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In this theoretical and numerical paper, we derive the adjoint equations for a thermo-
acoustic system consisting of an infinite-rate chemistry diffusion flame coupled with duct
acoustics. We then calculate the thermo-acoustic system’s linear global modes (i.e. the
frequency/growth rate of oscillations, together with their mode shapes), and the global
modes’ receptivity to species injection, sensitivity to base-state perturbations, and struc-
tural sensitivity to advective-velocity perturbations. Some of these could be found by
finite difference calculations but the adjoint analysis is computationally much cheaper.
We then compare these with the Rayleigh index. The receptivity analysis shows the re-
gions of the flame where open-loop injection of fuel or oxidizer will have most influence
on the thermo-acoustic oscillation. We find that the flame is most receptive at its tip.
The base-state sensitivity analysis shows the influence of each parameter on the fre-
quency/growth rate. We find that perturbations to the stoichiometric mixture fraction,
the fuel slot width, and the heat-release parameter have most influence, while perturba-
tions to the Péclet number have least influence. These sensitivities oscillate: e.g. positive
perturbations to the fuel slot width either stabilizes or destabilizes the system, depending
on the operating point. This analysis reveals that, as expected from a simple model, the
phase delay between velocity and heat-release fluctuations is the key parameter in deter-
mining the sensitivities. It also reveals that this thermo-acoustic system is exceedingly
sensitive to changes in the base state. The structural-sensitivity analysis shows the influ-
ence of perturbations to the advective flame velocity. The regions of highest sensitivity
are around the stoichiometric line close to the inlet, showing where velocity models need
to be most accurate. This analysis can be extended to more accurate models and is a
promising new tool for the analysis and control of thermo-acoustic oscillations.

1. Introduction

In a thermo-acoustic system, heat-release oscillations couple with acoustic pressure
oscillations in a feedback loop. If the heat released by the flame is sufficiently in phase
with the pressure, the acoustic oscillations can grow (Rayleigh 1878), sometimes with
detrimental consequences to the performance of the system. These oscillations are a
persistent problem. Their comprehension, prediction and control in the design of gas
turbines and rocket engines are areas of current research, as reviewed by Lieuwen & Yang
(2005); Culick (2006).
This theoretical and numerical paper examines the linear stability of a thermo-acoustic
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system. This system consists of an infinite-rate chemistry diffusion flame coupled with
one-dimensional duct acoustics. The flame is assumed to be compact, meaning that it
excites the acoustics as a pointwise heat source. The heat-release is given by integra-
tion of the non-dimensional sensible enthalpy of the flame, which is solved in an ad-hoc
two-dimensional domain. This simple combustor was originally modelled by Tyagi et al.
(2007b,a) using a finite-difference grid. We use a Galerkin method for discretization of
the flame, however, similar to that of Balasubramanian & Sujith (2008a). We reformu-
late the problem with revised equations (Magri et al. 2013) using a suitably normalized
mixture fraction (Peters 1992; Poinsot & Veynante 2005), so that the flame-acoustic cou-
pled problem is well scaled, as suggested by Illingworth et al. (2013). Also, we simulate
the temperature discontinuity (or jump) in the mean flow, which is caused by the heat re-
leased by the steady flame. This temperature jump induces a discontinuous change in the
speed of sound, which affects the thermo-acoustic modes’ frequencies and wavelengths.
We model this jump with a Galerkin method, drawing on the numerical model of Zhao
(2012).
The adjoint-based framework that we apply stems from ideas developed for the analy-

sis of hydrodynamic instability (Hill 1992; Chomaz 2005; Giannetti & Luchini 2007). Hill
(1992) and Giannetti & Luchini (2007) examined the flow behind a cylinder at Re ≈ 50
and used this adjoint-based framework to reveal the region of the flow that causes von
Kármán vortex shedding. Giannetti & Luchini (2007) also used adjoint methods to cal-
culate the effect that a small control cylinder has on the growth rate of oscillations, as
a function of the control cylinder’s position downstream of the main cylinder, and com-
pared this with experimental results by Strykowski & Sreenivasan (1990). This analysis
was further developed by Marquet et al. (2008) and Luchini et al. (2008), who considered
the cylinder’s effect on the base flow as well, which improved the comparison with ex-
periments. Adjoint-based techniques have been applied to a large range of fluid dynamic
systems, most of which have been reviewed by Sipp et al. (2010) and Luchini & Bottaro
(2014). Although Chandler et al. (2011) extended this analysis to low Mach number flows
for variable density fluids and flames, adjoint equations have been used only recently in
thermo-acoustics. Juniper (2011) used nonlinear adjoint looping to find the nonlinear
optimal states for triggering in a hot-wire Rijke tube. More recently, Magri & Juniper
(2013a, 2014, 2013b) applied adjoint-based sensitivity analyses to this hot-wire Rijke
tube. This paper extends these techniques to the infinite-rate chemistry diffusion flame
coupled with one-dimensional duct acoustics in order to reveal the most effective ways
to change the stability/instability of the system.
We describe the model in §2 and the numerical discretization in §3. The definition and

derivation of the adjoint operator and the general definition of the sensitivity are in §4. In
§5 we describe the most unstable mode of oscillation and interpret its driving mechanism
with the Rayleigh Index. We then define and calculate (i) the system’s receptivity to open-
loop species injection in §5.3; (ii) the system’s sensitivity to changes in the combustion
parameters in §5.4, which are the stoichiometric mixture fraction, Zsto, the fuel slot to
duct width ratio, α; the Péclet number, Pe; and the heat-release parameter, βT ; (iii)
the system’s structural sensitivity to a generic advection-feedback mechanism in §5.5.
These results are summarized in the conclusions. Further details about the methods are
summarized in appendices A,B,C,D and in the online supplementary material.

2. Thermo-acoustic model

The thermo-acoustic model consists of a diffusion flame placed in an acoustic duct
(figure 1). The acoustic waves cause perturbations in the velocity field. In turn, these
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Figure 1. Schematic of the dimensional thermo-acoustic model (dimensional quantities are
denoted with ˜ ). In non-dimensional variables (appendix A) the acoustic domain is [0, 1] and
the flame domain [0, Lc]× [−1, 1]. This model is based on the compact-flame assumption, which
means that the acoustic and flame space domains are decoupled.

cause perturbations to the mixture fraction, which convect down the flame and cause
perturbations in the heat-release rate and the dilatation rate at the flame. The dilatation
described above provides a monopole source of sound, which feeds into the acoustic
energy. We assume that the flame is compact, meaning that the heat release is a point-wise
impulsive forcing term for the acoustics. One limitation of this model is that the velocity
in the flame domain is assumed to be uniform in space. This allows for convection, as
described above, but does not allow for flame wrinkling or pinch-off. Another limitation is
that the infinite rate chemistry does not permit flame blow-off, which is another source of
heat release oscillations at large oscillation amplitudes. Neither limitation will have much
influence on a linear study such as this, however, because perturbations are infinitesimal
and therefore wrinkling, pinch-off, and blow-off will not occur. They would, however, be
important for a nonlinear study.

2.1. Acoustic model

We model one-dimensional acoustic velocity and pressure perturbations, u and p, on top
of an inviscid flow with Mach number . 0.1. Under these assumptions, we can neglect
the effect of the mean-flow velocity (see figure 14 in appendix B). The flame causes
discontinuities in the mean-flow density and speed of sound, which we model with a
Galerkin method. The acoustics are governed by the momentum and energy equations,
respectively

ρ
∂u

∂t
+
∂p

∂x
= 0, (2.1)

∂p

∂t
+
∂u

∂x
+ ζp− βT Q̇avδ(x − xf ) = 0, (2.2)

where ρ, u, p and Q̇av are the non-dimensional density, velocity, pressure, and heat-release
rate integrated over the combustion domain. We label these the direct equations. The
characteristic scales used for non-dimensionalization are in appendix A. The acoustic
base-state parameters, which we can control, are ζ, which is the damping; xf , which
is the flame position; and the heat-release parameter, βT = 1/Tav = 2/(T1 + Tad),
where T1 is the reactants’ inlet temperature and Tad is the adiabatic flame temperature.
With the mixture fraction formulation adopted in this paper (Poinsot & Veynante 2005),
Tad = Zsto/2, where Zsto is the stoichiometric mixture fraction defined afterwards in §2.2,
eq. (2.7). The system (2.1), (2.2) reduces to the D’Alembert equation when ζ = 0 and
βT = 0

∂2p

∂t2
− 1

ρ

∂2p

∂x2
= 0. (2.3)
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The non-dimensional mean-flow density, ρ, is modelled as a discontinuous function

ρ =

{

ρ1, 0 6 x < xf ,

ρ2, xf < x 6 1.
(2.4)

The densities can be obtained from the temperatures, which are T̃1 in the cold flow
upstream of the flame, 0 6 x < xf , and T̃2 in the hot flow downstream of the flame,
xf < x 6 1, by the first law of thermodynamics and ideal-gas state equation:

ρ1
ρ2

=
T2
T1

=
T̃2

T̃1
= 1 +

˜̄Q

c̃pT̃1
, (2.5)

where ˜̄Q is the steady heat release; c̃p is the constant-pressure heat capacity; and˜indi-
cates a dimensional quantity. This has assumed that the mean-flow pressure drop across
the flame is negligible, which is reasonable when γM2

1 and γM2
2 are small (see e.g. Dowling

1997), where γ is the heat-capacity ratio and M1,M2 are the mean-flow Mach numbers.

At the ends of the tube, p and ∂u/∂x are both set to zero, which means that the system
cannot dissipate acoustic energy by doing work on the surroundings. Dissipation and end
losses are modelled by the modal damping ζ = c1j

2 + c2j
0.5 used by Matveev (2003),

based on models by Landau & Lifshitz (1987), where j is the jth acoustic mode and c1,
c2 are the constant damping coefficients. The quadratic term represents the losses at the
end of the tube, while the square-rooted term represents the losses in the viscous/thermal
boundary layer.

2.2. Flame model

In the flame domain (right picture of figure 1), the fuel enters the left boundary at
−α 6 η 6 α and the oxidizer enters the left boundary at −1 6 η 6 −α and α 6

η 6 1. The main assumptions are that: (i) the velocity and density in the flame domain
are uniform; (ii) the Lewis number, defined as the ratio of thermal diffusivity to mass
diffusivity, is 1; (iii) the mass-diffusion coefficients are isotropic and uniform; (iv) the
chemistry is infinitely fast with one-step reaction. We define the mass fraction to be
the mass of a species divided by the total mass of the mixture (kg/kg). The fuel mass
fraction is labelled Y ∗ and the oxidizer mass fraction is X∗. The stoichiometric mass
ratio is s = νXWX/(νYWY ), where WX and WY are the molar masses (kg/mole) and
νX and νY are the stoichiometric coefficients (mole/kg). We define a conservative scalar,
Z, called the mixture fraction (Peters 1992; Poinsot & Veynante 2005)

Z ≡ sY ∗ −X∗ +X∗
i

sY ∗
i +X∗

i

=
Y −X +Xi

Xi + Yi
, (2.6)

where X = X∗/(νXWX) and Y = Y ∗/(νYWY ), and the subscript i refers to properties
evaluated at the inlet.

Earlier definitions of the mixture fraction (Tyagi et al. 2007a; Balasubramanian & Sujith
2008a; Magri et al. 2013), depended on the absolute value of the fuel mass fraction, Yi.
This dependency has been overcome by defining Z as in (2.6), which can assume only val-
ues between 0 and 1, rendering the non-dimensionalization of the coupled themo-acoustic
system well scaled. This flame formulation has been used to characterize the nonlinear
thermo-acoustic behaviour of ducted diffusion flames by Illingworth et al. (2013).

The fuel and oxidizer diffuse into each other and, under the infinite-rate chemistry
assumption, combustion occurs in an infinitely thin region at the stoichiometric contour,
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Z = Zsto, where

Zsto =
1

1 + φ
, (2.7)

where φ ≡ Yi/Xi is the equivalence ratio (Poinsot & Veynante 2005, eq. (3.17), p. 86).
The governing equation for Z is derived from the species equations (Tyagi et al. 2007a,b;
Balasubramanian & Sujith 2008a) and, in non-dimensional form, is

∂Z

∂t
+ (1 + uf )

∂Z

∂ξ
− 1

Pe

(

∂2Z

∂ξ2
+
∂2Z

∂η2

)

= 0, (2.8)

where 1 is the non-dimensional mean-flow velocity (see appendix A for the scale factors
used); uf is the acoustic velocity evaluated at the flame location; and Pe is the Péclet
number (defined in appendix A). The partial differential equation (2.8) is parabolic and,
when the flame is coupled with acoustics, quasilinear. Dirchlet boundary conditions are
prescribed at the inlet

Z(ξ = 0, η) = 1 if |η| 6 α, (2.9)

Z(ξ = 0, η) = 0 if α < |η| 6 1. (2.10)

These assume that axial back diffusion at ξ = 0 is negligible, which is a good assumption
for the Péclet numbers we investigate (Magina & Lieuwen 2014). Neumann boundary
conditions are prescribed elsewhere

∂Z

∂η
(ξ, η = ±1) = 0, (2.11)

∂Z

∂ξ
(ξ = Lc, η) = 0. (2.12)

These ensure that there is no diffusion across the upper and lower wall of the combustor,
and that Z is uniform at the end of the flame domain.
The variable Z is split into two components, Z = Z̄ + z, in which Z̄ is the steady

solution,

Z̄ =
Ȳ − X̄ +Xi

Xi + Yi
=

Ȳ − X̄

Xi + Yi
+ Zsto, (2.13)

and z is the unsteady field,

z =
y − x

Xi + Yi
. (2.14)

By decomposition (2.13) and (2.14), the mixture-fraction equation (2.8) is split into a
steady and fluctuating part governed by

∂Z̄

∂ξ
− 1

Pe

(

∂2Z̄

∂ξ2
+
∂2Z̄

∂η2

)

= 0, (2.15)

∂z

∂t
− 1

Pe

(

∂2z

∂ξ2
+
∂2z

∂η2

)

+ (1 + uf )
∂z

∂ξ
= −uf

∂Z̄

∂ξ
. (2.16)

The steady field, Z̄, has the same boundary condition as the variable Z, given in (2.9)–
(2.12). Equation (2.15) has an analytical solution (Magri & Juniper 2013a; Magina et al.
2013), which is reported in appendix C. The unsteady component, z, must satisfy the
Neumann boundary conditions (2.11), (2.12) but must be zero at the inlet, ξ = 0. In
order to linearize (2.16), we assume that z ∼ uf ∼ O(ǫ), so that we discard the term
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uf∂z/∂ξ ∼ O(ǫ2), yielding

∂z

∂t
− 1

Pe

(

∂2z

∂ξ2
+
∂2z

∂η2

)

+
∂z

∂ξ
= −uf

∂Z̄

∂ξ
. (2.17)

2.3. Heat-release model

The non-dimensional heat release (rate) is given by the integral of the total derivative of
the non-dimensionalized sensible enthalpy

Q̇ =

∫

R

d(Tb − Ti)

dt
dξdη, (2.18)

Tb = Ti + Z̄ + z, if Z < Zsto, (2.19)

Tb = Ti +
Zsto

1− Zsto

(

1− Z̄ − z
)

, if Z> Zsto, (2.20)

where R ≡ [0, Lc] × [−1, 1] is the flame domain, and Ti is the non-dimensional inlet
temperature of both species. Note that, following the notation used for the acoustics in
§2.1, Ti ≡ T1. The value of the steady heat release rate, Q̄, depends on whether the flame
is closed (overventilated), Zsto > α, or open (underventilated), Zsto < α

Q̄ = 2α− 1

1− Zsto

∫ +1

−1

z(Lc, η)dη if Zsto > α, (2.21)

Q̄ = 2

(

Zsto

1− Zsto

)

(1− α) if Zsto 6 α. (2.22)

The fluctuating heat-release, integrated over the flame domain, is

q̇av ≡ Q̇− Q̄ =

=

∫ Lc

0

∫ 1

−1

{

Θ(Z > Zsto)

( −Zsto

1− Zsto

)

∂z

∂t
+Θ(Z < Zsto)

∂z

∂t

}

dξdη + ufQ̄, (2.23)

where Θ(Z > Zsto) is 1 in the fuel side (Z > Zsto) and zero otherwise, and Θ(Z < Zsto)
is 1 in the oxidizer side (Z < Zsto) and zero otherwise. Numerical calculations show that

the term
∫ +1

−1 z(Lc, η)dη in (2.21) is negligible, being of order ∼ 10−13. Expression (2.23)
is valid for both closed and open flames. The heat release (2.23) has to be scaled further
in order to be consistent with the non-dimensionlization of the acoustic energy (2.2).
Bearing in mind that the dimensional width of the duct is 2H̃ (figure 1) and considering
the scale factors in appendix A, then the heat-release term forcing the acoustic energy
(2.2) is Q̇av = q̇av/2.

3. Numerical discretization

Both the acoustics and flame are discretized with the Galerkin method. The partial
differential equations (2.1), (2.2), (2.16) are discretized into a set of ordinary differential
equations by choosing a basis that matches the boundary conditions and the discontinuity
condition at the flame. The Galerkin method, which is a weak-form method, ensures
that the error is orthogonal to the chosen basis in the subspace in which the solution is
discretized, so that the solution is an optimal weak-form solution. The pressure, p, and
velocity, u, are expressed by separating the time and space dependence, as follows

p(x, t) =
K
∑

j=1

{

α
(1)
j (t)Ψ

(1)
j (x), 0 6 x < xf ,

α
(2)
j (t)Ψ

(2)
j (x), xf < x 6 1,

(3.1)
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u(x, t) =
K
∑

j=1

{

η
(1)
j (t)Φ

(1)
j (x), 0 6 x < xf ,

η
(2)
j (t)Φ

(2)
j (x), xf < x 6 1.

(3.2)

The following procedure is applied to find the bases for u and p:
(a) substitute the decomposition (3.1) into (2.3) to find the acoustic pressure eigen-

functions Ψ
(1)
j (x), Ψ

(2)
j (x);

(b) substitute the pressure eigenfunctions Ψ
(1)
j (x), Ψ

(2)
j (x) into the momentum equa-

tion (2.1) to find the acoustic velocity eigenfunctions Φ
(1)
j (x), Φ

(2)
j (x);

(c) impose the jump condition at the discontinuity, for which p(x→ x−f ) = p(x→ x+f )

and u(x → x−f ) = u(x → x+f ) (see e.g. Dowling & Stow 2003), to find the relations

between α
(1)
j , α

(2)
j , η

(1)
j , η

(2)
j .

Similarly to Zhao (2012), these steps give

p(x, t) =

K
∑

j=1

{

−αj(t) sin
(

ωj
√
ρ1x

)

, 0 6 x < xf ,

−αj(t)
(

sin γj

sin βj

)

sin
(

ωj
√
ρ2(1− x)

)

, xf < x 6 1,
(3.3)

u(x, t) =

K
∑

j=1







ηj(t)
1√
ρ1

cos
(

ωj
√
ρ1x

)

, 0 6 x < xf ,

−ηj(t) 1√
ρ2

(

sin γj

sin βj

)

cos
(

ωj
√
ρ2(1− x)

)

, xf < x 6 1.
(3.4)

where

γj ≡ ωj
√
ρ1xf , βj ≡ ωj

√
ρ2(1− xf ). (3.5)

Point (c) of the previous procedure provides the equation for the acoustic angular fre-
quencies ωj

sinβj cos γj + cosβj sin γj

√

ρ1
ρ2

= 0. (3.6)

Note that in the limit ρ1 = ρ2, we recover the Galerkin expansion for a flow with
no discontinuity of the mean properties across the flame (e.g. Balasubramanian & Sujith
2008b,a). Importantly, in this limit the angular frequencies of the acoustic eigenfunctions
are ωj = jπ (figure 2a). Such a limit is justified when the temperature jump is sufficiently
low, i.e. T2/T1 . 1.5 (Heckl 1988; Dowling & Morgans 2005). On the other hand, when
the temperature jump is higher, as in realistic combustors, we have to consider the effect
of the change of mean properties on the shape and frequency of oscillations (Dowling
1995). When the discontinuity is high, i.e. T2/T1 = 5 (Nicoud & Wieczorek 2009), the
fundamental angular frequency is almost 1.6-1.8 times that of the case with no disconti-
nuity, as depicted in figure 2a. The quantity Ej in figure 2b, which originates from the
projection of the energy equation (2.2) along the Galerkin basis (3.1), is physically the
acoustic-pressure energy stored in the jth mode, scaled by 0.5α2

j . The system with no
discontinuity has a constant acoustic pressure energy distribution with no dependence on
the acoustic mode. When the discontinuity is modelled, however, the acoustic-pressure
energy is mode-dependent and always lower (figure 2b) than it is in the system with no
temperature jump. The acoustic modes, which are the basis functions for the Galerkin
method, are markedly affected by the presence of the temperature jump (figure 3). When
the temperature jump is present, the acoustic wavelength rises across the discontinuity,
as inferable from (3.3),(3.4). In addition, the effect that the mean-flow velocity has on
the acoustic angular frequencies is negligible for M1 . 0.1, as reported in figure 14 in
appendix B.
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By the Galerkin method, the flame is discretized as

z(ξ, η, t) =

M
∑

m=1

N−1
∑

n=0

Gn,m(t) cos(nπη) sin

[(

m− 1

2

)

πξ

Lc

]

. (3.7)

Via discretization (3.7), the space resolution of the flame is half the shortest wavelength,
which is Lc/(M−0.5) in the ξ-direction and 1/N in the η-direction. (Although the flame
mode n = 0 is necessary to make the basis complete, in our calculations we noticed that
this mode is negligible, having no effect on the system’s dynamics and stability.)
The state of the discretized system is defined by the amplitudes of the Galerkin modes

that represent the flame, Gn,m , the velocity, ηj , and the pressure, αj . These are collected
in the column vector χ ≡ (G;η;α), where G ≡ (G0,1;G0,2; . . . ;G1,1; . . . ;GNM,NM ); η ≡
(η1; η2; . . . ; ηK); and α ≡ (α1;α2; . . . ;αK). Therefore the Galerkin-discretized thermo-
acoustic system can be represented in state-space formulation as

M
dχ

dt
= Bχ− ufAχ, (3.8)

where M , B and A are (NM + 2K)× (NM + 2K) matrices (all of which are invertible,
see online supplementary material) and χ is the (NM + 2K)× 1 state vector. The term
ufAχ is the quasilinear term, which is discarded in linear analysis (2.17).
The strength of the Galerkin method is that the system can be expressed in state-

space formulation (3.8). This is particularly useful when the adjoint algorithm is to be
implemented. Other numerical discretizations, such as Chebyshev polynomials used by
Illingworth et al. (2013), are numerically more efficient but make the implementation of
the adjoint problem much more difficult because of the way that the integration of the
heat release is handled. It is worth pointing out that Sayadi et al. (2014) have developed
a new numerical method for the acoustics that, amongst other things, prevents the Gibbs’
phenomenon across the discontinuity, which arises with a fine Galerkin discretization of
the acoustics (Magri & Juniper 2013b).

4. Adjoint analysis

4.1. Adjoint operator

In this section the adjoint operator is defined. This definition is an extension for func-
tions (arranged in vector-like notation) over the time domain of the definition given
by Dennery & Krzywicky (1996). Let L be a partial differential operator of order M
acting on the function q(x1, x2, . . . , xK , t), where K is the space dimension, such that
Lq(x1, x2, . . . , xK , t) = 0. We refer to the operator L as the direct operator and the func-
tion q as the direct variable. The adjoint operator L+ and adjoint variable q+(x1, x2, . . . , xK , t)
are defined via the generalized Green’s identity:

∫ T

0

〈

q+,Lq
〉

−
〈

q,L+q+
〉

dt =

=

∫ T

0

∫

S

K
∑

i=1

[

∂

∂xi
Fi

(

q,q+∗
)

]

nidSdt+

∫

V

Q
(

q,q+∗
)

|T0 dV, (4.1)

where i = 1, 2, . . . ,K. Fi(q,q
+∗), which is referred as the bilinear concomitant (see e.g.

Giannetti & Luchini 2007), and Q (q,q+∗), which is a functional, depend bilinearly on
q, q+∗ and their first M − 1 derivatives. The complex-conjugate operation is labelled
by ∗. For brevity, we define 〈a,b〉 ≡

∫

V a∗·b dV , where a, b are suitably differentiable
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vector functions; and the Euclidean scalar product is indicated with the dot · . (We
choose to define the adjoint equation through an inner product, but any non-degenerate
bilinear form could have been used.) The domain V is enclosed by the surface S, for
which ni are the projections onto the coordinate axis of the unit vector in the direction
of the outward normal to the surface dS. The time interval is T . The adjoint boundary
and initial conditions on the function q+ are defined as those that make the right-hand
side of (4.1) vanish identically on S, t = 0 and t = T .
The adjoint equations can either be derived from the continuous direct equations and

then discretized (CA, discretization of the Continuous Adjoint) or be derived directly
from the discretized direct equations (DA, Discrete Adjoint). For the CA method, the
adjoint equations are derived by integrating the continuous direct equations by parts
and then applying the Green’s identity (4.1). For the DA method the adjoint system is
the negative Hermitian of the direct system. This can be obtained algorithmically by
reverse routine-calling (Errico 1997; Bewley 2001; Luchini & Bottaro 2014). Generally,
the DA method has the same truncation errors as the discretized direct system, while
the CA method has different truncation errors, depending on the choice of the numerical
discretization (Vogel & Wade 1995; Magri & Juniper 2013b).
The continuous adjoint equations of the linear thermo-acoustic system, consisting of

(2.1), (2.2), are:

∂u+f
∂t

+
∂p+f
∂x

− z+
∂Z̄

∂ξ
+

(

1

1− Zsto

)

q̇+Q̄ = 0, (4.2)

∂u+

∂x
+
∂p+

∂t
− ζp+ = 0, (4.3)

p+δ(x− xf )− βT q̇
+ = 0, (4.4)

∂z+

∂t
+ Ū

∂z+

∂ξ
− 1

Pe

(

∂2z+

∂ξ2
+
∂2z+

∂η2

)

+

(

1

1− Zsto

)

A(Z̄)
∂q̇+

∂t
= 0, (4.5)

where u+ = u+(x, t), p+ = p+(x, t) and z+ = z+(ξ, η, t). The area enclosed by the steady
stoichiometric line is labelled A(Z̄). The adjoint boundary conditions are

p+ = 0 at x = 0, x = 1, (4.6)

z+ = 0 at ξ = 0, (4.7)

∇z+·n = 0 at ξ = Lc, η = ±1. (4.8)

The adjoint boundary conditions (4.7)-(4.8) are the same as those of the direct problem,
which means that the basis used in (3.7) is suitable for spanning the flame’s adjoint space.
The adjoint equations govern the evolution of the adjoint variables, which can be re-

garded as Lagrangemultipliers from a constrained optimization perspective (Belegundu & Arora
1985; Gunzburger 1997; Giles & Pierce 2000). Therefore, u+ is the Lagrange multiplier of
the acoustic momentum equation (2.1), revealing the spatial distribution of the acoustic
system’s sensitivity to a force. Likewise, p+ is the Lagrange multiplier of the pressure
equation (2.2), revealing the spatial distribution of the acoustic system’s sensitivity to
heat injection. Finally, z+ is the Lagrange multiplier of the flame equation (2.16), re-
vealing the spatial distribution of the combustion system’s sensitivity to species injec-
tion (§5.3). A mathematical treatment of the adjoint equations, interpreted for thermo-
acoustics, is given by Magri & Juniper (2014).
For linear thermo-acoustic systems arranged in a state-space formulation, such as sys-

tem (3.8), the DA method is more accurate and easier to implement than the CA method
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(see, for example, Magri & Juniper (2013b)). Therefore, we will use the DA method in
this paper.
So far we have considered the thermo-acoustic system in the (x , ξ, η, t) domain. In

modal analysis, we consider it in the (x , ξ, η, σ) domain using the modal transformations
u(x, t) = û(x, σ) exp(σt), p(x, t) = p̂(x, σ) exp(σt), and z(ξ, η, t) = ẑ(ξ, η, σ) exp(σt). The
symbol ˆ denotes an eigenfunction. The complex eigenvalue is σ = σr + σii, where
(σr , σi) ∈ R

2. The behaviour of the system in the long-time limit is dominated by the
eigenfunction whose eigenvalue has the highest real part (i.e. growth rate), σr.

4.2. Sensitivity

Adjoint eigenfunctions are useful because they provide gradient information about the
sensitivity of the system’s stability to first-order perturbations to the governing operator.
Defining the operator in §4.1 as L ≡ M∂/∂t−B, the continuous generalized eigenproblem
of (3.8) and its adjoint are, respectively

σMq̂ = Bq̂, (4.9)

σ∗M+q̂+ = B+q̂+, (4.10)

where M may be a non-invertible matrix of operators. The adjoint operators M+ and B+

can be regarded as the conjugate transpose of the corresponding direct operators, M and
B, respectively. The sensitivity of the eigenvalues to generic perturbations to the system
can be obtained by introducing a perturbation operator, δC ·P, such that the perturbed
operator is B → B + δC · P, where δC is a gain operator and P is the perturbation
operator. The gain is small such that its (suitably defined) norm is ||δC||= |ǫ|≪ 1.
This perturbation changes the eigenvalues and eigenfunctions accordingly: σ → σ+ ǫδσ,
q̂ → q̂+ǫδq̂, and q̂+ → q̂++ǫδq̂+. By retaining only first-order terms∼ O(ǫ1), and taking
into account the bi-orthogonality condition (Salwen & Grosch 1981), the sensitivity of
the eigenvalue is calculated as follows

δσ

δC
=

〈q̂+,Pq̂〉
〈q̂+,Mq̂〉 . (4.11)

This result is well known from spectral theory and was used for the first time in flow
instability by Hill (1992) and Giannetti & Luchini (2007). For the thermo-acoustic system
in this study, the eigenfunctions are arranged in column vectors as q̂ ≡ [ẑ; û; p̂], q̂+ ≡
[ẑ+; û+; p̂+]; the integration domain is V = [0, 1]⊕[0, Lc]×[−1, 1]; and the perturbation
operator is

P =





Pzz Pzu Pzp

Puz Puu Pup

Ppz Ppu Ppp



 . (4.12)

In Magri & Juniper (2013b) we interpreted the perturbation operators Puu, Pup, Ppu,
Ppp as possible passive feedback mechanisms (structural sensitivity) and then investigated
the base-state sensitivities through Ppu, Ppp. In this paper we analyse Ppz, which is the
coupling between the flame and the energy equation (base-state sensitivity), and Pzu,
which is the coupling between the velocity and the flame equation (structural sensitivity).
Ppz is regarded as a base-state perturbation because it represents a small modification
to the flame parameters, such as Pe or Zsto (§ 5.4). Pzu is regarded as a structural
perturbation because it represents a small modification in the intrinsic thermo-acoustic
feedback mechanism, in this case between the acoustic velocity and the flame equation
(§ 5.5).
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In this thermo-acoustic system, there are base-state parameters for the acoustics and
for the flame. The former, which were investigated in Magri & Juniper (2013b), are
the acoustic damping, ζ, and the flame position, xf . (The sensitivity of this thermo-
acoustic system to perturbations of these parameters is qualitatively identical to that of
Magri & Juniper (2013b) because the acoustic models and the direct and adjoint acoustic
eigenfunctions are very similar.) The latter, which are new to this study, are the Péclet
number, Pe, the stoichiometric mixture fraction, Zsto, the half width of the fuel slot, α,
and the heat-release parameter, βT = 1/Tav, which is the inverse of the average flame
temperature.

5. Results

We calculate the global modes, Rayleigh index, receptivity, and sensitivity of two
marginally stable/unstable thermo-acoustic systems: (i) an under-ventilated (open) flame
with Zsto = 0.125, Pe = 35, c1 = 0.005, c2 = 0.0065; and (ii) an over-ventilated (closed)
flame with Zsto = 0.8, Pe = 60, c1 = 0.0247, c2 = 0.018. Both systems have α =
0.35 and Tav = 2/1.316 = 1.520. We use M = 225 × N = 50 flame modes and K =
20 acoustic modes. In appendix D the numerical convergence is shown. The dominant
eigenvalue of the open flame is σ = 0.00088 + 3.1487i with no temperature jump and
σ = −0.00279 + 5.0938i with a temperature jump of T2/T1 = 5. The closed flame has
σ = 0.00408 + 3.1710i with no temperature jump and σ = −0.00756 + 5.1046i with a
temperature jump of T2/T1 = 5. The sets of parameters for T2/T1 = 1 have been found
to be marginally stable also with the nonlinear code of Illingworth et al. (2013), which
uses a Chebyshev method for the flame and a Galerkin method for the acoustics with no
temperature jump. The dominant portion of the spectrum and pseudospectrum of the
open-flame case is shown in figure 18 in appendix D.

5.1. The direct eigenfunction (global mode)

Figures 4a,b,c,d show the real and imaginary parts of the direct eigenfunctions of the
open flames with T2/T1 = 1 (left) and T2/T1 = 5 (right). The corresponding Galerkin
coefficients, Ĝn,m, are plotted in figure 16 in appendix D. The real and imaginary parts
are in spatial quadrature, which shows that the mixture fraction perturbation, ẑ, takes the
form of a travelling wave that moves down the flame in the streamwise direction. Panels
4e,f show the local phase speed of the wave in the streamwise direction, which is calculated
via a Hilbert transform. (Each solid line corresponds to a different cross-stream location,
showing that the phase speed varies only slightly in the cross-stream direction.) In both
cases, the average phase speed is slightly greater than the mean-flow speed, which is 1.
This shows that a simple model of the flame, in which mixture fraction perturbations
convect down the flame at the mean-flow speed, is a reasonable first approximation.
The validity of this approximation increases as the Péclet number increases (not shown
here) because convection becomes increasingly more dominant than diffusion. It is worth
noting that the magnitude of ẑ decreases in the streamwise direction. This is because the
reactants diffuse into each other relatively quickly at this Péclet number. The influence
of the mean-flow temperature jump can be seen by comparing the direct eigenfunctions
without (figures 4a,c) and with temperature jump (figures 4b,d). When the temperature
jump is present, the oscillatory pattern has a shorter wavelength because the frequency
of the coupled thermo-acoustic system is higher (figure 2a).
In both flames, the mixture fraction perturbation starts at the upstream boundary and

causes heat-release fluctuations when it reaches the flame. To the first approximation
described above, the time delay between the velocity perturbation and the subsequent
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Figure 4. (Colour online) Dominant direct eigenfunction (a,b,c,d) and local phase speed (e,f)
of the open flame coupled with acoustics. Results of the left/right column are obtained with-
out/with mean-flow temperature jump. Panels (a,b) show the real parts of the mixture-fraction
eigenfunction, panels (c,d) show the imaginary parts. Red/blue colour corresponds to posi-
tive/negative value. The dashed line is the steady-flame position. The acoustic component of
the eigenfunction is not shown here. Panels (e,f) show the local phase speed, c, of the mix-
ture-fraction travelling wave obtained via a Hilbert transform. In (e,f), the solid lines show the
phase speed at different cross-stream locations, while the dotted line is the uniform mean-flow
speed. The local phase speed is close but not exactly equal to the mean-flow speed.

heat-release perturbation scales with Lf/U , where Lf is the length of the steady flame
and U is the mean-flow speed (which is 1 in this paper). The phase delay between the
velocity perturbation and the subsequent heat release perturbation therefore scales with
Lfσi/U , where σi is the dominant eigenvalue’s imaginary part, i.e. the linear-oscillation
angular frequency. We will return to this model and this scaling in the following sections.

5.2. The Rayleigh index

The Rayleigh criterion states that the energy of the acoustic field can grow over one cycle
if
∮

T

∫

V
pq̇ dV dt exceeds the damping, where V is the flow domain and T is the period.

The spatial distribution of
∮

T pq̇ dt, which is known as the Rayleigh index, reveals the
regions of the flow that contribute most to the Rayleigh criterion and, therefore, gives
insight into the physical mechanisms contributing to the oscillation’s energy. We consider
the undamped eigenproblem of the momentum (2.1) and energy (2.2) equations. Then
we multiply the former by û∗ and the latter by p̂∗ and add them up to give

2σEac(x) − p̂∗q̂δ(x− xf ) = −
(

û∗
∂p̂

∂x
+ p̂∗

∂û

∂x

)

, (5.1)

where Eac = 1/2 (û∗û+ p̂∗p̂) is the thermo-acoustic eigenfunction’s acoustic energy. In-
tegration of (5.1) over the flame domain, [0, Lc]× [−1, 1], and the acoustic domain, [0, 1],
gives

2σ(2Lc)Eac,t −
∫ 1

−1

∫ Lc

0

p̂∗f q̂ dξdη = −(2Lc)

∫ 1

0

(

û∗
∂p̂

∂x
+ p̂∗

∂û

∂x

)

dx, (5.2)
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where Eac,t is the (total) acoustic energy, i.e. Eac integrated over the acoustic domain.
Applying the acoustic boundary conditions, which in this model preclude energy loss at
the boundaries (§2.1), the real part of (5.2) gives

σrEac,t =
1

4Lc

∫ 1

−1

∫ Lc

0

Re(p̂∗f q̂) dξdη. (5.3)

By Green’s theorem applied to the mixture-fraction equations (2.15),(2.17), the right-
hand side of (5.3) can be expressed as

∫ 1

−1

∫ Lc

0

Re(p̂∗f q̂) dξdη =

Re
{

p̂∗f

[

− 1

Pe

∫ +1

−1

(

∂ẑ

∂ξ

)

ξ=0

dη + ûf

∫ +1

−1

ẑ (Lc, η) dη +

+ ûf Q̄ − 1

Pe (1− Zsto)

∮

C

∇ẑ · nds
]}

, (5.4)

where C is the curve enclosing the steady stoichiometric line, (ξsto, ηsto), and the fuel
side; ds is the curvilinear coordinate along the stoichiometric line; and the linearized
unit-vector normal to the stoichiometric line is:

n =

[

(

∂Z̄

∂ξ

)2

+

(

∂Z̄

∂η

)2
]−1/2

(

∂Z̄

∂ξ
,
∂Z̄

∂η

)

. (5.5)

Mixture-fraction fluctuations are created at the base of the flame by the velocity fluc-
tuations. They then convect downstream and cause heat-release fluctuations when they
meet the flame. The influence of these fluctuations depends on their phase relative to
the pressure, as described by the Rayleigh index, which is the part of (5.4) that spatially
varies in the flame domain

RI = Re
(

−p̂∗f∇ẑ · n
)

, (5.6)

Figure 5 shows the Rayleigh index as a function of the distance along the flame, ξsto.
The Rayleigh index reveals that mixture-fraction perturbations induced by the system
itself (as opposed to those induced by external control in the next section) most influence
the growth rate of thermo-acoustic oscillations in the upstream part of the flame 0 <
ξsto < 1.5. This is because ∇ẑ is steepest there, so the rate of species diffusion, and
hence reaction rate, is largest there. The magnitude and sign of this influence depends
on ξsto because the phase relationship between heat release and pressure varies as the
perturbations convect down the flame. The Rayleigh index will be compared with maps
derived from receptivity and sensitivity analysis in the following sections.

5.3. Receptivity to species injection

A receptivity analysis creates a map in the flame domain of the first eigenfunction’s
receptivity to species injection (Magri & Juniper 2014). This is given by the adjoint
eigenfunction (the adjoint global mode). It shows the most effective regions at which
to place an open-loop active device to excite the dominant thermo-acoustic mode. We
imagine perturbing the z-field (2.17) on the right-hand side with a forcing term that is
localized in space:

δz δ(ξ − ξ0, η − η0) sin(ωst), (5.7)
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Figure 5. The Rayleigh index for the open flame shown as a function of distance along the flame
contour ξsto. This shows the part of the flame that most contributes to the increase (positive RI)
or decrease (negative RI) in energy of the oscillation over a cycle. The RI reaches a maximum
around ξsto = 0.5 to 0.75 and then decreases because the mixture fraction fluctuations diffuse
out as they are convected downstream.
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Figure 6. (Colour online) Absolute value of the dominant adjoint eigenfunction (a) without
and (b) with mean-flow temperature jump. This is for the same operating conditions as those
of the direct eigenfunction in figure 4 of the open flame. This is a map of the eigenvalue’s
receptivity to open-loop forcing via species injection into the mixture-fraction field. It has high
amplitude along the flame because species injected into the flame directly affects the reaction
rate. It has highest amplitude at the flame tip because the mixture fraction perturbations of the
unforced mode have small amplitude at the tip, so the injected species has a proportionately
large influence. Panels (c,d) show the (dominant) left singular modes, which here correspond to
the optimal initial conditions for a final state at t = 0.5.

where δz is the amount of species injected; δ(ξ − ξ0, η − η0) is the Dirac (generalized)
function to localize the injection in space at (ξ0, η0); and ωs ≈ σi is the forcing angular
frequency.
The adjoint eigenfunction (figure 6a,b) has high magnitude around the flame. (The

corresponding Galerkin coefficients, Ĝ+
n,m, are plotted in figure 17 in appendix D.) This

is because species injection affects the heat release only if it changes the gradient of ẑ at
the flame itself, which is achieved by injecting species around the flame. Its magnitude
increases towards the tip of the flame, where ∇ẑ is weakest. It is worth comparing this
with the Rayleigh index (figure 5), which is greatest towards the base of the flame, where
∇ẑ is strongest. This reveals that the influence of this particular open-loop control strat-
egy is strongest at flame positions where the intrinsic instability mechanism is weakest.
This is because mixture fraction fluctuations diffuse out as they convect down the flame,
which means that open-loop forcing has a proportionately large influence on the mixture
fraction towards the tip. From a practical point of view, this shows that open-loop control
of the mixture fraction has little influence at the injection plane but great influence at
the flame tip. In this case, this could be achieved by injecting species at the wall.
To check the physical significance of the adjoint eigenfunctions, which in principle live
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Figure 8. Unperturbed steady flame length, Lf , as a function of (a) the fuel slot half width, α,
and the stoichiometric mixture fraction, Zsto; and (b) the heat-release parameter, βT , and the
Péclet number, Pe. Lf is the same for all values of T2/T1.

in a different space from those of the direct eigenfunctions, we compare them with the
left singular modes, which live in the same space as the direct eigenfunctions. On the
one hand, the adjoint eigenfunction is the optimal initial condition / forcing maximizing
the L2-norm of the thermo-acoustic state in the limit t → ∞ (see e.g. Magri & Juniper
(2014)). On the other hand, the left singular mode is the optimal initial condition maxi-
mizing the L2-norm of the thermo-acoustic state over a finite time, t < ∞. Figures 6c,d
show the (dominant) left singular modes for a final state at t = 0.5. Mathematically, these
are the (dominant) left singular modes of the propagator exp(Lt) (see e.g. Schmid 2007;
Schmid & Brandt 2014), where L is the linearized thermo-acoustic operator (L=M−1B,
see(4.9)), evaluated at t = 0.5. As expected, the adjoint eigenfunction’s shape is very
similar to that of the left singular mode. There is no substantial difference when the
temperature jump is considered (figure 6b).
We also investigate the case of a closed flame, shown in figure 7. Qualitatively, the

receptivity is similar to that of the open flame: the system is most sensitive to forcing
along the flame and at the flame’s tip. In this case, however, the flame tip lies along
the centreline, not along the wall. This makes a species-injection strategy more difficult
unless it could be performed, for example, by injecting droplets that evaporate and burn
when they hit the flame’s tip at the centreline.

5.4. Sensitivity to base-state perturbations

The base-state sensitivity analysis quantifies how the dominant eigenvalue of the thermo-
acoustic system, σ, is affected by first-order changes to Pe, Zsto, α, and βT . The eigen-
value drift is

δσ =

(

δσ

δα

)

δα+

(

δσ

δPe

)

δPe +

(

δσ

δZsto

)

δZsto +

(

δσ

δβT

)

δβT , (5.8)
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Figure 9. (Colour online) Sensitivities to base-state perturbations of α and Zsto. T2/T1 = 1 left
column, T2/T1 = 5 right column with the steady-flame length contours of figure 8 superimposed.
The sensitivities depend strongly on Zsto and α but are similar at similar values of Lf .

in which the terms in brackets are the (complex) sensitivities. When Pe, α, Zsto are
perturbed, Z̄ (2.15) changes, which changes the steady flame shape, which then changes
the eigenvalues. The derivatives of Z̄ with respect to Pe, α, and Zsto can be evaluated
analytically because Z̄ has an analytical solution (C 1). The heat-release parameter of the
flame, βT , does not directly affect Z, as can be inferred from (2.8). However, it directly
affects the amount of heat that feeds into the acoustics (2.2) and therefore changes the
growth rate without changing the flame shape directly.
To evaluate the influence of base-state perturbations via (4.11), we choose ‖δC‖ ∼

O(10−6), which is sufficiently small for nonlinearities to be negligible (Illingworth et al.
2013). This was checked by repeating the analysis with a smaller perturbation, ‖δC‖ ∼
O(10−7), for which the real and imaginary parts of the eigenvalues changed by∼ O(10−9).
We analyse the sensitivities aroundmarginally stable points: δσ/δZsto, δσ/δα in the range
Zsto = [0.02, 0.12] and α = [0.25, 0.4]; and δσ/δPe and δσ/δβT in the range Pe = [20, 50]
and βT = [0.4, 0.8]. The sensitivities are calculated with T2/T1 = 1 and T2/T1 = 5. In
the following analysis, the length of the unperturbed flame emerges as a key parameter.
This is defined here as the distance between the inlet and the tip of the steady flame. It
is shown as a function of Zsto and α in figure 8a and as a function of Pe and βT in figure
8b. The flame length increases as Zsto increases, as α decreases, and as Pe increases, but
is not a function of βT or T2/T1.
The change of the growth rate, σr, and the frequency, σi, due to small changes in Zsto

and α are shown in figure 9 and those due to small changes in Pe and βT in figure 10.
Changes in Zsto can be achieved by diluting the fuel or oxidizer. As shown by (2.7), Zsto

increases when the oxidizer mass fraction, Xi, increases or the fuel mass fraction, Yi,
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Figure 10. (Colour online) Sensitivities to base-state perturbations of Pe and βT . T2/T1 = 1
left column, T2/T1 = 5 right column with the steady-flame length contours superimposed. The
sensitivities δσ/δPe depend strongly on Pe but not βT .

decreases. Changes in Pe are achieved by adjusting the mean-flow velocity (see appendix
A), as long as the mean-flow Mach number is small. These results, obtained by an adjoint-
based approach, have been checked against the solutions obtained via finite difference
and agree to within ∼ O(10−9).
These figures are useful from a design point of view. For example, they reveal that at

Zsto = 0.12 and α = 0.38, changes in Zsto strongly influence the growth rate but that at
Zsto = 0.11 and α = 0.40, changes in Zsto strongly influence the frequency instead. This
demonstrates an inconvenient feature of thermo-acoustic instability: the influence of each
parameter is exceedingly sensitive to small changes in the base state (i.e. the operating
point).
It can be seen that δσ/δZsto, δσ/δα, and δσ/δPe, oscillate in spatial quadrature in

parameter space (e.g. local maxima of δσr/δZsto lie between local maxima of δσi/δZsto

and vice-versa). Furthermore, lines of constant δσ/δZsto, δσ/δα, and δσ/δPe very nearly
follow the lines of constant Lf shown in figure 11.
These observations can be explained physically by considering the simple criterion

of the thermo-acoustic instability mechanism described in §5.1. In this criterion, the
velocity perturbations cause z perturbations at the base of the flame. These are convected
downstream and cause a heat-release perturbation some time later. This time delay, τ ,
scales with Lf/U , where Lf is the length of the flame. The influence of this heat-release
perturbation depends on the phase of the heat release relative to the phase of the pressure
(for the growth rate) or velocity (for the frequency), which are in temporal quadrature.
This is why the base-state sensitivity plots are in spatial quadrature in parameter space.
The oscillatory pattern is not observed for δσ/δβT because βT affects only the heat
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Figure 11. The data from figure 9 plotted as a function of the phase between pressure and heat
release oscillations, as estimated by ψ ≡ Lfσi/U . Solutions (a) with no temperature jump, (b)
with temperature jump. The data does not collapse exactly to a curve because perturbations in
z do not convect down the flame exactly at speed U .

release at the flame and not the steady flame length and therefore has no direct influence
on the phase delay.
The phase delay, ψ, is given by τ/T , where T = 2π/σi. In this simple model, δσ

depends only on ψ, which means that, if the simple model were sufficient, the eigenvalue
drifts in figures 9 and 10 would collapse onto a single curve when plotted as a function
of ψ = Lfσi/U . This is shown in figure 11 for δσr/δZsto and δσi/δZsto as a function
of ψ for (a) T2/T1 = 1 and (b) T2/T1 = 5. The data at each T2/T1 collapse somewhat
closely to a curve, particularly for δσ/δα. The data does not collapse exactly because
perturbations in z do not convect down the flame at a uniform speed, as shown in figures
4e,f, and the flame length, Lf , is a simplistic measure of the change in shape of the
flame caused by changes in Zsto, α, and Pe. Nevertheless, this simple criterion is useful
for physical understanding, while the data in figures 9 and 10 shows the influence of
base-state modifications exactly.

5.5. Structural sensitivity to species advection fluctuations

By inspection of the governing equation of the perturbed z field (2.17), we can interpret
the term −uf∂Z̄/∂ξ as an intrinsic forcing of z due to advection in the streamwise
direction. In this section we perform a structural sensitivity analysis using the framework
in §4.2 in order to reveal the locations where a small change in the advective velocity field
most influences the eigenvalue of the thermo-acoustic system through this term. This can
be loosely interpreted as the location of the core of the thermo-acoustic instability, which
can then be compared with the Rayleigh index.
The structural perturbation to the flame-velocity field is assumed to be localized in
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the flame domain:

δP = −δCzuûf
∂Z̄

∂ξ
δ(ξ − ξ0, η − η0), (5.9)

where δCzu is the small perturbation coefficient, and δ(ξ−ξ0, η−η0) is the Dirac (general-
ized) function, which reproduces the impulsive effect of the perturbation at (ξ0, η0). Note
that such a flame-velocity perturbation occurs at the acoustic flame location, x = xf ,
because the flame is a pointwise source for the acoustics (see figure 1). Therefore, the
structural perturbation (5.9) is naturally localized in the acoustic domain. Following
(4.12), the perturbation operator representing feedback proportional to the acoustic ve-
locity and entering the flame equation is Pzu = −ûf∂Z̄/∂ξ. The overlap of ẑ+∗ and
−ûf∂Z̄/∂ξ gives a map of the flame’s sensitivity to small changes in the velocity field:

δσ

δCzu
=

−ẑ+∗ûf
∂Z̄
∂ξ

∫

V
[ẑ+∗; û+∗; p̂+∗] · [ẑ; û; p̂] dV . (5.10)

This is shown in figure 12. It is worth noting that the adjoint eigenfunction, ẑ+ (figure

6a,b) has highest amplitude near the flame tip, that ûf is uniform, and that ∂Z̄
∂ξ has

highest amplitude near the flame base (figure 13), where the steady mixture-fraction axial
gradient is greatest. These combine to give the structural sensitivity, δσ/δCzu. This shows
that changes to the velocity field have most influence (i) at the flame, because changes in
velocity advection there directly change the reaction rate, as did the open-loop species
injection in §5.3; (ii) in the region 0 < ξ < 1 which, as expected, is the region in which
the Rayleigh index is large (figure 5).
The structural sensitivity also shows where a passive feedback device would have most
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influence on the eigenvalue. For example, the drag from a small cylinder generates a
negative perturbation to the velocity, δCzu < 0. The first-order effect of such a cylinder
has no influence on the steady flame (the base flow) because its equation (2.15) is linear.
This means that the presence of a small cylinder changes the eigenvalue of the thermo-
acoustic system only through the unsteady z field. (This structural sensitivity analysis is
simple, because the momentum equation is not solved in the flame domain.) When placed
in the blue region of figure 12a, this perturbation would destabilize the thermo-acoustic
system and when placed in the red region it would stabilize it.

6. Conclusions

The main goal of this paper is to apply adjoint sensitivity analysis to a low-order
thermo-acoustic system. Our first application of this analysis (Magri & Juniper 2013b)
was to an electrically heated Rijke tube with an imposed time-delay between velocity fluc-
tuations and heat-release fluctuations. Our application in this paper is to a diffusion flame
in a duct. The model and its discretization originate from Balasubramanian & Sujith
(2008a, 2013), which was recently revised (Magri et al. 2013). The model contains a
diffusion flame with infinite-rate chemistry coupled with one-dimensional acoustics in
an open-ended duct. It includes the effect of the mean-flow temperature jump at the
flame. Rather than impose a time-delay between velocity and heat release fluctuations,
we model convection and reaction in the flame domain. This provides a more accurate
representation of the thermo-acoustic system and the base-state variables that influence
its stability, which are the main focus of this paper.
We use adjoint equations to calculate the system’s receptivity to species injection,

sensitivity to base-state perturbations, and structural sensitivity to advective-velocity
perturbations. We compare these with the Rayleigh index. We derive the continuous
adjoint equations for completeness but we use the discrete adjoint approach for the
calculations because it is easier and more accurate for this application.
The receptivity to species injection reveals that the thermo-acoustic system is most

receptive to open-loop forcing of the mixture fraction towards the tip of the flame. This
is because mixture-fraction fluctuations diffuse out as they convect down the flame. Con-
sequently, open-loop forcing has a proportionately large influence on the mixture fraction
towards the tip of the flame. For the same reason, the Rayleigh index is small there. The
receptivity map is useful when designing open-loop strategies for control/excitation of
thermo-acoustic oscillations. Without performing a receptivity analysis, it may not be
obvious that the flame is most sensitive to forcing of the mixture fraction at positions
along the flame where the Rayleigh index is small.
The sensitivity to base-state perturbations reveals the sensitivity to perturbations in

the combustion parameters, which in this case are the stoichiometric mixture fraction,
δZsto; the fuel slot to duct width ratio, α; the Péclet number, Pe; and the heat-release
parameter, βT . Although these can be found with classical finite difference calculations,
using the adjoint equations significantly reduces the number of computations without
affecting the accuracy. Overall, the thermo-acoustic system is most sensitive to changes
in δZsto, δβT and δα, but least sensitive to δPe. As expected, these sensitivities depend
strongly on the phase delay between velocity perturbations and subsequent heat release
perturbations. This phase delay scales with Lfσi/U , where Lf is the flame length, U is
the flow speed, and σi is the oscillation angular frequency. The stoichiometric mixture
fraction, Zsto, and fuel slot with, α, change the flame length. These are the easiest
parameters to change in an experiment, although control with these would be delicate
because of the sensitivity’s oscillatory patterns (figure 9). The inverse of the average flame
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temperature, βT , changes the influence of the flame’s heat release. If this can be changed,
then control with this is attractive because βT does not directly affect the flame length
and therefore the sensitivity to this parameter does not oscillate (figure 10). The Péclet
number, Pe has very little influence for most of the operating points considered in this
paper. Even if it could be changed, it would not be a useful parameter for passive control.
The base state sensitivity analysis also reveals a feature that seems to be common to all
thermo-acoustic systems: the influence of base state parameters is exceedingly sensitive
to small changes in the operating point.

The structural sensitivity shows the effect that a generic advection-feedback mechanism
would have on the frequency and growth rate of the thermo-acoustic oscillations. It can
be loosely interpreted as the location of the core of the thermo-acoustic instability. This
structural sensitivity analysis is simple, because the momentum equation is not solved in
the flame domain. Nevertheless, it shows (i) the regions in which a passive control device
is most effective at controlling the thermo-acoustic oscillations; (ii) the regions where
future velocity models must capture the species advection most accurately. As expected,
the structural sensitivity is large in regions in which the Rayleigh index is large.

This paper shows that adjoint receptivity and sensitivity analysis can be applied to
thermo-acoustic systems that simulate the flame, as well as to those that impose a time
delay between velocity and heat-release fluctuations (Magri & Juniper 2013b). With very
few calculations, this analysis reveals how each parameter affects the stability of a thermo-
acoustic system, which is useful information for practitioners. Although many technical
challenges remain, this analysis can be extended to more accurate models, particularly
those that simulate the velocity field in the flame domain, and is a promising new tool
for the analysis and control of thermo-acoustic oscillations.

The authors would like to thank Prof. R. I. Sujith and Dr. K. Balasubramanian for
providing their code used in Kulkarni et al. (2011) and their comments on the Galerkin
method applied to the flame. The authors are grateful to Dr. S. Illingworth, Dr. I. C.
Waugh and Dr. O. Tammisola for helpful discussions. This work is supported by the
European Research Council through Project ALORS 2590620.

Appendix A. Scale factors for non-dimensionalization

Dimensional quantities are denoted with .̃ The acoustic variables are scaled as: L̃ax = x̃
[m], L̃atac/c̃1 = t̃ [s], ũ1u = ũ [m/s], ρ̃1ρ = ρ̃ [kg/m3], γM1p̃1p = p̃ [Pa]; where L̃a [m]
is the length of the duct, c̃1 [m/s] is the speed of sound in the cold mean-flow, ũ1 [m/s]
is the cold mean-flow velocity, ρ̃1 [kg/m3] is the cold mean-flow density, p̃1 [Pa] is the
mean-flow pressure, γ = c̃p/c̃v, and M1 is the cold mean-flow Mach number. c̃p and c̃v
are the mass heat capacities at constant pressure and constant volume of the mixture [J
kg−1K−1].

The combustion variables are scaled as: H̃ξ = ξ̃ [m], H̃η = η̃ [m], H̃tc/ũ1 = t̃ [s],
T̃refT = T̃ [K], where T̃ref = (Y ∗

i Q̃h)/c̃p, and Q̃h is the heat released by combustion of
1 kg of fuel [J kg−1 /Yi

∗] (Poinsot & Veynante 2005). The combustion time scale has
been chosen to be exactly the same as the acoustic time scale, i.e. tac = tc. This can be
achieved provided thatML̃c/H̃ = 1 (compact flame and low Mach number assumptions).
The non-dimensional length of the combustion domain along ξ is Lc = L̃c/H̃. The Péclet
number is the ratio between the diffusion and convective time scales, Pe = ũ1H̃/D̃, where
D̃ is the (uniform) mass-diffusion coefficient [m2 s].



Receptivity and sensitivity analysis of diffusion flames coupled with acoustics 23

0

20

40

60

Im
(σ

)

( a) M 1 = 0.02

 

 

G a l er k i n

Wave appr .

0

20

40

60
(b) M 1 = 0.05

0

20

40

60

Im
(σ

)

( c ) M 1 = 0.075

0

20

40

60
(d) M 1 = 0.1

1 2 3 4 5 6 7 8 9 10
0

20

40

60

Acousti c mode j

I
m
(σ

)

( e ) M 1 = 0.15

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

Acousti c mode j

( f ) M 1 = 0.2

Figure 14. Comparison between the acoustic angular frequencies, Im(σ), calculated by the
wave approach (circles) and the Galerkin method (dots). M1 is the Mach number of the mean
flow upstream of the flame.

Appendix B. Effect of the mean flow on the acoustic frequencies

The acoustic angular frequencies obtained by the wave approach (see online supple-
mentary material for details) are shown in figure 14 and compared with the angular
frequencies calculated via the Galerkin method (3.6). The effect of the mean-flow ve-
locity, which is neglected in the Galerkin formulation, becomes influential for mean-flow
Mach numbers & 0.1.

Appendix C. Steady flame solution

The steady flame solution is obtained by separation of variables (Magri et al. 2013;
Magri & Juniper 2013a):

Z̄ = α+
2

π

+∞
∑

n=1

sin(nπα)

n (1 + bn)
cos(nπη) [exp(an1ξ) + bn exp(an2ξ)] , (C 1)

where

an1 ≡ Pe

2
−

√

Pe2

4
+ n2

π
2, an2 ≡ Pe

2
+

√

Pe2

4
+ n2

π
2, (C 2)

bn ≡ −an1
an2

exp



−2Lc

√

Pe2

4
+ n2

π
2



 . (C 3)

Note that if Lc → ∞, then bn → 0. In this limit, (C 1) coincides with the solution pro-
posed by Magina et al. (2013, eq. (7), p. 966). (Note that they defined the characteristic
convective scale for the Péclet number, Pe, to be αH̃ .)
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Figure 16. Absolute value of the direct Galerkin coefficients Ĝn,m, of the open flame.

Appendix D. Numerical convergence, spectrum and pseudospectrum

We use as many Galerkin modes as required to obtain numerical convergence of the
direct/adjoint dominant eigenvalues and eigenfunctions. A numerical discretization of
M = 225×N = 50 flame modes andK = 20 acoustic modes achieves such a convergence.
Figure 15 shows the convergence rate of the dominant eigenvalue for the open-flame
system without temperature jump (left panels) and with temperature jump (right panels).
The relative errors are Re(σM=225 − σM=200)/Re(σM=200) ∼ O(10−4) and Im(σM=225 −
σM=200)/Im(σM=200) ∼ O(10−7). When M = 225, N = 75 and K = 30 modes are used,
the relative errors are ∼ O(10−4), for the growth rate, and ∼ O(10−10), for the angular
frequency. We therefore used M = 225, N = 50 and K = 20 as a good compromise
between accuracy and computational time. Similar accuracy has been obtained for the
closed-flame case. The most significant Galerkin coefficients of the direct and adjoint
eigenproblems, (4.9) and (4.10), are depicted in figures 16 and 17, respectively. These
figures show that the most energetic direct and adjoint modes are concentrated in the first
modes, and the Galerkin coefficients decrease as the mode indices increase. Finally, the
dominant portion of the spectrum and pseudospectrum of the open-flame case is shown
in figure 18. The pseudospectra are nearly concentric circles centred on the eigenvalues
even when the temperature jump in modelled (figure 18b). This means that this thermo-
acoustic system is weakly non-normal, in agreement with Magri et al. (2013), regardless
of the temperature jump.
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