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This thesis investigates mean reaction rate closures for turbulent reacting flow.
The closures model the mean rate of reaction in the flow and are applied to
simulations of nanoparticle formation. The simulations couple detailed chemical
reaction, particle population dynamics and turbulent flow, and offer the potential
to improve the understanding of a range of industrial processes.

The numerical behaviour of a mean reaction rate closure based on the direct
quadrature method of moments using the interaction by exchange with the mean
micromixing model (DQMoM-IEM) is studied in detail. An analytic expression is
presented for the source terms and a filter function introduced to address issues of
boundedness and singularity. Analytic integrals are presented for special cases of
specific terms. The implementation of the method in the Star-CD computational
fluid dynamics code is described in detail and validated against a test problem.

The numerical performance of DQMoM-IEM is systematically compared to
the stochastic fields (SF) turbulent reaction model. The methods share many
similarities and are presented in a common mathematical framework for the
first time. They differ in their treatment of key terms that make DQMoM-IEM
numerically challenging. A variance reduction technique using antithetic
sampling is introduced to increase the efficiency of the SF method. However,
DQMoM-IEM is shown to remain competitive for the test problem considered.

A new methodology is presented to couple a detailed particle model to simulations
of turbulent reacting flow. A projected fields (PF) method based on DQMoM-IEM
is used to combine detailed chemistry and the method of moments with
interpolative closure (MoMIC) population balance model in Star-CD. The method
is applied to the example of the chloride process for the industrial synthesis of
titania nanoparticles and includes full coupling between the flow, chemistry and
particles undergoing simultaneous inception, coagulation and surface growth.
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Chapter 1

Introduction

1.1 Motivation

Nanoparticles are big business and their synthesis in turbulent reacting flows is
a key field of current engineering research. For example, titania nanoparticles
represent a three-quarters share of the global white pigment market (1996) (Grant
et al., 2004) worth annual sales of £7 billion (2009) (Hill, 2009). The titania is
increasingly produced via the chloride process, which exhibits strong coupling
between turbulent reacting flow and the quality of the pigment defined by the
size, shape and crystal phase of the nanoparticles. The chloride process is typical
of many industrial processes in that although it is widely used, it is not well
understood and optimisation is often empirical.

Detailed models of nanoparticle formation in turbulent reacting flow offer a
possible means to gain insight into a range of industrial processes. Such models
must describe the gas-phase chemistry, the inception and coagulation of the
nanoparticles, the interaction between the gas and particulate phases via reactions
on the surface of the particles, and must resolve the coupling between the heat
release from all these processes and the turbulent flow. The problem considered
in this thesis is how to model the turbulent reacting flow and couple it to detailed
models for the gas-phase chemistry and particle formation.

Turbulent flows are inherently unsteady and irregular. The main difficulty
from a modelling perspective is how to deal with the fluctuation of the flow.
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1 INTRODUCTION

Several established turbulent flow methods exist. Direct numerical simulation
(DNS) resolves the full motion of the flow without the need for any models.
The disadvantage is that DNS is prohibitively expensive and quickly becomes
computationally intractable for practical problems. Other methods separate
the velocity and scalar quantities (like species concentration) into resolved and
unresolved components. However, the equations for the resolved velocity and
scalars contain terms that require unresolved quantities. These are known as
unclosed terms and they must be modelled. For example, large eddy simulation
(LES) resolves the large scale unsteady motion of the flow, but models all unclosed
processes that occur below this scale. Similarly Favre- and Reynolds-averaged
methods resolve the mean flow, but model all processes that depend on unresolved
fluctuations about the mean. LES is significantly cheaper than DNS and is
increasingly popular, but is still too expensive for many applications. Favre- and
Reynolds-averaged methods are cheaper again and are among the most popular
and widely commercialised methods due to their computational efficiency.

The principal difficulty with applying LES, Favre- and Reynolds-averaged
methods to turbulent reacting flow is that the chemical source term in the resolved
material balance equation is unclosed for non-linear chemistry. For example, the
mean reaction rate for Favre- and Reynolds-averaged turbulent reaction methods
cannot be calculated without knowledge of the fluctuations about the scalar means.
A number of turbulent reaction closures exist to overcome this problem. Some
rely on explicit assumptions, for example fast or slow chemistry. Others solve for
additional information that they use to calculate a rate of reaction. For example,
probability density function (PDF) methods solve for a joint composition PDF
that describes the statistics of the scalar composition of the flow. They require
some additional modelling of the scalar mixing, but provide an exact treatment of
the chemical source term.

The direct quadrature method of moments using the interaction by exchange
with the mean micromixing model (DQMoM-IEM) and the stochastic fields (SF)
method are two promising PDF-based turbulent reaction methods from the recent
literature. The literature shows that both methods can be coupled to standard
computational fluid dynamics (CFD) software and have been used to model
a range of turbulent reaction problems, including unsteady flames. However,
DQMoM-IEM presents a number of numerical difficulties. No previous studies
have systematically compared the two methods, nor applied them to detailed
models of nanoparticle formation in turbulent reacting flow.
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1.2 Novel elements of the thesis

The objective of this thesis is to investigate the application of DQMoM-IEM
and SF as mean reaction rate closures for Favre- and Reynolds-averaged turbulent
flow methods. The closures model the mean chemical source term in turbulent
reacting flow and we are interested in methods that can be coupled to detailed
chemistry and particle formation models in order to study nanoparticle formation.
In practice, we interpret this as computationally efficient methods that have
sufficient accuracy for engineering studies, that make no assumptions about the
chemistry and that can be implemented within off-the-shelf CFD software.

1.2 Novel elements of the thesis

This thesis presents the following novel developments:

• The numerical behaviour and implementation of a mean reaction rate
closure based on DQMoM-IEM is investigated in detail. A new analytic
expression is presented for the source terms and a filter function introduced
to address issues of boundedness and singularity. Analytic integrals are
presented for special cases of specific terms. The implementation of the
method in the Star-CD CFD code is described in detail.

• The numerical performance of DQMoM-IEM is systematically compared
to the SF method. The methods share many similarities and are presented
in a common mathematical framework for the first time. They differ in their
treatment of key terms that make DQMoM-IEM numerically challenging.
A variance reduction technique using antithetic sampling is introduced to
increase the efficiency of the SF method.

• A new methodology is presented for the detailed modelling of nanoparticle
formation in turbulent reacting flows. A projected fields (PF) method based
on DQMoM-IEM is used to combine detailed chemistry and the method of
moments with interpolative closure (MoMIC) population balance model in
Star-CD. The method includes full coupling between the flow, chemistry
and particles undergoing inception, coagulation and surface growth.

3



1 INTRODUCTION

1.3 Structure of the thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces
relevant background material. It starts with a discussion of titania nanoparticles
and introduces relevant aspects of population balance and turbulent flow models.
It explains the origin of the mean reaction rate closure problem and describes
common models for turbulent reacting flow. It reviews previous models for
nanoparticle formation in turbulent reacting flow and concludes with a discussion
of the scope and terminology of the investigations in this thesis.

Chapters 3 and 4 are concerned with turbulent reacting flow models. Chapter 3
investigates the application of DQMoM-IEM as a mean reaction rate closure.
Two new solvers are introduced and validated against a constant density turbulent
reaction test problem from the literature. Chapter 4 compares the performance of
DQMoM-IEM to the SF method. DQMoM-IEM is shown to remain competitive
for the test problem considered in chapter 3.

Chapter 5 is concerned with coupling a population balance method that describes
nanoparticle formation to a turbulent reacting flow model. It extends the
developments in chapter 3 to introduce a PF method that couples variable density
turbulent flow to detailed chemistry and a MoMIC population balance model. The
method is applied to the example of the chloride process for the synthesis of titania
nanoparticles in a representative ‘slot’ reactor geometry.

Chapter 6 summarises the conclusions of the thesis and suggests areas for future
work. A nomenclature and bibliography can be found at the back, along with
appendices that provide supplementary information regarding the derivation and
numerical treatment of methods relevant to this thesis.

4



Chapter 2

Background

This thesis investigates the application of mean reaction rate

closures for simulations of nanoparticle formation in turbulent

reacting flow. Detailed models offer a possible means to gain

insight into a range of industrial processes. The overall method

must couple models for detailed chemistry and turbulent flow to a

population balance that describes the evolution of the nanoparti-

cles. The thesis considers the example of the chloride process for

the production of titania nanoparticles and this chapter starts with

a discussion of the titania industry to provide some context for the

work. The remainder of this chapter reviews current population

balance, turbulent flow and turbulent reacting flow methods and

examines the suitability of possible models from each area. It

critically assesses previous models of nanoparticle formation in

turbulent reacting flow and concludes with a discussion of the

scope and terminology of the investigations in this thesis.
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2 BACKGROUND

2.1 Titania nanoparticles

Titania (titanium dioxide, TiO2) nanoparticles are a white pigment. The titania
itself is colourless (Boulos et al., 2002) and the white appearance of the product is
controlled by the size, shape and crystal phase of the particles. Figure 2.1 shows
an image of typical TiO2 nanoparticles composed of small agglomerates.

Figure 2.1: Transmission electron micrograph of titania nanoparticles,
courtesy of and with permission from Tioxide Europe Ltd.

The nanoparticles scatter light by a combination of reflection, refraction and
diffraction (DuPont Titanium Technologies, 2002). Diffraction occurs when light
passes near a particle and is most effective when the particle diameter is slightly
less than half the wavelength of the incident light. The particle diameter affects
the quality of the product and must be tightly controlled. For example, pigments
with smaller particles give products that tend to have a bluish tint; pigments with
larger particles cause a more yellowish tint (Allen and Gergely, 1998).

Reflection and refraction occur due to a difference in refractive index between
the pigment and the material in which it is dispersed. The greater the refractive
index of the pigment, the greater the reflection and refraction. Titania pigments
are commercially available in two crystal phases: anatase and rutile. Both phases
have high refractive indices, making them effective pigments.
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2.1 Titania nanoparticles

2.1.1 Applications

Titania pigments are used in paints, paper, plastics and textiles. Figure 2.2 shows
the consumption of titania across different product areas in the USA, historically
the largest consumer of titania in the world. The preferred phase depends on
the application. Rutile is preferred for paints and plastics. It scatters light more
efficiently and is less likely to result in degradation of the product when exposed
to sunlight (DuPont Titanium Technologies, 2007).

Anatase is photocatalytic and less abrasive than rutile. It is used to pigment paper
to avoid unnecessary wear of the cutting blades in the paper-mill. Likewise, it is
used to brighten man-made fibres such as polyester, rayon and viscose (Boulos
et al., 2002). It reduces wear during the manufacturing process, but the fibres are
subject to photocatalytic degradation when exposed to sunlight. A few applica-
tions exploit the photocatalysis. For example, anti-fogging glass, self-cleaning
and anti-microbial coatings (Fujishima et al., 1999). Applications in solar water
purification are being developed (Morgan, 2008; Williams and Duffy, 2009).
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Figure 2.2: Consumption of titania in the USA by product area,
(data from the U.S. Geological Survey, Buckingham and Gambogi, 2006).
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2.1.2 Economic aspects

Titania nanoparticles represent a three-quarters share of the global white pigment
market (1996) (Grant et al., 2004) and are produced at a rate of 5 million tonnes
per year, worth sales of £7 billion in over 170 countries (2009) (Hill, 2009).

Figure 2.3 illustrates a few economic aspects of the titania industry. It shows that
the growth in the world gross domestic product (GDP), a measure of global living
standards, broadly correlates with world demand for titania between 1989–1996.
The increase in demand for titania since 1980 has been met by an increase in
capacity via the chloride process.

1970 1980 1990
0

1

2

3

4

5

Year

T
iO

2 d
em

an
d 

/ c
ap

ac
ity

(m
ill

io
n 

to
nn

es
 / 

ye
ar

)

 

 

1970 1980 1990
0

2

4

6

8

10

G
D

P
 grow

th (annual %
)

 Demand
 Capacity
 Capacity, chloride process
 Capacity, sulphate process
 GDP growth

Figure 2.3: World GDP growth, demand and capacity for titania. The capacity is broken
down into contributions from the chloride and sulphate processes. Adapted
from Grant et al. (2004) with permission from The Royal Society of Chemistry
and the University of Hull. GDP data: World Bank (2011), demand data:
Grant et al. (2004), capacity data: Büchel et al. (2000).
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2.1 Titania nanoparticles

2.1.3 Manufacturing processes

Titania pigments are manufactured via either the chloride or sulphate processes.
The sulphate process was commercialised in 1931 and can produce either anatase
or rutile (post 1941). The chloride process was introduced by DuPont in 1948
(Schaumann, 1949; Krchma and Schaumann, 1951) and can only produce ru-
tile (DuPont Titanium Technologies, 2007). The chloride process requires higher
grade ores, but generally has lower capital and operating costs (ICIS, 2011). The
remainder of this section (2.1.3) is mainly summarised from Büchel et al. (2000).

The chloride process

The chloride process typically uses a rutile ore. The overall economics depend
on the purity of the available material. The ore is chlorinated to form titanium
tetrachloride (TiCl4). This is mixed with reducing agents to treat impurities and
purified by distillation. The purified TiCl4 is oxidised in either a flame (Pratsinis
et al., 1997) or by stage-wise addition to an oxygen plasma (Morris and Coe, 1989;
Deberry et al., 2002) at elevated pressure (Haddow, 1997) to produce TiO2 parti-
cles and chlorine. The chlorine can be recycled. Figure 2.4 illustrates the process.

Various additives and in particular water and aluminium trichloride are used to
modify the oxidation and control the product quality (for example see Schaumann,
1949; Krchma and Schaumann, 1951; Santos, 1970; Hartmann, 1996).

Post treatments

TiO2 pigments are often milled to break up agglomerated particles. Excessive
agglomeration reduces the product quality and leads to products with lower gloss
(Allen and Gergely, 1998). Figure 2.1 shows pre-milled material, whereas the
ideal product would show a monodisperse distribution with a prescribed mean
size. The milling is typically performed using either fluid-energy (Slepetys, 1970)
or media mills (Niedenzu et al., 1996) and adds significant cost to the pigment.
The more control that can be used to minimise agglomeration and reduce the need
for milling, the lower the overall production cost.
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Titanium ore

Input Process Output

Chlorination

Oxidation

Purification

Post-treatment

Coke

Reducing agent

TiCl4

Impurities

TiO2 pigment

Chlorine gas

Oxygen gas

Chlorine gas

TiCl4

TiO2considered in this thesis

Figure 2.4: Chloride process for titania manufacture, adapted from Büchel et al. (2000)
with permission from Wiley-VCH. Original copyright held by Wiley-VCH Ver-
lag GmbH & Co. KGaA. Chapter 5 of this thesis considers how to model the
oxidation process.
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2.1 Titania nanoparticles

2.1.4 Kinetic models for titania formation

Typical industrial conditions for the oxidation step of the chloride process are

a stoichiometric mixture of TiCl4 and O2 plus additives reacting at 1500–2000 K.

The process is difficult to investigate experimentally under these conditions. It has

been widely studied at milder conditions, but understanding remains incomplete.

Ghoshtagore (1970) investigated the surface addition of TiCl4 to a TiO2 film. The

reaction was suggested to display an Eley-Rideal dependence on TiCl4 and O2 at

673–1120 K. Pratsinis et al. (1990) studied the global oxidation kinetics of TiCl4

vapour at 973–1273 K. The reaction was first-order in TiCl4 and approximately

zero-order in O2 up to ten-fold excess O2. Pratsinis and Spicer (1998) compare

the overall kinetics with a gas-phase rate inferred from the difference between the

overall rate (Pratsinis et al., 1990) and a surface growth rate (Ghoshtagore, 1970)

assuming monodisperse spherical particles. They show that surface reaction has a

significant effect on the particle diameter. Later studies using more detailed pop-

ulation balance models draw similar conclusions (Tsantilis and Pratsinis, 2004;

Morgan et al., 2005, 2006; Heine and Pratsinis, 2007a).

West et al. (2007a,b) argue that more detailed understanding of the chemical

mechanism may yield deeper insight. They present a detailed mechanism for

the high temperature oxidation of TiCl4. The reaction is suggested to proceed

via titanium oxychloride species. Unknown thermochemical data are estimated

by density functional theory based quantum calculations. Subsequent investiga-

tions present an updated mechanism (West et al., 2009) and consider the role of

aluminium trichloride additives (Shirley et al., 2009).

Mehta et al. (2010) compare the inception behaviour of the mechanisms from

Pratsinis and Spicer (1998) and West et al. (2009). They show that the choice of

mechanism causes particle inception to occur at different locations in simulations

of a turbulent flame and would be expected to significantly influence the behaviour

of the model. This is consistent with recent observations (Shirley et al., 2011)

where the choice of inception mechanism is noted to strongly affect simulations

of Pratsinis’ original experiment (Pratsinis et al., 1990).
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2.2 Population balance models

Population balance models are often used to describe nanoparticle formation and
are discussed in detail by Ramkrishna (2000). The basic population balance equa-
tion (PBE) is the Smoluchowski (1917) equation. In discrete form

dni

dt
=

1
2

i−1

∑
j=1

β j, i− j n jni− j−
∞

∑
j=1

βi, j nin j , (2.1)

where ni is the number density of particles of size i and βi, j describes the rate
of successful collisions between particles of size i and j. The first term on the
right-hand side describes the creation of particles due to collisions between all
combinations of particles with sizes that sum to i. The second term describes
the destruction of particles due to collisions between particles of size i and any
other size j. The main approaches that have been applied to nanoparticles are
summarised below.

2.2.1 Particle models

The particle model is the numerical description of the particles. The choice of
model is often constrained by the numerical method.

Spherical particle models consider a univariate particle description, for example
particle size (Spicer et al., 2002; Tsantilis and Pratsinis, 2004), and assume a fixed
geometric relationship between particle diameter, surface area and volume. Coag-
ulation conserves volume, but not surface area. Such models can describe particle
formation, growth and coalescence, but preclude the sintering of aggregates.

Surface-volume models consider a bivariate particle description, for example sur-
face area and volume (Xiong and Pratsinis, 1993). Coagulation is aggregative and
conserves surface area and volume. Sintering can be modelled as a relaxation of
the surface area back to that of an equivalent spherical particle of equal mass.

Multi-variate models offer the most complete particle description of the models
considered. For example, they enable a description of aggregates where sinter-
ing and growth depend on the connectivity and chemical composition of primary
particles within each aggregate (Sander et al., 2009, 2011; Shekar et al., 2011).
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2.2 Population balance models

2.2.2 Numerical methods

The numerical method is how a PBE is solved for the chosen particle model.

Moment methods

The method of moments (MoM) solves low-order moments of the PBE. It was
developed to model particles in inhomogeneous flows (Hulbert and Katz, 1964).
The distribution itself remains unknown and the moment equations are generally
unclosed. Early studies often assumed a log-normal distribution (for example
Pratsinis, 1988). More recent closures have relaxed this assumption.

The method of moments with interpolative closure (MoMIC) uses interpolation
among known whole-order moments to close fractional-order moments that arise
due to coagulation and surface growth processes. It was introduced by Frenklach
and Harris (1987) and has been reviewed in detail by Frenklach (2002). It is
efficient and widely favoured for problems involving populations and flow. For
example, a modified version (Revzan et al., 1999) of PREMIX (Kee et al., 1985)
has been used for a number of fully coupled 1D laminar flame simulations (Appel
et al., 2000; Zhao et al., 2003; Singh et al., 2005). Good accuracy is reported in the
first moment for organic (Balthasar and Kraft, 2003) and inorganic (Grosschmidt
et al., 2002) systems. Most implementations are univariate and assume spherical
particles, but MoMIC has also been extended to bivariate studies of aggregate
particle growth (Balthasar and Frenklach, 2005; Mueller et al., 2009).

The quadrature method of moments (QMoM) (McGraw, 1997) uses a quadrature
approximation to close the MoM equations. It solves for moments of the popula-
tion and calculates the quadrature approximation as required. The method was de-
veloped for univariate distributions, but has been extended to bivariate (Wright Jr
et al., 2001) and trivariate (Fox, 2008) cases, and several alternative quadrature
algorithms have been studied (see Grosch et al., 2007). QMoM has been shown
to give reliable results compared to other MoM (Terry et al., 2001) and sectional
(Marchisio et al., 2006) methods. It is easily coupled to computational fluid dy-
namics (CFD) codes and has been used to model barium sulphate nanoparticle
formation in a confined impinging jet reactor (Gavi et al., 2007b).
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The direct quadrature method of moments (DQMoM) (Marchisio and Fox, 2005)
uses a projection method and quadrature approximation of the PBE to derive equa-
tions that force the statistics of the quadrature approximation to obey specified
moments of the approximated PBE. The method solves for the parameters of the
quadrature approximation, rather than moments of the population. It has been rig-
orously compared to QMoM (Fox, 2006a) and its application to PBEs and CFD is
well established. It has been used to study fluidised beds (Fan et al., 2004; Fan and
Fox, 2008), spray coalescence (Fox et al., 2008; Desjardins et al., 2008) and soot
formation (Zucca et al., 2006, 2007). DQMoM is easily extended to multi-variate
models, but can be numerically challenging (Zucca et al., 2007).

Moment inversion methods are often used to estimate a distribution from a finite
set of moments (for example see Souza et al., 2010). In general, such problems
are poorly conditioned and the methods are limited to low dimensional cases.
Independent advection of the moments may sometimes give ‘invalid moment sets’
for which no underlying distribution exists. This is the moment advection problem.
It occurs in algorithms that are greater than first order in space and is considered
in detail by Wright Jr (2006).

Sectional methods

Sectional methods approximate the distribution by discretising the particle state
space. Moving sectional methods were introduced to control numerical diffusion
and have been been applied to several studies of titania nanoparticle formation
(Spicer et al., 2002; Tsantilis and Pratsinis, 2004). Bivariate formulations are pos-
sible and have been used to investigate the sintering of silica and titania (Seto et al.,
1997; Heine and Pratsinis, 2007a). Sectional methods resolve the full distribution,
but are significantly more expensive than moment methods.

Monte Carlo methods

Monte Carlo methods simulate the evolution of the particle distribution as a series
of discrete events acting on an ensemble of stochastic particles. They efficiently
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2.3 Turbulent flow models

extend to multi-variate particle models and have been proved to converge to the
solution of the governing population balance (Eibeck and Wagner, 2003; Wells,
2006). A number of stochastic algorithms have been developed (Eibeck and Wag-
ner, 2000, 2001) and refined (Goodson and Kraft, 2002; Wells and Kraft, 2005;
Wells et al., 2006; Patterson et al., 2006a,b) for nanoparticle applications. They
can be used to post process existing chemistry data (Zhao et al., 2003; Singh et al.,
2005; Morgan et al., 2007) or coupled directly to homogeneous chemistry solvers
(Celnik et al., 2007, 2009). Stochastic methods allow detailed multi-variate par-
ticle models and are an attractive option for post processing existing data, but are
often expensive and not easily coupled to CFD simulations.

2.2.3 Dilute and concentrated regimes

Heine and Pratsinis (2007a,b) use a surface-volume model to assess the validity
of equation (2.1) at high volume fractions. They note a transition from dilute to
concentrated aerosol dynamics at effective volume fractions (which include the
volume of voids within the aggregate structures) greater than 1%. They suggest
that “at these conditions, classic Smoluchowski theory may no longer describe
agglomerate coagulation and particles may affect fluid flow”.

Heine and Pratsinis (2007c) follow this with a first principles investigation using
Langevin Dynamics simulations of particle collisions at volume fractions between
0.01–35%. The Smoluchowski equation is shown to be accurate for dilute systems
with volume fraction less than 0.1%. Buesser et al. (2009) extend this work to
propose a modified coagulation rate expression for volume fractions up to 20%.

2.3 Turbulent flow models

Turbulent flows are unsteady and irregular. The velocity varies significantly and
irregularly in both position and time. The main approaches to modelling turbulent
flows are discussed below. The discussion is largely summarised from the books
by Tennekes and Lumley (1972), Acheson (1990) and Pope (2000).
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2.3.1 Governing equations

The fundamental equations governing turbulent reacting flow are conservation of
mass, momentum, chemical species and enthalpy (Pope, 1985, 2000)

∂ρ

∂ t
+

∂

∂xi

(
ρUi
)
= 0, (2.2)

ρ
∂U j

∂ t
+ρUi

∂U j

∂xi
=

∂τi j

∂xi
− ∂ p

∂x j
+ρg j , (2.3)

ρ
∂φα

∂ t
+ρUi

∂φα

∂xi
=−∂Jα

i

∂xi
+ρSα . (2.4)

The species and enthalpy equations are written in common form in terms of the
scalar composition vector φ . The velocity U and composition φ are Eulerian
fields referenced by the position x in an inertial frame, where ρ and p are the fluid
density and pressure, and g j is the body force per unit mass in the j-direction.
τi j is a stress tensor and describes viscous surface forces, Jα

i is a diffusive flux
vector and describes molecular transport of scalar α . At low Mach numbers, the
coupling between equations (2.3) and (2.4) is mainly through the density. The
equations are in cartesian tensor notation and the summation convention applies.

The solution to equation (2.3) is turbulent at high Reynolds numbers. The turbu-
lence results from instabilities to small perturbations in the flow. The instabilities
cause unsteady and irregular eddies that are themselves unstable and are broken
down. There is a cascade of energy and loss of directionality down the length scale
of the eddies. The largest eddies are influenced by the geometry of the flow and
are characterised by the turbulence integral scale. The smallest eddies are charac-
terised by the Kolmogorov scale, defined by the eddy size at which the Reynolds
number is of order unity, where the instabilities are overcome by viscosity. Their
behaviour is dictated by the rate of energy transfer from the larger scales.

The largest structures in the solution to equation (2.4) are characterised by the
scalar integral scale and are affected by the flow and the initial conditions. The
smallest structures are characterised by the Batchelor scale, where molecular dif-
fusion overcomes turbulent mixing. The rate of molecular diffusion is negligible
at large scales and non-premixed scalars will remain segregated above the Batche-
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2.3 Turbulent flow models

lor scale. The Batchelor and Kolmogorov scales are of the same order in gas-phase
flows. In liquid-phase flows, the Batchelor scale is smaller than the Kolmogorov
scale, and the scalar field contains more fine-scale structure than the velocity field.

The term in Sα in equation (2.4) is a source term. It describes the source of species
due to chemical reaction and the source of enthalpy due to compressibility, viscous
dissipation and radiation. Equation (2.4) is harder to solve for reacting than non-
reacting flow. The chemical source term is often non-linear and strongly coupled
to the turbulent mixing of the scalars φ . For example, consider the reaction

A+B
k1−→ R, B+R

k2−→ S. (2.5)

The chemical source term is given (in terms of the molar concentrations Cα)

SA
(
C
)
=−k1CACB ,

SB
(
C
)
=−k1CACB− k2CBCR ,

SR
(
C
)
=+k1CACB− k2CBCR ,

SS
(
C
)
=+k2CBCR .

(2.6)

In the case k1�k2, the selectivity of species R is sensitive to mixing (see Bourne
and Rys, 1981) and this reaction is used as a test case on this basis later on.

2.3.2 Numerical methods

Direct numerical simulation

Turbulent flows may be fully described by direct numerical simulation (DNS).
The conservation equations are discretised and solved numerically over a spatial
grid to resolve the whole range of spatial and temporal turbulence scales. The
main difficulty is that the method requires such high resolution grids that it quickly
becomes intractable. The use of DNS is limited by computational expense.

Many practical applications require turbulent flows to be modelled rather than
resolved. Turbulent flow models typically separate the velocity and scalar fields
into resolved and unresolved components. Two common approaches are Large-
eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methods.
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Large-eddy simulation

Large-eddy simulation (LES) uses a filter to separate the velocity and scalar fields
into filtered (resolved) and residual (unresolved) fields. The filtered fields are
simulated directly and LES resolves three-dimensional time dependent solutions
of the large energy-containing scales in the flow. However, the information in the
residual fields is lost. The equations for the filtered fields contain unclosed terms
that depend on the residual fields. Models are required to close any processes that
occur at the unresolved scales, including chemical reaction. The computational
cost of LES is much less than DNS, but significantly more than RANS.

Reynolds-averaged methods

Reynolds-averaged methods use a Reynolds decomposition to separate the velocity
and scalar fields into a mean (resolved) and fluctuating (unresolved) component

U = 〈U〉+u′ , (2.7)

φ = 〈φ〉+φ
′ . (2.8)

Reynolds-averaged Navier-Stokes (RANS) equations can be derived from equa-
tions (2.3) and (2.4) for constant-property Newtonian fluids (see Pope, 2000, ch. 4)

∂ 〈U j〉
∂ t

+ 〈Ui〉
∂ 〈U j〉

∂xi
+

∂
〈
u′iu
′
j

〉
∂xi

= ν∇
2 〈U j〉−

1
ρ

∂ 〈p〉
∂x j

, (2.9)

∂ 〈φα〉
∂ t

+ 〈Ui〉
∂ 〈φα〉

∂xi
+

∂ 〈u′iφ ′α〉
∂xi

= Γα∇
2 〈φα〉+ 〈Sα〉 , (2.10)

where ν is the kinematic viscosity, Γα is the diffusivity of scalar α and the pressure
field p includes gravitational body forces. The diffusive mass fluxes are assumed
to obey Fick’s law. Unity Lewis numbers are assumed for all species.

RANS methods solve equations (2.9) and (2.10) for the mean velocity and scalar
fields. The fluctuating fields are unresolved and several terms must be closed. The
Reynolds stress

〈
u′iu
′
j

〉
describes momentum transfer by the velocity fluctuations.
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The scalar flux 〈u′iφ ′α〉 describes scalar transport due to the velocity fluctuations.1

The most common models provide direct closures for the Reynolds stress and
scalar flux terms using the gradient-diffusion and turbulent-viscosity hypotheses

〈u′iφ〉=−ΓT
∂ 〈φ〉
∂xi

, (2.11)

〈
u′iu
′
j

〉
= 2

3 kδi j−νT

(
∂ 〈Ui〉
∂x j

+
∂ 〈U j〉

∂xi

)
, (2.12)

where k is the turbulent kinetic energy, νT is the turbulent viscosity and ΓT is the
turbulent diffusivity. The most common example is the k-ε model. This solves
additional transport equations for the turbulent kinetic energy k and the turbulent
dissipation rate ε , and models νT and ΓT as a function of k and ε .

RANS methods are computationally efficient and for this reason are the workhorse
of most commercial CFD codes. At high Reynolds numbers, the efficiency of
RANS simulations is often further increased by using wall functions to model
rather than resolve the flow next to solid boundaries. The RANS velocity equa-
tion (2.9), the k-ε model and standard wall functions are the basis of the flow
simulations in this thesis. Pope (2000) discusses the benefits and limitations of
the k-ε model and alternative approaches in more detail.

Favre-averaged methods

Density fluctuations occur in many turbulent reactions, for example combustion.
It is convenient to modify the RANS method to avoid fluctuating density terms by
decomposing the fields in terms of fluctuations about a density-weighted mean

U = Ũ +u′′ , where 〈ρ〉Ũ = 〈ρU〉 , (2.13)

φ = φ̃ +φ
′′ , where 〈ρ〉 φ̃ = 〈ρφ〉 . (2.14)

Density-weighted (known as Favre-averaged) transport equations can be derived
from equations (2.3) and (2.4). The equations share the form of their RANS coun-
terparts and can be closed using the same turbulence models (see Jones, 1994).

1 Note that some authors write the scalar flux as 〈u′iφα〉= 〈u′iφ ′α〉+�
�>

0
〈u′i〉〈φα〉= 〈u′iφ ′α〉.
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2.4 Turbulent reacting flow models

The principal difficulty in the application of turbulent flow models to reacting
flows is that the chemical source term is unclosed for non-linear reactions if the
scalar fields are not fully resolved. This is manifested as the mean reaction rate
closure problem in RANS and Favre-averaged methods〈

Sα(φ)
〉
6= Sα

(
〈φ〉
)

, (2.15)

and an analogous problem exists for LES. The problem can often be addressed
using the same turbulent reaction models for all three methods.

Comprehensive reviews of turbulent reaction models are given in the books by
Libby and Williams (1980, 1994), Peters (2000), Fox (2003), Cant and Mas-
torakos (2008) and the articles by Klimenko and Bilger (1999), Veynante and
Vervisch (2002) and Haworth (2010). In general, knowledge of the joint compo-
sition probability density function (PDF) fφ is required to close the source term

〈
Sα(φ)

〉
=
∫ +∞

−∞

Sα(ψ) fφ(ψ) dψ , (2.16)

where the integration is over the full composition vector space. It has been shown
that “all commonly employed models for turbulent reacting flows can be formu-
lated in terms of the joint PDF of the chemical species and enthalpy” (Fox, 2003).
The following section (2.4.1) summarises the basis of salient reaction rate clo-
sures. PDF-based methods are discussed in more detail in section 2.4.2.

2.4.1 Mean reaction rate closures

Moment methods

The chemical source term can be closed by judicious assumptions in a few cases.
In the slow chemistry limit, mixing is assumed to finish before reaction starts,
such that the scalars react at their mean concentrations. This is equivalent to the
ideal reactor models used in chemical reaction engineering (cf. Levenspiel, 1999).
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In the fast chemistry limit, the rate of premixed reactions is often assumed to be
equal to the rate of mixing with hot products. This is the basis of the eddy break
up model (Spalding, 1971). A number of related models assume a rate equal to
the minimum of the eddy dissipation and chemical (based on mean concentration)
rates, for example the eddy dissipation model (Magnussen and Hjertager, 1977).

Equilibrium chemistry

In the equilibrium chemistry limit, non-premixed reactions can be parameterised
by a mixture fraction (see Fox, 2003). The mixture fraction is a conserved scalar
and the problem is reduced to modelling the scalar mixing and variance of the
mixture fraction. The equilibrium limit is known to be inaccurate for finite-rate

chemistry, where the chemical and mixing time scales are of the same order.

Conditional moment closures

Conditional moment closures solve equations for the moments of non-premixed
scalars conditioned on a mixture fraction (see Klimenko and Bilger, 1999). The
chemical source term is calculated using the conditional moments, and often just
the conditional means. The approach is motivated by experimental and DNS data
that show little fluctuation about the conditional mean, even for finite-rate chem-
istry. However, inhomogeneous flows are problematic due to significant fluctua-
tions arising from back-mixing, ignition and extinction effects (Fox, 2003).

Flamelet methods

Flamelet methods model non-premixed reactions as occurring in thin sheets (see
Peters, 2000). The problem is reformulated in terms of a mixture fraction and
a one-dimensional reaction-diffusion equation describing the direction normal to
the flame surface. The reaction equation is independent of spatial location and
can be solved separately from the flow. Flamelet methods can describe extinction
and are typically valid for fast combustion-like reactions. They work less well for
slower reactions or cases with back-mixing (Fox, 2003).
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2.4.2 Probability density function methods

PDF methods are applicable to all flows and chemistry. The most common meth-
ods transport either a joint composition or joint velocity-composition PDF. In this
thesis, it will be sufficient to consider a one-point one-time Favre-averaged joint
composition PDF f̃φ subject to the transport equation (Pope, 1985)

∂

∂ t

(
〈ρ〉 f̃φ

)
+

∂

∂xi

(
Ũi 〈ρ〉 f̃φ

)
+

∂

∂ψα

(
Sα(ψ)〈ρ〉 f̃φ

)
=

∂

∂ψα

(〈
1
ρ

∂Jα
i

∂xi

∣∣∣∣ψ〉〈ρ〉 f̃φ

)
− ∂

∂xi

(
〈u′′i |ψ〉〈ρ〉 f̃φ

)
,

(2.17)

where the scalars φ obey equation (2.4). The critical advantage is that all terms
on the left hand side of equation (2.17) are closed, including the chemical source

term. The terms on the right hand side describe the diffusive and turbulent con-
vective fluxes. They are unclosed and must be modelled. The turbulent convective
flux is often closed using a gradient diffusion model (cf. equation 2.11)

〈u′′i |ψ〉〈ρ〉 f̃φ =−ΓT
∂ f̃φ

∂xi
. (2.18)

Assuming equal molecular diffusivities, unity Lewis number for all species and
that the diffusive mass flux obeys Fick’s law, the diffusive flux can be written〈

1
ρ

∂Jα
i

∂xi

∣∣∣∣ψ〉=−
〈

Γ∇
2
φα

∣∣ψ〉 , (2.19)

and needs to be closed using a micromixing model. The simplest mixing model is
the interaction by exchange with the mean (IEM) model (Villermaux and Devil-
lon, 1972) (also introduced by Dopazo and O’Brien (1974) as the LMSE model)

〈
Γ∇

2
φα

∣∣ψ〉= Cφ

2τφ

(
〈φα〉−ψα

)
, (2.20)

where Cφ is an empirical constant and τφ is a scalar mixing time. Other mixing
models exist (for example Curl, 1963; Pope, 1982) and are reviewed by Dopazo
(1994), although none are totally satisfactory. Further details are beyond the scope
of this work, but Pope (2000, ch. 12) and Haworth (2010) are good places to start.
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2.4 Turbulent reacting flow models

PDF methods fall into two categories, presumed and transported PDF methods.
Presumed methods assume a form for the PDF a priori and transport the parame-
ters of this assumption, for example a mean and variance. An assumed beta PDF
works well for the binary mixing of conserved scalars such as a mixture fraction,
where a unimodal PDF is expected to evolve from a u-shaped distribution. How-
ever, complex systems are problematic and presumed PDF methods have not been
successful for non-premixed turbulent combustion (Cant and Mastorakos, 2008).

Transported PDF methods solve a transport equation for the joint PDF of a set of
variables that describe the hydrodynamic and/or thermochemical state of a flow.
However, the numerical solution of such systems is formidable using the conven-
tional finite-difference methods (Cant and Mastorakos, 2008) found in commer-
cial CFD codes. The standard approach is to use the Monte Carlo methods intro-
duced by Pope (1985). The transport equation is solved by discretising the PDF
using an ensemble of stochastic particles and transporting the particles in physi-
cal and composition space. We denote these full or Lagrangian transported PDF
methods. They scale efficiently to multiple scalars and, unlike presumed meth-
ods, can approximate any PDF. In practice, they are computationally expensive
because large numbers of particles are required to reduce statistical error.

The development of transported PDF methods since Pope’s 1985 paper has been
reviewed by Pope (1991), Kollmann (1990), Dopazo (1994) and Haworth (2010).
Two recent and related methods amenable to existing CFD codes are the stochastic
fields (SF) method and the direct quadrature method of moments using the inter-
action by exchange with the mean micromixing model (DQMoM-IEM). Despite
the attention, no studies have directly compared the methods.

The stochastic fields method

The SF method uses a set of Eulerian fields to discretise a joint composition
PDF transport equation. The fields are defined over the entire spatial domain
and evolve according to a stochastic partial differential equation (SPDE) such that
they remain statistically equivalent to the joint composition PDF. The method
was investigated in detail by Valiño (1998) and Sabel’nikov and Soulard (2005a).
Valiño derives an Itô SPDE for fields defined as twice differentiable in space,
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whereas Sabel’nikov and Soulard derive a Stratonovich SPDE without this stip-
ulation and show equivalence to Valiño’s result. The method extends to multiple
scalars (Hauke and Valiño, 2004) and is also known as the Field Monte Carlo and
Eulerian Monte Carlo method.

The SF method is a Monte Carlo method and a significant number of fields may
be required to control statistical error. The implementation and application of the
Itô and Stratonovich SPDEs are studied by Garmory (2007). The stochastic terms
arise from the turbulent convective flux in the PDF transport equation. They are
proportional to the spatial scalar gradient and Valiño (1998) argues that the model
preserves boundedness because the scalar derivatives tend to zero at extremal val-
ues. However, Garmory (2007) shows that the numerical implementation must
still enforce boundedness because of the spatial discretisation of the scalars. To
date, all implementations have used the IEM model.

A number of investigations have applied the SF method to turbulent reacting
flow problems. Sabel’nikov and Soulard (2005b, 2006) provide more informa-
tion about the derivation and numerical implementation of the method and test its
application to a premixed methane flame over a backward facing step. Soulard
and Sabel’nikov (2006) extend the method to a joint velocity-mass fraction PDF.
Garmory et al. (2006, 2008, 2009) investigate the dispersion of reactive pollutants
in RANS simulations of a test plume, aircraft exhaust and street canyon.

Jones and co-workers present a systematic study of extinction and re-ignition in
LES simulations of increasingly complex flames. The work starts with a piloted
methane flame described by a global mechanism (Mustata et al., 2006), before
considering the auto-ignition of hydrogen (Jones et al., 2007; Jones and Navarro-
Martinez, 2007) and n-heptane (Jones and Navarro-Martinez, 2009). Jones and
Prasad (2010, 2011) consider the local extinction and spark ignition of methane
flames. Most recently, Jones and Tyliszczak (2010) use a two-phase model to
study ignition in an aircraft engine. The studies show that the SF method is capa-
ble of simulating local extinction and re-ignition in LES. The n-heptane study is
one of the first attempts to do this for realistic fuels.

All the above studies use an Itô formulation, apart from Jones and Navarro-
Martinez (2009) and the work by Sabel’nikov and Soulard.
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2.4 Turbulent reacting flow models

The direct quadrature method of moments using the
interaction by exchange with the mean micromixing model

DQMoM-IEM uses a weighted field approximation to discretise a joint compo-
sition PDF transport equation that includes the IEM mixing model. A projection
method is used to derive transport equations that force the statistics of the fields
to obey specified moments of the discretised PDF transport equation. The method
was suggested by Fox (2003) and is analogous to the DQMoM population balance
method (see page 14). The IEM suffix denotes a modified projection used to en-
force boundedness in inhomogeneous scalar mixing problems and we talk about
fields because the approximation is continuous in physical space.

DQMoM-IEM is deterministic and offers a potential advantage over Monte Carlo
methods in that, theoretically at least, the number of fields can be chosen based on
the requirements of the problem, suggesting a computationally efficient method.
The model equations are derived in an appendix to Fox (2003) as a specific case
of a multi-environment presumed PDF method (see Fox, 2003, section 5.10). The
source terms are calculated by inverting a linear system. Fox notes that accurate
numerical inversion is difficult because the linear system is often poorly condi-
tioned and is singular if any fields are degenerate at a given physical location. A
local perturbation in composition space is suggested to overcome this. It is also
noted (Fox, 2003, pp. 232–233) that multi-environment methods with few en-
vironments (and implicitly DQMoM-IEM with few fields) may struggle in cases
that are sensitive to the shape of the PDF, for example non-isothermal reactions.

Several investigations have applied DQMoM-IEM to turbulent reacting flows. The
principal reference is Wang and Fox (2004), who show good agreement between
DQMoM-IEM, multi-environment and full transported PDF simulations of the
reactive precipitation of barium sulphate. They note that DQMoM-IEM may lose
boundedness due to terms arising from the turbulent convective flux, and they
neglect these terms where variables are close to theoretical bounds. They describe
the perturbation used to help invert the linear system and suggest an alternative
approach using average information from neighbouring grid points. Prior to this,
elements of DQMoM-IEM can be found in studies of finite-mode PDF multi-
environment methods, for example Tsai et al. (2002) and Fissore et al. (2002).
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Later studies apply DQMoM-IEM to investigate the scale-up (Lui and Fox, 2006;
Gavi et al., 2007a) and precipitation of barium sulphate (Gavi et al., 2007b) in
confined impinging jet reactors. In each case, the problem is solved for a mix-
ture fraction and two progress variables. Tang et al. (2007) benchmark the use
of RANS simulations using DQMoM-IEM (labelled MEPDF) with two fields to
model turbulent bluff-body methane flames. They solve the system for the species
mass fractions and enthalpy and address the numerical difficulties by limiting the
maximum value of the source terms. They show reasonable agreement with ex-
perimental data. Denison et al. (2010) show subsequent applications to industrial
furnaces and gasifiers. Other studies use DQMoM-IEM to model fluctuations
about the conditional mean in a conditional moment closure (Fox and Raman,
2004; Smith and Fox, 2007; Ali et al., 2011) and apply DQMoM-IEM in LES
(Raman et al., 2006; Marchisio, 2009; Zhao et al., 2011). Raman et al. (2006) ad-
dress the conditioning by setting the responsible terms to zero where any fields are
separated by less than a threshold value. Zhao et al. (2011) re-implement some of
the methane flame simulations of Tang et al. (2007) and show that DQMoM-IEM
is capable of simulating local extinction in LES.

Further insight into the numerical behaviour of DQMoM-IEM can be inferred
from some DQMoM population balance studies. Fan et al. (2004) use a condition
number to determine when to perturb the scalars. In singular cases, they either set
the source terms to zero or take an average value from neighbouring grid points.
Zucca et al. (2007) report better accuracy at the expense of increased numerical
difficulties as the order of the quadrature approximation (equivalent to the number
of fields) is increased. The choice of moments used to specify the projection
affects accuracy and numerical stability, with low-order moments favouring better
conditioning. Upadhyay and Ezekoye (2006) report similar findings regarding the
moments. They suggest revising the choice of moments mid-calculation.

Whilst it has been shown that DQMoM-IEM offers a crude, but possibly efficient
transported PDF method, several issues persist. The inversion of the linear system
to evaluate the source terms remains numerically challenging. There is no study
of the form of the source terms, no systematic analysis of the numerical issues
and only high-level discussion of how to couple the method to a CFD code. At
this point, it is not clear how to best address the numerical issues, nor how such
choices would impact the performance and implementation of the method.
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2.5 Nanoparticle formation in turbulent reacting flows

2.4.3 Tabulation methods

Much of the cost of turbulent reacting flow models arises from the chemistry.
Methods that parameterise the chemistry in terms of a few variables, for example
flamelet and equilibrium methods, offer the advantage that the chemistry can be
solved off-line and read into the model from lookup tables. This makes such
models very efficient, but is not practical in full transported PDF methods where
the chemistry is parameterised by all the composition variables. However, PDF
methods may still benefit from tabulating the chemistry during the calculation.
Pope (1997) introduced in-situ adaptive tabulation (ISAT) to do just this.

The premise of ISAT is that the chemistry is an initial value problem where the
same problem is solved with similar initial conditions many times during a calcu-
lation. ISAT initially solves and tabulates solutions to the chemistry when queried
for new initial conditions, but otherwise interpolates solutions from the tabulation.
The method prescribes an algorithm to control the interpolation error by deciding
when to grow the table versus when to look up the solution. Since its introduction,
ISAT has attracted a lot of interest and has been further refined by Pope and co-
workers (Singer et al., 2006a,b; Liu and Pope, 2005; Lu and Pope, 2009). There is
precedent for its application to DQMoM-IEM, where Tang et al. (2007) estimate
that is gave a 150–250× speed-up for simulations using a 19 species mechanism.

2.5 Nanoparticle formation
in turbulent reacting flows

Nanoparticle formation in turbulent reacting flows is a key field of research. Flame
aerosol technology is used for the large-scale synthesis of many nanoparticle prod-
ucts, of which titania formed via the chloride process is the second largest product
by value and volume (after carbon black) (Wegner and Pratsinis, 2003).

Pratsinis (1998) presents an overview of the history of flame aerosol technology.
Rosner (2005) and Roth (2007) explain the rationale for combustion synthesis and
review recent developments. Rosner (2009) reviews the contributions of various
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submodels to an overall description of spray combustors and highlights the advent
of interacting population balance methods, where the model considers both a
reactive flow and its interaction with a discrete phase.

2.5.1 Existing modelling approaches

A number of studies have modelled nanoparticle formation in reacting flows in the

manner of Rosner’s (2009) interacting population balances. The studies typically

assume small Stokes numbers such that the particles experience the same velocity

and turbulent diffusivity as the fluid (Fox, 2006b; Gavi et al., 2007b), and the

model can neglect the momentum equation for the solid phase. Current methods

for modelling population balances within reactive flows are discussed in detail and

formulated in a PDF transport equation framework by Rigopoulos (2007, 2010).

Soot formation in flames has been widely studied. The availability of experimental

data mean that soot cases are often used for method development. A few studies

use a two-stage methodology to model soot formation in premixed 1D laminar

flames (Zhao et al., 2003; Singh et al., 2005; Morgan et al., 2007). The first stage

solves the chemistry and a coupled MoMIC population balance. The second stage

post processes the gas-phase data with a multi-variate population balance. The

approach combines an efficient description of the coupling with a detailed particle

model. Studies in turbulent flows have taken different approaches. Lindstedt and

Louloudi (2005) use MoMIC and reduced soot chemistry in a full transported PDF

method. Other studies have used commercial CFD codes to solve Favre-averaged

equations. Zucca et al. (2006, 2007) use a presumed PDF and reduced soot chem-

istry during their development of the DQMoM population balance method. More

recently, Chittipotula et al. (2011) use an equilibrium chemistry assumption and

DQMoM population balance in an optimisation study of a soot model.

Several studies have used RANS CFD models to consider other systems. Gavi

et al. (2007b) simulate barium sulphate precipitation in a confined impinging jet

reactor using DQMoM-IEM for the chemistry and a QMoM population balance.

Garmory and Mastorakos (2008) compare experimental data for the nucleation
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2.5 Nanoparticle formation in turbulent reacting flows

and growth of dibutyl phthalate in a hot turbulent jet to SF simulations using an

assumed log-normal size distribution. They show that the log-normal distribution

is insufficient and that turbulent mixing affects the spatial particle size distribution

across the jet. Veroli and Rigopoulos (2010) present a technique to couple CFD

simulations to a joint composition-population PDF using a sectional population

balance (see also Rigopoulos, 2007). The flow field is solved using CFD. The

joint composition-population PDF is approximated using an ensemble of stochas-

tic particles and solved using a Lagrangian Monte Carlo method. The study shows

excellent agreement with experimental data for barium sulphate precipitation in a

turbulent pipe. The decoupling of the flow field is acceptable because the precipi-

tation has negligible effect on the overall mass and energy balance.

Some work has considered titania. Johannessen et al. (2001) model a turbulent

diffusion flame doped with titanium tetrachloride. The flame is simulated using a

commercial CFD code and the eddy dissipation model to solve Favre-averaged

transport equations. The titania is modelled in post processing by integrating

gas-phase data along characteristic trajectories in the flame. The integration as-

sumes instantaneous titania formation above a threshold temperature and solves a

monodisperse population balance. The decoupling of the CFD calculation is ac-

ceptable because the flow is dominated by the flame. Moody and Collins (2003)

use MoMIC in a DNS study of the effect of mixing on titania particle size. The

study considers one-step chemistry, inception and coagulation, and shows that

mixing reduces polydispersity and mean particle size. Wang and Garrick (2005)

apply the same titania chemistry with a sectional population balance and instan-

taneous inception model to a DNS study of titania formation in methane flames.

The study shows mixing limited particle formation and growth, with the mean

particle size and width of the particle size distribution increasing as the initial

concentration of the reactants increases. Mehta et al. (2010) study titania incep-

tion in an LES model of a turbulent diffusion flame. The combustion reactions are

closed using a flamelet model. The titania is modelled using one-step chemistry

and QMoM to describe inception and coagulation. No closure is described for the

titania chemistry. All of these studies neglect surface growth.
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2.5.2 Points of compromise

The above studies use a range of methods to model nanoparticle formation in
turbulent reacting flows. Each method entails some compromise, whether this
be simplification of the flow, chemistry, population balance or the coupling. The
greater the acceptable computational cost, the less compromise is required.

The studies make various compromises in the choice of chemistry and flow meth-
ods based on both what is possible and what is appropriate for each study. In order
to be generally applicable, a method should not make any assumptions about the
chemistry. The choice of whether it is appropriate to simplify the chemistry should
be left to the user. For example, some or all of the chemistry could be solved us-
ing a flamelet method or a reduced mechanism. Likewise, the method should be
applicable to a range of turbulent flow models and the choice left to the user.

The coupling of the population balance to the flow largely depends on the mass of
material entering and leaving the population (where the mass of the population is
proportional to the first moment of the number distribution). MoMIC is reason-
ably accurate for the first moment (Grosschmidt et al., 2002; Balthasar and Kraft,
2003) and is a popular choice. A more detailed model can be applied in post
processing, for example a multi-variate Monte Carlo method. DQMoM enables
multi-variate distributions to be solved directly in the CFD, but is numerically
challenging and cannot match the detail of Monte Carlo methods. Likewise, the
method of Veroli and Rigopoulos (2010) cannot match Monte Carlo methods and
does not yet account for the coupling from the particle processes back to the flow.

2.6 Terminology

There is a lack of consistency regarding the terminology applied to DQMoM-IEM
in the turbulent reacting flow literature. The name QMoM originates from the
use of a quadrature approximation to close integral terms in a population bal-
ance moment equation (McGraw, 1997). The direct prefix denotes the case where
the method transports the parameters of the approximation, rather than the mo-
ments of the population (Marchisio and Fox, 2005). It uses a projection method
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to derive model equations that force the statistics of the quadrature approximation
to obey specified moments of the PBE. In the case of turbulent reacting flows,
the method is applied to a PDF transport equation that includes the IEM mixing
model. The IEM suffix was added when the projection was simplified to improve
the numerical behaviour of the method (Fox, 2003) and we talk about a weighted
field approximation because the approximation is continuous in physical space.

The quadrature terminology is not appropriate for turbulent reacting flows be-
cause the PDF transport equation does not contain integral terms. However,
the DQMoM-IEM label is often still used. An alternative name, the multi-
environment probability density function (MEPDF) method is sometimes applied
(Tang et al., 2007; Denison et al., 2010). This reflects a physical interpretation
of the method as a multi-environment reaction model (Fox, 2003; Wang and Fox,
2004), but provides no description of the numerical method. For example, the
stochastic fields (SF) method invokes an analogous field approximation (see chap-
ter 4) without the projection and could equally be described as an MEPDF method.

We want to emphasise the distinction between the model and the numerical
method. We consider the PDF transport equation to be the model and the field
approximation and projection to be the numerical method. For this reason, we
refer to a projected fields (PF) method. This highlights the projection that dis-
tinguishes it from a wider class of mathematically related field methods and is
consistent with the existing SF terminology.

This thesis uses both the DQMoM-IEM and PF terminologies, reflecting a change
in understanding during the course of the work. The terminology in each section
is chosen to maintain consistency with the existing literature, including publi-
cations from this work. For example, chapters 3 and 4 refer to DQMoM-IEM,
whereas chapter 5 refers to the PF method. The conclusions use both termi-
nologies, drawing the choice of words from the chapter under discussion. Like-
wise, much of chapter 3 was developed by considering the numerical behaviour
of DQMoM-IEM at a fixed point in space and the published version of the work
refers to weighted particles rather than fields (Akroyd et al., 2010). In hindsight,
this was confusing and the terminology is modified to refer to fields throughout
this thesis. Some exceptions occur in the nomenclature, where we retain the orig-
inal notation and note the anomaly in the text.
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2.7 Scope of this thesis

The scope of this thesis is to investigate the application of DQMoM-IEM and
SF as mean reaction rate closures for simulations of nanoparticle formation in
turbulent reacting flow. The overall method is required to be computationally
efficient and capable of providing sufficient accuracy for engineering studies using
existing CFD software. The emphasis at this stage is on proof of concept.

This thesis makes the following assumptions:

• Off-the-shelf CFD software is the method of choice for studies of turbulent
flow in industry. This thesis is restricted to Eulerian methods implemented
within the Star-CD CFD code and all simulations use Reynolds/Favre-
averaged methods with upwind differencing for the scalars. The methods
developed in this thesis could be applied to LES with little extra difficulty.

• The flow, chemistry and population balance are strongly coupled. The
method must resolve this coupling and should not make any assumptions
about the chemistry. Simplified chemistry may be acceptable in some cases.

• The coupling to the population balance primarily depends on the mass of
material entering and leaving the population and can be adequately resolved
using a simplified particle model. Further information about the population
can be recovered by applying a detailed particle model in post processing.

• The nanoparticles move with the same velocity and turbulent diffusivity as
the fluid, and the momentum equation for the solid phase can be neglected.
The particle dynamics are governed by the Smoluchowski equation (2.1).
An assessment of the validity of this assumption is not attempted.

• The computational time is likely to be limited by the chemistry and may be
improved in the future by using tabulation methods such as ISAT.
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Chapter 3

The direct quadrature
method of moments using
the IEM micromixing model

This chapter investigates the numerical implementation of a mean

reaction rate closure based on DQMoM-IEM. The method was

introduced for reacting flows by Fox (2003). We present a

systematic study that addresses several important aspects of the

method. In particular, we introduce a new analytic expression for

the DQMoM-IEM source terms. We present a rigorous numerical

investigation and discuss problems of boundedness and singularity

in detail. We use a filter function to overcome these issues in

the general case and present analytic integrals for special cases

of specific terms. We extend the methodology to take advantage

of these developments and show details of the implementation in

the Star-CD CFD code. We present an extensive set of numerical

experiments and validation. The method is proven for a problem

known from the literature. Experimental and full transported PDF

data compare very well. The method is discussed critically and

areas for further research are suggested.
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3 THE DIRECT QUADRATURE METHOD OF MOMENTS

3.1 Background

The direct quadrature method of moments using the interaction by exchange with
the mean micromixing model (DQMoM-IEM) was suggested as a mean reaction
rate closure by Fox (2003). The method uses a weighted field approximation to
discretise a joint composition PDF transport equation. A projection method is
used to derive transport equations that force the statistics of the fields to obey
specified moments of the discretised PDF transport equation.

DQMoM-IEM is potentially attractive compared to Monte Carlo methods because
it is deterministic. This suggests a computationally efficient method where the
number of fields can be chosen based on the priority given to speed versus accu-
racy for any given simulation, with more fields refining the approximation of the
underlying PDF at the expense of a longer computation. In practice, the literature
considered in chapter 2 reports that the method is numerically challenging.

The purpose of this chapter is to investigate the numerical behaviour of
DQMoM-IEM as a turbulent reaction closure. The rest of this section introduces
the model equations and the main assumptions in the method. Section 3.2 presents
a new analytic expression for the DQMoM-IEM source terms. This prescribes the
moment set that defines the projection and avoids the previous numerical diffi-
culties associated with evaluating the source terms. Issues regarding bounded-
ness and singularities are discussed and resolved using a filter function. Two new
DQMoM-IEM solvers and the coupling to the Star-CD CFD code are described in
detail. Section 3.3 validates the new solvers against the method of moments and
a turbulent reaction test case known from the literature. Constraints imposed on
the choice of boundary conditions are identified and discussed. Areas for further
investigation are suggested to make the method more practical.

3.1.1 DQMoM-IEM equations

The derivation of DQMoM-IEM is well documented by Fox (2003, appendix B).
The key features of the method are summarised below. Appendix A presents a
formal derivation and discusses the origin of the equations presented here.
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A closed joint composition PDF transport equation
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is discretised using a weighted field approximation
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The turbulent convective flux in equation (3.1) is closed using a gradient diffusion
model. The diffusive flux is closed using the IEM mixing model and implicitly
assumes equal molecular diffusivities for all species. (See the background on PDF
methods in section 2.4.2 and section A.1 in appendix A).

The field approximation introduces N weights w(n)
(x, t) and NK composition vari-

ables ψ
(n)
α (x, t), where α = 1, . . . ,K. Transport equations that share the form of

standard scalar transport equations are derived
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Note that the x-t dependencies of the terms in equations (3.5–3.7) onwards are
suppressed for clarity of presentation. DQMoM-IEM constrains the source terms

a(n) = 0, (3.8)

and the weights evolve as conserved scalars subject to transport as per the left
hand side of equation (3.5). A set of M=NK unmixed empirical moments
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The use of equations (3.8–3.12) to evaluate the source terms of equations (3.5) and
(3.6) imposes the projection. It constrains the statistics of the fields to obey the
discretised PDF transport equation for each of the empirical moments specified
by equation (3.9). The term ‘empirical’ denotes that the moments are estimators
calculated from the field approximation as opposed to moments of the true PDF.

The questions of how to specify suitable boundary conditions and solve equation
(3.10) for b(n)

α remain open and are the focus of the rest of this chapter.
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3.2 Numerical details

3.2 Numerical details

This section describes the method used to couple DQMoM-IEM to CFD. It
presents a new analytic expression for the source terms b(n)

α and considers their
numerical behaviour in detail. The problems of boundedness and singularity are
discussed and two DQMoM-IEM solvers are suggested to resolve these issues.

3.2.1 DQMoM-IEM coupling to Star-CD

DQMoM-IEM is coupled to the Star-CD CFD code (CD-adapco, 2008) as a tran-
sient problem in order to solve equations (3.5) and (3.6). Equation (3.6) is imple-
mented using a second-order operator splitting technique, commonly known as a
Strang (1968) splitting
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Equations (3.5) and (3.14) are solved using Star-CD with upwind differencing
to transport w(n) and s(n)α as passive scalars with time step ∆t. Equations (3.13)
and (3.15) are solved using user-defined subroutines called at the beginning and
end of each Star-CD iteration. At intermediate iterations, they are combined and
solved as a single step with time step ∆t. This improves the efficiency of the
implementation whilst preserving the convergence of the splitting, and is a well-
known advantage of this technique.
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The gradients of ψ
(n)
α are required to evaluate the c(n)αα terms that appear in equation

(3.10) when calculating b(n)
α during the solution of equations (3.13) and (3.15).

The gradients of the transported scalars w(n) and s(n)α are evaluated using Star-CD
and the gradients of ψ

(n)
α calculated

∂ψ
(n)
α

∂xi
=


1

w(n)

(
∂ s(n)α

∂xi
− s(n)α

w(n)

∂w(n)

∂xi

)
if w(n) 6= 0

0 otherwise .

(3.16)

In the case w(n)
=0, the gradient is arbitrarily set to zero. It is convenient to cal-

culate the gradients over the whole domain at the start of each step. The values of
the gradient terms c(n)αα and likewise the weights w(n) and micromixing parameters
Cφ and τφ are treated as constants for the remainder of the step.

3.2.2 Analytic expression for the source terms

The following sections consider the numerical behaviour of DQMoM-IEM. The
objective is to identify and resolve the problems that occur when integrating the set
of NK ordinary differential equations (ODEs) as per equations (3.13) and (3.15)

∂ s(n)α

∂ t
= b(n)

α
for n = 1, . . . ,N and α = 1, . . . ,K . (3.17)

The source terms b(n)
α are described by equation (3.10). If the unmixed empirical

moments are specified

mλα =

 n where n = λ − (α−1)N if n≥ 1 and n≤ N

0 otherwise

for λ = 1, . . . ,M and α = 1, . . . ,K ,

(3.18)

equation (3.10) represents a set of N equations for each scalar α = 1, . . . ,K and
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3.2 Numerical details

can be solved analytically such that equation (3.17) can be written

∂ s(n)α

∂ t
= b(n)

rxα
+b(n)

mxα
+b(n)

dxα
, (3.19)

where the source terms are given

b(n)
rxα

= w(n)Sα

(
ψ

(n)
)

, (3.20)

b(n)
mxα

= w(n) Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
, (3.21)

b(n)
dxα

= w(n)c(n)
αα

N

∑
i=1
i6=n

1

ψ
(n)
α −ψ

(i)
α

+
N

∏
i=1
i 6=n

1

ψ
(n)
α −ψ

(i)
α

N

∑
j=1
j 6=n

w( j)c( j)
αα

N

∏
k=1

k 6= j,n

(
ψ

( j)
α
−ψ

(k)
α

)
.

(3.22)

Equations (3.20) and (3.21) describe chemical reaction and micromixing. The b(n)
rxα

and b(n)
mxα

terms are referred to as the reaction and micromixing terms. The reaction
term will likely require an implicit ODE solver. The numerical treatment of such
systems has been widely studied (Hairer and Wanner, 1996). The presence of
these terms does not pose a new challenge.

Equation (3.22) is a new result and was derived for the first time as part of the work
in this thesis. It describes the effect of turbulent diffusion in the presence of spatial
gradients of scalar α . The b(n)

dxα
term is denoted the diffusion term. The equation is

constrained to the moment set in equation (3.18), but is general in the sense that
it applies to any number of fields and scalars. The diffusion term conserves the
scalar means. For example, in the N =2 case, equation (3.22) simplifies to give
two equal and opposite terms

b(1)
dxα

=
w(1)c(1)αα +w(2)c(2)αα

ψ
(1)
α −ψ

(2)
α

, b(2)
dxα

=
w(1)c(1)αα +w(2)c(2)αα

ψ
(2)
α −ψ

(1)
α

. (3.23)
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3 THE DIRECT QUADRATURE METHOD OF MOMENTS

The functional form of the diffusion term presents several challenges to the
DQMoM-IEM implementation. However, the availability of equation (3.22)
presents two significant advantages. Firstly, it allows the diffusion source terms
b(n)

dxα
to be evaluated without the need to solve equation (3.10) numerically. Sec-

ondly, it gives several valuable insights into how the diffusion term affects the
numerical behaviour of the system.

Figure 3.1(a) shows the form of the micromixing and diffusion terms given by
equations (3.21) and (3.22) for an N = 2 system. The diffusion term produces
variance by causing the scalars ψ

(1)
α and ψ

(2)
α to diverge. It is discontinuous and

singular where ψ
(1)
α =ψ

(2)
α . The micromixing term is responsible for decay of the

variance and causes the scalars to converge. Figure 3.1(b) shows the net source
term and illustrates a problem. If ψ

(n)
α is defined on a bounded domain [0, 1], a

scalar 0.8<ψ
(2)
α 61 has a net positive source term and will move out of bounds.

Figure 3.2 shows two possible forms of the diffusion term in an N=3 system. The
diffusion term is discontinuous and singular where any scalar ψ

(n)
α =ψ

(i)
α for i 6= n.

The difference between figure 3.2(a) and 3.2(b) is due to the relative magnitude
of the c(n)αα terms. Figure 3.2(a) shows two unstable discontinuities. Figure 3.2(b)
shows a stable and an unstable discontinuity. ψ

(1)
α and ψ

(3)
α will converge where

ψ
(3)
α ≈0.2, ψ

(2)
α and ψ

(3)
α will diverge where ψ

(3)
α ≈0.6. Both figures show potential

boundedness problems. For example, the positive source terms for ψ
(3)
α > 0.6

and the negative source term for ψ
(3)
α <0.2 in figure 3.2(a). The diffusion terms

for N >3 show more instances of the behaviour illustrated in figure 3.2, up to a
maximum of N−1 discontinuities.

The numerical integration of the diffusion term presents several challenges. At a
stable discontinuity, the scalars will converge and the discontinuity will persist.
The risk is that the solution may ‘overshoot’ and oscillate about the discontinuity.
At an unstable discontinuity, the scalars will diverge. The sign of the diffusion
term will determine the direction of divergence. However, the sign is undefined at
the discontinuity and cannot be arbitrarily assigned. The diffusion term may lead
to violations of boundedness. This is most likely in regions of high turbulence and
large scalar gradients. The following sections present two methodologies which
address both the issues of stability and boundedness.
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Figure 3.1: Functional form of the DQMoM-IEM micromixing and diffusion source terms
for N=2 fields. The source terms are shown as a function of the scalar ψ

(2)
α ,

where ψ
(1)
α =0.8 and w(n)

=1/2; c(1)αα =10−1 1/s, c(2)αα =10−4 1/s and Cφ =2,
τφ =1/2s.
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c(2)αα =10−1 1/s,
c(1)αα =c(3)αα =10−4 1/s.

Figure 3.2: Functional form of the DQMoM-IEM diffusion source term for N=3 fields.
The source term is shown as a function of the scalar ψ

(3)
α , where ψ

(1)
α =0.2,

ψ
(2)
α =0.6 and w(n)

=1/3.
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3 THE DIRECT QUADRATURE METHOD OF MOMENTS

3.2.3 General solver

A general DQMoM-IEM solver was developed to numerically integrate equa-
tion (3.19). The diffusion term is modified to address the issues highlighted in
figures 3.1 and 3.2 and the source terms are supplied by functional evaluation.
The modified forms of equations (3.19) and (3.22) are written

∂ s(n)α

∂ t
= b(n)

mxα
+b(n)

rxα
+ fb

(
ψ

(n)
α , b(n)

dxα

)
, (3.24)

and

b(n)
dxα

= w(n)c(n)
αα

N

∑
i=1
i 6=n

fp
(
ψ

(n)
α
−ψ

(i)
α

)

+
N

∏
i=1
i 6=n

fp
(
ψ

(n)
α
−ψ

(i)
α

) N

∑
j=1
j 6=n

w( j)c( j)
αα

N

∏
k=1

k 6= j,n

(
ψ

( j)
α
−ψ

(k)
α

)
,

(3.25)

where

fb(ψ, bdx) =



bdx f
(

ψub−ψ

εb

)
if bdx>0 and ψub−ψ>0

bdx f
(

ψ− ψlb

εb

)
if bdx<0 and ψ−ψlb >0

0 otherwise ,

(3.26)

and

fp(∆ψ) =


1

∆ψ
f
(

∆ψ

εp

)
if ∆ψ 6= 0

0 otherwise .

(3.27)
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A bounding function fb(ψ, bdx) is used to clip the diffusion term to enforce bound-
edness. The lower bound ψlb and upper bound ψub are defined for each ψ

(n)
α

ψ
(n)
α lb = max

(
φα glb, min

[{
ψ

(n)
α

}
nb

])
, (3.28)

ψ
(n)
α ub = min

(
φα gub, max

[{
ψ

(n)
α

}
nb

])
, (3.29)

where {·}nb denotes the set of neighbour cells and [φα glb, φα gub] is a global interval
imposed over the entire domain. In the case of mass fractions [Yglb, Ygub] =[0, 1].

A particle function fp(∆ψ) is used to control the discontinuities and singularities.2

Several approaches were considered. The most obvious is to impose a minimum
separation between the scalars ψ

(n)
α (cf. Raman et al., 2006). This avoids singu-

larities, but not discontinuities. It risks limiting the effect of the diffusion term
and would not necessarily prevent oscillation of the numerical solution about a
stable discontinuity. The same reasoning may be applied to approaches that limit
the maximum value of the diffusion term (cf. Tang et al., 2007) or set it to zero
near a discontinuity. A less arbitrary approach is to replace the discontinuity and
singularity with a smooth transition.
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Figure 3.3: Filtered diffusion source term for N=3 fields.

2 The ‘particle function’ terminology is retained from Akroyd et al. (2010).

43



3 THE DIRECT QUADRATURE METHOD OF MOMENTS

The particle function uses a symmetrical filter function f(∆ψ/εp) to remove the
discontinuities in the diffusion source term. The effect of the filter function is
illustrated in figure 3.3. An exaggerated value of εp is used for clarity. The dif-
fusion term is set to zero at and slightly to either side of each discontinuity. The
zero-valued region negates the requirement to assign an arbitrary sign to the dif-
fusion term. The width of the region can be used to prevent oscillation of the
numerical solution without changing the integration tolerances. The same filter is
used by the bounding function to ensure smooth clipping at the bounds. εp and εb

are small positive numbers and in this thesis εb=εp=10−7. Further details about
the filter function in figure 3.3(a) and a discussion of the effects of other filters
considered during this work are given in appendix B.1.

The filter function preserves as much of the diffusion term as possible. However,
a side-effect is that the diffusion terms only sum to zero for an N = 2 system with
a symmetric filter. This also occurs where a maximum value is imposed instead of
using a filter. A similar problem is presented where the diffusion term is clipped
to enforce boundedness. In general, the diffusion term cannot be modified for one
scalar on a given field without disturbing the scalar mean and mass balance over
the set of fields. The diffusion term fb(ψ, bdx) in equation (3.24) is normalised to
enforce mass balance and conservation of the scalar mean.

Equation (3.24) is integrated numerically using RADAU5 (Hairer and Wanner,
1996), an implicit 5th order Runge-Kutta ODE solver with low start-up cost. The
micromixing parameters Cφ and τφ , weights w(n) and scalar gradient terms c(n)αα are
treated as constant during the integration as per section 3.2.1. In the original inves-
tigation (Akroyd et al., 2010), equation (3.24) was solved as a single step. In this
thesis, equation (3.24) is solved using a further Strang splitting, using RADAU5
to integrate each step separately

Sb(n)
α

∆t

(
s(n)

α

)
≈
[

Sb(n)
mx+dxα

1
2 ∆t ◦ Sb(n)

rxα

∆t ◦ Sb(n)
mx+dxα

1
2 ∆t

](
s(n)

α

)
, (3.30)

where the combined micromixing and filtered diffusion term is defined

b(n)
mx+dxα

= b(n)
mxα

+ fb

(
ψ

(n)
α
, b(n)

dxα

)
, (3.31)
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and the solution operator Sb(n)
α

∆t

(
s(n)α

)
denotes the evolution of s(n)α subject to b(n)

α

Sb(n)
α

∆t

(
s(n)

α

)
: s(n)

α
(t) 7→ s(n)

α
(t +∆t) . (3.32)

The operator splitting enables the reaction term to be solved in terms of the mo-
lar concentrations C(n)

α , independent of the choice of variables used elsewhere and
transported by Star-CD. The reasons for doing this relate to numerical conve-
nience and are discussed in more detail in appendix B.4.

3.2.4 Analytic solver

A solver was developed to analytically integrate the micromixing and diffusion
terms in the N=2 case. Equation (3.19) is solved using a further operator splitting

Sb(n)
α

∆t

(
s(n)

α

)
≈
[

Sb(n)
mxα

1
2 ∆t ◦ Sb(n)

dxα

1
2 ∆t ◦ Sb(n)

rxα

∆t ◦ Sb(n)
dxα

1
2 ∆t ◦ Sb(n)

mxα

1
2 ∆t

](
s(n)

α

)
, (3.33)

where S
∆t denotes the solution operator as per equation (3.32). The integrals of

the micromixing and diffusion terms are given

∫ t2

t1

b(n)
mxα

dτ = ∆ψ
(n)
α ∏

n
w(n)

[
1− exp

(
−

Cφ

2τφ

∆t
)]

, n ∈ {1,2} (3.34)

and

∫ t2

t1

b(n)
dxα

dτ = ∆ψ
(n)
α ∏

n
w(n)

±

√
2∆t
(

∑
n

w(n)c(n)αα

)
∏
n

w(n)
+
(

∆ψ
(n)
α ∏

n
w(n)
)2

, n ∈ {1,2}
(3.35)

where

∆t = t2− t1 ,

∆ψ
(n)
α

= ψ
(i)
α
(t1)−ψ

(n)
α
(t1) , i,n ∈ {1,2}, i 6= n .
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The root in equation (3.35) is chosen so that the scalars diverge as per figure 3.1.
If ∆ψ

(n)
α < 0, the positive root is chosen. If ∆ψ

(n)
α > 0, the negative root is chosen.

If ∆ψ
(n)
α = 0, the right hand side of equation (3.35) is set to zero. The current

implementation clips the magnitude of the root to enforce the bounds defined by
equations (3.28) and (3.29). The micromixing parameters Cφ and τφ , weights w(n)

and scalar gradient terms c(n)αα are treated as constant during the integration.

The reaction term is integrated using RADAU5 as per the general solver. The
advantage of the analytic solver is that the diffusion term is treated very efficiently.
The method is general in the sense that it can be applied to any number of scalars.

3.3 Numerical testing of DQMoM-IEM

This section validates the DQMoM-IEM solvers described in section 3.2 against
a test case known from the literature.

Section 3.3.1 presents salient details of the test case. Section 3.3.2 compares
the solvers against the method of moments. This validates the treatment of the
diffusion term described in section 3.2. Section 3.3.3 demonstrates the application
of the general solver to a reacting system. Sections 3.3.4 and 3.3.5 discuss the
solver CPU times and constraints on the choice of boundary conditions.

3.3.1 Model problem

The system considered is the constant density isothermal liquid-phase reaction,
previously introduced by equation (2.5)

A+B
k1−→ R, B+R

k2−→ S,

k1 = 5.0×106 m3/kmol s, k2 = 1.8×103 m3/kmol s. In regions where mixing is
slow relative to the second reaction, a significant proportion of B and R react to
form S before B can be quenched by further mixing with A. The yield of R

Y =
CR

CR +2CS
, (3.36)
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is sensitive to the rate of mixing. The reaction offers a simple approximation to
stiff chemistry and was selected because it has been well studied numerically (Tsai
and Fox, 1994; Tsai et al., 2002) and experimentally (Li and Toor, 1986).

The reactor configuration is shown in figure 3.4. It is the single-jet system stud-
ied by Tsai and Fox (1994). This thesis considers the case where a turbulent jet of
species B is injected into a laminar annular co-flow of species A. Cases are consid-
ered for high and low reactant concentrations at jet Reynolds numbers Re = 3530
and Re = 7552.

CFD Grid

Reactant A

Reactant A

Reactant B

℄࠸࠸

Figure 3.4: Configuration of the axisymmetric single-jet tubular reactor.

The reactor is modelled using a triangular prism-shaped domain and boundary
conditions to exploit axial symmetry. The geometry of the computational do-
main is illustrated in figure 3.5. The flow was solved as a steady problem using
Star-CD (CD-adapco, 2008) as per the approach detailed by Tsai and Fox (1994).
The RANS equations were solved using a k-ε High Reynolds Number turbulence
model and standard wall functions. The default model constants were used with
unit Prandtl numbers. The inlet boundary conditions are summarised in table 3.1.
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Figure 3.5: Geometry of the jet reactor computational domain.
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A base grid was defined for each Reynolds number as per Tsai and Fox (1994,
tables 1 and 2). A refined grid was defined for each case by dividing the base grid
cells by a factor of two in the axial direction, and each cell except those adjacent
to the outer wall by a factor of two in the radial direction. The exception was
imposed by the wall function, which required the coarse radial resolution to be
retained at the wall. The grids were all one cell deep in the azimuthal direction.

The flow fields were consistent with Tsai and Fox (1994). The data in this investi-
gation are considered to be grid-independent based on the grid causing a variation
of less than 0.5% in the yield of the cases considered in section 3.3.3. The base
grid cases were run with time step ∆t=10−4 s for t=2s physical time. The refined
grid cases were run with ∆t=4×10−5 s for t=2s.

The DQMoM-IEM scalar transport equations are solved as unsteady problems
(see section 3.2.1) without re-solving the flow. This one-way coupling is accept-
able for the constant density case. The flow affects the scalars, but the scalars are
passive and do not affect the flow. The data are presented in terms of the empirical
mean and standard deviation of each species. The composition space is defined in
terms of the mass fractions

φ
> =

[
YA, YB, YR, YS, Ysolvent

]
. (3.37)

The reaction term is solved in terms of molar concentrations

Cα =
ρYα

Wα

, (3.38)

where ρ is the fluid density, Wα are the species molecular weights

WA = 143.1 kg/kmol ,

WR = 183.2 kg/kmol ,

WB = 326.3 kg/kmol ,

WS = 509.5 kg/kmol ,

(3.39)

and the chemical source terms are given by equation (2.6).
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Table 3.1: Inlet boundary conditions for the jet reactor.

Units Re = 3530 case Re = 7552 case

Jet Annulus Jet Annulus

Volumetric flow m3/s 0.988×10−5 2.11×10−5

Average velocity m/s 0.786 0.613 1.68 1.13

Mixing length m 28×10−5 6.3×10−5 28×10−5 6.3×10−5

Turbulence intensity % 5.76 4.00 5.24 4.00

Density kg/m3 998 998

Molecular viscosity kg/m s 0.889 0.889

Mass balance was not used to reduce the number of transport equations. This was
a deliberate decision made to keep the test case general. Likewise, the option to
use a mixture fraction and progress variable approach (cf. Lui and Fox, 2006) is
acknowledged, but was not pursued.

The micromixing parameters are given as Cφ = 1.65 and τφ = d/
√

k (Tsai and
Fox, 1994), where d = 0.0066m is the reactor diameter and k is the turbulent
kinetic energy. The turbulent diffusivity ΓT is calculated ΓT = νT/ρσT, where the
turbulent Schmidt number is given σT=0.7 for all scalars (Tsai et al., 2002). The
turbulent kinetic energy k and turbulent viscosity νT are supplied by Star-CD.

3.3.2 Application to scalar mixing

The treatment of the micromixing and diffusion terms in the DQMoM-IEM
solvers presented in section 3.2 is validated against a scalar mixing case. A ref-
erence solution is provided using the method of moments (MoM). The appli-
cation of the method of moments to such problems is well established and pro-
vides an exact solution to equation (3.1) where the chemical source term is zero,
Sα = 0. This validation is particularly important because it tests the treatment of
the diffusion term that is responsible for the numerical difficulties associated with
DQMoM-IEM. More information about the method of moments equations and
their treatment is given in sections A.4 and B.3 of the appendices.
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The scalar mixing of species A and B was investigated for the high concentration

case at Re=3530. The empirical mean and standard deviation are presented for
species A in figure 3.6. The scalar boundary conditions are given in table 3.6.

Axial distance (m)
Radial
distance (mm)

(a) Empirical mean.

Axial distance (m)
Radial
distance (mm)

(b) Empirical standard deviation.

Figure 3.6: Jet reactor empirical moments of species A for the inert (micromixing and
diffusion only) Re=3530 high concentration case on the base grid, analytic
DQMoM-IEM solver with N = 2 fields.

Table 3.2 shows excellent agreement between DQMoM-IEM and the method of
moments. The level of agreement was assessed for the first four empirical integer
moments and the empirical standard deviation

εmα
=

1√
Ncells

K

∑
α=1

∥∥∥∥ 〈φ mα

α
〉N−〈φ

mα

α
〉MoM

∥∥∥∥ , mα ∈ {1,2,3,4} , (3.40)

εsd =
1√

Ncells

K

∑
α=1

∥∥∥∥√〈φ 2
α
〉N−〈φα〉2N −

√
〈φ 2

α
〉MoM−〈φα〉2MoM

∥∥∥∥ , (3.41)

where εmα=1 = εmean and ‖ · ‖ denotes an L2-norm over space. The differences
between the MoM and DQMoM-IEM data occur at the turbulent jet inlet, where
a small perturbation is applied to the scalars to ensure that the diffusion source
terms are not filtered at the inlet boundary (see table 3.6). The agreement between
MoM and the N = 3 general solver is improved over that reported by Akroyd et al.
(2010) due to the use of a tighter filter width, where εp = 10−7 in this example as
opposed to εp = 10−3 in Akroyd et al. (2010).
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3.3 Numerical testing of DQMoM-IEM

Table 3.2: Convergence of DQMoM-IEM versus the method of moments for the inert Re=
3530 high concentration jet reactor case on the base grid.

εmean εmα=2 εmα=3 εmα=4 εsd

N=2a 6.9×10−7 c 3.7×10−7 5.6×10−7 7.4×10−7 4.7×10−6 d

N=2b 6.9×10−7 3.7×10−7 5.6×10−7 7.4×10−7 4.7×10−6

N=3b 4.4×10−7 2.4×10−7 3.6×10−7 4.8×10−7 4.8×10−6

a Analytic solver, b General solver, c See figure 3.6(a), d See figure 3.6(b).

3.3.3 Application to reacting flow

This section describes the application of the DQMoM-IEM solvers presented in
section 3.2 to a real turbulent reaction problem. The results are validated against
previous studies of the same system (Li and Toor, 1986; Tsai and Fox, 1994). The
scalar boundary conditions are given in table 3.6 (see section 3.3.5).

Figures 3.7 and 3.8 show the empirical mean of species A, B, R and S for the
high concentration case at Re = 3530 calculated by the analytic solver with N = 2
fields (figure 3.7) and the general solver with N = 3 fields (figure 3.8). Figures 3.7
and 3.8 are visually indistinguishable and are consistent with the full transported
PDF data of Tsai and Fox (1994, fig. 7, although note that the data in this thesis are
given as mass fractions as opposed to molar concentrations). Figures 3.7 and 3.8
show rapid reaction between species A and B, with a small region of coexistence
near the inlets. The product R forms rapidly in the reaction zone. The side-product
S forms more slowly, with most forming in the zone of high concentration of B
and R at the centre of the reactor near the jet inlet.

Figures 3.9 and 3.10 show the empirical standard deviation of species A, B, R and
S for the high concentration case at Re = 3530 calculated by the analytic solver
with N = 2 (figure 3.9) and the general solver with N = 3 fields (figure 3.10).
The figures are visually indistinguishable for species A, B and S, and the data are
consistent with the full transported PDF data of Tsai and Fox (1994, fig. 8). Note
that Tsai and Fox (1994) only show the standard deviations for species A and B
and that their data look less ‘peaky’ than figures 3.9 and 3.10 because they are
plotted as molar concentrations versus cell number rather than physical distance.
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(c) Species R.
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distance (mm)

(d) Species S.

Figure 3.7: Jet reactor empirical means for the reacting Re= 3530 high concentration
case on the base grid, analytic DQMoM-IEM solver with N = 2 fields.

52



3.3 Numerical testing of DQMoM-IEM

Axial distance (m)
Radial
distance (mm)

(a) Species A.

Axial distance (m)
Radial
distance (mm)

(b) Species B.

Axial distance (m)
Radial
distance (mm)

(c) Species R.

Axial distance (m)
Radial
distance (mm)
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Figure 3.8: Jet reactor empirical means for the reacting Re= 3530 high concentration
case on the base grid, general DQMoM-IEM solver with N = 3 fields.
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Figure 3.9: Jet reactor empirical standard deviations for the reacting Re = 3530 high
concentration case on the base grid, analytic DQMoM-IEM solver with
N=2 fields.
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Figure 3.10: Jet reactor empirical standard deviations for the reacting Re= 3530 high
concentration case on the base grid, general DQMoM-IEM solver with
N = 3 fields.
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3 THE DIRECT QUADRATURE METHOD OF MOMENTS

Figure 3.9(c) shows an arc of zero standard deviation running from between the
inlets to the centre of the reactor. This is an artefact of the N=2 case. It marks the
locus ψ

(1)
R =ψ

(2)
R and is caused by a transition from ψ

(1)
R >ψ

(2)
R near the jet inlet to

ψ
(1)
R <ψ

(2)
R in the bulk of the reactor. Figure 3.10(c) shows that it does not occur

in the N =3 case, where the dashed line marks the previous location of the arc.
Rather, there is a saddle point in the standard deviation near the inlets.

Tables 3.3 and 3.4 summarise the predicted yields. The data correctly show the
effect of reactant concentration and Reynolds number and show good agreement
with Li and Toor (1986) and Tsai and Fox (1994). The use of N =3 fields offers
better resolution of the standard deviation near the inlets and is responsible for a
small improvement in the agreement with the experimental yield. In particular,
the agreement is improved over the original implementation (Akroyd et al., 2010)
due to the inclusion of the solvent in the composition space, see equation (3.37).

Table 3.3: DQMoM-IEM jet reactor yields on the base grid.

Case DQMoM-IEM yield (%) Literature yield (%)

Conc. Re N=2a N=2b N=3b Full PDF c Expt.d

High 3530 80.4e 80.7 81.9 f 81.0 82.1
High 7552 87.8 − − 88.3 88.3
Low 3530 91.1 − − 91.8 89.0
Low 7552 95.0 − − 95.4 93.5

a Analytic solver, b General solver, c Full transported PDF data, Tsai and Fox (1994, table 3), d Experimental data, Li and

Toor (1986, table 1, experimental repeatability ±0.5 %), e See figure 3.7, f See figure 3.8.

Table 3.4: DQMoM-IEM jet reactor yields on the refined grid.

Case DQMoM-IEM yield (%) Literature yield (%)

Conc. Re N=2a N=2b N=3b Full PDF Expt.

High 3530 80.3 80.7 81.5 − 82.1
High 7552 87.6 − − − 88.3
Low 3530 91.1 − − − 89.0
Low 7552 94.9 − − − 93.5

a Analytic solver, b General solver.
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3.3 Numerical testing of DQMoM-IEM

3.3.4 Computational performance

Table 3.5 shows the computational times for the high concentration cases at
Re=3530 on the base grid. All cases were run on identical hardware. The analytic
solver is significantly faster than the general solver for the N=2 case.

Table 3.5: DQMoM-IEM jet reactor CPU times for the high concentration case at Re=
3530 on the base grid.

CPU time (h)

N=2a N=2b N=3b

Inert case 0.14c 3.26 4.96
Reacting case 0.45d 3.56 6.05e

a Analytic solver, b General solver, c See figure 3.6, d See figure 3.7, e See figure 3.8.

The performance of the general solver is strongly influenced by the numerical
integration of the diffusion term. The efficient treatment of this term represents an
important area of research required to make the general solver more practical.

The observation of Akroyd et al. (2010) that the computational time for the N=3
reacting case is less than that for the N=3 inert case is not repeated here. This is
attributed to the use of the tighter filter width, where εp=10−7 in this example as
opposed to εp=10−3 in Akroyd et al. (2010).

3.3.5 Choice of boundary conditions

The choice of boundary conditions to represent a given system is not arbitrary.
Different representations of the same physical condition can give different results.

The DQMoM-IEM code was developed using the inert case and equi-weighted
fields such that the observed central moments were due to the diffusion term only.
However, equal weights are a poor choice. For example, N = 2 equi-weighted
fields cannot reproduce figure 3.6(b): the maximum standard deviation is re-
stricted by the physical bounds on the mass fractions of the scalars. The correct
scalar mixing was only given when the boundary conditions were specified to be
consistent with each field being assigned to a specific inlet.
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3 THE DIRECT QUADRATURE METHOD OF MOMENTS

Table 3.6 summarises the initial and inlet boundary conditions for the cases in this
chapter. The N =2 case is specified such that field 1 represents the annular inlet
and field 2 the jet inlet. The N=3 case is specified such that field 1 represents the
annulus and fields 2 and 3 the jet inlet. The rationale for assigning the extra field
to the jet is that it gave slightly better agreement with the method of moments.

The restrictions on the boundary conditions are perhaps intuitive given the inter-
pretation of DQMoM-IEM as a multi-environment presumed PDF method (Fox,
2003). The number of inlets should dictate the minimum number of fields. The
benefit of extra fields is illustrated by the difference between Figures 3.9 and 3.10.

In order to benefit from extra fields, the diffusion term must not see degenerate
scalars at the inlets. This was previously achieved using the initial conditions
(Akroyd et al., 2010). In this thesis, it is achieved by perturbing the inlet mass
fractions such that the diffusion terms are not filtered and remain non-zero at the
inlet boundaries. It is also convenient to avoid fields with zero weight. For ex-
ample, this negates the need to assume a value for ψ

(n)
α in the event that w(n)

=0.
Section 3.3.2 shows that this approach has negligible impact on the results.

Table 3.6: DQMoM-IEM jet reactor initial and inlet boundary conditions.

Initial condition Inlet boundary

Jet Annulus

w(n) 1/N 0 a 1/
⌊

N
2

⌋
for n 6

⌊
N
2

⌋
1/N 1/

⌈
N
2

⌉
0 a for n >

⌊
N
2

⌋
Y (n)

A 0 0
4.27×10−4 b high

conc. case
1.44×10−4 b low

Y (n)
B 0

5.25×10−4 b

0
high

conc. case
1.77×10−4 b low

Y (n)
R,S 0 0 0

Y (n)
solvent 1 1−Y (n)

B 1−Y (n)
A

Note that the table specifies the scalars in terms of Y (n)
α , but that DQMoM-IEM transports w(n) and s(n)α = w(n)

ψ
(n)
α , where

the composition space is defined by equation (3.37). a A perturbation was applied to avoid specifying exactly w(n)
=0,

subject to ∑n w(n)
=1. b A perturbation was applied to avoid specifying ψ

(n)
α =ψ

(i)
α for i 6= n.
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3.4 Chapter summary

3.4 Chapter summary

The numerical behaviour of DQMoM-IEM has been investigated as a turbulent
reaction closure. DQMoM-IEM uses weighted fields to discretise a joint compo-
sition PDF transport equation that includes the IEM mixing model. A projection
is used to derive transport equations that force the statistics of the fields to obey
specified moments of the discretised PDF transport equation. The method is po-
tentially suitable for engineering calculations using standard CFD software. It is
attractive because it could offer efficient calculations where the number of fields
can be chosen based on the priority assigned to speed versus accuracy, with more
fields refining the discretisation at the expense of a longer computation.

An analytic expression has been introduced for the DQMoM-IEM source terms.
It prescribes the choice of the moments in the projection and is valid for any num-
ber of fields and scalars. Explicit reaction, micromixing and turbulent diffusion

terms can be identified. The diffusion term can cause loss of boundedness. It is
discontinuous and singular where any given scalar is equal on two or more fields
at a given location in physical space.

Two new DQMoM-IEM solvers have been coupled to the Star-CD CFD code us-
ing an operator splitting technique. They have been validated against the method
of moments and a reacting flow case. The choice of boundary conditions to rep-
resent a given physical condition is not arbitrary. The correct scalar mixing was
only reproduced when the boundary conditions were specified to be consistent
with each field being assigned to a specific inlet.

The first (general) solver can be applied to cases with any number of fields and
scalars. The diffusion terms are calculated by functional evaluation and a filter
function is introduced to eliminate discontinuities and enforce boundedness. The
approach is similar to methods that limit the size of the diffusion term or set it to
zero near a discontinuity. It differs in that it preserves more information and elim-
inates the discontinuity, which the other methods would not. The source terms are
integrated numerically using RADAU5. The second (analytic) solver is specific to
N =2 fields. It uses analytic solutions of the DQMoM-IEM terms arising due to
turbulent diffusion and micromixing and can be applied to any number of scalars.
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3 THE DIRECT QUADRATURE METHOD OF MOMENTS

The key challenge is the diffusion term. The analytic solver provides an elegant
method for N=2 fields. The numerical treatment of the diffusion term by the gen-
eral solver was considered in detail and demonstrated for N=2 and N=3 fields,
and remains an important area of research to make the method more practical.
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Chapter 4

The stochastic fields method

This chapter compares mean reaction rate closures based on

DQMoM-IEM and the SF method. The methods have many

common features and have received much attention in recent

literature, yet have not been systematically compared. We present

both methods in the same mathematical framework and compare

their numerical performance. We introduce antithetic sampling

as a variance reduction technique to increase the efficiency of the

SF algorithm. We extend the SF methodology to take advantage

of this development and show details of the implementation in the

Star-CD CFD code. We present a systematic investigation and

consider both axisymmetric and 3D formulations of a problem

known from the literature. DQMoM-IEM showed excellent

agreement with experimental and transported PDF data. SF

gave reasonable agreement, but retained a minor grid-dependence

not seen with DQMoM-IEM and did not fully resolve the

sub-grid segregation of the species. The antithetic sampling

was demonstrated to significantly increase the efficiency of the

axisymmetric SF cases.
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4 THE STOCHASTIC FIELDS METHOD

4.1 Background

The stochastic fields (SF) method uses a set of Eulerian fields to discretise a joint
composition PDF transport equation. The fields are defined over the entire spatial
domain and evolve according to a stochastic partial differential equation (SPDE)
such that they remain statistically equivalent to the joint composition PDF.

The SF discretisation is analogous to that in DQMoM-IEM, except that the SF
method can be freely scaled to any number of fields to refine the approximation of
the underlying PDF, subject to hardware constraints. This is potentially attractive
compared to DQMoM-IEM, where the previous chapter shows that the maximum
number of fields is likely to be constrained by numerical difficulties. The price of
this freedom is that SF is a Monte Carlo method, such that a minimum number of
fields will now be required to control statistical error.

The purpose of this chapter is to systematically compare the performance of
DQMoM-IEM and SF as turbulent reaction closures. We follow the majority of
the literature considered in chapter 2 and investigate the Itô SPDE derived by Val-
iño (1998). The rest of this section reiterates the model equations and discusses
the features shared by the methods. Section 4.2 summarises the SF implementa-
tion and explains the use of antithetic sampling to increase the statistical efficiency
of the simulations. Section 4.3 investigates the performance of DQMoM-IEM and
SF against the method of moments and a turbulent reaction test case known from
the literature. Both axisymmetric and 3D cases are considered. The benefits of
antithetic sampling are discussed and areas for further research suggested.

4.1.1 Stochastic fields equations

The SF method was derived independently by Valiño (1998) and Sabel’nikov and
Soulard (2005a). Valiño derives an Itô SPDE for fields defined as twice differen-
tiable in space, whereas Sabel’nikov and Soulard present a general derivation of a
Stratonovich SPDE and show equivalence to Valiño’s result. The key features of
the method are summarised below in the framework developed for DQMoM-IEM.
Appendix A presents a formal derivation.
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4.1 Background

The closed joint composition PDF transport equation, previously given on page 35
as equation (3.1)

∂ fφ

∂ t
+ 〈Ui〉

∂ fφ

∂xi
− ∂

∂xi

(
ΓT

∂ fφ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]

fφ

)
,

is discretised using an ensemble of N fields

fφ

(
ψ(x, t)

)
dψ = fφ

(
ψ1,ψ2, . . . ,ψK(x, t)

)
dψ1 · · · dψK

≈ 1
N

N

∑
n=1

K

∏
α=1

δ
ψ

(n)
α (x,t)

(
dψα

)
, (4.1)

where δ
ψ

(n)
α (x,t)(dψα) is defined as per equation (3.3). Hauke and Valiño (2004)

state the equivalent Itô SPDE describing the transport of each field ψ
(n)
α (x, t)

dψ
(n)
α

=−〈Ui〉
∂ψ

(n)
α

∂xi
dt +

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

)
dt +

(
2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i

+
Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
dt +Sα

(
ψ

(n)
)

dt , (4.2)

where W is a Wiener process (see Gardiner, 2004) and the fields ψ
(n)
α evolve such

that they remain statistically equivalent to the joint composition PDF fφ . The final
three terms describe the effect of turbulent diffusion, micromixing and chemical
reaction. We refer to them as the SF diffusion, micromixing and reaction terms.
Note also that the x-t dependencies of the terms in equation (4.2) onwards are
suppressed for clarity of presentation.

4.1.2 Features shared with DQMoM-IEM

The SF method invokes an analogous discretisation to DQMoM-IEM. Both meth-
ods derive a joint composition PDF transport equation that is discrete in composi-
tion space, but continuous in time and physical space. In this particular example,
the methods are also applied to the same equation (3.1).
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4 THE STOCHASTIC FIELDS METHOD

The SF discretisation in equation (4.1) is an equi-weighted form of the field system
introduced by DQMoM-IEM in equation (3.2). In the case that equation (3.2) is
constrained w(n)

=1/N, the DQMoM-IEM transport equation (3.6) can be rewrit-
ten in terms of ψ

(n)
α in an analogous form to the SF transport equation (4.2), where

the methods differ only in the treatment of the diffusion terms.

DQMoM-IEM is deterministic and typically only a few fields are required. In
particular, it is the use of weighted fields and the boundary conditions on the
weights that allows specified moments of the underlying PDF to be modelled with
only a few fields (see section 3.3.5). In the case of SF, the benefit of the variable
weights is lost and the moments of the modelled PDF are governed entirely by
the stochastic action of equation (4.2). The treatment of the diffusion term is
simplified at the cost of requiring a larger number of fields both to compensate for
the loss of weighted fields and to control statistical error.

4.2 Numerical details

This section presents details of the SF implementation. It describes the method
used to couple SF to CFD and introduces the use of antithetic sampling to improve
the statistical efficiency of the method.

4.2.1 Stochastic fields coupling to Star-CD

SF is coupled to the Star-CD CFD code (CD-adapco, 2008) using the same op-
erator splitting technique as DQMoM-IEM (see section 3.2.1). Equation (4.2) is
solved as a transient problem using a Strang (1968) splitting

dψ
(n)
α

=−〈Ui〉
∂ψ

(n)
α

∂xi
dt +

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

)
dt , (4.3)

dψ
(n)
α

=
Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
dt +Sα

(
ψ

(n)
)

dt +
(

2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i . (4.4)
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4.2 Numerical details

Equation (4.3) is solved using Star-CD with upwind differencing to transport ψ
(n)
α

as passive scalars with time step ∆t. Equation (4.4) is solved using user-defined
subroutines with time step 1

2∆t before the first and after the last iteration, and time
step ∆t otherwise. It is further split (for time step ∆t)

ψ
(n)
α

†1
= ψ

(n)
α
(t)+

∫ 1
2 ∆t

0

Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
dτ ,

where ψ
(n)
α

= ψ
(n)
α
(t) at τ = 0,

(4.5)
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where
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(4.6)
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where ψ
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(4.7)
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(n)
α

= ψ
(n)
α

†3 at τ = 0,

(4.8)

where Star-CD is used to evaluate the gradients ∂ψ
(n)
α (t)/∂xi at the start of each

step, resulting in the approximation shown in equation (4.6) (cf. section 3.2).

The reaction term in equation (4.7) is integrated using RADAU5. The micromix-
ing terms are solved analytically, where the solutions are given for equation (4.5)

ψ
(n)
α

†1
= 〈φα〉N−

(
〈φα〉N−ψ

(n)
α
(t)
)

exp
[
−
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2τφ
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2

]
, (4.9)

and equation (4.8)

ψ
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(n)
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†3
)

exp
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−
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4 THE STOCHASTIC FIELDS METHOD

The diffusion term in equation (4.6) is solved over the whole time step ∆t in order
to maintain the required independence between the integrand and dW (n)

i (Gar-
diner, 2004). It is solved as per Garmory (2007), using the Euler-Maruyama ap-
proximation of an Itô process (Kloeden and Platen, 1995)

ψ
(n)
α

†2
= ψ

(n)
α

†1
+
(

2ΓT

)1/2 ∂ψ
(n)
α

∂xi
∆W (n)

i , (4.11)

where

∆W (n)
i = ξ

(n)
i (∆t)1/2 , (4.12)

ξ
(n)
i ∼N (0,1) . (4.13)

The variates ξ
(n)
i are independent for each spatial dimension and field, but com-

mon for all scalars. They are generated using the method of Ahrens and Dieter
(1973), with uniform variates supplied by the Mersenne Twister MT19937 algo-
rithm (Matsumoto and Nishimura, 1998) with a fixed seed. This implementation
may lead to loss of boundedness at large time steps. A stable and accurate method
that avoids bias away from the bounds can be achieved by limiting the maximum
size of the Wiener step to prevent unbounded scalars (Garmory, 2007). We apply
an analogous method to bound the SF implementation in this chapter.

4.2.2 Antithetic sampling

Antithetic sampling is a variance reduction technique. It was first introduced by
Hammersley and Morton (1956) to increase the efficiency of Monte Carlo simu-
lations, where the efficiency is defined in terms of the effort required to achieve
a given reduction in statistical error. The premise of the method is that the vari-
ance between repetitions of a Monte Carlo simulation is reduced by introducing
pair-wise negative correlation between replicates.

The mathematical basis for antithetic sampling is defined in work led by Hammer-
sley and co-workers (Hammersley and Morton, 1956; Hammersley and Mauldon,
1956; Hammersley and Handscomb, 1958) and Wilson (1979, 1983), and sum-
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4.3 Comparison of DQMoM-IEM and SF

marised by Fishman (1996). The method has mostly been applied within quan-
titative economics (Geweke, 1988) and finance (Paskov and Traub, 1995; Boyle
et al., 1997). Its application within computer simulations has been investigated by
Cheng (1982) and Fishman and Huang (1983).

We apply antithetic sampling to the SF method, treating each field as a replicate.
The idea is to increase the efficiency, such that a given result can be achieved with
fewer fields and without requiring repetition of the entire simulation. The variates
are sampled for odd-numbered fields, but prescribed for even-numbered fields

ξ
(n)
i ∼N (0,1) if n ∈ 2N−1, ξ

(n)
i =−ξ

(n−1)
i if n ∈ 2N . (4.14)

This is the reflection sampling method described by Fishman and Huang (1983)
and the ‘standard’ method used as the basis for the investigation by Cheng (1982).
Cheng suggests several possible refinements, but we restrict our attention to the
method defined by equation (4.14) for the purposes of this investigation.

The rest of this chapter compares the performance of DQMoM-IEM and SF, and
considers the impact of antithetic sampling. SF cases with sampling as per equa-
tion (4.13) are denoted as standard cases, and those with sampling as per equation
(4.14) as antithetic cases. Note that for a given number of iterations, a standard
case with N fields uses the same sequence of variates as the first half of a standard
case or a full antithetic case with 2N fields.

4.3 Comparison of DQMoM-IEM and SF

This section compares the performance of the SF method described in section 4.2
against the DQMoM-IEM solvers and test cases considered in chapter 3.

Section 4.3.1 describes additional details of the test case. Section 4.3.2 compares
the performance of the SF method against the method of moments. This enables
the effect of the numerical implementation of the diffusion terms (see sections 4.1
and 4.2) to be investigated in isolation. Section 4.3.3 investigates the application
of the SF method to a reacting system. Section 4.3.4 summarises the CPU times.
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4 THE STOCHASTIC FIELDS METHOD

4.3.1 Model problem

The case considered is the single-jet reactor system described in section 3.3 for
the constant density isothermal liquid-phase reaction

A+B
k1−→ R, B+R

k2−→ S.

This chapter considers the high concentration case where a turbulent jet of species
B with Reynolds number Re=3530 is injected into a laminar co-flow of species A.

The system was solved using Star-CD (CD-adapco, 2008) as per section 3.3. The
initial and inlet boundary conditions are summarised in table 4.1. The conditions
are identical to those used previously for DQMoM-IEM (tables 3.1 and table 3.6),
only without the perturbations required by DQMoM-IEM (see section 3.3.5).

Table 4.1: SF jet reactor initial and inlet boundary conditions.

Initial condition Inlet boundary

Jet Annulus

Y (n)
A 0 0 4.27×10−4

Y (n)
B 0 5.25×10−4 0

Y (n)
R,S 0 0 0

Y (n)
solvent 1 1−Y (n)

B 1−Y (n)
A

The DQMoM-IEM and SF methods are investigated using three grids. The first is
the base grid from section 3.3. This uses a wedge-shaped domain of 68×23 (axial
× radial) fully structured hexahedral cells. The second is a coarse grid, which is
a simplified version of the base grid and uses a 34× 14 (axial × radial) domain.
The third is a coarse 3D grid, which models the full reactor geometry using a
cylindrical domain of 34× 14× 18 (axial × radial × azimuthal) fully structured
hexahedral cells defined in a cartesian coordinate system. All cases were solved
with time step 10−4 s on the base grid and 10−3 s on the coarse grids.
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4.3 Comparison of DQMoM-IEM and SF

The SF method has so far inhibited the use of symmetric boundary conditions,
since it is not clear how they should be applied to the stochastic fields (Sabel’nikov
and Soulard, 2005a; Garmory, 2007). However, the test case flow field is axisym-
metric and the DQMoM-IEM solutions are dominated by radial gradients. We
use this to justify imposing an azimuthal zero-gradient condition to enforce an
axisymmetric solution on the base and coarse grids. The difference between the
grids causes small differences between the solutions near the inlets. However, the
data are considered to be sufficiently grid-independent based on the grid causing
a variation of less than 0.5% in the yield of the DQMoM-IEM cases solved in
section 4.3.3 (see table 4.3). The effect of the grid on the SF cases is considered
in more detail in the following sections.

4.3.2 Application to scalar mixing

This section compares the performance of the DQMoM-IEM and SF methods
for a scalar mixing case. A reference solution is provided using the method of
moments (MoM, see also section 3.3.2). This approach allows the effect of the
numerical implementation of the diffusion terms described in sections 4.1 and 4.2
to be examined in isolation from the effects of reaction.

Axial distance (m)
Radial
distance (mm)

‘Hump’ in the species mean

(a) Empirical mean.

Axial distance (m)
Radial
distance (mm)

Standard deviation not 

completely resolved

(b) Empirical standard deviation.

Figure 4.1: Jet reactor empirical mean and standard deviation of species A for the inert
Re=3530 high concentration case at t = 5 s on the base grid, SF solver with
standard sampling and N = 64 fields.
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4 THE STOCHASTIC FIELDS METHOD

Figure 4.1 presents the empirical mean and standard deviation of species A for
a typical SF simulation of the scalar mixing of species A and B. Corresponding
DQMoM-IEM data are shown in figure 3.6. The figure highlights some important
issues. Figure 4.1(a) shows a ‘hump’ in the mean of species A. It is caused
by the diffusion term where the SF implementation applies a set of variates ξ

(n)
i

that do not have exactly zero mean. This is most apparent in the radial direction
because the effect of the diffusion term is dominated by the relative magnitude of
the radial gradients. Such ‘humps’ are convected by the flow and can be observed
as fluctuations in the values of the species means at the reactor outlet. This effect
should decrease as the number of fields is increased, since the mean of the set of
variates will converge in probability at a rate proportional to N−1/2

lim
N→∞

P

( ∣∣∣∣ 1
N

N

∑
n=1

ξ
(n)
i

∣∣∣∣> εi

)
= 0, ∀εi > 0. (4.15)

Comparison of figures 4.1(b) and 3.6(b) shows that the SF solution does not com-
pletely resolve the standard deviation near the reactor inlets. A similar obser-
vation is made using DQMoM-IEM with equal weights (see section 3.3.5). In
this instance, DQMoM-IEM can reproduce figure 4.1(b) with N=2 and boundary
conditions on the weights w(1)

jet ≈0.4,w(2)
jet ≈0.6 and w(n)

annulus=1−w(n)
jet .

Figure 4.2 plots the fluctuation of the mean species B mass fraction at the reactor
outlet for SF cases with N = 4,8,16,32,64 fields. The fluctuation is calculated

max
reactor outlet

t∈[1,5] s

(
〈YB〉N

)
− min

reactor outlet
t∈[1,5] s

(
〈YB〉N

)
, (4.16)

where the calculation is defined from t = 1 s since this is the time at which
DQMoM-IEM is observed to reach steady state. Figure 4.2 confirms that the
fluctuations converge at a rate proportional to N−1/2 for both the standard and an-
tithetic cases. The antithetic cases show significantly reduced fluctuation on the
base and coarse grids due to the antithetic sampling enforcing a zero mean condi-
tion on the set of variates ξ

(n)
i in each direction i. However, the fluctuations remain

finite because the antithetic case does not enforce equal spatial gradients within
each antithetic pair of fields.
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4.3 Comparison of DQMoM-IEM and SF

The coarse 3D grid shows little difference between the standard and antithetic
cases, with fluctuations approximately two-thirds the size of those for the stan-
dard case on the coarse grid. This is less than the

√2
3 size that might be expected

by considering that the coarse grid cases use only two-thirds of the variates (the
rest are multiplied by the zero azimuthal gradient). The data are not spatially av-
eraged, so this is not a symmetry effect. It is suggested that this is a consequence
of solving the case in cartesian coordinates. The cartesian contributions to the
SF diffusion term act at different angles to the radial and azimuthal directions at
different points in the radial-azimuthal plane. This gives a non-axisymmetric solu-
tion and reduces the magnitude of the fluctuations in the standard case, but undoes
most of the effect of the antithetic sampling causing an increase in the magnitude
of the fluctuations in the antithetic case. This explanation suggests that a 3D case
solved in cylindrical polar coordinates, where the radial and azimuthal contribu-
tions to the diffusion term would remain in fixed alignment with the radial and
azimuthal directions, should preserve the symmetry of the solution and reproduce
the results from the coarse rather than coarse 3D grid.

Figure 4.3 plots the convergence between the SF simulations and the method of
moments. Table 4.2 shows equivalent data for DQMoM-IEM. The convergence
was assessed for the empirical mean and standard deviation using the metrics εmean

and εsd defined as per equations (3.40) and (3.41). Note that figure 4.3 represents
a ‘snapshot’ of the SF data at t = 5 s, so should be expected to show more noise
than figure 4.2, where the data were collected over the interval t ∈ [1, 5] s.

Table 4.2: Convergence of the DQMoM-IEM empirical mean and standard deviation ver-
sus the method of moments for the inert Re=3530 high concentration jet re-
actor case at t = 2 s.

Grid εmean εsd

N=2a N=2b N=3b N=2a N=2b N=3b

Base 6.9×10−7 6.9×10−7 4.4×10−7 4.7×10−6 4.7×10−6 4.8×10−6

Coarse 6.5×10−7 − − 2.9×10−6 − −
3D coarse 6.5×10−7 − − 4.5×10−6 − −

a Analytic solver (see section 3.2 and figure 3.6), b General solver (see section 3.2).
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(a) Base grid.
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(b) Coarse grid.
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(c) Coarse 3D grid.

Figure 4.2: Fluctuation of the SF empirical mean of species B at the jet reactor outlet
for the inert Re= 3530 high concentration case in the interval t ∈ [1, 5] s.
Solid symbols: standard case; Solid line: standard case guide line; Hollow
symbols: antithetic case; Dashed line: antithetic case guide line.
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(a) Base grid.
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(b) Coarse grid.
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(c) Coarse 3D grid.

Figure 4.3: Convergence of the SF jet reactor empirical mean and standard deviation
versus the method of moments for the inert Re= 3530 high concentration
case at t = 5 s. Solid symbols: standard case; Solid line: standard case
guide line; Hollow symbols: antithetic case; Dashed line: antithetic case
guide line. Circles (◦): mean metric, εmean; Triangles (4): standard deviation
metric, εsd.
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Figure 4.3 shows that εmean converges at a rate proportional to N−1/2. A clear
improvement is shown for the antithetic versus standard case for the base and
coarse grids. Again, the coarse 3D grid shows a similar effect to that in figure 4.2.
The convergence is between that observed for the standard and antithetic cases
on the coarse grid, with a small benefit from the antithetic case in this instance.
Similar convergence is shown for εsd up to N = 16 fields, possibly with some
benefit and certainly no harm from the antithetic case. At N > 16 fields, εsd is
observed to reach a steady value. The coarse grids reach εsd ≈ 0.8×10−4, whereas
the base grid does slightly better at εsd ≈ 0.6×10−4. This is indicative of at least
some grid dependence in the SF solution. Similar observations have been reported
for DQMoM-IEM by Gavi et al. (2007b). In all cases, comparison of figure 4.3
with table 4.2 shows that DQMoM-IEM achieves better convergence than SF.

4.3.3 Application to reacting flow

This section investigates the application of the DQMoM-IEM and SF methods
to the turbulent jet reactor discussed in section 4.3.1. Table 4.3 summarises the
yields for the DQMoM-IEM cases. The data agree with that in chapter 3 and show
that a good estimate of the yield can be obtained on each grid.

Figures 4.4 and 4.5 present the empirical means and standard deviations for a
typical SF case with antithetic sampling. Corresponding DQMoM-IEM data are
given in figures 3.7 to 3.10 for the N=2 and N=3 cases.

Table 4.3: DQMoM-IEM jet reactor yields for the reacting Re=3530 high concentration
case on the SF grids.

Grid DQMoM-IEM yield (%) Literature yield data (%)

N=2a N=2b N=3b Full transported PDF c Expt.d

Base 80.4 80.7 81.9 81.0 82.1
Coarse 80.1 − − − −
3D coarse 80.3 − − − −

a Analytic solver (see section 3.2 and figures 3.7 and 3.9), b General solver (see section 3.2 and figures 3.8 and 3.10), c Tsai

and Fox (1994, table 3), d Li and Toor (1986, table 1, experimental repeatability ±0.5 %)
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4.3 Comparison of DQMoM-IEM and SF

Figures 4.4 and 4.5 still show some artifacts due to fluctuations, particularly in the
mean of species R and S shown in figures 4.4(c) and (d). The sub-grid segregation
of the species is not fully resolved in the region between the inlets. This results
in a significant concentration of the product R adjacent to the wall between the
inlets in figure 4.4(c). It is also evident in the lower values of the SF standard
deviations reported for species A, B and S in figures 4.5(a), (b) and (d), and the
over-prediction of the standard deviation of species R in figure 4.5(c), compared
to the DQMoM-IEM standard deviations in figure 3.10.

Figure 4.6 shows the fluctuation of the yield at the reactor outlet for SF cases with
N = 4,8,16,32,64 fields. The yield Y is calculated using equation (3.36) where

Y =
〈CR〉

〈CR〉+2〈CS〉
, 〈Cα〉 =

ρ 〈Yα〉N
Wα

∣∣∣∣
reactor outlet

.

The fluctuation is calculated as the difference between the maximum and mini-
mum yields at the reactor outlet

max
t∈[1,5] s

(
Y
)
− min

t∈[1,5] s

(
Y
)

, (4.17)

and shows analogous behaviour to figure 4.2, with convergence proportional to
N−1/2 and reduced fluctuations for the antithetic case on the base and coarse grids.

Figure 4.7 plots the SF time-averaged yield and the loci of the maximum and
minimum yields at the reactor outlet, as defined by equation (4.17). The yields
converge to values slightly higher than for DQMoM-IEM and are estimated as
84−86% for the base grid and 86−88% for the coarse grids. The difference from
DQMoM-IEM is due to the failure to fully resolve the sub-grid segregation near
the reactor inlets. It can be shown that DQMoM-IEM reproduces an 85% yield
when using the boundary conditions shown to reproduce the SF behaviour in sec-
tion 4.3.2. The differences between the SF cases on the base and coarse grids are
due to how far each resolves the sub-grid segregation, as per the minor grid depen-
dence identified in relation to figure 4.3. In this example, DQMoM-IEM achieves
a grid-independent solution more easily than SF. What defines an acceptable level
of grid-independence will of course be application specific.
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(a) Species A.
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(c) Species R.

Axial distance (m)
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distance (mm)

Artefacts due 

to fluctuations

(d) Species S.

Figure 4.4: Jet reactor empirical means for the reacting Re= 3530 high concentration
case at t = 5 s on the base grid, SF solver with antithetic sampling and N = 64
fields.

76



4.3 Comparison of DQMoM-IEM and SF

Axial distance (m)
Radial
distance (mm)

Standard deviation not 

completely resolved

(a) Species A.

Axial distance (m)
Radial
distance (mm)

Standard deviation not 

completely resolved

(b) Species B.

Axial distance (m)
Radial
distance (mm)

Standard deviation 

over predicted

(c) Species R.

Axial distance (m)
Radial
distance (mm)

Standard deviation 

under predicted

(d) Species S.

Figure 4.5: Jet reactor empirical standard deviations for the reacting Re=3530 high con-
centration case at t = 5 s on the base grid, SF solver with antithetic sampling
and N = 64 fields.
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(a) Base grid.
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(b) Coarse grid.
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(c) Coarse 3D grid.

Figure 4.6: Fluctuation of the SF yield at the jet reactor outlet for the reacting Re=3530
high concentration case in the interval t ∈ [1, 5] s. Solid symbols: standard
case; Solid line: standard case guide line; Hollow symbols: antithetic case;
Dashed line: antithetic case guide line.
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(a) Base grid.
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(b) Coarse grid.
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Figure 4.7: SF yield at the jet reactor outlet for the reacting Re=3530 high concentration
case in the interval t ∈ [1, 5] s. Solid symbols: standard case time-averaged
yield; Solid line: standard case loci of maximum and minimum yields; Hol-
low symbols: antithetic case time-averaged yield; Dashed line: antithetic
case loci of maximum and minimum yields. Shaded area: difference between
standard and antithetic case loci of maximum and minimum yields.
The marked DQMoM-IEM yields are those given in table 4.3.
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The difference between the standard and antithetic case loci of the maximum and
minimum yields (marked by the gray areas on figure 4.7) illustrate a clear benefit
from the application of antithetic sampling to the base and coarse grids: a better
estimate of the yield can be achieved with fewer fields. The data for the coarse 3D
grid are consistent with, but no better than the standard case on the coarse grid.

4.3.4 Computational performance

This section summarises the computational times for the DQMoM-IEM and SF
cases considered. All cases were run on identical hardware.

Table 4.4 presents the DQMoM-IEM computational times. The analytic solver
shows a significant speed advantage over the general solver (see section 3.3.4).

Table 4.4: DQMoM-IEM jet reactor CPU times for the Re= 3530 high concentration
case on the SF grids at t = 2 s.

Grid CPU times (h)

Scalar mixing cases Reacting cases

N=2a N=2b N=3b N=2a N=2b N=3b

Base 0.14c 3.26 4.96 0.45d 3.56 6.05e

Coarse 0.01 − − 0.03 − −
3D coarse 0.30 − − 0.53 − −

a Analytic solver, b General solver, c See figure 3.6, d See figure 3.7, e See figure 3.8.

Figure 4.8 plots the SF computational times. The standard and antithetic cases
are in close agreement and the data overlay each other in the figure. The compu-
tational times are proportional to the number of fields N, where the reacting cases
take longer than the equivalent scalar mixing cases due to the chemistry.

The computational times are broadly equivalent between the general DQMoM-
IEM solver and the SF method with N = 8–16 fields for the cases considered here.
As more complex chemistry is considered, it is anticipated the computational time
will increase more quickly for the SF method than the general DQMoM-IEM
solver because the SF method requires the greater number of fields.
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Figure 4.8: SF jet reactor CPU times for the Re=3530 high concentration case at t = 5 s.
Solid symbols: standard case; Solid line: standard case guide line; Hollow
symbols: antithetic case; Dashed line: antithetic case guide line. Circles (◦):
reacting case; Triangles (4): scalar mixing case.

The marked DQMoM-IEM CPU times are those given in table 4.4 for the
scalar mixing (×) and reacting (+) cases.
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4.4 Chapter summary

SF uses a set of Eulerian fields to discretise a closed joint composition PDF
transport equation. This is an equi-weighted form of the method used by
DQMoM-IEM. Explicit reaction, micromixing and turbulent diffusion terms can
again be identified. The difference from DQMoM-IEM is that SF invokes a
stochastic process to approximate the diffusion term. The implementation is sim-
plified at the cost of requiring a larger number of fields to compensate for the use
of equi-weighted fields and to control statistical error. The application of antithetic
sampling is introduced to improve the statistical efficiency of the SF algorithm.

The performance of DQMoM-IEM and SF has been compared for the turbulent
reaction problem described in chapter 3. SF is coupled to the Star-CD CFD code
using an operator splitting technique analogous to that applied to DQMoM-IEM.
Cases have been considered on two grids that enforce an axisymmetric solution
and on a 3D grid that resolves the full domain in a cartesian coordinate system.
DQMoM-IEM showed good agreement with experimental and transported PDF
data and equivalent results were demonstrated between the axisymmetric and 3D
cases. SF gave similar results, but retained a minor grid-dependence not seen with
DQMoM-IEM. It did not fully resolve the sub-grid segregation of the species,
resulting in a systematic over-prediction of the yield. The prediction improved as
the grid was refined, but remained less good than for DQMoM-IEM.

The SF results showed significant variance. The expected convergence was
demonstrated in the non-reacting case for fluctuations of the species mass frac-
tions at the reactor outlet and for convergence of the full domain versus the method
of moments. In the reacting case, convergence was demonstrated for fluctuations
of the yield. Antithetic sampling was shown to enable better convergence to be
achieved with fewer fields on the axisymmetric grids. The situation for the 3D
grid was less clear. The extra dimension gave improved statistical efficiency at
greater computational cost for the standard case, but eliminated much of the ben-
efit from the antithetic case. It is believed that this is a consequence of solving the
case in cartesian coordinates, such that an equivalent case solved in cylindrical
polar coordinates would reproduce the observations from the axisymmetric grids.
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4.4 Chapter summary

The example in this chapter demonstrates an axisymmetric SF formulation that
combines the benefits of antithetic sampling and reduced dimensionality. It also
highlights where DQMoM-IEM offers some advantages. DQMoM-IEM was
more easily able to achieve a grid-independent solution and gave a determinis-
tic, accurate and computationally efficient prediction of the yield with as few as
N =2 fields. The questions of whether these advantages translate to applications
with more complicated chemistry and whether antithetic sampling offers benefits
to SF simulations in other geometries remain important areas of research.
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Chapter 5

Application of the projected fields
method to nanoparticle modelling

This chapter investigates the first part of a two-stage methodology

for the detailed modelling of nanoparticle formation in turbulent

reacting flows. We use a projected fields (PF) method to

approximate the joint composition PDF transport equation that

describes the evolution of the nanoparticles. The method combines

detailed chemistry and a MoMIC population balance model in the

Star-CD CFD code. We show details of the implementation and

present an extensive set of numerical experiments and validation.

We consider the example of the chloride process for the industrial

synthesis of titania. We show good agreement with experimental

data and present fully coupled simulations of a representative

‘slot’ reactor. The simulations show that inception occurs in a

mixing zone near the reactor inlets. Most of the nanoparticle mass

is due to surface growth downstream of the mixing zone. The

implications for the second part of the methodology, where it is

proposed to post process the data using a more detailed particle

model, are discussed critically.
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5 APPLICATION TO NANOPARTICLE MODELLING

5.1 Background

The previous chapters have investigated turbulent reacting flow models using
DQMoM-IEM and the SF method as mean reaction rate closures. Both methods
solve a discretised joint composition PDF transport equation. Both have been cou-
pled to the Star-CD CFD code and applied to a constant density test case, where
the analytic DQMoM-IEM solver showed good agreement with experimental data
for the least computational effort.

The purpose of this chapter is to extend the work to consider nanoparticle for-
mation. We investigate the first part of a two-stage methodology:

• The first-stage extends the developments in chapter 3 to introduce a pro-
jected fields (PF) method that combines detailed chemistry and a population
balance for CFD simulations involving full coupling between turbulent flow,
chemistry and particles undergoing simultaneous inception, coagulation and
surface growth. The objective is to achieve a reasonable description of the
flow and gas-phase composition PDF for minimum computational effort.

• The second-stage models the evolution of the nanoparticles using a detailed

population balance model to post processes the gas-phase composition data.
There is free choice of the population balance model because the gas-phase
data already include the coupling to the population, negating the need to
re-solve the chemistry or flow.

This approach is well established for soot simulations of premixed 1D laminar
flames (Zhao et al., 2003; Singh et al., 2005; Morgan et al., 2007) and has been
applied to titania formation in turbulent diffusion flames (Johannessen et al., 2001)
(where the coupling is ignored). We follow the approach for soot and use the
method of moments with interpolative closure (MoMIC) (Frenklach and Harris,
1987) to describe the population balance. The investigation considers the example
of the chloride process for the industrial production of titania nanoparticles, and
uses the analytic solver from chapter 3 in order to minimise the computational
cost whilst the method is in development.
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5.1 Background

The remainder of this section introduces key aspects of the titania chemistry, the
population balance and PF equations. Section 5.2 summarises the implementation
of the method and the coupling to the CFD code. Section 5.3 investigates the per-
formance of the model against test case and experimental data, and demonstrates
its application to a representative industrial ‘slot’ reactor.

5.1.1 Kinetic model for titania formation

The titania mechanism is based on the chemistry of West et al. (2009). The mech-
anism comprises 66 reactions involving 28 gas-phase species plus TiO2 product.

Inception and surface reaction are treated slightly differently from West et al.
(2009). This choice is based on theoretical investigations of TiO2 growth and fits
to experimental data discussed by Shirley et al. (2011). All bimolecular collisions
between titanium oxychloride species are treated as inception steps

Tixα
Oyα

Clzα
+Tixβ

Oyβ
Clzβ
−→

(
xα + xβ

)
TiO2 (s)

+

(
yα + yβ

2
− xα − xβ

)
O2 +

(
zα + zβ

2

)
Cl2 , x,y,z≥ 1,

(5.1)

where the molecular collision diameter is taken as 0.65 nm (West et al., 2009).
Surface growth is treated as a second-order reaction

TiCl4 +O2 −→ TiO2 (s)+2Cl2 , (5.2)

subject to the rate expression

d
[
TiO2

]
dt

= ks A
[
TiCl4

][
O2

]
,

ks = 200 exp
(
−50kJ/mol

RT

)
m
s
· m3

mol
,

(5.3)

where A is the surface area of the population per unit volume. Equation (5.3)
assumes fixed reaction orders with respect to TiCl4 and O2, but is sufficient for
this work. Alternative approaches are discussed by Shirley et al. (2011). The full
model has 29 species and 172 (66 gas-phase, 105 inception, 1 surface) reactions.
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5 APPLICATION TO NANOPARTICLE MODELLING

5.1.2 Population balance equations

The population balance is solved using the method of moments with interpolative
closure (MoMIC). The method describes the evolution of a truncated set of whole-
order moments of a distribution of spherical particles undergoing simultaneous
inception, coagulation and surface growth. The coupling to the flow primarily
depends on the mass of material entering and leaving the population, where the
total particulate mass is proportional to the first moment of the particle number
distribution. MoMIC is reasonably accurate for the first moment (Grosschmidt
et al., 2002; Balthasar and Kraft, 2003) and is computationally efficient.

Balthasar et al. (2002) show that the enhancement of the collision frequency due
to turbulence (Saffman and Turner, 1956) is small compared to Brownian coagu-
lation under a wide range of conditions. They neglect the turbulent enhancement
and we invoke the same approximation here. They show that the moments of
a particle distribution can be included in a consistent PDF formulation. In con-
junction with the numerical treatment described in section 5.2, MoMIC can be
implemented directly within the PF method without further changes.

MoMIC is described in detail by Frenklach (2002) and is summarised below. The
population is described by the number density moments of the size distribution

Mr =
∞

∑
i=1

irni , r = 0, . . . ,U−1, (5.4)

where ni is the number density of particles of size i and mass mi = im1, m1 is the
mass of the smallest unit in the population and U is the number of moments in the
truncated set. The low-order moments have simple physical interpretations

M0 =
∞

∑
i=1

ni = n , (5.5)

M1 =
∞

∑
i=1

i ·ni = fv
ρs

m1
, (5.6)

where n is the total number density, fv is the volume fraction occupied by the
population and ρs is the particle density.
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5.1 Background

The population dynamics are governed by a population balance equation describ-
ing the effect of collisions between particles of the same type

dni

dt
=

1
2

i−1

∑
j=1

β j, i− jn jni− j−
∞

∑
j=1

βi, jnin j , (5.7)

where βi, j is a frequency factor describing the rate of successful collisions between
particles of size i and j. The first term on the right-hand side describes the creation
of particles due to collisions between all combinations of particles with sizes that
sum to i. It is multiplied by a factor of 1/2 to avoid double counting. The second
term describes the destruction of particles due to collisions between particles of
size i and any other size j. Equation (5.7) can be used to write an analogous
expression to describe the evolution of the moments of the distribution

dMr

dt
=

1
2

∞

∑
i=1

∞

∑
j=1

(
i+ j

)r
βi, jnin j−

∞

∑
i=1

∞

∑
j=1

ir
βi, jnin j . (5.8)

The form of the frequency factor βi, j depends on the Knudsen number, defined in
terms of the mean free path of the gas λ and a representative length scale L

Kn =
2λ

L
. (5.9)

The continuum regime is characterised by Kn� 1, where βi, j is given

β
c
i, j = Kc

(
Ci

ri
+

C j

r j

)(
ri + r j

)
, (5.10)

and C is the Cunningham slip correction factor

C = 1+1.257Kn. (5.11)

The free-molecular regime is characterised by Kn� 1, where βi, j is given

β
f
i, j = εi j

√
8πkBT

µi, j

(
ri + r j

)2

, (5.12)

and εi j is a size-dependent coagulation enhancement factor due to attractive or
repulsive inter-particle forces, kB is the Boltzmann constant, T is the temperature,
µi, j is the reduced mass and ri is the radius of particles of size i.
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5 APPLICATION TO NANOPARTICLE MODELLING

In the case of spherical particles, equations (5.10) and (5.12) can be rewritten

β
c
i, j = Kc

(
1

i1/3 +
1

j1/3 +Kc
′
[

1
i2/3 +

1
j2/3

])(
i1/3 + j1/3

)
, (5.13)

β
f
i, j = Kf

(
1
i
+

1
j

)1/2(
i1/3 + j1/3

)2

, (5.14)

with

Kc =
2kBT
3µ

, Kc
′ = 2.514λ

(
πρs

6m1

)1/3

, Kf = εi j

(
3m1

4πρs

)1/6(6kBT
ρs

)1/2

, (5.15)

where µ is the absolute viscosity of the gas, and the length scale required by the
Knudsen number in equation (5.11) is specified as the particle diameter di. We
follow Balthasar (2000) and set εi j = 2.2 for collisions of uncharged particles.

The following sections use the population balance equation (5.8) to derive rate
equations for particle inception, surface growth and coagulation. The result-
ing surface growth (5.22) and coagulation equations (5.26) and (5.27) require
unknown fractional-order moments. The equations are closed by estimating
the fractional-order moments using logarithmic Lagrange interpolation between
known whole-order reduced moments µr = Mr/M0. This is equivalent to assum-
ing a monodisperse distribution in the two-moment case, r = 0,1.3

Inception rate

Inception is assumed to occur in the free molecular regime. Equation (5.8) can be
formulated for particle inception by omitting the second term and substituting β f

i, j

defined in equation (5.12). In terms of the reaction scheme given by equation (5.1)

Ṁr
in
=

1
2

√
8πkBT N2

A ∑
inception
reactions

εαβ√
µα,β

(
xα + xβ

)r(rα + rβ

)2CαCβ , (5.16)

3 Robert Patterson.

90



5.1 Background

where each inception reaction uniquely defines

(5.17)
Cα =CTixα

Oyα
Clzα

, Cβ =CTix
β

Oy
β

Clz
β

,

rα = rβ = 0.65×10−9 m, (5.18)

with

(5.19)
εαβ = 2.2,

1
µα,β

=
NA

WCTixα Oyα Clzα

+
NA

WCTix
β

Oy
β

Clz
β

. (5.20)

The smallest unit in the population is defined as a single TiO2 molecule, such that
the smallest particle size is (xα + xβ ) = 2 and M1/NA is the number of moles of
TiO2 in the population.

Surface growth rate

The surface growth rate can be written in terms of the mechanism defined by
equation (5.3) and the population balance equation (5.8) using

β
sg
i, j = ksAiCO2

. (5.21)

Assuming spherical particles

Ṁr
sg
=


0, r = 0

ksA1CO2
CTiCl4

NA

r−1

∑
k=0

(
r
k

)
ν

r−k
TiO2

µk+ 2
3

M0 , r ≥ 1,
(5.22)

where

Ai = A1 i2/3 , A1 = 4.787×10−19 m2 , (5.23)

νTiO2
= 1. (5.24)

The factor of ν
r−k
TiO2

arises from the reaction stoichiometry, where each TiCl4 react-
ing as per equation (5.2) contributes one TiO2 unit to the population.
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5 APPLICATION TO NANOPARTICLE MODELLING

Coagulation rate

The coagulation rate is calculated as described by Frenklach (2002)

Ṁr
cg
=

Ṁr
c Ṁr

f

Ṁr
c
+ Ṁr

f , r = 0,2,3, . . . (5.25)

The continuum coagulation rate described by equations (5.8) and (5.13) is given

Ṁr
c
=



−Kc

(
1+µ 1

3
µ− 1

3
+Kc

′
[
µ− 1

3
+µ 1

3
µ− 2

3

])
M2

0 , r = 0

0, r = 1

Kc

2

r−1

∑
k=1

(
r
k

)(
µk+ 1

3
µr−k− 1

3
r ≥ 2.

+2µkµr−k +µk− 1
3
µr−k+ 1

3

+Kc
′
[
µk+ 1

3
µr−k− 2

3
+µkµr−k− 1

3

+µk− 1
3
µr−k +µk− 2

3
µr−k+ 1

3

])
M2

0 ,

(5.26)

The free molecular coagulation rate described by equations (5.8) and (5.14) is

Ṁr
f
=



−1
2

Kf
( 1

2 f0,0
)

M2
0 , r = 0

0, r = 1

1
2

Kf

r−1

∑
k=1

(
r
k

)(l fk,r−k
)

M2
0 , r ≥ 2

(5.27)

where

l fx,y =
∞

∑
i=1

∞

∑
j=1

ix jy

√
i j

(
i+ j

)l(
i1/3 + j1/3

)2 ni n j

M2
0

, l =
1
2

. (5.28)
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5.1 Background

Equation (5.28) is only closed for integer values of the parameter l. The function
1
2 fx,y is estimated by logarithmic Lagrange interpolation between evaluations of a
grid function

mfx,y =
m

∑
k=0

(
m
k

)(
µk+x+ 1

6
µm+y−k− 1

2

+2µk+x− 1
6
µm+y−k− 1

6
+µk+x− 1

2
µm+y−k+ 1

6

)
, m ∈ N0 ,

(5.29)

using the parameterisation

m = 0, . . . ,n−1,

n = min
(
4,U−max(x,y)

)
, U ∈ {3, . . . ,6} ,

(5.30)

where U is the number of moments such that r = 0, . . . ,U−1. This is a generali-
sation of the method recommended by Frenklach (2002) for the case r = 0, . . . ,5.

The following physical properties are assumed

m1 = 1.327×10−25 kg, ρs = 4260 kg/m3 , (5.31)

and the mean free path and viscosity are approximated as those of air

λ = 2.370×10−5 T
p

m, (5.32)

µ = 1.458×10−6 T
√

T
T +100.4

kg/ms, (5.33)

where the temperature T and pressure p are in K and Pa respectively.

5.1.3 Projected fields equations

The PF method uses a weighted field approximation and projection to derive trans-
port equations that force the statistics of the fields to obey specified moments of a
discretised PDF transport equation. The approach was introduced by Fox (2003)
under the name DQMoM-IEM. Its implementation and performance as a turbulent
reaction model have been investigated in chapters 3 and 4.
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5 APPLICATION TO NANOPARTICLE MODELLING

This chapter considers the case when a closed Favre-averaged joint composition
PDF transport equation

〈ρ〉
∂ f̃φ

∂ t
+ 〈ρ〉Ũi

∂ f̃φ

∂xi
− ∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]
〈ρ〉 f̃φ

)
,

(5.34)

is discretised using a weighted field approximation

f̃φ

(
ψ(x, t)

)
dψ = f̃φ

(
ψ1, . . . ,ψK(x, t)

)
dψ1 · · · dψK

≈
N

∑
n=1

w(n)(x, t)
K

∏
α=1

δ
ψ

(n)
α (x,t)

(
dψα

)
. (5.35)

The field approximation introduces N weights w(n)
(x, t) and NK composition

variables ψ
(n)
α (x, t), where α = 1, . . . ,K scalars. The fields are defined by

δ
ψ

(n)
α (x,t)(dψα) as per equation (3.3) and the weights constrained to sum to unity

as per equation (3.4). The turbulent convective flux in equation (5.34) is closed
using a gradient diffusion model. The diffusive flux is closed using the IEM mix-
ing model and implicitly assumes equal molecular diffusivities and unity Lewis
numbers for all species. (See section 2.4.2 and section A.1 in appendix A).

Transport equations are derived

∂w(n)

∂ t
+Ũi

∂w(n)

∂xi
− 1
〈ρ〉

∂

∂xi

(
ΓT

∂w(n)

∂xi

)
= a(n) , (5.36)

∂ s(n)α

∂ t
+Ũi

∂ s(n)α

∂xi
− 1
〈ρ〉

∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)
= b(n)

α , (5.37)

where

s(n)α ≡ w(n)
ψ

(n)
α . (5.38)

Note that the x-t dependencies of the terms in equations (5.36–5.38) onwards are
suppressed for clarity of presentation.
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5.1 Background

The source terms a(n) are set to zero and a set of M =NK unmixed empirical
moments of the form

〈φ mλα

α
〉N =

N

∑
n=1

w(n)
ψ

(n)
α

mλα , for λ = 1, . . . ,M , (5.39)

are used to derive a linear system of NK equations for the source terms b(n)
α . In the

case that the moments in equation (5.39) are specified

mλα =

 n where n = λ − (α−1)N if n≥ 1 and n≤ N

0 otherwise

for λ = 1, . . . ,M and α = 1, . . . ,K ,

(5.40)

the linear system can be solved to give a set of N equations for each scalar
α =1, . . . ,K (see chapter 3)

b(n)
α

= b(n)
rxα

+b(n)
mxα

+b(n)
dxα

, (5.41)

where

b(n)
rxα

= w(n)Sα

(
ψ

(n)
)

, (5.42)

b(n)
mxα

= w(n) Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
, (5.43)

b(n)
dxα

= w(n)c(n)
αα

N

∑
i=1
i6=n

1

ψ
(n)
α −ψ

(i)
α

+
N

∏
i=1
i 6=n

1

ψ
(n)
α −ψ

(i)
α

N

∑
j=1
j 6=n

w( j)c( j)
αα

N

∏
k=1

k 6= j,n

(
ψ

( j)
α
−ψ

(k)
α

)
,

(5.44)

and

c(n)
αβ
≡ ΓT

〈ρ〉
∂ψ

(n)
α

∂xi

∂ψ
(n)
β

∂xi
. (5.45)
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5 APPLICATION TO NANOPARTICLE MODELLING

The projection is imposed by equations (5.36–5.45). It constrains the statistics of
the fields to obey the discretised PDF transport equation for each of the empirical
moments specified by equations (5.39) and (5.40). The b(n)

rxα
and b(n)

mxα
terms de-

scribe chemical reaction and micromixing, b(n)
dxα

describes the effect of turbulent
diffusion. Equation (5.44) is poorly conditioned and is singular if ψ

(n)
α =ψ

(i)
α for

i 6= n. Its numerical behaviour and treatment has been investigated in chapter 3.

5.2 Numerical details

This section summarises the PF implementation and the coupling to the CFD code.

5.2.1 Projected fields coupling to Star-CD

The Star-CD CFD code (CD-adapco, 2009) is used to solve Favre-averaged con-
servation equations as a transient problem with a k-ε High Reynolds Number tur-
bulence model and standard wall functions. The default model constants are used
with unit Prandtl and Schmidt numbers. The PF model is coupled to Star-CD us-
ing an operator splitting technique analogous to that in section 3.2.1. The method
is summarised below for the case considered in this chapter.

Equation (5.37) is solved using a Strang (1968) splitting

∂ s(n)α

∂ t
=−Ũi

∂ s(n)α

∂xi
+

1
〈ρ〉

∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)
, (5.46)

∂ s(n)α

∂ t
= b(n)

α
. (5.47)

Equations (5.36) and (5.46) are solved using Star-CD with upwind differencing to
transport w(n) and s(n)α as passive scalars with time step ∆t, and equation (5.47) is
solved with time step 1

2∆t before the first and after the last iteration, and time step
∆t otherwise. The numerical treatment of equation (5.47) requires special care. It
is solved using the analytic solver and operator splitting described in section 3.2.4
such that the current study is limited to N=2 fields.
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5.2 Numerical details

5.2.2 Treatment of the scalars

The composition space of the joint composition PDF is defined

φα =


Yα , α = 1, . . . ,s ,

Mr /〈ρ〉 , α = 1+ s+ r , r = 0, . . . ,U−1,

h , α = 1+ s+U = K ,

(5.48)

where Yα are the species mass fractions, Mr/〈ρ〉 are the number moments per unit
mass and h is the specific enthalpy. The global bounds required by the method
described in section 3.2.4 are specified

[
Yglb, Ygub

]
=
[
0, 1
]

, (5.49)[
Mglb, Mgub

]
=
[
0, ∞

]
, (5.50)[

hglb, hgub
]
=
[
h
(
Tglb,Y (n)(x, t)

)
, h
(
Tgub,Y (n)(x, t)

)]
. (5.51)

The enthalpy bounds are calculated at the prevailing composition using global
temperature bounds. The temperature bounds are defined using the bounds on the
thermodynamic data that accompany the gas-phase mechanism.

The micromixing parameters Cφ , τφ and turbulent diffusivity ΓT required by the
micromixing and diffusion terms in equations (5.43) and (5.44) are calculated

Cφ = 2.0, τφ = k/ε , (5.52)

ΓT = νT/σT , (5.53)

where k, ε and νT are the turbulent kinetic energy, turbulent dissipation and turbu-
lent viscosity prescribed by Star-CD and σT = 0.7.

The reaction term in equation (5.42) is integrated numerically using RADAU5 in
terms of the molar concentrations C(n)

α , the number moments per unit volume M(n)
r

and the temperature T (n) of each field. The total moment source terms are given

Ṁ(n)
r = Ṁ(n)

r
in
+ Ṁ(n)

r
sg
+ Ṁ(n)

r
cg

, (5.54)

where the process rates are defined as per equations (5.16), (5.22) and (5.25).
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5 APPLICATION TO NANOPARTICLE MODELLING

The concentration source terms due to gas-phase reaction are calculated using the
mechanism of West et al. (2009). The additional contributions due to particle
processes are calculated

Ċ(n)
α = ∑

i

ν
α i

νTiO2 i

Ṁ(n)
1 i

NA
, (5.55)

where the sum is over the set of inception and surface reactions, ν
α i is the stoi-

chiometric coefficient of species α in reaction i, and Ṁ(n)
1 i is the contribution to

Ṁ(n)
1 due to reaction i. Under the assumptions of a constant pressure system at low

Mach number and in the absence of radiative heat transfer, the specific enthalpy
source term is null (see appendix section A.1). The gas-phase and particles are
assumed to have the same temperature T , and the temperature source term due to
all reactions (gas-phase, inception and surface growth) is given

Ṫ (n) =−

s
∑

α=1
h(n)

α Ċ(n)
α Wα

s
∑

α=1
cpα

C(n)
α Wα

. (5.56)

The total source terms are adjusted to account for gas-phase expansion

Ċ(n)
α
← Ċ(n)

α
− γ

(n)C(n)
α

, (5.57)

Ṁ(n)
r ← Ṁ(n)

r − γ
(n) M(n)

r , (5.58)

where the rate of gas-phase expansion γ (n) is calculated using the ideal gas law at
constant pressure

pV
(
1− fv

)
= nRT , (5.59)

γ =
V̇
V

, γ
(n) =

ḟv
(n)

1− f (n)v

+
Ṫ (n)

T (n) +
∑

s
α=1 Ċ(n)

α

∑
s
α=1C(n)

α

, (5.60)

where V
(
1− fv

)
is gas-phase volume and f (n)v is calculated as per equation (5.6)

f (n)v =
m1M(n)

1

ρs
, ḟv

(n)
=

m1 Ṁ(n)
1

ρs
. (5.61)
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5.2 Numerical details

5.2.3 Pressure coupling

Changes in the composition and temperature are coupled to the flow field via the
density and viscosity. An updated density and viscosity are passed to Star-CD
after the solution of equation (5.47) at each time step

〈ρ〉= 〈ρg〉+ 〈ρs〉 , (5.62)

where ρg is a gas-phase density estimated using the ideal gas law in equation (5.59)

〈ρg〉=
p
(
1−〈 fv〉N

)
R〈T 〉N

s
∑

α=1

〈Ygα〉N
Wα

, (5.63)

Yg are the gas-phase mass fractions and ρs is the solid-phase density

〈ρs〉= m1 〈M1〉N . (5.64)

The viscosity is calculated using equation (5.33)

〈µ〉= 1.458×10−6 〈T 〉N
√
〈T 〉N

〈T 〉N +100.4
kg
m s

. (5.65)

A strong pressure coupling can be implemented by using the Star-CD pressure
field in the calculation of the density in equation (5.63). A weak pressure coupling

is more robust and can be implemented by using a constant pressure in equation
(5.63). This is often acceptable because the density is only a weak function of
pressure. The calculations in this chapter use a weak pressure coupling.

An updated density is also calculated after each operator splitting step during
the solution of equation (5.47). It is calculated directly from the concentrations
C(n)

α after each reaction step. The micromixing and diffusion steps conserve the
mean mass fraction and enthalpy, but not necessarily the mean temperature or
density. An updated density is estimated using equation (5.62) at the end of each
micromixing and diffusion step.
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5.3 Titania production in a ‘slot’ reactor

This section investigates the performance of the PF method for a model problem
involving full coupling between the flow, chemistry and titania nanoparticles un-
dergoing inception, coagulation and surface growth in a ‘slot’ reactor.

Section 5.3.1 introduces details of the model problem. Section 5.3.2 considers
some ideal reactor cases. It checks the MoMIC implementation and compares
results to experimental data. Section 5.3.3 validates the PF implementation in a
scalar mixing case. Section 5.3.4 demonstrates the application of the method to
the full reacting case.

5.3.1 Model problem

This chapter considers the production of titania nanoparticles in a lab scale ‘slot’
reactor. The geometry and input conditions are representative of industrial condi-
tions for the chloride process. The reactor configuration is illustrated in figure 5.1.

CFD Grid

1000 mm

O2

2300 K

1000 mol / min

(32 kg / min)

TiCl4 600 K, 880 mol / min (167 kg / min)

3000 mm

                      10 mm

Pressure = 3 barg, residence time ~ 0.07 s

1
5

0
 m

m

℄࠸࠸

Figure 5.1: Configuration of the axisymmetric titania reactor.

The reactor is modelled using a wedge-shaped domain with boundary conditions
to exploit axial symmetry. Two grids were considered. The first is a base grid.
It uses a 238×15 (axial×radial) domain of fully structured hexahedral cells. The
axial spacing is shrunk into and stretched out of the reaction zone by a factor of
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5.3 Titania production in a ‘slot’ reactor

1.05 subject to the size bounds [5, 50]mm. The second is a refined version of the
base grid. It uses a 588×30 (axial × radial) domain subject to the same axial
stretching and size bounds [2.5, 25]mm. All cases were solved with time step
2×10−5 s on the base grid and 6×10−6 s on the refined grid.

Star-CD (CD-adapco, 2009) was used to solve the flow and PF equations as per
section 5.2. The initial and inlet boundary conditions are given in table 5.1. The
turbulence boundary conditions were estimated using the empirical correlations

l = 0.07L , TI = 0.16Re(−1/8)
DH

, (5.66)

where l is the mixing length and TI is the turbulence intensity. L is a length scale
and ReDH a Reynolds number, both based on the relevant hydraulic diameter.

Table 5.1: Titania reactor initial and inlet boundary conditions.

Initial Inlet boundary

condition Axial inlet Radial inlet

w(n) 1/N 0 1 for n = 1
1/N 1 0 for n = 2

Y (n)
TiCl4

1 0 1

Y (n)
O2

0 1 0

Y (n)
α 0 0 0 for α 6= TiCl4,O2

M(n)
r /〈ρ〉

0 0 4r×1010 for section 5.3.3
0 0 0 for section 5.3.4

T (n) 600 2300 600

〈ρ〉 − 0.669 15.2 kg/m3

〈µ〉 − 6.7×10−5 3.1×10−5 kg/ms

Volumetric flow − 0.797 0.183 m3/s

Mixing length − 0.011 0.001 m

Turbulence intensity − 0.038 0.034 -

Note that the table specifies the scalars in terms of Yα , Mr and T , but that the PF method transports w(n) and s(n)α =w(n)
ψ

(n)
α ,

where the composition space is defined by equation (5.48) and h(n) is calculated h(n) = h
(

T (n),Y (n)
)

.
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5 APPLICATION TO NANOPARTICLE MODELLING

5.3.2 Ideal reactor studies

This section considers some ideal reactor cases. It checks that MoMIC has been
correctly implemented and reproduces experimental data. The simulations are
performed by solving equation (5.47) for the N = 1 case. This is equivalent to
assuming perfect mixing. It gives insight into the behaviour of the reaction with-
out spatial transport and in isolation from the micromixing and diffusion terms
described in section 5.1.3.

Figure 5.2 validates the MoMIC implementation against test data from an estab-
lished stochastic population balance model (Goodson and Kraft, 2002; Wells and
Kraft, 2005; Patterson et al., 2006a,b). The initial conditions were defined as a
binary mixture of 1000:880 (mol/mol) O2 : TiCl4 at 3 barg based on figure 5.3.1.
Both methods were solved under isothermal conditions at 2100 K and 1500 K (not
shown) using the chemical mechanism described in section 5.1.1 and a spherical
particle model. The test data were generated using both a predictor-corrector cou-
pling to the gas-phase chemistry (Celnik et al., 2009) and by post processing the
gas-phase data from the MoMIC simulations.

MoMIC shows excellent agreement with the test data for the concentrations of
key gas-phase species and the zeroth and first moments of the particle number
distribution. The oxygen is in slight excess and is not completely consumed.
The rapid consumption of the titanium species is dominated by surface reaction.
This is consistent with industrial experience of the chloride process. The test
data show that the particle number moments can be accurately reproduced by post
processing the gas-phase composition with as few as 256 stochastic particles. The
MoMIC data show little sensitivity to an increase from U =3 to U =6 moments
(not shown). All remaining MoMIC simulations in this chapter set U =3.

Figure 5.3 shows particle number distributions calculated using the stochastic
population balance model to post process the gas-phase data in figure 5.2(a). The
data show the emergence of a bimodal distribution due to coagulation, with mean
particle size approximately 200µm after 0.01 s. There is reasonable agreement
between the 256 and 4096 stochastic particle cases, but with more pronounced
differences than are apparent in figure 5.2(b).
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Figure 5.2: Titania batch reactor concentration and particle number moments at T =
2100 K. Lines: MoMIC, U = 3; Crosses: test data, predictor-corrector
splitting with 256 (×) stochastic particles; Circles: test data, gas-phase data
post processed with 256 (©) and 4096 (•◦) stochastic particles.
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Figure 5.3: Titania batch reactor particle number distributions calculated from fig-
ure 5.2(b) at three different times. Black lines: 256 stochastic particles; Gray
lines: 4096 stochastic particles.

Figure 5.4 shows non-isothermal MoMIC simulations with different initial tem-
peratures. Figure 5.4(a) shows an initial endothermic induction period due to
decomposition of TiCl4, followed by a rapid exotherm as the reaction ‘takes off’.
Higher initial temperatures give shorter inductions times. The final temperatures
are in the range 1850–2200 K and are determined by the initial temperature and
gas-phase equilibria. The initial temperature of 1082 K is that given by the inlet
streams in figure 5.1 if they are allowed to mix without reacting and corresponds
to a final temperature of 1860 K. Figure 5.4(b) shows temperature profiles in the
absence of the MoMIC inception, surface growth and coagulation processes for an
initial temperature of 2100 K. The exotherm is mainly caused by surface growth
and is slightly moderated by the reduction in surface area due to coagulation.

104



5.3 Titania production in a ‘slot’ reactor

10
−8

10
−6

10
−4

10
−21000

1500

2000

2500

Time (s)

T
em

pe
ra

tu
re

 (
K

)

T = 1082 K

T = 1860 K

(a) Effect of initial temperature.

10
−8

10
−6

10
−4

10
−21000

1500

2000

2500

Time (s)

T
em

pe
ra

tu
re

 (
K

)

 

 

Inception, surface growth and coagulation
Inception and surface growth only
Inception only
Gas−phase chemistry only

(b) Effect of the particle processes.

Figure 5.4: Titania batch reactor non-isothermal temperature profiles.
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Figure 5.5 shows good agreement between MoMIC and experimental data from
Pratsinis et al. (1990) compared with the mechanism presented by West et al.
(2009), which showed up to eight orders of magnitude disagreement in keff (see
Shirley et al., 2011, figure 9). The experimental investigation measured the reac-
tion of 5:1 (mol/mol) O2 : TiCl4 in argon (99% by volume) in a 1/8-in-I.D. tube
heated to 973–1273 K. Pratsinis et al. (1990) estimate an effective rate constant by
assuming that the reaction is first-order in TiCl4 vapour with Arrhenius kinetics

keff =−
ln(Co/Ci)

t
, (5.67)

where Ci and Co are the measured inlet and outlet TiCl4 concentrations and t is
residence time in the isothermal zone of the reactor held at temperature T . The
experiment was modelled using an imposed temperature profile taken from Pratsi-
nis et al. (1990, fig. 3). The data are presented in the form used by Pratsinis et al.
(1990, fig. 4) for easy comparison.
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0.75 s
1.10 s

Figure 5.5: Arrhenius plot of the oxidation rate of TiCl4 at three different residence times.
Black lines with open symbols: MoMIC; Closed symbols: experimental data
Pratsinis et al. (1990, fig. 4).

106
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5.3.3 Scalar mixing simulations

This section checks the PF implementation in a (non-reacting) scalar mixing case.
The boundary conditions in table 5.1 are used to introduce a monodisperse par-
ticle distribution at the TiCl4 inlet to ensure non-zero valued moments. The PF
model is assessed against a reference solution provided using the method of mo-
ments (MoM). This approach has previously been used in chapter 3 to validate
the numerical treatment of the mass fractions.

The flow field was solved using the method of moments. We describe it as a ‘cold’
flow field because it pertains to the non-reacting case. Figure 5.6 shows the major
features of the velocity field near the TiCl4 inlet. There is a recirculation zone near
the wall immediately downstream of the inlet and a large increase in the centreline
velocity due to the change in density as cold material from the TiCl4 inlet mixes
with hot material in the reactor.

2

4

3

3

Figure 5.6: Titania reactor ‘cold’ velocity field.

The remaining simulations in this section (5.3.3) are performed without re-solving
the flow field. This ensures that any differences between the method of moments
and the PF method are due to the numerical implementation of the micromix-
ing and diffusion terms described in section 5.1.3, as opposed to the subsequent
coupling of such differences to the flow field.

107



5 APPLICATION TO NANOPARTICLE MODELLING

Table 5.2 shows convergence data to validate the PF implementation against the
method of moments reference solution. The convergence was assessed for the
mean and standard deviation of the composition using the metrics

εmean = ε

(
〈φα〉N , 〈φα〉MoM

)
, (5.68)

εsd = ε

(√
〈φ ′2

α
〉N,

√
〈φ ′2

α
〉MoM

)
, (5.69)

where

ε(x,y) =
‖ x− y‖
‖ x+ y‖

, (5.70)

and ‖ · ‖ denotes an L2-norm over space. The variances are defined

〈
φ
′2
α

〉
N =

〈
φ

2
α

〉
N−〈φα〉2N , (5.71)

and likewise for the method of moments

〈
φ
′2
α

〉
MoM =

〈
φ

2
α

〉
MoM−〈φα〉2MoM . (5.72)

The means are in excellent agreement. The standard deviations are in good agree-
ment and show the same value of εsd for all scalars on a given grid. The data
show some minor grid dependence, but are sufficient to demonstrate equivalent
numerical treatment of the enthalpy and number moments per unit mass versus
that validated for the mass fractions in chapter 3. Note that the magnitude of
εsd differs from previously (cf. table 3.2) because the metric in equation (5.70) is
normalised to allow direct comparison between all scalars.
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Table 5.2: Convergence of the PF empirical mean and standard deviation versus the
method of moments for the inert titania reactor case.

Grid εmean εsd

φ>α =
[
Y1 · · ·Ys

M0

〈ρ〉 · · ·
M2

〈ρ〉 h
]

φ>α =
[
Y1 · · ·Ys

M0

〈ρ〉 · · ·
M2

〈ρ〉 h
]

Base < 10−8 1.2×10−2

Refined < 10−8 7.8×10−3

Figure 5.7 presents empirical moments of the enthalpy fields from the PF model
on the refined grid for 1 m of reactor downstream of the TiCl4 inlet. Figure 5.7(a)
shows the mean enthalpy. The mean mass fraction and number moment per unit
mass fields share the same topology, with values scaled by the corresponding in-
let boundary conditions. Figure 5.7(b) shows the standard deviation of the en-
thalpy. Again, the standard deviation of the mass fractions and number moments
per unit mass share the same topology, but scaled by the difference between the
corresponding inlet boundary values. The ‘plume’ from the TiCl4 inlet marks the
mixing zone in the reactor.

Figure 5.8 presents temperature data corresponding to figure 5.7. Figure 5.8(a)
shows the mean temperature field and an outlet temperature of 1082 K consistent
with figure 5.4(a). The temperature is a non-linear function of the mass fractions
and enthalpy, so looks slightly different from figure 5.7(a). The calculation of
the mean temperature is closed by the PF method, but unclosed in the method of
moments. The method of moments case estimates an approximate temperature
from the mean mass fractions and enthalpy. The effect of this approximation is
shown in figure 5.8(b) and correlates with the location of the standard deviation in
figure 5.7(b). The method of moments case overestimates the temperature in the
mixing zone by up to 200 K.
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(a) Mean enthalpy 〈h〉N=2 (J/kg).

(b) Enthalpy standard deviation
√
〈h′2〉N=2 (J/kg).

Figure 5.7: Titania reactor empirical moments of enthalpy for the inert case.
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5.3 Titania production in a ‘slot’ reactor

(a) Mean temperature 〈T 〉N=2 (K).

(b) Temperature difference 〈T 〉MoM−〈T 〉N=2 (K).

Figure 5.8: Titania reactor empirical moments of temperature for the inert case.
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5.3.4 Titania reactor simulations

This section describes the application of the PF method to simulations of the ti-
tania reactor discussed in section 5.3.1. All simulations were performed on both
grids with U =3 moments and include fully coupled solution of the flow, detailed
gas-phase chemistry and titania nanoparticles undergoing simultaneous inception,
coagulation and surface growth. The figures present data for the refined grid.

Figure 5.9 shows the mean temperature in the reactor. Comparison of fig-
ures 5.8(a) and 5.9(a) shows a significant exotherm due to the reaction. The tem-
perature rise starts in the mixing zone between the inlet streams and extends the
length of the reactor downstream, with radial gradients broadening due to mixing.
The outlet temperature is 1860 K and is consistent with figure 5.4(a). Figure 5.9(b)
shows the difference in mean temperature from a perfect mixing case that solves
the PF equations for the N=1 case. This is equivalent to assuming infinitely fast
mixing and is a common engineering approximation. The perfect mixing case
overestimates the temperature in the mixing zone by up to 600 K.

Figure 5.10 shows the zeroth and first moments of the particle number density.
The zeroth moment corresponds to the total number of particles per unit volume,
the first moment is proportional to the total mass of particles per unit volume. Fig-
ure 5.10(a) shows an area of high number density caused by inception at the lead-
ing edge of the mixing zone. The inception zone persists downstream in the area
corresponding to a mean temperature 1450 6 〈T 〉N=2 6 1850 K. Elsewhere the
number density decreases due to coagulation and mixing. Figure 5.10(c) shows
that most mass is added to the population due to surface growth starting just down-
stream of the inception zone. The region of largest mass is concentrated in the
area of higher number density downstream of the TiCl4 inlet. Figures 5.10(b)
and (d) compare the results to the perfect mixing case. The differences are most
pronounced in the mixing zone near the TiCl4 inlet and are of the same order of
magnitude as the data in figures 5.10(a) and (c). The differences decrease down-
stream due to mixing. All the moments (M(n)

r , r = 0,1,2) were assessed against
the criteria specified by Wright Jr (2006) and correspond to valid moment sets.
This is attributed to the use of upwind differencing.
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5.3 Titania production in a ‘slot’ reactor

(a) Mean temperature 〈T 〉N=2 (K).

(b) Difference 〈T 〉perfect mixing−〈T 〉N=2 (K).

Figure 5.9: Titania reactor empirical mean temperature for the reacting case.
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(a) Mean zero moment 〈M0〉N=2 (#/cm3).

(b) Difference 〈M0〉perfect mixing−〈M0〉N=2 (#/cm3).

Figure 5.10: Titania reactor empirical mean particle number moments for the reacting
case (part 1).
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(c) Mean first moment 〈M1〉N=2 (#/cm3).

(d) Difference 〈M1〉perfect mixing−〈M1〉N=2 (#/cm3).

Figure 5.10: Titania reactor empirical mean particle number moments for the reacting
case (part 2).
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Figure 5.11 shows the mean molar concentrations of TiCl4 and TixOyClz. Fig-
ure 5.11(a) shows that TiCl4 exists in the low-temperature region downstream of
the inlet. It decomposes via TiClz, z < 4 and oxidises to form TixOyClz species
as the temperature increases due to mixing with material from the O2 inlet. Fig-
ure 5.11(b) shows the total concentration of all TixOyClz species. The inception
model in equation (5.1) specifies TixOyClz as the incepting species and strong cor-
relation is observed between the concentration in figure 5.11(b) and the particle
number density in figure 5.10(a).

Figure 5.12 presents the number moments in terms of the particle diameter

d = d1µ 1
3
, (5.73)

σ = d1

√
µ 2

3
−µ2

1
3
. (5.74)

where d is the mean and σ is the standard deviation of the diameter. Note that
these plots show the full length of the reactor downstream of the TiCl4 inlet. The
data show lower diameter and standard deviation corresponding to the inception
zone in figure 5.10(a). Elsewhere the diameter increases due to surface growth and
coagulation. The standard deviation shows a narrower distribution in the region
where figure 5.10(c) shows most surface growth. This is consistent with previous
studies where surface growth is shown to decrease the width of the distribution
(Pratsinis and Spicer, 1998; Tsantilis and Pratsinis, 2004). These effects diminish
downstream due to mixing. In this example, there are effectively no remaining
radial gradients at the outlet.

The model estimates a maximum titania volume fraction of approximately 0.02%.
This is significantly lower than the 0.1% upper limit placed on the validity of the
Smoluchowski equation by Heine and Pratsinis (2007b). Further assessment of
the applicability of the Smoluchowski equation requires a more detailed particle
model and is not attempted here. The most that we can say for now is that we
expect a particle model that describes the aggregate structure of the particles to
predict a maximum effective volume fraction greater than 0.02%.
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(a) Mean concentration
〈

CTiCl4

〉
N=2

(mol/cm3).

(b) Mean concentration
〈
CTixOyClz

〉
N=2 (mol/cm3).

Figure 5.11: Titania reactor empirical mean concentrations for the reacting case.
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(a) Mean particle diameter 〈d〉N=2 (nm).

(b) Standard deviation 〈σ〉N=2 (nm).

Figure 5.12: Titania reactor empirical moments of the particle size for the reacting case.
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5.4 Chapter summary

This chapter has investigated the first part of a two-stage methodology for the de-
tailed modelling of nanoparticle formation in turbulent reacting flows, including
detailed chemistry and full coupling between the flow, material and energy bal-
ance equations. The chapter considers the example of the chloride process for the
industrial synthesis of titania nanoparticles in a representative ‘slot’ reactor.

The objective of the first stage of the methodology is to achieve a reasonable
description of the flow and joint composition PDF for minimum computational
effort. The second stage is to apply a detailed population balance model to inves-
tigate the evolution of the nanoparticles without the need to re-solve the chemistry
or flow. The objective of the second stage is to allow free choice of the population
balance so that it can be chosen based on the objectives of the study, rather than
considerations of how to couple it to the simulation of the chemistry and flow.

A projected fields (PF) method has been extended to combine the method of mo-
ments with interpolative closure (MoMIC) population balance model and detailed
titania chemistry. The implementation of MoMIC and the chemistry is validated
against ideal reactor simulations using an established population balance model
and against experimental data. The numerical treatment of the PF method within
the Star-CD CFD code is validated against a reference solution provided using the
method of moments for a non-reacting test case. The data show a substantial mix-
ing zone near the reactor inlets, indicated by a region of high standard deviation
in mixture enthalpy, particle number moments and mass fractions.

The feasibility of the first stage is demonstrated for fully coupled simulations of
titania formation in a ‘slot’ reactor, including particles undergoing simultaneous
inception, coagulation and surface growth. The data show radial inhomogeneities
near the slot. The inhomogeneities diminish downstream due to mixing. However,
designs with multiple inlets would introduce such inhomogeneities throughout
the reactor. The temperature and particle properties are compared with a perfect
mixing case and show significant differences near the slot. The second stage will
need to consider the full composition PDF, not just the mean composition. The
details of how to implement the second stage remain an open question.
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Chapter 6

Conclusions

6.1 Conclusions of the thesis

This thesis investigated the application of DQMoM-IEM and SF as mean reaction
rate closures for simulations of nanoparticle formation in turbulent reacting flow.
The literature shows that such simulations entail compromise between the level of
detail and accuracy of the simulation, the chemistry for which the model is valid,
the computational cost of the calculation and the compatibility of the method with
existing software. The thesis focussed on methods that are capable of varying the
level of approximation and computational effort, that make no assumptions about
the chemistry and that can be implemented in existing CFD software.

The numerical behaviour and implementation of DQMoM-IEM have been inves-
tigated in detail. The method uses a weighted field approximation to discretise a
joint composition PDF transport equation. A projection method is used to derive
transport equations that force the statistics of the fields to obey specified moments
of the discretised PDF transport equation. We distinguish between the model and
the numerical method. We consider the PDF transport equation to be the model
and the weighted field approximation and projection to be the numerical method.
We describe DQMoM-IEM as a projected fields (PF) method. This highlights the
projection that distinguishes it from a wider class of mathematically related field
methods and is consistent with existing terminology.
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A new analytic expression is introduced for the DQMoM-IEM source terms. It
prescribes the choice of the moment set in the derivation of the model equations
and is general in the sense that it is valid for any number of fields and scalars.
Explicit terms can be identified relating to reaction, micromixing and turbulent
diffusion processes. The diffusion term is responsible for a number of numerical
difficulties reported in previous studies of DQMoM-IEM. It can cause loss of
boundedness and is discontinuous and singular if two or more fields take equal
values for a given scalar at any point in physical space.

The analytic form of the diffusion term negates the need to use numerical methods
to evaluate the DQMoM-IEM source terms, reducing the numerical complexity of
the method. Two new solvers are introduced to take advantage of this develop-
ment. The first (general) solver can be applied to cases with any number of fields
and scalars. The diffusion term is calculated by functional evaluation and a filter
function is introduced to eliminate discontinuities and enforce boundedness. The
source terms are then integrated numerically. The second (analytic) solver is spe-
cific to N=2 fields. It uses analytic solutions for the integrals of the diffusion and
micromixing source terms and can be applied to any number of scalars.

The new DQMoM-IEM solvers are coupled to the Star-CD CFD code using an
operator splitting technique and validated against the method of moments and a
constant density turbulent reaction test problem. The choice of boundary condi-
tions to represent a given physical condition is not arbitrary. The correct scalar
mixing was only reproduced when the boundary conditions were specified to be
consistent with each field being assigned to a specific inlet.

On paper, DQMoM-IEM offers an attractive method because it is deterministic
and the number of fields can be selected based on the level of approximation
appropriate to the problem. The weighted fields mean that only a few fields are
typically required; N=2,3 was shown to be sufficient for the constant density test
problem in chapter 3. These features suggest a computationally efficient method.
In practice, the key challenge remains the efficient treatment of the diffusion term.
The analytic solver provides an elegant approach to the N=2 case, but in general,
a constraint on the number of fields is likely to be imposed by the difficulty of
numerically integrating the diffusion term.
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The performance of DQMoM-IEM is compared to the SF method. The methods
share many similarities. The SF method uses an equi-weighted field approxi-
mation to discretise a joint composition PDF transport equation. Explicit terms
relating to reaction, micromixing and turbulent diffusion processes can again be
identified. The diffusion term is modelled as a stochastic process and the numer-
ical implementation is simpler than DQMoM-IEM. The fields evolve such that
they remain statistically equivalent to the joint composition PDF. A greater num-
ber of fields can be used than for DQMoM-IEM, but are also required to overcome
the restriction to equi-weighted fields and to control statistical error. The use of
antithetic sampling is introduced as a variance reduction technique to improve the
statistical efficiency of the method.

The SF method was applied to the same test problems as DQMoM-IEM. The
expected convergence was demonstrated, however the data retained significant
variance and a minor grid-dependence not seen with DQMoM-IEM. Antithetic
sampling was shown to enable better convergence to be achieved with fewer fields
in axisymmetric cases, although achieving this benefit required careful consider-
ation of the symmetry in the test case. Overall, DQMoM-IEM was more easily
able to achieve a grid-independent solution and gave deterministic and accurate
results more quickly for the test case considered.

A PF method based on the analytic DQMoM-IEM solver is introduced to combine
detailed chemistry and the MoMIC population balance model in Star-CD. The PF
method includes full coupling between the flow, chemistry and particles under-
going simultaneous inception, coagulation and surface growth, and is applied to
the example of the chloride process for the industrial synthesis of titania nanopar-
ticles in a ‘slot’ reactor. The implementation is systematically validated against
ideal reactor simulations using an established population balance model, against
experimental data and against the method of moments. The data show substan-
tial radial inhomogeneities in a mixing zone near the slot. The temperature and
particle properties are compared with a perfect mixing case and show significant
differences in the mixing zone. In the example considered, the inhomogeneities
diminish downstream due to mixing. However, reactor designs with multiple slots
would introduce inhomogeneities at each inlet down the length of the reactor.
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6.2 Suggestions for future work

Suggestions for future work fall into three broad categories: further development
of the method, optimisation of the code and application of the new model.

6.2.1 Further development of the method

The PF-MoMIC method is the first part of a proposed two-stage methodology.
The objective of the first stage is to achieve a reasonable description of the flow
and composition for minimum computational effort. The second stage is to ap-
ply a more detailed population balance model to investigate the evolution of the
nanoparticles without the need to re-solve the chemistry or flow. The objective
is to allow free choice of the population balance method so that it can be chosen
to suit the study, rather than based on considerations of how to couple it to the
chemistry and flow. The final part of this thesis shows that the second stage will
need to consider the full composition PDF, not just the mean composition. How
to implement the second stage remains an open question and is work in progress.

The investigations in this thesis represent a first look at methods for the detailed
modelling of nanoparticle formation in turbulent reacting flows. The methods
have been developed systematically, with features added as required. However,
they are by no means feature-complete. Many gaps need to be addressed in future
work. For example, a heat transfer model to describe cooling at the walls and ra-
diative heat transfer within the reactor could be included in the titania simulations.
Likewise, the spherical particle assumption could be relaxed. One approach may
be to consider non-spherical particles of fixed shape.

The numerical methods developed in this thesis present several opportunities for
further improvement. The diffusion term in the general DQMoM-IEM solver re-
mains problematic as the number of fields is increased, both in terms of compu-
tational time and numerical difficulty. Future work may wish to revisit this. For
example, could an alternative ODE solver improve the performance of the gen-
eral solver? Other progress may come from sharing ideas between methods. For
example, could the SF method benefit from weighted fields?
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6.2.2 Optimisation of the code

The code developed for this thesis was not optimised for speed and an obvious
task is to improve the efficiency of the code. Aside from the diffusion term in
the general DQMoM-IEM solver, most of the computational cost is due to the
reaction term. This is common to all methods in this thesis and reducing this cost
will be critical to making them more practical for applications involving complex
chemistry. Much research has already sought to increase the speed of reaction
methods and one option may be to implement a tabulation scheme such as ISAT.

6.2.3 Application of the new model

Many important open questions remain. The wider objective of this thesis was
to develop methods that could be applied to a range of industrial processes. The
methods were stipulated to require sufficient accuracy for engineering purposes
and this is necessarily application specific. For example, to what extent do the
advantages demonstrated by DQMoM-IEM over SF for the constant density test
case translate to the titania model and what is the optimal number of fields? How
are the titania properties affected by the process conditions and reactor?

Answering these questions will need many of the developments considered above.
For example, a faster code with a heat transfer model. It will also require more
detailed process data. This is awkward for titania, where even sampling the gas-
phase along the reactor can be prohibitively difficult. An alternative may be to
study related systems. Sooting flames have been widely investigated and could
perhaps be used to assess how the model responds to the number of fields.

125





Appendix A

Derivations

This appendix presents further information on the MoM, DQMoM

and SF methods investigated in this thesis. It begins with a brief

discussion of the joint composition PDF transport equation, from

which it derives the equations given in the main text. The objective

is to present the derivations in a consistent notation and to make

explicit the assumptions within the governing equations.
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A.1 Joint composition PDF transport equation

The material in section A.1.1 borrows from Pope (1985) and Peters (2000). Read-
ers who would like more detail are kindly referred to these texts. Note that the x-t
dependencies of terms in this appendix are suppressed for clarity of presentation.

A.1.1 Governing equations

Mass fraction and enthalpy equations

Pope (1985) shows that the mass fraction (A.1) and enthalpy (A.2) equations

ρ
∂Yα

∂ t
+ρUi

∂Yα

∂xi
=− ∂Jα

i

∂xi
+ρSα , (A.1)

ρ
∂h
∂ t

+ρUi
∂h
∂xi

=− ∂Jh
i

∂xi
+ρSh , (A.2)

can be written in a common form

ρ
∂φα

∂ t
+ρUi

∂φα

∂xi
=− ∂Jα

i

∂xi
+ρSα , α = 1, . . . ,K , (A.3)

where φ is a set of K = s+1 scalars φ(x, t) defined by

φα =

 Yα , α = 1, . . . ,s

h , α = K .
(A.4)

Jα
i is the diffusive mass flux vector of species α , Jh

i is the specific energy flux
vector, Sα is the mass rate of addition (per unit mass) of species α , Sh is the source
of specific enthalpy due to compressibility, viscous dissipation and radiation.

Equation (A.3) makes no assumptions regarding the source terms Sα or molecular
transport terms Jα

i . For a given reference pressure p0 (assumed constant), the
chemical sources and density depend only on the set of scalars φ

Sα = Sα(φ) , ρ = ρ(φ) . (A.5)
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A.1 Joint composition PDF transport equation

Diffusive fluxes

The molecular processes that cause the diffusive fluxes are quite complicated. In
turbulent reaction, molecular diffusion is frequently less important than turbulent
transport and simplified versions of the molecular fluxes are often considered. The
simplest approximation is the binary flux approximation.

Peters (2000) describes the treatment of the diffusive fluxes using the binary flux
approximation. The mass flux is written using Fick’s law

Jα

i =−ρΓα

∂Yα

∂xi
, α = 1, . . . ,s , (A.6)

where Γα is a binary diffusion coefficient with respect to an abundant species.
Note that the sum of all fluxes must vanish and equation (A.6) may violate mass
balance in multicomponent systems unless equal diffusivities Γα =Γ are assumed.

The specific energy flux includes the effect of the thermal conductivity of the
mixture λ and enthalpy transport by the mass fluxes Jα

i

Jh
i =−λ

∂T
∂xi

+
s

∑
α=1

hαJα

i . (A.7)

where T is the temperature and hα is the specific enthalpy of species α . Equa-
tion (A.7) can be rewritten in terms of the mixture enthalpy h and species mass
fractions Yα . The mixture heat capacity cp and enthalpy h are defined

cp =
s

∑
α=1

cpα
Yα , (A.8)

h =
s

∑
α=1

hαYα , (A.9)

and for an ideal gas, hα is a function of temperature only

hα = hα,ref +
∫ T

Tref

cpα
(T ) dT , α = 1, . . . ,s , (A.10)
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where cpα
is the specific heat capacity of species α . Equation (A.9) can be written

in differential form, using equation (A.10) to substitute dhα = cpα
dT

dh =
s

∑
α=1

dhαYα +
s

∑
α=1

hα dYα

=
s

∑
α=1

cpα
Yα dT +

s

∑
α=1

hα dYα

= cp dT +
s

∑
α=1

hα dYα .

(A.11)

Equation (A.7) is now rewritten using equations (A.6) and (A.11) to substitute Jα
i

and ∂T/∂xi

Jh
i =− λ

cp

(
∂h
∂xi
−

s

∑
α=1

hα

∂Yα

∂xi

)
−

s

∑
α=1

hαρΓα

∂Yα

∂xi

=− λ

cp

∂h
∂xi

+
s

∑
α=1

hα

([
λ

cp
−ρΓα

]
∂Yα

∂xi

)
.

(A.12)

The final term in equation (A.12) is null in the event that all Lewis numbers
Leα = λ/ρcpΓα are unity

Jh
i =− λ

cp

∂h
∂xi

, (A.13)

and assuming equal diffusivities for each species Γα = Γ such that Le = λ/ρcpΓ

Jh
i =−ρΓ

∂h
∂xi

. (A.14)
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A.1 Joint composition PDF transport equation

Species source term

The general species source term is given (Fox, 2003)

Sα(C) =
I

∑
i=1

(
ν

r
α i−ν

f
α i

)
Ri(C) , (A.15)

for a set of I elementary reactions of species Aα

s

∑
α=1

ν
f
α iAα

kf
i−⇀↽−

kr
i

s

∑
α=1

ν
r
α iAα for i ∈ 1, . . . , I , (A.16)

with stoichiometric coefficients ν f
α i, ν r

α i, rate constants kf
i , kr

i , and reaction rate

Ri(C) = kf
i

s

∏
α=1

Cν f
α i

α − kr
i

s

∏
α=1

Cν r
α i

α for i ∈ 1, . . . , I , (A.17)

where C is the set of molar concentrations Cα = ρYα/Wα , α = 1, . . . ,s.

Enthalpy source term

The enthalpy source term is given (Pope, 1985)

ρSh = τi j
∂Ui

∂x j
+

∂ p
∂ t

+Ui
∂ p
∂xi

+(A− ε) , (A.18)

where τi j is the the sum of the viscous and viscous-diffusive stress tensors, and
A and ε are the rates of absorption and emission of radiative energy (per unit
mass). The term in τi j describes frictional heating due to viscous dissipation and
is negligible at low Mach numbers. The local and convective change of pressure is
important for acoustic interactions and pressure waves. The transient term ∂ p/∂ t

is important for reciprocating engines, but can be neglected in open flames. The
convective term ∂ p/∂xi may be neglected at low Mach numbers.
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Temperature transport equation

Peters (2000) shows that a temperature transport equation can be derived from the
enthalpy equation (A.2)

ρcp
∂T
∂ t

+ρcpUi
∂T
∂xi

=

∂

∂xi

(
λ

∂T
∂xi

)
+ρ

∂T
∂xi

s

∑
α=1

cpα
Γα

∂Yα

∂xi
−ρ

s

∑
α=1

hαSα +ρSh ,
(A.19)

using equations for the species transport (A.1), the diffusive fluxes (A.6) and (A.7)
and the differential relationship between enthalpy and temperature (A.11).

Equation (A.19) is often less convenient than the enthalpy equation (A.2). The
source terms are more complicated, it requires physical properties to be available
in order to evaluate cpα

(T ) and it is not so easily written in a common form with
the mass fraction equation (A.1).

A.1.2 Favre-averaged PDF transport equation

Pope (1985) derives a transport equation for the Favre-averaged joint composition
PDF f̃φ , where the composition space φ obeys equations (A.3) and (A.4)

∂

∂ t

(
〈ρ〉 f̃φ

)
+

∂

∂xi

(
Ũi 〈ρ〉 f̃φ

)
+

∂

∂ψα

(
Sα(ψ)〈ρ〉 f̃φ

)
=

∂

∂ψα

(〈
1
ρ

∂Jα
i

∂xi

∣∣∣∣ψ〉〈ρ〉 f̃φ

)
− ∂

∂xi

(
〈u′′i |ψ〉〈ρ〉 f̃φ

)
.

(A.20)

The terms on the left hand side of equation (A.20) are closed. The terms on the
right hand side describe the diffusive and turbulent convective fluxes. They are
unclosed and need to be modelled.

The turbulent convective flux is closed by a gradient diffusion model (Pope, 1985)

〈u′′i |ψ〉〈ρ〉 f̃φ =−ΓT
∂ f̃φ

∂xi
, (A.21)
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where ΓT is a turbulent diffusivity

ΓT = νT/σT , (A.22)

νT is a turbulent viscosity prescribed by the turbulence model and σT is a turbulent
Schmidt / Prandtl number (depending on context) and is typically close to unity.

The diffusive mass flux is assumed to obey a binary flux approximation with equal
molecular diffusivities and unity Lewis numbers for all species. Using equations
(A.6) and (A.14) and assuming equal diffusivities for all species, the diffusive
fluxes can be written 〈

1
ρ

∂Jα
i

∂xi

∣∣∣∣ψ〉=−
〈

Γ∇
2
φα

∣∣ψ〉 , (A.23)

and are closed with the IEM micromixing model (Villermaux and Devillon, 1972)

〈
Γ∇

2
φα

∣∣ψ〉= Cφ

2τφ

(
〈φα〉−ψα

)
, (A.24)

where Cφ is an empirical constant and τφ is the scalar mixing time.

Under the assumptions of a constant pressure system at low Mach number and in
the absence of radiative heat transfer, the source terms can be written

Sα(ψ) =

{
Sα , α = 1, . . . ,s
Sh , α = K ,

(A.25)

Sh = 0. (A.26)

The unsteady and convective flux terms can be rewritten in unconservative form
and the closed form of equation (A.20) is given

〈ρ〉
∂ f̃φ

∂ t
+ 〈ρ〉Ũi

∂ f̃φ

∂xi
− ∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]
〈ρ〉 f̃φ

)
.

(A.27)
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A.1.3 Constant density PDF transport equation

Many of the SF and DQMoM references, including Valiño (1998) and Fox (2003),
consider a constant density transport equation for the joint composition PDF fφ .
The equation is written in closed form

∂ fφ

∂ t
+ 〈Ui〉

∂ fφ

∂xi
− ∂

∂xi

(
ΓT

∂ fφ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]

fφ

)
,

(A.28)

using the IEM micromixing model to close the diffusive flux and a gradient diffu-
sion model to close the turbulent convective flux

〈u′i|ψ〉 fφ =−ΓT
∂ fφ

∂xi
, ΓT = νT/ρσT . (A.29)

A.1.4 Dimensional consistency

Table A.1 summarises the units and dimensions of key equations and quantities
as presented in this section and in much of the literature. The dimensions of the
turbulent diffusivity ΓT differ between the Favre-averaged and constant density
cases. Further, the dimensions of equation (A.3) depend on the dimensions of the
composition vector, given in this case by equation (A.4).

There is potential for confusion. Where the main text refers to Favre-averaged sys-
tems derived from equation (A.27), ΓT should be interpreted as having dimensions
M/LT. Where it refers to constant density systems derived from equation (A.28),
ΓT should be interpreted as having dimensions L2/T. In order to retain generality,
the remaining derivations are given in terms of a Favre-averaged system and ΓT

should be interpreted as having dimensions M/LT. The constant density equations
can be recovered by substituting

〈ρ〉 f̃φ

(
ψ(x, t)

)
= ρ fφ

(
ψ(x, t)

)
, (A.30)

and cancelling the constant density ρ from each term. The resulting constant
density form of ΓT should be interpreted as having dimensions L2/T.
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A.1 Joint composition PDF transport equation

Table A.1: Units and dimensions of key equations and quantities.

SI units Dimensions in M, L, T, N, Θ

Equation (A.1) kg/m3s
[
M/L3T

]
Equation (A.2) J/m3s

[
M/LT3

]
Equation (A.3) kg/m3s

[
M/L3T

]
for α = 1, . . . ,s

J/m3s
[
M/LT3

]
for α = K

Y, Yα −
[
−
]

h, hα J/kg
[
L2/T2

]
C, Cα mol/m3

[
N/L3

]
Wα kg/mol

[
M/N

]
Jα

i kg/m2s
[
M/L2T

]
Jh

i J/m2s
[
M/T3

]
Sα 1/s

[
1/T

]
Sh J/kg s

[
L2/T3

]
cp, cpα

J/kg K
[
L2/T2

Θ
]

Γ, Γα m2/s
[
L2/T

]
λ J/m K s

[
ML/T3

Θ
]

ρ kg/m3
[
M/L3

]
Cφ −

[
−
]

τφ s
[
T
]

νT kg/m s
[
M/LT

]
σT −

[
−
]

ΓT kg/m s
[
M/LT

]
in equations (A.21, A.22, A.27)

m2/s
[
L2/T

]
in equations (A.28, A.29)

t s
[
T
]

T K
[
Θ
]

Ui m/s
[
L/T

]
xi m

[
L
]

Dimensions

M Mass
L Length
T Time

N Amount
Θ Temperature
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A.2 The direct quadrature method of moments

This section summarises the formal derivation of the DQMoM and DQMoM-IEM
equations for turbulent reacting flows described by a closed joint composition
PDF transport equation that includes the IEM mixing model. The equations
are well documented in the literature and their derivation is summarised by Fox
(2003, appendix B). We start with a general Favre-averaged system, then consider
DQMoM-IEM and a constant density system as special cases.

A.2.1 Favre-averaged case

The derivation starts with the one-point one-time closed Favre-averaged joint
composition PDF transport equation (A.27)

〈ρ〉
∂ f̃φ

∂ t
+ 〈ρ〉Ũi

∂ f̃φ

∂xi
− ∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]
〈ρ〉 f̃φ

)
.

The PDF f̃φ is discretised using a weighted field approximation

f̃φ

(
ψ(x, t)

)
dψ = f̃φ

(
ψ1, . . . ,ψK(x, t)

)
dψ1 · · · dψK

≈
N

∑
n=1

w(n)(x, t)
K

∏
α=1

δ
ψ

(n)
α (x,t)

(
dψα

)
, (A.31)

where

δ
ψ

(n)
α (x,t)

(
dψα

)
≡ δ

(
ψα −ψ

(n)
α
(x, t)

)
dψα , (A.32)

and the substitutions defined in equations (A.41), (A.42) and (A.43) are used to
derive a non-constant coefficient linear equation (A.33) in the source terms of the
transport equations for the weights (A.34) and weighted compositions (A.35).
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The non-constant coefficient linear equation can be written

N

∑
n=1

[
K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

]
a(n)

−
N

∑
n=1

K

∑
α=1

[
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

]
b(n)

α

=
N

∑
n=1

K

∑
α=1

K

∑
β=1

[
w(n)c(n)

αβ

∂ 2

∂ψα∂ψβ

K

∏
α=1

δ
ψ

(n)
α

]

− ∂

∂ψα

(
r(n)

α
f̃φ

)
,

(A.33)

where

∂w(n)

∂ t
+Ũi

∂w(n)

∂xi
− 1
〈ρ〉

∂

∂xi

(
ΓT

∂w(n)

∂xi

)
= a(n) , (A.34)

∂ s(n)α

∂ t
+Ũi

∂ s(n)α

∂xi
− 1
〈ρ〉

∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)
= b(n)

α
, (A.35)

and

s(n)
α
≡ w(n)

ψ
(n)
α

, (A.36)

c(n)
αβ
≡ ΓT

〈ρ〉
∂ψ

(n)
α

∂xi

∂ψ
(n)
β

∂xi
, (A.37)

r(n)
α
≡

Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
+Sα

(
ψ

(n)
)

, (A.38)

and where the dependencies on x and t have been suppressed for clarity. The
derivation up to this point is exact in that, apart from the approximation in equation
(A.31), no arbitrary choices have been made.
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The substitutions are formally derived

∂

∂xi

K

∏
α=1

δ
ψ

(n)
α
=−

K

∑
α=1

∂ψ
(n)
α

∂xi

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

(A.39)

=− 1

w(n)

K

∑
α=1

[(
∂ s(n)α

∂xi
−ψ

(n)
α

∂w(n)

∂xi

)
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

]
, (A.40)

where ∂ψ
(n)
α /∂xi has been substituted using the definition of s(n)α in equation

(A.36). Using the product rule and equations (A.31) and (A.40)

∂ f̃φ

∂xi
=

∂

∂xi

( N

∑
n=1

w(n)
K

∏
α=1

δ
ψ

(n)
α

)

=
N

∑
n=1

[
∂w(n)

∂xi

K

∏
α=1

δ
ψ

(n)
α
−

K

∑
α=1

w(n)∂ψ
(n)
α

∂xi

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

]

=
N

∑
n=1

∂w(n)

∂xi

( K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

−
N

∑
n=1

K

∑
α=1

∂ s(n)α

∂xi

(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)
.

(A.41)

Applying the product rule to equation (A.41)

∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
=

N

∑
n=1

∂

∂xi

(
ΓT

∂w(n)

∂xi

)( K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

+
N

∑
n=1

ΓT
∂w(n)

∂xi

∂

∂xi

( K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

−
N

∑
n=1

K

∑
α=1

∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

−
N

∑
n=1

K

∑
α=1

ΓT
∂ s(n)α

∂xi

∂

∂xi

(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)
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=
N

∑
n=1

∂

∂xi

(
ΓT

∂w(n)

∂xi

)( K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

−
N

∑
n=1

K

∑
α=1

∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

+
N

∑
n=1

K

∑
α=1

K

∑
β=1

w(n)
ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi

∂ 2

∂ψα∂ψβ

K

∏
α=1

δ
ψ

(n)
α

,

(A.42)

where the underlined terms are simplified using the product rule

ΓT
∂w(n)

∂xi

∂

∂xi

( K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

−
K

∑
α=1

ΓT
∂ s(n)α

∂xi

∂

∂xi

(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

=
K

∑
α=1

ΓT

(
ψ

(n)
α

∂w(n)

∂xi
− ∂ s(n)α

∂xi

)
∂

∂xi

(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

+ΓT
∂w(n)

∂xi

(
∂

∂xi

K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

∂ψ
(n)
α

∂xi

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)
︸ ︷︷ ︸

0 by equation (A.39)

=
K

∑
α=1

ΓT

(
−w(n)∂ψ

(n)
α

∂xi

)(
−

K

∑
β=1

∂ψ
(n)
β

∂xi

∂ 2

∂ψα∂ψβ

K

∏
α=1

δ
ψ

(n)
α

)

=
K

∑
α=1

K

∑
β=1

w(n)
ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi

∂ 2

∂ψα∂ψβ

K

∏
α=1

δ
ψ

(n)
α

.

By analogy with equation (A.41)

∂ f̃φ

∂ t
=

N

∑
n=1

∂w(n)

∂ t

( K

∏
α=1

δ
ψ

(n)
α
+

K

∑
α=1

ψ
(n)
α

∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)

−
N

∑
n=1

K

∑
α=1

∂ s(n)α

∂ t

(
∂

∂ψα

K

∏
α=1

δ
ψ

(n)
α

)
.

(A.43)
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The next step is to use equation (A.33) to derive a linear system that matches the
number of equations to the N(K + 1) unknown source terms a(n) and b(n)

α . The
aim is to solve equations (A.34) and (A.35) to transport the weights and weighted
compositions, using the linear system to determine the source terms a(n) and b(n)

α .

The linear system is derived by taking M=N(K +1) moments of the discretised
PDF transport equation (A.33) by termwise application of

+∞∫
· · ·
∫

−∞

K

∏
α=1

ψ
mλα

α

(
·
)

dψ1 · · · dψK , (A.44)

where, for example, the empirical moments of f̃φ are defined

〈φ mλ1
1 . . .φ mλK

K 〉N =

+∞∫
· · ·
∫

−∞

K

∏
α=1

ψ
mλα

α
f̃φ dψ1 · · · dψK

=
N

∑
n=1

w(n)
K

∏
α=1

ψ
(n)
α

mλα for λ = 1, . . . ,M . (A.45)

The use of the linear system to evaluate the source terms of equations (A.34) and
(A.35) imposes a projection. It constrains the statistics of the fields to obey the
discretised PDF transport equation (A.33) for each of the empirical moments spec-
ified by equation (A.45). The indices mλα are typically low order non-negative in-
tegers. The zeroth and first-order moments are required to ensure that the weights
sum to unity and that the empirical means (of non-reacting scalars) are conserved.
The choice of moments is otherwise arbitrary.

Taking moments of (A.33) by termwise application of equation (A.44) yields

N

∑
n=1

A1λn
a(n)+

N

∑
n=1

K

∑
α=1

A2α,λn
b(n)

α

=
N

∑
n=1

K

∑
α=1

K

∑
β=1

A3αβ ,λn
w(n)c(n)

αβ
+

N

∑
n=1

K

∑
α=1

A2α,λn
w(n)r(n)

α
,

(A.46)
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for each moment λ , where A1λn
, A2α,λn

and A3αβ ,λn
are defined

A1λn
=

(
1−

K

∑
α=1

mλα

) K

∏
α=1

ψ
(n)
α

mλα , (A.47)

A2α,λn
= mλαψ

(n)
α

mλα−1
K

∏
β=1
β 6=α

ψ
(n)
β

mλβ

, (A.48)

A3αβ ,λn
=



mλαψ
(n)
α

mλα−1
mλβ ψ

(n)
β

mλβ−1 K

∏
γ=1
γ 6=β

ψ
(n)
γ

mλγ if α 6= β

mλα

(
mλα −1

)
ψ

(n)
α

mλα−2
K

∏
β=1
β 6=α

ψ
(n)
β

mλβ

otherwise .

(A.49)

Note that the derivatives of the delta function are defined such that (Pope, 2000)

∫ +∞

−∞

g(ψα) δ
(m)

ψ
(n)
α

dψα =(−1)m g(m)
(
ψ

(n)
α

)
, (A.50)

where g(m)(ψα) is the mth derivative of g(ψα). The coefficient of the equation
(A.46) term in r(n)α is found using integration by parts

+∞∫
· · ·
∫

−∞

K

∏
α=1

ψ
mλα

α

∂

∂ψα

(
r(n)

α
f̃φ

)
dψ1 · · · dψK

=

[
K

∏
α=1

ψ
mλα

α
r(n)

α
f̃φ

]+∞

−∞︸ ︷︷ ︸
0

−
+∞∫
· · ·
∫

−∞

r(n)
α

f̃φ

∂

∂ψα

K

∏
α=1

ψ
mλα

α
dψ1 · · · dψK

=−
N

∑
n=1

K

∑
α=1

mλαψ
(n)
α

mλα−1
K

∏
β=1
β 6=α

ψ
(n)
β

mλβ ·w(n)r(n)
α

. (A.51)
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The linear system given by the set of moments λ = 1, . . . ,M can be written

Aα = β , (A.52)

α
> =

[
a b1 · · ·bK

]
, (A.53)

β = A3W3c+A2W2r . (A.54)

A is a square M×N(K +1) matrix and a and bα are vectors of length N

A =
[
A1 A2

]
, (A.55)

a> =
[
a(1) · · ·a(N)

]
, (A.56)

b>
α
=
[
b(1)

α
· · ·b(N)

α

]
, (A.57)

A2 and A3 are M×NK and M×NK2 matrices

A2 =
[
A21 · · ·A2K

]
, (A.58)

A3 =
[
A311 · · ·A31K

· · ·A3K1 · · ·A3KK

]
, (A.59)

A1 , A2α
and A3αβ

are M×N matrices with components as per equations (A.47),
(A.48) and (A.49). W2 and W3 are NK×NK and NK2×NK2 matrices, c and r are
vectors of length NK2 and NK

W2 = diag
[
w1 · · ·wK

]
, (A.60)

W3 = diag
[
w11 · · ·w1K · · ·wK1 · · ·wKK

]
, (A.61)

c> =
[
c11 · · ·c1K · · ·cK1 · · ·cKK

]
, (A.62)

r> =
[
r1 · · ·rK

]
, (A.63)

where wα , wαβ , cαβ are rα are vectors of length N with components

w>
α
= w>

αβ
=
[
w(1) · · ·w(N)

]
, (A.64)

c>
αβ

=
[
c(1)

αβ
· · ·c(N)

αβ

]
, (A.65)

r>
α
=
[
r(1)

α
· · ·r(N)

α

]
. (A.66)
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DQMoM-IEM

DQMoM-IEM is a special case of DQMoM where the projection is constrained
to consider only conserved weights and unmixed moments.

The DQMoM derivation can be modified to implement DQMoM-IEM by setting

a(n) = 0, (A.67)

and taking a set of M=NK unmixed empirical moments of equation (A.33)

〈φ mλα

α
〉N =

N

∑
n=1

w(n)
ψ

(n)
α

mλα for λ = 1, . . . ,M , (A.68)

to derive a linear system of NK equations of the form

N

∑
n=1

ψ
(n)
α

mλα−1(
b(n)

α
−w(n)r(n)

α

)
=

N

∑
n=1

(
mλα −1

)
ψ

(n)
α

mλα−2
w(n)c(n)

αα
(A.69)

where r(n)α and c(n)αα are defined as per equations (A.37) and (A.38). The zeroth
moment is no longer required because the source term for the weights is null.
Chapter 3 shows for the first time that equation (A.69) can be solved analytically
for the source terms b(n)

α

b(n)
α

= w(n)r(n)
α

+w(n)c(n)
αα

N

∑
i=1
i 6=n

1

ψ
(n)
α −ψ

(i)
α

+
N

∏
i=1
i6=n

1

ψ
(n)
α −ψ

(i)
α

N

∑
j=1
j 6=n

w( j)c( j)
αα

N

∏
k=1

k 6= j,n

(
ψ

( j)
α
−ψ

(k)
α

)
,

(A.70)

under the constraint

mλα =

 n where n = λ − (α−1)N if n≥ 1 and n≤ N

0 otherwise

for λ = 1, . . . ,M and α = 1, . . . ,K .

(A.71)
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A.2.2 Constant density case

In the constant density case, the DQMoM transport equations can be written

∂w(n)

∂ t
+ 〈Ui〉

∂w(n)

∂xi
− ∂

∂xi

(
ΓT

∂w(n)

∂xi

)
= a(n) , (A.72)

∂ s(n)α

∂ t
+ 〈Ui〉

∂ s(n)α

∂xi
− ∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)
= b(n)

α
, (A.73)

where

s(n)
α
≡ w(n)

ψ
(n)
α

, (A.74)

c(n)
αβ
≡ ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi
, (A.75)

r(n)
α
≡

Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
+Sα

(
ψ

(n)
)

. (A.76)

ΓT should be interpreted as having dimensions L2/T as per section A.1.4. The
definition of the components of matrices A1 , A2α

and A3αβ
in equations (A.47–

A.49) and the linear system in equations (A.52–A.66) and remain unchanged.

The constant density DQMoM-IEM transport equations are written

∂w(n)

∂ t
+ 〈Ui〉

∂w(n)

∂xi
− ∂

∂xi

(
ΓT

∂w(n)

∂xi

)
= 0, (A.77)

∂ s(n)α

∂ t
+ 〈Ui〉

∂ s(n)α

∂xi
− ∂

∂xi

(
ΓT

∂ s(n)α

∂xi

)
= b(n)

α
, (A.78)

and the definitions of the linear system and the analytic solution in equations
(A.69–A.70) remain unchanged, subject to the definition of c(n)αα and r(n)α as per
equations (A.75) and (A.76) and ΓT interpreted with dimensions L2/T.
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A.3 The stochastic fields method

This section summarises the formal derivation of the Itô SPDE given by equation
(4.2). The method follows the approach outlined by Valiño (1998) and requires
that the fields are twice differentiable in space. We start with a general Favre-
averaged system, then consider a constant density system as a special case.

A.3.1 Favre-averaged case

The derivation starts with the one-point one-time closed Favre-averaged joint
composition PDF transport equation (A.27)

〈ρ〉
∂ f̃φ

∂ t
+ 〈ρ〉Ũi

∂ f̃φ

∂xi
− ∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]
〈ρ〉 f̃φ

)
.

We define a weighted field approximation

f̃φ

(
ψ(x, t)

)
dψ = f̃φ

(
ψ1, . . . ,ψK(x, t)

)
dψ1 · · · dψK

≈ 1
N

N

∑
n=1

K

∏
α=1

δ
ψ

(n)
α (x,t)

(
dψα

)
, (A.79)

where

δ
ψ

(n)
α (x,t)

(
dψα

)
≡ δ

(
ψα −ψ

(n)
α
(x, t)

)
dψα , (A.80)

and consider the contributions due to convection and diffusion, and micromixing
and reaction separately. The PDF f̃φ evolves by convection and diffusion

〈ρ〉
∂ f̃φ

∂ t
=−〈ρ〉Ũi

∂ f̃φ

∂xi
+

∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
. (A.81)

We formally substitute the PDF f̃φ in equation (A.81) to give

〈ρ〉
∂ f̃φ

∂ t
=

1
N

N

∑
n=1

[
−〈ρ〉Ũi

∂

∂xi

K

∏
α=1

δ
ψ

(n)
α (x,t)+

∂

∂xi

(
ΓT

∂

∂xi

K

∏
α=1

δ
ψ

(n)
α (x,t)

)]
,
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such that (suppressing the dependence of the delta functions on x and t)

∂ f̃φ

∂ t
=

1
N

N

∑
n=1

[
K

∑
α=1

∂

∂ψα

(
Ũi

∂ψ
(n)
α

∂xi

K

∏
β=1

δ
ψ

(n)
β

)

−
K

∑
α=1

∂

∂ψα

(
1
〈ρ〉

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

) K

∏
β=1

δ
ψ

(n)
β

)

+
1
2

K

∑
α=1

K

∑
β=1

∂ 2

∂ψα∂ψβ

(
2ΓT

〈ρ〉
∂ψ

(n)
α

∂xi

∂ψ
(n)
β

∂xi

K

∏
γ=1

δ
ψ

(n)
γ

)]
,

(A.82)

where we have substituted

∂

∂xi

K

∏
α=1

δ
ψ

(n)
α
=−

K

∑
α=1

∂ψ
(n)
α

∂xi
δ
′
ψ

(n)
α

K

∏
β=1
β 6=α

δ
ψ

(n)
β

=−
K

∑
α=1

∂

∂ψα

(
∂ψ

(n)
α

∂xi

K

∏
β=1

δ
ψ

(n)
β

)
, (A.83)

and using equation (A.83)

∂

∂xi

(
ΓT

∂

∂xi

K

∏
α=1

δ
ψ

(n)
α

)
=−

K

∑
α=1

∂

∂ψα

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

K

∏
β=1

δ
ψ

(n)
β

)

=−
K

∑
α=1

∂

∂ψα

(
∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

) K

∏
β=1

δ
ψ

(n)
β

)
(A.84)

+
K

∑
α=1

K

∑
β=1

∂ 2

∂ψα∂ψβ

(
ΓT

∂ψ
(n)
α

∂xi

∂ψ
(n)
β

∂xi

K

∏
γ=1

δ
ψ

(n)
γ

)
.

Equation (A.82) is a Forward Kolmogorov equation in time-composition and has
an equivalent SPDE (Gardiner, 2004) describing the contribution to each field

dψ
(n)
α

=−Ũi
∂ψ

(n)
α

∂xi
dt +

1
〈ρ〉

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

)
dt +

(
2ΓT

〈ρ〉

)1/2
∂ψ

(n)
α

∂xi
dW (n)

i .

(A.85)
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Likewise, the contributions to equation (A.27) from micromixing and reaction

〈ρ〉
∂ f̃φ

∂ t
=− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]
〈ρ〉 f̃φ

)
, (A.86)

imply the following contributions to each field

dψ
(n)
α

=
Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
dt +Sα

(
ψ

(n)
)

dt . (A.87)

The SPDE describing the total contribution to each field is given by the sum of
equations (A.85) and (A.87)

dψ
(n)
α

=−Ũi
∂ψ

(n)
α

∂xi
dt +

1
〈ρ〉

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

)
dt

+

(
2ΓT

〈ρ〉

)1/2
∂ψ

(n)
α

∂xi
dW (n)

i

+
Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
dt +Sα

(
ψ

(n)
)

dt .

(A.88)

A.3.2 Constant density case

In the constant density case, equation (A.88) can be rewritten

dψ
(n)
α

=−〈Ui〉
∂ψ

(n)
α

∂xi
dt +

∂

∂xi

(
ΓT

∂ψ
(n)
α

∂xi

)
dt

+
(

2ΓT

)1/2 ∂ψ
(n)
α

∂xi
dW (n)

i

+
Cφ

2τφ

(
〈φα〉N−ψ

(n)
α

)
dt +Sα

(
ψ

(n)
)

dt ,

(A.89)

where ΓT should be interpreted as having dimensions M/LT in equation (A.88),
but dimensions L2/T in equation (A.89) as per the discussion in section A.1.4.
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A.4 The method of moments

This section outlines the formal derivation of the MoM equations that are solved
to provide the reference data in chapters 3, 4 and 5. We start with a general Favre-
averaged system, then consider a constant density system as a special case.

A.4.1 Favre-averaged case

The derivation starts with the one-point one-time closed Favre-averaged joint
composition PDF transport equation (A.27)

〈ρ〉
∂ f̃φ

∂ t
+ 〈ρ〉Ũi

∂ f̃φ

∂xi
− ∂

∂xi

(
ΓT

∂ f̃φ

∂xi

)
=

− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]
〈ρ〉 f̃φ

)
.

Taking moments of equation (A.27) yields a transport equation for the moments λ

of the PDF f̃φ

∂λ

∂ t
+Ũi

∂λ

∂xi
− 1
〈ρ〉

∂

∂xi

(
ΓT

∂λ

∂xi

)
= Rλ , (A.90)

where the source term is given

Rλ =

+∞∫
· · ·
∫

−∞

K

∏
α=1

ψ
mα

α
R(ψ) dψ1 · · · dψK , (A.91)

with

R(ψ) =− ∂

∂ψα

([
Cφ

2τφ

(
〈φα〉−ψα

)
+Sα

(
ψ
)]

f̃φ

)
. (A.92)

Expressions for the source terms Rλ can be found by integrating equation (A.91)
by parts. The micromixing and reaction terms can be considered separately.
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The reaction source term Rrx
λ

is derived in a general form in equation (A.93). It
forms an unclosed set of coupled ODEs for non-linear reactions. This follows
from the fact that knowledge of all moments is required to fully define the PDF.

Rrx
λ =

+∞∫
· · ·
∫

−∞

K

∏
α=1

ψ
mα

α

(
− ∂

∂ψα

(
Sα

(
ψ
)

f̃φ

))
dψ1 · · · dψK

=
K

∑
α=1

+∞∫
· · ·
∫

−∞

mαψ
−1
α

K

∏
β=1

ψ
mβ

β
Sα(ψ) f̃φ dψα

K

∏
β=1
β 6=α

dψβ

−
K

∑
α=1

+∞∫
· · ·
∫

−∞

[
K

∏
β=1

ψ
mβ

β
Sα(ψ) f̃φ

]ψα=∞

ψα=−∞︸ ︷︷ ︸
=0

K

∏
β=1
β 6=α

dψβ ,

and using equation (A.15) for the general form of the species source term and the
source terms in equation (A.25)

Rrx
λ =

I

∑
i=1

[
(A.93)

m1

(
ν

r
1 i−ν

f
1 i

)(
kf

1iλmf
1i−1,mf

2i,...,mf
si,mK
− kr

1iλmr
1i−1,mr

2i,...,mr
si,mK

)
+m2

(
ν

r
2 i−ν

f
2 i

)(
kf

2iλmf
1i,mf

2i−1,...,mf
si,mK
− kr

2iλmr
1i,mr

2i−1,...,mr
si,mK

)
...

+ms

(
ν

r
s i−ν

f
s i

)(
kf

siλmf
1i,mf

2i,...,mf
si−1,mK

− kr
siλmr

1i,mr
2i,...,mr

si−1,mK

)]
,

where

mf
αi = mα +ν

f
α i, mr

αi = mα +ν
r
α i , (A.94)

kf
αi = kf

i ·
Wα

〈ρ〉

s

∏
β=1

(
〈ρ〉
Wβ

)ν f
β i

, kr
αi = kr

i ·
Wα

〈ρ〉

s

∏
β=1

(
〈ρ〉
Wβ

)ν r
β i

. (A.95)

The molecular mass and density terms appear because of the relations

Sα(Y ) =
Wα

ρ
·Sα(C) , Cα =

ρYα

Wα

for α = 1, . . . ,s , (A.96)

where the moments λ are defined in terms of the mass fractions and specific en-
thalpy as per the composition space of equation (A.27) given in equation (A.4).
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The source term for the IEM micromixing model Rmx
λ

is derived in equation (A.97)
and forms a closed set of coupled ODEs. This is expected. The purpose of the
IEM model is to close the molecular mixing term in the PDF transport equation
from which equation (A.27) is derived.

Rmx
λ

=

+∞∫
· · ·
∫

−∞

K

∏
α=1

ψ
mα

α

(
− ∂

∂ψα

(
Cφ

2τφ

(
〈φα〉−ψα

)
f̃φ

))
dψ1 · · · dψK

=
Cφ

2τφ

K

∑
α=1

+∞∫
· · ·
∫

−∞

mαψ
−1
α

K

∏
β=1

ψ
mβ

β

(
〈φα〉−ψα

)
f̃φ dψα

K

∏
β=1
β 6=α

dψβ

−
Cφ

2τφ

K

∑
α=1

+∞∫
· · ·
∫

−∞

[
K

∏
β=1

ψ
mβ

β

(
〈φα〉−ψα

)
f̃φ

]ψα=∞

ψα=−∞︸ ︷︷ ︸
=0

K

∏
β=1
β 6=α

dψβ

=
Cφ

2τφ

[
m1

(
λ1,0,...,0 λm1−1,m2,...,mK

−λm1,m2,...,mK

)
+m2

(
λ0,1,...,0 λm1,m2−1,...,mK

−λm1,m2,··· ,mK

)
...

+mK

(
λ0,0,...,1 λm1,m2,...,mK−1−λm1,m2,...,mK

)]
.

(A.97)

A.4.2 Constant density case

In the constant density case, equation (A.90) can be rewritten

∂λ

∂ t
+ 〈Ui〉

∂λ

∂xi
− ∂

∂xi

(
ΓT

∂λ

∂xi

)
= Rλ , (A.98)

where ΓT should be interpreted as per the discussion in section A.1.4. Aside from
replacing 〈ρ〉 with ρ in equation (A.95), the expressions for the source terms in
equations (A.93−A.97) remain unchanged.
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Appendix B

Numerical treatment

This appendix presents further information on the MoM coupling

to Star-CD and summarises the combinations of operator split-

tings and numerical methods applied to the DQMoM-IEM / PF

and SF methods in this thesis. It provides further information

about the choice of filter functions considered during the develop-

ment of the DQMoM-IEM algorithm in chapter 3, and the method

used to estimate the particle size distributions in chapter 5.
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B NUMERICAL TREATMENT

B.1 More on filter functions

Table B.1 summarises the filters that were considered during the development of
the general DQMoM-IEM solver described in chapter 3. The choice of filter is not
arbitrary and affects the performance of the function defined by equation (3.27)

fp(∆ψ) =


1

∆ψ
f
(

∆ψ

εp

)
if ∆ψ 6= 0

0 otherwise .

Table B.1: Filter functions considered for the general DQMoM-IEM solver.

Filter Filter function f
(

∆ψ

εp

)

1, figure B.1(a) min
(

1,
∣∣ ∆ψ

εp

∣∣)
2, figure B.1(b) min

(
1,
(

∆ψ

εp

)2
)

3, figure B.1(c) 0.5
(

1− cos
[
π min

(
1,
∣∣ ∆ψ

εp

∣∣)])

4, figure B.1(d) 0.5
[

1− cos
(

π min
[
1,max

(
0, 3

2

∣∣ ∆ψ

εp

∣∣− 1
2

)])]

5, figure B.1(e)
[

sin
(

π

2 min
[
1,max

(
0, 3

2

∣∣ ∆ψ

εp

∣∣− 1
2

)])]4

Figure B.1 shows the filters and their effect on the diffusion source terms given
by figure 3.2(b). An exaggerated value of εp is used for clarity.

Filter 1 is equivalent to imposing a minimum separation εp. It controls the singu-
larities, but the filtered source term in figure B.1(a) is still discontinuous.

Filter 2 imposes a linear source term in the range −1 < ∆ψ/εp < 1. However, nu-
merical integration of the filtered source term in figure B.1(b) remains challenging
because the derivatives of the source term are still discontinuous.
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B.1 More on filter functions
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(a) Filter function 1, filtered source term from figure 3.2(b).
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(b) Filter function 2, filtered source term from figure 3.2(b).
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(c) Filter function 3, filtered source term from figure 3.2(b).
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(d) Filter function 4, filtered source term from figure 3.2(b).
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(e) Filter function 5, filtered source term from figure 3.2(b).

Figure B.1: Filtered diffusion source terms for N=3 fields.
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B NUMERICAL TREATMENT

Filter 3 imposes a smooth filter. Both the filtered source term in figure B.1(c) and
its derivatives are continuous. However, numerical integration remains challeng-
ing where the source term changes sign either side of a stable discontinuity (see
figure 3.2), that is to say where the source term has negative gradient in regions
∆ψ/εp→ 0. The solution was observed to oscillate about such points, resulting in
increased computational times for no significant benefit.

Filters 4 and 5 impose smooth flat-bottomed filters designed to prevent oscillation
of the solution about stable discontinuities. Both return a value f(∆ψ/εp) = 0 in
the region −1/3 < ∆ψ/εp < 1/3. In practice, filter 5 was observed to give better
results for the test case in chapter 3 and is the filter depicted in figure 3.3. Filter 5
was used for all the general DQMoM-IEM solver cases reported in this thesis.

B.2 Estimation of the particle number distribution

This section outlines details of the method 4 used to calculate the particle number
distributions given in figure 5.3. The data are calculated from a stochastic pop-
ulation balance model that represents the population as a set of N equi-weighted
stochastic particles in a sample volume V . Each stochastic particle has an associ-
ated collision diameter D(n). In the case of a spherical particle model such as in
chapter 5, the collision diameter and actual particle diameter are equivalent.

The probability density function of the collision diameter f (D) is estimated as a
sum of log-normal distributions

f (D) =
1
N

N

∑
n=1

1
Dσ
√

2π
exp
(
−
(

lnD−µ
)2

2σ 2

)
, (B.1)

where the mean and standard deviation are given

µ = lnD(n) , (B.2)

σ = 0.07. (B.3)

4 Sebastian Mosbach.
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B.3 Method of moments coupling to Star-CD

The number density function g(D) = dn/dD and dn/dlnD are calculated

g(D) =
N
V

f (D) , (B.4)

dn
dlnD

= D
dn
dD

= Dg(D) .

(B.5)

It is conventional to present the distribution in the form dn/dlnD because it is
independent of the units of the collision diameter D as per the first line of equation
(B.5). The standard deviation σ acts as a smoothing filter. It is assumed to be
the same for each distribution in equation (B.1) and is treated as a parameter of
the method. The value of the standard deviation in equation (B.2) is chosen to
give reasonable smoothing without obscuring the features of the distribution. The
choice of whether to plot the distribution against D on a linear or logarithmic scale
is arbitrary. In the case of a linear scale, equation (B.1) should be replaced with a
sum of normal distributions centred on each collision diameter D(n). Likewise, the
mean and standard deviation in equation (B.2) should be adjusted accordingly.

B.3 Method of moments coupling to Star-CD

This section summarises the numerical treatment of the MoM scalar mixing cases
used to validate the DQMoM-IEM, SF and PF methods in chapters 3, 4 and 5. The
MoM transport equations (A.90) and (A.98) defined in appendix A are solved for
the first four unmixed moments of each scalar λmα

, where mα ∈ {1, . . . ,4} and
mβ 6=α = 0. The standard deviation

√
(λ2−λ1

2) is calculated in post processing.
The micromixing source term Rmx

λmα

is defined by equation (A.97) and the chemical
source term is zero, Sα = 0 such that Rrx

λmα

= 0. We start with the Favre-averaged
case, then consider the constant density system as a special case. Note that the x-t
dependencies of terms in this section are suppressed for clarity of presentation.
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B NUMERICAL TREATMENT

B.3.1 Favre-averaged case

The Favre-averaged MoM transport equation (A.90) is solved as a transient prob-
lem using a Strang (1968) splitting analogous to that described in section 5.2.1

∂λmα

∂ t
=−Ũi

∂λmα

∂xi
+

1
〈ρ〉

∂

∂xi

(
ΓT

∂λmα

∂xi

)
, (B.6)

∂λmα

∂ t
= Rmx

λmα

. (B.7)

Equation (B.6) is solved using Star-CD with upwind differencing to transport the
moments λmα

as passive scalars with time step ∆t, and equation (B.7) is solved
with time step 1

2∆t before the first and after the last iteration, and time step ∆t

otherwise. Note that the splitting is not strictly necessary because Rmx
λmα

is in a
form that can be supplied directly to Star-CD. However, the splitting is retained
to ensure an equivalent implementation to that in chapters 3, 4 and 5.

The Star-CD version, turbulence model and model constants are the same as those
described in each of chapters 3, 4 and 5. The initial and inlet boundary conditions
are calculated as empirical moments of the conditions defined in each chapter

λmα
← 〈φ mα

α
〉N , 〈φ mα

α
〉N =

N

∑
n=1

w(n)
ψ

(n)
α

mα , (B.8)

where the weights are given w(n)
=1/N in the case of the SF method. Changes

in the composition and temperature are optionally coupled to the flow field using
the weak pressure coupling described in section 5.2.3, where the empirical means
appearing in section 5.2.3 are replaced by their MoM equivalents and the mean
temperature is estimated using the mean mass fraction and enthalpy.

The source terms for the unmixed moments Rmx
λmα

are defined as a special case of
equation (A.97)

Rmx
λmα

=
Cφ

2τφ

mα

(
λ1 λmα−1−λmα

)
, mα ∈ N , mβ 6=α = 0, (B.9)
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B.3 Method of moments coupling to Star-CD

and equation (B.15) can be integrated numerically, for example using RADAU5,
or solved analytically to give

λ1(t +∆t) = λ1 , (B.10)

λ2(t +∆t) = λ1
2 + exp

(
−

2Cφ

2τφ

∆t
)[

λ2−λ1
2
]

, (B.11)

λ3(t +∆t) = λ1
3 + exp

(
−

2Cφ

2τφ

∆t
)[

3λ2λ1−3λ1
3
]

+ exp
(
−

3Cφ

2τφ

∆t
)[

λ3−3λ2λ1 +2λ1
3
]

,
(B.12)

λ4(t +∆t) = λ1
4 + exp

(
−

2Cφ

2τφ

∆t
)[

6λ2λ1
2−6λ1

4
]

+ exp
(
−

3Cφ

2τφ

∆t
)[

4λ3λ1−12λ2λ1
2 +8λ1

4
]

+ exp
(
−

4Cφ

2τφ

∆t
)[

λ4−4λ3λ1 +6λ2λ1
2−3λ1

4
]

.

(B.13)

All the MoM data in this thesis were produced using the analytic implementation.

B.3.2 Constant density case

In the constant density case, the operator splitting is rewritten in terms of the
constant density MoM transport equation (A.98)

∂λmα

∂ t
=−〈Ui〉

∂λmα

∂xi
+

∂

∂xi

(
ΓT

∂λmα

∂xi

)
, (B.14)

∂λmα

∂ t
= Rmx

λmα

. (B.15)

Note that change in the interpretation of ΓT as per section A.1.4. The treatment of
equations (B.14) and (B.15) remains otherwise as per equations (B.6) and (B.7).
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B NUMERICAL TREATMENT

B.4 Summary of numerical methods

Figure B.2 shows the operator splittings used within the DQMoM-IEM / PF and
SF implementations described in this thesis. Table B.2 summarises the solution
variables and the numerical methods used within each step.

The DQMoM-IEM, SF and PF methods are discussed in chapters 3, 4 and 5.
The micromixing and diffusion steps are solved in terms of the compositions ψ

(n)
α

to maximise the code that is shared between methods, and there is a change of
variable between s(n)α and ψ

(n)
α before and after each DQMoM-IEM / PF step.

The reaction steps are solved separately in terms of the molar concentrations C(n)
α ,

the number moments per unit volume M(n)
r and the temperature T (n) and there is

a corresponding change of variables at the beginning and end of each reaction
step. This avoids the need to calculate the temperature from the enthalpy at each
evaluation of the reaction rates and is a particularly convenient choice for the
non-constant density case, where it is straightforward to account for expansion of
the gas-phase due to changes in temperature and composition (see section 5.2.2).
The separate reaction step also leaves scope to refine the treatment of the method
by applying alternative ODE solvers or tabulation algorithms, for example ISAT
(Pope, 1997). The analytic DQMoM-IEM / PF and SF methods share the code
used to solve the IEM micromixing step. All methods share the code used to
solve the reaction step. This significantly helped debugging and validation.
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Figure B.2: Operator splittings used to implement DQMoM-IEM / PF and SF.
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Nomenclature

Upper-case Roman

A Rate of radiative energy absorption
A Surface area of the population per unit volume
Ai Surface area of particle of size i

Aα Chemical species α

Ci Cunningham slip correction factor for particles of size i

Cα Molar concentration of species α

Cφ IEM micromixing model constant
D Collision diameter

DH Hydraulic diameter
I Number of elementary reactions

Jh Specific energy flux
Jα Diffusive flux of scalar α

K Number of scalars
Kc, Kc

′ Size-independent parts of β c
i, j

Kf Size-independent part of β f
i, j

Kn Knudsen number
L Length scale

Le Lewis number
M Number of empirical moments

Mr Moment of the number density distribution of order r
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NOMENCLATURE

N Number of fields
N Number of stochastic particles
N Natural numbers (positive integers)
N0 Natural numbers (positive integers and zero)
NA Avagadro constant

Ncells Number of cells in the CFD domain
N (µ,σ) Normal distribution with mean µ and variance σ 2

R Universal gas constant
R Real numbers
Ri Rate of reaction i

Rλ Source term of moment λ

Re Reynolds number
Sh Specific enthalpy source term
Sα Source term of scalar α

S
∆t Solution operator for an evolution equation
T Temperature
U Number of MoMIC number density moments
U Eulerian velocity
Ũ Favre-averaged Eulerian velocity
V Volume
W Wiener process, see Gardiner (2004)

Wα Relative molecular mass of species α

Y Yield
Yα Mass fraction of species α

Z Integer numbers (positive, negative and zero)

Lower-case Roman

a(n) Source term for the weights w(n)

b(n)
α Source term for the weighted compositions s(n)α
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NOMENCLATURE

cp Specific heat capacity at constant pressure
c(n)

αβ
Turbulent diffusion-spatial gradient term for scalars α and β

d Mean particle diameter
di Diameter of particle of size i

f(∆ψ/εp) Filter function
fb(ψ, bdx) Bounding function

fp(∆ψ) Particle function
fv Particle volume fraction

mfx,y Grid function
fφ Joint composition PDF of φ

f̃φ Favre-averaged joint composition PDF of φ

g Body force per unit mass
g Number density function
h Specific enthalpy
k Turbulent kinetic energy

kB Boltzmann constant
ki Rate constant of reaction i

ks Rate constant for surface growth reaction
l Mixing length

mi Mass of particle of size i

mα Moment order of scalar α

mλα Moment order of the λ th empirical moment of scalar α

n Number of moles
n Total number density
ni Number density of particles of size i

p Pressure
r Moment order of the number density moment Mr

ri Radius of particle of size i

r(n)α Micromixing and chemical source term
s Number of species
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NOMENCLATURE

s(n)α Weighted composition of scalar α

t Time
u′ Fluctuating velocity field u′ =U−〈U〉
u′′ Fluctuating velocity field u′′ =U−Ũ

w(n) Weight
x Position

Upper-case Greek

Γ Thermal diffusivity
ΓT Turbulent diffusivity

Lower-case Greek

βi, j Frequency factor for collisions between particles of size i and j

γ Rate of gas-phase expansion
δ Dirac delta function

δi j Kronecker delta
ε Rate of radiative energy emission

εmα
Convergence metric for the empirical moment 〈φ mα

α
〉N

εmean Convergence metric for the empirical mean
εsd Convergence metric for the empirical standard deviation

ε Turbulent dissipation rate
εb Bounding function clipping distance
εp Particle function filter half-width
εi j Enhancement factor for collisions between particles of size i and j

λ Mean free path
λ Thermal conductivity
λ Moment of the joint composition PDF fφ

µ Absolute viscosity
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NOMENCLATURE

µi, j Reduced mass of particles of size i and j

µr Reduced moment of the population number density, µr = Mr/M0

ν Kinematic viscosity
νT Turbulent viscosity
ν

α
Stoichiometric coefficient of species α

ξ
(n)
i Variate relating to direction i and field n

ρ Density
σ Standard deviation of the particle diameter

σT Turbulent Schmidt / Prandtl number
τi j Stress tensor
τφ IEM micromixing model mixing time
φ Eulerian scalar composition
φ̃ Favre-averaged Eulerian scalar composition
φ ′ Fluctuating scalar field φ ′ = φ −〈φ〉
φ ′′ Fluctuating scalar field φ ′′ = φ − φ̃

ψ Sample space variable corresponding to φ

Superscripts

f Denotes the forward reaction
n Denotes the nth field
r Denotes the reverse reaction

Subscripts

c Denotes the continuum regime
cg Denotes coagulation
dx Denotes the diffusion term

f Denotes the free molecular regime
g Denotes the gas-phase
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NOMENCLATURE

glb Denotes a global lower bound
gub Denotes a global upper bound

in Denotes inception
lb Denotes a lower bound

mx Denotes the micromixing term
nb Denotes a neighbour cell
rx Denotes the reaction term
s Denotes the solid-phase

sg Denotes surface growth
ub Denotes a upper bound

Symbols

> Transpose operator
∇ Gradient operator

∇2 Laplacian operator
| · | Absolute value
‖ · ‖ L2-norm
[ · ] Molar concentration
bxc Floor, bxc= max{m ∈ Z | m≤ x}
dxe Ceiling, dxe= min{n ∈ Z | n≥ x}
[a, b] Interval, [a, b] = {x ∈ R | a≤ x≤ b}
P( ·) Probability
〈 · 〉 Expectation〈
· 2
〉

Expected second moment〈
· ′2
〉

Expected variance
〈 · |ψ〉 Expectation conditioned on φ = ψ

〈 · 〉MoM Expectation calculated using the method of moments
〈 · 〉N Empirical expectation calculated over N fields
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NOMENCLATURE

Abbreviations

CPU Central processing unit
CFD Computational fluid dynamics
DNS Direct numerical simulation

DQMoM Direct quadrature method of moments
GDP Gross domestic product
IEM Interaction by exchange with the mean

ISAT In situ adaptive tabulation
LES Large-eddy simulation

LMSE Linear mean-square estimation
MEPDF Multi-environment probability density function

MoM Method of moments
MoMIC Method of moments with interpolative closure

ODE Ordinary differential equation
PBE Population balance equation
PDE Partial differential equation
PDF Probability density function

PF Projected fields method
QMoM Quadrature method of moments
RANS Reynolds-averaged Navier-Stokes

SF Stochastic fields method
SPDE Stochastic partial differential equation

TI Turbulence intensity
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