changes by 0.308 (p,0.05) with each additional incoming

friendship connection (Table 1 Panel 1A). In terms of the

incidence rate ratio, with each additional connection (in-degree),

the number of people sick increases by 1.360 (p,0.05, Table 1

Panel 1B). This finding is expected as in-degree is an indicator of

popularity and the more popular an individual is the more likely

they are to be ill.[22] By contrast, we do not observe a significant

relation with betweenness and the total people sick in a household

(coefficient (coeff.) 20.581, p.0.05, Table 1 Panel 1A). Addition-

ally, there is village-level variation in health status. Living in village

13111 significantly contributes to the number of people sick in a

household (coeff. 1.305, p,0.05, Table 1 Panel 1A).

Betweenness as a health behaviour measure
Households with high betweenness avoid poor health behav-

iours and actively spend income on medical care. Poor health

behaviours were measured by asking household heads if they

conduct one of the following six behaviours at least once per week:

drinking alcohol, smoking, burning cooking fuel indoors, entering

freshwater bodies, open defecation, and sleeping outside. Be-

tweenness results in a decrease (coeff. 25.107, p,0.01; coeff. is

per unit betweenness–See Methods) of the log of expected count of

poor preventative health behaviours that a household head

engages in (Table 1 Panel 2 and Figure 2B). By contrast, in-

degree is only weakly and insignificantly related to poor

preventative health (coeff. 0.034, p.0.05). As the household head

is the decision-maker of the family, their behaviours set an

example for other household members. In rural Liberia, behav-

ioural influence [25] is important for disease control as only

15.85% (13/82) of the study households had access to private

latrines.

Households of high betweenness are not only cautious with

respect to preventative health behaviours, but also actively seek

formal medical care (Table 1 Panel 3 and Figure 2C). Medical

care expenditure is defined as the total amount spent on drugs and

hospital stays over the year preceding the study. We examine

medical care separately from poor health behaviours, as expen-

diture on formal care is a distinct type of behaviour when

compared to preventative health (Tables S7–S8 in File S1). These

two behavioural indicators are neither collinear (VIF 1.00 for poor

health behaviour and VIF 1.23 for medical care) nor correlated

(Spearman coeff. 0.044, p.0.05). Betweenness is associated with a

health expenditure increase (coeff. 23,085 Liberian Dollars (LD) or

296.34 USD per unit betweenness, p,0.05) in the yearly

purchases of drugs and hospital payments. Again, in-degree is

weakly and insignificantly related to not only the behavioural

variable of poor preventative health, but also medical care

expenditures (coeff. 399 LD, p.0.05).

Further, in Table 2, we control for the total number of people

sick in a household. An additional person ill in the household

increases yearly medical expenditures (coeff. 1,192 LD, p,0.01).

Including the total people ill in a household does not affect our

main result. Betweenness remains significant and positive (coeff.

22,890 LD, p,0.01). As expenditures on medical care have zero

or positive values, we additionally construct Tobit models to

corroborate the robustness of the betweenness and medical care

relationship (Tables S9–S10 in File S1).

Betweenness as an indicator for susceptibility to good
health behaviours

In our study, betweenness explains susceptibility to positive

health behaviours rather than influence, as found in other social

network contexts.[19] In our survey, we ask, ‘‘Is your decision to
seek treatment or to engage in preventative health care behaviours
affected by what other villagers are doing?’’ As can be seen in Panel

4 of Table 1 and Figure 2D, betweenness increases the probability

of susceptibility to the health behaviours of other people in the

village (coeff. 7.117, p,0.05) whereas in-degree does not (coeff. 2

0.106, p.0.05). Additionally, village 13111 (coeff. 21.546, p,

0.05) and village 13245 (coeff. 21.497, p,0.05) carry a lower

probability of behavioural susceptibility of individuals.

Importantly, receptiveness to the actions of other villages is an

indicator of engaging in good health behaviours. Susceptibility is

positively correlated to good health behaviours with a Spearman

coefficient of 0.283 (p,0.01, N = 83) and negatively, but not

significantly, related to poor preventative health, with a weak

Spearman coefficient of 20.018 (p.0.05, N = 83). Good health

behaviour is defined as a count variable of the number of good

behaviours that a household head engages in on a weekly basis

including: hand-washing, use of public latrine, use of private

latrine, boiling water, sleeping under a bed net, and taking

packaged medicine.

Extended models of network centrality and health with
socio-economic covariates

Thus far, we presented models of in-degree and betweenness for

self-reported physical health and actual health behaviours using

only a minimal set of regressors. Understanding that a large

number of variables for a small number of observations limit the

degrees of freedom and model leverage, we also construct

extended models (Table 3). The additional covariates are not

perfectly collinear (Table S11 in File S1). In addition to the village-

level fixed effects, the extended models incorporate agricultural

occupation, years of residence in a village, and social status.

Figure 1. Friendship networks of 7 Liberian villages. Each village is labelled with an uppercase letter. A) Village 26007 with 6 nodes and 10
edges. B) Village 13233 with 12 nodes and 11 edges. C) Village 26036 with 12 nodes and 16 edges. D) Village 26016 with 25 nodes and 37 edges. E)
Village 13247 with 10 nodes and 23 edges. F) Village 13111 with 9 nodes and 11 edges. G) Village 13245 with 9 nodes and 16 edges. There are a total
of 83 nodes and 124 edges. The nodes represent households. The size of the node represents in-degree, which is the number of other households in
the village that named the household of interest. The number of nodes and their in-degree in parentheses are: 23(0), 26(1), 19(2), 5(3), 9(4), and 1(5).
The colour of the node represents betweenness centrality. In all networks, and particularly in B) and C), not all nodes with high in-degree have high
betweenness centrality. The directed edges (arcs) represent pairwise friendship connections between any two members of the households. An
outgoing edge indicates that the sending household named the receiving household as a friend and vice versa. The curved edges in the graph show
two households where there is reciprocity in friendship connections. If there were multiple edges between the same pair of households we treated
them as one edge. The number of households and their betweenness range in parentheses are: 49(0), 4(,0.01 and . = 0), 7(,0.02 and . = 0.01),
10(,0.08 and . = 0.02), 7(,0.20 and . = 0.08), and 6(. = 0.20). See Table S3 in File S1 for network construction statistics.
doi:10.1371/journal.pone.0103500.g001
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Further, we include a wealth indicator of home quality to control

for the impact of household wealth on the health of household

members.

The additional covariates are defined as follows. Agricultural

occupation is a binary variable indicating whether the main

occupation of the household head was in agriculture. Social status

is a binary variable and is positive if at least one household

member has at least one important leadership position in the

community including: elder council member, youth leader,

women’s leader, societal head, village chief, tribal authority, or a

mining chairman. Years in village is a count variable of the total

years since the household has settled in the current village. The

home quality score is a count indicator with range 0 to 18.

Households were asked to indicate all materials used for any part

of the home, such as, ‘‘Does your home have a tarpaulin roof?’’

Binary indicators were recorded and converted to scores. The

floor, walls, and roof of the home are rated from 1–3 and added

together to form the home quality score. The materials are

provided in order of low to high quality. The floor materials are

earth, wood, and concrete. The wall materials are mud and sticks,

zinc, and cement. The roof materials are straw/thatch, tarpaulin,

and zinc. For descriptive statistics of the covariates, see Tables S3–

S4 in File S1.

With the additional covariates, we show that the network

parameters of in-degree and betweenness still significantly explain

self-reported health and health behaviour. In Panel 1A of Table 3,

the log of the expected number of people ill changes by 0.297 (p,

0.05) with each connection gained by a household when named by

another household as a close friend. In other words, the incidence

rate or number of new people ill in a household increases by 1.346

(p,0.05) for each new household connection (Table 3 Panel 1B).

We do not observe a significant relation with betweenness and

total people sick in the household (coeff. 0.840, p.0.05). In Panel

2 (Table 3), a one-unit increase in betweenness results in a 4.897

(p,0.05) decrease in the log of the number of poor preventative

health behaviours. By contrast, in-degree is only weakly and

insignificantly related to poor preventative health (coeff. 0.032, p.

0.05). Additionally, belonging to village 13247 increases the log of

the expected number of poor preventative health behaviours by

0.702 (p,0.05). Furthermore, in Panel 3 (Table 3), a one-unit

increase in the betweenness of a household is associated with an

expenditure increase of 23,317.54 LD (p,0.01) for medical care.

Also, having a household member with high social status increases

medical expenditures by 2,975.19 LD (p,0.01). Lastly, in Panel 4

(Table 3), a one-unit increase in betweenness increases the

probability that an individual is influenced by the health actions

of other villagers by a factor of 6.813 (p,0.05). In-degree is

insignificantly (coeff. 20.062, p.0.05) related to health behaviour

of other individuals. Individuals belonging to village 13111 (coeff.

21.539, p,0.05) and village 13245 (coeff. 21.621, p,0.05) are

less likely to be influenced by other village members.

Discussion

Social networks exhibit similar structures across developed and

developing countries.[26] In this study, we ask whether social

network analysis can inform healthcare provision in the developing

world, and more specifically whether network centrality indicators

can be used to identify self-reported health, the presence of good

or bad health behaviours, and the response to positive social

influence. Using data from highly remote and isolated villages in

Liberia, we show that health status and health behaviour of an

individual can be explained by the in-degree and betweenness of

households in village friendship networks. We find that in-degree is

a significant predictor of self-reported physical health, comple-

menting past studies that show a positive correlation between in-

degree and infection rates in a developed country context.[22] We

also find that the heads of households with high betweenness avoid

poor health behaviours and are more susceptible to social

influence for good preventative health. In-degree explains

exposure to environmental factors whereas betweenness explains

the susceptibility to influence.

Table 2. Medical care and betweenness relation with self-reported health covariate.

Dependent variable: Expenditures on drugs and hospital in past year

Explanatory variables Coeff. S.E. p

Betweenness 22890.199** 8652.674 0.008

In-degree –1.152 463.110 0.998

Total people sick in past month 1191.798** 368.336 0.001

Village

13111 –3356.593 2202.831 0.128

13233 199.533 1803.915 0.912

13245 –438.605 1949.243 0.822

13247 –3052.940 1996.080 0.126

26007 –706.153 2427.769 0.771

26016 –2018.970 1553.831 0.194

Constant 3316.840* 1381.310 0.016

N 83

*p,0.05.
** p,0.01.
***,0.001.
GLM model was used with the Gaussian family.
doi:10.1371/journal.pone.0103500.t002
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In rural areas of the developing world, access to healthcare is

scarce, therefore, it is important to be able to identify those who

need medical help the most, to encourage good health behaviours,

and to utilize positive social influence in order to reduce morbidity

in these areas. Our findings show that social network analysis can

offer an alternative set of observable indicators and provide a

better understanding as to why these challenges persist. In the

context of our study villages in Liberia, social networks reveal that

the sickest households are neither likely to engage in preventative

health nor likely to be susceptible to positive health influences from

the community.

Data Availability Statement
All authors provide full access to the data used to perform the

analysis in ‘‘Social network analysis predicts health behaviors and

self-reported health in African villages.’’ Due to the sensitive

nature of the data, i.e. the involvement of human participants,

identification numbers in place of household names are provided

to comply with ethical requirements. Further, as social status and

household variables are included and can be backtracked to

participants; village names were replaced with identifiers. The data

are available within the Supporting Information files. The first

sheet of the file contains all the regression data. The second sheet

of the excel file contains the household linkages in long form. All

predictor variable names are the same to those used in the main

paper; these definitions can be found in the manuscript text. The

dependent variable names are shortened versions of the descrip-

tions used in the main-text. Accordingly, explanations of

dependent variables also are provided in the script used for

regressions. The annotated code used to execute the regressions in

the statistical analysis software, Stata, is provided as a plain text

file.
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