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Abstract

In this paper, we exhibit a formula relating punctured Gromov-Witten invariants used

by Gross and Siebert in [GS2] to 2-point relative/logarithmic Gromov-Witten invariants

with one point-constraint for any smooth log Calabi-Yau pair (W,D). Denote by Na,b the

number of rational curves in W meeting D in two points, one with contact order a and one

with contact order b with a point constraint. (Such numbers are defined within relative or

logarithmic Gromov-Witten theory). We then apply a modified version of deformation to

the normal cone technique and the degeneration formula developed in [KLR] and [ACGS1]

to give a full understanding of Ne−1,1 with D nef where e is the intersection number of D

and a chosen curve class. Later, by means of punctured invariants as auxiliary invariants,

we prove, for the projective plane with an elliptic curve (P2, D), that all standard 2-pointed,

degree d, relative invariants with a point condition, for each d, can be determined by

exactly one of these degree d invariants, namely N3d−1,1, plus those lower degree invariants.

In the last section, we give full calculations of 2-pointed, degree 2, one-point-constrained

relative Gromov-Witten invariants for (P2, D).
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Chapter 1

Introduction

1.1 Mirror Symmetry

Mirror symmetry is a concept that originated in theoretical physics and has since been

developed further in the fields of algebraic geometry and symplectic geometry. It suggests

that there is a duality between two seemingly different spaces or objects, where the

symplectic and algebro-geometric properties of one are mirrored in the other. Mirror

Symmetry proposes an equivalence between A-model and B-model where, in its original

formulation in mathematics, A-model corresponds to Gromov-Witten theory which deals

with so called Gromov-Witten invariants reflecting enumerative information and B-model

consists of many period integrals encoding some complex geometry information. Usually,

Gromov-Witten invariants coming out of A-model are hard to calculate, whilst period

integrals are relatively easier to figure out and can be reduced to classical integrals which

can be used to understand Hodge theory.

In symplectic geometry, mirror symmetry is often studied in the context of Calabi-

Yau manifolds, which are complex manifolds with special holonomy properties. The

theory of mirror symmetry in symplectic geometry was enhanced by physicists in the

language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of

(special) Lagrangian torus fibrations [1]. Because the Gross-Siebert approach is an algebro-

geometric approach inspired by Strominger-Yau-Zaslow(SYZ)’s mirror conjecture, let us

recall some fundamental concepts in symplectic geometry in order to state the main picture

of SYZ version of mirror symmetry.

Definition 1.1.1. A symplectic manifold is a 2n-dimensional smooth manifoldM together

with a choice ω of closed, non-degenerate 2-form on M . A Lagrangian submanifold of a

symplectic manifoldM is maximally isotropic with respect to the symplectic form, meaning

that the dimension of the submanifold is half the dimension of M and the restriction of

the symplectic form to the submanifold vanishes.
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The next object is presumably the most important object in the 20th century in both

symplectic geometry and algebraic geometry, especially studying mirror symmetry. It is

called a Calabi-Yau manifold.

Definition 1.1.2. A Calabi-Yau manifold is a complex manifold that has a Ricci-flat

metric meaning that their Ricci curvature vanishes.

Note that an n-dimensional Calabi-Yau manifold has a natural symplectic structure

coming from its Ricci-flat metric, and it also has a holomorphic (n, 0)-form.

Definition 1.1.3. A submanifold of a Calabi-Yau manifold is then said to be a special

Lagrangian submanifold if it satisfies two conditions:

• it is a Lagrangian submanifold with respect to the symplectic structure.

• the restriction of the real part of the holomorphic (n, 0)-form to the submanifold

vanishes.

Work of Greene and Plesser [GP] and Candelas, Lynker and Schimmrigk [CLR] gave

the first hint that there should be a concrete mathematical framework for this idea that

Calabi-Yau three-folds should come in pairs (X, X̌) with the property that χ(X) = −χ(X̌).

More precisely, the Hodge numbers of these pairs obey the relation

h1,1(X) = h1,2(X̌), h1,2(X) = h1,1(X̌).

In 1991, Candelas, de la Ossa, Green and Parkes used string theory as a guideline to

carry out calculations of period integrals for the mirror of the quintic three-fold in P4 and

find the generating function for the genus 0 Gromov-Witten invariants of degree d. This

immediately attracted attention from mathematicians and the first idea giving a geometric

interpretation of mirror symmetry was due to Strominger-Yau-Zaslow [SYZ].

We are in position to state the core conjecture named SYZ mirror symmetry conjecture.

Conjecture 1.1.4. Let X, X̌ be a mirror pair of Calabi-Yau manifolds. Then there is

an integral affine manifold with singularities B and maps ϕ : X → B, ϕ̌ : X̌ → B which

are dual special Lagrangian torus fibrations which means that a non-singular point in B

corresponds to a special Lagrangian torus in X and a dual torus in X̌.

In the conjecture, finding the base B is very technical part and inspired Gross and

Siebert to study toric degenerations of Calabi-Yau manifolds as described in [GS0]. The

idea is to deform to a degenerate central fiber and construct the base B using tropical

geometry which gives rise to a mirror algebra that can be thought of as a ring of functions

on its mirror space. Then one attempts to deform the mirror algebra to incorporate the

corrections to the complex structure determined by singular fibers. The Gross-Siebert



program is an algebro-geometric framework developed by Mark Gross and Bernd Siebert

for understanding SYZ mirror symmetry picture within algebraic geometry. In the Gross-

Siebert program, the goal is to construct these mirror pairs directly and understand the

correspondence between them. The central objects in their approach are the so-called

“tropical” and “affine” structures on the base of a special degeneration of X, which is a

real n-dimensional manifold called the “base” of the SYZ fibration. Starting with a log

Calabi-Yau pair or a maximally unipotent degeneration of a Calabi-Yau manifold, here is a

rough sketch of the procedures in the Gross-Siebert program to construct a mirror family:

• The base B of the SYZ fibration carries a piecewise-linear structure called a “tropical”

structure. The combinatorics of this structure encode the degenerations of the torus

fibers of the SYZ fibration. The tropical structure is related to a certain “real” or

“tropical” limit of the complex structure on X.

• In addition to the tropical structure, B also carries an “affine” structure, which is

a flat connection with possible monodromy around the discriminant locus (where

the fibers of the SYZ fibration degenerate). This affine structure is related to the

complexified symplectic form on X.

• The tropical and affine structures on B can be encoded in an object called a

“scattering diagram”, which is a certain collection of walls in B, together with data

assigned to each wall. This is one of the main technical tools used in the Gross-Siebert

program in order to corrects monodromy around those singularities.

• From the data of the scattering diagram, one can construct a mirror space X̌ as a

certain toric degeneration. This involves a wall crossing phenomenon in the scattering

diagram motivated from above..

In algebraic geometry, mirror symmetry is often studied in the context of complex

algebraic varieties, which are solutions to polynomial equations. The Homological Mirror

Symmetry (HMS) conjecture proposes a correspondence between the derived category of

coherent sheaves on a Calabi-Yau manifold and the Fukaya category of its mirror. The

HMS conjecture provides a way to translate questions about geometry into questions

about algebra, and vice versa [Kon1]. Let M be a smooth projective Calabi-Yau manifold.

The Lagrangian submanifolds naturally arise in the construction of the A-model as the

boundary conditions of strings in the string theory, called D-branes. Mathematically,

these boundary conditions should form a category, in this case the Fukaya category. In

the following, we will depict a broad overview of the Fukaya category:

• Objects: The objects of the Fukaya category are Lagrangian submanifolds of the

symplectic manifold, possibly equipped with additional data (like a flat line bundle).



• Morphisms: The morphisms (i.e., the arrows between objects) in the Fukaya

category are defined using Floer homology. Given two Lagrangian submanifolds,

the morphism space between them is the Floer homology group of the pair. This is

generated by intersection points of the two submanifolds and relations come from

counting certain pseudoholomorphic (J-holomorphic) disks with boundary on the

submanifolds.

• Compositions of morphisms: The composition of morphisms is defined by

counting pseudoholomorphic polygons with vertices at intersection points. The

counts of these polygons are used to define the higher A∞ structure on the Fukaya

category.

The Fukaya category encodes a wealth of information about the symplectic geometry

of the manifold, especially the behavior of Lagrangian submanifolds. In the Homological

Mirror Symmetry conjecture, the Fukaya category of a Calabi-Yau manifold is conjectured

to be equivalent to the bounded derived category of coherent sheaves on the mirror Calabi-

Yau manifold, thus providing a deep link between symplectic and algebraic geometry.

Studying mirror symmetry via Gross-Siebert has applications in a variety of fields,

including theoretical physics, algebraic geometry, algebra and topology. Understanding

mirror symmetry in a variety of situations becomes more and more instructive. Recent work

by Gross, Hacking, Keel and Kontsevich have applied Gross-Siebert mirror construction

to cluster algebras to succeed in finding a canonical bases. Bousseau and Argüz have

explored a relationship between Foch-Goncharov dual and Gross-Siebert mirror for cluster

varieties. Many leading experts in the field try to compactify moduli of K3 surfaces using

Gross-Siebert mirror as well.

1.2 Gromov-Witten theory

Gromov-Witten theory was developed in the late 20th century, inspired by ideas from

quantum field theory and string theory. The theory provides tools to count the number

of pseudo-holomorphic curves/algebraic curves in a given homology class in a symplectic

manifold/algebraic variety. Gromov-Witten invariants, named after Mikhail Gromov and

Edward Witten, are central objects of study in symplectic and algebraic geometry, and

have provided deep insights into the geometry of symplectic manifolds and algebraic

varieties. They have played a critical role in the development of mirror symmetry.

To define Gromov-Witten invariants, fixing integers g, n, we consider the moduli space

Mg,n(X,βββ) of stable maps to X with domain curves of genus g and n smooth marked

points representing a homology class βββ in the second homology group H2(X,Z). A stable

map is a map from a nodal curve (a curve that might have nodal singularities but no other



singularities) to the target space X(e.g., a symplectic manifold or an algebraic variety),

where the map has only finitely many automorphisms. This moduli space is in general

not represented by a scheme because of the existence of automorphisms. It is so-called

Deligne-Mumford stack admitting a coarse moduli space. For concrete discussions of

algebraic stacks, readers may refer to [LMB]. The expected dimension of the space is given

by the following formula

vir.dim(Mg,n(X,βββ)) =

∫
X

β · c1(TX) + dim(X)(1− g) + 3g − 3 + n.

where TX is the tangent bundle of X and c1(TX) is the first Chern class. Due to degenera-

tions of stable maps, the expected dimension may not be equal to the actual dimension

of the moduli space and it is actually the dimension of a special homology class of the

moduli space that represents a nice part in which this special class is often called virtual

fundamental class.

The construction of the virtual fundamental class is due to Li-Tian in [LT] and Behrend-

Fantechi in [BF], both of which require some understanding of language of Deligne-Mumford

stacks and deformation theory. We will not go over the theory of Deligne-Mumford stacks

in details, whilst, roughly speaking, étale locally, it is isomorphic to the quotient of a

scheme by a finite group, so is our moduli space. In the following, we will go over some

crucial concepts and facts of obstruction theory developed by K. Behrend and B. Fantechi

in the paper [BF] for the construction of virtual fundamental class.

Formally, let X be a Deligne-Mumford stack, which we can think of as a “space”

parameterizing some sort of geometric objects, possibly with some extra data.

Definition 1.2.1. Let X be a Deligne-Mumford stack and E• be a two-term complex as

an object in the derived category of coherent sheaves on X. A perfect obstruction theory

on X is a morphism ϕ : E• → L•
X in the derived category of coherent sheaves to the

cotangent complex L•
X such that h0(ϕ) is an isomorphism and h−1(ϕ) is an epimorphism.

Note that the general construction of cotangent complex requires a background of

simplicial objects. However, if a morphism f : U →M is a local immersion withM smooth,

then we can take the cotangent complex L•
U to be the two-term complex [I/I2 → f ∗ΩM ].

Moreover, if a stack or scheme X admits an open cover {Ui} such that each Ui embeds

into a smooth scheme Mi, then all local cotangent complexes defined using these U ′
is will

glue to a global object L•
X in the derived category of coherent sheaves. In fact, many

schemes or DM stacks admit an open cover in which each open subscheme/DM substack

can be embedded into a smooth scheme or stack.

For any algebraic stack X, the cotangent complex L•
X gives rise to so called intrinsic

normal sheaf NX and intrinsic normal cone CX . With the local description of the cotangent

complex mentioned above, étale locally, if we have a local immersion f : U → M , one



has NX |U = [NU/M/f
∗TM ] where NU/M is the normal sheaf associated to f . Similarly

for CX , étale locally, for the local immersion f , we have CX |U = [CU/M/f
∗TM ] where

CU/M is the cone associated to f . Theorem 4.5 in [BF] says that NX embeds into the

quotient stack h1/h0((E•)∨) when E• is an obstruction theory. Also, we have a natural

embedding of stacks CX ↪→ h1/h0((E•)∨) and the image of CX under this embedding is

called the obstruction cone. By the time K. Behrend and B. Fantechi developed the theory

of intrinsic normal cone, they did not have intersection theory of Artin stacks at disposal.

So, in [BF], they always assumed that their obstruction theory admits a global resolution

while constructing the virtual fundamental class. After A. Kresch developed Chow groups

for Artin stacks, we can just simply define the virtual fundamental class associated to

a perfect obstruction theory E• is the intersection of the obstruction cone ϕX with the

vertex (zero section) of h1/h0((E•)∨).

Furthermore, the whole theory can easily be generalized to relative cases for Deligne-

Mumford type morphisms. We will just omit the details here and readers can refer to the

paper [BF] for the details of the generalization.

Now, back to our original construction problem of the virtual fundamental class of the

moduli space Mg,n(X,βββ) of genus g stable maps with n markings,

E• := (ℜ•πX∗ev
∗TX)

∨

defines a perfect obstruction theory on Mg,n(X,βββ) relative to the moduli space Mg,n of

genus g pre-stable curves with n markings where πX is the map from the universal stable

maps Mg,n+1(X,βββ) forgetting the last marked point and stabilizing and ev is the evaluation

map at the last marked point. Then it yields the virtual fundamental class [Mg,n(X,βββ)]
vir.

Now we are in position to define these Gromov-Witten invariants as follows:

Definition 1.2.2. Let γi ∈ Hki(X) be a collection of cohomology classes for i = 1, 2, . . . , n.

The Gromov-Witten invariants associated to these classes are defined to be∫
[Mg,n(X,βββ)]vir

ev∗i γi

The idea of stable maps and Gromov-Witten invariants was first used by Maxim

Kontsevich to give solutions for counting rational curves in various varieties [Kon] . For

example, let Nd be the number of degree d rational curves through 3d− 1 points in P2.

Then we have

Nd =

∫
[M (P2,d)]

3d−1∏
i=1

ev∗i [pt],

in this case, the virtual fundamental class is just the fundamental class. Kontsevich in

[Kon] gave a recursion formula for these N ′
ds. In general, Gromov-Witten invariants may



only be virtual counts with no any actual enumerative meaning.

The next milestone in the field is development of the relative Gromov-Witten theory

which was first successfully investigated by Gathmann in the genus 0 case in [Ga] and was

completely developed together with the degeneration formula by Jun Li in [Li1] and [Li2]

in algebraic geometry, and was developed by An-Ming Li and Yongbin Ruan in [LR] and

by Eleny-Nicoleta Ionel and Thomas Parker in [IP] with the symplectic geometry. The

main difference between absolute Gromov-Witten invariansts and relative invariants is the

appearance of tangency condition imposed relative to a smooth divisor. For instance, we

can consider such an enumerative problem that how many conics are there in P2 which

intersect a fixed elliptic curve at two points in which one of the two intersection has been

fixed. Relative Gromov-Witten invariants are crucial as well in the mirror construction of

smooth log Calabi-Yau pairs that is the main topic in this thesis.

Formally, define a topological type Γ be to a tuple (g, n, β, ρ,−→µ ) where g, n are non-

negative integers, β ∈ H2(X,Z) is a curve class and −→µ = (µ1, µ2, . . . , µρ) ∈ Nρ is a

partition of the intersection number β · [D]. By [Li1] and [Li2], there exists a moduli

space MΓ(X,D) of relative stable maps to the pair (X,D) with the prescribed topological

type Γ. We will describe this moduli space by only describing its C-points and readers

may refer to the paper [Li1] for the general construction of a family of relative stable

maps. Before giving a concrete description, people might guess the moduli space of relative

stable maps were just a straightforward imitation of the moduli space of stable maps

by just manually adding the piece of the constraints given by the tangency conditions

into the moduli space of (absolute) stable maps. For the time being, we call this space

the “naive moduli space”. The big issue in this naive construction is that the naive

moduli space is not compact, which basically means we are not able to define invariants

over it. It would just take a moment for many people to figure out the reason that the

space is not compact. In a word, one may have a family of maps to (X,D) satisfying

the prescribed topological type generally but with some components mapped completely

into the divisor D under the limiting map. It took roughly ten years for mathematicians

to have relative Gromov-Witten theory perfectly defined for smooth pairs (X,D) from

absolute Gromov-Witten theory being developed. Since we are mainly focusing on mirror

symmetry within algebraic geometry, we are just going to introduce the technique called

“expanded target” used by Jun Li in [Li1] and [Li2] to compactify the naive moduli space

of relative stable maps.

Let (X,D) be a smooth pair meaning X is a smooth projective variety and D is a

smooth divisor. Let ND/X be the normal bundle of D inside X. Define Y := P(ND/X⊕OD)

the projective completion of the normal bundle which is obviously a P1-bundle over D. Y

has two natural disjoint sections, one with the normal bundle N∨
D/X and the other with

the normal bundle ND/X . We call these zero section and infinity section of Y . For any



non-negative integer l, define Yl by gluing l copies of Y , where the infinity section of the

ith component is glued to the zero section of the (i+ 1)th where 1 ≤ i ≤ l − 1. Denoting

the zero section of the ith component by Di−1 and the infinity section by Di, the singular

locus of Y is
⋃l−1

i=1Di. We will also denote Dl by D∞. Then define Xl by gluing X along

D to Yl along D0. (For example, X0 = X.) Let AutD(Yl) ∼= (C∗)l be the obvious group

of automorphisms of Yl preserving D0, D∞ and morphisms to D, then let AutDXl be the

group of automorphisms of Xl preserving X with restriction to Yl contained in AutDYl.

Notice that AutDXl
∼= AutDYl ∼= (C∗)l. Now, we are in position to describe C-points of

the moduli space MΓ(X,D) of relative stable maps of a given topological type Γ.

The C-points of this moduli space correspond to morphisms C
f−→ Xl → X where

C is a nodal curve of arithmetic genus g equipped with a collection of smooth marked

points p1, p2, . . . , pn, q1, q2, . . . , qρ. The morphism f is required to have the property that

f−1(D∞) =
∑ρ

i=1 µiqi and satisfy the predeformability condition above the singular locus

of Xl, meaning that the pre-image of the singular locus is a union of nodes of C, and if

p is one such node, then the two branches of C at p map into different two consecutive

irreducible components of Xl and their contact orders with the divisor Di are the same. The

morphism f is also required to satisfy the stability condition that there are no infinitesimal

automorphisms of the sequence of maps (C, p1, . . . , qρ)
f−→ Xl → X where the allowed

automorphisms of the map from Xl to X are AutD(Xl).

Furthermore, the paper [Li1] defines a good notion of a family of relative stable

maps, i.e. a moduli functor or groupoid. A family of relative stable maps over a base

scheme S is a chain of morphisms C
f−→ X → X × S where for a C-point s of S,

the fiber Cs
fs−→ Xs → X is a relative stable map. There is also a predeformability

condition, that is, in a neighborhood of a node of Cs mapping to the singular locus of

Xs, one can choose an étale local coordinates on S,C, and X with the charts of the form

Spec(R), Spec(R[u, v]/uv = b) and Spec(R[x, y, z1, z2, . . . , zm]/xy = a) respectively, with

the map of the form x 7→ αum, y 7→ βvm with α, β units and no restrictions on z′is.

The above theory admits a perfect relative obstruction theory and thus possesses a

virtual fundamental class against which we can define invariants by integrating cohomology

classes. This is the sketch of the definition of relative Gromov-Witten invariants. However,

it was still a difficult problem to generalize the whole theory to pairs (X,D) with D a

normal crossings divisor until several new kinds of Gromov-Witten theory were defined

in which the logarithmic Gromov-Witten theory is one of the successful generalizations

and was developed independently by Abramovich-Chen in [AC0], Gross-Siebert in [GS1].

In general, logarithmic Gromov-Witten invariants can be defined for any log smooth

schemes which is a powerful generalization of the relative Gromov-Witten theory because

there are a lot more log smooth schemes out there that are not smooth. For example,

the classical relative invariants fail to be defined when the divisor D in a pair (X,D) is



normal crossings but log invariants are very well defined. One complication in the classical

theory is the change of the target for compactifying the naive space, which makes the

deformation-obstruction theory complicated. In the log Gromov-Witten theory, we can

proceed to construct the moduli space by imitating what we have done for the absolute

Gromov-Witten theory without doing any surgery on the target space with contact orders

well defined even if come components of the source curve get fully mapped into the divisor.

Besides, the corresponding logarithmic cotangent complex developed by Martin Olsson in

[Ol3] can be applied in a more straightforward way.

In Section 2.1, we are going to recap a basic theory of logarithmic algebraic geometry

in order for us to dive into the logarithmic Gromov-Witten theory.

1.3 Gross-Siebert Mirror Rings

In [GS2], Gross and Siebert associated to a simple normal crossings log Calabi-Yau pair

(W,D) a ring, R(W,D). In the case that D is maximally degenerate, i.e., has a zero-

dimensional stratum, the expectation is that R(W,D) is the coordinate ring of the mirror

to the pair (W,D). Here we consider a very different case, namely, the situation where D

is a smooth anti-canonical divisor on W . The first interesting case is when W = P2 and D

is a smooth cubic curve.

The product rule on the ring R(W,D) is defined using punctured invariants, introduced

in [ACGS2]. There are a generalization of the logarithmic Gromov-Witten invariants

introduced in [GS1], [Ch], [AC]. Punctured invariants allow maps with negative contact

order with the divisor D. In general, they may be very difficult to calculate and as yet not

many techniques for their calculation have been developed.

One of the main results of this paper gives a relationship between the punctured

invariants necessary to define the ring R(W,D) and logarithmic Gromov-Witten invariants.

These logarithmic invariants in turn have been proven by Abramovich, Marcus and Wise

in [AMW] to coincide with Jun Li’s relative invariants. Thus, once this relationship

is established, we obtain a description of R(W,D) in terms of relative Gromov-Witten

invariants.

Punctured Gromov-Witten invariants appear in the Gross-Siebert mirror construction

for a general log Calabi-Yau pair as the structure coefficients of the coordinate ring

of the mirror degeneration, with the space of non-negative contact orders representing

generators. The whole construction has been studied in [GS2]. Roughly speaking, the

relevant punctured Gromov-Witten invariants are defined using the moduli space of stable

punctured logarithmic maps with 2 marked points, and exactly one non-trivial punctured

point with a point constraint at this latter point.

In order to obtain the initial results, we will need to studying the splitting and gluing



behavior of those moduli spaces relevant to the construction of R(W,D). In order to

speak of splitting and gluing phenomena properly, [ACGS2] stratifies moduli spaces of

punctured maps by tropical types. Morally speaking, for any punctured logarithmic map

f : C/T → W over a log scheme T , there exists a functorial way associating to it a family

of maps in the category of generalized cone complexes. This process is called tropicalization,

and we write Σ(f) : Σ(C)/Σ(T ) → Σ(W ) for the corresponding tropical map. Associated

to this tropical map is certain combinatorial data, the tropical type of the map, which

we denote by τττ . There exists moduli spaces M (W,τττ) of punctured maps marked by the

tropical type τττ , and these give a stratification of the corresponding moduli space M (W,βββ)

of punctured log maps of type βββ.

In the context of the construction of R(W,D), the type βββ indicates a curve class of the

punctured map and contact orders p, q and −r for the three marked or punctured points on

the domain curve. We then have variant moduli spaces M (W,βββ, z) and M (W,τττ , z) after

imposing requiring that the punctured point with contact order −r maps to a suitably

chosen point z ∈ W . See §2.7 for more details.

In the case that D is smooth, the ring R(W,D) can now be defined as follows. First,

any non-negative contact order is an integral point of Σ(W ) = R≥0, i.e., all contact orders

lie in N. Choose a finitely generated, saturated submonoid P ⊆ H2(W,Z) containing all

effective curve classes on W . Then we have (in the case that D is ample)

R(W,D) :=
⊕
p∈N

k[P ]ϑp

where the ϑp are generators. We then define the product structure via the formula

ϑp · ϑq =
∑
β∈P

∑
r∈N

Nβββ
pqrt

βϑr

where

Nβββ
pqr = deg[M (W,βββ, z)]virt.

Here βββ is the punctured type with curve class β and contact orders p, q,−r at the three

marked or punctured points. A special case is the case that r = 0 in which we will get

back to the ordinary 2-pointed relative Gromov-Witten invariants with contact orders p

and q having an interior point-constraint imposed.

If D is not ample, then the above product rule may not be a finite sum, and in this

case one can avoid this problem by choosing an appropriate completion. See [GS2] for

details on this point.



1.4 The Main Results

Recall that for a log Calabi-Yau pair (W,D) with D a smooth divisor, there is an associated

so-called Gross-Siebert mirror ring

R(W,D) :=
⊕
p∈N

k[P ]ϑp

where

Nβββ
pqr = deg[M (W,βββ, z)]virt.

Here βββ is the punctured type with curve class β and contact orders p, q,−r at the three

marked or punctured points. M (W,βββ, z) denotes the moduli space of genus 0 stable

punctured log maps to W of type βββ where βββ indicates a curve class β of punctured log

map and contact orders p, q and −r for the three punctured points on the domain curve.

Then, by exploring gluing and splitting, we obtain (see Corollary 3.3.13):

Theorem 1.4.1. Let (W,D) be as above, p, q, r ∈ N, r > 0 and β ̸= 0. Then we have

Nβββ
pqr = (q − r)Np,q−r + (p− r)Nq,p−r,

where Na,b is the logarithmic or relative Gromov-Witten invariant counting two-pointed

rational curves with contact orders a, b with D, and satisfying a point constraint at the

second point.

Remark 1.4.2. Neither β ̸= 0 nor r > 0 can be dropped since there will not be gluing

happening if either of these two conditions fails. Moreover, These punctured invariants

will become ordinary 2-pointed relative Gromov-Witten invariants with an interior point-

constraint.

Next, set e = β · D, then we realize that the invariants Ne−1,1 for any smooth log

Calabi-Yau pair (W,D) with an extra hypothesis for D being nef have a close relation

with closed Gromov-Witten invariants nβ+fh defined and studied in [Cha] where h is the

fiber class of the anti-canonical bundle of W over W and f is a natural number, and

further investigated in [LLW] and [Lau]. Their closed GW invariants involve a moduli

space M0,1(X, β + h, s), that is, the moduli space of genus 0, 1-marked relative stable

maps to X = P(ωW ⊕O) with the curve class β + h passing through a fixed point s in X.

To compare Chan’s invariants with the numbers we require, we use a slightly modified

version of deformation to the normal cone and degeneration formula, following a similar

strategy as in [vGGR]. We will prove the following theorem in §4.3 showing an equational

relation between the closed invariants nβ+h and Ne−1,1:



Theorem 1.4.3. (−1)e−1 · (e− 1) · p∗[M (X, β + h, s)]vir = [M (W (logD), β, s)]vir where β

is an effective curve class in W and h is the fiber class of p : X → W .

Then, as a direct consequence of theorem 1.4.3, we have:

Corollary 1.4.4. (−1)e · (e− 1) · nβ+h = Ne−1,1 where β is an effective curve class in W

and h is the fiber class.

Finally, we can apply Theorem 1.4.1 and Corollary 1.4.4 to the case where W = P2

and D is an elliptic curve to give a full understanding of the mirror ring R(P2, D). Note

that in this case, e = 3d when β = dH where H is a hyperplane class in P2.

First of all, as an application of the recursion formula, we can abstractly describe

an enumerative behavior of 2-pointed relative Gromov-Witten invariants of (P2, D) with

a point condition where D is a smooth cubic curve. Let us briefly preview the results

deduced for (P2, D).

Proposition 1.4.5. Given any positive integer d, for a+ b = 3d, the invariants Nd
ab0 and

Na,b are completely determined by the number N3d−1,1 plus those lower degree invariants.

Then to complete an understanding of R(P2, D) in this case, we can directly apply

Theorem 1.4.3 to have the following corollary

Corollary 1.4.6. (−1)3d · (3d− 1) · nβ+h = N3d−1,1 where β = dH as a curve class in P2

and h is the fiber class.

Moreover, using these tools, we computed out all the degree 2 punctured Gromov-

Witten invariants and all degree 2, 2-pointed relative Gromov-Witten invariants with a

point condition for (P2, D) as follows

Corollary 1.4.7. We have N1,5 = 1, N5,1 = 25, N2,4 = 7/2, N4,2 = 14, N3,3 = 9, N2
240 =

N2
420 = 42, N2

150 = N2
510 = 30 and N2

330 = 54.

Remark 1.4.8. The numbers Nd
ab0 are just the number of degree d rational curves tangent

to order a, b at two unspecified points of D respectively, passing through a specified point

away from D, see Remark 3.1.3.

Remark 1.4.9. In [GRZ], T. Grafnitz, H. Ruddat and E. Zaslow also computed various

2-point Gromov-Witten invariants for (P2, D), even in higher genus by the tropical cor-

respondence results for smooth del Pezzo Calabi-Yau pairs proven in [Gra] and [Gra1]

and our results here agree with their calculations. Roughly speaking, their result is the

computation of the broken line expansion of theta functions ϑ1 for a toric del Pezzo

surface with smooth D in terms of tropical invariants, log invariants, and hence an explicit

computation of the Landau-Ginzburg potential ϑ1. The method shown in this thesis might

also be applied to calculations of some higher genus Gromov-Witten invariants but it is

going to involve in some complicated analysis of geometry of moduli spaces when the

genus is larger than 0.



1.5 Outline of the thesis

The thesis is organized as follows. Chapter 2 contains a detailed preliminaries of logarithmic

algebraic geometry, the theory of moduli space of stable punctured maps and its tropical

interpretation. Section 2.1 reviews a basic theory of log geometry including often used

properties and operations in the field. Section 2.2 gives an overview of tropicalizations

of log schemes. In Section 2.3, we will quickly recap the theory of stable log maps and

their basicness condition. Section 2.4 contains a brief introduction about the theory

of punctured logarithmic maps and the stability condition. Then section 2.5 gives an

tropical interpretations of punctured log maps and basicness condition and section 2.6 will

introduce a notion called Artin fan which is a finer stack parametrizing log structures and

describing many properties than the stack we introduced in section 2.1. In section 2.7, we

briefly talk about the relevant moduli spaces that we are going to use later.

Chapter 3 contains a detailed description of the process of splitting-gluing punctured log

maps and give a proof to one of our main gluing theorem. Section 3.1 reviews the process

of splitting punctured log maps and how this splitting operation affects the behaviour of

related moduli spaces. Section 3.2 basically describes a reversing process of the splitting

process that is described in section 3.1. Then section 3.3 states our main gluing theorem

in details and gives a complete proof to the theorem.

Chapter 4 begins a kind of new story in which we give a full comparison between

the 2-pointed Gromov-Witten invariants Ne−1,1 and the closed Gromov-Witten invariants

defined in [LLW] and [Cha], which implicitly yields a computation of these 2-pointed

invariants. In section 4.1, we clarify the basic setup and recap the definition of closed

Gromov-Witten invariants. Section 4.2 will be dedicated to review the degeneration

formulae for relative Gromov-Witten invariants originally given by J. Li in [Li2] and for

stable log maps developed by B. Kim, H. Lho and H. Ruddat in [KLR]. Then section 4.3

contains a full description of the comparison theorem and a detailed proof to it.

Chapter 5 is basically an application of a combination of the gluing theorem in chapter

3 and the comparison theorem in chapter 4. Section 5.1 is dedicated to give an abstract

description of calculations of 2-pointed invariants on smooth log Calabi-Yau pairs using the

associativity of θ functions and the gluing theorem. Section 5.2 contains a full calculations

of 2-pointed invariants of degree 2 of P2 relative to an elliptic curve as a concrete example

showing how powerful the gluing formula together with the associativity is.

1.6 Notations

Throughout the whole paper, we work over an algebraically closed field k of characteristic

0, and we assume that all relevant logarithmic structures are Zariski. For a logarithmic



scheme X and a map f : X −→ Y between logarithmic schemes X and Y , X and f

represent the underlying scheme of X and the underlying map of f respectively. For a

point Spec(k), (Spec(k), Q) means the logarithmic point with the logarithmic structure

whose ghost sheaf is Q.

For any monoid Q, set Q∗ := HomMon(Q,Z), Q∨ := HomMon(Q,N) and Q∨
R :=

HomMon(Q,R≥0), here Mon represents the category of monoids.



Chapter 2

Preliminaries and review

2.1 Log Geometry

A key technical tool in the Gross-Siebert program is log geometry, which formalizes the

open sector of the Gromov-Witten theory and systematizes the study of toric degenerations.

Log structures were discovered by J.-M. Fontaine and L. Illusie on Sunday, July 17, 1988

during a discussion in a train on their travel to Oberwolfach workshop “Aritmetische

Algebraische Geometrie”. Later, a basic theory of log geometry was first studied and

written down by K. Kato in the paper [Kk]. The foundational properties were explored

in [Og] which form a basis for the entire theory. A modern guiding philosophy that has

emerged is that log geometry provides a connecting link between algebraic and tropical

geometry. We shall start off by introducing these log schemes.

Definition 2.1.1. Let X be a scheme. A pre-logarithmic structure on X is a sheaf of

monoids MX together with a morphism of sheaves of monoids α : MX → OX with

the monoid structure on OX given by the multiplication. A logarithmic structure on X

is a pre-logarithmic structure such that the induced morphism α−1(O∗
X) → O∗

X is an

isomorphism.

A scheme together with a (pre-)log structure is called a (pre-)log scheme.

Remark 2.1.2. To any pre-log scheme (X,MX), there is an associated log structure defined

by taking the amalgamated sum

MX ⊕α−1OX
O∗

X

Definition 2.1.3. A morphism of log schemes ϕ : (X,MX) → (Y,MY ) is a pair (ϕ, ϕ#)

with ϕ : X → Y a morphism of schemes and ϕ# : ϕ−1MY → MX a morphism of the

sheaves of monoids fitting into a commutative diagram
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ϕ−1MY MX

ϕ−1OY OX

ϕ#

ϕ−1αY
αX

ϕ∗

Remark 2.1.4. Given a morphism of schemes ϕ : X → Y and a log structure MY on Y ,

the inverse image sheaf ϕ−1MY on X is naturally a pre-log structure. Then by the remark

2.1.2, it yields a log structure on X called the pull-back log structure, denoted by ϕ∗MY .

Definition 2.1.5. A morphism of log schemes f : (X,MX) → (Y,MY ) is called strict if

the induced morphism f# : f ∗MY → MX is an isomorphism.

There is a closely related object called ghost sheaf or characteristic sheaf bridging

algebraic geometry and combinatorial geometry not seen by classical algebraic geometry.

It is defined to be the quotient sheaf MX/α
−1O∗

X .

In the thesis, we will mainly focus on the log structure given by the divisor for log

Calabi-Yau pairs. In general, if we have a pair (X,D) where D is a divisor (not necessarily

smooth), there is an associated log structure called the divisorial log structure. Let us

explore several examples to have a taste of log schemes.

Example 2.1.6 (divisorial log structure). Let X be a scheme and D be a divisor. Write

U for the complement of D in X and let j be the inclusion of U in X. Then, define

MX := j∗O∗
U ∩OX and αX to be the inclusion. It turns out that this defines a log structure

on X called the divisorial log structure.

Example 2.1.7 (standard log point). The standard log point over a field k is defined to

be the pair (Spec k,k∗ ⊕ N) with the morphism α : k∗ ⊕ N → k defined to be

(a, n) 7→

0 n ̸= 0

a n = 0

or simply we can write it as (a, n) 7→ a · 0n with the convention that 0n = 0 if n ̸= 0 and

00 = 1.

One can easily check that this indeed defines a log structure on the point Speck.
Usually, the standard log point is denoted by Spec k† or (Spec k,N). More generally, we

can substitute any monoid Q for N to get a general log point, usually denoted by (Spec k, Q)

where Q indicates the ghost sheaf.

Example 2.1.8. Let Q be a monoid. Then the scheme Spec(k[Q]) has a natural log

structure associated to the morphism Q→ k[Q]. More specifically, if Q is a toric monoid

meaning the monoid appears as a dual cone of a strongly convex rational polyhedral cone,

this log structure on the toric variety Spec(k[Q]) agrees with the divisorial log structure



defined by the toric boundary. The log schemes of this form play a crucial role in the

category of log schemes as the role of affine schemes in the category of schemes, i.e. the

log structure on an arbitrary log scheme can be étale locally modeled on such a log scheme.

As a matter of fact, they form charts in the category of log schemes.

Definition 2.1.9. Let (X,MX) be a log scheme and Q be a monoid. A chart for MX is

a morphism f : X → Spec(Z[Q]) such that f# is an isomorphism.

Lemma 2.1.10. The morphism

HomLSch(X, Spec(Z[Q])) → HomMon(Q,Γ(X,MX))

associating to f the composition

Q→ Γ(X,QX)
Γ(f#)−−−→ Γ(X,MX)

is an isomorphism where QX is the constant sheaf on X associated to Q.

Remark 2.1.11. Based on the lemma above, a chart for MX is equivalent to a map

Q→ Γ(X,MX) such that the induced morphism of sheaves Qa → MX is an isomorphism

whereQa is the log structure associated to the pre-log structure given byQ→ Γ(X,MX) →
Γ(X,OX).

We can also consider charts for log morphisms.

Definition 2.1.12. Let f : (X,MX) → (Y,MY ) be a morphism of log schemes. A chart

for f is triple (PX → MX , QY → MY , Q→ P ) where PX , QY are the constant sheaves of

monoids associated to the monoids P,Q respectively, which satisfy the following conditions

• PX → MX and QY → MY are charts.

• the morphism of monoids Q→ P makes the following diagram commute

f ∗QY PX

f ∗MY MX

Arbitrary log schemes can be very wild to manipulate. They are roughly analogous to

general ringed spaces in classical algebraic geometry. We need to narrow down to a smaller

category in which objects are more geometric. Fine log schemes, fine and saturated log

schemes are important classes of log schemes that we need to take into account. They are

analogous to integral schemes and normal schemes respectively in the classical theory.



Given a monoid P , we can associate a group

P gp = {(a, b) ∈ P × P |(a, b) ∼ (c, d) if ∃s ∈ P such that s+ a+ d = s+ b+ c}.

There is a universal morphism P → P gp such that any morphism from P to a group

uniquely factors through this morphism.

Definition 2.1.13. A monoid P is said to be integral if the universal morphism is injective.

It is called saturated if it is integral and for all p ∈ P gp such that n · p ∈ P for some

positive integer n, then p ∈ P .

Definition 2.1.14. A log scheme (X,MX) is fine if étale locally there is a chart P →
Γ(X,MX) where P is a finitely generated integral monoid. If moreover P can be choosen

to be saturated, then (X,MX) is called fine and saturated (abbreviated as fs). Finally, if

P ∼= Nr for some non-negative integer r, we call the log structure locally free.

From now on, without being explicitly stated, we will always assume our log schemes

are fine throughout the entire rest of the thesis.

Log smoothness, étaleness and flatness. One powerful application of log geometry is to

study log smooth schemes. Many nice properties fulfilled by smooth schemes in classical

algebraic geometry theory admit a log version of these properties which are fulfilled by log

smooth schemes. Furthermore, K. Kato gives a combinatorial criterion to determine if a

log morphism is log smooth, which makes everything easier for the sake of computations.

Definition 2.1.15. Let i : (X,M) → (Y,N ) be a morphism of fine log schemes. i is

said to be a closed immersion if i : X → Y is a closed immersion as the usual sense and

i# : f ∗N → M is surjective. If, in addition, i# is an isomorphism, then i is called an

strict closed immersion.

Definition 2.1.16. Let f : (X,M) → (Y,N ) be a morphism of fine log schemes. f is

said to be logarithmically smooth (resp. logarithmically étale) if f is of finite presentation

and for any commutative diagram of fine log schemes

(T ′,L′) (X,M)

(T,L) (Y,N )

i f

with i a strict closed immersion and T ′ ⊂ T closed subscheme defined by a square-zero

ideal I, there exists étale locally on T a (resp. unique) lifting g : (T,L) → (X,M) such

that everything commutes.

Proposition 2.1.17. A strict morphism of fine log schemes (X,M) → (Y,N ) is log

smooth (resp. log étale) if and only if the underlying morphism f is smooth (resp. étale).



K. Kato gave a combinatorial way to determine if a log morphism is a log smooth (resp.

log étale).

Theorem 2.1.18. Let f : (X,M) → (Y,N ) be a morphism of fine log schemes. Then the

following are equivalent:

• f is log étale (log smooth)

• étale locally on X and Y , there exist charts (PX → M, QY → N , Q → P ) of f

satisfying

– the kernel and (resp. the torsion part of) the cokernel of Qgp → P gp are finite

groups of order invertible on X.

– the induced morphism of schemes

X
f̃−→ Y ×Spec(Z[Q]) Spec(Z[P ])

is étale. (For the smooth part of the theorem, it is sufficient to require the map

to be smooth.)

As a matter of fact, the induced map f̃ can be used to describe log flatness as well.

Definition 2.1.19. A log morphism f : (X,M) → (Y,N ) is said to be log flat if étale

locally on X and Y , there exist charts (PX → M, QY → N , Q → P ) of f such that the

induced map f̃ shown in the above theorem is flat.

A flat morphism has to make all fibers equal-dimensional. The analogue for a log flat

morphism is that their log fiber dimensions are the same where the notion of log fiber

dimension is defined as follows. Let us fix a ground field k of characteristic 0.

Definition 2.1.20. Let (X,MX) → (Y,MY ) be a morphism of log schemes with the

underlying morphism f of schemes of finite presentation. Let x ∈ X and y = f(x), and

Xy be the scheme-theoretic fiber over y with the pull-back log structure from the ambient

space X. Let κ(x) and κ(y) be the residue fields respectively at x and y. Choose geometric

points x→ x, y → y. Then we define the log fiber dimension by

dimlog f−1(y) =dimOXy ,x/⟨αX(MX,x\O∗
X,x⟩+ tr. deg. κ(x)/κ(y) + rankMgp

X,x

− rankMgp

Y,y

The above definition was first due to A. Abbes and T. Saito in [AS] with a slight

difference. Later, M. Gross and B. Siebert spotted that Lemma 3.10, 2 is not true with

the original definition and modified the definition to the one shown above to make the

lemma fully true. In [AS], they proved the invariance of the log fiber dimensions of a log

flat morphism for fs log schemes:



Proposition 2.1.21. Let f : X → Y be a log flat morphism of fs log schemes, with the

underlying morphism f finite of presentation. Then dimlog f−1f(x) is a locally constant

function in x.

There are other good properties that a flat morphism satisfies and for more discussions,

reader can refer to [AS] or the appendix A2 of [GS2].

Let us get our hands dirty on calculating examples using this theorem in order to have

a taste of what’s going on here.

Example 2.1.22 (log smooth curve). Let X = Spec k[x, y]/(xy) with the log structure

M induced by the chart

P = N2 → k[x, y]/(xy) : (a, b) 7→ xayb

and Y be the standard log point Speck† shown in the example 2.1.7 with chart

Q = N → k : a 7→ 0a

Let f be the morphism (X,M) → Spec k† induced by the diagonal ∆ : N → N2. Then,

ker(∆gp) = (0) and the torsion of coker(∆gp) = (0) are finite and their orders are 1 which

is invertible. Moreover, the induced map

X → Spec k×Spec k[t] Spec k[x, y] = Speck[x, y]/(xy)

is the identity map. By the theorem, it is log étale, also log smooth. In the next chapter,

we will see a general structure theorem of log smooth curves.

Example 2.1.23 (toroidal embedding). Let k be a field, and X a scheme locally of finite

type over k, with fine log structure M . Then the theorem says (X,M) is log smooth

over Spec k (with trivial log structure, i.e. take chart with Q = {1}) if and only if étale

locally on X, there exists a f.g. integral monoid P and étale morphism X → Spec k[P ]
such that (PX)

a ∼= M and the torsion part of P gp is finite of order invertible in k.
Hence, such (X,M) corresponds to a toroidal embedding, which is étale locally given

by the open immersion

X ×Spec k[P ] Spec k[P gp] ↪→ X.

Fiber products. Next, we are going to talk about fiber products in the categories of

log schemes, fine log schemes and fs log schemes respectively because these are the core

operations in the theory of splitting and gluing logarithmic maps. First of all, the fiber

product of the diagram



(X1,M1)

(X2,M2) (X0,M0)

in the category of log schemes can be constructed as follows.

Étale locally, choose charts for these log structures Pi → Mi(i = 0, 1, 2), then we have

a diagram

P0 P1

P2

Let P be the pushout in the category of monoids and X be the fiber product of underlying

schemes of X1 and X2 over X0 in the category of schemes. Then, étale locally, we have

a canonical map P → OX . Hence, it creates a log structure M on X, étale locally on

X given by the morphism X → SpecZ[P ]. (X,M) is defined to be the fiber product in

the category of log schemes. Furthermore, if (Xi,Mi)(i = 0, 1, 2) are fine log schemes,

i.e. Pi can be chosen to be integral monoids, let P int be the image of P → P gp, then

étale locally, the fiber product of (X1,M1) and (X2,M2) over (X0,M0) in the category

of fine log schemes is defined to be X ×SpecZ[P ] SpecZ[P int] with the log structure pulled

back from SpecZ[P int]. Analogously, if (Xi,Mi)(i = 0, 1, 2) are fine and saturated log

schemes, let P sat be the saturation of the image of P → P gp. Then, the fiber product of

(Xi,Mi)(i = 1, 2) in the category of fs log schemes is defined to be X×SpecZ[P ] SpecZ[P sat]

with the log structure pulled back from SpecZ[P sat]. We denote these three fiber prodcuts

by X1 ×X0 X2, X1 ×f
X0
X2 and X1 ×fs

X0
X2.

Note that in general, if (Xi,Mi)(i = 0, 1, 2) are fine and saturated schemes, these three

fiber products do not coincide. Geometrically, the fine fiber product is going to pick a

main irreducible component of the fiber product and the fs fiber product is to normalize

the main component. Thus, a general principle is

X1 ×fs
X0
X2

normalization−−−−−−−→ X1 ×f
X0
X2 ⊂ X1 ×X0 X2.

As we mentioned earlier, log geometry is a bridge connecting algebraic geometry

and combinatorial geometry known as tropical geometry nowadays. Recall that in toric

geometry, a toric blow up of a toric variety corresponds to a subdivision of the fan which

is the tropicalization of the toric variety regarded as a log scheme with the induced log

structure by the toric bundary. We will define the tropicalization map from the category

of log schemes to the category of rational polyhedral cone complexes. In this sense, log

geometry can be treated as a vast generalization of toric geometry with no map being

defined backwards meaning that there is not an inverse map from tropical geometry back



to log geometry in general. Many notions in log geometry such as log étaleness, flatness

have nice combinatorial descriptions by using tropical geometry. As a very crucial example,

log blow up is one operation often used in the study of moduli space of stable log maps.

Definition 2.1.24. Let (X,M) be a log scheme. By a log ideal we mean a coherent sheaf

of ideals J ⊂ M where coherence means that locally around any geometric point x, the

ideal is generated by Jx. We call a log ideal invertible if it is locally generated by a single

element.

In the following, we are going to define the log blow up Y of (X,M) against J by

showing an explicit construction, denoted by LogBlJ X.

• First of all, if X is of the form SpecZ[P ] and let I be Z[J ]. Define the underlying

scheme of LogBlJ X to be BlI X the ordinary blow up of X at the ideal I and the

log structure on the affine chart Ys = Spec(Z[P [J − s]]) is induced by P [J − s] the

submonoid of P gp generated by P and the elements of J − s. Therefore, it is fairly

obvious that Ys is the universal log scheme over X such that the pull back of J to

Ys is generated by s.

• Étale locally, when X admits a chart X → SpecZ[P ] and J is generated by J0 ⊂ P ,

then we define LogBlJ X = LogBlJ0 SpecZ[P ] ×SpecZ[P ] X. It is not hard to show

that such a local construction gives rise to a global scheme which is defined to be

the log blow up.

From the construction, we implicitly proved that the log blow up satisfies the following

universal property

Proposition 2.1.25. f : LogBlJ X → X is a universal log morphism such that f−1J is

invertible.

Remark 2.1.26. Note that any log blowup is a log étale morphisms. By base change and

étale descent, we can reduce to the case where everything is affine. Then it is not so hard

to verify the log étaleness using Kato’s combinatorial criterion for log étale morphisms.

Obvious examples of log blowups are toric blowups.

The stack of log structures. The next part is devoted to a modern and important

perspective of looking at log schemes, which was introduced by M. Olsson in [Ol1] with a

strong influence of ideas of Luc Illusie. It turns out fine log schemes T over a base fine

log scheme S are classified by an Artin stack LogS. Working with such a stack allows us

to re-interpret various notions in log geometry in terms of classical algebraic geometry

language.

To any fine logarithmic scheme (S,MS), Olsson assigns the category LogS fibered

in groupoids over the category of S-schemes as follows. The objects of LogS are fine



logarithmic S-schemes and morphisms are strict log morphisms over S. The fiber functor

is just the forgetful functor forgetting log structures.

Theorem 2.1.27. LogS is an Artin stack of locally finite type over S.

Remark 2.1.28. (1) Let T be a S-scheme, then LogS(T ) is actually the groupoid in which

objects are log schemes with the underlying scheme T , i.e. it parametrizes the ways in

which one can enhance S-schemes into log schemes.

(2) Note that the stack LogS possesses a natural log structure. Indeed, for any S-

scheme T with the structure map f : T → S, a morphism T → LogS endows T with a log

structure MT and a morphism f ∗MS → MT of log structures.

Recall that a log structure on a stack F is defined in the way that to every morphism

T → F from a scheme T to the underlying stack F , there is a log structure MT and

morphisms are compatible with log structures.

Therefore, it defines a log structure on the stack LogS. Hence, giving a log structure

on a scheme T is equivalent to giving a morphism from T to the stack Logk. In particular,

there is a tautological strict morphism (S,MS) → LogS.

By Remark 2.1.28 (2), one can easily see that any morphism of log schemes ϕ :

(T,MT ) → (S,MS) will induce a morphims of stacks Log(ϕ) : LogT → LogS. Martin

Olsson has shown that the properties of ϕ being log smooth, log étale, log flat originally

defined by K. Kato is equivalent to the morphism Log(ϕ) being smooth, étale and flat.

2.2 Tropicalization

Tropical geometry associates to an algebraic variety X a “polyhedral shadow” known as

its tropicalization whose polyhedral geometry surprisingly reflect a lot of enumerative

properties of the variety. Many astonishing correspondences between algebraic geometry

and tropical geometry have been found such as the count of rational curves of degree d in

the projective plane can also be calculated by the corresponding count of tropical curves

of degree d in the corresponding tropical surface. Another application in Gromov-Witten

theory is shown in the paper [GPS] in which they have shown that the count of certain

tropical curves in a cocharacter lattice corresponds to some Gromov-Witten invariants of

the induced toric variety.

Classically, one has to choose an embedding of X into a toric variety in order to define

a tropicalization map, and in general this map does depend on the choice of the embedding.

Standard references for the definition of a variety admitting an embedding to a toric variety

are [MS], [Ka] and [Pay] etc.. For log varieties, a construction of the tropicalization map

was first given by M. Gross and B. Siebert using the characteristic sheaf in the appendix

B of [GS1] that is analogous to the notion of the tropical part of an exploded manifold of



Parker’s work [Par]. A functoriality can be shown immediately by the definition of log

morphisms meaning that if we have a log morphism X → Y , we can then have a morphism

of generalized polyhedral cone complexes. Besides, an alternative construction was given

functorially by Martin Ulirsch using Berkovich analytic spaces in the paper [Ul] in which

M. Ulirsch proved that his tropicalization as a generalized polyhedral cone complex is

homeomorphic to the one given by Gross and Siebert. We will exhibit the construction by

Gross-Siebert and not discuss the Ulirsch’s construction of tropicalization map because it

requires a quite bit of knowledge of non-Archimedean geometry and Berkovich analytic

spaces that are completely off-topic for this thesis.

• Generalized cone complexes. We consider the category of rational polyhedral cones,

denoted by Cone. The objects of Cone are pairs (σ,N) where N is a lattice and σ is a

top-dimensional strictly convex rational polyhedral cone in NR = N ⊗ R. A morphism in

Cone is a lattice map φ : N1 → N2 such that φR(σ1) ⊂ σ2 where φR is the R-extension of

φ. Such a morphism φ is called a face morphism if φR identifies σ1 as a face of σ2. Then

recall from [KKMS] and [ACP] that a generalized polyhedral cone complex is a topological

space with a presentation as the colimit of a finite diagram in Cone with all morphisms

being face morphisms.

Let Σ be such a generalized polyhedral cone complex. We write σ ∈ Σ if σ appears

as a cone in the diagram defining Σ. Write |Σ| for its underlying topological space. A

morphism φ : Σ1 → Σ2 of generalized polyhedral cone complexes is a continuous map

φ : |Σ1| → |Σ2| such that for each cone σ1 ⊂ Σ1, the induced map σ1 → |Σ2| factors
through a cone σ2 as σ1 → σ2 ∈ Σ2. Then it yields the category of generalized polyhedral

cone complexes.

• Tropicalization. Given a log scheme (X,M) with the log structure in the Zariski

topology, we set

Σ(X) :=

(∐
x∈X

Hom(MX,x,R≥0)

)
/ ∼

where the disjoint union is taken over all scheme-theoretic points of X and the equivalence

relation is generated by the identifications of faces given by dualizing generization maps

MX,x → MX,x′ where x is the specilization of x′. One then obtains for each x a map

ix : Hom(MX,x,R≥0) → Σ(X)

In general, the maps ix may not necessarily be injective because it could cause some wired

self-identified faces.

The above definition actually gives a covariant functor from the category of log schemes

equipped with Zariski topology to the category of generalized polyhedral cone complexes.

Definition 2.2.1. Let (X,MX) be an fs log scheme. The tropicalization Σ(X) is said to



be monodromy-free if for each geometric point x, the map ix is injective on the interior of

any face of the cone Hom(MX,x,R≥0).

Remark 2.2.2. (1) In this thesis, we will only deal with a target having monodromy-free

tropicalization particularly when we try to split and glue punctured log maps later.

(2) In the next chapter, we can going to see more about how tropical geometry can be

applied in studying moduli spaces such as stratifying the moduli space of punctured log

maps.

Example 2.2.3. In the example 2.1.22, we can easily see that Σ(X) ∼= R2
≥0 where the

two components correspond to the rays x ≥ 0 and y ≥ 0 respectively. Moreover, the

tropicalization of the standard log point is the positive ray R≥0
∼= (t ≥ 0) and by the

functoriality, there is supposed to be a map R2
≥0 → R≥0. Indeed, readers can calculate

this map directly by means of the definition, which is the map (a, b) 7→ a+ b.

Example 2.2.4. Now, we have a better explanation for log blowups of log smooth log

schemes. It turns out that a log blowup LogBlJ X → X for X log smooth will give rise

to a map between the corresponding generalized polyhedral cone complexes which is a

subdivision of the tropicalization of the target and the way to see it is basically from toric

geometry because locally the log structure is pulled back from a toric variety using a chart.

In this sense, it is a natural generalization of toric blowups.

Remark 2.2.5. The feature that a log blowup of a log smooth log scheme induces a

subdivision of a generalized polyhedral cone complexes is in fact true for proper, birational,

surjective log étale morphisms in general. It is even good enough for us to take this

combinatorial property as our definition for logarithmic modification whenever we deal

with proper surjective log étale morphims.

Definition 2.2.6. A proper, birational log étale morphism is called a logarithmic modifi-

cation.

2.3 Basics on log/Relative GW invariants

In this subsection, we will quickly review the basics about logarithmic Gromov-Witten

theory introduced by Abramovich-Chen and Gross-Siebert in [GS1], [Ch] and [AC]. The

results from the paper [AMW] show that relative Gromov-Witten invariants constructed

by using the method of so called expanded pair due to Jun Li are equivalent to logarith-

mic Gromov-Witten invariants in terms of curve counting. Therefore, we will use the

terminologies logarithmic and relative interchangeably but we are not going to talk about

relative Gromov-Witten theory in details, and readers can refer to the paper [Li1] for



detailed theory about relative invariants. For foundations of logarithmic geometry, reader

can go back to section 2.1 or refer to K.Kato’s paper [Kk] and [Og].

A logarithmic version of the theory of stable curves has been studied by F. Kato in

[Kf], which turns out to be very powerful to investigate the smoothing property of a nodal

curve around its nodes by putting an appropriate logarithmic structure.

Remark 2.3.1. Recall that the ghost sheaf or characteristic sheaf of a logarithmic structure

MX on a scheme X is the quotient sheaf MX := MX/α
−1(O∗

X).

In our paper, all logarithmic structures are assumed to be fine unless otherwise stated.

For the precise definition of fine or saturated logarithmic structure, reader can refer to

[Kk]. A fine and saturated log scheme is also simply called a fs log scheme.

Definition 2.3.2. A logarithmic curve is a flat and logarithmically smooth morphism

of fs log schemes π : X → S such that all geometric fibers are reduced and connected

schemes of pure dimension 1 satisfying the following. If U ⊂ C is the non-singular locus

of π, then there exist sections x1, . . . , xn of π such that

MC |U ∼= π∗MS ⊕
n⊕

i=1

(xi)∗N.

Hence, the ghost sheaf MC has three different possibilities shown in the following

theorem:

Theorem 2.3.3. Assume that π : C → S is a log curve. Then

1. fibers have at worst nodes as singularities.

2. étale locally on S, we can choose disjoint sections xi : S → C in the smooth locus of

π whose images are called marked points such that:

(a) If η is a general point in C away from the marked points and nodes, then

MC,η
∼= MS,π(η).

(b) If p is a marked point in C, then

MC,p
∼= MS,π(p) ⊕ N.

(c) If q is a node of π−1π(q) and Q := MS,π(q), then

MC,q
∼= Q⊕N N2.



where the map N → N2 is the diagonal map and the map N → Q given by

1 7→ ρ is some homomorphism of monoids uniquely determined by the map π

with ρ ̸= 0

Roughly speaking, based on the theorem above, the benefit of applying log geometry

to the theory of moduli space of stable curves is that log smoothness often allows mild

singularities (e.g. nodes) to occur. In a nutshell, log geometry techniques sometimes

magically put us back in category of smooth spaces when we deal with something with

mild singularities.

With the preparation above, we are finally ready for the definition of stable log maps.

Definition 2.3.4 ([GS1]). Let g : X → W be a morphism of log schemes. A pre-stable

log map with n markings to X is a commutative diagram of morphisms of log schemes

C X

S W

f

π g

fS

where π : C → S is a log curve with n mutually disjoint sections x1, . . . , xn such that the

image of each xi lies in the smooth locus of π.

Furthermore, a pre-stable log map is called stable if the underlying pre-stable map of

schemes forgetting the log structures is stable in the ordinary sense.

In general, the moduli space of stable log maps to a log scheme X will not be of

finite type. Hence we have to get rid of some less important log maps to make moduli

space of finite type. The notion of basic stable log maps due to Abramovich-Chen and

Gross-Siebert in [Ch],[AC] and [GS1] now appear, and the idea is to only keep those kind

of stable log maps which become “universal” tropical map after tropicalization. We will

quickly recall this and for more details, the reader can refer to section 1 of [GS1].

Suppose we are given a stable log map (C/S,p, f) where p = (p1, p2, . . . , pn) is a

collection of markings with S = (Spec k, Q) where Q is an arbitrary sharp, fs monoid. We

will use the convention that pi will always represent some marked point and a node will

be denoted by q. Then the log morphisms π and f will induce morphisms of the sheaves

of monoids ψ = π# : Q→ MC and φ = f# : f ∗MX → MC respectively. Let us analyze

these two maps in a little more details.

• Structure of ψ: At first, the homomorphism ψ will be an isomorphism when restricted

to a general point complementary to the special points. By the theorem 2.3.3, we know

that the sheaf MC has stalks Q⊕N and Q⊕NN2 at marked points and nodes respectively.

The latter fiber sum is determined by the map N → Q : 1 7→ ρq, and the diagonal map

N → N2. Thus, the map ψ is given by the inclusion Q→ Q⊕ N and Q→ Q⊕N N2 into

the first components respectively.



• Structure of φ: For a point x ∈ C, the map φ induces a map of monoids φx : Px →
MC,x for Px := MX,f(x). By Theorem 2.3.3, we have the following behaviour at three

types of points on C:

• if x = η is a general point away from the special points on C, then we have a local

homomorphism of monoids:

Pη → Q.

By a local homomorphism f :M → N of monoids, we mean that it is a homomor-

phism of monoids such that f−1(N∗) =M∗.

• if x = p is a smooth marked point, then it gives the composition:

up : Pp
φp−→ Q⊕ N pr2−−→ N

where up is an element of Hom(MX,f(p),N), called the contact order at p.

• when x = q a node of two irreducible components with two generic points η1 and η2

respectively, let χi : Pq → Pηi (i = 1, 2) are the generization maps, then there exists

a map

uq : Pq → Z

called the contact order at q such that

φη2(χ2(m))− φη1(χ1(m)) = uq(m)ρq

with ρq ̸= 0 given by the structure of ψ.

Based on the analysis above, we can define a basic monoid Q by first defining its dual:

Q∨ := {((Vη)η, (eq)q) ∈
⊕
η

P∨
η ⊕

⊕
q

N | ∀q : Vη2 − Vη1 = equq}

Here, the sum is taken over all generic points and nodes. We then set

Q := Hom(Q∨,N).

Then, the basic monoid Q associated to the the contact orders {up, uq} is “universal”

in the following sense:

Given a stable log map (C ′/S ′,p, f ′) over a log point S = (Spec k, Q′) with the same

contact orders as above, one then obtains a map

Q→ Q′



which is defined as the transpose of the map:

(Q′)∨ → Q∨ ⊂
⊕
η

Pη ⊕
⊕

N : m 7→
(
(φt

η(m))η,m(ρq)q
)

Definition 2.3.5 (basicness). Let (C/S,p, f) be a stable log map. We call f basic if

at every geometric point s ∈ S, the map Q → Q′ = MS,s defined by the restriction

(Cs/s,ps, fs) is an isomorphism.

Remark 2.3.6. We will see the tropical interpretation of the basic monoid of a stable log

map later. Roughly speaking, the basic monoid of a combinatorial type is the monoid over

which a family of tropical maps of the same combinatorial type is universal.

Once we impose the basicness condition on stable log maps, we obtain a moduli space.

Then we have the following theorem due to Gross and Siebert.

Theorem 2.3.7 (Proposition 5.1, [GS1]). If g : X → W is log smooth, then the moduli

space of basic stable log maps to X with fixed contact orders and curve class is a Deligne-

Mumford stack and carries a relative perfect obstruction theory relative to the moduli

stack of pre-stable logarithmic curves, and therefore possesses a virtual fundamental class.

Moreover, if the map g is proper, then the moduli stack is proper.

2.4 Stable punctured log maps

Definition 2.4.1 ([ACGS2]). Let Y = (Y ,MY ) be a fine and saturated logarithmic

scheme with a decomposition MY = M⊕O× P. A puncturing of Y along P ⊂ MY is a

fine sub-sheaf of monoids

MY ◦ ⊂ M⊕O× Pgp

containing MY with a structure map αY ◦ : MY ◦ → OY such that

1. The inclusion p♭ : MY → MY ◦ is a morphism of logarithmic structures on Y .

2. For any geometric point x of Y , let sx̄ ∈ MY ◦,x be such that sx /∈ Mx ⊕O× Px.

Representing sx = (mx, px) ∈ Mx ⊕O× Pgp
x , we have αY ◦(sx) = αMY

(mx) = 0 in

OY,x.

We call a puncturing MY ◦ trivial if the induced map p♭ is an isomorphism. Write

Y ◦ = (Y ,MY ◦).

Remark 2.4.2. Note that unlike stable logarithmic curves/maps, the logarithmic structure

put on a punctured log curve is not necessarily saturated, in other words, C◦ is in general

only a fine logarithmic scheme.



Remark 2.4.3. Readers can easily see that a puncturing of a log structure is not unique.

Nonetheless, once a log scheme with a choice of puncturing is equipped with a log morphism

to another log scheme, there is in fact a smallest choice for puncturing. More precisely, we

have the following definiton.

Proposition 2.4.4. Let X be a fine log scheme and Y be as in Definition 2.4.1, with

a choice of puncturing Y ◦ and a morphism f : Y ◦ → X. In addition, let Ỹ ◦ be the

puncturing of Y given by the sub-sheaf of MY ◦ generated by MY and f ♭(f ∗MX). Then

• We have MỸ ◦ is a sub-logarithmic structure of MY ◦.

• There is a factorization

Y ◦ X

Ỹ ◦

• Given Y ◦
1 → Y ◦

2 → Y with both Y ◦
1 , Y

◦
2 puncturings of Y , and compatible morphisms

fi : Y
◦
i → X, Ỹ ◦

1 = Ỹ ◦
2 .

Proof. The proof is very straightforward and follows immediately from the definitions.

This proposition motivates the following definition:

Definition 2.4.5. Let X be a log scheme. A morphism f : Y ◦ → X from a punctured

log scheme is said to be pre-stable if the puncturing MY ◦ is generated as a sheaf of fine

monoids by MY and f ♭(f ∗MX).

Furthermore, a puncturing can be pulled back in the following sense:

Proposition 2.4.6. Let X and Y be fine and saturated log schemes with log structures

MX and MY respectively and suppose given a morphism g : X → Y . Suppose also given

a fine and saturated log structure PY on Y and an induced log structure PX := g∗PY on

X. Set

X ′ = (X,MX ⊕O×
X
PX), Y

′ = (Y,MY ⊕O×
Y
PY )

Further, let Y ◦ be a puncturing of Y ′ along PY . Then, there is a diagram

X◦ Y ◦

X ′ Y ′

X Y

g◦

g′

g



with all squares Cartesian in the category of underlying schemes, the lower square Cartesian

in the category of fs log schemes, and the top square Cartesian in the category of fine log

schemes. Furthermore, X◦ is a puncturing of X ′ along PX .

Remark 2.4.7. For the proof of the above proposition, readers can refer to [Proposition

2.7, [ACGS2]]

Throughout the paper, we will essentially only be interested in the case that Y ◦ is a

punctured log scheme with the underlying log scheme a logarithmic curve Y over a fine

and saturated log scheme S.

Note that when we are given a log curve π : C → S, then by Theorem 2.3.3, we have

MC = M ⊕O× P where M is the the log structure on C with no marked points and

P is the logarithmic structure associated to the marked points. Therefore, it yields the

definition of punctured logarithmic curve.

Definition 2.4.8. A punctured logarithmic curve parametrized by a fine and saturated

log scheme S is the following data:

(C◦ p−→ C
π−→ S,x = (x1, x2, . . . , xn))

where

1. (C
π−→ S,x = (x1, x2, . . . , xn)) is a logarithmic curve with n disjoint marked points

x1, . . . , xn.

2. MC◦ is a choice of a puncturing of M along the log structure P associated to the

marked points.

Furthermore, given a punctured logarithmic curve as defined above, a pre-stable punctured

logarithmic map is a diagram

C◦ X

C

S

p

f

π

where f is pre-stable in the sense of Definition 2.4.5, and the pre-stable punctured

logarithmic map is called stable if forgetting about all logarithmic structures, the diagram

above is a stable map in the ordinary sense.

Since we can pull back puncturing along log morphisms in general, it indicates that

punctured log curves can be pulled back along log morphisms as well. Consider a punctured



curve (C◦ → C → W,p) and a morphism of fine and saturated log schemes T → W .

Denote by (CT → T,pT ) the pullback of the log curve C → W via T → W . Proposition

2.4.6 gives rise to a diagram

C◦
T C◦

CT C

T W

Then, C◦
T → CT → T is the pullback of the punctured log curve C◦ → C → W .

Example 2.4.9. Let W = Spec k with the trivial log structure. Let C be a smooth curve

over W . Choose a point x ∈ C and a puncturing MC◦ at x. In this case, MC◦ = P , which

means all puncturings must be trivial. Indeed, if sx = (mx, px) ∈ MC◦,x, then αC◦(sx) = 0

in OC but this is not allowed to occur since mx must be a unit in OC .

Example 2.4.10. Let W = Spec k† the standard log point, and C be a non-singular

curve over W with the structure morphism π such that MC = O×
C ⊕ N where N denotes

the constant sheaf on C with the stalk N. Again, choose a punctured point p ∈ C. Let

MC◦ ⊂ π∗MW ⊕O×
C
Pgp be a puncturing. Let s be a local section of MC◦ near p, then s

is of the form ((φ, n),m) with φ ∈ O×
C , n ∈ N and m ∈ Z. If m < 0, the condition 2 of

Definition 2.4.1 implies that απ∗MW
(φ, n) = 0, which implies that n > 0. Therefore, one

has an inclusion that

MC◦ ⊂ {(n,m) ∈ N⊕ Z|m ≥ 0 if n = 0}.

Conversely, any fine submonoid of the right hand side of the above inclusion which

contains N2 can be realized as the stalk of the ghost sheaf at p for a puncturing.

Remark 2.4.11. The notion of puncturing of a stable log map along the marked points

allows us to talk about negative contact orders. More concretely, suppose given a stable

punctured log map f : C◦ → X and x ∈ C◦ a marked point. Then we have a chain of

maps of monoids, denoting the composition by ux:

Px := MX,f(x) → MC◦,x ↪→ MS,π(x) ⊕O× Ngp pr2−−→ Z

where pr2 is the second projection map and ux ∈ P ∗
x is the contact order of f at the point

x.

Notice that x is sometimes called a marked point if ux ∈ P∨
x , otherwise, it is called a

punctured point.



Remark 2.4.12. In general, imposing well-defined contact orders at punctured points is a

quite subtle thing. For a full discussion, we refer readers to [ACGS2]. Roughly speaking,

given a family of punctured logarithmic maps f : C◦/W → X, at each geometric point

w ∈ W and for each punctured point x ∈ C◦
w, we have the contact order ux : Px → Z

defined as above, i.e. we specify an integral tangent vector ux to σf(x) ∈ Σ(X) (see section

2.5). Then as w varies on W , the cones σf(x) might vary, hence we have to consider the

notion so-called family of contact orders and its connected components.

However, in this paper, especially for the main gluing theorem, we will stick to the

case where X is a smooth projective variety with the divisorial logarithmic structure given

by a smooth divisor. So, the tropicalization Σ(X) is just R≥0, and there is not any issue

to impose contact orders at punctures.

Remark 2.4.13 (Geometric interpretation of negative contact orders). Let f : C◦/W → X

be a punctured log map with W = (Spec k, Q). Suppose p ∈ C is a non-trivial punctured

point and let C ′ be the irreducible component containing p with the generic point η. Then

if C ′ has negative tangency order with some strata in X, it forces the image of C ′ under f

to be fully contained in those strata.

Indeed, let Pp := MX,f(p) and up be the contact order Pp → Z described above, which

is the composition f
#

p : Pp → MC◦,p ⊂ Q ⊕ Z pr2−−→ Z. For any element t ∈ Pp with

up(t) < 0, we must have pr1 ◦f
#

p (t) ̸= 0, otherwise we have αC◦(0, up(t)) ∈ O×
C (one can

see this by pulling back everything onto W ), which contradicts to the condition 2 of

the definition 2.4.1. Thus, if χ : Pp → MX,f(η) is the generization map, we must have

u−1
p (Z<0) ∩ χ−1(0) = ∅. This restricts the strata in which C ′ can lie.

For example, the target is a pair (X,D) with X a scheme and D a smooth divisor and

we endow X with the divisorial log structure given by the divisor D. Now, if f(C ′) ⊈ D,

i.e. f(η) /∈ D, then MX,f(η) = 0 which implies that u−1
p (Z<0) ∩ χ−1(0) = u−1

p (Z<0) ̸= ∅,
contradiction! This forces the image of C ′ under f to be contained in the divisor D.

The punctured points which are not usual marked points impose extra constraints on

the possible deformations of a punctured curve, hence of a punctured log map, captured

by the puncturing log ideal in the base monoid.

Recall from [Og] that a log ideal K on a fine log scheme W is a sheaf of ideals of MW .

It is invariant under the multiplication action O×. Hence, every log ideal K is the pullback

of K := K/O× under the map MW → MW . Moreover, a log ideal K is called coherent if

for any chart Q→ Γ(U,MW ), there exists a finite set S ⊂ Q generating K|U .
Let (C◦ → W,p) be a family of punctured log curves. For each punctured point

p : W → C◦, consider the composition of maps

u◦p : p
∗MC◦ → MW ⊕ Z → Z



of sheaves of fine monoids with the first map inclusion and the second map the second

projection. Denote by Ip ⊂ p∗MC◦ the sheaf of ideals generated by (u◦p)
−1(Z≤0). In

[ACGS2], they define the notion of puncturing log ideal and explore some properties of it

in Section 2.5. Let us review some core properties in the following.

Definition 2.4.14. The puncturing log ideal K ⊂ MW of a family of punctured log curves

(π : C◦ → W,p) is the sheaf of ideals generated by⋃
p

(π#)−1(Ip) ⊂ MW ,

where p runs over all punctured points.

Remark 2.4.15. In the definition, we abuse the notation when writing π# for the composition

MW → π∗MC◦ → π∗p∗p
∗MC◦ = p∗MC◦ .

Lemma 2.4.16. The puncturing log ideal of a family of punctured log curves is coherent.

Here also comes with the vanishing property putting restrictions on deformations of

punctured curves, which also makes a punctured log curve an idealized log scheme.

Proposition 2.4.17. Let (C◦ → W,p) be a family of punctured log curves and K be its

puncturing log ideal. Then,

αW (K) = 0.

Proof. For each punctured point p ∈ C◦, by the definition of puncturing, one has

p∗αC◦(Ip) = 0. Pulling back via π# : MW → p∗MC◦ then yields

αW

(
(π#)−1(Ip)

)
= (p∗αC◦)(Ip) = 0.

Then, running over all punctured points will give us the vanishing property.

Definition 2.4.18. An idealized log scheme is a triple (X,M,K) such that (X,M) is a

log scheme and K ⊂ M is a sheaf of ideals satisfying K ⊂ α−1
X (0). It is called coherent if

M and K are both coherent.

Remark 2.4.19. Proposition 2.4.17 says that a punctured log curve with its puncturing log

ideal forms an idealized log scheme.

Example 2.4.20. Let Spec k† = (Spec k,N) be the standard log point and (C◦/W,p) be

a punctured log curve over Spec k† with the underlying curve C smooth and connected,

and with only one punctured point p such that

MC◦,p = N2 + N · (a,−1) ⊂ N⊕ Z.



for 0 ̸= a ∈ N. Then the punctured log ideal K is N · a. This actually implies that if we

want to fit this curve into an one-parameter family with W as a subscheme of the affine

line Spec k[t], unlike a log smooth curve over Spec k†, the maximal closed subscheme of A1

to which this punctured curve can extend is given by the ideal (ta) ⊂ k[t]. This can be

checked using the commutative diagram in the definition of log morphisms, and one can

realize that a subscheme of A1 to which the punctured curve can be extended must be on

the zero loci of the puncturing log ideal.

Definition 2.4.21. The puncturing log ideal KW of a pre-stable punctured log map

(C◦/W,p, f) is the puncturing log ideal of the punctured domain curve.

We will end this section with an example reflecting a new subtlety that the natural

bases in punctured Gromov-Witten theory could possibly be reducible and even not pure

dimensional.

Example 2.4.22. Let W = Spec k and consider a target X a smooth surface equipped

with the divisorial log structure given by a smooth rational curve D such that D2 = 2.

Consider a punctured log map (C◦/W,p = (p1, p2, p3, p3), f : C◦ → X) with the contact

orders −1,−1, 2, 2 respectively and the domain curve having three irreducible components

C1 ∪ C2 ∪ C3 in which q1 = C1 ∩ C2 and q2 = C1 ∩ C3 are two nodes. In addition, assume

that p1, p3 ∈ C2 and p2, p4 ∈ C3, and f contracts the components C2 and C3 and identifies

C1 with D. Orient the node qi from Ci to Ci+1(i = 1, 2). We also require that the contact

orders at the nodes qi(i = 1, 2) are uq1 = uq2 = 1. It is not so hard to check such a map

does exist.

The tropical map. The corresponding tropical curve Γ has three vertices v1, v2, v3 with

vi corresponding to the component Ci (i = 1, 2, 3), edges Eq1 , Eq2 and legs Ep1 , Ep2 , Ep3 , Ep4 .

Then the moduli space of tropical maps of this type is R3
≥0 with coordinates ρ, l1, l2 where

ρ represents the distance of the image of v1 to the origin of the tropicalization Σ(X) = R≥0,

and l1, l2 represent the lengths of Eq1 , Eq2 respectively. In particular, the basic monoid Q

of this type is N3 generated by ρ, l1, l2.

The punctured log ideal. Let us calculate the punctured log ideal K in this case. For

each punctured point pi (i = 1, 2), we have chains of maps

upi : Pi := MX,f(pi) → MC◦,pi ⊂ Q⊕ Z pr2−−→ Z

and

φpi : Pi := MX,f(pi) → MC◦,pi ⊂ Q⊕ Z pr1−−→ Q.

Notice that φi are dual to the evaluation map evi : Q
∨
R → P∨

i = R≥0 evaluating the tropical

curve parameterized by Q∨
R at the vertices v2, v3. For each m ∈ Q∨

R, evi(m) = ρ(m)+ li(m).

Therefore, φi is the map given by 1 7→ ρ + li. Since upi(1) = −1 < 0, by the definition



of puncturing log ideal, one has that KW is generated by ρ + l1, ρ + l2. If we write

k[Q] = k[x, y, z] with the three variables corresponding to ρ, l1, l2 respectively, then we

can see that Spec k[Q]/K ∼= Spec k[x, y, z]/(xy, xz) which has two components of different

dimensions.

We can be instructed from the example that this reflects a smooth local structure of

the moduli space of punctured log maps with certain tropical type, so we can see that

they behave very badly in general because of the existence of non-trivial puncturing.

2.5 Tropical interpretations

Tropical geometry supplies an efficient way for us to capture the combinatorial data of

stable log maps or stable punctured log maps. In most cases, grouping stable (punctured)

log maps by means of their tropical data inside the corresponding moduli space will result

in a good stratification of the moduli space. Moreover, the notion basicness for stable

(punctured) log maps can be extracted naturally by looking at the tropical picture.

Recall that for any logarithmic scheme X, we can associate to it its tropicalization

Σ(X) functorially which is a generalized cone complex in general, see the section 1.4 or

[ACGS2]. Thus, when we have a stable log curve

C X

S

π

f

we have a corresponding tropical picture

Σ(C) Σ(X)

Σ(S)

Σ(π)

Σ(f)

Throughout the entire paper, we are mainly interested in the case that either S is a log

point or it is a stacky point with a log structure (e.g. BG†
m).

Here we will focus on the first case, that is, if S = (Spec(k), Q), then Σ(S) = Q∨
R. Let

us recap how we get the cone complex Σ(C).

First of all, at the generic point η of each irreducible component of C, by Theorem

2.3.3, we have MC,η
∼= Q, and thus it produces a cone Q∨

R.

Secondly, at each marked point p, again by Theorem 2.3.3, MC,p
∼= Q ⊕ N. Then

Hom(MC,p,R≥0) ∼= Q∨
R × R≥0. So, each marked point offers a cone Q∨

R × R≥0.

Thirdly, at each node q, Theorem 2.3.3 tells us that MC,q
∼= Q⊕N N2 where the map

N → Q maps 1 to some non-zero element ρ and the map N → N2 maps 1 to (1, 1). Then



we have Hom(MC,q,R≥0) ∼= Q∨
R×R≥0

R2
≥0 where the map Q∨

R → R≥0 is given by evaluation

at ρ and the map R2
≥0 → R≥0 maps (a, b) to a + b. Thus, we can easily notice that we

have an isomorphism Q∨
R ×R≥0

R2
≥0

∼= {(m,λ) ∈ Q∨
R × R≥0|λ ≤ m(ρ)}.

Finally, Σ(C) is obtained by gluing all possible cones described above using natural

corresponding generization maps. More details are shown in [ACGS1].

In the meanwhile, it is also shown in [ACGS1], Prop. 2.25, that the map Σ(π) together

with data described above actually gives rise to a family of abstract tropical curves over

Q∨
R written as a triple Γ = (G,g, l) where G is the dual intersection graph of C with sets

V (G), E(G), L(G) of vertices, edges and legs, and the maps

g : V (G) → N, and l : E(G) → Hom(Q∗,N) \ 0.

where g is the genus function and l is the “length” function such that for any edge E and

m ∈ Q∗, l(E)(m) = m(ρ) in which ρ is the non-zero element explained above for the node

to which the edge E corresponds.

Conversely, given such a triple Γ = (G,g, l) of a family of tropical curves, we are able

to construct a generalized cone complex, denoted by Γ(G, l). This has one cone ωx for

each x ∈ V (G) ∪ E(G) ∪ L(G), with ωv = Q∨
R for v ∈ V (G).

There is a more or less parallel tropical interpretation for punctured logarithmic maps

in which the only change is that a leg may have finite length, in other words, we only need

to do a slight modification for punctured points. Indeed, suppose L ∈ L(G) corresponds to

a punctured point (not marked point) with a puncturing Q◦ ⊂ Q⊕Z that contains Q⊕N
as its proper submonoid. Set ωL = Hom(Q◦,R≥0). By the finite generation property of Q,

one can quickly show that there is a piecewise linear function l(L) : Q∗
R → R≥0 such that

ωL = {(s, λ) ∈ Q∗
R × R≥0|λ ≤ l(L)(s)}.

Therefore, this tiny difference motivates the following definition of punctured tropical

curves over a monoid Q.

Definition 2.5.1. A family of punctured tropical curves over a monoid T is a graph G

together with two maps

g : V (G) → N, and l : E(G) → Hom(T,R≥0).

Remark 2.5.2. Therefore, according to this definition, the tropicalization of a family of

punctured log curves over a base S = (Spec(k), Q) is a family of tropical curves over the

monoid Q∗.

Furthermore, a family of punctured tropical maps over a monoid T is a map of cone

complexes h : Γ → Σ(X) for X a logarithmic scheme and Γ associated to the family of



tropical curves (G,g, l).

From this definition, we can directly see that tropicalization of punctured log maps

yields a family of punctured tropical maps to Σ(X). More importantly, the corresponding

punctured tropical maps of a punctured log map contains a collection of combinatorial

information encoded by log structures.

In summary, we can extract the following combinatorial data from a punctured log

maps over S = (Spec(k), Q) out of its tropicalization:

1. A family of punctured tropical curves Γ = (G,g, l).

2. A map σ : V (G) ∪ E(G) ∪ L(G) → Σ(X) which associates to each object of G the

minimal cone of Σ(X) that the object gets mapped to.

3. For each edge Eq corresponding to a node q, we have a weight vector uq ∈ Nσ(Eq)(the

lattice of integral vectors to the cone σ(Eq)).

4. For each Ep corresponding to a marked point or punctured point, we have a contact

order uL ∈ Nσ(L).

5. A map of cone complexes h : Γ(G, l) → Σ(X) such that if L ∈ L(G) is a leg with

a vertex v, then h(Int(ωL)) ⊂ Int(σ(L)) and from Proposition 2.5.3 below or more

specifically, according to the pre-stability condition, one has

h(ωL) = (h(ωv) + R≥0uL) ∩ σ(L) ⊂ Nσ(L) ⊗Z R.

If h(ωv) + R≥0uL ⊆ σ(L), then we call the leg L a marked leg; otherwise it is a

punctured leg.

6. For each fiber Σ(π)−1(t) for all t ∈ Q∗, the restriction of h onto the fiber satisfies

that if v1, v2 are vertices of an edge Eq from v1 to v2, then h(Int(Eq)) ⊂ Int(σ(Eq)),

and satisfy the equation

h(v2)− h(v1) = l(Eq)(t)uq.

Note that we abuse the notation h for the restriction map.

Sometimes, a collection of data described as above for a family of (punctured) loga-

rithmic maps is called combinatorial type of the (punctured) logarithmic maps, denoted

by

τ = (G,ggg, σ,uuu)



in which uuu is the package {up, uq} collecting all the information of contact orders at

punctures or nodes, and define τττ := (τ, β) to be the combinatorial type τ with curve class

β.

There is a simple tropical interpretation of pre-stability [ACGS2] saying that the images

of punctured legs can extend exactly as far as the image cone allows:

Proposition 2.5.3. If (C◦/W,p, f) is a pre-stable punctured log map over a log point

(Spec k, Q) and h = Σ(f) : Γ(G, l) → Σ(X) is its tropicalization, then for each punctured

leg L and s ∈ Q∨
R, it holds that

h(s, l(L)(s)) ∈ ∂σ(L),

while h(s, l(L)(s)) + ϵuL /∈ σ(L) for all ϵ > 0.

Proof. Let p ∈ C◦ be the punctured point defined by L, and write ω = Q∨
R,σσσ = P∨

R for

P = MX,f(p). Then the map hL : ωL → σσσ induced by h is dual to

f
#

f(p) : P → MC◦,p = Q◦ ⊂ Q⊕ Z.

Note that ωL ⊂ ω × R≥0. Hence, by pre-stability, Q◦ is generated by Q⊕ N and by the

image f
#

f(p). Dually, one has

ωL = (Q◦
R)

∨ = (ω × R≥0) ∩ h−1(σσσ),

which indicates that ωL is the convex hull of ω × {0} and {(s, l(L)(s)) ∈ ω × R≥0}. Thus,
this shows that points (s, l(L)(s)) get only mapped to the boundary points of σσσ.

Now we are in position to introduce a very crucial notion in punctured Gromov-Witten

theory, which is the notion of basicness of a punctured log map.

Definition 2.5.4. A pre-stable punctured logarithmic map (C/S,p, f : C → X) over a

log point S = (Spec(k), Q) is said to be basic if the associated family of tropical maps

h : Γ(G, l) → Σ(X)

over Q∨
R is universal among all tropical maps of the same combinatorial type, meaning

that the associated family of tropical maps of any other pre-stable punctured logarithmic

map of the same tropical type is the pullback of (C/S,p, f : C → X).

Remark 2.5.5. We have defined basicness using the notion of basic monoid in the previous

section and the definition we give here is merely a re-phrase in the language of tropical

geometry.



Remark 2.5.6. We can also restrict Σ(f) to fibers of Σ(π) to get maps between cone

complexes

Σm := Σ(f)|Σ(π)−1(m) : Σ(π)
−1(m) → Σ(X),

for each m ∈ Σ(S).

2.6 Artin fans

In general, an Artin fan is a logarithmic Artin stack that is logarithmically étale over a

point Spec(k) with the trivial log structure. In logarithmic algebraic geometry, there is a

way of associating to any logarithmic scheme X a canonical Artin fan X such that there

is an initial factorization X → X → Logk for the canonical map X → Logk introduced

by M. Olsson in [Ol1]. Here Logk is Olsson’s stack parametrizing all fine logarithmic

structures defined in Section 2.2. The reason that the Artin fan X is better used than

Logk is that the latter is too big and contains a lot of redundant information, whilst the

Artin fan just keeps all tropical information of X which is very practical for the sake of

studying moduli problems. The detailed construction of X can be found in [ACMW] and

we will briefly outline how to construct the Artin fan for a log scheme in the following.

Theorem 2.6.1. Let X be a logarithmic algebraic stack over Spec(k) which is locally

connected in the smooth topology. Then there is an initial strict étale morphism X → Logk

over which X → Logk factors. Moreover, the morphism X → Logk is representable by an

algebraic space.

Proof. The proof can be found in [[ACMW], Prop.3.1.1]

Let us quickly sketch the construction of the Artin fan X of a log scheme/Deligne-

Mumford stack X in the following

Given a log scheme/Deligne-Mumford stack X, tropicalization operation yields a

generalized polyhedral cone complexes Σ(X) shown in section 2.2. Then, for any cone

(σ,N) ∈ Σ(X), let P = σ∨ ∩M where M = N∗. We write Aσ for the following stack

quotient

Aσ := [Speck[P ]/ Spec k[P gp]]

This stack carries the standard toric log structure induced by the descent from the global

chart P → k[P ]. Then the canonical Artin fan of X is defined as follows:

X := lim−→Aσ,

where the colimit is taken over all cones σ ∈ Σ(X) in the category of sheaves over Logk.

The appearance of X can rephrase many properties about X in logarithmic geometry.

For instance, X is logarithmically smooth if and only if the associated map X → X



is smooth. Furthermore, the following proposition in [ACGS1] reflects an importance

of Artin fans in the sense of encoding combinatorial data of log schemes given by their

tropicalizations.

Proposition 2.6.2 ([ACGS1],Prop. 2.10). Let X be a Zariski fs log scheme log smooth

over Spec(k). Then for any fs log scheme T , there is a canonical bijection

Homfs(T,X ) → HomCones(Σ(T ),Σ(X)),

which is functorial in T .

Remark 2.6.3. There is another definition for Artin fan introduced by D. Abramovich and

J. Wise [AW] for log smooth log schemes. When X is log smooth, then the tautological

map X → Logk is smooth, and we define the Artin fan to be π0(X/Logk) the connected

components of the fibers.

Remark 2.6.4. Unlike tropicalization, the construction of Artin fan of log schemes is not

functorial in general and you should not expect it to be true for all morphisms whatsoever.

This is because for any log morphism f : X → Y , the map X → Logk does not factor

through Y unless f is strict. However, if the domain is Zariski log smooth, then the

functoriality holds.

Example 2.6.5. Let X = A1 the affine line with the toric log structure. Then an easy

computation shows that X = AN = [A1/Gm]. Given an ordinary scheme T , a map

f : T → AN endows T with the pullback log structure f ∗MAN . Note that in this case,

the universal Gm-torsor corresponds to the Gm-torsor subsheaf of MAN defined by the

generating section of MAN . Thus, the pullback log structure on T corresponds to a line

bundle with a section.

Therefore, for any arbitrary log scheme (T,MT ), a morphism (T,MT ) → AN is the

same data as the restriction of MT → OT to a Gm-torsor subsheaf of MT . The pair AN

with its universal line bundle has a crucial application in Li’s relative Gromov-Witten

theory since it simplifies relative obstruction theory a lot, and thus yields a much easier

way to define a virtual fundamental class on the corresponding moduli space.

Proposition 2.6.6. Let X → Y be a morphism of log schemes and suppose X is log

smooth with Zariski log structure. Then it induces a morphism of Artin fans X → Y such

that the following diagram commutes:

X Y

X Y



Proof. We will just sketch a proof here and detailed discussion can be found in [ACGS1].

The proof roughly splits into two steps:

• First of all, we need to show that the Artin fan X admits a Zariski open cover

{Aσ | σ ∈ Σ(X)}. Since the log structure is Zariski, we may choose a Zariski open

cover {U → X} such that U → AU is the Artin fan of U . Note that X is log smooth,

then X → X is smooth, hence the image Ũ ⊂ X of U is an open substack of X .

Then it amounts to show that Ũ is the Artin fan of U . Now, we need to use the

other definition of Artin fan, see 2.6.3. So it remains to show that Ũ parameterizes

the connected components of the map U → Logk. Since every map encountered here

is smooth, it is sufficient to check at a geometric point, which is not hard to verify.

• Next, we will show that any morphism X → Aτ factors through a map X → Aτ for

any cone τ . By the above discussion, we have a Zariski open cover {Aσ ⊂ X} of X
such that {Uσ := Aσ ×X X ⊂ X} forms a Zariski open cover of X.

Locally, a morphism Uσ → Aτ induces a homomorphism τ∨ → σ∨, hence a canonical

morphism Aσ → Aτ through which Uσ → Aτ factors. Then, one can verify that

these local factorizations glue to a global one.

• Note that the statement can be checked étale locally on Y, hence we may assume

that Y = Aτ for some cone τ . Then the statement reduces to exactly the discussion

above.

One important application of Artin fans is in the study of relative Gromov-Witten

invariants. Recall from Section 1.2 that a relative stable map might have an expanded

target rather than the original one, where an expanded target for a pair (X,D) developed

by J. Li in [Li1] is of the following form

X[n] := X ⊔D P ⊔D P ⊔D . . . ⊔D P

here P = P(O ⊕ND/X) and the gluing over D attaches 0-sections to ∞-sections. Notice

that not every deformation of an expanded target is an expanded target, which makes

deformation-obstruction theory much more complicated than the absolute case.

In [ACFM], following the idea in [Ca], the pair (X,D) induces a canonical map X → X
where X is endowed with the divisorial log structure given by the divisor D and X is the

associated Artin fan. In the case, X = [A1/Gm] which is also the classifying space of line

bundles with a section and there is a divisor D := [∗/Gm]. Note that any deformation of

an expanded target of the pair (X ,D) is indeed again an expanded target. As a matter of



fact, any expanded target X[n] → X is the pullback X[n] = X ′ ×X X where X ′ → X is

an expanded target of the pair (X ,D).

Using expanded targets, J. Li defined the moduli space MΓ(X,D) of relative stable maps

to (X,D) with a fixed enumerative data containing the genus of source curve, the number of

marked points, a curve class ofX and a set of contact orders toD and a virtual fundamental

class on this moduli space is constructed by bare hands. Nowadays, we know that there is

just a very natural relative obstruction theory for the map MΓ(X,D) → MΓ(X ,D) where

the latter is the moduli space of pre-stable maps which is pure-dimensional. Therefore,

by [Ma], the virtual fundamental class of MΓ(X,D) is just the virtual pullback of the

fundamental class of MΓ(X ,D).

2.7 Relevant moduli spaces

Throughout this sub-section, we fix a log smooth morphism X → W where X carries a

Zariski logarithmic structure and W = (Spec(k), Q) is a log point. We further assume that

the log structure MX is globally generated, that is, the natural map Γ(X,MX) → MX,p

is surjective for every p ∈ X. In this section, we essentially follow the notions and

terminologies used in [GS2], section 3.

Remark 2.7.1. Let r be an integral point in a cone of Σ(X); we write r ∈ Σ(X)(Z). We

may view −r as a contact order of a punctured log map to X at a punctured point,

and let σ be the minimal cone in Σ(X) containing r. Then σ corresponds to a locally

closed stratum Z◦ in X. Let Z be the closure of Z◦ in X. Thus, r can be viewed as an

element of Hom(MZ ,N) given as follows. Let η be the generic point of Z, so we have

σ = ση = Hom(MZ,η,R≥0). Hence, for any section s ∈ MZ , we obtain its germ sη ∈ MZ,η.

So we just define r(s) := r(sη).

In this subsection, we are going to introduce several related moduli spaces, and then

recall the procedure of imposing a point-constraint at a punctured point on moduli spaces.

Here, we give the basic setup for our target space X.

Moduli of punctured maps. First of all, we fix a type βββ of punctured map, that is, a

curve class β ∈ H2(X,Z), a genus assigned to each irreducible component, a number of

punctured points with a choice of contact order for each of punctured points. Since we are

going to only consider genus 0 case, we fix genus to be 0 for source curves once and for all.

Therefore, we have a moduli space of stable basic punctured log maps to X denoted by

M (X,βββ), and then if we forget the curve class β from the type βββ, then we get a moduli

space of pre-stable punctured log maps to X denoted by M(X ,βββ). Moreover, we have a

natural map

M (X,βββ) → M(X ,βββ)



via the composition of stable punctured log maps with the canonical map X → X . Based

on the theory of punctured log maps developed in [ACGS2], the map above possesses

a perfect relative obstruction theory and hence a virtual pullback of cycles via [Ma].

However, in general, M(X ,βββ) might behave very badly, e.g. it is not purely dimensional,

see Example 2.4.22, so M (X,βββ) might not possess a virtual fundamental class.

More specifically, we can talk about punctured logarithmic maps marked by a combi-

natorial type τ or τττ , and consider the corresponding moduli stacks M (X, τ) or M (X,τττ).

However, defining M (X, τ) or M (X,τττ) is a bit subtler than that of M (X,βββ), and we

refer the reader to §3 of [ACGS2] for the precise definitions of M (X, τ) and M (X,τττ).

Evaluation space. Next, we are going to construct a moduli space parametrizing

punctures in X with a given contact order −r where r ∈ Σ(X)(Z) and its universal family

of such punctures. We will follow [GS2] for the notations of the space parametrizing

punctures with contact order −r and its universal family, which are denoted by P(X, r)

and P̃(X, r) respectively.

Let us recall the constructions of P(X, r) and P̃(X, r) from [GS2]. First, let Z := Zr

be the closed stratum indexed by r ∈ Σ(X)(Z) as in Remark 2.7.1. Then we set

P̃(X, r) := Z ×BG†
m

where Z inherits an induced log structure from X and BG†
m is the classifying stack BGm

equipped with the log structure pulled back from the divisorial log structure on [A1/Gm]

with respect to BGm.

Next, we define the moduli space P(X, r) parametrizing punctures with contact order

−r. We define P(X, r) to have the same underlying stack as P̃(X, r) with the log structure

defined as follows. Firstly, we define MP(X,r) as the sub-sheaf of MP̃(X,r)
= MZ ⊕ N

given by

MP(X,r)(U) := {(m, r(m)) | m ∈ MZ(U)}

where r can be viewed as an element of Hom(MZ ,N) according to Remark 2.7.1.

Now we may define a logarithmic structure on P(X, r) as

MP(X,r) := MP(X,r) ×M
P̃(X,r)

MP̃(X,r)
.

Analogously, we can define P(X , r). The whole story about moduli space of punctures

can also be developed in parallel for the associated Artin stack X of X. We just substitute

X for X everywhere and keep everything else unchanged.

The next proposition reflects the universal property of P(X, r).

Proposition 2.7.2 ([GS2], Proposition 3.3). Let f : C◦/W → X be a pre-stable punctured



log map with a punctured point x : W → C with contact order −r. Then there exists a

canonical morphism ev : W → P(X, r) with the property that

W ◦ := W ×fine
P(X,r) P̃(X, r)

agrees with (W,x∗MC◦).

The analogous statements for punctured log maps f : C◦/W → X also hold.

Remark 2.7.3. In fact, in §3 of [GS2], they give P(X , r) the structure of an idealized

logarithmic stack as follows. We can view r as an element of Hom(MP(X ,r),N). Then let

I ⊂ MP(X ,r) be the ideal sheaf given by r−1(Z>0). The we can lift it to an ideal sheaf

I ⊂ MP(X ,r). This turns out to be a coherent idealized log structure on P(X , r). For

details about idealized log structure, see §III.1.3 of [Og].

We fix a type βββ of punctured log maps, and further assume that there is one punctured

point xout with the contact order −r where r ∈ Σ(X)(Z). According to the proposition

above, we have two maps of stacks

evX : M (X,βββ) → P(X, r), and evX : M(X ,βββ) → P(X , r).

Then we define a moduli space as follows.

Definition 2.7.4. We define

Mev(X ,βββ) := M(X ,βββ)×X X

where the map M(X ,βββ) → X is the evaluation map at xout.

Remark 2.7.5. Note that there is a factorization

M (X,βββ)
ϵ−→ Mev(X ,βββ) → M(X ,βββ)

and we have a relative perfect obstruction theory for ϵ which is described in detail in

[ACGS2],§4.

Remark 2.7.6. In general, notice that, for any subset SSS of {nodal sections, marked sections,

punctured sections}, we have a evaluation map M(X ,βββ) →
∏

S∈SSS X given by

(C◦/W,ppp, f) 7→ (f ◦ pS)S∈SSS,

Therefore, we can define the corresponding moduli space Mev,SSS(X ,βββ) associated to SSS as

the following:

Mev,SSS(X ,βββ) := M(X ,βββ)×∏
S∈SSS X

∏
S∈SSS

X.



If there is no danger of confusion, we just leave out the superscript SSS and write it simply

as Mev(X ,βββ).

Point-constrained moduli spaces. We start off by stating a proposition.

Proposition 2.7.7 ([GS2], Proposition 3.8). Fix r ∈ Σ(X)(Z) and a closed point z ∈ Z◦

where Z◦ is the corresponding locally closed stratum determined by r. Then there is a

morphism

BG†
m → P(X, r)

with image z ×BG†
m which, on the level of the ghost sheaves, is given by

r : MZ,z
∼= MP(X,r),z → N.

Now we are in position to define the so-called point-constrained moduli space.

Definition 2.7.8 ([GS2], Definition 3.10). We define

Mev(X ,βββ, z) : = Mev(X ,βββ)×P(X,r) BG†
m

= M(X ,βββ)×P(X ,r) BG†
m

where Mev(X ,βββ) → P(X, r) is the evaluation map at xout and the map BG†
m → P(X, r)

is given by the proposition above.

Similarly, we can define

M (X,βββ, z) := M (X,βββ)×P(X,r) BG†
m.

Then, we can easily see that there is a cartesian diagram (in all categories)

M (X,βββ, z) M (X,βββ)

Mev(X ,βββ, z) Mev(X ,βββ)

ϵ′ ϵ

Therefore, the relative perfect obstruction theory for ϵ pulls back to a relative perfect

obstruction theory for ϵ′, so the virtual pullback is defined via [Ma]. However, as we

already mentioned before, Mev(X ,βββ, z) may be very bad and not equi-dimensional in

general, thus M (X,βββ, z) might not possess a virtual fundamental class. However, since

our goal is to illustrate some enumerative properties of punctured invariants, the moduli

spaces that we will consider will be all nice and equipped with virtual cycles.



Chapter 3

The main gluing theorem

3.1 Splitting punctured logarithmic maps

Let us explain the setup in which we will be for the rest of the thesis. We will fix an

arbitrary smooth log Calabi-Yau pair (X,D) where X is a smooth projective variety with

a smooth divisor D satisfying KX +D = 0. Choose a general point z ∈ D such that there

is not any rational curve going through z inside D. We can achieve this since D, as a

smooth variety, is a (weak) Calabi-Yau variety. However, if for any point on D, there

existed a rational curve passing through that point, then it would imply that D is uniruled

by 1.3 Proposition of §4 in [Ko]. So, by 1.11 Corollary of §4 in [Ko], we could conclude that

D has Kodaira dimension −∞, which would tell us that D is by no chance a Calabi-Yau

variety.

Fix a type of curve βββ for X where βββ consists of non-zero curve class β ∈ H2(X,Z), 2
distinct ordinary marked points x1, x2 with prescribed contact orders p, q ∈ Σ(X)(Z) respec-
tively, and exactly one punctured point xout with contact order −r ̸= 0 ∈ Σ(X)(Z). By the

point-constraint imposing process described above, we can form the point-constrained mod-

uli spaces M (X,βββ, z) and Mev(X ,βββ, z). The result [Proposition 3.19, [GS2]] shows that

the space Mev(X ,βββ, z) is actually pure-dimensional of dimension 0. Further, M (X,βββ, z)

possesses a virtual fundamental class defined by the virtual pullback of the fundamental

class of Mev(X ,βββ, z). The relative virtual dimension is β ·c1(ΘX/k) = β ·(KX+D) = 0, and

so the virtual dimension of M (X,βββ, z) is 0. See Proposition 3.12 in [GS2] for more details.

Then these facts naturally yield the following definition of punctured Gromov-Witten

invariants relevant for the cosntruction.

Definition 3.1.1. Let p1, p2, r ∈ Σ(X)(Z), and let βββ be a type of punctured curve with

underlying curve class β and three punctured points x1, x2, xout with contact order p, q
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and −r respectively. We define

Nβββ
pqr :=

∫
[M (X,βββ,z)]vir

1.

Remark 3.1.2. Notice that, by [Corollary 1.14, [GS2]], one can see that p1 + p2 − r = β ·D.

Remark 3.1.3. In fact, in the definition of punctured Gromov-Witten invariants, we could

allow r to be 0. Then the punctured invariants Nβββ
pq0 are just standard 3-point relative

Gromov-Witten invariants with one point-constraint away from D, having tangency order

p, q respectively with D.

Next, we are going to briefly recap splitting and gluing operations in the theory of

punctured logarithmic maps. In §5 of [ACGS2], they defined the notion splitting type for

nodal sections of punctured logarithmic maps.

Definition 3.1.4 (Definition 5.1, [GS2]). A nodal section of a family of nodal curves

π : C → W is a section s : W → C of π that étale locally in W factors over the closed

embedding defined by the ideal (x, y) in the domain of an étale map

SpecOW [x, y]/(xy) → C.

The partial normalization of C/W along s is the map

κ : C̃ → C

that étale locally is given by base change from the normalization of the plane nodal

curve Spec k[x, y]/(xy). We say s is of splitting type if the two-fold unbranched cover

κ−1(im(s)) → im(s) is trivial.

Roughly speaking, a nodal section of a family of punctured logarithmic maps is of

splitting type if étale locally, after partially normalizing this nodal section, we will end up

with a trivial two-fold unbranched cover of the original nodal section. Then any nodal

section will allow us to split the type of punctured logarithmic map, and then result

in a splitting map which breaks our moduli space into many pieces. More precisely, by

Proposition 5.15 of [ACGS2], for a nodal section of splitting type, let τ be the original

tropical type, and τ1 and τ2 be the tropical types after splitting along the nodal section

respectively, we have a Cartesian diagram

M (X, τ) M (X, τ1)× M (X, τ2)

Mev(X , τ) Mev(X , τ1)×Mev(X , τ2)

δ

δev

(3.1.1)



with compatible obstruction theories and both maps being finite and representable.

Remark 3.1.5. In the situation we are interested in, all nodal sections are automatically of

splitting type since our source curve is always rational. Hence, both δev and δ always exist

in our setup.

Remark 3.1.6. Notice that after splitting a punctured logarithmic map of combinatorial

type τ at a nodal section into punctured logarithmic maps of combinatorial type τ1, τ2

respectively, we actually get two extra punctured points w ∈ τ1, w
′ ∈ τ2 such that the

contact orders at these two points are negative to each other.

Since we are interested in some enumerative properties of punctured invariants, we

will always take the point-constraint into account. Thus, we need a version of splitting

maps with point-constraint. The following lemma deals with such a slight modification.

Lemma 3.1.7. Let τ be a combinatorial type with two input legs representing ordinary

marked points and one output leg representing a punctured point such that one of the

chosen input legs is adjacent to the same vertex vout as the output leg. Assume given an

edge E also adjacent to vout. Given a punctured map of type τ , let SSS be the 2-point set

consisting of the nodal section corresponding to E and the punctured point xout. Let τ1

and τ2 be the resulting types of punctured curve after splitting τττ at E, with xout in the

component corresponding to τττ 2. Then we have the following cartesian diagram

Mev(X , τ, z) Mev(X , τ1)×Mev(X , τ2, z)

Mev(X , τ) Mev(X , τ1)×Mev(X , τ2)

δ̃ev

δev

and an analogous statement holds for M (X, τ, z). Note that these evaluation spaces are

with respect to SSS.

Hence, finiteness and representability of δev imply that the point-constraint splitting map

δ̃ev is finite and representable. More importantly, they have compatible obstruction theories.

Proof. The lemma follows directly from the definition of point-constrained moduli space

and (3.1.1). Indeed, note that Mev(X , τ2, z) = Mev(X , τ2) ×P(X ,r) BG†
m. Then the

conclusion follows directly by taking the fiber product.

3.2 Gluing punctured logarithmic maps

A general framework of gluing arbitrary punctured logarithmic maps has been developed

by Abramovich, Chen, Gross and Siebert in [ACGS2], and in this subsection, we are going

to just apply it to our setup, in other words, we want to reverse the splitting process which

has been explained in the diagram (3.1.1).



Consider base schemesW1,W2 with mapsW1 → Mev(X , τ1) andW2 → Mev(X , τ2), i.e.,
consider families of punctured logarithmic maps (C◦

1/W1, τ1, f1 : C
◦
1 → X), (C◦

2/W2, τ2, f2 :

C◦
2 → X) parametrized by W1 and W2 respectively, and two sections w : W 1 → C◦

1, w
′ :

W 2 → C◦
2.

Obviously, if we want to glue these two families, we need to be able to glue them

schematically. Therefore, it is reasonable to assume that f
1
◦ w = f

2
◦ w′. The chief

difficulty that differs from the ordinary gluing situation of ordinary stable maps is that we

do not have evaluation maps in logarithmic category. So the method used in [ACGS2] is

to enlarge the logarithmic structures of W1 and W2 as follows:

Let WE
1 = (W1, w

∗MC◦
1
) and W̃1 be the saturation of WE

1 (see [Og], III Prop. 2.1.5),

and similarly we can define W̃2 as well. Then, it is not so hard to see that we have the

following evaluation map

W̃i −→ WE
i −→ X

for i = 1, 2. Then we have the following gluing proposition

Proposition 3.2.1. There exists a Cartesian diagram in the category of fs log stacks

W̃ W̃1 × W̃2

X X ×X∆

such that there is a logarithmic scheme W = (W̃ ,MW ) with MW ⊂ MW̃ , equipped with

morphisms ψi : W → Wi, (i = 1, 2) and a universal glued family (π : C◦ → W,βββ, f : C◦ →
X).

Proof. This is just a special case of Theorem 2.5 in [Gro].

Remark 3.2.2. In fact, there is no barrier at all to extend such a gluing method to the

situation with point-constraint at xout.

Recall that we have a splitting map δ̃ev in Lemma 3.1.7. The next proposition will give

us a factorization of δ̃ev which can be used to relate punctured invariants to 2-pointed

relative/logarithmic Gromov-Witten invariants with one-point constraint.

Proposition 3.2.3. In the situation of Lemma 3.1.7 above, further assume that r ̸= 0.

We then have a diagram



M (X, τ, z) (M (X, τ1)×D z)× M (X, τ2, z) M (X, τ1)× M (X, τ2, z)

Mev(X , τ, z) (Mev(X , τ1)×D z)×Mev(X , τ2, z) Mev(X , τ1)×Mev(X , τ2, z)

D D ×D

ϕ̃

ϵ

ϕ ∆̃

∆

with all squares Cartesian in the category of fine log schemes. Furthermore, ϕ is a finite

surjective morphism.

Proof. Firstly, note that the types of curve class τ1 and τ2 incorporate an ordinary marked

point p and a punctured point q respectively coming from splitting the chosen node. Note

the component which contains xout gets mapped into the divisor D because the contact

order at xout namely −r, is negative. But for a generic z ∈ D, there is no rational curve

passing through z in D because D, by the definition, is a Calabi-Yau variety. Hence, we

can conclude that the map restricting to the component will be just the constant map with

the value z. Therefore, the map ϕ is just the splitting map from any punctured logarithmic

map of type τ into two punctured logarithmic maps of type τ1 and τ2 respectively, each

of which has been equipped with a point-constraint about z. Further, ∆̃ is just the map

forgetting the point-constraint given on Mev(X , τ1). Then checking Cartesianess of the

square involved in ∆ and ∆̃ becomes not math. Secondly, the fact that the top two

diagrams are Cartesian follows directly from Lemma 3.1.7 and the diagram (3.1), and the

finiteness of ϕ follows from the finiteness of δev = ∆̃ ◦ ϕ.
Finally, we need to show that ϕ is surjective. In other words, we need to show that

given W1 → Mev(X , τ1) and W2 → Mev(X , τ2, z), based on Proposition 3.2.1, the fine and

saturated fiber product W̃1 ×fs
X W̃2 is not empty.

Let us observe that the only possibility to make the fs fiber product empty is that the

fine fiber product W̃1 ×f
X W̃2 is empty since going from the fine to the fs fibre product

is saturation, which is always surjective, see [Og], III,Prop. 2.1.5. However, in this case,

W̃1 ×f
X W̃2 is not empty since the morphisms W̃i → X are integral because any non-zero

morphism from the free rank 1 monoid (that comes from the log structure of X ) is

integral.

Remark 3.2.4. Roughly speaking, the factorization diagram in the proposition above

indicates that gluing punctured logarithmic maps splits into 2 steps, that is, gluing them

schematically at first and then gluing the logarithmic structures. We remark that the map

ϕ showing up in the diagram above needs not be surjective in general and the case in which

the map ϕ is surjective is called tropical transverse, see [Gro] for a detailed discussion

about tropical transversality, and calculating the degree of ϕ is literally the key point of

relating punctured invariants to usual logarithmic invariants.



3.3 The main gluing formula

Prior to a technical calculation of the degree of ϕ that appears in Proposition 3.2.3, we

need to do a bit of analysis about virtual fundamental classes to figure out what kinds of

tropical types τττ will contribute to punctured invariants.

Note that there is an extreme situation in which the graph of τττ has only one vertex

carrying three legs p, q,−r with r ̸= 0. In this case, there is nothing we can glue and there

is only one punctured log map to W realizing it, which is the constant map to the point at

which we impose point-constraint, in other words, the curve class β of τττ in this case is just

0. So, this situation will not yield anything interesting by [GS2], Lemma 1.15. Henceforth,

throughout this entire subsection, we are going to assume that the curve class β is not 0,

which means we will no longer take this extreme situation into account.

The following lemma is one of the key observations to simplify the gluing problem.

Lemma 3.3.1. In the situation of Lemma 3.1.7, we further assume that both x1 and x2

lie in τττ 2, and let Mz(X,τττ 1) := M (X,τττ 1)×D z and Mev
z (X , τττ 1) := Mev(X , τττ 1)×D z be the

moduli spaces appearing in the diagram of Proposition 3.2.3. Then

dim(Mev
z (X , τττ 1)) = −1.

Hence, [Mz(X,τττ 1)]
vir = 0 and the moduli space Mz(X,τ1τ1τ1) has no contribution at all

to virtual class and curve counting, in other words,

[Mz(X,τττ 1)× M (X,τττ 2, z)]
vir = 0.

Remark 3.3.2. Remember that after splitting τττ , τττ 1 acquires an extra punctured point w

and τττ 2 gets an extra punctured point w′ such that the contact orders at w,w′ are opposite

to each other.

Proof. The key point is to compute the dimension of Mev(X , τττ 1). Recall that, by the

definition of evaluation space, we have the following Cartesian diagram

Mev(X , τττ 1) X

M(X , τττ 1) X

By [ACGS2],Prop. 3.28, we have dim(M(X , τττ 1)) ≤ −2. So, by the fiber diagram above, we

have dim(Mev(X , τττ 1)) ≤ dim(X)− 2. Then by the definition of Mev
z (X , τττ 1), we then get

that dim(Mev
z (X , τττ 1)) = dim(Mev(X , τττ 1))− dim(D) ≤ dim(X)− 2− (dim(X)− 1) = −1.

On the other hand, obviously the map Mz(X,τττ 1) → Mev
z (X , τττ 1) admits a perfect

relative obstruction theory and [Mz(X,τττ 1)]
vir = ϵ![Mev

z (X , τττ 1)] (ϵ is the map which



appears in the proposition 3.2.3), then by Riemann-Roch, we know the relative virtual

dimension is β1 · c1(ΘX/k) = β1 · (KX + D) = β1 · 0 = 0, thus the virtual dimension of

Mz(X,τττ 1) = −1, so [Mz(X,τττ 1)]
vir = 0 since Mz(X,τττ 1) is a Deligne-Mumford stack.

Corollary 3.3.3. In the situation of Lemma 3.3.1, we have

[M (X,τττ , z)]vir = 0.

Proof. According to [[ACGS2], Theorem 3.10], we know M (X,τττ , z),Mz(X,τττ 1) and M (X,τττ 2, z)

are all Deligne-Mumford stacks because they are obtained by base change via the repre-

sentable morphism BG†
m → P(X, r). Also, Mev(X , τττ , z) is pure dimensional by [[GS2],

Proposition 3.19]. All these stacks are stratified by quotient stacks. Further, the lemma

above tells us that dim(Mev
z (X , τττ 1)) ≤ −1 and Mz(X,τττ 1) → dim(Mev

z (X , τττ 1)) has relative
virtual dimension β1 · c1(ΘX/k) = β1 · (KX +D) = 0. Therefore, the vanishing of the virtual

fundamental class in the corollary follows directly from Theorem A.13 of [GS2].

Remark 3.3.4. By the lemma and the corollary we just saw, the virtual fundamental class

of M (X,τττ , z) can be non-zero only if the τττ 1 contains at least one of x1 and x2. However,

if τττ 1 contains both x1, x2 at the same time, in order to maintain the stability of our

punctured logarithmic maps, the component that contains xout must contain an additional

node, then we can further split τττ 2 at this additional node to get two new types of curves τττ ′2

and τττ 3 with xout ∈ τττ ′2 and τττ 3 not having any punctured points, which means we can split

τττ from the beginning so that one of the resulting class contains no punctured points, and

then the virtual fundamental class corresponding to this type τττ is actually 0 by applying

Lemma 3.3.1 and Corollary 3.3.3 again.

Corollary 3.3.5. The virtual fundamental class [M (X,τττ , z)]vir non-zero implies that τττ ,

as a tropical type of punctured log maps, is such that the vertex V that contains the leg

xout contains exactly one of legs x1 and x2, and any vertices other than V get mapped to

the origin by the corresponding tropical map.

Proof. First, if the graph G of τττ has at least two vertices mapping into the interior of the

tropicalization Σ(X)(= R≥0) of X, then the family of corresponding tropical maps is at

least two-dimensional as these vertices are free to move. This implies that the virtual

dimension of the moduli space M (X,τττ , z) will be negative for such a tropical type τττ .

Indeed, by [[GS2], Proposition 3.19], we know that Mev(X , β, z) is pure dimensional of

dimension 0. However, an open stratum of this moduli space corresponds to a type with a

one-dimensional tropical moduli space. Thus, M (X,τττ , z) is of virtual dimension −1.

Since any irreducible component corresponding to a vertex mapping into the interior

of the tropicalization corresponds to a contracted component, balancing holds at these

vertices, see e.g., [ACGS2], Proposition 2.25. From this, it follows that the component



which contains the leg xout must also contain at least one of the legs x1, x2. Then the

conclusion follows from Corollary 3.3.3 and Remark 3.3.4.

We now note a virtual decomposition for the moduli spaces M (X,βββ, z) giving the

following formula, which is proved in the same way as [GS3], §6.

Lemma 3.3.6. There is a decomposition

[M(X ,βββ, z)] =
∑
τττ

mτττ

Aut(τττ)
[M(X , τττ , z)],

where the sum is over all decorated types τττ of punctured tropical maps which are degen-

erations of βββ and with one-dimensional moduli space of tropical maps. Further, mτττ is

the multiplicity of the (union of) irreducible component of M(X ,βββ, z) which is the image

of M(X , τττ , z) in M(X ,βββ, z). This yields an equality on virtual fundamental classes via

pull-back:

[M (X,βββ, z)]vir =
∑
τττ

mτττ

Aut(τττ)
[M (X,τττ , z)]vir.

Next, we are going to deduce our main gluing theorem about 2-point Gromov-Witten

invariants and punctured Gromov-Witten invariants. By Corollary 3.3.5, the only non-zero

virtual cycle in the summation of Lemma 3.3.6 is given by the type satisfying the following

assumption.

Assumption 3.3.7. The type of curve class τττ that we consider satisfies the basic setup

described in the beginning of this section such that the vertex V containing the puncturing

leg xout contains exactly one of legs x1, x2. Moreover, we assume that any other vertices

other than V get mapped to the origin by the corresponding tropical map.

Remark 3.3.8. Once τττ fulfills the assumption above, by the proof of Lemma 3.3.1, we can

deduce that the moduli space Mz(X,τττ 1) has virtual dimension 0, and we assume further

that the rational tail contains x2 in which by a rational tail, we mean a smooth component

of genus 0 having only one intersection point with the closure of its complement. Recall

from Remark 3.1.6 that τττ 1 acquires an extra punctured point w with positive contact

order q− r after the splitting by the balancing condition of tropical curves. The picture of

the tropical type τ2 after splitting τ is shown in the following



Readers can refer to [ACGS2] for more details about the balancing condition for

punctured log maps. Then we can define 2-point invariants with a point-constraint as

follows

Np,q−r :=

∫
[Mz(X,τττ1)]vir

1.

When the rational tail contains x1 instead of x2, we can analogously define Nq,p−r.

Roughly speaking, Np,q−r virtually counts rational curves having curve class β1 ∈ H2(X,Z)
and intersecting the divisor D at two points x, y with tangency order p, q − r respectively

in which we put a point constraint at y. More generally, we can define Na,b for any a, b

such that a+ b = β ·D.

Proposition 3.3.9. Let τττ 2 be the type after splitting τττ which satisfies Assumption 3.3.7

such that x2, xout ∈ τττ 2. Then the canonical projection map Mev(X , τττ 2, z) → BG†
m is

logarithmically smooth.

Proof. Recall from Remark 2.7.3 that P(X , r) is an idealized log stack with the ideal

sheaf I ⊂ MP(X ,r) given by r−1(Z>0). In our case, since MZ is generated by N, the
ideal is generated by Z>0. For any parametrizing space W → M(X , τττ 2), note that

the basic monoid on M(X , τττ 2) is N, so the pullback of the ideal to W under the map

W → M(X , τττ 2) → P(X , r) is also generated by Z>0. Let C◦ → X the the map

parameterized by W .

By the pre-stability condition, MC◦ ⊆ N⊕Zx1 ⊕Zx2 ⊕Zxout is generated by (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, r − q) and (1, 0,−r, 0). Note that the quantity

r − q is always negative by balancing condition of tropical maps (keep in mind that

every vertex other than V is mapped to the origin by the corresponding tropical map).

Then, by the definition of puncturing log-ideal given in Definition 2.30 of [ACGS2], once

we project it into MW , the puncturing log-ideal is generated by Z>0. Thus, the map

evX : M(X , τττ 2) → P(X , r) is actually ideally strict (see Section 1.3, Chapter 3 of [Og]).

By Theorem 3.15 of [GS2], we know that the map evX is idealized log smooth. Thus, it

is in fact log smooth by [Og], IV Variant 3.1.22. Note that the projection Mev(X , τττ 2, z) →
BG†

m is just a base change of evX , hence it is log smooth.

Corollary 3.3.10. In the situation of Proposition 3.3.9, the moduli space Mev(X , τττ 2, z)
is a reduced algebraic stack.

Proof. According to the tropical interpretation of the map Mev(X , τττ 2, z) → BG†
m (see

Lemma 3.22 of [GS2]), smooth locally at a generic point w, we have a chart for this map

Mev(X , τττ 2, z) [Spec(k[N])/Gm]

BG†
m [Spec(k[N])/Gm]

η (3.3.1)



where the map between monoids corresponding to η is sending 1 to δ such that Σ1(vout) =

δ · r (see Remark 2.5.6 for the definition of Σm). Here vout is the vertex corresponding to

the component containing xout (don’t forget that we only have one component in this case)

and the tropical map

ωvout R≥0

σy

Σ

corresponds to the image y of w in M(X , τττ 2). In fact, δ = 1, as we can find a tropical map

Σ′ of type τττ 2 with Σ′(vout) = r. Indeed, the underlying graph of τττ 2 has only one vertex,

and we are free to send that vertex where we would like.

Note that by Proposition 3.3.9, the map Mev(X , τττ 2, z) → BG†
m is log smooth,

then in the diagram (3.3.1) above, let T = BG†
m ×[A1/Gm] [A1/Gm], the induced map

Mev(X , τττ 2, z) → T is smooth in the usual sense and δ is the multiplicity of T . Hence δ is

literally just the multiplicity of the moduli space. So, Mev(X , τττ 2, z) is reduced and even

smooth over BG†
m.

Lemma 3.3.11. Let τττ 2 be the type after splitting τττ which satisfies the assumption 3.3.7

such that xout ∈ τττ 2. Then the corresponding moduli space M (X,τττ 2, z) is a reduced point,

i.e. M (X,τττ 2, z) = Spec(k).

Proof. At first, note that M (X,τττ 2, z) is a Deligne-Mumford stack according to [GS2].

Any point Spec(k) → M (X,τττ 2, z) of M (X,τττ 2, z) corresponds to a (family of) punctured

logarithmic map

C◦ D ⊂ X

Spec(k)

f

Note that f is a constant map to z ∈ D by the genericness of z, and C◦ = P1 has three

punctured points. According to [[GS2], Claim 3.22], such a basic punctured log map is

unique. Thus the k-points of M (X,τττ 2, z) is just the single point shown as above with

trivial stabilizer, so M (X,τττ 2, z) is an algebraic space.

Furthermore, obviously there is a map M (X,τττ 2, z) → Spec(k) which is of finite type,

quasi-finite, and separated. So, by Theorem 7.2.10 of Olsson in [Ol2], M (X,τττ 2, z) is a

scheme. So, it is just a (possibly non-reduced) point.

However, the map M (X,τττ 2, z) → Mev(X , τττ 2, z) is smooth because, as f is constant,

f ∗ΘX (where ΘX is the logarithmic tangent bundle) is trivial, so H1(C, f ∗ΘX(−xout)) = 0,

i.e. the obstruction space is 0. We know that Mev(X , τττ 2, z) is reduced by the corollary

above. Hence, M (X,τττ 2, z) is just a reduced point.



Theorem 3.3.12. Let (X,D) be a smooth log Calabi-Yau pair, i.e. X is a smooth projective

variety with a smooth divisor D ⊂ X. Let τττ be the type of curve class fulfilling Assumption

3.3.7, and suppose that the vertex V containing the leg xout contains x2 (resp. x1). Then

the degree of the map ϕ which appears in the diagram of Proposition 3.2.3 has degree q− r

(resp. p− r), in other words, the multiplicity mτττ = q − r (resp. p− r).

Proof. In order to calculate the degree of ϕ, we need to choose general points inMev
z (X , τττ 1),

Mev(X , τττ 2, z) respectively and then compute the glued family of punctured logarithmic

maps to see how many connected components will be produced after gluing.

Step 1: At first, let us choose a general point W1 = Spec(k) → Mev
z (X , τττ 1) of

Mev
z (X , τττ 1) with the pullback logarithmic structure on W1 from the basic logarithmic

structure on Mev
z (X , τττ 1). Without loss of generality, we can assume that the choice of

point corresponds to a punctured log map (C◦
1/W1, τττ 1, f1 : C

◦
1 → X ) such that the source

curve C◦
1 is smooth and isn’t mapped into D by f1. In this case, the basic log structure at

this point is just trivial, i.e., W1 = (Spec(k), 0). (We can make such an assumption because

such a kind of punctured log maps form a dense open subset of Mev
z (X , τττ 1) equipped with

the basic log structure).

Step 2: Choose a generic point W ′
2 = Spec(k) → Mev(X , τττ 2), so Spec(k) is equipped

with the logarithmic structure pulled back from the basic logarithmic structure on

Mev(X , τττ 2). Since τττ 2 contains xout having negative contact order, the whole compo-

nent will be completely mapped into D, so the corresponding tropical map is parametrized

by R≥0. Hence, W
′
2 = (Spec(k),N).

Next, we need to compute W2 := W ′
2 ×P(X,r) BG†

m. Note that W ′
2 parametrizes the

punctured logarithmic map (C◦/W ′
2, τττ 2, f

′ : C◦ → X ) where C◦ is just P1 and we chose

z ∈ D generically enough such that no rational curves pass through z inside D, thus the

f ′ is the constant map to z. Thus, without loss of generality, we can assume that

P̃(X, r) = (Spec(k),N)×BG†
m = (BG†

m,N⊕ N).

Thus, by the definition of P(X, r), we get P(X, r) = BGm, and the ghost sheaf of the

logarithmic structure is the sub-monoid {(m, rm)|m ∈ N} ⊂ N⊕ N which is isomorphic

to N. So, we have

P(X, r) = (BGm,N)

where the torsor associated to 1 ∈ N is the rth tensor power of the universal torsor. Then,

if we impose the point-constraint, W2 = W ′
2 ×BG†

m
(BGm,N) with the corresponding maps

between ghost sheaves



N N

N

id

·r

where the vertical multiplication-by-r map is the map from the ghost sheaf of P(X , r) =
(BGm,N) to the ghost sheaf of BG†

m and the horizontal map is given by the map from W ′
2

to BG†
m. Thus then push-out of the diagram above is N. Thus, we have W2 = (Spec(k),N)

with the corresponding map from the ghost sheaf of P(X , r) to the ghost sheaf of W2

being the multiplication-by-r map. Denote by (C◦
2/W2, τττ 2, f2 : C◦

2 → X) the family of

punctured logarithmic maps parametrized by W2.

Step 3: Let w1 ∈ τττ 1 and w2 ∈ τττ 2 be the two punctured points that we glue together

to form the glued family of punctured logarithmic maps. Thus, WE
1 = (W1, w

∗
1MC◦

1 ,w1) =

(Spec(k),N), andWE
2 = (W2, w

∗
1MC◦

2 ,w2). So we need to figure out MC◦
2 ,w2 first. Note that

we have a map MX,z = N → MC◦
2 ,w2 ⊂ N⊕ Z, and by the calculations we did in the step

2, we know this map is defined by sending the generator 1 to (r, r− q). By the pre-stability

condition, MC◦
2 ,w2 is supposed to be generated by MC2 and the image of MX,z. Hence,

MC◦
2 ,w2 = ⟨(1, 0), (0, 1), (r, r−q)⟩ =: R ⊂ N⊕Z. Therefore,WE

2 = (W2, R) = (Spec(k), R).

Step 4: This step is to saturate both WE
1 and WE

2 . For WE
1 , there is nothing to

saturate. So, W̃1 = WE
1 = (Spec(k),N). For WE

2 , the saturation W̃2 = Spec(k)×Spec(k[R])

Spec(k[Rsat.]) where Rsat. is the saturation monoid of R inside N ⊕ Z. Note that

k ⊗k[R] k[Rsat.] ∼= k[Rsat.]/I where is the ideal generated by (1, 0), (0, 1), (r, r − q) in

k[Rsat.]. Then, W̃2 = (Spec(k[Rsat.]/I), Rsat.).

Step 5: In this step, we compute the number of connected components of the glued

family W̃1 ×fs
X W̃2 where the fiber product of W̃1 and W̃2 is taken in the category of fine

and saturated logarithmic schemes. We know the corresponding maps between logarithmic

structures:

N N

Rsat.

where the vertical map sends 1 to (r, r − q) and the horizontal map sends 1 to q − r.

We are hoping to apply Theorem 4.4 in [Gro], so we define a map as follows:

θ := (θ1,−θ2) : Z −→ Z⊕ (Rsat.)gp

1 7−→ (q − r,−r, q − r)

where the superscript gp. means groupification. Then, by a direct computation, we assert



that #(coker(θ)tor.) = g.c.d(r, q − r) where #(coker(θ)tor.) means the cardinality of the

torsion elements of the cokernel of θ and g.c.d(r, q − r) represents the greatest common

divisor of r and q − r.

So, by Theorem 4.4 in [Gro], since the fiber product is not empty, the number of

connected component of W̃1 ×fs
X W̃2 is g.c.d(r, q − r). This calculation is in fact giving

us the degree of the map ϕred : Mev(X , τττ , z)red −→ Mev
z (X , τττ 1)×Mev(X , τττ 2, z) where the

subscript red means the reduction of the original space.

Step 6: The last step is to figure out the non-reduced structure on Mev(X , τττ , z). By
Proposition B.2 in [ACGS2], the map Mev(X , τττ , z) → BG†

m is logarithmically smooth. So,

at a generic point, we can choose a chart for this map around the point shown as follows

Mev(X , τττ , z) [A1/Gm]

BG†
m [A1/Gm]

η

and by Lemma 3.22 in [GS2], the corresponding map between monoids of η is

η∗ : N −→ N

1 7−→ δ

Here, δ is the smallest natural number such that Σ1(vout) = δ ·r = l ·(q−r) for some integer

l in which Σ1 is the corresponding tropical map and vout is the component containing xout.

Then, it is easy to see that δ = (q − r)/g.c.d(r, q − r). By the definition of logarithmic

smoothness, δ is the multiplicity of Mev(X , τττ , z).
Moreover, by Corollary 3.3.10, Mev(X , τττ 2, z) is reduced, and Mev

z (X , τττ 1) is obviously

reduced since it has no any non-trivial punctured points.

Hence, the degree of ϕ is g.c.d(r, q − r) · δ = q − r as desired.

Corollary 3.3.13. Let X be a smooth log Calabi-Yau pair. Then we have the following

formula relating punctured Gromov-Witten invariants to 2-point Gromov-Witten invariants

with point-constraint

Nβββ
pqr = (q − r)Np,q−r + (p− r)Nq,p−r

where r > 0 and β ̸= 0.

Remark 3.3.14. In fact, one can conjecture that Nw,1 = w2N1,w where w + 1 = β ·D and

this can be proven via the formula in the corollary.

Proof. Recall the part of the Cartesion diagram involved in ϕ and ϕ̃ from Proposition

3.2.3



M (X,τττ , z) Mz(X,τττ 1)× M (X,τττ 2, z)

Mev(X , τττ , z) Mev
z (X , τττ 1)×Mev(X , τττ 2, z)

ϕ̃

ϵ

ϕ

where ϕ is a finite surjective map. By Lemma 3.3.11, M (X,τττ 2, z) = Spec(k). There are

two situations that could happen.

• If τττ 2 contains x1, then by Theorem 3.3.12, we know that the degree of ϕ̃ is p − r.

Hence, we have

ϕ̃∗[M (X,τττ , z)]vir = (p− r) · [Mz(X,τττ 1)]
vir

• For the same reason, if τττ 2 contains x2, we have

ϕ̃∗[M (X,τττ , z)]vir = (q − r) · [Mz(X,τττ 1)]
vir

Then Lemma 3.3.6 gives rise to the formula we want to prove.

Remark 3.3.15. In [FWY], the authors define a new kind of relative Gromov-Witten

invariants Ñβ
pqr using orbifold Gromov-Witten theory, in which the new theory also allows

negative tangency order to occur. In [You], F. You found the same formula for their new

relative invariants Ñβ
pqr and it is easy to argue that our invariants Nβββ

pqr agree with their

Ñβ
pqr. Moreover, he can proceed to calculate 2-pointed invariants using their invariants

and I-function and J-function technique.



Chapter 4

A general calculation for the

invariants Ne−1,1

Given a smooth log Calabi-Yau pair (W,D) with D nef, as the title of this section indicates,

we are going to calculate the invariants Ne−1,1 by comparing it with closed Gromov-Witten

invariants defined in [LLW] and [Cha]. The methods we will apply here are the standard

deformation to normal cone and degeneration formula. Therefore, let us quickly review

those closed invariants and clarify the setup at first, and then get our hands on comparison

of these invariants.

As a matter of fact, for a given curve class β ∈ H2(W,Z), it is sufficient to just require

that βi ·D ≥ 0 for any decomposition β = Σiβi of β into effective curve classes for Theorem

1.4.3 to be true. The nefness of D is clearly a uniform condition ensuring this property for

all β.

4.1 Basic setup

Denoting by ωW the canonical bundle of W , we set X = P(ωW ⊕ O), the projective

completion of the canonical bundle with the structure map p : X → W . Next, we are

going to construct a degeneration of X. We let X = BlD×0(W × A1) and let D be the

strict transform of D ×A1 in X . So, a general fiber of X → A1 is W and the special fiber

is W ⊔D Y , the union of W and Y . Here, Y is the projective completion of the normal

bundle to D in W over D, i.e., Y = P(ND/W ⊕O). We view D ⊂ Y as the 0-section D0

of the normal bundle of D, and in particular, the normal bundle of D in Y is the dual of

ND/W .

Set L = P(OX (−D) ⊕ O). It is easy to check for the degeneration π : L → A1 that

a general fiber π−1({t}) is X for all t ̸= 0 and the special fiber L0 is W × P1 ⊔D×P1

P(OY (−D∞)⊕O). Moreover, there exists a natural projection map q : L/A1 → W × A1.
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For simplicity, we let LX = W × P1,LD = D × P1 and LY = P(OY (−D∞) ⊕ O). We

endow X with the divisorial log structure given by the central fiber X0.

Remark 4.1.1. We abuse the notation O to mean structure sheaf or trivial line bundle

on whatever space we have. So, the symbol O could mean different structure sheaves

depending on context.

Remark 4.1.2. It is worthwhile mentioning that our idea in this subsection is analogous to

that presented in [vGGR]. So, we will collect some results proven in that paper later on.

We consider the moduli space M0,1(X, β + h) parametrizing genus 0 stable maps

f : C → X with one marked point such that f∗[C] = β + h where β is a chosen effective

curve class in W (viewed as the 0-section sitting inside X) satisfying c1(X) · β = 0 and h

is the fiber class [P1]. The invariants defined in [Cha] are just∫
[M0,1(X,β+h)]vir

ev∗[pt]

where [pt] is a point class in X of which the effect is to impose a point constraint on stable

maps and ev is the evaluation map at the marked point.

Remark 4.1.3. In fact, if we consider the corresponding moduli space with a point constraint

M0,1(X, β + h, σ) := M0,1(X, β + h)×X {pt}, here σ can be understood as a geometric

point σ : {pt} → X, then M0,1(X, β + h, σ) possesses a virtual fundamental class and

degree of the virtual class is precisely the same as the integration shown above.

Lemma 4.1.4. Let Q : M (L/A1, β + h) → M (W × A1/A1, β) be the natural map from

moduli space of stable log maps to the families L/A1 to moduli space of log stable maps to

W × A1/A1, which is induced by q : L → W × A1. Then, we have, for any t ̸= 0 ∈ A1,

the following equality

(Qt)∗[M (X, β + h)]vir = (Q0)∗[M (L0, β + h)]vir

where Q0 and Qt are the restrictions of the map Q to the special fiber and any generic

fiber respectively, and either side of the equality is a cycle class in A∗(M (W,β);Q).

Proof. Notice that we have, for any t ̸= 0, the following four Cartesian diagrams

M (L0, β + h) M (L/A1, β + h) M (X, β + h)

M (W,β) M (W × A1, β + h) M (W,β)

{0} A1 {t}

Q0 Q Qt

p2

i0 it



So, by commutativity of Gysin pullback with proper pushforward, we have

(Q0)∗[M (L0, β + h)]vir = i!0Q∗[M (L/A1, β + h)]vir

= i!tQ∗[M (L/A1, β + h)]vir

= (Qt)∗[M (X, β + h)]vir

in which the middle equality holds because the family p2 is a trivial family.

4.2 Degeneration formula

Since our method involves calculating invariants of the special fiber, which is a normal

crossing union of two spaces, the appearance of the degeneration formula becomes inevitable.

In this subsection, we forget our setup described above for the time being and give a more

general description of the formula dealing with a normal crossing union of two spaces.

Let X be a logarithmically smooth variety over a standard log point b† with irreducible

components X0 and Y0. The central fiber of the degeneration described in the previous

subsection is an example. A degeneration formula for stable log maps was first given by B.

Kim, H. Lho and H. Ruddat in [KLR]. In principle, their degeneration formula is enough

for the sake of our calculations. However, as we are going to spend more time later dealing

with moduli spaces with a point constraint, a decomposition formula for moduli spaces

with point constraints given in [Theorem 5.4, [ACGS1]] can be applied first in order to

simplify the terms in Kim et al’s degeneration formula. We refer readers to [KLR] and

[ACGS1] for further details about the degeneration formula and decomposition formula

respectively.

We recall that given a curve class β in X, we can consider moduli spaces M (X,τττ) of

stable log maps marked by τττ = (τ, β) where τ = (G,ggg, σ,uuu), a decorated type of a rigid

tropical map. See [ACGS1] for the definition of rigid tropical map. However, rigid tropical

maps in our setting becomes much easier to describe. Proposition 5.1 in [ACGS1] actually

tells us that a decorated type τττ of tropical maps is rigid in our setting if and only if every

vertex will represent an irreducible component which gets mapped to either X0 or Y0, and

we call a vertex V an X0-vertex if the corresponding component gets mapped into X0

and likewise for Y0-vertex. Furthermore, no edge connects two vertices which are both

X0-vertices or Y0 vertices, i.e., the endpoints of any edge will be of different type. On the

other hand, a choice of decorated rigid tropical map in our situation is exactly what Jun

Li terms an admissible triple in [Li1] and [Li2]. More precisely, giving a rigid tropical map

is equivalent to giving a bipartite graph Γ in which the edges are enumerated e1, e2. . . . , er

with each edge decorated with a positive integer we and each vertex V is decorated with a

set nV thought of as the set of markings and a class βV that is an effective curve class in



either X0 or Y0. For more details, readers can refer to [Li1], [Li2] and [vGGR].

So, we are actually free to go back and forth between our tropical language and Jun

Li’s degeneration formula.

We incorporate a point constraint by defining

M (X,τττ , s) := M (X,τττ)×X {pt},M (X, β, s) := M (X, β)×X {pt}

where s : {pt} → X is a geometric point. Note that there is a finite map jτττ∗ : M (X,τττ , s) →
M (X, β, s). Now we have the following decomposition for a point condition, refer to

[[ACGS1], Theorem 3.11] for the proof.

Theorem 4.2.1. Suppose X is a logarithmically smooth variety. Then

[M (X, β, s)]vir =
∑

τττ=(τ,β)

mτ

|Aut(τ)|
jτττ∗[M (X,τττ , s)]vir

Proof. Notice that Mev(X , β) is logarithmically smooth over the standard log point b†

according to [Proposition 3.3 (2), [ACGS1]], then by writing down a chart for the point-

constrained moduli space Mev(X , β, s), we can easily check that Mev(X , β, s) is also

logarithmically smooth over b†. Therefore, by [Corollary 3.8, [ACGS1]], we have the

following equality of top-dimensional algebraic cycles in the pure dimensional algebraic

stack Mev(X , β, s):

[Mev(X , β, s)] =
∑

τττ=(τ,β)

mτjτ∗[M
ev(X , τττ , s)]

Then, emulating the proof of [Theorem 3.11, [ACGS1]], we will get the decomposition of

our theorem.

Furthermore, we will apply Kim, Lho and Ruddat’s degeneration formula for the spaces

M (X,τττ , s). Note that there is a diagram

M (X,τττ)

⊙
V MV

∏
V MV

∏
eD

∏
V

∏
V ∈eD ×D

ϕ

∆

where V ’s and e’s represent the vertices and the edges in τττ respectively and the space⊙
V MV is defined by the Cartesian square diagram. By [KLR], Equation (1.4), we know

that ϕ is a finite étale map and the degree of ϕ is

∏
ewe

l. c.m(we)
. So we have the following

equality



[M (X,τττ)]vir =

∏
ewe

l. c.m(we)
ϕ∗∆!

∏
V

[MV ]
vir,

where we is the contact order to the divisor D at the relative marking corresponding to e.

Moreover, as analogous to the proof of [Theorem 3.11, [ACGS1]] and the proof of Theo-

rem 4.2.1, we can impose point constraints at vertices of τττ and an analogous decomposition

will hold as well.

4.3 The main comparison

Now, we are in position to deduce our comparison result by applying the degeneration

formula to L0 which is the union of LX = W × P1 and LY = P(OY (−D∞)⊕O) along the

shared divisor LD = D×P1. Then we need to impose a point condition for the family. It is

easy to choose a section s : A1 → L of π such that s(t) lies on the fiber of X for t ̸= 0 and

s(0) ∈ LY passing through a P1-fiber over Y . For instance, let us select any point z ∈ D,

according to the construction of the space L, we can choose the section s′ : A1 → W × A1

given by t 7→ (z, t). We then take the strict transform of this section to the blow-up X ,

and then choose a general section of the P1-bundle L → X over this strict transform.

From now on, we can always assume that s(0) ∈ LY , and then there exists a fiber of

LY → Y passing through s(0). The class of the fiber is denoted by h. Put in another

way, when we have a decorated tropical type of rigid tropical maps τττ with the graph G,

we can always assume that there is only some LY -vertex V such that it carries the point

constraint and the associated curve class βV contains h. Then we can consider the related

moduli spaces with this point condition. The key step is to work out what kind of graphs

will non-trivially contribute to the virtual fundamental class in the degeneration formula.

The following theorem basically deals with this problem.

Theorem 4.3.1. For a decorated type of rigid tropical maps τττ , let P := Q0 from Lemma

4.1.4. Then we have P∗jτττ∗[M (L0, τττ , s)]
vir = 0 unless the graph G of τττ is the following

A

B

C

e1

e2



with A an LX-vertex, B and C both LY -vertices and furthermore, we1 + we2 = β · LD,

βA =β,

βB =we1F + h,

βC =we2F.

Here β is the curve class β on W viewed as a curve class on LX = W × P1 and F is a

fibre of p : Y → D viewed as a curve class on LY via the inclusion of Y in LY as the

0-section. Note B carries the point constraint.

Before jumping to the proof directly, we need a lemma as preparation.

Lemma 4.3.2. For a decorated type of rigid tropical maps τττ with the graph G of τττ having

an LX-vertex V , let r be the number of edges adjacent to V connecting to LY -vertices.

Then P∗jτττ∗[M (L0, τττ , s)]
vir = 0 if r > 2.

Proof. Let us fix this LX-vertex V and r + u be the number of the edges of τττ . By the

choice of the section s, we know that βV contains no fiber class of LX → X attached to V .

Since a map from a proper curve to P1 which is not surjective is just a constant map, by

separating out the factors for V , the gluing diagram factors as follows

MV ×LD

⊙
V ′ ̸=V MV ′ MV ×LD

∏
V ′ ̸=V MV ′

(Dr × P1)× (D × P1)u (Dr × P1)2 × (D × P1)2u

(D × P1)r × (D × P1)u (D × P1)2r × (D × P1)2u

ev ev

∆′

(id×diag)×id=:δ (id×diag)×id

∆

where the two squares are both Cartesian.

Let N denote the normal bundle of the embedding ∆ which has rank (r+u)(dimD+1)

and N ′ denote that of ∆′ which has the rank rdimD + 1 + u(dimD + 1). Set E :=

(δ∗N)/N ′ which is of rank r − 1. Let cr−1(E) be its top Chern class. For any k and

α ∈ Ak(MV ×LD

∏
V ′ ̸=V MV ′), the excess intersection formula says that

∆!α = cr−1(E) ∩ (∆′)!α.

Note that cr−1(E) = 0 when r ≥ 3 since the bundle E is in fact the pullback of the

corresponding bundle from the diagram

P1 P1 × P1

(P1)r (P1 × P1)r

∆′

diag diag

∆



and taking Chern classes commutes with the pullback operation. Then applying this to

the virtual cycle α = [MV ]
vir ×D0

∏
V ′ ̸=V [MV ′ ]vir gives the conclusion of this lemma.

Proof of the theorem. For a decorated type of rigid tropical maps τττ with the graph G,

let us collect what is implied for G if the pushforward to M (W,β) of the corresponding

virtual cycles is non-trivial. Firstly, by Lemma 4.3.2, each of the LX-vertices of the graph

G has no more than 2 adjacent edges.

Let V be any LY -vertex in G. Firstly, by [vGGR, Proposition 5.3], we know that

πY ∗βV must be a multiple of the fiber class of the projective bundle Y → D where πY is

just the natural projection LY → Y , otherwise P∗jτττ∗[M (L0, τττ , s)]
vir = 0. Hence, the curve

class βV associated to the vertex V is either β′ + h or β′ in which β′ is a multiple of the

fiber class F of the projective bundle Y → E and h is the fiber class of the projective

bundle LY → Y .

Furthermore, we need to argue that V has only a single adjacent edge to it. This is easily

verified using [vGGR, Lemma 5.4]. Indeed, let M ◦ :=
∏

V ′ ̸=V MV ′ and GV be the subgraph

of G at the vertex X, then the evaluation map from MGV
(LY (logLD), βV )×(D×P1)rV M ◦

to M (W,β) factors through D ×(D×P1)rV M ◦ in either case of βV = β′ or βV = β′ + h.

Therefore, by [vGGR, Lemma 5.4], we can immediately conclude that there are at most 2

Y0-vertices existing in τττ or otherwise P∗jτττ∗[M (X,τττ , s)]vir = 0.

Proposition 4.3.3. For a decorated type of rigid tropical maps τττ with the graph G as in

the theorem, we have P∗jτττ∗[M (L0), τττ , s)]
vir = 0 unless we1 = 1 and we2 = e− 1.

Proof. Let V denote the vertex B which carries the point constraint, and the curve class

βV = β′ + h where β′ is the fiber class of Y → D and h is the fiber class of LY → Y .

Consider the surface S which is obtained by restricting LY onto a fiber of Y → D such

that it contains the point constraint s(0). In fact, it is not so hard to see that S is just

the Hirzebruch surface F1. Indeed, recall that LY = P(OY (−D∞)⊕O), and note that the

restriction of OY (−D∞)⊕O to any fiber of Y → D is actually OP1(−1)⊕OP1 since the

intersection of −D∞ and the fiber is −1.

Note that any curve realizing the curve class β′ + h and containing the point s(0) will

lie in this surface S.

Assume that we1 ≥ 2. Let C be any curve which lies in S and realizes the class β′,

that is, C is a fiber of Y → D. Then for any curve in C ′ ⊂ S such that [C ′] = we1β
′ + h,

we find that C ·C ′ = β′ · (we1β
′ + h) = −we1 + 1 < 0. Therefore, C ′ has to contain a fiber

of Y → D which is contained in S as its one irreducible component. The evaluation map

from MV to LD is a constant map. Hence, the vanishing result follows immediately by

applying the degeneration formula.

Theorem 4.3.4. (−1)e−1 · (e− 1) · p∗[M (X, β + h, s)]vir = [M (W (logD), β, s)]vir where

β is an effective curve class in W and h is the fiber class of p : X → W .



Proof. The proof is now just an application of degeneration formula. By Theorem 4.3.1

and the degeneration formula, we can conclude that

[M (L0, β + h, s)]vir =
mτττ

|Aut(τττ)|
jτττ∗ϕ

∗∆!
∏
V ∈τττ

[MV ]
vir

where the decorated tropical type of rigid tropical maps τττ is exactly the one depicted in

Theorem 4.3.1. So, in our situation, |Aut(τττ)| = 1 and mτττ = e− 1.

Let P : L0 → W be the natural projection. Then, by Lemma 4.1.4, we have

p∗[M (X, β + h, s)]vir = (e− 1) · P∗jτττ∗ϕ
∗∆!

∏
V ∈τττ

[MV ]
vir

By [vGGR, Proposition 2.4], we know that the right hand side becomes

(e− 1) · (−1)e

(e− 1)2
[M (W (logD), β, s)]vir

where the space M (W (logD), β, s) is exactly the moduli space of genus 0 stable logarithmic

maps to W with the curve class β such that image of map intersects D at one specified

point to tangent order 1 and at one unspecified point to tangent order e− 1, that is, we

have an equality of cycles

(−1)e−1 · (e− 1) · p∗[M (X, β + h, s)]vir = [M (W (logD), β, s)]vir.

As a direct consequence of Theorem 4.3.4, we find:

Corollary 4.3.5. (−1)e · (e− 1) · nβ+h = Ne−1,1 where β is an effective curve class in W

and h is the fiber class of X → W .

Remark 4.3.6. In the case that W = P2, all those invariants nβ+h have been calculated by

Siu-Cheong Lau in [Lau]. Therefore, after identifying N3d−1,1 with nβ+h using the equality

in Corollary 4.3.5, we can calculate all 2-pointed relative GW invariants for any degree d.



Chapter 5

Calculations for (P2, D)

Throughout this section, our smooth log Calabi-Yau pair is always (P2, D) where D is a

smooth cubic curve.

5.1 A relation between invariants Na,b

In this subsection, we will investigate how those punctured invariants and 2-point relative

invariants with a point-constraint abstractly determine each other. Besides the formula

we proved in Corollary 3.3.13, the other key intermediate tool we are going to use is the

“degree 0 part of relative quantum cohomology ring” defined by Gross and Siebert in [GS2,

Construction 1.8] where the terminology “degree 0” means that we only take genus 0

curves into account.

As we mentioned in Remark 1.4.9 that T. Grafnitz, H. Ruddat and E. Zaslow also

computed various 2-pointed invariants for (P2, D) in [GRZ] using broken line counting

technique. However, their convention about Na,b is opposite to mine in this thesis, i.e.

Na,b in this thesis are supposed to be Nb,a in [GRZ].

Roughly speaking, our degree 0 part of relative quantum cohomology is a Q[t]−algebra

structure on

R :=
∞⊕
p=0

θpQ[t],

where θp can be viewed as a symbol, and the multiplication law is

θp · θq :=
∞∑
r=0

∞∑
d=0

Nd
pqrt

dθr.

Here, for the precise definition of Nd
pqr, see Definition 3.1.1. However, roughly speaking,

it is the virtual count of degree d genus zero stable maps with three punctured points

x1, x2, xout, with x1 having contact order p with D, x2 having contact order q, and xout
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having contact order −r with D such that xout gets mapped to a generically fixed point

z ∈ D.

Then, we can replace Nd
pqr with those 2-point invariants Nd

pqr by means of the formula

in Corollary 3.3.13, and we have

θp · θq =
∞∑
d=0

Nd
pq0t

dθ0 +
∑
r≥1

N0
pqrt

0θr +
∞∑
r=1

∞∑
d=1

((q − r)Np,q−r + (p− r)Nq,p−r)t
dθr.

Notice that firstly, Np,i are the number of rational curves with two marked points, one

tangent to order p at an unspecified point of D and one tangent to order i at a specified

point of D. So, if p ≤ 0 or i ≤ 0, we have Np,i = 0. Also, note that these rational curves

must be of degree (p + i)/3. Therefore, we have the convention that N
(p+q)/3
pq0 and Np,q

vanish if three does not divide p+ q since there will not be such a curve of degree p+ q

with p+ q is not divided by three.

Moreover, by Lemma 1.15 in [GS2], we have

N0
pqr =

1 r = p+ q

0 otherwise.

So, combining all aforementioned results and separating the degree 0 term, we can write

the multiplication law as follows

θp · θq = θp+qt
0 +N

(p+q)/3
pq0 t(p+q)/3θ0 +

min(p,q)∑
r=1

[(q − r)Np,q−r + (p− r)Nq,p−r]t
(p+q−r)/3θr.

Note that the right-hand side is actually a finite sum.

Let’s see what relations we can get from associativity. We can calculate the product

θp ·θq ·θr in two ways. Recall that θ0 is the identity in the ring, so we will not gain anything

if one of p, q, r are 0. Thus we assume p, q, r > 0.



We have

(θp · θq) · θr =

θp+q +N
(p+q)/3
pq0 t(p+q)/3θ0 +

min(p,q)∑
s=1

[(q − s)Np,q−s + (p− s)Nq,p−s]t
(p+q−s)/3θs

 · θr

=θp+q+r +N
(p+q+r)/3
p+q,r,0 t(p+q+r)/3θ0+

+

min(p+q,r)∑
s′=1

[(r − s′)Np+q,r−s′ + (p+ q − s′)Nr,p+q−s′ ]t
(p+q+r−s′)/3θs′

+N
(p+q)/3
pq0 t(p+q)/3θr +

min(p,q)∑
s=1

[(q − s)Np,q−s + (p− s)Nq,p−s]t
(p+q−s)/3·

·

θs+r +N
(s+r)/3
sr0 t(s+r)/3θ0 +

min(s,r)∑
w=1

[(r − w)Ns,r−w + (s− w)Nr,s−w]t
(s+r−w)/3θw


and associating the other way gives:

θp · (θq · θr) =θp ·

(
θq+r +N

(q+r)/3
qr0 t(q+r)/3θ0 +

min(q,r)∑
s=1

[(r − s)Nq,r−s + (q − s)Nr,q−s]t
(q+r−s)/3θs

)
=θp+q+r +N

(p+q+r)/3
p,q+r,0 t(p+q+r)/3θ0+

min(p,q+r)∑
s′=1

[(q + r − s′)Np,q+r−s′ + (p− s′)Nq+r,p−s′ ]t
(p+q+r−s′)/3θs′

+N
(q+r)/3
qr0 t(q+r)/3θp +

min(q,r)∑
s=1

[(r − s)Nq,r−s + (q − s)Nr,q−s]t
(q+r−s)/3·

·

(
θp+s +N

(p+s)/3
ps0 t(p+s)/3θ0 +

min(p,s)∑
w=1

[(s− w)Np,s−w + (p− w)Ns,p−w]t
(p+s−w)/3θw

)

Let us extract the highest degree contribution to the products above. Suppose that

p+ q + r ≡ i mod 3, with i ∈ {0, 1, 2}. We have the following possibilities:

• If i = 0, then we get the coefficient of t(p+q+r)/3 of the two products being

N
(p+q+r)/3
p+q,r,0 +

min(p,q)∑
s=1

[(q − s)Np,q−s + (p− s)Nq,p−s]N
(s+r)/3
sr0

= N
(p+q+r)/3
p,q+r,0 +

min(q,r)∑
s=1

[(r − s)Nq,r−s + (q − s)Nr,q−s]N
(s+p)/3
ps0 (5.1.1)

• If i = 1 or 2, then the highest degree power of t is t(p+q+r−i)/3, and the coefficient of



this is θi times the following:

[(r − i)Np+q,r−i + (p+ q − i)Nr,p+q−i] +N
(p+q)/3
pq0 δri

+

min(p,q)∑
s=1

[(q − s)Np,q−s + (p− s)Nq,p−s][δs,i−r + (r − i)Ns,r−i + (s− i)Nr,s−i]

= [(q + r − i)Np,q+r−i + (p− i)Nq+r,p−i] +N
(q+r)/3
qr0 δpi

+

min(q,r)∑
s=1

[(r − s)Nq,r−s + (q − s)Nr,q−s][δs,i−p + (s− i)Np,s−i + (p− i)Ns,p−i].

(5.1.2)

Note that N
(p+q)/3
pq0 and Np,q are both zero if 3 doesn’t divide p+ q.

Before showing any relations between these invariants, there is an easy but interesting

observation shown in the following lemma.

Lemma 5.1.1. For any positive integer d, we have N3d−1,1 = (3d− 1)2N1,3d−1.

Proof. The equality holds for the corresponding orbifold Gromov-Witten invariants as a

direct corollary of the formula given by Cadman and Chen in [CC], and according to the

comparison result proven by Abramovich-Cadman-Wise in [ACW], the equality holds in

our setting.

By the equations (5.1.1) and (5.1.2) we derived above, we can prove the following

proposition.

Proposition 5.1.2. For a+b = 3d, the invariants Nd
ab0 and Na,b are completely determined

by the number N1,3d−1 plus those lower degree invariants using associativity.

Remark 5.1.3. There will be many complex terms popping up while playing the whole

algebraic game with the equations (4.1) and (4.2), and the indices will be a mess. So, in

the following proof, we decide to denote any lower degree terms or the combination of

lower degree terms just by a single symbol S meaning “some lower degree terms”. Thus,

we cannot generally cancel S out even if we see the symbol S appears at the

same time on the both sides of an equation.

Proof. Note that the conclusion is true when d = 1, see §5.2. Therefore, we can assume

d ≥ 2.

First of all, notice that, by the equation (4.1), all the invariants Nd
ab0 are actually

determined by Nd
3d−1,1,0 and lower degree invariants. Indeed, set r = 1, then p+ q = 3d− 1,

so by (4.1), we have equations

Nd
3d−1,1,0 + S = Nd

p,q+1,0 + S.



Then for any a, b such that a+ b = 3d, set p = a and q = b− 1, we can solve for Nd
ab0 by

using Nd
3d−1,1,0 and those lower degree terms.

Secondly, in the equation (4.2), we set r = i = 1, so p+ q = 3d, then we get

(3d− 1)N1,3d−1 +Nd
pq0 + S = qNp,q + (p− 1)Nq+1,p−1 +N

(q+1)/3
q10 δp,1 + S. (5.1.3)

If we set r = i = 2, we have

(3d− 2)N2,3d−2 +Nd
pq0 + S = qNp,q + (p− 2)Nq+2,p−2 +N

(q+2)/3
q20 δp,2 + S. (5.1.4)

Then in (5.1.3), set p = 3d− 1, q = 1, and by Lemma 5.1.1, we get

(3d− 1)N1,3d−1 +Nd
3d−1,1,0 + S = (3d− 1)2N1,3d−1 + (3d− 2)N2,3d−2 + S, (5.1.5)

and in (5.1.4), set p = 1, q = 3d− 1, then we get

(3d− 2)N2,3d−2 +Nd
1,3d−1,0 + S = (3d− 1)N1,3d−1 + S. (5.1.6)

Obviously, the equations (4.5) and (4.6) are independent and we can solve for both Nd
3d−1,1,0

and N2,3d−2 by using N1,3d−1 (bearing in mind that Nd
ab0 = Nd

ba0 for every a, b). Henceforth,

all numbers Nd
ab0 can be solved by N1,3d−1 and lower degree invariants, and N2,3d−2 can be

solved by N1,3d−1 plus lower degree invariants.

Furthermore, (4.3) subtract (4.4) tells us that (p− 1)Nq+1,p−1 − (p− 2)Nq+2,p−2 can be

solved by using N1,3d−1 and those lower degree invariants for any p, q such that p+ q = 3d.

Then, just by an easy algebra, we can conclude that all Na,b can be expressed by N1,3d−1

and lower degree invariants.

Remark 5.1.4. The same conclusion should also hold for general (Pn, D) where D is a

smooth anti-canonical divisor, that is, all degree d, 2-pointed relative Gromov-Witten

invariants with a point condition should be determined by N(n+1)d−1,1 plus the lower degree

invariants, and we can proceed the proof in an analogous fashion as we did in the proof

above with a much more complex algebraic deduction.

Remark 5.1.5. In joint work [WY] with F. You, we are able to generalize my result 4.3.4

to relative Gromov-Witten invariants with any number of relative markings and then we

are able to do a lot more calculations.



5.2 Calculations of degree 2 relative invariants

In this subsection, we are going to compute all the relevant degree 2 invariants. Before

doing that, let us see a warm-up computation for degree 1 invariants.

The first non-trivial case to consider is (p, q, r) = (2, 1, 1), so i = 1, and we get

2N1,2 +N1
120 = 2N2,1.

If we take (p, q, r) = (3, 1, 1), then we get

4N1,2 = N2,1.

It is well-known that the number of lines tangent to order 2 at a specified point of E is 1,

in other words, N1,2 = 1. So, N2,1 = 4 and N1
120 = 6.

Proposition 5.2.1. We have relations 25N1,5 = N5,1, 2N2,4 = 5N1,5 + 2, N3,3 = 5N1,5 + 4

and N4,2 = 10N1,5 + 4.

Proof. The way to get these relations is very straightforward. We just try to pick some

special values for (p, q, r) and plug them into equations (4.1) and (4.2), and then get a

series of equations about these invariants. First of all, let (p, q, r) = (1, 2, 3), by (4.1), we

have N2
330 = N2

150 + 24; Let (p, q, r) = (3, 1, 2), again by (4.1), we have N2
420 + 12 = N2

330.

So we have an equation N2
420 = N2

150 + 12.

• Let (p, q, r) = (4, 2, 1), we have

5N1,5 +N2
420 + 8 = 2N4,2 + 3N3,3 (5.2.1)

• Let (p, q, r) = (2, 1, 4), we have

3N3,3 + 2N4,2 = 4N2,4 +N5,1 + 16 (5.2.2)

• (p, q, r) = (5, 2, 1) :

5N1,5 + 4N2,4 + 8 = 3N3,3 (5.2.3)

• let (p, q, r) = (1, 5, 2) and N2
420 = N2

150 + 12, we have

N2
420 = 5N1,5 +N5,1 + 12 (5.2.4)



• (p, q, r) = (4, 1, 3) :

N5,1 + 3N3,3 + 4 = 4N4,2 (5.2.5)

It is fairly easy to check that these 5 equations are linearly independent and any other

equation in above invariants given by choosing (p, q, r) which are different from above will

be recovered by the 5 equations above. So, by an easy algebra, we can get the relations

that we want to derive.

Corollary 5.2.2. We have N1,5 = 1, N5,1 = 25, N2,4 = 7/2, N4,2 = 14, N3,3 = 9, N2
240 =

N2
420 = 42, N2

150 = N2
510 = 30 and N2

330 = 54.

Proof. By Corollary 4.3.5 and computations of nβ+h in [Lau], [LLW] and [GS], we know

that N5,1 = 25. Then, just by some easy algebra. So, other numbers can be computed out

by the equations shown in the proof of Proposition 5.2.1.

Remark 5.2.3. As Theorem 1.1 in [Lau] indicates, open Gromov-Witten invariants of

a toric Calabi-Yau manifold are determined by Gross-Siebert slab functions. For the

anti-canonical bundle of P2, the slab function is

1 + z(1,0,0,0) + z(0,1,0,0) + z(−1,−1,0,0) − 2t+ 5t2 − 32t3 + 286t4 − 3038t5 + . . .

as shown in [GS], §5. Hence, in theory, we have succeeded in calculating degree d, 2-pointed,

relative Gromov-Witten invariants with a point condition for P2 with an elliptic curve for

any degree d.
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Birkhuser, Basel, 1995.

[KKMS] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat: Toroidal Embed-

dings I, Springer, LNM 339, 1973.

[KLR] B. Kim, H. Lho, H. Ruddat: The degeneration formula for stable log maps,

Manuscripta Mathematica, 2021

https://www.dpmms.cam.ac.uk/~mg475/gluing.pdf
https://arxiv.org/abs/2204.12257
https://arxiv.org/abs/2204.12257
https://arxiv.org/abs/2204.12249
https://arxiv.org/abs/2204.12249


[Lau] S. Lau: Gross-Siebert’s slab functions and open GW invariants for toric

Calabi-Yau manifolds, Mathematical Research Letters 22 (2015), no.3, 881-

898.

[Li1] J. Li: stable morphisms to singular schemes and relative stable morphisms.

J. Differential Geometry, 2001

[Li2] J. Li: A degeneration formula of GW-invariants. J. Differential Geom, 2002

[LLW] S.Lau, N. Leung, B.Wu: A relation for Gromov-Witten invariants of local

Calabi-Yau threefolds, Mathematical Research Letters 18 (2011), pp.943-956.

[LMB] G.Laumon, L.Moret-Bailly: Champs algébriques, Springer 2000.
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