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Abstract

We prove several theorems on the geometry and topology of random walks and random
forests, with analysis of the latter of these random systems often relying on analysis of the
former and vice versa. The main models we consider are the static and dynamic random
conductance models, the uniform spanning forest, the arboreal gas and countable Markov
chains, and we will be interested in both the qualitative and quantitative behaviour of these
systems over large scales. The quantitative properties of both the random system and its
underlying medium are in this work and in general often encoded as a set of dimensions,
or exponents, which govern how those properties scale asymptotically with distance or
time. In addition to the analytical work above, we numerically investigate the relationships
between the dimensions of fractal media and the random systems which sit upon them,
and, in particular, provide evidence that universality should hold beyond the Euclidean
setting. Material taken from a total of six papers is included. We also include an introduction
explaining the background and context to these papers.
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Preface

The following papers are reproduced in Chapter 2 of this thesis. All were conducted as equal
collaborations.

[A] Lower Gaussian heat kernel bounds for the random conductance model in a
degenerate ergodic environment
With Sebastian Andres. Published in Stochastic Processes and their Applications in
2021.

[B] Collisions of random walks in dynamic random environments
With Tom Hutchcroft. Published in Electronic Journal of Probability in 2022.

[C] What are the limits of universality?
With Tom Hutchcroft. Published in Proceedings of the Royal Society A in 2022.

[D] Most transient random walks have infinitely many cut times
With Tom Hutchcroft. Published in Annals of Probability in 2023.

[E] Logarithmic corrections to the Alexander-Orbach conjecture for the four-
dimensional uniform spanning tree
With Tom Hutchcroft. Accepted pending minor revisions in Communications in Math-
ematical Physics in 2023.

[F] Uniqueness of the infinite tree in low-dimensional random forests
With Tom Hutchcroft. Accepted pending minor revisions in Probability and Mathe-
matical Physics in 2023.
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An anecdote related by George Pólya as to how he first became interested in the study of
random walks:

At the hotel there lived also some students with whom I usually took my meals
and had friendly relations. On a certain day one of them expected the visit of
his fiancee, what I knew [sic], but I did not forsee that he and his fiancee would
also set out for a stroll in the woods, and then suddenly I met them there. And
then I met them there the same morning repeatedly. I don’t remember how many
times, but certainly it was too often and I felt embarrassed: It looked as if I was
snooping around which was, I assure you, not the case.
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Chapter 1

Introduction

1.1 What is this thesis about?

This thesis is a collection of six papers about the geometry and topology of random systems,
with random walks and random forests providing the primary objects of focus. Random
walks and random forests are intimately connected to many other areas of statistical physics,
and they also find multitudinous applications outside of mathematical physics [125], from
finance [34, 138, 298] to chemistry [254, 309, 319] and biology [73, 105, 147]. As we shall
see, the study of these two objects are also often intertwined with each other. All of the
five analytical papers [A, B, D, E, F] will either have random walks as a primary focus or
as an essential ingredient. Two of the analytical papers [E, F] will have random forests as
a central object of study. The numerical paper [C] will also have some focus on a random
forest model.

Of course, there are very many ways of defining random walks and random forests. We
must first consider the environment or space in which the walk or forest resides. With random
walks, we must then at each step specify the transition probabilities of the walker as a function
of the environment. The environment can be random or deterministic, static or dynamic, and
ordered or disordered. For forests, we must specify exactly how to distribute probability to
the acyclic configurations: for instance, what subset of configurations is permitted? Are the
permitted configurations uniformly weighted? How should we specify a distribution when
the space or medium is infinite? In this thesis, we will consider random walks in a variety of
different contexts with significantly varying levels of specificity, and we will examine three
different types of random forest.

Once the model has been specified, we must choose an aspect of its behaviour we
wish to investigate. The questions can be quantitative in nature, such as determining the
exponents which govern the asymptotic relationships between various geometric quantities,
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Random Walks

or qualitative in nature, such as which almost sure topological properties these models satisfy.
While, of course, these two types of questions are inextricably linked, we can say that
the papers contained can be roughly divided equally between them. One particular type
of question we can ask is how sensitive to the properties of a particular medium are the
properties of the random system which sits upon it. This forms the subject of the numerical
paper [C] in which we query the extent to which universality holds outside the Euclidean
domain.

The thesis will be divided into two sections. The first, this introduction, will be used to
introduce the various models which will be relevant to the latter part of this thesis. As we
proceed, we will include some general discussion of the interesting and pertinent properties
of these models and their relationships to each other, as well as some of the important tools
which will be used later. We will also introduce the concept of universality in so far as it
pertains to [C] and [E]. The second section is then a reproduction of the six papers (with
modified formatting to fit thesis specifications).

1.2 Random Walks

In this section of the introduction we will explore the various random walk models which
will be relevant to the latter part of this thesis. The majority of random walks we consider in
this thesis will be Markovian in nature and so it is here that we begin.

1.2.1 Markov processes

The defining property of a Markov process is that it retains no memory of its past trajectory.
In other words, if we know the present state of the process, its future is independent of its
past. Formally, if (Xn)n≥0, is a stochastic process taking values in some state space Ω , then
(Xn) is a Markov process and satisfies the Markov property if

∀n≥ 1, (Xi)i>n is conditionally independent of (Xi)i<n given Xn.

By allowing us to ignore the past, the Markov property can often greatly simplify the
analysis of a random system. There is a vast literature on the general properties of Markov
processes, see e.g. [284] for a broad introduction.

Aside from repeated use of the basic Markov property and its variants, there are two
further crucial tools which will inform our analysis, and one builds upon the other. They
involve connections between Markov chains and another fundamental probabilistic object:
the martingale. Given a filtration (Fn), we recall that a martingale with respect to (Fn) is a
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1.2 Markov processes

stochastic process adapted to (Fn) such that

∀n≥ 1, E[Mn |Fn−1] = Mn−1.

The first of these tools, many will be familiar with. We say that a Markov chain (Xn)n≥0 has
transition matrix P = (p(x,y) : x,y ∈Ω) if for any n≥ 1 and sequence of states u0, . . . ,un,
we have that

P(X1 = u1, . . . ,Xn = un | X0 = u0) = p(u0,u1)p(u1,u2) · · · p(un−1,un).

We write p(n)(x,y) for the Markov processes n-step transition probabilities, or in other words
the entries of the matrix Pn. We will write I for the identity transition matrix I(x,y) = δx,y,
and for any function f : Ω →R we perform the operation P f by treating f as a column vector.
For any stochastic process (Xn)n≥0, define its natural filtration (Fn)n≥0 to be filtration
given by Fn = σ((Xi)i≤n). We then have the following proposition.

Proposition 1. Let (Xn)n≥0 be a stochastic process with state space Ω , and for each n≥ 0,
let (Fn) be the natural filtration of (Xi)i≤n. Then the following two statements are equivalent.

• (Xn)n≥0 is a Markov process with transition matrix P,

• For all bounded functions f on E, the process (Mn)n≥0 defined for each n≥ 0 by

Mn = f (Xn)− f (X0)−∑
k≤n

(P− I) f (Xk)

is a martingale with respect to (Fn)n≥0.

In the case where f is a harmonic function, the summation on the right hand side is
identically zero. This proposition allows us to control certain properties of Markov processes
using the tools available for martingales, such as the optional stopping theorem [165, p. 491],
and we use an extended version of this connection in [D].

The second tool which will play a role in a number of our papers is the use of Markov
type inequalities which were introduced by Ball in 1992 [40]. We use these powerful tools to
upper bounds the rate of escape of certain random walks. To introduce the relevant definitions,
we will first recall the notions of stationarity and reversibility. We restrict to irreducible
Markov processes with finite state space. We say a probability measure π : Ω → [0,1] is a
stationary distribution for the Markov process (Xn)n≥0 if when we set X0 to be distributed as
π , the processes (Xn)n≥0 and (Xn)n≥1 have the same distribution. When this is the case, we
say that the process itself is stationary, and observe that when (Xn) has transition matrix P, π

being a stationary distribution is equivalent to PT π = π . We say the Markov process (Xn)n≥0
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Random Walks

is reversible if for any N > 0, the processes (X0, . . . ,XN) and (XN , . . . ,X0) are identically
distributed. If (Xn)n≥0 is reversible, then one can show that it must also be stationary. It is
also easy to check that if (Xn)n≥0 has transition matrix P, then reversibility is equivalent to
the existence of a probability distribution π : Ω → [0,1] such that for all x,y ∈Ω

π(x)p(x,y) = π(y)p(y,x).

These equations are known as the detailed-balance equations, and when they hold, π must
in fact be the stationary distribution of the process.

We say that a metric space (M,d) has Markov type 2 if there exists a constant C < ∞

such that for every stationary, reversible Markov chain (Xn)n≥0 on a finite state space Ω , and
every function f : Ω →M, and every n≥ 0, we have

E
[
d( f (Xn), f (X0))

2]≤CnE
[
d( f (X1), f (X0))

2] .
We say that (M,d) has maximal Markov type 2 if the above holds but with d( f (Xn), f (X0))

2

replaced with max0≤i≤n d( f (Xi), f (X0))
2 on the left hand side. At first glance it seems that

either of these properties would be very difficult for a metric space to satisfy, as it must hold
simultaneously for all Markov chains on any finite state space, and all functions from that
state space to the metric space. However, it turns out that R is in fact maximal Markov type
2 [281].

Proposition 2. Let (Xn)n≥0 be a stationary reversible Markov process on a finite state space
Ω , and let f : Ω → R. Then for every n≥ 0, we have

E
[

max
0≤i≤n

( f (Xi)− f (X0))
2
]
≤ 7nE

[
max

0≤i≤n
( f (X1)− f (X0))

2
]
.

The proof hinges on a particular martingale decomposition of ( f (Xn))n≥0 introduced
in [263]. We fix N ≥ 0 and a bounded function f : Ω → R and define F : Ω → R by
F(x) = (P− I) f (x). Proposition 1 gives us that

Mn := f (Xn)− f (X0)− ∑
i≤n−1

F(Xi)

is a martingale with respect to the natural filtration of (Xn). However, defining X̂n = XN−n

for n≤ N and applying Proposition 1 to (X̂n) gives us that

M̂n := f (X̂n)− f (X̂0)− ∑
i≤n−1

F(X̂i)
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1.2 Random walks on graphs and networks

is again a martingale, this time with respect to the natural filtration of (X̂n). By substituting
in the relevant definitions on the right hand side and simplifying, we get that

f (Zn)− f (Z0) =
1
2
(
Mn + M̂N−n− M̂N +F(X0)−F(Xn)

)
,

and so taking absolute values and maxima yields

2max
n≤N
| f (Zn)− f (Z0)| ≤max

n≤N
|Mn|+max

n≤N
|M̂n|+ |M̂N |+ |F(X0)|+ max

1≤i≤n
|F(Xn)|.

While there are still some details to work out, the core of the rest of the proof is take L2

norms and to apply Doob’s L2-maximal inequality [165, p. 497] to the martingales on the
right hand side.

Of course, given that R is Markov type 2, so are Rd for d ≥ 1, and we use this in [B, F]
to prove a diffusivity result for certain random walks which embed into Euclidean space.
It has been shown that trees and planar graphs also have Markov type 2 [281], and we
shall see in [E] that by applying the Markov type inequality with a suitable metric space
and appropriately chosen function, we can even obtain tight subdiffusive upper bounds on
displacement for certain random walks.

1.2.2 Random walks on graphs and networks

Simple random walks on graphs are perhaps the most studied of all random walk models. A
graph is a set of vertices, or points, together with a set of edges which specify which pairs of
these points we should consider neighbours. Formally, we write G = (V [G],E[G]) = (V,E),
where V is some set of vertices, and E ⊆ {{u,v} : u,v ∈V} is the graph’s set of edges. For
u,v ∈V , we write u∼ v if the vertices u and v are neighbouring in G, i.e. {u,v} ∈ E, and we
write deg(u) for the number of neighbours of the vertex u in G. We say the graph is locally
finite if deg(u)< ∞ for each u ∈V [G], and say the graph is connected if for any two vertices
we can find a sequence of edges which connect them, i.e. for any u,v ∈ V [G] there exists
n≥ 1 and a sequence of vertices u = u0, . . . ,un = v such that for each i < n, ui ∼ ui+1.

Given a locally finite graph G and some starting vertex u ∈V [G], we define the simple
random walk on G starting at u as the process (Xn)n≥0 with X0 = u which at each time
step n≥ 0 chooses one of the edges incident to its current vertex uniformly at random and
independently from all previous time steps, and travels along this edge to the vertex at its
other end. More precisely, this is the Markov process with state space V [G] and transition
matrix

p(u,v) =
1(u∼ v)
deg(u)

.
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Random Walks

We can generalise this definition to allow for more flexible random walk behaviour by
assigning a conductance c(e) to each edge e ∈ E[G]. We call a triple (V,E,c) a network,
and define the random walk (Xn)n≥0 thereon to again be a Markov process, but this time with
transition probabilities

p(u,v) = 1(u∼ v)
c({u,v})

∑w∼u c({u,w}) ,

and so the higher an edge’s conductance, the more likely the random walk will traverse it.
We note that setting the conductance of each edge equal to 1, we recover the simple random
walk on the graph (V,E), and that random walks on networks are in exact correspondence
with countable Markov chains which satisfy the detailed balance equations for some measure
π which need not be a probability measure.

1.2.3 Topological properties of random walk paths

One of the most fundamental questions we can ask about a simple random walk on a
connected graph G is whether G is recurrent or transient. We say the graph is recurrent if
a random walk on G returns to its starting vertex infinitely many times almost surely, and
say it is transient otherwise. Implicit in this definition is the easily demonstrated fact that
this property is independent of the chosen starting vertex. It is also simple to show that if
the walk is transient, then the probability of infinitely many returns is zero. Graphs with a
finite vertex set must of course be recurrent, but when the graph is infinite, the question of
recurrence vs transience is often non-obvious. Recurrence or transience of Euclidean lattices
was in fact one of the first questions asked about random walks on graphs. We define the
Euclidean lattice with dimension d ≥ 1 as the graph G = (Zd,Ed) where the edge set Ed

consists of all the nearest-neighbour edges of V , or equivalently all pairs of vertices in Zd

with ℓ1 distance equal to 1. In 1921 George Pólya proved the following theorem [294].

Theorem 3. A simple random walk on a the d-dimensional Euclidean lattice Zd is recurrent
in dimensions d ≤ 2, and transient in dimensions d ≥ 3.

To demonstrate this, he utilized the easily proved criterion that a random walk on a
connected graph is recurrent if and only if ∑n p(n)(0,0) = ∞ together with a computation that
p(n)(0,0)≍ n−d/2 for n even, and, trivially, p(n)(0,0) = 0 for n odd.

One can think of the properties of transience and recurrence as statements about the
topology of the random walk path (Xn)n≥0. But recurrence/transience are by no means the
only topological properties of random walk paths one could consider. Indeed, as indicated
by the anecdote at the beginning of this thesis, Pólya first became interested in random
walks when considering the collisions of random walk paths, a distinct topological property
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1.2 Topological properties of random walk paths

concerning a pair of walks. We say a graph G satisfies the infinite collisions property if two
independent simple random walks X and Y , both started at the same vertex u ∈V [G] collide
infinitely many times almost surely, i.e. there almost surely exist infinitely many times n≥ 0
such that Xn = Yn. This property forms the subject of [B], and while it is in general by no
means equivalent to recurrence [225], these two properties are equivalent on transitive graphs.
To see this, we note the following general relation for random walks on graphs:

p(2n)(v,v) = ∑
u

p(n)(v,u)2 deg(v)
deg(u)

.

In the transitive case, the quotient on the right hand side disappears, and so summing over
n ≥ 0, we get that the expected number of collisions between two independent random
walks is equal to ∑n≥0 p(2n)(v,v), which is infinite for recurrent random walks and finite for
transient random walks. We observe that transitivity implies that the number of collisions
must be a geometric random variable and the equivalence between recurrence and the infinite
collisions property becomes clear. Therefore, two independent random walks on Zd have
infinitely many collisions almost surely in d ≤ 2 and only finitely many in d ≥ 3. We can
relate the number of collisions to the number of returns to an origin even more directly on Zd

by observing that the difference between two independent simple random walkers is itself a
random walk but on a new lattice.

Another topological property which will be important to us in [E, F] is that of the inter-
sections of random walks paths, where the question of interest is whether two independent
random walks satisfy the infinite intersections property, i.e. whether their paths intersect
infinitely many times almost surely, where an intersection between walks X and Y is a pair
of times (n,m) such that Xn = Ym. While collisions and intersections sound superficially
similar, and while the former are a subset of the latter, the two properties can have very
different behaviours. For instance, Erdős and Taylor [134] who initiated the study of such
intersections proved that two random walks intersect infinitely often on Zd for d ≤ 4, and
finitely often in d ≥ 5, so the phase-transition occurs between dimensions 4 and 5 rather than
2 and 3 as with collisions. Unlike the infinite collisions property, recurrence is sufficient for
the infinite-intersections property to hold. As we shall see, analysis of the intersections of
random walks is crucial to analysis of the uniform spanning forest model (which we will
introduce later).

A final topological property of random walks we will address is that of cut times, whose
study was also initiated by Erdős and Taylor in 1960 [134]. We say that the random walk
(Xn)n≥0 has a cut time at time m if the sets {Xn}n≤m and {Xn}n>m are disjoint. We will be
interested in whether a random walk has infinitely or finitely many cut times almost surely.
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Unlike the previous two properties, this property relates to a single random walk rather than
a pair, and can be thought of as a measure of transience rather than recurrence. Indeed,
transience is clearly a necessary condition for a random walk to have infinitely many cut
times, and on finitely generated Cayley graphs the two properties are equivalent (although
unlike for the infinite collisions property and recurrence, this equivalence is entirely non-
obvious) [83, 134, 202, 238]. Moreover, when the graph is transient, the expected number of
cut times is always infinite [64].

1.2.4 Geometric properties of random walk paths

We now shift focus from the more qualitative topological properties we have just discussed
to some of the more quantitative ways to characterise the behaviour of random walks. One
property we already touched upon in our discussion of Markov chains is the rate of escape of
the random walk: what displacement of the walk from its starting location should we expect
after a given amount of time. Of course there are many ways of measuring and delimiting this
displacement. First of all, we must choose a metric. For an abstract graph, the graph distance
metric is the obvious choice, but for graphs embedded in a substrate such as the supercritical
percolation cluster of Euclidean lattices, we also have the choice of the Euclidean distance
from the origin. There can be very large distortion between these two measures of distance
which we call the intrinsic and extrinsic displacement respectively . We must also choose
which statistic of the displacement we are interested in. With Markov type inequalities, we
bounded the expected squared displacement of the walk, but we can also analyse the almost
sure asymptotic behaviour. For instance, for a random walk (Xn)n≥0 on a k-regular tree, we
can prove by comparison of the walk to a biased walk on the integers that

lim
n→∞

d(X0,Xn)

n
= lim

n→∞

E [d(X0,Xn)]

n
=

k−2
k

almost surely.

We say that a random walk is ballistic if its typical displacement from its starting point grows
linearly and we say it is diffusive if its typical displacement at time n grows like

√
n, with

super- and sub-diffusive referring to rates of growth which are faster or slower than this.
Random walks on Zd are diffusive in all dimensions d ≥ 1.

In [D], we prove that slightly super-diffusive walks on networks have infinitely many
cut times. This result is derived from a more general criterion which allows us to prove
the existence of infinitely many cut times through control (via the Greens function) of the
transition probabilities of the random walk.

The collection of transition probabilities of a random walk is also known as its heat kernel,
and analysis of the asymptotic properties of the heat kernel is essential to understanding the

8



1.2 Geometric properties of random walk paths

behaviour of random walks. We have already seen that convergence/divergence of the sum
of the return probabilities p(n)(0,0), which are collectively known as the on-diagonal heat
kernel, determines recurrence or transience, and that the on-diagonal heat-kernel together with
the stationary distribution determine the expected number of collisions of two independent
random walks starting at the same vertex of a graph. It can easily be seen that the same holds
true for the expected number of intersections of two such walks. Additionally, in [D], we
prove that for irreducible countable Markov processes, if

p(n)(x,x) = O(n−d/2)

for some d > 2, and for some, and therefore every element x of the state space, then the
process has infinitely many cut times almost surely. When it exists, the limit

ds = lim
n

−2log p(n)(x,x)
logn

is known as the spectral dimension on the walk.
The transition probabilities p(n)(x,x) of a random walk on a graph may also decay

exponentially fast, in which case ds = ∞ and we say that the graph is non-amenable. Given
a connected graph G, we define its spectral radius

ρ(G) = lim
n

p2n(x,x)1/2n,

where we can show that this limit is well defined and independent of the choice of vertex
x ∈ V [G]. The graph is then non-amenable if and only if ρ(G) < 1. When the graph is
non-amenable and has bounded vertex degrees, then one can show that the random walk
must be ballistic [259, Proposition 6.9]. We will not elucidate further here, but the spectral
properties of a graph and in particular the spectral dimension and radius are strongly related
to the graph’s isoperimetric profile [277].

We can also consider the behaviour of the heat-kernel in the off-diagonal regime, that is
p(n)(x,y) where y ̸= x. In this regime we have a powerful very general upper bound, namely
the Varopoulos-Carne bound [99, 316].

Theorem 4 (Varopoulos-Carne 1985). Let G be a graph, then

p(n)(u,v)≤ 2

√
deg(u)
deg(v)

exp
[
−d(u,v)2

2n

]
for every u,v ∈V [G] and every n≥ 0, where d is the graph metric on G.

9
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See [99] for the extremely clever proof by Carne using Chebyshev polynomials. In [259] the
inequality is further refined with an additional factor of ρ(G)n on the right hand side. We will
use a version of this inequality in [D] to help us bound objects of the form pn(Xm,0) under a
hypothesis on the rate of escape of the random walk (Xm). Here we use a rate of escape to
bound certain transition probabilities, but Varopoulos-Carne is often applied to prove results
in the opposite direction. For example one can use it to show that random walks on graphs of
subexponential growth cannot be ballistic, and for random walks on graphs of polynomial
growth there always exists a random variable C such d(X0,Xn) ≤C

√
n logn for all n ≥ 0.

In [A], we will be interested in having more precise control of the heat kernel, and will
prove full lower Gaussian heat kernel bounds for certain classes of random walks on random
networks. We leave discussion of this until our introduction of the random conductance
model. Other quantitative aspects of the behaviour of random walks we will study will
include the cardinality of the trace #{Xi : 0≤ i≤ N} and bounds on the exit times of certain
balls τr = inf{n≥ 0 : d(X0,Xn) = r}.

1.2.5 Random walks in random environments

Up to now we have considered Markov random walks on deterministic and static graphs and
networks. In this section we will look at some of the ways in which the environment can
instead be random and dynamic. In this case one can think of first sampling the environment
from some distribution and then sampling a random walk in this sampled environment. We
can then ask questions about both the ‘quenched’ or ‘annealed’ behaviour of the random walk.
Roughly these terms refer to properties which hold almost surely across all environments,
and those which refer to the behaviour of the walk when averaged over the environment.

Bernoulli bond percolation. We begin by introducing one of the most commonly studied
random modifications of a graph: Bernoulli bond percolation. While none of our papers
study random walks on percolation, the model provides an accessible starting point for
random graphs, is a precursor to the dynamical percolation model which is covered by
one of our papers [B], and also appears as one of the two models we study numerically
in [C]. We take some initial graph G and label each edge in E[G] ‘open’ with some fixed
probability p ∈ [0,1] independently of all other edges. All edges which are not open are
labelled ‘closed’. The connected components of the random subgraph of G induced by the
open edges are termed the percolation clusters. It is well known that for any every d ≥ 2,
there exists a critical probability pc = pc(d) ∈ (0,1) such that for p > pc, Bernoulli bond
percolation on Zd contains a unique infinite connected cluster almost surely, and for p < pc

it contains no infinite connected cluster. We call p > pc the supercritical regime, and much
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work has been done characterising the behaviour of the random walk on the supercritical
percolation cluster. Indeed, the random walk on the supercritical percolation cluster of Zd

was in fact the first random walk in random environment model studied, conceived by De
Gennes in the 1970s [113] as the problem of ‘the ant in the labyrinth’. The random walk
is started at some vertex of the supercritical infinite cluster, and at each time step selects
one of the open edges adjacent to it uniformly at random and traverses it to a new position.
See [41, 74, 166, 223, 268] for a few of the highlights of the literature on random walks on
percolation clusters.

The random conductance model. The random walk on the random conductance model
follows a natural generalisation of this scheme. Instead of labelling each edge of the d-
dimensional Euclidean lattice G = (Zd,Ed) open or closed, we generate a random network
from G by assigning a random conductance c(e) to each edge e ∈ E[G]. More formally, we
define the measurable space Ω = ([0,∞)Ed ,B([0,∞])⊗Ed) and let P be some measure on Ω .
We now define a random walk on this random network. Rather than working directly with the
discrete time random walk, we define a continuous time random walk which has the discrete
time walk at its jump chain, i.e. shares the sequence of transitions. In particular, we must
define how long the random walk spends at each vertex before transitioning. One natural
choice leads to what is known as the variable-speed random walk. For each vertex v ∈ Zd ,
we let c(v) denote the sum of the random conductances of the edges incident to v. Then each
time the random walk is at vertex v, it waits an independent exponentially distributed amount
of time with rate c(v) before transitioning to its next vertex. We can construct this walk by
attaching a Poissonian clock rate c(e) to each edge of the graph. When the clock on edge e
ticks, and the random walk is at one of the endpoints of e, it transitions to the other end point.
Another natural choice of ‘Poissonization’ leads to what is known as the constant-speed
random walk. This random walk waits again according to independently drawn exponential
random variables, but this time they have a fixed constant rate. In other words, conditional
on the conductances c, the walk has infinitesimal generator:

[L f ](x) =
1

c(x) ∑
y∼x

c(x,y)
(

f (y)− f (x)
)
,

where c(x) = ∑y∼x c(x,y). It is this constant speed random walk which we study in [A].
Many of the questions asked about the random walk on the random conductance model of

Zd address under which constraints we can expect the large-scale and large-time behaviour
of the walk to look like that of the simple random walk on Zd . For instance, there is a large
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collection of literature developing quenched functional central limit theorems, see e.g. [15].
Another central focus is the proof of full Gaussian heat-kernel bounds. That is, bounds of the
form

ct−d/2 exp
[
−d(x,y)2/2t

]
≤ p(t)(x,y)≤Ct−d/2 exp

[
−d(x,y)2/2t

]
,

for t > 0 and x,y ∈ Zd , where p(t)(x,y) are now the continuous time transition probabilities.
These estimates are often derived under the assumption of ergodicity of the environment
together with bounds, be they deterministic or probabilistic, on the conductances. When the
conductances are almost surely bounded from above and below by finite and non-zero positive
constants respectively, the model is known as uniformly elliptic. One well-studied relaxation
of this constraint to allow the conductances to take values in (0,∞) under constraints on their
moments and those of their reciprocals. Without these constraints, anomalous behaviour is a
possibility [81].

In [18], Gaussian upper heat kernel bounds for the random conductance model are proved
under moment conditions on the conductances and their reciprocals. In [A] we prove match-
ing lower Gaussian bounds under moment conditions and one of a number of additional
assumptions on the decay of correlations.

The dynamic random conductance model. A natural generalisation of the random con-
ductance model is to allow the conductances to vary in time. In particular, on Zd , the state
space takes the form Ω = [0,∞)Ed × [0,∞), where the final coordinate represents time. One
simple example of the dynamic random conductance model is dynamical percolation. We
choose an update rate Λ > 0, and a percolation probability p ∈ [0,1]. We then attach attach
mutually independent Poisson processes to each edge each with rate Λ . At each ‘arrival’
of the process attached to a particular edge, we draw an independent Bernoulli random
variable parameter p, and set the state of the edge according to this variable. Static Bernoulli
bond percolation parameter p is the stationary distribution for this process. Random walks
on dynamical percolation were first studied in [292] by Peres, Stauffer and Steif. They
proved results on mixing and hitting times and displacement of the walk, and showed that
the recurrence/transience criterion for simple random walks on Zd extend to this model for
all Λ , p > 0. See also [22, 184, 291].

For general dynamic conductance models limit theorems have also been proved under var-
ious restrictions on the conductances [10, 12, 14, 82]. In [B] we show that under stationarity,
reversibility and a second moment condition, two independent random walks on a dynamic
conductance model on Z2 will collide infinitely often almost surely. The proof utilises
Markov type inequalities as well as the unimodularity of Z2; we briefly recap unimodularity
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below.

Random rooted graphs and unimodularity. We now return to static random graphs
and briefly elucidate a property which will be relevant to multiple of the papers contained in
this thesis: unimodularity. We begin by setting up the space of rooted graphs. We define a
rooted graph to be a pair (G,ρ), where G is a countable locally finite connected graph, and
ρ is a vertex in V [G] which we call the root. We say two such rooted graphs are equivalent
if there exists a graph isomorphism from one to the other which sends the root of the first
to the root of the second. We let G • be the space of equivalence classes of rooted graphs
and endow it with the Borel sigma algebra induced by the local topology which is roughly
defined by saying that two rooted graphs are close if there exist large graph distance balls
around there respective roots which admit a graph isomorphism which preserves the root.
See [110] for a more precise definition. The space of doubly rooted graphs G •• is defined
similarly. We call a random variable taking values in G • a random rooted graph.

We say a random rooted graph (G,ρ) is unimodular if it satisfies the mass-transport
principle, that for every Borel function f : G ••→ [0,∞),

E

[
∑

v∈V [G]

f (G,ρ,v)

]
= E

[
∑

v∈V [G]

f (G,v,ρ)

]
.

We can think of this as a spatial homogeneity condition and as a generalisation of ‘the root
being uniformly distributed on the vertex set’ from finite to infinite graphs. Indeed, finite
graphs with a uniformly chosen root are trivially unimodular.

While all Cayley graphs are unimodular, there are transitive graphs which are not [259,
p. 276]. We will see later that unimodular random graphs satisfy a multitude of useful
properties. Some of the most elementary ones are that the unimodularity is preserved
under weak limits, and under certain ‘local modifications’ which do not depend on a basis
point, e.g. performing Bernoulli bond-percolation and then taking the cluster of the origin.
Translation-invariant random subgraphs of Zd will always be unimodular. In [195] it is
shown that recurrent unimodular random graphs have the infinite collisions property. Inspired
by this, in [E], we show that unimodular random subgraphs of Zd for d ≤ 4 have the infinite
intersections property. See [71] for the paper by Benjamini and Schramm in which the study
of unimodular random graphs was introduced. Here they also prove that the weak (a.k.a.
‘Benjamini-Schramm’ or ‘local’) limits of finite planar random rooted graphs with uniformly
bounded degree, and with the root uniformly distributed on the vertex set must be recurrent.
See [8] for an in-depth look at the properties of certain stochastic systems on unimodular
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random graphs, and see [110] for lecture notes delivering an introduction to some of their
more elementary properties.

1.3 Random Forests

In this section we introduce the three random forest models which will feature in the second
part of this thesis. These are the uniform spanning forest, the arboreal gas and lattice trees.
The last of these is explored numerically in [C], while the first two are explored analytically
in [E] and [F] respectively. The models all have relatively simple definitions, but differ vastly
in their analytical tractability and the methods which are used to study them. We begin with
a discussion of the best studied and most tractable of these: the uniform spanning forest.

1.3.1 The uniform spanning forest

A spanning tree of a connected graph G is any acyclic connected subgraph of G which
contains all of its vertices; any connected graph can be shown to have at least one such
spanning tree. When such a graph G is finite then there are only finitely many spanning trees
and so we can choose one of them uniformly at random. The resultant object is known as
the uniform spanning tree (UST) of G. The uniform spanning forests of an infinite graph
G then refers to the weak limits of the uniform spanning tree on exhaustions of G; we will
define these in more detail later.

The uniform spanning forest is closely related to many other important models in statisti-
cal physics such as potential theory [68, 93], the random cluster model [164, 198], domino
tilings [215], and the Abelian sandpile model [124, 207]. We shall see in [F] that the UST
can also play a role in the analysis of the arboreal gas. Most important to us, however, will
be its deep connection to the theory of random walks. Kirchoff, who initiated the study of
UST [222], proved that the ratio of the number of spanning trees containing any particular
edge to the total number of spanning tree is equal to the effective resistance across the edge.
Rewriting this probabilistically and expressing the effective resistance in terms of random
walks we have: if G is a finite connected graph, e = {u,v} ∈ E[G] is some edge in G, T
denotes the uniform spanning tree of G, and (Xn)n≥0 is a simple random walk on G starting
at u, we have

P(e ∈ T ) = P((Xn)n>0 hits v before u).

It tuns out that the uniform spanning tree of a finite graph can actually be constructed
from simple random walk paths via what is known as Wilson’s algorithm [321]. To expound
this we must first define the loop-erasure of a random walk, which was introduced by Lawler
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in [230]. For any 0 ≤ n ≤ ∞ and any nearest-neighbour path w0, . . . ,wn in G which visits
each vertex of G finitely many times, we recursively define the sequence of times ℓn(w) by
ℓ0(w) = 0, and

ℓn+1(w) = 1+max{k : wk = wℓn},

where we terminate the sequence the first time max{k : wk = wℓn}= m when m < ∞. The
loop-erasure of w is then the path induced by the sequence of neighbouring vertices

LE(w)i = wℓi(w).

Wilson’s algorithm on a finite connected graph then proceeds as follows. Fix a vertex
ρ ∈V [G], and fix an ordering v0, . . . ,v|V [G]|−2 of the remaining vertices. Let (Xv)v∈V [G] be
a collection of mutually independent random walks on G, with starting locations Xv

0 = v.
Define the sets (Si)i≥0 and the stopping times (Ti)i≥0 recursively as follows:

S0 = {ρ}; Ti = inf{n≥ 0 : Xvi
n ∈ Si}−1; Si+1 = Si∪LE(Xvi

Ti
),

for 0 ≤ i ≤ |V [G]| − 2. The random variable S|V [G]|−1 is then distributed as the uniform
spanning tree of G. We can in fact choose each vertex vi dynamically as the algorithm
progresses as a function of (S j) j≤i. If we run a single random walk (Xn)n≥0 on G and record
the first-entry edges of each vertex v ̸= X0, we again obtain a sample of uniform spanning
tree of G. This algorithm is known as Aldous-Broder [7, 87].

Infinite graphs. When the graph is infinite, the set of spanning trees usually is as well
and so there is no longer necessarily an obvious way to choose a spanning tree of the graph
‘uniformly’ at random. There are, however, well-defined infinite volume limits of the uniform
spanning tree measure. Of these, there are two canonical variations, the wired and free
uniform spanning forests. We define each of these measures for a connected locally finite
infinite graph G. Let (Vn)n≥0 be an exhaustion of V [G] by finite connected sets and for
each n ≥ 0, define the induced subgraphs Gn = G[Vn], then Pemantle [288] showed that
the weak limit of the sequence of measures (UST [Gn])n≥0 exists and is independent of the
choice of exhaustion; we call the limiting measure the free uniform spanning forest (FUSF)
of G. Now let for each n ≥ 0, define the graph G∗n by contracting all of the vertices in G
outside of Vn into a single vertex ρn, and then deleting all of the self loops of ρn. Again,
Pemantle showed that the weak limit of the sequence of measures (UST [G∗n])n≥0 exists and is
independent of the choice of exhaustion, and we call the limiting measure the wired uniform
spanning forest (WUSF) of G. While in general the free and wired uniform spanning forests
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are distinct measures, Pemantle [288] showed they coincide on Zd for all d ≥ 1. When they
do coincide, we simply refer to the uniform spanning forest of the graph.

In general, the wired uniform spanning forest of a graph is more easily understood than
its free counterpart. This is because we can, in fact, easily extend Wilson’s algorithm to
infinite graphs, and the resultant measure is that of the WUSF. For recurrent infinite graphs,
the algorithm is unchanged, while for transient graphs the initial set S0 defined above as
containing a single vertex is instead made to be empty, with the resultant algorithm known
as Wilson’s algorithm rooted at infinity [68]. Thus if we can control the behaviour of the
loop-erasure of the random walk on an infinite graph we can gain insight into the behaviour
of the WUSF.

Connectivity. While it is trivial to check that all trees in the WUSF of an infinite con-
nected graph must be infinite almost surely, finding the number of infinite trees in the forest is
not so straightforward. One important consequence of the variants of Wilson’s algorithm for
infinite graphs is that they allow us to control the wired uniform spanning forest’s connectivity.
If we assume that for any two vertices x,y ∈G the paths LE(X) and Y intersect almost surely,
where X and Y are two independent random walks starting at x and y respectively, then by
Wilson’s algorithm, the wired uniform spanning forest of G must be connected almost surely.
In [68, 261] it is shown that if the two paths have finite intersection with positive probability
the WUSF is disconnected almost surely, and if they have finite intersection almost surely,
the WUSF has infinitely many components almost surely. We then immediately have that for
recurrent graphs, the WUSF is connected. They also show that these connectivity statements
remain true even when we replace the loop erasure of X with X itself. Combining this with
the theorem of Erdős and Taylor [134] who showed that two independent random walks on
Zd will intersect infinitely often almost surely in d ≤ 4 and finitely often almost surely in
d ≥ 5 , we can recover the following result which was first proved by Pemantle (prior to the
proof of Wilson’s algorithm rooted at infinity) in [288].

Theorem 5. The uniform spanning forest of Zd is a single infinite tree almost surely in d ≤ 4,
and has infinitely many infinite trees almost surely in d ≥ 5.

In [F], we prove that the wired uniform spanning forests of unimodular random subgraphs
of Zd are also connected almost surely for d ≤ 4.

There has been much working analysing further quantitative and qualitative aspects
of the behaviour of the uniform spanning forest on Zd and other graphs. See e.g. [8, 68,
189, 258, 258, 314] for results concerning the number of ends of uniform spanning forests
under various conditions. See [66, 196] for results regarding the adjacency structure of the
component trees of the UST. In [48, 76, 190], the geometry of the uniform spanning tree and
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the behaviour of a random walk thereon in the high-dimensional (d ≥ 5) mean-field regime
is analysed. In [197], the geometry of the past in the UST is analysed at the upper-critical
dimension d = 4, and in [E] we analyse the geometry of balls and the behaviour of a random
walk on the UST, also at the upper-critical dimension. Both of these papers are concerned
with calculating the exact logarithmic correction to the mean-field scaling for quantities such
as the volume of balls and the intrinsic and extrinsic displacements of a random walk on the
tree. See Section 1.4 for more details. See [44, 45, 305] for analysis of the properties of
random walk paths on the UST in dimensions 2 and 3 and see [2, 27, 44, 44, 185, 239, 300]
for results concerning the scaling limits of the uniform spanning tree and the random walk
on the uniform spanning tree in dimensions 2 and 3.

1.3.2 The arboreal gas

Next we define the arboreal gas which is also known as the weighted uniform forest model.
A spanning forest of a G is any subgraph of G which contains all of its vertices and is acyclic.
The β -arboreal gas A is then the random subgraph of G with probability mass function

Pβ (A=F)=

(1/Zβ )β
|F | F ⊆ G is a spanning forest

0 otherwise
, Zβ = ∑

F⊆G a spanning forest
β
|F |,

(1.1)
where |F | denotes the cardinality of the edge set of F .

Connections to other models. The arboreal gas is connected to a number of other models in
statistical physics. First, we observe that the law of A is equal to the law of Bernoulli bond
percolation on G with parameter p = β/(1+β ) conditioned to be acyclic. It is also equal
to the q→ 0 limit of the q-state random cluster model with p/q converging to β [199, 289].
When the graph G is connected, the law converges to that of the uniform spanning tree in
the β → ∞ limit. In the specific case β = 1 the model is known as the uniform random
spanning forest of G, not to be confused with the distinct previously discussed uniform
spanning tree/forests. The arboreal gas is also closely related to various supersymmetric spin
systems, which has led it to receive substantial attention in the physics literature [95–97, 117].

Basic properties. Compared to the uniform spanning model, the arboreal has very few
tools to work with. To begin with, there are no known random walk type sampling algorithms
for the arboreal gas. Negative dependence, whilst conjectured [168] around 20 years ago, is
still not known to hold, i.e. we do not know whether for any finite graph G, any β > 0 and
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any distinct edges e, f ∈ G,

Pβ (e ∈ A | f ∈ A)≤ Pβ (e ∈ A).

Additionally, unlike Bernoulli bond percolation there is no stochastic monotonicity with
respect to the parameter i.e. it is not the case that for any finite graph G and β ≤ β ′, Pβ ⪯ Pβ ′

[Remy Poudevigne, private correspondence]. We do however have the following stochastic
domination by Bernoulli bond-percolation:

Pβ ⪯ B.b.p
(

β

1+β

)
.

The arboreal gas on Zd . As with the uniform spanning tree, the finite graph definition of
the arboreal gas breaks down for infinite graphs. Unlike the uniform spanning tree, however,
the dearth of available tools means it is not currently known whether we can take weak limits
across an arbitrary exhaustion. We can, of course, take subsequential limits by compactness
with arbitrary boundary conditions, and in [F] we develop a new Gibbsian reformulation
for analysing these limiting measures. While we know that these measures must be sup-
ported on forests it is not immediately obvious whether these forests contain any infinite
trees. For small values of β , however, stochastic domination by Bernoulli-bond percolation
eliminates the possibility on any such infinite components, but this tells us nothing about
the behaviour for larger values of β . Recently, however, Bauerschmidt, Crawford Helmuth
and Swan proved that for subsequential limits along boxes on Z2, the resultant measures are
supported on forests containing no infinite trees for all β > 0 [55]. Conversely, Bauerschmidt,
Crawford and Helmuth prove that in d ≥ 3, for β large enough, subsequential limits along
Tori contain at least one infinite tree almost surely [54]. The argument they use are in large
part non-probabilistic relying on re-expression of the partition and two-point functions of
the arboreal gas in terms of certain supersymmetric sigma models, with the d = 2 result
following by a Mermin-Wagner type theorem. We complement the latter of these results
by proving that in dimensions d = 3,4, general translation-invariant Gibbs measures for the
arboreal gas (which include subsequential limits along Tori) contain at most one infinite tree
almost surely. This means for β large enough we have existence and uniqueness. We also
prove that in all dimensions and β > 0, the trees in such Gibbs measures must be one-ended
almost surely.

These results follow from a new resampling property for these Gibbs measures on Zd

under the condition of translation-invariance, which says that the infinite component of the
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arboreal gas has connected trace and can be resampled on its trace as the uniform spanning
forest of that trace. We use this with a random walk argument to show that translation-
invariant arboreal gas Gibbs measures on Zd have at most one infinite tree in d ≤ 4.

Of course this leaves open the question of the number of infinite trees in the arboreal gas
in dimensions d ≥ 5; in [F] we conjecture that there will almost surely be infinitely many.
See [56, 310] for surveys of the model and its connections to other topics.

1.3.3 Lattice trees

The final forest model we introduce is the lattice tree which is defined as follows. Let G be
a connected infinite locally finite graph and fix some origin vertex o ∈ G. For each n≥ 1,
we denote by Sn the set of all trees in G which contain n vertices, one of which must be the
origin. The lattice tree of size n is then defined the random variable Vn given by selecting
one of these trees uniformly at random. The lattice tree, and the related lattice animal models
have been utilised as natural models of a branched polymer in a dilute solution, and their
analysis was pioneered by Lubensky and Isaacson in 1979 [254].

Like the arboreal gas, lattice trees are in general far less tractable than the uniform
spanning tree model as there are, again, no random walk sampling algorithms available. On
the other hand, if we take G = Zd with d ≫ 1, the lattice tree model is amenable to the
technique of lace expansion which has allowed significant progress to be made analytically
characterising its behaviour in the mean-field regime [307]. For example, in [179], Hara
and Slade partially characterise the asymptotic growth rate of |Sn| as well as the asymptotic
behaviour of a particular geometric features of (Vn)n≥1. Convergence of (Vn)n≥0 to super-
Brownian motion under suitable scaling has also been proven [118, 119]. Though it has not
been rigorously demonstrated, there is strong evidence [178] that the upper-critical dimension
of lattice trees is 8 (See Section 1.4 for an introduction to this concept), but the results above
are generally for dimensions much larger than 8.

In the low dimensional regime which will be of the most interest to us in [C], these
methods fail and there has been little analytical progress (although there has been progress in
the related continuum polymer model [89, 216]). There has, however, been numerical work
characterising the asymptotic behaviour of lattice trees in lower dimensions, e.g. [203, 323].
The quantities we are most interested in are the mean branch size B(n), obtained by deleting
an edge of the lattice tree uniformly at random and finding the cardinality of the smaller of
the two components, and the longest path length, measured with respect to the extrinsic E(n)
and intrinsic I(n) metrics. We expect these quantities to scale as

B(n)≍ I(n)≍ nρ , E(n)≍ nν ,
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for some intrinsic exponents ν and some extrinsic exponent ρ which depend on the undelying
lattice, and by generating large samples of Vn via a Monte Carlo Markov chain algorithm at
varying values of n, we attempt to estimate the values of ν and ρ . In [C], we are interested in
the behaviour of statistical physics models on (non-Euclidean) transitive lattices below the
upper-critical dimensions, and the large d = 8 upper-critical dimension along with numerical
tractability makes lattice trees an ideal candidate for analysis.

1.4 Universality

The final concept we must introduce is universality, and to do so, it is convenient to first
discuss critical exponents. If we consider some critical statistical physics model on the
Euclidean lattice Zd , the critical exponents describe how the behaviour of the model depends
on the scale at which the system is observed. The properties of these systems often obey
power-law scaling relations, and the critical exponent corresponding to each of these proper-
ties is defined to be the exponent which governs this power-law. We have already seen some
examples of these in Section 1.3.3, for instance the exponents ρ and ν which govern the
intrinsic and extrinsic aspects of the geometry of lattice trees. In [C], we will also consider,
among others, the probability that the cluster of the origin Ko has volume at least n, which is
governed by the asymptotic relation

P(|Ko| ≥ n)∼ n2−τ ,

where τ is known as the Fisher critical exponent. These critical exponents are in general
functions of the dimension d of the underlying Euclidean lattice, but often, at least in low
dimensions, they are extremely difficult to pin down exactly, and only approximations,
analytic and numerical, are known.

For any given critical statistical physics model, there is often a dimension dc known
as the upper-critical dimension above which the model is considered mean-field and these
functions plateau. For Bernoulli bond percolation this dimension is 6, for the UST it is 4 and
for lattice trees it is (strongly expected to be) 8. At the upper-critical dimension itself, the
power law scaling relations are expected to admit a logarithmic correction to their mean-field
scaling. For instance, in [E], we show that the volume V (n) of the ball of intrinsic radius n
for the UST on Z4 satisfies

E[|V (n)|] = n2

(logn)1/3−o(1)
,
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where 2 is the mean field exponent for this quantity, as derived in [48].
The term universality refers to the surprising phenomenon that these critical exponents

are invariant under local perturbations of the geometry of the Euclidean lattice Zd: as long
as the large scale geometry remains the same, we should expect the same critical exponents.
For instance, we expect identical critical exponents for percolation on square, triangular and
hexagonal lattices. This phenomenon is traditionally explained with the heuristic that these
local details disappear under the renormalization group flow as these geometries all share the
same Rd scaling limit.

In [C], we seek to understand whether this phenomenon extends beyond the Euclidean
setting. While there is strong evidence that these exponents are invariant to changes in
local geometry, is it the case that they are invariant under changes in large-scale geometry
conditional on fixing the volume growth dimension? While for d ≤ 3 it has been shown that
the only transitive geometries with polynomial growth dimension d are Euclidean, in four
dimensions and above, there are in fact multiple possible transitive geometries; for instance,
the Cayley graph of the Heisenburg group is a four dimensional transitive lattice. These
disparate transitive geometries are not rough isometric to Euclidean lattices and have distinct
scaling limits, despite having the same volume growth dimension. We can therefore ask, for
each d ≥ 4, whether the critical exponents of any statistical physics model varies according
to this choice of large-scale geometry. We provide strong numerical evidence that, perhaps
surprisingly, the critical exponents of Bernoulli bond-percolation and lattice trees are shared
across disparate geometries of the same polynomial growth dimension.

Transitive lattices are only one special type of fractal geometry and the second half of
[C] concerns more general fractal geometries. In general, fractal geometries have multiple
dimensions associated to them, such as their Hausdorff, spectral and topological dimensions,
and while these dimensions all agree for Euclidean lattices, they may each take a different
value on other fractal geometries. We show that no universality should be expected to hold
for general fractals, even if we allow the critical exponents to be a function of a large number
of these dimensions, thus refuting a conjecture of Balankin et al [37]. Indeed, we provide
two fractals which share Hausdorff, topological, topological Hausdorff [39] and spectral
dimension, but for which percolation exhibits differing critical exponents. See [137] for
general background on fractals and their properties.

Another intriguing phenomena also related to the renormalisation group is that seemingly
disparate statistical physics models may share critical exponents. We say that any two such
models belong to the same universality class. One particularly important such class is the
Alexander-Orbach class which has been proven to contain the incipient infinite cluster of
critical high dimensional percolation [223], high dimensional oriented percolation [49], and
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the high dimensional UST [190]. In [E] we prove logarithmic corrections to mean-field
behaviour for the last of these three models, which constitutes the first time such corrections
have been rigorously computed for a random walk on a random fractal in this universality
class.
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Chapter 2

[A] Lower Gaussian heat kernel bounds
for the Random Conductance Model in a
degenerate ergodic environment

Abstract. We study the random conductance model on Zd with ergodic, unbounded conduc-
tances. We prove a Gaussian lower bound on the heat kernel given a polynomial moment
condition and some additional assumptions on the correlations of the conductances. The
proof is based on the well-established chaining technique. We also obtain bounds on the
Green’s function.

2.1 Introduction

2.1.1 The Model

We let G = (Zd,Ed), where Ed = {{x,y} ∈ Zd×Zd : |x− y| = 1}, be the d-dimensional
lattice for a fixed dimension d ≥ 2. We write x∼ y if (x,y) ∈ Ed . We consider the space of
positive weightings on the edges of the graph, Ω = (0,∞)Ed , and for ω ∈Ω , we access the
weight at a particular edge e ∈ Ed by ω(e), which we will also refer to as the conductance
on an edge e. For x,y ∈ Zd and ω ∈Ω we set ω(x,y) = ω(y,x) = ω({x,y}) if {x,y} ∈ Ed,

else ω(x,y) = 0. For any fixed ω, we define measures µω and νω on Zd by

µ
ω(x) := ∑

y∼x
ω(x,y) and ν

ω(x) := ∑
y∼x

1
ω(x,y)

.
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For any z ∈ Zd we denote by τz : Ω →Ω the space shift by z defined by

(τz ω)({x,y}) := ω({x+ z,y+ z}), ∀ {x,y} ∈ Ed.

We equip Ω with a σ -algebra F . Further, we will denote by P a probability measure on
(Ω ,F ), and we write E for the expectation with respect to P. Throughout the paper we will
assume that the conductances are stationary and ergodic.

Assumption 6 (Stationarity and ergodicity). P is stationary and ergodic with respect to
translations of Zd , i.e. P◦τ−1

x = P for all x ∈ Zd and P[A] ∈ {0,1} for any A ∈F such that
τx(A) = A for all x ∈ Zd .

We now introduce the random conductance model (RCM). For a given ω ∈ Ω , we
consider the continuous time Markov chain X = {Xt : t ≥ 0} on Zd with generator

(L ω f )(x) =
1

µω(x) ∑
y∼x

ω(x,y)
(

f (y)− f (x)
)
.

This stochastic process, also known as the constant speed random walk (CSRW), waits at x
for an exponential time with mean 1, and then chooses the next position y∼ x with probability
ω(x,y)/µω(x). We also recall that the Markov chain X is reversible with respect to µω . We
denote by Pω

x the law of the walk starting at the vertex x ∈ Zd, and by Eω
x the expectation

with respect to this law. For x,y ∈ Zd and t > 0, we let pω(t,x,y) be the transition density
(or the heat kernel associated with L ω ) with respect to the measure µω , i.e.

pω(t,x,y) =
Pω

x [Xt = y]
µω(y)

.

2.1.2 Main Results

The random conductance model has been the subject of extensive research for more than a
decade, see [77, 226] for surveys of the model and references therein. More recent results
include the derivation of quenched functional central limit theorems [16, 57, 80, 121] and
local limit theorems [14, 17, 24, 47, 58] for the RCM with unbounded ergodic conductances
under moment conditions. In this paper we will focus on heat kernel estimates, see e.g. [18,
19, 41, 46, 47, 75, 79, 115, 141] for previous results. In particular, we will obtain Gaussian
type lower bounds on the heat kernel in the case of ergodic unbounded conductances.

It is known that Gaussian bounds do not hold in general: for example, under i.i.d.
conductances with fat tails at zero, the heat kernel decay may be sub-diffusive due to a
trapping phenomenon – see [75, 79]. Moreover, in [17, Theorem 5.4], it is proved that in
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the general ergodic setting, moment bounds on the conductances and their reciprocals are a
necessary condition for upper and lower near-diagonal Gaussian bounds to hold. In [18], this
necessary condition is shown to be sufficient for full upper Gaussian heat kernel bounds.

Gaussian lower bounds have been shown on i.i.d. percolation clusters in [41], and
for variable speed random walks under i.i.d. conductances bounded away from zero in
[46]. However, in the general ergodic setting, as of yet, Gaussian lower bounds have only
been proved under the stronger condition of uniformly elliptic conductances [115], i.e.
c−1 ≤ ω(e) ≤ c, e ∈ Ed , for some c ≥ 1. In this paper we relax the uniform ellipticity
assumption, substituting it for the combination of a polynomial moment condition together
with an assumption concerning the correlations of the conductances, see Assumption 8. It
is unknown whether moment conditions by themselves should be sufficient for the lower
bound to hold. The main available technique for proving lower bounds, the chaining
method (see [136]), fails at present in this generality (see Section 2.1.3 below for a more
in-depth discussion), while our assumptions are sufficient to ensure the functionality of this
method. However, it seems that other techniques would be required in order to weaken
these assumptions. One possible approach would be to use techniques from quantitative
stochastic homogenization that lead to much stronger quantitative homogenization results for
heat kernels and Green functions, see [29, Chapters 8–9] for details. This technique has been
adapted to Bernoulli bond percolation clusters in [112], and it is expected that it also applies
to other degenerate models.

We will begin by recalling the already established Gaussian upper bound in [18], for
which we will need some more notation. For A⊂ Zd non-empty and finite, and p ∈ [1,∞),
we introduce space-averaged lp norms on functions φ : A→ R by

∥φ∥p,A :=
(

1
|A| ∑x∈A

∣∣φ(x)∣∣p)1
p

and ∥φ∥
∞,A := max

x∈A
|φ(x)| ,

where |A| denotes the cardinality of the set A. For x ∈ Zd we denote by B(x,r) := {y ∈ Zd :
|x−y|< r} balls in Zd centered at x with respect to the graph distance, where |x| := ∑

d
i=1 |xi|

for x = (x1, . . . ,xd) ∈ Zd . Suppose now that ω(e) ∈ Lp(P) and ω(e)−1 ∈ Lq(P) for any
p,q≥ 1. Then, under Assumption 6, the spatial ergodic theorem gives that, P-a.s., for any
x ∈ Zd ,

µ̄p := E[µω(0)p] = lim
n→∞
∥µω∥p

p,B(x,n) , ν̄q := E[νω(0)q] = lim
n→∞
∥νω∥q

q,B(x,n) .
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In particular, for P-a.e. ω and each x ∈ Zd, there exists N1(x) = N1(ω,x, p,q) ∈ N such that

sup
n≥N1(x)

∥µω∥p
p,B(x,n) ≤ 2µ̄p, sup

n≥N1(x)
∥νω∥q

q,B(x,n) ≤ 2ν̄q. (2.1)

We will choose N1(x) to be the minimal such random variable. The Gaussian upper heat
kernel bound is as follows:

Theorem 7. Suppose that Assumption 6 holds and suppose there exist p,q ∈ (1,∞] with
1/p+1/q < 2/d such that ω(e) ∈ Lp(P) and ω(e)−1 ∈ Lq(P) for any e ∈ Ed . Then, there
exist constants ci = ci(d, p,q, µ̄p, ν̄q) such that, for P-a.e. ω , for any given t and x with√

t ≥ N1(x) and all y ∈ Zd the following hold.

(i) If |x− y| ≤ c1t then

pω(t,x,y) ≤ c2 t−d/2 exp
(
− c3 |x− y|2/t

)
.

(ii) If |x− y| ≥ c1t then

pω(t,x,y) ≤ c2 t−d/2 exp
(
− c4 |x− y|(1∨ log(|x− y|/t))

)
.

Proof. See [18, Theorem 1.6] and a more general version with a streamlined proof in [19,
Theorem 3.2].

We now state the additional assumptions we require, followed by our main results. We
will then discuss why these additional assumptions are needed and how they interact with the
strategy of the proof.

For ω,ω ′ ∈ Ω we write ω ≤ ω ′ if ω(e)≤ ω ′(e) for all e ∈ Ed . We say that a function
f : Ω → R is non-decreasing if f (ω)≤ f (ω ′) whenever ω ≤ ω ′.

Assumption 8. At least one of the following four conditions holds.

(A1) (i) FKG inequality. For any finite set of edges A⊂ Ed, and any non-decreasing functions
f ,g : Ω → R depending only on {ω(e) : e ∈ A}, we have

Cov( f ,g)≥ 0, (2.2)

whenever the covariance exists.

(ii) Polynomial mixing. There exist constants γ > d2 and Cmix ∈ (0,∞) such that for
any non-decreasing function f ∈ L2(P) depending only on {ω(0,y), |y|= 1}, and any
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x ∈ Zd \{0},

Cov
(

f , f ◦ τx
)
≤Cmix ∥ f∥2

L2(P) |x|−γ .

(A2) Spectral gap. There exists Csg ∈ (0,∞) such that

E
[
( f −E[ f ])2]≤Csg ∑

e∈Ed

E
[(

∂e f
)2
]
, (2.3)

for any f ∈ L2(P). Here, the ‘vertical derivative’ ∂e f is defined as

∂e f (ω) := limsup
h→0

f (ω +hδe)− f (ω)

h
,

where δe : Ed→{0,1} stands for the Dirac function satisfying δe(e) = 1 and δe(e′) = 0
if e′ ̸= e.

(A3) Finite range dependence. There exists a positive constant R ∈ N, such that for any
x ∈ Zd , the collection of random variables

(
ω({x,x+ e}) : |e|= 1

)
is independent of(

ω({z,z+ e}) : |z− x| ≥R, |e|= 1
)
.

(A4) Negative association. For any two disjoint finite sets of edges A,B⊂ Ed, and any non-
decreasing functions f ,g : Ω →R depending only on {ω(e) : e∈ A} and {ω(e) : e∈ B}
respectively, we have

Cov( f ,g)≤ 0,

whenever the covariance exists.

The FKG inequality was first (formally) investigated by Fortuin, Kastelyn and Ginibre
in [143] in connection with correlation properties of Ising spin systems. The inequality is
in fact a natural property of a very wide range of statistical mechanics models, including
the random cluster model (with q≥ 1) [164], Yukawa quantum field theory models [282],
Gaussian free fields [78, Proposition 5.22] and interlacement percolation [189]. We note
that by [135, Theorem 3.3], it is sufficient to check that (2.2) holds for bounded continuous
non-decreasing functions. On the other hand, the opposite assumption of negative association
(A4) also holds for some prominent models, including the uniform spanning tree, the random
cluster model (with q ≤ 1), and simple exclusion models, we refer to [289] also for more
motivation and background for this condition. We note that in the case of Gaussian fields,
pairwise positive and negative correlation are enough to imply the FKG inequality [212] and
negative associativity [213], respectively.
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The spectral gap condition in (A2) and the finite range dependence in (A3) also appear
as decorrelation assumptions in the context of quantitative stochastic homogenization, see
for instance [161] for (A2), and [29] for (A3). In a sense, the spectral gap condition in (A2),
introduced in [161], can be interpreted as a quantified version of ergodicity, as it implies an
optimal variance decay for the semigroup associated with the “process of the environment as
seen from the particle” induced by the simple random walk on Zd , cf. [160, Proposition 1
and Remark 5].

Throughout the paper we write c to denote a positive constant which may change on each
appearance, while constants denoted ci will be the same through the paper. The constants will
depend only on d, p,q, the moments of µω(0) and νω(0), and the parameters γ,Cmix,Csg,R

in Assumption 8 as appropriate, unless the dependencies are specified in the particular
context.

Theorem 9. Let d ≥ 2 and suppose that Assumptions 6 and 8 hold. Then there exist constants
c5,c6,c7 ∈ (0,∞) and p0,q0 ∈ [1,∞) such that if ω(e) ∈ Lp0(P) and ω(e)−1 ∈ Lq0(P) the
following holds. For P-a.e. ω and any x ∈Zd , there exists a random constant N(x) = N(ω,x)
satisfying

P(N(x)> r)≤ c5 r−α , ∀r > 0, (2.4)

for some α > d(d−1)−2, such that for all y ∈ Zd and t ≥ N(x)(1∨|x− y|),

pω(t,x,y)≥ c6 t−d/2 exp
(
− c7|x− y|2/t

)
. (2.5)

Remark 1. (i) Minimal choices for p0 and q0 are p0 > pκχ and q0 > qκχ with χ :=
d2(1+ d2−2

γ−d2 ) under (A1), and p0 = 2pκd and q0 = 2qκd under (A2), (A3) or (A4), for any
p,q > 1 satisfying 1/p+ 1/q < 2/d, and with κ = κ(p,q,d) as in Proposition 17 below.
More precisely, the quantity κ originally appears in the random constant of the parabolic
Harnack inequality in [17], which serves as one main ingredient in the proof of Theorem 9.

(ii) Given the two-sided heat kernel bounds provided by Theorems 7 and 9, the law of
iterated logarithm (LIL) for the sample paths of the random walk can be established, see
[130, 228]. However, it is expected that the LIL can be derived more easily under much
weaker assumptions by exploiting the decomposition of the random walk into a martingale
part and a corrector function, used in many proofs of a quenched functional central limit
theorem, together with the sublinearity of the corrector (see e.g. [11, 16, 58, 80]) and an LIL
for the martingale part.
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In d ≥ 3, we can use Theorems 9 and 7 to derive the following bound on the Green kernel,
gω(x,y), defined by

gω(x,y) :=
∫

∞

0
pω

t (x,y) dt, x,y ∈ Zd.

We refer to [11, Theorem 1.2] for precise estimates and asymptotics in the case of general
non-negative i.i.d. conductances, to [17, Theorem 1.14] for a local limit theorem for gω in
the case of ergodic conductances satisfying a moment condition, and to [20] for recent results
on the Green kernel in dimension d = 2.
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Theorem 10. Let d ≥ 3 and suppose that Assumption 6 holds.

(i) Suppose there exist p,q ∈ (1,∞] with 1/p+ 1/q < 2/d such that ω(e) ∈ Lp(P) and
ω(e)−1 ∈ Lq(P) for any e ∈ Ed . For P-a.e. ω , there exist c8 ∈ (0,∞) and a random
constant N2(x) = N2(ω,x) such that for all x,y ∈ Zd with |x− y| ≥ N2(x),

gω(x,y)≤ c8 |x− y|2−d . (2.6)

Additionally, suppose that Assumption 8 is satisfied. Then there exist c9,c10,c11 ∈ (0,∞) and
p0,q0 ∈ [1,∞) such that if ω(e) ∈ Lp0(P) and ω(e)−1 ∈ Lq0(P), then the following hold.

(ii) For all x,y ∈ Zd with |x− y|> N(x),

gω(x,y)≥ c9 |x− y|2−d. (2.7)

(iii) For any x,y ∈ Zd with x ̸= y,

c10 |x− y|2−d ≤ E
[
gω(x,y)

]
≤ c11 |x− y|2−d . (2.8)

Example 11 (RCMs defined by Ginzburg-Landau ∇φ interface models). One class of
conductances satisfying the assumptions of Theorem 9 can be constructed from the Ginzburg-
Landau ∇φ -interface model (see [146]), a well established model for an interface sepa-
rating two pure thermodynamical phases. The interface is described by a random field
of height variables φ = {φ(x);x ∈ Zd} sampled from a Gibbs measure formally given by
Z−1 exp(−H(ϕ)) ∏x∈Zd dϕ(x) with formal Hamiltonian H(ϕ) = ∑e∈Ed

V (∇ϕ(e)) and po-
tential V ∈C2(R;R+), which we suppose to be even and strictly convex. Note that in the
special case V (x) = 1

2x2, the field φ becomes a discrete Gaussian free field. In d ≥ 3 this
can be made rigorous by taking the thermodynamical limit, while in dimension d ≥ 1 one
considers the gradient process instead. Then, thanks to the strict convexity we have the
Brascamp-Lieb inequality, which allows one to show that any environment with random
conductances of the form {ω(x,y) = λ (∇φ(e)),e ∈ Ed} for any positive, even, globally Lip-
schitz function λ ∈C1(R) satisfies the spectral gap condition in Assumption 8-(A2), see [23,
Section 7] for details. The Brascamp-Lieb inequality also implies that exponential moments
for gradient fields under the Gibbs measure exist (cf. [146, 280]). Thus, the environment
{ω(e),e ∈ Ed} as chosen above also satisfies the required moment condition in Theorem 9.
The assumption of a strictly convex potential can be relaxed, see [24].
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The ∇φ interface model also satisfies the FKG inequality, see again e.g. [146, 280], and
for models with massive Hamiltonians formally given by

H(ϕ) = ∑
e∈Ed

V (∇ϕ(e))+
m2

2 ∑
x∈Zd

φ(x)2, m > 0,

we have exponential correlation decay, see [280, Theorem B]. In particular, Assumption 8-
(A1) holds, and Theorem 9 applies, for instance, to conductances of the form ω(x,y) =
exp(φ(x)+φ(y)), {x,y} ∈ Ed .

2.1.3 The Method

It is well known that Gaussian lower and upper bounds on the heat kernel are equivalent
in many situations to a parabolic Harnack inequality (PHI), e.g. in the case of uniformly
elliptic conductances, see [115]. Indeed, the PHI implies near-diagonal bounds which
are then converted into off-diagonal bounds via the established chaining method (see e.g.
[41, 115, 136]).

In our context, a PHI has been obtained in [17]. Unfortunately, due to the special structure
of the constant in the PHI in the case of unbounded conductances (see (2.14) below), in
particular its dependence on ∥µω∥p,B(x,n) and ∥νω∥q,B(x,n), we cannot directly deduce off-
diagonal Gaussian lower bounds from it. In order to get effective Gaussian off-diagonal
bounds using the chaining argument, one needs to apply the Harnack inequality on a number
of balls with radius n over a distance of order n2. In general, however, the ergodic theorem
does not give the required uniform control on the convergence of space-averages of stationary
random variables over such balls (see [3]). Therefore, in order to obtain lower Gaussian
bounds we will need to make use of one of the additional conditions on the correlations stated
in Assumption 8. Specifically, in Proposition 12 we employ any one of these conditions
to derive a certain concentration estimate. Then, in Proposition 18 (and Corollary 19),
we manipulate these to give us the desired uniform control on the space-averages of the
conductances over the aforementioned chain of balls of radius n. Finally, we utilize this
uniform control within the chaining argument to yield the desired Gaussian off-diagonal
lower bound.

Near-diagonal heat kernel bounds can also be deduced from a local limit theorem, cf.
[17, Lemma 5.3]. Recently, such local limit theorems have been derived for a more general
class of RCMs in [14, 24] via De Giorgi’s iteration technique, circumventing the need for a
PHI. However, the bounds obtained from arguments in [14, 24] involve random constants
which are implicit functions of the averages ∥µω∥p,B(x,n) and ∥νω∥q,B(x,n), while the chaining
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argument requires the more explicit dependence on the averages in the PHI in [17]. Note
that in [17] the PHI has only been derived for the CSRW, so we obtain the lower heat
kernel bounds in Theorem 9 for the CSRW only, while the upper bounds in [19] have been
established for a general class of speed measures.

The rest of the paper is organised as follows. In Section 2.2, we first deduce some
concentration estimates from the correlation decay conditions in Assumption 8, which are
then used in Section 2.3 to prove the lower Gaussian bounds in Theorem 9. Finally, in
Section 2.4 we show Theorem 10.

2.2 Concentration estimates under decorrelation assump-
tions

Recall that µ̄p := E[µω(0)p] and ν̄q := E[νω(0)q] for any p,q ∈ [1,∞). In this section we
will derive some moment estimates on the deviations of µω(x) and νω(x) from their means
under Assumption 8. For that purpose, we define the centred random variables

∆ µ
ω
p (x) := µ

ω(x)p− µ̄p, ∆ν
ω
q (x) := ν

ω(x)q− ν̄q, x ∈ Zd,

for any p,q ∈ [1,∞) such that µ̄p and ν̄q are finite. Our moment bounds on ∆ µω
p and ∆νω

q

will take the form given in the following definition.

Definition 1. For any p,q ∈ [1,∞) and 1≤ θ < η < ∞ we say that P satisfies a (p,q,η ,θ)-
moment bound, if there exists c ∈ (0,∞) such that

E
[∣∣∣∑

x∈R
∆ µ

ω
p (x)

∣∣∣η]≤ c |R|θ and E
[∣∣∣∑

x∈R
∆ν

ω
q (x)

∣∣∣η]≤ c |R|θ (2.9)

for all hyper-rectangles R⊂ Zd .

In the next proposition, which is the main result in this section, we gather and derive the
relations between Assumption 8 and (p,q,η ,θ)-moment bounds.

Proposition 12. Let ζ , p,q ∈ [1,∞) and let R ⊂ Zd be a hyper-rectangle. Suppose that
Assumptions 6 and 8 hold, and that ζ < γ/d if under (A1). There exist constants p0,q0,η ,θ ∈
[1,∞) with η−θ ≥ ζ such that if ω(e) ∈ Lp0(P), ω(e)−1 ∈ Lq0(P) for any e ∈ Ed , then the
(p,q,η ,θ)-moment bound holds.
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We will prove Proposition 12 under each of the assumptions separately, referencing the
necessary materials before incorporating them into the proof. The following lemma is easily
implied by [36, Corollary 1].

Lemma 13. Let {Y (x) : x ∈ Zd} be a random field satisfying the FKG inequality, and which
is stationary with respect to translation, and suppose that

∑
|x|≥n

Cov
(
Y (0),Y (x)

)
= O(n−ν) and E

[
|Y (0)|η+δ

]
< ∞,

for some δ ,ν > 0 and η > 2. Then, for any hyper-rectangle R⊂ Zd,

E

[∣∣∣∑
x∈R

Y (x)
∣∣∣η]= O(nθ ),

for θ > max{η/2,χ(1−d−1 min{1,νδ/χ})/(η +δ −2)}, where χ = δ +(η +δ )(η−2).

Proof. We apply stationarity and the positivity of covariances due to the FKG inequality to
[36, Corollary 1] to give the result. Indeed, by stationarity any hyper-rectangle can be shifted
into Nd , and positivity of the covariances allows us to bound the summation of covariances
over Nd by the summation of covariances over Zd .

Proof of Proposition 12 under (A1): We will deal with the moment bound on the summation
of the ∆ µω

p (x). The argument for the ∆νω
q (x) follows identically. We will apply Lemma 13

to the field Y (x) = µω(x)p, x ∈ Zd . Then,

∑
|x|≥n

Cov
(
Y (0),Y (x)

)
≤ c ∑

|x|≥n
|x|−γ ≤ cn−(γ−d),

where in the first inequality we used the polynomial mixing condition in (A1). We can
therefore take ν = γ−d in Lemma 13.

We now let η = dζ and p0 = pα with α > dζ (dζ−2)
γ−dζ

+ dζ . Then in Lemma 13 we
take δ = α − dζ and note that ν > dζ − d, to give that (2.9) holds with any θ > χ(1−
d−1 min{νδ/χ,1})/(η +δ −2). A computation then yields η−θ > ζ for θ chosen close
enough to the lower bound above.

We now turn to Proposition 12 under Assumption (A2). First, we recall that under the
spectral gap condition, we have the following p-version of the spectral gap estimate. For
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Concentration estimates under decorrelation assumptions

p≥ 1 and any f ∈ L2p(Ω ,P) with E[ f ] = 0,

E
[
| f |2p]≤ c(p,Csg)E

[(
∑

e∈Ed

(
∂e f
)2
)p
]
, (2.10)

which basically follows by applying (2.3) to the function |u|p, see [161, Lemma 2].

Proof of Proposition 12 under (A2): We will follow a similar argument given in
[23, Lemma 2.10]. Again, we will only show the moment estimate for ∆ µω

p . Take p0 = 2ζ p.
Noting that f := ∑y∈R ∆ µω

p (y) has mean zero, we use the spectral gap estimate in the form
(2.10) which yields

E
[∣∣∣∑

y∈R
∆ µ

ω
p (y)

∣∣∣2ζ
]
≤ c E

[(
∑

e∈Ed

∣∣∂eu
∣∣2)ζ

]
.

Now we observe that, for any e = {ē,
¯
e} ∈ Ed ,

∂e
[
∆ µ

ω
p (y)

]
= ∂e

[
µ

ω(y)p]= p µ
ω(y)p−1 1l{ē,

¯
e}(y),

so that

∂eu≤

p
(
µω(

¯
e)p−1 +µω(ē)p−1) if

¯
e ∈ R or ē ∈ R,

0 else.

Hence,

E
[∣∣∣∑

y∈R
∆ µ

ω
p (y)

∣∣∣2ζ
]
≤ c |R|ζ E

[
µ

ω(0)2ζ (p−1)],
and so we have obtained the requisite moment bounds with η/2 = θ = ζ .

Lemma 14. Let p∈ (2,∞). There exists a constant c12 = c12(p) such that if Y1, . . .Yn ∈ Lp(P)
are independent random variables satisfying E

[
Yj
]
= 0 for all j ∈ {1, . . . ,n}, then

E
[∣∣∣ n

∑
i=1

Yj

∣∣∣p]1/p

≤ c12 max

{( n

∑
j=1

E
[∣∣Yj

∣∣p])1/p

,

( n

∑
j=1

E
[∣∣Yj

∣∣2])1/2
}
.

Proof. This can be extracted from [299, Theorem 3].

Proof of Proposition 12 under (A3): Take p0 = 2pζ , again considering only the moment
bound on the sum of the ∆ µω

p (x) as the argument for ∆νω
q (x) is the same. Let (ei)1≤i≤d
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denote the standard unit vectors. We call two vertices x,y ∈ R equivalent if x− y = ±Re
for some e ∈ {e1, . . . ,ed}. Write the equivalence classes as E1, . . . ,Em, and observe that we
must have m≤Rd . Note that the size of each equivalence class is trivially bounded above by
|R| . We apply the finite range assumption to give that for each fixed i, the (µω(x))x∈Ei are
mutually independent, and therefore

E
[∣∣∣ ∑

y∈R(x)
∆ µ

ω
p (y)

∣∣∣2ζ
]
= E

[∣∣∣∑
i≤m

∑
y∈Ei

∆ µ
ω
p (y)

∣∣∣2ζ
]

≤ c ∑
i≤m

E
[∣∣∣ ∑

y∈Ei

∆ µ
ω
p (y)

∣∣∣2ζ
]
≤ c |R|ζ ,

where in the final step we apply Lemma 14 for each i in the summation, with (Y j) an
enumeration of (∆ µω

p (y))y∈Ei. Thus (2.9) holds with η/2 = θ = ζ .

Lemma 15. Let {Yi,1 ⩽ i ⩽ n} be a negatively associated sequence. Further, let
{Y ∗i ,1 ⩽ i ⩽ n} be a sequence of independent random variables such that Y ∗i and Yi have the
same distribution for each i = 1,2, . . . ,n. Then

E
[

φ

( n

∑
i=1

Yi

)]
≤ E

[
φ

( n

∑
i=1

Y ∗i

)]
for any convex function φ on R, whenever the expectation on the right hand side exists.

Proof. This follows from [302, Theorem 1].

Proof of Proposition 12 under (A4): Let p0 = 2pζ and q0 = 2qζ . Then, we apply
Lemma 15 and Lemma 14, with (Yi) an enumeration of (∆ µω

p (y)
∗)y∈R (and (∆νω

q (y)∗)y∈R,
respectively) to give (2.9) with η/2 = θ = ζ .

As a first consequence of the concentration estimate in Proposition 12 we record the
following tail estimate on the random variables N1(x), x ∈ Zd , defined via (2.1).

Lemma 16. Suppose that Assumption 6 holds and that P satisfies a (p,q,η ,θ)-moment
bound, with ζ := η−θ > 0. Then there exists c13 ∈ (0,∞) such that

P
(
N1(x)> n

)
≤ c13 n1−dζ , ∀n ∈ N. (2.11)

Proof. Note that, for any n ∈ N, we have by a union bound

P(N1(x)> n)≤ ∑
m≥n

(
P
[
∥µω∥p

p,B(x,m)
> 2µ̄p

]
+P

[
∥νω∥q

q,B(x,m)
> 2ν̄q

])
. (2.12)
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Heat kernel lower bounds

For the first term we get by Proposition 12 and Markov’s inequality,

∑
m≥n

P
[
∥µω∥p

p,B(x,m)
> 2µ̄p

]
= ∑

m≥n
P
[∣∣∣ ∑

y∈B(x,m)

∆ µ
ω
p (y)

∣∣∣η > µ̄
η
p
∣∣B(x,m)

∣∣η]
≤ c ∑

m≥n
m−dζ ≤ cn1−dζ .

Repeating the same argument with the second term in (2.12) gives the claim.

2.3 Heat kernel lower bounds

We first recall the near-diagonal heat kernel bound in [17, Proposition 4.7], which will be a
key ingredient in the proof of the main theorem.

Proposition 17. Suppose that Assumption 6 holds, and suppose there exist p,q ∈ (1,∞] with
1/p+1/q < 2/d such that ω(e) ∈ Lp(P) and ω(e)−1 ∈ Lq(P) for any e ∈ Ed . Then there
exists c14 = c14(d) such that for any t ≥ 1, x1 ∈ Zd and x2 ∈ B(x1,

1
2
√

t),

pω (t,x1,x2)≥
c14

CPH
t−

d
2 , (2.13)

where CPH =CPH
(
∥µω∥p,B(x1,

√
t),∥νω∥q,B(x1,

√
t)
)

is the constant appearing in the parabolic
Harnack inequality in [17, Theorem 1.4], more explicitly given by

CPH
(
∥µω∥p,B,∥νω∥q,B

)
= cexp

(
c
(
1∨∥µω∥p,B

)κ(1∨∥νω∥q,B
)κ
)

(2.14)

for some positive c = c(d, p,q) and κ = κ(d, p,q)≥ 1.

Theorem 9 will be proven by the well-established chaining technique. More precisely, we
will apply Proposition 17 on a certain sequence of balls. Given a vertex x = (x1, . . . ,xd) ∈ Zd

and 0 < r ≤ 4|x|, we specify a nearest-neighbour path P[x] of length D := |x| from 0 to x.
Setting p0(x) := 0 and pi(x) := (x1, . . . ,xi,0, . . . ,0) ∈ Zd , 1≤ i≤ d, we define P[x] to be the
path that consists of d consecutive straight line segments connecting p0(x), p1(x), . . . , pd(x).
Next, for any k∈N with 12D

r ≤ k≤ 16D
r , we choose a subset {z0, . . .zk}⊂P[x] such that z0 = 0,

zk = x, d(z j,z j−1)≤ r
12 for 1≤ j≤ k and such that, for each j≤ k,

∣∣B(z j,r)∩{z0, . . .zk}
∣∣≤ c

for some c = c(d). Set B j := B(z j,r/48). Finally, we let s := Dr/k, then 1
16r2 ≤ s≤ 1

12r2.

Proposition 18. Suppose that Assumption 6 holds. Further, for fixed p,q ∈ [1,∞) assume
that P satisfies a (p,q,η ,θ)-moment bound with ζ := η−θ > d. Then there exist constants
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c15,c16 ∈ (0,∞) and a random variable N3 = N3(ω) satisfying

P(N3 > ρ)≤ c15ρ
−d(ζ−1)+2, ∀ρ > 0, (2.15)

such that, P-a.s., for all r ≥ N3, x ∈ Zd and (B j)1≤ j≤k defined as right above, the following
holds. If r≤ 4|x|, for any collection of vertices y0, . . . ,yk with y0 = 0, y j ∈B j for 1≤ j≤ k−1
and yk = x we have

k−1

∑
j=0

(
1∨∥µω∥p,B(y j,

√
s)

)(
1∨∥νω∥q,B(y j,

√
s)

)
≤ c16 k. (2.16)

Proof. Set By j := B(y j,
√

s) for abbreviation. Then note that there exists c = c(d) ∈ (0,∞)

such that ∣∣{ j ∈ {1, . . .k} : z ∈ By j

}∣∣≤ c, ∀z ∈
⋃
j≤k

By j . (2.17)

We divide the rest of the proof into several steps.

Step 1. For x ∈ Zd and r as in the statement, we will define a collection (Rx,r
i )0≤i≤d of

d +1 hyper-rectangles in Zd which covers
⋃

j≤k By j for any selection y j ∈ B j. For simplicity,
we will only give the definition for x ∈ Zd ∩ [0,∞)d – it can be easily adjusted to the other
regions of Zd . For any m, l ∈ N, u ∈ Zd and i = 1, . . .d we write

Ri(u,m, l) := u+
{

v ∈ Zd : 0≤ vi ≤ l,
∣∣v j
∣∣≤ m, for all j ̸= i

}
for the d-dimensional hyper-rectangle with base point u and dimension l along the ei axis
and m along the remaining coordinate axes. Now define

Rx,r
0 :=

(
[0,r]× [−r,0]d−1)∩Zd and Rx,r

i := Ri
(

pi−1(x),r,xi + r
)
, 1≤ i≤ d.

Then note that
⋃

0≤i≤d Rx,r
i ⊇

⋃
j≤k By j .

Step 2. In this step we will show that there exists a random N3 satisfying (2.15) such that
for all x ∈ Zd and all r ≥ N3,

∑
j≤k
∥µω∥p

p,By j
≤ ck, and ∑

j≤k
∥νω∥q

q,By j
≤ ck. (2.18)
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Heat kernel lower bounds

We will only discuss the first inequality as the arguments for the second are identical. By
(2.17) and the fact that the hyper-rectangles (Rx,r

i )0≤i≤d cover
⋃

j≤k By j , we have that

∑
j≤k
∥µω∥p

p,By j
≤ cr−d

∑
0≤i≤d

∑
y∈Rx,r

i

µ
ω(y)p

≤ cr−d
((
|x|+ r

)
rd−1

µ̄p + ∑
0≤i≤d

∑
y∈Rx,r

i

∆ µ
ω
p (y)

)
≤ ck+ cr−d

∑
0≤i≤d

∑
y∈Rx,r

i

∆ µ
ω
p (y), (2.19)

where we have used that |x| ≤ ckr. Now we apply the moment-bound hypothesis with
Proposition 12 and Markov’s inequality to give

P
(

∑
0≤i≤d

∑
y∈Rx,r

i

∆ µ
ω
p (y)> krd

)
≤ c
(
|x|rd−1)−ζ

,

where we have used that krd ≥ c |x|rd−1. Now fix ρ, l ∈ N with l ≥ ρ . By applying a union
bound, and summing over ∂B(l) := {x ∈ Zd : |x|= l} and r ≥ ρ , we get

P
(
∃x ∈ ∂B(l),r ∈ [ρ,4l]∩N : ∑

0≤i≤d
∑

y∈Rx,r
i

∆ µ
ω
p (y)> krd

)
≤ c ld−1−ζ

ρ
−ζ (d−1)+1.

Set

Aρ :=
{
∃x ∈ Zd,r ∈ N : |x| ≥ ρ, r ∈

[
ρ,4|x|

]
, ∑

0≤i≤d
∑

y∈Rx,r
i

∆ µ
ω
p (y)> krd

}
.

Since ζ > d, we can apply another union bound over l ≥ ρ to obtain

P(Aρ)≤ cρ
d−ζ

ρ
−ζ (d−1)+1 = cρ

d(1−ζ )+1. (2.20)

However, d(1−ζ )+1 <−1, so by Borel-Cantelli, for P-a.e. ω, there exists N3 = N3(ω)

such that Aρ does not occur for ρ ≥ N3. Substituting into (5.29) completes the proof of
(2.18). Moreover, via a union bound, (2.20) implies that N3 can be constructed such that
(2.15) holds.
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Step 3. By Hölder’s inequality,

∑
j≤k

(
1∨∥µω∥p,By j

)(
1∨∥νω∥q,By j

)
≤ k1− 1

p− 1
q

(
∑
j≤k

(
1∨∥µω∥p

p,By j

))1/p(
∑
j≤k

(
1∨∥νω∥q

q,By j

))1/q

,

so that the statement follows from Step 2.

Remark 2. With a more convoluted covering argument, replacing union bounds with bounds
on maxima, the requirement of ζ > d in Proposition 18 can be decreased to ζ > d− 1,
and thus we only need γ > d(d−1), and the minimal moment conditions of Remark 1 can
be reduced to p0 > pκχ and q0 > qκχ with χ = d(d−1)

[
1+ d(d−1)−2

γ−d(d−1)

]
under (A1), and

p0 = 2pκ(d− 1) and q0 = 2qκ(d− 1) under (A2), (A3) or (A4). We do not include this
argument as it brings greatly increased complication for very limited improvement.

Corollary 19. In the setting of Proposition 18, assume that P satisfies a (κ p,κq,η ,θ)-
moment bound. Then there exists a constant c17 ∈ (0,∞) and a random variable N4 = N4(ω)

satisfying (2.15) such that, P-a.s., for all r ≥ N4, x ∈ Zd with r ≤ 4|x|,

k−1

∑
j=0

(
1∨∥µω∥p,B(y j,

√
s)

)κ (
1∨∥νω∥q,B(y j,

√
s)

)κ

≤ c17k. (2.21)

Proof. This follows exactly as Proposition 18 after applying Jensen’s inequality to ∥µω∥p,By j

and ∥νω∥q,By j
, and then replacing µω by (µω)κ and νω by (νω)κ .

Proof of Theorem 9. By translation invariance of the measure it suffices to show a lower
bound on pω(t,0,x). To begin with, we must establish the necessary moment conditions to
deploy the tools developed in the previous section.

We assume that there exist some p,q ∈ (1,∞) with 1/p+1/q < 2/d such that ω(e) ∈
Lp(P) and ω(e)−1 ∈ Lq(P). This will allow us to apply Proposition 17 involving the constant
κ = κ(p,q,d). If working under assumption (A1), recall that γ > d2 and fix d < ζ < γ/d;
otherwise, just fix ζ > d. Then Proposition 12 provides us with p0,q0 ≥ 1 such that if
ω(e) ∈ Lp0(P) and ω(e)−1 ∈ Lq0(P), then (1,1,η ,θ) and (κ p,κq,η ,θ)-moment bounds
hold with η−θ ≥ ζ . This will allow us to apply Lemma 16, Proposition 18, and Corollary 19
as required. We then set N := N1(0)∨N3∨N4 and combine the tail bounds in Lemma 16
and (2.15) to obtain that N satisfies the tail bound in (2.4).

Set again D := |x|, and assume now that t ≥ N(D∨1). We will split the proof into two
cases, D2/t ≤ 1/4 and D2/t > 1/4.
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Heat kernel lower bounds

Case 1: D2/t ≤ 1/4. Then x ∈ B(0, 1
2
√

t), so by Proposition 17,

pω(t,0,x)≥ c14

CPH
t−

d
2

with CPH =CPH
(
∥µω∥p,B(0,

√
t),∥νω∥q,B(0,

√
t)
)
. Since CPH

(
∥µω∥p,B,∥νω∥q,B

)
is increasing

in ∥µω∥p,B and ∥νω∥q,B (cf. (2.14) above) and t ≥ N1(0),

CPH
(
∥µω∥p,B(0,

√
t),∥νω∥q,B(0,

√
t)
)
≤CPH

((
2µ̄p
)1/p

,
(
2ν̄q
)1/q

)
,

and therefore pω(t,0,x)≥ ct−d/2.

Case 2: D2/t > 1/4. Set r := t/D ≥ 1∨N3 ∨N4. We deploy the chaining setup as
introduced right below Proposition 17. Recall that s := Dr/k = t/k with 12D

r ≤ k ≤ 16D
r so

that 1≤ 1
16r2 ≤ s≤ 1

12r2, and note that k ≥ 3. Then, for any collection of vertices y0, . . .yk

with y0 = 0, y j ∈ B j for 1≤ j ≤ k−1 and yk = x, we have d(yi,yi+1)≤ r/8≤√s/2 so that
by Proposition 17,

pω(s,yi,yi+1)≥
c14

CPH
(
∥µω∥p,By j

,∥νω∥q,By j

) s−
d
2 ≥ c

CPH
(
∥µω∥p,By j

,∥νω∥q,By j

) r−d,

with By j := B(y j,
√

s). Further, recall the representation of CPH in (2.14) and that Pω
y j
[Xs =

y j+1] = pω(s,y j,y j+1)µ
ω(y j+1). Hence, by the Markov property,

Pω
0 [Xt = x] = Pω

0 [Xks = x]≥ Pω
0
[
X js ∈ B j,1≤ j ≤ k−1,Xks = x

]
≥ ∑

y1∈B1,...,yk−1∈Bk−1

ck
(

∏
k−1
j=1 r−dµω(y j)

)
s−d/2µω(x)

exp
(

c∑
k−1
j=0
(
1∨∥µω∥p,By j

)κ(1∨∥νω∥q,By j

)κ
)

≥ ck
( k−1

∏
j=1
∥µω∥1,B j

)
s−d/2

µ
ω(x),

where we used Corollary 19 in the last step. In particular,

pω(t,0,x)≥ ck
( k−1

∏
j=1
∥µω∥1,B j

)
t−d/2. (2.22)

Now, by the harmonic-geometric mean inequality and Jensen’s inequality, we have

( k−1

∏
j=1
∥µω∥1,B j

) 1
k−1

≥ k−1

∑
k−1
j=1 ∥µω∥−1

1,B j

≥ c(k−1)

∑
k−1
j=1 ∥νω∥1,B j

.
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We use Proposition 18 (setting p = q = 1, y j = z j, and replacing By j with B j) to obtain

k−1

∑
j=1
∥νω∥1,B j

≤ c(k−1),

so that ( k−1

∏
j=1
∥µω∥1,B j

)
≥ ck−1.

Combining this with (2.22) yields pω(t,0,x)≥ cck
18t−d/2 for some c18 ∈ (0,1), which gives

the bound (2.5) by the choice of k.

2.4 Green kernel estimates

In this final section we utilize Theorems 7 and 9 to establish Theorem 10. We refer to [47,
Section 6] for similar arguments.

Proof of Theorem 10. (i) First we deduce the upper bound (2.6) on the Green kernel. For
any distinct x,y ∈ Zd , we decompose the integral as

gω(x,y) =
1

µω(x)

∫ N1(x)2

0
Pω

y (Xt = x)dt +
∫ Nx,y

N1(x)2
pω

t (x,y) dt +
∫

∞

Nx,y

pω
t (x,y) dt (2.23)

with Nx,y := N1(x)2∨ (|x− y|/c1), where we used that by the symmetry of the heat kernel
pω

t (x,y) = pω
t (y,x). By Theorem 7 we can bound the last two terms of (2.23) by

∫ Nx,y

N1(x)2
pω

t (x,y) dt ≤ c2e−c4|x−y|
∫

∞

1
t−d/2 dt ≤ c |x− y|2−d ,

and ∫
∞

Nx,y

pω
t (x,y) dt ≤ c2

∫
∞

0
t−d/2 e−c3|x−y|2/t dt ≤ c |x− y|2−d .

It is left to bound the first term in the right hand side of (2.23). Recall that the random
walk X spends i.i.d. Exp(1)-distributed waiting times between its jumps. Set λ := N1(x)2

and r := |x− y| ≥ 1. In particular, the random walk starting at y needs to perform at least r
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Green kernel estimates

jumps to get to x. Thus,

1
µω(x)

∫
λ

0
Pω

y (Xt = x)dt ≤ λ

µω(x)
Pω

y
(
Xt = x for any t ∈ [0,λ ]

)
≤ λ

µω(x)
Pois(λ )

(
[r,∞)

)
. (2.24)

Here Pois(λ ) denotes the Poisson distribution with parameter λ , which we recall to have
exponential tails (see e.g. [206, Remark 2.6]). So there exists N2 = N2(ω,x) such that
for each y ∈ Zd with |x− y| ≥ N2(ω,x) the first term in (2.23) is bounded from above by
c |x− y|2−d , which completes the proof of (2.6).

(ii) This follows directly from Theorem 9, which gives for x,y ∈ Zd with |x− y|> N(x),∫
∞

0
pω

t (x,y) dt ≥
∫

∞

N(x)|x−y|
c6 t−d/2e−c7|x−y|2/t dt ≥

∫
∞

|x−y|2
c6 t−d/2ec7|x−y|2/t dt

= |x− y|2−d
∫

∞

1
c6 t−d/2 e−c7/t dt = c |x− y|2−d.

(iii) First, we carry out some preparation for the proof of the upper bound. In particular,
we show the Green kernel has finite second moments. By the symmetry of the heat kernel
and the on-diagonal part of the upper bound in Theorem 7, note that

gω(x,y) =
∫ N1(x)2

0
pω

t (y,x) dt +
∫

∞

N1(x)2
pω

t (x,y) dt ≤ N1(x)2

µω(x)
+ cN1(x)2−d

≤ cN1(x)2
ν

ω(x),

where we used Jensen’s inequality in the last step. Assuming that ω(e) ∈ Lp0(P) and
ω(e)−1 ∈ Lq0(P) for suitable p0,q0 ∈ (1,∞), we apply Proposition 12 together with
Lemma 16 (with ζ = d) to obtain that N1 ∈ Lβ (P) for any β < d2−1. Thus, by Hölder’s
inequality,

E
[
gω(x,y)β

]
< ∞, (2.25)

for any β < (d2−1)(q0−1)/(2q0). Then, as d ≥ 3, assuming q0 > 2 ensures that the second
moment of the Green kernel exists.

We can now prove the upper bound of (2.8). To do so, we show that the random variable
N2 introduced in (i) satisfies the tail bound

P
[
N2 > u]≤ cu2−d, ∀u≥ 1. (2.26)
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Indeed, if (2.26) holds true, then we obtain

E
[
gω(x,y)

]
≤ c |x− y|2−d +E

[
gω(x,y)2]1/2 P

[
N2 > |x− y|

]
≤ c |x− y|2−d ,

where we used (2.6) and the Cauchy-Schwarz inequality in the first step, and (2.26) and
(2.25) in the second step.

In order to show (2.26), recall that N2 has been chosen as a value of r such that
λ

µω (x)Pois(λ )
(
[r,∞)

)
≤ cr2−d with λ := N1(x)2. By Chernoff’s inequality (cf. e.g. [206,

Corollary 2.4 and Remark 2.6]), Pois(λ )
(
[r,∞)

)
≤ e−r+7λ for r > 7λ . Hence, N2 can be

chosen as a constant times λ = N2
1 , so the tail bound on N2 can be dominated by a tail bound

on N2
1 , which is provided by Proposition 12 and Lemma 16 (with the choice ζ = d) under

suitable moment conditions on ω(e) and ω(e)−1. More precisely,

P(N2 > u)≤ P(N2
1 > cu)≤ cu

1−d2
2 ≤ cu2−d, u≥ 1,

since (1−d2)/2 < 2−d for d ≥ 3, which completes the proof of (2.26).

Finally, we prove the lower bound of (2.8), which follows again from Theorem 9. Choose
K ∈ (0,∞) such that P(N(x)≤ K) = P(N(0)≤ K)≥ 1/2, then

E
[
gω(x,y)

]
≥ E

[∫ ∞

N(x)
pω

t (x,y) dt
]
≥ 1

2

∫
∞

K
c6 t−d/2 e−c7|x−y|2/t dt.

If |x− y|2 ≥ K then we can bound the integral on the right hand side as in the proof of
(2.7) to give (2.8). On the other hand, there are only finitely many vertices z ∈ B(0,

√
K),

and for each such z we have E [gω(0,z)] > 0. Therefore, infy∈B(x,
√

K)E [gω(x,y)] =
infz∈B(0,

√
K)E [gω(0,z)]> 0. Thus, we can adjust the constant c10 such that (2.8) also holds

for |x− y|2 ≤ K.
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Chapter 3

[B] Collisions of Random Walks in
Dynamic Random Environments

Abstract. We study dynamic random conductance models on Z2 in which the environment
evolves as a reversible Markov process that is stationary under space-time shifts. We prove
under a second moment assumption that two conditionally independent random walks in the
same environment collide infinitely often almost surely. These results apply in particular to
random walks on dynamical percolation.

3.1 Introduction

A graph is said to have the infinite collisions property if two independent random walks
started at the same location collide (occupy the same location at the same time) infinitely
often almost surely. For Euclidean lattices, Polya [295] observed that the study of collisions
can be reduced to the study of returns on an auxiliary lattice, and hence that the infinite
collisions property holds if and only if the dimension is at most two. In fact, for transitive
graphs, the infinite collisions property is always equivalent to recurrence: The number of
collisions and the number of returns are geometric random variables with the same mean.
For bounded degree graphs that are not transitive, the infinite collisions property is strictly
stronger than recurrence. Indeed, while it is easy to see that bounded degree transient graphs
cannot have infinite collisions, Krishnapur and Peres [225] showed that there exist bounded
degree graphs, including the infinite comb graph, that are recurrent but which do not have the
infinite collisions property. See e.g. [104] for further examples.

Despite the existence of these counterexamples, it is natural to expect that the infinite
collisions property is equivalent to recurrence for most graphs and networks arising in
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applications. Indeed, it is now known that the two properties are equivalent for many random
walks in random environments that are spatially homogeneous in some distributional sense
[52, 103]. The most general such result is due to Hutchcroft and Peres [195], who proved
that every recurrent reversible random rooted network has the infinite collisions property. An
important class of examples to which these result apply are the translation-invariant random
conductance models on Zd; see [77] for background. Note that while earlier results such as
those of [52] had relied on a fine analysis of the random walk in specific examples, the method
of [195] is entirely qualitative and does not rely on heat-kernel estimates. Further results on
collisions of random walks in random environments include [102, 122, 123, 148, 151].

In this paper we study collisions of random walks on dynamic random conductance
models (dynamic RCMs), in which the environment itself is permitted to vary over time.
Such models have recently been of burgeoning interest, with works establishing, for example,
quenched invariance principles [10, 12, 82], quenched and annealed local limit theorems
[13, 25], heat kernel estimates [116, 278], and Green kernel asymptotics [21]. We restrict
attention to the class of dynamic RCMs in which the conductances themselves form a strongly
reversible Markov process whose law is invariant under space-time shifts. We will refer to
such environments as stationary, strongly reversible Markovian environments; see Section
3.2 for detailed definitions. This class includes many of the most natural and interesting
examples of dynamic RCMs appearing in the literature, including dynamical percolation
[184, 290, 291, 291, 292], the simple symmetric exclusion process [31, 297, 308], and
dynamic RCMs in which the conductances evolve according to an SDE such as those arising
in the Helffer-Sjöstrand representation of gradient fields, see e.g. [116, 183]. Previous works
studying random walks in general (reversible and non-reversible) Markovian environments
include [32, 33, 128].

We now state our main theorem. We write Ed for the edge set of Zd , and consider
our random environments to be random locally integrable functions from R×Ed to [0,∞).
The walk in the environment η is in continuous time, and is defined formally in Section
3.2, with generator given in (3.2). We say that a stationary Markovian random environment
η : R×Ed→ [0,∞) is strongly reversible if the conditional distributions of η and its reversal
given the instantaneous sigma-algebra F0 are almost surely equal, where F[s,t] is the sigma-
algebra generated by the restriction of η to [s, t] and F0 :=

⋂{F[s,t] : s≤ 0≤ t,s < t}; see
Section 3.2 for more detailed definitions.

Theorem 20. Let η : R×E2→ [0,∞) be a stationary random environment on Z2 and let
(Xt)t∈R and (Yt)t∈R be two doubly-infinite random walks on η , both started from the origin
at time zero, that are conditionally independent given the environment η . Suppose that at
least one of the following conditions holds:
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(A1): The environment η is Markovian, strongly reversible, and satisfies the second moment
condition ∥η∥2

2 := supa<b
1

|b−a|2E[(
∫ b

a ∑x∼0 ηs({0,x})ds)2]< ∞.

(A2): The backwards walk (X−t)t≥0 satisfies a (quenched or annealed) invariance principle
under Brownian scaling with Brownian motion on R2 as the limiting distribution.

Then X and Y collide infinitely often almost surely: the set {n ∈ N : Xn = Yn} has infinite
cardinality almost surely and the set {t ∈ [0,∞) : Xt = Yt} has infinite Lebesgue measure
almost surely.

Remark 3. Having infinitely many integer collision times implies very generally that the
Lebesgue measure of the collision times is infinite by a standard application of Tonelli’s
Theorem as shown in Lemma 31.

Invariance principles are known in the ergodic setting in the non-elliptic case with rates
bounded from above (and 0 only on intervals with lengths of finite expectation) [82], and
with elliptic rates under moment conditions on the conductances and their reciprocals [25].
Such environments need not be reversible, so there exist examples that satisfy (A2) but
not (A1). On the other hand, most examples arising in applications do satisfy the simpler
condition (A1), for which our proof is self-contained and relies on a simpler and more
general analysis than that required to establish an invariance principle. Indeed, (A1) applies
to highly non-elliptic environments for which invariance principles do not hold, such as the
random walk on the uniform spanning tree of Z2 which has a non-Brownian scaling limit
[44]. Dynamical percolation and the simple symmetric exclusion process are covered by
either hypothesis (A1) or (A2).

Both results will be deduced from the following more general theorem. Note that the
hypotheses of this theorem hold trivially under the assumption (A2) of Theorem 20; in
Section 3.2.2 we use the theory of Markov-type inequalities to prove that they also hold
under the assumption (A1).

Theorem 21 (A weak diffusive estimate suffices). Let η : R×E2→ R≥0 be a stationary
random environment on Z2 and let (Xt)t∈R and (Yt)t∈R be two doubly-infinite random walks
on η , both started from the origin at time zero, that are conditionally independent given the
environment η . Suppose that for every ε > 0 there exists K < ∞ and δ > 0 such that

P
(

limsup
n→∞

min
0≤m≤n

Pη

(
∥X−m∥2 ≤ K

√
n
)
≥ δ

)
≥ 1− ε. (3.1)

Then X and Y collide infinitely often almost surely: the set {n ∈ N : Xn = Yn} has infinite
cardinality and the set {t ∈ R≥0 : Xt = Yt} has infinite Lebesgue measure almost surely.
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Under some additional non-degeneracy assumptions, we are able to prove similar infinite-
collision theorems in which the two walks X and Y are not required to start at the same
location. We say a random environment η is irreducible if for each two vertices x and y
there exist times s < t such that the conditional transition probability Pη

s,t(x,y) is positive
with positive probability. We say that a stationary environment η is time-ergodic if it has
probability either zero or one to belong to any time-shift-invariant measurable subset of Ω .
(Note that being time-ergodic is a stronger condition than being space-time ergodic.)

Corollary 22. Let η : R×E2→ [0,∞) be a irreducible, time-ergodic, stationary random
environment on Z2 and let (Xt)t∈R and (Yt)t∈R be two doubly-infinite random walks on η ,
started at two vertices x and y at time zero, that are conditionally independent given the
environment η . If η satisfies the hypotheses of either Theorem 20 or Theorem 21 then X and
Y collide infinitely often almost surely: the set {n ∈ N : Xn = Yn} has infinite cardinality and
the set {t ∈ [0,∞) : Xt = Yt} has infinite Lebesgue measure almost surely.

Corollaries for the voter model. Let us now briefly describe a corollary of our results for the
voter model in two-dimensional dynamic random environments. Roughly speaking, the voter
model in the environment η : R×Ed → R is the interacting particle system on Zd in which
each vertex has an opinion belonging to [0,1] and the opinion of x changes to match the
opinion of y at rate ηt({x,y}). Since this model is tangential to the main results of this paper,
we omit the precise definition of the model and refer the reader to [249] for background. The
following is an immediate consequence of Corollary 22 and the standard duality between the
voter model and coalescing random walk described in [249, §5] and [Aldous and Fill, §14],
which readily generalises to the dynamic case.

Corollary 23. Let η : R×E2 → R≥0 be a stationary random environment on Z2. If the
reversal of η satisfies the hypotheses of Corollary 22, then the only ergodic stationary
measures for the voter model in η are the constant (a.k.a. consensus) measures.

One-dimensional models. Our methods can also be used to prove that one-dimensional
stationary random environments have the infinite collision property under a first moment
condition. This is much simpler than the two-dimensional case. Once this proposition is
proven, one can also formulate and prove one-dimensional analogues of Corollaries 22 and
23 similarly to the two-dimensional case; we omit the details.

Proposition 24. Let η be a stationary random environment on Z with ∥η∥1 < ∞. Then η

has the infinite collisions property almost surely: If X and Y are two random walks on η ,
both started from the origin at time zero, that are conditionally independent given η , then
the set {n ∈N : Xn =Yn} has infinite cardinality and the set {t ∈ [0,∞) : Xt =Yt} has infinite
Lebesgue measure almost surely.

48



About the proof and organisation. This remainder of this paper will be divided into two
sections. In Section 2 we define necessary terminology, before establishing moment bounds
on the number of jumps the random walk takes in a given interval, as well as non-explosivity
in Proposition 25. Then, in Corollary 29, we use the Markov-Type inequality, along with the
previously derived moment bounds, to prove a diffusive upper bound on the displacement of
the random walk on the environment.

In Section 3, we will use these results to complete the proof of the theorem. In Proposition
107, we extend to the time-varying setting an argument of Hutchcroft and Peres [195]
to give a sufficient condition for dynamic environments to satisfy the infinite collisions
property. Namely, we prove, utilizing the Mass-transport Principle, that if the expected
number of collisions of the backwards walks conditioned on the environment is infinite
almost surely, then the number of collisions is infinite almost surely. Then, in Theorems
20 and 21, we complete the proof by demonstrating that in two dimensions, the diffusive
bound on displacement implies the previously derived sufficient condition on the conditional
expectations. We finish by proving Corollary 22.

3.2 Stationary Random Environments

Fix d ≥ 1. We work on the d-dimensional Euclidean lattice (Zd,Ed), where Ed = {{x,y} ∈
Zd×Zd : ∥x− y∥1 = 1}. We write x∼ y if {x,y} ∈ Ed, and B(x,r) for the l1 ball centred at x
with radius r. For each e = {x,y} ∈ Ed and z ∈ Zd , we write e− z for the edge {x− z,y− z}.
We define an environment to be a non-negative element of the space L1

loc(Ed ×R) of
locally integrable, measurable functions Ed×R→ R modulo a.e. equivalence, where we
recall that f : Ed ×R→ R is said to be locally integrable if

∫ b
a | ft(e)|dt < ∞ for every

a < b and every edge e ∈ Ed . (Here and elsewhere we follow the usual convention of
writing the time variable as a subscript.) We recall that L1

loc(Ed ×R) can be endowed
with a unique topology, called the local L1 topology, with the property that f n converges
to f if and only if

∫ b
a | f n

t (e)− ft(e)|dt → 0 as n→ ∞ for every a < b and e ∈ Ed . We
write Ω = {η ∈ L1

loc(Ed×R) : ηt(e) ≥ 0 for every e ∈ Ed and a.e. t ∈ R} for the space of
environments, which we equip with the associated subspace topology and Borel σ -algebra.
For each environment η ∈Ω and x ∈ Zd we write ηt(x) = ∑y∼x ηt({x,y}).

We refer to a random variable taking values in Ω as a random environment. For each x∈
Zd and t ∈R we write τx,t : Ω →Ω for the space-time shift defined by τx,tηs(e) = ηs−t(e−x)
and say that a random environment η is stationary if τx,t(η) has the same distribution as
η for every x ∈ Zd and t ∈ R. Similarly, we define the time-reversal map R : Ω → Ω by
R(η)t(e) = η−t(e) and say that a random environment η is reversible if R(η) has the same
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distribution as η . For each a < b, let F[a,b] be the σ -algebra generated by the restriction of
η to [a,b]. We say that η is a Markovian random environment if F[a1,a2] and F[c1,c2] are
conditionally independent given F[b1,b2] whenever a2 < b2 and c1 > b1 (that is, if the past
and the future are conditionally independent given the present). For each t ∈ R, we define
the instantaneous sigma-algebra Ft =

⋂{F[a,b] : a < t < b}, and say that η is strongly
reversible if the conditional distributions of η and R(η) given F0 are the same almost surely.
For example, if θ is a uniform random element of [0,2π], then the environment η defined
by ηt(e) = (sin(t +θ))t∈R for every e ∈ Ed and t ∈ R is a stationary reversible Markovian
environment that is not strongly reversible.

Let Zd
∞ = Zd∪{∞} be the one-point compactification of Zd and let D(R,Zd

∞) be the
space of Zd

∞-valued càdlàg functions on R, which we equip with the Skorohod topology and
associated Borel σ -algebra. The point at infinity is included to deal with the possibility of
an explosion. For each starting space-time location (u,s) ∈ Zd×R and environment η ∈Ω ,

there exists a unique probability measure Pη
u,s on D(R,Zd

∞) under which the coordinate
process (Xt)t∈R is an inhomogeneous continuous time Markov Chain on Zd starting at u at
time s and with self-adjoint time-dependent generator (L η

t )t∈R defined by

L η

t f (x) = ∑
y∼x

ηt({x,y})( f (y)− f (x)). (3.2)

We denote the transition probabilities of this Markov chain by Pη

t1,t2(u,v) = Pη

u,t1(Xt2 = v) for
each t1, t2 and u,v ∈ Zd . We say that an environment η is non-explosive if Pη

u,s is supported
on paths that make at most finitely many jumps in any bounded interval of time for every
u ∈V and s ∈ R.

A Poissonian reformulation. As usual, one can equivalently define the random walk
in the environment η using Poisson processes rather than generators. We first briefly
recall how point processes in Ed ×R can be used to define walks. Let D be the set of
subsets U ⊂ R×Ed that are discrete (i.e. consist only of isolated points), and for which
U ∩ (Ed ×{t}) contains at most one point for each t ∈ R. For each U ∈ D , let J = J(U)

be the set of space-time points (u, t) ∈ Zd×R such that ({u,v}, t) ∈U for some neighbour
v of u. Given U ∈ D and a space-time coordinate (u, t) /∈ J(U), we define the induced
cádlág path Fu,t(U) = (Fu,t(U)s)s∈R ∈ D(R,Zd) which starts with Fu,t(U)t = u and follows
the points of U forwards and backwards in time, traversing an edge e = {x,y} at time s≥ t if
limε↓0 Fu,t(U)s−ε ∈ {x,y} and (e,s) ∈U and, similarly, traversing an edge e = {x,y} at time
s≤ t if limε↓0 Fu,t(U)s+ε ∈ {x,y} and (e,s) ∈U . We define T∞+ and T−∞ to be the forward
and backward explosion times of Fu,t(U), and set Fu,t(U)s = ∞ for all s≥ T+

∞ and s≤ T−∞ .
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Translation and reflection equivariance. An important property of this construction
is that for any U ∈D and any two space-time points (u,s),(v, t) ∈ (Zd×R)\ J(U) we have
that

Fu,s(U)t = v ⇐⇒ Fv,t(U)s = u ⇐⇒ Fu,s(U) = Fv,t(U), (3.3)

where the final equality is an equality of functions. Indeed, if we start a particle at (u,s) then
follow the points of U forwards in time until we hit v at time t ≥ s, then if we instead start at
v at time t and follow the points of U backwards in time until time s, we will end up at u. A
further important property of the map F : D×Zd×R is that it is equivariant with respect to
space-time shifts and time-reversals. That is, if we define the space-time shifts

τx,t : D −→D τx,t : D(R,Zd
∞)−→ D(R,Zd

∞)

U 7−→
{
(e− x,s− t) : (e,s) ∈U

}
(ζs)s∈R 7−→ (ζs−t− x)s∈R

for each x ∈ Zd and t ∈ R and the time-reversal maps

R : D −→D R : D(R,Zd
∞)−→ D(R,Zd

∞)

U 7−→
{
(e,−s) : (e,s) ∈U

}
(ζs)s∈R 7−→

(
lim
ε↓0

ζ−s+ε

)
s∈R

then we have that

τx,t(Fu,s(U)) = Fu−x,s−t(τx,t(U)) and R(Fu,s(U)) = Fu,−s(R(U))

for every (x, t) ∈ Zd×R, U ∈D , and (u,s) ∈ (Zd×R)\ J(U).
Given an environment η , we may take U to be the inhomogeneous Poisson process on

Ed×R with intensity η , which belongs to D almost surely since η is locally integrable. It
is a standard and easily verified fact that the resulting process Fu,t(U) then has law Pη

u,t for
each u ∈ Zd and t ∈ R. Fixing η and taking expectations over U in (3.3) therefore yield the
detailed-balance equations

Pη

s,t(u,v) = Pη

t,s(v,u), (3.4)

which also follow directly by self-adjointness of the generators. Moreover, if U is a Poisson
process with intensity η , then R(U) is a Poisson process with intensity R(η), and it follows
that if X = (Xt)t∈R has law Pη

u,s, then R(X) has law PR(η)
u,−s . It follows in particular that if

η is a stationary reversible random environment and X = (Xt)t∈R is the associated random
walk started at (u,s), then X and R(X) have the same marginal distribution (the conditional
distributions of these processes given η need not be the same).
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3.2.1 Moment conditions

Let d ≥ 1 and let η ∈ Ω be a stationary random environment on Zd . Recall that we write
ηt(x) := ∑y∼x ηt({x,y}) for the total conductance of all edges incident to x at time t. For
each p≥ 1 we define the infinitesimal p-norm ∥η∥p of η to be

∥η∥p := sup
[a,b]⊂R

1
b−a

E

[(∫ b

a
ηs(0)ds

)p
]1/p

= limsup
ε↓0

1
ε
E

[(∫
[0,ε]

ηs(0)ds
)p
]1/p

,

where the equivalence of these two quantities follows by stationarity and Minkowski’s
inequality. Note that ∥η∥p is increasing in p ≥ 1 and that if η is, say, bounded and a.s.
cádlág, so that ηt(x) is well-defined pointwise, then ∥η∥p = ∥ηt(x)∥p for every x ∈ Zd and
t ∈ R.

The next proposition shows that first and second moment bounds on the total conductance
at a fixed vertex imply first and second moment bounds on the number of times the walk
jumps. We will deduce in particular that ∥η∥1 <∞ is a sufficient condition for non-explosivity,
recovering [12, Lemma 4.1]. For each two integers p≥ 1 and 1≤ ℓ≤ p, we write

{p
ℓ

}
for

the Stirling numbers of the second kind, which are defined to be the unique non-negative
integers such that xp = ∑

p
ℓ=1

{p
ℓ

}
ℓ!
(x
ℓ

)
for every x ∈ R. (Equivalently,

{p
ℓ

}
is the number of

ways to partition a set of size p into ℓ non-empty subsets.)

Proposition 25. Let d ≥ 1, let η be a stationary random environment on Zd , let (u,s) ∈
Zd×R be a space-time location, and let X = (Xt)t∈R be the associated random walk started
at the origin at time zero. For each 0≤ a < b let N[a,b] denote the cardinality of the set of
jump times {t ∈ [a,b] : Xt− ̸= Xt}. Then

E [N[a,b]p]≤
p

∑
ℓ=1

{
p
ℓ

}
ℓ!|a−b|ℓ∥η∥ℓℓ

for every integer p≥ 1. In particular, if ∥η∥1 < ∞, then η is non-explosive almost surely.

The most important consequence of this theorem is the statement that if ∥η∥p < ∞ for
some integer p≥ 1, then E [N[a,b]p]< ∞ for every a < b. We will only use the cases p = 1,2
of this proposition, but prove the general case for possible future applications since it is not
much more work.

The proof of Proposition 25 will rely on the construction of the censored random walk in
finite volume, which we now introduce. Let η be a stationary random environment on Zd , let
U be a Poisson process with intensity η , and let X = F0,0(U) be the associated random walk
in η started at (0,0). Consider the sequence of l1 boxes Bk = B(0,k)∩Zd for k ≥ 1, and let
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Ed,k be the set of edges of Zd with both endpoints in Bk. For each k ≥ 1, let Sk be a uniform
random element of Bk independent of η and U , and let Xk = FSk,0(U) be a random walk in η

started at (Sk,0). Stationarity of η implies that Xk−Sk = (Xk
t −Sk)t∈R and X have the same

distribution for every k ≥ 1.
For each k ≥ 1, let Uk =U ∩ (Ed,k×R), and define the censored random walk Zk =

(Zk
t )t∈R = FSk,0(U

k). In other words, the censored random walk Zk is coupled with the
random walk Xk by setting Zk

0 = Xk
0 , and then letting Zk follow the same Poisson point

process U as Xk, forwards and backwards in time, but ignoring the edges which lead out
of Bk. Thus, Zk is guaranteed to equal to Xk up until the first time Xk leaves the ball Bk.

Observe that censored random walks cannot explode since the rate of transition of the walk
at any time is bounded above by the total conductance of all the edges contained within the
box, which is finite by assumption.

Note that if η is a stationary Markovian random environment and k ≥ 1, then both (η ,X)

and (η ,Zk) are Markov processes in the sense that the future and the past are conditionally
independent given the present; see Section 3.2.2 for details. However, the censored random
walk has the advantage that the associated Markov process admits a stationary probability
measure. Indeed, we will argue more generally that if η is a stationary random environment
then (η ,Zk) is time-stationary in the sense τ0,t(η ,Zk) := (τ0,t(η),τ0,t(Zk)) has the same
distribution as (η ,Zk) for every k ≥ 1 and t ∈ R.

Lemma 26. Let d ≥ 1 and let η be a stationary random environment. Then the processes
(ηt ,Zk

t )t∈R are stationary for each k ≥ 1.

Proof. Fix k≥ 1. Let U be a Poisson process with intensity η and let Uk be defined as above.
We have by (3.3) that if (u,s),(v, t) /∈ J(U), then

Fu,s(Uk)t = v ⇐⇒ Fv,t(Uk)s = u ⇐⇒ Fu,s(Uk) = Fv,t(Uk). (3.5)

One implication of this is that for any s, t ∈ R, the function σs,t : Bk→ Bk given by σs,t(u) =
[Fs,u(Uk)]t is almost surely a bijection with the property that

Fs,u(Uk) = Ft,σs,t(u)(U
k)

for every u ∈ Bk. Letting Sk be a uniform random element of Bk independent of η and U , we
deduce that Sk and σs,t(Sk) have the same conditional distribution given η and U and hence
that

τ0,t

(
η ,F0,Sk

(
Uk))= τ0,t

(
η ,Ft,σ0,t(Sk)

(
Uk))∼ τ0,t

(
η ,Ft,Sk

(
Uk))∼ (η ,F0,Sk

(
Uk))
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Stationary Random Environments

for every t ∈ R, where we used stationarity of η and shift-equivariance of F in the final
equality in distribution. This completes the proof of stationarity.

We will deduce Proposition 25 from the following analogous statement for the censored
random walk.

Lemma 27. Let d ≥ 1, let η be a stationary random environment on Zd , let k ≥ 1, and let
Zk be the censored random walk in η . For each 0≤ a < b let Nk[a,b] denote the cardinality
of the set of jump times {t ∈ [a,b] : Zk

t− ̸= Zk
t }. Then

E [Nk[a,b]p]≤
p

∑
ℓ=1

{
p
ℓ

}
ℓ!|a−b|ℓ∥η∥ℓℓ

for every integer p≥ 1.

Proof. By stationarity, we can without loss of generality assume that a = 0. We fix b≥ 0
and k ≥ 1, and write N = Nk, and Z = Zk. For each n ∈ N and i ∈ Z, define

Ai,n = 1

(
N
[
(i−1)b

n
,
ib
n

]
> 0
)

and Σn =
n

∑
i=1

Ai,n.

Since N = limn→∞ Σn almost surely and (Σ2n) is a monotone increasing sequence, the
monotone convergence theorem implies that E [N p] = limn→∞E

[
Σ

p
2n

]
for every p≥ 0. Since

E
[
Σ

p
2n

]
= ∑

p
ℓ=1

{p
ℓ

}
ℓ!E
(

Σ2n
ℓ

)
it therefore suffices to prove that

E
(

Σn

ℓ

)
= ∑

1≤i1<···<iℓ≤n
E
[ ℓ

∏
j=1

Ai j,n

]
≤ bℓ∥η∥ℓℓ

for every ℓ ≥ 1. Writing Eη for expectations conditional on the environment η and the
uniform starting point Sk = Zk

0 ∈ Bk, we will prove by induction on ℓ that the stronger
inequality

E

[
Eη

[ ℓ

∏
j=1

Ai j,n

]q
]
≤
(

b∥η∥qℓ

n

)qℓ

(3.6)

holds for every n ≥ 1, ℓ ≥ 0, q ≥ 1, and every increasing sequence i1 < i2 < .. . < iℓ in R,
where we take the empty product to be 1. (Note that we do not assume that q is an integer.)

The ℓ = 0 case holds vacuously. Assume that the claim holds for some ℓ ≥ 0 and let
i0 < .. . < iℓ be an increasing sequence of times. Then we have by stationarity (Lemma 26)
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3.2 Moment conditions

and the fact that (Zk
t )t≤0 and (Zk

t )t≥0 are conditionally independent given η and Sk that

E

[
Eη

[ ℓ

∏
j=0

Ai j,n

]q
]
= E

[
Eη

[ ℓ

∏
j=0

Ai j−i0,n

]q
]
≤ E

[
Eη [A0,n]

q ·Eη

[ ℓ

∏
j=1

Ai j,n

]q
]
.

Applying Hölder’s inequality and the induction hypothesis yields that

E

[
Eη

[ ℓ

∏
j=0

Ai j,n

]q
]
≤ E

[
Eη [A0,n]

q(ℓ+1)
]1/(ℓ+1)

E

[
Eη

[ ℓ

∏
j=1

Ai j,n

]q(ℓ+1)/ℓ
]ℓ/(ℓ+1)

≤
(

b∥η∥q(ℓ+1)

n

)qℓ

E
[
Eη [A0,n]

q(ℓ+1)
]1/(ℓ+1)

. (3.7)

Conditioned on η and Z0 = Sk, the indicator random variable A0,n is equal to 1 if and only
if at least one of the Poisson clocks attached to an edge incident to Z0 rings in the interval
[−b/n,0], so that

Eη [A0,n] = 1− exp
[
−
∫ 0

−b/n
ηt(Z0)dt

]
≤
∫ 0

−b/n
ηt(Z0)dt

and hence by stationarity of η that

E
[
Eη [A0,n]

q(ℓ+1)
]
≤ E

[(∫ 0

−b/n
ηt(Z0)dt

)q(ℓ+1)
]
≤
(

b∥η∥q(ℓ+1)

n

)q(ℓ+1)

.

Substituting this estimate into (3.7) completes the induction step and hence the proof of
(3.6).

Proof of Proposition 25. Fix b > 0. Lemma 27 implies that the first moment of
max0≤t≤b d(Zk

t ,Sk) ≤ Nk[0,b] is bounded above uniformly in k. We also note that for any
fixed distance l > 0 the probability that the distance between Sk and the boundary of Bk is
less than l decreases to zero as k tends to infinity. Combining these two observations, the
probability that Zk−Sk hits the boundary of Bk−Sk before time b tends to zero as k→ ∞.

Since Zk and Xk are equal up to the first time the boundary is hit, and, by stationarity, the law
of (Xk

t −Sk)0≤t≤b is equal to the law of (Xt)0≤t≤b, it follows that (Zk
t −Sk)0≤t≤b converges

in distribution to (Xt)0≤t≤b as k→ ∞. It follows that the law of (Nk[a,b])0≤a≤b converges
weakly to the law of (N[a,b])0≤a≤b, and hence by Fatou’s lemma that

E [N[a,b]p]≤ liminf
k→∞

E [Nk[a,b]p]≤
p

∑
ℓ=1

{
p
ℓ

}
ℓ!|a−b|ℓ∥η∥ℓℓ,
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Stationary Random Environments

where the second inequality follows by Lemma 27.

3.2.2 Diffusive upper bounds via Markov-type inequalities

In this section we use Markov-type inequalities to establish diffusive upper bounds on the
displacement of random walks in stationary reversible Markovian environments, generalising
an argument of Peres, Stauffer, Steif [292, Theorem 1.9] from the setting of dynamical
percolation. To do this, we will need a version of the Markov-type inequality that applies
to Markov processes defined on uncountable state spaces and that need not be well-defined
pointwise. The proof of this inequality is in fact very similar to the usual discrete-time
proof of Naor, Peres, and Sheffield [281] as presented in [259, Lemma 13.15]. Markov-type
inequalities were first studied by Keith Ball in his work on the Lipschitz extension problem
[40], and have recently found many important applications in probability theory including
e.g. [149, 173, 244, 292, 293].

We now introduce the relevant definitions. Let X be a Polish space, and let Z =Z (R,X)
be the set of Borel-measurable functions from R to X modulo almost-everywhere equivalence.
For each s ∈ R we define the time-shift τs : Z →Z by τsζ (t) = ζ (t− s) for every ζ ∈Z

and t ∈ R, and define the reversal R : Z →Z by R(ζ )(t) = ζ (−t) for every ζ ∈Z and
t ∈ R. Let Z be a random variable taking values in Z , and for each a < b let F[a,b] be the
σ -algebra generated by the restriction of Z to [a,b]. We say that Z is a Markov process
if F[a1,a2] and F[c1,c2] are conditionally independent given F[b1,b2] whenever a2 < b2 and
c1 > b1 (that is, if the past and the future are conditionally independent given the present).
We say that Z is stationary if τsZ has the same distribution as Z for every s ∈ R, and
that Z is reversible if R(Z) and Z have the same distribution. For each t ∈ R, we define
the instantaneous sigma-algebra Ft =

⋂{F[a,b] : a < t < b}, and say that Z is strongly
reversible if the conditional distributions of Z and R(Z) given F0 are the same almost surely.

Proposition 28. Let X be a Polish space, and let Z ∈ Z (R,X) be a stationary, strongly
reversible Markov process. Let d ≥ 1 and let f : Z → Rd be measurable with respect to
the instantaneous sigma-algebra F0 and reversible in the sense that f (Z) = f (R(Z)) almost
surely. Then we have that

E
[

max
0≤m≤n

∥ f (τ2mtZ)− f (Z)∥2
2

]
≤ 25nE

[
∥ f (τtZ)− f (Z)∥2

2

]
. (3.8)

for every n≥ 1 and t > 0 and hence that

E

[
esssup
0≤s≤t

∥ f (τsZ)− f (Z)∥2
2

]
≤ 25t

2
limsup

ε↓0

1
ε
E
[
∥ f (τεZ)− f (Z)∥2

2
]

(3.9)
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3.2 Diffusive upper bounds via Markov-type inequalities

for every t > 0.

Remark 4. If θ is a uniform random element of [0,2π] then (Xt)t∈R = (sin(t +θ))t∈R is a
stationary reversible Markov process X : R→ R that is not strongly reversible and does not
satisfy the conclusions of the Markov-type inequality. Indeed, if we consider the identity
function f : R→ R then

E
[
∥ f (Xt)− f (X0)∥2

2
]
=
∫ 2π

0
[sin(t +θ)− sin(θ)]2 dθ = 2π (1− cos(t)) =Θ(t2) as t ↓ 0,

so that E
[
∥ f (Xnt)− f (X0)∥2

2
]
≫ nE

[
∥ f (Xt)− f (X0)∥2

2
]

when t is small and n is large. Fur-
ther processes with similar properties include e.g. piecewise deterministic Markov processes
and the integrated Ornstein-Uhlenbeck process mod 1.

Proof of Proposition 28. Without loss of generality we may take d = 1, the higher-dimensional
cases following by summing the inequalities (3.8) and (3.9) over the coordinates of f . We
may also assume that f is bounded, truncating f to [−r,r] and using monotone convergence to
take the limit as r→ ∞ otherwise. Note that if θ is a uniform random number in [1/2,1] and
N = N(θ ,n) = ⌈nt/2θ⌉ for each n≥ 1 then max0≤m≤N ∥ f (τ2mθ t/nZ)− f (Z)∥2

2 converges in
probability to esssup0≤s≤t ∥ f (τsZ)− f (Z)∥2

2 as n→ ∞ (this follows by e.g. the Lebesgue
differentiation theorem), so that (3.9) follows from (3.8) and Fatou’s lemma.

The main idea, taken from [281], is to write the maximum we are interested in terms
of two martingales, one going forwards in time and the other backwards in time, and
then use Doob’s L2 maximal inequality. For each t ∈ R, let G→t =

⋂
s>t F(−∞,s] and let

G←t =
⋂

s<t F[s,∞), so that Ft ⊆ G→t ∩G←t for each r ∈ R. Since Z is a Markov process,
Fs and G→t are conditionally independent given Ft when s > t, while Fs and G←t are
conditionally independent given Ft when s< t. Fix t > 0 and n∈N, and for each 1≤m≤ 2n
let

D→m = f (τmtZ)−E
[

f (τmtZ) | G→(m−1)t

]
= f (τmtZ)−E

[
f (τmtZ) |F(m−1)t

]
,

where the almost-sure equivalence of these two quantities follows from the assumption that
Z is a Markov-process and that f is F0-measurable. In particular, the process (D→i )2n

m=1 is a
martingale difference sequence with respect to the filtration (G→mt )

n
m=0. Similarly, for each

1≤ m≤ 2n we define

D←m = f (τ(2n−m)tZ)−E
[

f (τ(2n−m)tZ) | G←(2n−m+1)t

]
= f (τ(2n−m)tZ)−E

[
f (τ(2n−m)tZ) |F(2n−m+1)t

]
.
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As before, the almost-sure equivalence of these quantities follows from the assumption that
Z is a Markov-process and that f is F0-measurable. In particular, the process (D←m )2n

m=1 is a
martingale difference sequence with respect to the filtration (G←(2n−m)t)

n
m=0. Moreover, for

each 2≤ m≤ 2n we have that

D→m −D←2n−m+2 = f (τmtZ)− f (τ(m−2)tZ)−E
[

f (τmtZ)− f (τ(m−2)tZ) |F(m−1)t
]

= f (τmtZ)− f (τ(m−2)tZ) (3.10)

almost surely, where we used stationarity and strong reversibility to deduce that f (τmtZ) and
f (τ(m−2)tZ) have the same conditional distribution given F(m−1)t almost surely and hence
that the central conditional expectation is almost surely zero. We obtain by algebra that

f (τ2ktZ)− f (Z) =
k

∑
m=1

D→2m−
k

∑
m=1

D←n−2m+2

for every 1≤ k ≤ n. It follows that

max
0≤k≤n

| f (τ2ktZ)− f (Z)| ≤ max
0≤k≤n

∣∣∣∣∣ k

∑
m=1

D→2m

∣∣∣∣∣+ max
0≤k≤n

∣∣∣∣∣ k

∑
m=1

D←2n−2m+2

∣∣∣∣∣
≤ max

0≤k≤n

∣∣∣∣∣ k

∑
m=1

D→2m

∣∣∣∣∣+ max
0≤k≤n

∣∣∣∣∣ k

∑
m=1

D←2m

∣∣∣∣∣+
∣∣∣∣∣ n

∑
m=1

D←2m

∣∣∣∣∣
and hence by Cauchy-Schwarz that

max
0≤k≤n

| f (τ2ktZ)− f (Z)|2 ≤ 5
2

max
0≤k≤n

∣∣∣∣∣ k

∑
m=1

D→2m

∣∣∣∣∣
2

+
5
2

max
0≤k≤n

∣∣∣∣∣ k

∑
m=1

D←2m

∣∣∣∣∣
2

+5

∣∣∣∣∣ n

∑
m=1

D←2m

∣∣∣∣∣
2

.

Applying Doob’s L2 maximal inequality and the orthogonality of martingale differences, we
obtain that

E
[

max
0≤k≤n

| f (τ2ktZ)− f (Z)|2
]
≤ 10

n

∑
m=1

E
[
(D→2m)

2
]
+15

n

∑
m=1

E
[
(D←2m)

2
]
.
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3.2 Diffusive upper bounds via Markov-type inequalities

Using stationarity and reversibility once more, we obtain that

E
[

max
0≤k≤n

| f (τ2ktZ)− f (Z)|2
]
≤ 25nE

[
( f (τtZ)−E [ f (τtZ) |F0])

2
]

=25nE
[
( f (τtZ)− f (Z)−E [ f (τtZ)− f (Z) |F0])

2
]

=25nE [Var( f (τtZ)− f (Z) |F0)]≤ 25nVar( f (τtZ)− f (Z)),

which implies the claim.

Proposition 28 has the following corollary for random walks in reversible random envi-
ronments.

Corollary 29. Let d ≥ 1, let η be a stationary, strongly reversible Markovian random
environment on Zd and let X = (Xt)t∈R be the associated random walk started at the origin
at time zero. If ∥η∥2 < ∞, then

E
[

max
−t≤s≤t

∥Xs−X0∥2
2

]
≤ 25t ∥η∥1

for every t ≥ 0.

Proof. Let k ≥ 1 and let (Zk
t )t∈R be the censored random walk started at a uniform random

element Sk of Bk as in Section 3.2.1. By Lemma 26, (ηt ,Zk
t ) is a stationary Markov process.

Moreover, if we consider this process to take values in the space of measurable functions
Z =Z (R,REd×Zd) then it is strongly reversible: this follows by time-reversal equivariance
of F and the fact that, given η , the reversed Poisson process R(U) has the same conditional
distribution as a Poisson process with intensity R(η). Thus, we may apply Proposition 28 to
the function f : Z → Rd given by f (ω,ζ ) = ζ0, to obtain that

E
[

max
0≤s≤t

∥Zk
t −Zk

0∥2
2

]
≤ 25t

2
limsup

ε↓0

1
ε
E
[
∥Zk

ε −Zk
0∥2

2

]
for every t > 0 and k ≥ 1. Since the Euclidean displacement is trivially bounded by the total
number of jumps, we obtain that

E
[

max
0≤s≤t

∥Zk
t −Zk

0∥2
2

]
≤ 25t

2
limsup

ε↓0

1
ε
E
[
Nk[0,ε]2

]
≤ 25t

2
limsup

ε↓0

1
ε

(
ε∥η∥1 +2ε

2∥η∥2
2
)
=

25t
2
∥η∥1.
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Proof of the main theorem

Taking the limit as k→ ∞, it follows by a similar weak convergence and Fatou argument to
that used in the proof of 25 that

E
[

max
0≤s≤t

∥Xt−X0∥2
2

]
≤ 25t

2
∥η∥1

for every t ≥ 0 also. The claimed two-sided version of this inequality follows by reversibility.

Remark 5. It has been pointed out to us by a referee that it should be possible to prove
diffusive upper bounds using the Kipnis-Varadahn method of martingale approximation of
additive functionals of reversible Markov processes [31, 220]. We prefer to use Markov-type
inequalities as they are self-contained and more familiar to us, and hope that we will help
popularize the use of these powerful inequalities within the RWRE community. Let us remark
further that Markov-type inequalities are particularly useful for obtaining sharp quantitative
control of the limiting variance of RWRE processes, and indeed will be used in forthcoming
work of the second author to study the asymptotic diffusivity of random walks on slightly
supercritical percolation clusters.

3.3 Proof of the main theorem

In this section will will prove Theorem 20 and its corollaries. We begin with the following
general criterion for infinite collisions at integer times, from which our main theorems will
be deduced. Recall that we write Eη for conditional expectations given the environment η .

Proposition 30. Let d ≥ 1, let η : R×Ed → [0,∞) be a stationary, non-explosive random
environment on Zd and let (Xt)t∈R and (Yt)t∈R be random walks in η , both started at the
origin at time zero, that are conditionally independent given η . Then we have the implication(

Eη
∑
n≥0

1{X−n=Y−n} = ∞ almost surely
)
⇒
(

∑
n≥0

1{Xn=Yn} = ∞ almost surely
)
. (3.11)

The proof of this proposition is adapted from the methods of [195], and relies on the
mass-transport principle for Zd . Recall that a function f : Zd×Zd → [0,∞] is said to be a
transport function if it is diagonally invariant in the sense that f (x,y) = f (x+ z,y+ z) for
every x,y,z ∈ Zd . The mass-transport principle for Zd states that

∑
x∈Zd

f (0,x) = ∑
x∈Zd

f (x,0).
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for every transport function f .

Proof. Suppose that Eη
∑n≥01{X−n=Y−n} = ∞ almost surely. Recall that Pη

t1,t2(·, ·) denotes the
transition probabilities of the random walk conditional on the environment η . For each u∈Zd

and n ∈ Z we let qη

fin(u,n) denote the conditional probability given η that two conditionally
independent random walks started at the space-time location (u,n) occupy the same position
for only finitely many positive integer times m≥ n, and let qη

0 (u,n) denote the conditional
probability that the two walks started at (u,n) do not occupy the same position at any integer
time strictly greater than n. Decomposing according to the last integer time at which the two
walks occupy the same position, and where they do so, we get that

qη

fin(u,n) = ∑
v∈Zd

∑
m≥n

Pη
n,m(u,v)

2qη

0 (v,m).

By space-shift invariance, f (u,v) = ∑m≥0E
[
Pη

0,m(u,v)
2qη

0 (v,m)
]

is a transport function and
we can apply the mass-transport principle to get that

E
[
qη

fin(0,0)
]
= E

[
∑

v∈Zd
∑

m≥0
Pη

0,m(0,v)
2qη

0 (v,m)

]
= E

[
∑

v∈Zd
∑

m≥0
Pη

0,m(v,0)
2qη

0 (0,m)

]
,

and hence by time-shift invariance applied to each term that

E
[
qη

fin(0,0)
]
= E

[
∑

v∈Zd
∑

m≥0
Pη

−m,0(v,0)
2qη

0 (0,0)

]

= E

[
qη

0 (0,0) ∑
v∈Zd

∑
m≥0

Pη

0,−m(0,v)
2

]
= E

[
qη

0 (0,0)E
η

[
∑
n≥0

1{X−n=Y−n}

]]
.

(3.12)

Since qη

fin(0,0) is at most one and Eη
∑n≥01{X−n=Y−n} = ∞ a.s. by assumption, we must have

that qη

0 (0,0) = 0 a.s. and hence that qη

fin(0,0) = 0 a.s. also. This implies the claim.

Next, we note that infinite collisions at infinite times quite generally implies that the
Lebesgue measure of the set of all positive collision times is infinite almost surely.

Lemma 31. Let d ≥ 1, let η : R×Ed → [0,∞) be a stationary, non-explosive random
environment on Zd and let (Xt)t∈R and (Yt)t∈R be random walks in η , started at x and y at
time zero, that are conditionally independent given η . If the set {n ∈N : Xn =Yn} has infinite
cardinality almost surely, then the set {t ∈ [0,∞) : Xt = Yt} has infinite Lebesgue measure
almost surely.
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Proof of the main theorem

Proof. Let U1 and U2 be two conditionally independent Poisson processes with intensity η

and let X s = F0,s(U1) and Y s = F0,s(U2) for each s ∈ R. It follows by stationarity of η that
the law of (X s,Y s) does not depend on s. Let T be the infimal positive time at which either
of the walks X0 or Y 0 takes a jump, so that 0 < T ≤ ∞ almost surely and (X s,Y s) = (X0,Y 0)

for all 0≤ s < T . Then we have that

Leb{t ∈ [0,∞) : X0
t = Y 0

t }=
∫ 1

0

∣∣{n ∈ N : X0
n+s = Y 0

n+s}
∣∣ds

≥
∫ T∧1

0

∣∣{n ∈ N : X0
n+s = Y 0

n+s}
∣∣ds =

∫ T∧1

0

∣∣{n ∈ N : X s
n+s = Y s

n+s}
∣∣ds.

Since T > 0 almost surely and the integrand
∣∣{n ∈ N : X s

n+s = Y s
n+s}

∣∣ is almost surely infinite
for each s ≥ 0, it follows by Tonelli’s theorem that both sides are almost surely infinite,
completing the proof.

We now apply Proposition 107 and Lemma 31 to prove Theorems 20 and 21.

Proof of Theorem 21. For each K < ∞ and δ > 0, let AK,δ ⊆Ω be the set of environments
η such that

limsup
n→∞

min
0≤m≤n

Pη
(
∥X−m∥2

2 ≤ Kn
)
≥ δ .

By assumption, for every ε > 0 there exists K and δ such that P(η ∈ AK,δ )≥ 1− ε . Thus,
in view of Proposition 107 and Lemma 31, it suffices to prove that if K < ∞ and δ > 0 then

∑
∞
m=1Pη(X−m = Y−m) = ∞ for every environment η ∈ AK,δ .

Fix K < ∞ and δ > 0 and suppose that η ∈ AK,δ holds. We can recursively define a
sequence of positive integer times n1,n2, . . ., depending on η , such that ni+1 ≥ 2(ni +1) for
each i≥ 1 and

min
0≤m≤ni

Pη
(
∥X−m∥2

2 ≤ Kni
)
≥ δ

2

for every i≥ 1. For each r ≥ 1, let Λr ⊆ Z2 be the set of lattice points with Euclidean norm
at most r. Then there exists a constant c such that

Pη(X−m = Y−m)≥ ∑
x∈Λr

Pη

0,−m(0,x)
2 ≥ 1
|Λr|

[
∑

x∈Λr

Pη

0,−m(0,x)

]2

≥ c
r2P

η(X−m ∈Λr)
2

62



for every m,r ≥ 1 and hence that

ni+1

∑
m=ni+1

Pη(X−m = Y−m)≥
c

Kni+1

ni+1

∑
m=ni+1

Pη(∥X−m∥2
2 ≤ Kni+1)

2

≥ c
2K

min
1≤m≤ni+1

Pη
(
∥X−m∥2

2 ≤ Kni+1
)2 ≥ cδ 2

8K

for every i≥ 1. Summing over i≥ 1, it follows that ∑
∞
m=1Pη(X−m = Y−m) = ∞ as claimed.

Proof of Theorem 20. It suffices to prove that the conditions (A1) and (A2) each imply the
weak diffusive estimate on the backwards process (3.1) needed to apply Theorem 21. This
is obvious in the case (A2) that the backwards process satisfies a (quenched or annealed)
invariance principle with Brownian scaling. (It is not a problem if the limiting covariance
is random.) In the case (A1) that the environment is strongly reversible and Markovian, we
have by Markov’s inequality and Corollary 29 that

P
(

min
m≤n

Pη
(
∥X−m∥2

2 ≤ Kn
)
≤ δ

)
≤ P

(
Pη

(
max
m≤n
∥X−m∥2

2 > Kn
)
≥ 1−δ

)
≤ P

(
Eη

[
max
m≤n
∥X−m∥2

2

]
≥ K(1−δ )n

)
≤ 25

K(1−δ )
∥η∥1

for every K < ∞, δ > 0, and n≥ 1, and hence by Fatou’s lemma that

P
(

limsup
n→∞

min
m≤n

Pη
(
∥X−m∥2

2 ≤ Kn
)
≤ δ

)
≤ 25

K(1−δ )
∥η∥1

for every K < ∞ and δ > 0. This implies the claim.

We next prove Proposition 24, which concerns the one-dimensional case.

Proof of Proposition 24. Bounding the total displacement by the number of jumps, Proposi-
tion 25 implies that Emax0≤m≤n ∥X−m∥ ≤ EN[−n,0] ≤ n∥η1∥ for every n ≥ 1. In the one
dimensional case, this linear bound is sufficient to guarantee that Eη

∑n≥01(X−n = Y−n) = 0
almost surely; the details are very similar to the proof of Theorem 21 and are omitted.

It remains only to prove Corollary 22, which concerns the case that the two walks do not
start at the same vertex, and will be deduced from Theorems 20 and 21 together with the
following general lemma.
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Proof of the main theorem

Lemma 32. Let d ≥ 1 and let η : R×Ed→ [0,∞) be an irreducible, time-ergodic, stationary
random environment on Zd . Let (Xt)t∈R, (X ′t )t∈R, (Yt)t∈R, and (Zt)t∈R be random walks in
η , started at some vertices x, x, y, and z at time zero respectively, that are conditionally
independent given η . If {n ∈ N : Xn = X ′n} is infinite almost surely, then {n ∈ N : Yn = Zn} is
infinite almost surely.

Proof of Lemma 32. By stationarity, we can without loss of generality assume that x = y = 0.
For each z∈Zd and t ∈R we define Az,t to be the set of environments η for which Pη

t (0,z)>
0. We will first use irreducibility and time-ergodicity of η to prove that P(Az,t)→ 1 as t→∞

for each fixed z ∈ Zd . Irreducibility give us that there exists some t0 > 0 such that η ∈ Az,t0

with positive probability. We deduce by stationarity and time-ergodicity that τnη ∈ Az,t0 for
infinitely many positive integers almost surely, and hence that P(there exists m≤ t such that
τmη ∈ Az,t0)→ 1 as t→ ∞. Since the walk always has a positive conditional probability not
to move in any given time interval, we have that

τtη ∈ Az,t0 ⇐⇒ Pη

t,t+t0(0,z)> 0⇒ Pη

0,t+t0
(0,z)> 0 ⇐⇒ η ∈ Az,t+t0

for every t ≥ 0, and hence that

P(η ∈ Az,t+t0)≥ P(there exists m≤ t such that τmη ∈ Az,t0)→ 1

as n→ ∞ as claimed.
For each n ∈ N and η ∈ Az,n, the event Bu,n = {Xn = 0,X ′n = z} has positive conditional

probability. Let Y ′ and Z′ be random walks on η , started at (0,n) and (z,n), that are
conditionally independent of each other and of (X ,X ′) given η , so that (τnY ′,τnZ′) has the
same marginal distribution as (Y,Z). We have by the Markov property that

Pη

(
∑

m≥0
1{Y ′m=Z′m} = ∞

)
= Pη

(
∑

m≥n
1{Xm=Ym} = ∞

∣∣Bu,n

)
= 1

almost surely on the event Az,n, and hence by stationarity that

P

(
∑

m≥0
1{Ym=Zm} = ∞

)
= P

(
∑

m≥0
1{Y ′m=Z′m} = ∞

)
≥ P(Az,n)

for every n≥ 1. The claim follows since the right hand side tends to 1 as n→ ∞.
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Chapter 4

[C] What Are the Limits of Universality?

Abstract. It is a central prediction of renormalisation group theory that the critical behaviours
of many statistical mechanics models on Euclidean lattices depend only on the dimension
and not on the specific choice of lattice. We investigate the extent to which this universality
continues to hold beyond the Euclidean setting, taking as case studies Bernoulli bond
percolation and lattice trees. We present strong numerical evidence that the critical exponents
governing these models on transitive graphs of polynomial volume growth depend only on
the volume-growth dimension of the graph and not on any other large-scale features of the
geometry. For example, our results strongly suggest that percolation, which has upper-critical
dimension six, has the same critical exponents on Z4 and the Heisenberg group despite
the distinct large-scale geometries of these two lattices preventing the relevant percolation
models from sharing a common scaling limit. On the other hand, we also show that no such
universality should be expected to hold on fractals, even if one allows the exponents to depend
on a large number of standard fractal dimensions. Indeed, we give natural examples of two
fractals which share Hausdorff, spectral, topological, and topological Hausdorff dimensions
but exhibit distinct numerical values of the percolation Fisher exponent τ . This gives strong
evidence against a conjecture of Balankin et al. [Phys. Lett. A 2018].

4.1 Introduction

For many models of statistical physics, the critical behaviour of the system is believed
to be dependent solely on the large-scale geometry of the substrate, independently of the
microscopic details of its geometry. The behaviour at criticality is encoded in a set of critical
exponents which describe how properties of the model are dependent on the length scale at
which the system is observed. These critical exponents are often summarised as a function of
the dimension of the substrate under consideration, and, fascinatingly, apparently unrelated
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models are often found to share the same critical exponents. This phenomenon is known as
universality, and systems with identical exponents are grouped together into universality
classes. For background on the universality phenomenon and its renormalization group
interpretations, see e.g. [98, 187, 264].

Underlying the phenomenon of universality is the fact that Euclidean lattices have a
single well-defined dimension which determines all their large-scale geometric features via
their common scaling limit Rd . In contrast, it is possible in more general settings to have
many potentially inequivalent notions of dimension, and even to have multiple substrates
for which all these notions of dimension agree but which nevertheless have highly distinct
large-scale geometries. This raises several interesting questions: can we characterise the set
of geometric features of the substrate on which the critical exponents depend? It is possible
that they depend only on the dimensions? To what extent do the answers to these questions
depend on the model under consideration? In other words, how universal is universality?

In this paper, we study these questions in two classes of geometric setting: transitive
(possibly non-Euclidean) lattices with polynomial volume growth and self-similar fractals.
Our results in these two cases push in opposite directions. For transitive lattices we present
clear numerical evidence that the critical exponents depend only on the dimension, suggesting
that a very strong form of universality should hold in this setting. In stark contrast, we
construct two self-similar fractals for which a large number of standard dimensions coincide
but which do not appear to have the same critical exponents for Bernoulli bond percolation,
showing that no such universality should be expected to hold in this case.

4.1.1 Transitive graphs of polynomial growth

We now introduce the class of transitive graphs that we will study. Recall that a graph is
said to be transitive if any vertex can be mapped to any other vertex by a symmetry of the
graph. A transitive graph has polynomial volume growth if there exists a constant C such
that |B(v,r)| ≤CrC for every r≥ 1, where B(v,r) is the graph distance ball of radius r around
the vertex v. While the hypercubic lattices Zd are trivially seen to be transitive graphs of
polynomial volume growth, there are also many examples of highly non-Euclidean transitive
graphs of polynomial volume growth. Indeed, the possible large scale geometries of these
graphs are classified by famous theorems of Gromov [169] and Trofimov [313] which imply
that every transitive graph of polynomial volume growth is quasi-isometric to a Cayley graph
of a torsion-free nilpotent group. A theorem of Bass [53] and Guivarc’h [171] then implies
that every transitive graph of polynomial growth has a well-defined integer dimension d
such that

C−1rd ≤ |B(v,r)| ≤Crd
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4.1 Transitive graphs of polynomial growth

a

c

b

kk

k

k2

Fig. 4.1 The non-Euclidean geometry of the Heisenberg group. Left: A section of a Cayley
graph of the Heisenberg group with generators a, b, and c = [a,b]. This graph may be
obtained from the cubic lattice Z3 by applying a vertical shear of coefficient n to each of the
hyperplanes {(a,b,c) : a = n}. (Note that the a↔ b asymmetry of this picture arises from
our choice to take the right Cayley graph rather than the left Cayley graph.) Right: One may
reach (0,0,k2) from (0,0,0) in 4k steps by first going k steps in the a direction, then k steps
in the direction (0,1,k), then k steps in the negative a direction, then finally coming back k
steps in the negative b direction. This leads to the Heisenberg group having volume-growth
dimension 4 rather than 3. In fact, the graph metric on the Heisenberg group is comparable
to the quasi-norm ∥(a,b,c)∥= |a|+ |b|+ |c|1/2. To illustrate just how alien the geometry of
this space is, let us mention a theorem of Monti and Rickley [276] which states that any three
non-collinear points in the continuum Heisenberg group have the entire space as their convex
hull.

for some constant C and every r ≥ 1. This same dimension d also arises as the spectral and
isoperimetric dimensions of the graph by a theorem of Coulhon and Saloff-Coste [107].

In the low-dimensional cases 1 ≤ d ≤ 3, it is a consequence of the Bass-Guivarc’h
formula and the classification of low-dimensional nilpotent Lie algebras [114] that there is
only one possible large-scale geometry, namely that of Zd ≈ Rd . For d = 4, there are exactly
two possible large-scale geometries exemplified by the abelian group Z4 and the Heisenberg
group (Figure 4.1), i.e. the 3×3 matrix group

H =

{1 a c
0 1 b
0 0 1

 : a,b,c ∈ Z

}
.

The fact that Heisenberg group has distinct large-scale geometry from Z4 is evidenced by
the fact that its scaling limit is not R4 but is instead the continuum Heisenberg group
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equipped with its Carnot–Carathéodory metric – a self-similar sub-Riemannian manifold
that is homeomorphic to R3 but has Hausdorff dimension 4 [240]. For d = 5 there are again
exactly two quasi-isometry classes, namely those of Z5 and H ×Z. In higher dimensions the
number of possibilities is much larger, and indeed the classification of possible geometries
is not completely understood [106, Section 19.7]. As with the Heisenberg and continuum
Heisenberg groups above, each finitely generated torsion-free nilpotent group has an associ-
ated nilpotent Lie group, known as its Mal’cev completion, which contains the group as a
lattice and which carries a self-similar sub-Riemannian metric arising as the scaling limit of
its Cayley graphs by a theorem of Pansu [285]. Further background on these topics can be
found in the surveys [106, 129, 170, 240].

In this paper we simulate critical Bernoulli bond percolation on H and H ×Z, and
uniform lattice trees on H , H ×Z, and two non-Euclidean seven-dimensional geometries
known as G4,3 and G5,8. Here, a uniform lattice tree is simply a finite subtree of the lattice
chosen uniformly at random among those subtrees that contain the origin and have some
fixed number of vertices n; detailed definitions of both models and of the graphs we work
with are given in Section 4.2 and Section 4.3. As summarised in Table 4.1, the numerical
values of the critical exponents we obtain are in good agreement with previous results for
Euclidean lattices, providing strong evidence in favour of the following conjecture:

Conjecture 33. The critical exponents describing Bernoulli percolation and lattice trees on
transitive graphs of polynomial growth are each determined by the volume-growth dimension
of the graph.

We also expect similar conjectures to hold for many other models; see Section 4.5 for
further discussion. Note that the exponent estimates reported in Table 4.1 are only one facet
of the evidence we provide in favour of Conjecture 33, with a more nuanced perspective on
the data presented in Section 4.3.

Conjecture 33 is uncontroversial in high dimensional settings: The critical exponents
describing percolation and lattice trees are strongly believed to take their mean-field values
above the upper-critical dimensions of dc = 6 and dc = 8 respectively [177, 178] and the
heuristic arguments in support of this do not rely on the Euclidean geometry of Zd in any
way. (Hara and Slade’s rigorous derivation of mean-field behaviour for these models in
high dimensions via the lace expansion [177, 178] does however rely on specific features of
Euclidean geometry, and it is an open problem to extend their analysis to the non-Euclidean
case.) For models with dc = 4 such as the Ising model, ϕ4 field theory, the self-avoiding walk,
and the uniform spanning tree, the dearth of possible low-dimensional geometries causes
the analogous conjecture to reduce the standard universality principle for Euclidean lattices.
Indeed, we chose to study lattice trees in part because their high upper-critical dimension
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4.1 Transitive graphs of polynomial growth

(a) CRITICAL EXPONENT ESTIMATES FOR PERCOLATION.

H Z4 H ×Z Z5 d ≥ 6

τ
cluster-size
distribution 2.315

2.313 [287]
2.314 [322]
2.311 [272]
2.314 [324]
2.312 [162]

2.420

2.412 [287]
2.422 [272]
2.418 [324]
2.417 [162]

2.5

σ
size of

large clusters 0.476
0.480 [324]
0.474 [162] 0.499

0.494 [324]
0.493 [162] 0.5

(b) CRITICAL EXPONENT ESTIMATES FOR LATTICE TREES.

H Z4 H ×Z Z5 G4,3 G5,8 Z7 d ≥ 8

ρ
intrinsic
radius 0.595

0.609 (new)
0.607 [323] 0.570

0.576 (new)
0.578 [323] 0.526 0.524 0.530 [323] 0.5

ν
extrinsic
radius 0.420

0.417 (new)
0.415 [323]
0.416 [186]

0.358
0.358 (new)
0.359 [323]
0.359 [186]

0.286 0.283
0.291 [323]
0.283 [186] 0.25

Table 4.1 A summary of our results for transitive graphs of polynomial volume growth. All
estimates are presented to three decimal places for ease of comparison. For percolation, the
exponents τ and σ heuristically describe the distribution of the size of the cluster of the
origin at and near criticality via the ansatz Pp(|K| = s) ≈ s1−τg(|p− pc|1/σ · s) for some
rapidly decaying function g. These exponents are equivalent to those known as δ and ∆

by the relations τ = 2+ 1/δ and σ = 1/∆ . For lattice trees, the exponents ρ and ν are
defined so that a typical n-vertex lattice tree will have intrinsic and extrinsic radii of order nρ

and nν respectively. Note that Gracey’s estimates [162] are obtained using (non-rigorous)
renormalization group methods rather than numerically, and that the percolation estimates
credited to Zhang et al. [324] were computed from their estimates of the exponents ν and
d f using the scaling relations τ − 1 = d/d f and σ = 1/νd f . In each case, our results are
consistent with those obtained for the Euclidean lattices of corresponding dimension, with
the small differences in numerical values reasonably attributed to finite-size effects and noise.

allowed for the analysis of a larger number of interesting examples. (One could however
make a similar universality conjecture concerning the logarithmic corrections to scaling at
the upper-critical dimension, so that our conjectures would remain interesting for, say, the 4d
Ising model. We are inclined to believe such a conjecture but have not tested it numerically.)
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PERCOLATION EXPONENTS ON SELF-SIMILAR FRACTALS.

Dimension Exponent
Hausdorff Spectral Topological Top. Hausdorff τ σ

H1 3 7/3 2 3 2.195(5) ?
H2 3 7/3 2 3 2.151(1) 0.385(5)
H3 8 5 4 8 2.66(1) 0.41(1)
H4 8 5 4 8 ? 0.41(1)

Table 4.2 Summary of results of percolation on self-similar fractals. Note the unambiguous
separation in numerical values of the Fisher exponent τ between the two equidimensional
fractals H1 and H2 and the coincidence in the numerical values of σ for the two fractals
H3 and H4. We found the finite-size effects to be much larger on these graphs than on the
transitive graphs we considered and – despite our considering clusters of up to 109 vertices
– for some graphs the relevant log-log plots were too far from linear to reliably extract any
exponent value at all. Again, the more detailed data presented in Section 4.4 give a much
more complete picture of the situation than the raw exponent estimates presented here. In
particular, we find the data presented in Figure 4.11 to demonstrate very convincingly that
H1 and H2 have distinct values of τ .

We note that for percolation our simulations on H and H ×Z exhaust all available
non-Euclidean geometries below the upper-critical dimension dc = 6, so that our results lend
particularly strong support to the conjecture in this case.

If the conjecture is true, it may be difficult to explain using existing methodology. Indeed,
the equality of critical exponents on different Euclidean lattices of the same dimension is
often explained as a consequence of the stronger statement that the two models have the
same scaling limit. In our setting, however, it is certainly not the case that e.g. percolation
on Z4 and H have a common scaling limit, since one scaling limit would be defined on
R4 while the other would be defined on the continuum Heisenberg group. Again, we stress
that the continuum Heisenberg group is self-similar and non-Riemannian, so that it is not
approximated by Euclidean space on any scale. In light of these difficulties, we are optimistic
that further investigation into Conjecture 33 may also significantly deepen our understanding
of the original Euclidean models.

One very interesting possibility is that the intrinsic geometries of the models share a
common scaling limit across different geometries of the same dimension, even though the
extrinsic scaling limits must be different. For example, it may be that large uniform lattice
trees on Z4 and the Heisenberg group have a common scaling limit when considered as
abstract metric trees. The simulations presented in Figure 4.2 show that such a conjecture is
at least plausible and is worthy of further investigation in future work. Still, such a conjecture
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4.1 Transitive graphs of polynomial growth

(a) THE FOUR-DIMENSIONAL HYPERCUBIC LAT-
TICE Z4.

(b) THE FOUR-DIMENSIONAL HEISENBERG

GROUP H .

(c) THE FIVE-DIMENSIONAL HYPERCUBIC LAT-
TICE Z5.

(d) THE FIVE-DIMENSIONAL PRODUCT SPACE

H ×Z.

(e) THE SEVEN-DIMENSIONAL GEOMETRY G4,3. (f) THE SEVEN-DIMENSIONAL GEOMETRY G5,8.

Fig. 4.2 A visual cross-comparison of large, approximately uniform lattice trees in six dif-
ferent geometries, each with 60,000 vertices. These trees were sampled via the MCMC
method described in Section 4.2.2 and drawn in the plane using Mathematica’s SpringElectri-
calEmbedding algorithm with parameter RepulsiveForcePower =−3. Note that this is not
an isometric embedding, and tends to distort distances rather severely. The difference in
exponents between the low-dimensional and high-dimensional cases manifests itself in the
seven-dimensional lattice trees looking much “bushier" than their four-dimensional lattice
tree counterparts. The reader may like to compare these figures to the simulations of Al-
dous’s continuum random tree [4] that are available on e.g. Igor Kortchemski’s webpage
https://igor-kortchemski.perso.math.cnrs.fr/images.html, noting that the continuum random
tree arises as the scaling limit of large uniform lattice trees in dimensions eight and above
[118].
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would be difficult to confirm in light of the distinct extrinsic scaling limits and would not
obviously explain e.g. the coincidence of exponents describing the extrinsic geometry of
lattice trees.

We remark that there is an extensive literature investigating critical behaviour on hy-
perbolic lattices including e.g. [35, 62, 158, 191, 224, 265, 271]. These lattices are very
different from the non-Euclidean lattices we consider in this paper. Indeed, hyperbolic lattices
are of infinite-dimensional volume growth and are therefore expected to exhibit mean-field
behaviour for both models; this has been proven rigorously for percolation on arbitrary
hyperbolic lattices in [191] and for lattice trees on certain hyperbolic lattices by Madras and
Wu [265]. We believe our paper is the first to systematically investigate critical exponents on
transitive non-Euclidean lattices below the upper-critical dimension.

4.1.2 Self-similar fractals

The self-similar Carnot groups arising as scaling limits of transitive graphs of polynomial
growth can be thought of as very special examples of fractal spaces. As such, it is natural
to wonder to what extent the phenomena discussed above extend to more general fractals.
The situation here is more complicated. We will restrict our attention in the fractal case
to Bernoulli percolation, where previous works investigating the effect of fractal geometry
on percolation critical probabilities and critical exponents include [37, 38, 61, 86, 152–
157, 181, 182, 250, 275, 315]. In these works, percolation on families of fractals with
varying fractal and spectral dimensions is investigated, with the focus often on Sierpinski-
type fractals. (Of course one does not sample percolation directly on the continuum fractals
but rather on appropriately chosen ‘prefractal’ graphical approximants; we discuss this further
in Section 4.4.) These results demonstrate that, in contrast to our Conjecture 33, percolation
critical exponents on fractals cannot depend solely on the Hausdorff dimension (which is the
most popular continuum analogue of the volume-growth dimension).

Once it is known that universality does not hold across fractals with identical Hausdorff
dimensions, a next natural hypothesis is that critical exponents are instead a function of some
set of properties or dimensions which better capture the geometry of the fractal. A specific
proposal to this effect was made by Balankin et al. [37], who suggested that the critical
exponents should be determined by a set of three fractal dimensions, namely the Hausdorff,
spectral, and topological Hausdorff dimensions. The more general view that the spectral
dimension is important to the determination of critical behaviour has been advocated by
many authors; see the introduction of [273] for an overview.
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4.1 Self-similar fractals

Fig. 4.3 Discrete approximations of the self-similar fractal trees TO (left) and TI (right). Each
tree is constructed as a scaling limit of a recursively defined, self-similar spanning tree of
the square lattice. In the ‘outer’ tree TO, the tree associated to the (n+1)th dyadic scale is
formed by connecting four copies of the scale n tree ‘around the outside’ by adding edges on
the centre left, centre right, and top of the square. In the ‘inner’ tree TI , the tree associated
to the (n+1)th dyadic scale is formed by connecting four copies of the scale n tree ‘in the
middle’ by adding three edges to the centre of the square.

In this paper we make a novel contribution to this problem by cross-comparing percolation
critical exponents between pairs of fractals which are distinct but for which many important
notions of dimension coincide. The specific examples we consider are constructed as
products of various recursively-defined self-similar fractal trees. We use these examples
due to the flexibility of their construction and the ease of computation of their associated
fractal dimensions. The dimensions of the four different fractal products we consider and our
numerical estimates of their percolation critical exponents are summarised in Table 4.2.

We begin by constructing two fractal trees TI and TO, each with Hausdorff dimension
2, such that the two fractal products H1 = TO× [0,1] and H2 = TI × [0,1] share the same
Hausdorff, spectral, topological and topological Hausdorff dimensions. Both trees TI and
TO are defined as scaling limits of self-similar spanning trees of the square lattice Z2 as
depicted in Figure 4.3. We present strong numerical evidence that the two fractals H1 and
H2 have distinct values of the percolation Fisher exponent τ which characterises the cluster
size-distribution at criticality. This provides strong evidence against the aforementioned
conjecture of Balankin et al. [37]. Moreover, since the two fractals we consider are very
similar in a large number of ways beyond these dimensions, our results suggest that any
universality principle applying to fractals must be much weaker than in the transitive case.

73



Models and algorithms

On the other hand, a more positive picture emerges when one considers the critical
exponent σ which characterises the size of the percolation scaling window. Indeed, for H1

and H2 our results were inconclusive but consistent with the hypothesis that the two values
of σ coincide. In order to investigate this potential phenomenon further, we constructed
and analysed two further fractal tree products which we call H3 and H4. As with H1 and
H2, the two fractals H3 and H4 share many notions of dimension despite having distinct
geometries in other regards, but are ‘higher-dimensional’ overall than H1 and H2. We present
strong numerical evidence that H3 and H4 have a shared value of σ . This may be related
to the phenomenon of weak universality as discussed in [274], and weakly suggests that
the exponent σ may indeed be a function of some small set of parameters associated to the
fractal.

Organisation: The rest of the paper is structured as follows: In Section 4.2, we recall
the definitions of the two models we will study and the exponents we wish to compute,
and describe the methodologies used in our simulations. Further details of an improvement
to the invasion percolation methodology are given in Appendix A. In Section 4.3 we give
background on the four geometries H , H ×Z, G4,3, and G5,8 and present our numerical
results regarding percolation and lattice trees in these geometries. In Section 4.4, we describe
the four fractals H1, H2, H3, and H4, and present the relevant numerics. Finally, we summarise
our findings and discuss possible directions for future work in Section 4.5.

4.2 Models and algorithms

In this section, we give relevant background on percolation and lattice trees, and review the
methodology we use to compute the critical exponents describing these models.

4.2.1 Bernoulli bond percolation

Fix p ∈ [0,1]. Given a graph G = (V,E), we attach independent and identically distributed
(i.i.d.) Bernoulli random variables (ωe)e∈E of parameter p to the edges of the graph and say
that an edge e is open if ωe = 1 and closed if ωe = 0. We denote the associated product
probability measure by Pp. Given any vertex v ∈V , we define the cluster Kv of v to be the
set of vertices that are accessible from o by paths consisting only of open edges. Given an
infinite graph G, we define the critical probability pc to be the infimal value of p for which
infinite clusters exist with positive probability. Note that the value of pc depends strongly on
the microscopic details of the graph and is not universal.
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4.2 Bernoulli bond percolation

We now introduce the exponents we consider and some relevant (non-rigorous) scaling
theory, referring the reader to e.g. [163, Chapter 9] for further background. Let o be a fixed
vertex of G, which we regard as the origin. Assuming they are well-defined, the exponents
τ and ρ describe the distribution of the volume and (extrinsic) radius of the cluster of the
origin at criticality by

Ppc(|Ko| ≥ s)≈ s2−τ as s ↑ ∞ and

Ppc(rad(Ko)≥ r)≈ r−1/ρ as r ↑ ∞,

where rad(Ko) is the maximum distance in G between o and another point of Ko. (We keep
the meaning of the symbol ≈ intentionally vague; it should not be read as corresponding
to any specific or consistent notion of asymptotic equivalence.) Below the upper-critical
dimension, these exponents are expected to determine each other via the hyperscaling relation
τ = (2dρ−1)/(dρ−1) [163, Chapter 9]. It is a standard assumption of scaling theory that
there exists a further exponent σ such that

Pp(|Ko|= s)≈ s1−τg±
(
|p− pc|1/σ · s

)
for some rapidly decaying functions g− and g+ describing the cases p ≤ pc and p ≥ pc

respectively. In particular, this ansatz predicts that the probability Pp(|Ko|= n) is of the same
order as its critical value when n≪ |p− pc|−1/σ and is very small when n≫ |p− pc|−1/σ ,
and we think of |p− pc|−1/σ as describing the “typical size of a large finite cluster".

The calculations we perform in this paper will utilise a slightly different approach to
scaling theory, adapted from the presentation of [253], which we now overview. When G
is transitive, we fix an origin vertex o as above and write P≥s = P≥s,pc for the cluster size
distribution at criticality, where P≥s,p = Pp(|Ko| ≥ s). For non-transitive fractals, we take
the origin o to be a vertex selected uniformly at random (in a sense which will be made
precise later), and then define P≥s,p = E[Pp(|Ko| ≥ s)], where E[·] denotes the expectation
with respect to the random origin o. We will assume as a basis for calculations that the
critical cluster size distribution is described by the ansatz

P≥s,pc = A0s2−τ(1+A1s−Ω + · · ·) (4.1)

for some τ,Ω > 0 and A0,A1 ∈ R. The exponent τ is known as the Fisher exponent, and Ω

is the leading correction-to-scaling component whose impact becomes negligible for large s.
Both these exponents are expected to be universal in the sense that they only depend on the
large scale geometry of the graph, whereas the constants Ai are non-universal and will also
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depend on the microscopic geometry of the graph. In order to compute σ , we will assume
similarly that

P≥s,p =C0s2−τ(1+C1(p− pc)sσ + · · ·) (4.2)

for p ̸= pc and values of s that are not too large or small.
We use an algebraic manipulation, as in [253], to derive a more convenient scaling

relation for σ which only relies on properties of the percolation clusters at criticality. Taking
derivatives of Eq. (4.2) with respect to p, we get

dP≥s,p

d p
=C0C1s2−τ+σ + · · · (4.3)

If we let gn,t be the number of possible cluster configurations containing the origin and
exactly n open edges, and with t closed edges adjacent to the cluster, then

P≥s,p = ∑
n≥s

∑
t

gn,t pn(1− p)t .

Taking derivatives with respect to p gives

dP≥s,p

d p
= ∑

n≥s
∑
t

gn,t pn(1− p)t(n
p
− t

1− p

)
=

E[n1n≥s]

p
− E[t1n≥s]

1− p

so that
Epc[n1n≥s]

pc
− Epc [t1n≥s]

1− pc
=C0C1s2−τ+σ + · · · ,

and hence
Epc[n | n≥ s]

pc
− Epc[t | n≥ s]

1− pc
=C1sσ + · · · . (4.4)

As in [253], this will be used as an assumed formula to compute σ using only information at
criticality. Let us note however that the expectation on the left hand side has poor numerical
properties since the associated random variable n/p− t/(1− p) is heavy tailed at criticality.
Indeed, Eq. (4.4) should really be interpreted as a statement about the p ↑ pc limit since the
left hand side is not well-defined at criticality.

Lastly, we define Q≥r = Ppc(rad(Ko)≥ r), and assume the form

Q≥r = F0r−1/ρ(1+F1r−ζ + . . .),

for some ρ,ζ > 0 and F0,F1 ∈ R, where F0 and F1 are not expected to be universal.
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4.2 Bernoulli bond percolation

Methodology. We now describe the methods we used to compute critical exponents for
percolation. Our first step was to estimate the value of the critical probability pc. To do
this, we began by employing the invasion percolation methodology of [271, 272], using the
bulk-to-boundary ratio developed by Leath in [242] as an estimator of the critical probability,
and then using the extrapolation hypothesis developed in [272] to further refine the resulting
estimate. In fact, we implemented a simple improvement to this methodology that resulted in
substantial run-time reductions and which we describe in detail in Appendix A.

Invasion percolation is a stochastic model for the transport of fluid through porous media
[100, 247, 320]. It operates by assigning i.i.d. uniform random variables Ue taking values in
[0,1] to the edges of some graph G with root vertex o. We then define the sequences (en)n≥1,
(Vn)n≥0, (En)n≥0, and (Fn)n≥0 recursively as follows:

1. Start with V0 = {o}, E0 =∅, and F0 = {{x,o} : x∼ o}.
2. At each step n≥ 1, let en be the element of Fn−1 minimizing Ue, let En = En−1∪{e},

let Vn be the set of vertices adjacent to at least one edge of En, and let Fn be the set of
edges that have at least one endpoint in Vn but do not belong to En.

We call Vn the invasion cluster up to time n, and Fn the frontier at time n. The bulk-to-
boundary ratios are given by the random sequence

an =
|En|

|En|+ |Fn|
=

n
n+ |Fn|

.

It is proven in [259, Chapter 11] that limsupn→∞Uen = pc almost surely, and it is believed
that

an→ pc as n→ ∞;

this has been proven [101, 167] for Zd , but it is expected to hold for a much wider range of
graphs. Assuming that this limiting relation holds, one may estimate the critical probability pc

by running invasion percolation for a long time and computing the resulting bulk-to-boundary
ratio.

In [271] this method was improved via the following extrapolation argument. For
invasion percolation on the binary tree, the bulk to boundary ratio can be shown to satisfy the
asymptotics

Ean ≈
pc

1+An−1

for some constant A. The authors of [271] conjecture and verify numerically that for
Euclidean lattices one has the analogous formula

Ean ≈
pc

1+An−δ
(4.5)
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with a high degree of accuracy for some positive constants A and δ . We will assume that
such a formula also holds in our settings and, following [271], use the ansatz

Ean =
pc

1+An−δ (1+Bn−δ ′+Cn−δ ′′+ · · ·)

as a basis from which to calculate pc; this allows us to gather data for a relatively small
number of time-steps and then use curve fitting to give an estimate of pc.

The use of a heap or sorted list for storing/extracting values on the frontier lets us compute
Sn in time O(n logn) and memory O(n). The simple improvement we outline in Appendix
A reduces the size of the sorted list used for the frontier by a power and thus significantly
reduces the running time.

The major advantages of using invasion percolation for computing pc are as follows:

1. It does not require us to store large blocks of the relatively high dimensional lattices
on which we simulate percolation - instead we need only store a number of edges or
vertices which is linear in the number of steps of the algorithm thus far.

2. It does not require us to assume a priori values of any critical exponents, unlike the
methods of [322].

3. It does not require detailed understanding of the geometry of the graph under consid-
eration, unlike the wrapping method used in [283] or the multi-scale analysis used in
[37].

Invasion percolation also allows us to narrow in on a relatively precise value of pc with far
smaller memory and time requirements than by starting from scratch utilizing a logarithmic
search with the Leath algorithm as in [253].

Having estimated pc via invasion percolation as described above, we then used the Leath
algorithm [243] to generate a population of samples for the cluster at the origin. For each
sample, we recorded both the cardinality of the cluster and the number of boundary edges.
For the lattices, we used least-mean-squares to fit the parameters in the following equations,
approximately valid at p≈ pc, to give estimates of τ and σ :

1. log2 P≥s = (2− τ) log2(s)+Bs−Ω +C

2. log2

(
E[n|n≥s]

p − E[t|n≥s]
1−p

)
= σ log2(s)+D.

For the fractals, we plotted

(i) log2 P≥s against log2(s) (ii) log2

(
E[n | n≥ s]

p
− E[t | n≥ s]

1− p

)
against log2(s),
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at p≈ pc and calculated the gradient of the approximately linear sections at large s to give
estimates of τ and σ .

In the case of the non-Euclidean lattices, the values of τ and σ we obtained were very
close to the values in the literature for the corresponding Euclidean lattices. Having obtained
these estimates, we then utilised the methodology of [253, 322] to improve our value for the
critical probability and give further credence to our conclusion. To this end, we sampled
the cluster at the origin using the Leath algorithm at a range of values of p near our initial
estimate of pc and plotted the following graphs:

(i) sτE−2P≥s against s−ΩE (ii) sτE−2P≥s against sσE ,

where τE ,σE ,ΩE are the corresponding estimates of the Euclidean exponents calculated in
previous literature. For the first graph, looking at relation Eq. (4.1), we expect that the curve
does not deviate from its linear trajectory for small s−Ω when p is close to pc, and for the
second graph, looking at relation Eq. (4.2), we expect a plateau for large sσ when p is close
to pc. We observed that this was indeed the case, lending further credibility to the accuracy
of our estimates.

We calculated estimates of the extrinsic exponent for each transitive lattice by recording
the maximum extrinsic distance of any vertex visited in runs of the Leath algorithm. We
plotted the following curve and calculated the gradient of its approximately linear final
segment to give −1/ρ:

• log2 Q≥r against log2(r).

For the percolation on products of fractal trees, where we did not have reference values of
τ and σ to compare with, we instead refined our values of the critical exponents and pc by
plotting logP≥s,p against logs over very large ranges of s for a selection of probabilities p,
and finding the value of p which gave the smallest deviation from linearity for medium and
large s as in [180, 253].

4.2.2 Lattice Trees

Given a transitive connected graph G and a fixed vertex o of G, a lattice tree is a finite
connected subgraph of G that contains o and is a tree, i.e. does not contain any cycles. We let
Tn be the set of n-vertex lattice trees; the uniform lattice tree of size n is then just the random
variable given by selecting one of these tree uniformly at random. We will study how the
following quantities depend on the tree size n:
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• The mean branch size, B(n): If we take an edge from the lattice tree and delete it, the
branch size is the cardinality of the smaller of the two resultant subtrees. The mean
branch size is the expectation of this quantity over the lattice tree and over an edge
picked uniformly at random from the lattice tree.

• The intrinsic longest path, I(n): This is the expected length of the longest path in the
lattice tree, where the length of the path is given by the intrinsic metric, i.e. the graph
metric of the tree.

• The extrinsic displacement of the longest path, E(n): This is the expected extrinsic
distance between the two endpoints of some maximal-length intrinsic path in the tree.
(The method used to pick a particular such path when it is non-unique is described
below; the details of this should not be important.)

Here we are using the extrinsic displacement of the longest path as an easier-to-compute
substitute for the true extrinsic diameter of the tree, which we expect to be of the same order.
Assuming they are well-defined, the exponents ρ and ν describe the asymptotics of B(n),
I(n), and E(n) via

B(n)≈ I(n)≈ nρ and E(n)≈ nν .

We remark as a point of general interest that the exact equality ν = 0.5 is believed to hold
for three-dimensional lattice trees. This equality has been proven rigorously for branched
polymers [89, 217], which are believed to be in the same universality class as lattice trees.

Methodology. In order to sample approximately uniform lattice trees, we employed a
combination of two Markov chain Monte Carlo (MCMC) algorithms. The MCMC algorithms
involve evolving some arbitrary initial tree t0 by applying a sequence of randomly chosen
operations to form a process (ti)i≥1 on the space of lattice trees. The possible operations and
their probabilities are chosen such that, when restricted to the set of n-vertex lattice trees Tn,
the resultant process is Markovian, irreducible and aperiodic, and has the uniform distribution
as its invariant distribution. Standard Markov chain theory then implies that the process will
converge to the uniform measure on Tn as i→ ∞. After an initial mixing period, the process
is sampled at regular intervals, and measurements of interest are calculated and recorded. In
the absence of bounds on the mixing/relaxation time, we fixed the number of steps of the
algorithm between samples in such a way that the autocorrelation of the measured quantities
across the samples was found to be negligible. The two algorithms we combined were the
cut-and-paste algorithm (CP) developed in [203] and the cycle-breaking algorithm (BC)
described in [144]. The resultant algorithm, which we term the Cut-and-Paste Break-Cycle
algorithm (CPBC), involves alternating between (CP)- and (BC)-type operations according
to a probabilistic criterion. For details of the algorithm, see Appendix B.
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Once we have sampled the lattice tree, we must calculate the exponents. We computed
the critical exponents ν and ρ by the same method described in [203, 323] where they were
calculated for Euclidean lattices of dimensions 2 through 7. We used breadth-first search
and dynamic programming techniques to calculate the mean branch size. To find an intrinsic
longest path, we use the method introduced by Dijkstra around 1960: We choose a vertex v
in the tree (at random, the choice being immaterial), and then find a vertex u in the tree with
maximum intrinsic distance from v using breadth-first search. We then find a vertex u′ in
the tree with maximum intrinsic distance from u, and record the intrinsic distance between
u and u′. The fact that this produces a pair of vertices at maximal intrinsic distance from
each other is proven formally in [90]. Once this is done, we compute the extrinsic distance
between u and u′ either exactly or using an approximating quasi-norm as discussed in the
next section, with the details being context-dependent. In each case, we averaged the outputs
of these computations over a large number of runs to estimate I(n), E(n), and B(n), plotted
log-log plots of these quantities against n, and calculated estimates of ν and ρ by measuring
the gradients of the final sections of the resulting curves.

4.3 Transitive lattices

In this section we define the various Cayley graphs we consider and report the outcomes
of our simulations on these Cayley graphs. Given a finitely generated group Γ and a finite
set S which generates Γ , the (right) Cayley graph Cay(Γ ,S) is defined to be the undirected
graph with vertex set Γ and edge set {{γ,γs} : γ ∈ Γ ,s ∈ S∪ S−1}. Cayley graphs are
always transitive since each element γ of Γ defines an automorphism of Cay(Γ ,S) by left
multiplication. The graph metric on Cay(Γ ,S) is also known as the word metric and can be
expressed as

dS (γ1,γ2) = min
{

n≥ 0 : ∃s1, . . . ,sn ∈ S∪S−1 such that γ2 = γ1s1 · · ·sn
}
,

and observe that this coincides with the graph metric. For each of the groups we consider,
the word metric is comparable to a quasi-norm that is much easier to compute. We will use
these quasi-norms in place of the word metric when computing distances on G4,3 and G5,8.

Recall that two metric spaces (X ,dX) and (Y,dY ) are said to be quasi-isometric if there
exist positive constants α and β and a function φ : X → Y such that α−1dX(x,y)− β ≤
dY (φ(x),φ(y))≤ αdX(x,y)+β for every x,y ∈ X and for every y ∈Y there exists x ∈ X with
dY (y,φ(x))≤ β . It is easily seen that different Cayley graphs of the same finitely generated
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group are quasi-isometric to each other and that e.g. Zd is quasi-isometric to Rd for each
d ≥ 1.

When Γ is a group, the lower central series of Γ is defined recursively by Γ1 = Γ and
Γi+1 = [Γi,Γ ] = ⟨{[a,b] : a ∈ Γi,b ∈ Γ }⟩. The group Γ is said to be nilpotent if there exists
s≥ 1, known as the step of Γ , so that Γs is abelian and hence that Γi = {id} for every i > s.
The Bass-Guivarc’h formula [53, 171] states that if Γ is a torsion-free nilpotent group then
Γ has volume growth dimension ∑

s
i=1 iri where ri is the rank of the abelian group Γi/Γi+1.

The quantity ∑
s
i=1 iri is also known as the homogeneous dimension of the group. It is a

consequence of Pansu’s theorem [285] that both the step s and the sequence (r1, . . . ,rs) are
quasi-isometry invariants of nilpotent groups.

We chose four non-Euclidean groups to study, namely H , H ×Z, G4,3 and G5,8. In
some cases we also carried out simulations on Z4 and Z5 so that we could directly compare
our results to the Euclidean case. The upper critical dimension of percolation is 6, so we
limited our study to the most interesting dimensions of four and five where mean-field
behaviour does not hold but there is more than one quasi-isometry class of geometries to
consider. The upper critical dimension for lattice trees is 8, meaning that more interesting
possibilities are available. We chose to study the two seven-dimensional groups G4,3 and
G5,8 since they were highly distinct from the other examples we considered, being neither
abelian, generalised Heisenberg, nor products thereof. These groups are defined as lattices
in the nilpotent Lie groups corresponding to the nilpotent Lie algebras notated in [114] and
[251, Table 1] as L4,3 and L5,8. The multiplication rules and generating sets of these groups
were computed using Maple. A complete taxonomy of possible low-dimensional geometries
can be found in [251, Tables 1-4 and Figure 5].

We briefly introduce each of the groups we consider, with most of the relevant information
succinctly summarised in Appendix C.

The Heisenberg Group H . The discrete Heisenberg group can be defined as the set of
integer-valued upper-triangular 3×3 matrices under matrix multiplication. We identify each
matrix M ∈H with an element of Z3 via the bijection φ : Z3→H given by

φ
(
(a,b,c)

)
=

1 a c
0 1 b
0 0 1

 ,
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and use these coordinates to represent elements of the group. These are known as the Mal’cev
coordinates. Multiplication of two elements is therefore given by:

(a1,b1,c1) · (a2,b2,c2) = (a1 +a2,b1 +b2,c1 + c2 +a1b2).

The Heisenberg group is generated by the elements a = (1,0,0) and b = (0,1,0) as witnessed
by the identity

(x,y,z) = by[a,b]zax,

where [a,b] is the commutator aba−1b−1. We will work with the right-Cayley graph ΓH =

Cay(H ,{a,b}). (Note that this is not the Cayley graph depicted in Figure 4.1, which has
generating set {a,b,c}.) The graph metric on this Cayley graph is equivalent [140, 3.1.6] to
the quasi-norm

∥(a,b,c)∥= |a|+ |b|+ |c|1/2 .

We will also make use of a formula for computing graph distances in this Cayley graph that
is described in [84]; this formula is too long to reproduce here but is easily implemented on a
computer. The Heisenberg group has step 2 and (r1,r2) = (2,1).

All of the above mentioned facts have obvious consequences for the product space H ×Z,
for which we will consider the Cayley graph generated by a = (1,0,0,0), b = (0,1,0,0), and
d = (0,0,0,1). This group has step 2 and (r1,r2) = (3,1).

The seven-dimensional geometry G4,3. The group G4,3 is defined as a lattice in the
nilpotent Lie group corresponding to the Lie algebra notated in [114] as L4,3. Concretely,
the group is defined as the set 4Z×2Z×2Z×2Z equipped with the multiplication operation

(a1,b1,c1,d1)× (a2,b2,c2,d2) =

(b1d2 +
1
2

d2
2c1 +a2 +a1,c1d2 +b1 +b2,c1 + c2,d1 +d2),

which has identity element (0,0,0,0). The group is generated by the elements 2b=(0,2,0,0),
2c = (0,0,2,0), and 2d = (0,0,0,2) as witnessed by the formula

(4x,2y,2z,2w) = [2b,2d]x(2d)w(2b)y(2c)z.

We work with the Cayley graph Cay(G4,3,{2b,2c,2d}), whose word metric is comparable
to the quasi-norm

∥(a,b,c,d)∥= |a|1/3 + |b|1/2 + |c|+ |d| .

The group G4,3 has step 3 and (r1,r2,r3) = (2,1,1).
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The seven-dimensional geometry G5,8. The group G5,8 is defined as a lattice in the
nilpotent Lie group corresponding to the Lie algebra notated in [114] as L5,8. Concretely,
the group is defined as the set Z5 equipped with the multiplication operation

(a1,b1,c1,d1,e1)× (a2,b2,c2,d2,e2) =

(a1 +a2 +b1d2,b1 +b2,−d1e2 + c1 + c2,d1 +d2,e1 + e2),

which has identity element (0,0,0,0,0). The group is generated by the elements b =

(0,1,0,0,0), d = (0,0,0,1,0), and e = (0,0,0,0,1) as witnessed by the formula

(x,y,z,w,v) = [e,d]zevdw[b,d]xby.

We work with the Cayley graph ΓG5,8 = Cay(G5,8,{b,d,e}), whose word metric is compara-
ble to the quasi-norm

∥(a,b,c,d,e)∥= |a|1/2 + |b|+ |c|1/2 + |d|+ |e| .

The group G5,8 has step 2 and (r1,r2) = (3,2).

4.3.1 Results for percolation

We now describe the simulations we carried out for percolation on H and H ×Z and the
results that we obtained.

Estimating pc. In each case, we began with a small number of initial runs of invasion
percolation, as described in Appendix A, in order to approximate the constants F and z in
Appendix A Eq. (1) to achieve a speed up for further runs.

For the Heisenberg group H we then generated approximately 9×105 samples, each
with a total number of ⌊100×267/4⌋ = 11,021,797 steps, and a further 100,000 samples
each with a total number of ⌊100×280/4⌋= 104,857,600 steps. We recorded and averaged
the sampled bulk-to-boundary ratios an at n = ⌊100×2i/4⌋ for 5 ≤ i ≤ 80, for a total of
76 points. We then used weighted least mean squares to fit the parameters pc,A,δ in 4.5
to the data. We noticed that removing the points at small n (at the beginning of the runs)
shifted our estimate of pc, lessening the effect of finite-size effects. We plotted the effect of
removing small values of n in Figure 4.4a and extrapolated from the resulting data to obtain
the estimate pc ≈ 0.3538225(10).

We then repeated this procedure for H ×Z. This time we generated approximately
6×105 samples each with a total number of ⌊100×267/4⌋= 11,021,797 steps, and a further
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Fig. 4.4 Estimated percolation thresholds for H and H ×Z with varying numbers of
excluded initial points. A label of the form i ∈ [a,b] indicates that the fit was calculated with
a⌊100×2i/4⌋, i = a . . .b.

approximately 200,000 samples each with a total number of ⌊100×276/4⌋ = 52,428,800
steps. We recorded and averaged the sampled bulk-to-boundary ratios an at n = ⌊100×2i/4⌋
for 5≤ i≤ 76, for a total of 72 points. Again, plotting the effect of removing small values of
n in Figure 4.4b and extrapolating yielded the estimate pc ≈ 0.2164476(1).

Estimating intrinsic exponents. Having obtained these estimates for the critical prob-
ability, we sampled percolation at p = 0.3538225 for H and p = 0.2164476 for H ×Z
using the Leath algorithm. In each case we collected approximately 108 samples each with
220=1,048,576 time steps. We calculated P≥s and E[n/p− t/(1− p)|n≥ s] empirically from
these samples, fitted the data to the ansatz equations presented in Section 4.2.1, and obtained
the estimates τ = 2.315 and σ = 0.4758 for H and τ = 2.420 and σ = 0.4988 for H ×Z.
All these results were in close agreement with previously derived values for Z4 and Z5 (see
Table 4.1), giving weight to the claim of Conjecture 33.

Refinement and confirmation. Next, we refined our values for the critical probability,
and simultaneously added extra weight to the claim that the critical exponents are shared by
the Euclidean and non-Euclidean lattices, employing the methods outlined in [253, 322].

We ran the Leath algorithm at multiple values of p, with between 108 and 109 samples
per value of p, and with each run having 220 = 1,048,576 steps. As presented in Figure 4.5,
we then plotted graphs of sτ−2P≥s against s−Ω and against sσ , where we used the values of τ ,
σ , and Ω for Z4 and Z5 as computed in [287], [162], and [322] respectively. If Conjecture
33 is true, then as explained in [253], the plots against s−Ω should look approximately
linear when p = pc while the plots against sσ should plateau for large s when p = pc. As
such, the figures indicate that the critical probability for H lies between p = 0.353824 and
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Fig. 4.5 Runs of the Leath algorithm on H and H ×Z for different values of the percolation
probability p.

p = 0.3538253125 while the critical probability for H ×Z lies between p = 0.21644889
and p = 0.21644959. In each case, the fact that we do indeed see approximately linear
behaviour in the plots against s−Ω and a large-s plateau in the plots against sσ strongly
suggests that Conjecture 33 is true and e.g. the values of τ , σ , and Ω are the same for H

and Z4.

Estimating extrinsic exponents. Finally, we ran the Leath algorithm on the two non-
Euclidean graphs H , H ×Z and the two Euclidean graphs Z4 and Z5. This time, however,
instead of running for a fixed number of steps, we halted the algorithm when it first visited
a vertex with extrinsic distance 210 = 1024 away from the origin for the four-dimensional
lattices, and 29 = 512 away from the origin for the five-dimensional lattices. For the non-
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4.3 Results for lattice trees

H H ×Z
pc 0.3538247(7) 0.21644925(36)

Table 4.3 Critical probability estimates.

Euclidean lattices, we ran the algorithm at the previously calculated critical percolation
estimates displayed in Table 4.3, and used pc = 0.1601312 for Z4, extracted from [272, 322],
and pc = 0.11817145 for Z5, extracted from [272]. For each of these graphs, we then plotted
log2 Q≥s against log2 s for s = 2i/4 with 16≤ i≤ 40 for the four-dimensional lattices, and
16≤ i≤ 36 for the five-dimensional lattices. We calculated the gradients of the final sections
of the curves to give the estimates ρ = 1.047 for H , ρ = 1.049 for Z4, ρ = 0.701 for H ×Z,
and ρ = 0.683 for Z5. The large finite-size effects, especially in the five-dimensional case,
meant that the computational resources available to us were insufficient to compute ρ to a high
level of precision. Using the scaling relation τ = 1+d/(d−1/ρ), we computed secondary
estimates τ = 2.314 for H , τ = 2.313 for Z4, and τ = 2.400 for H ×Z, τ = 2.414 for Z5.

4.3.2 Results for lattice trees

We now describe the simulations we carried out of lattice trees on H , Z4, H ×Z, Z5, G4,3,
and G5,8 and the results that we obtained. We ran our own simulations on Z4 and Z5 for
better comparability with our non-Euclidean simulations since the simulations of [323] used
much smaller tree sizes, and [186] did not estimate the intrinsic exponent.
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(a) Four-dimensional lattices.
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Fig. 4.6 Log-log plots of the radius tail Q≥r against r for the transitive lattices H , Z4, H ×Z,
and Z5, produced using runs of the Leath algorithm at their respective critical probabilities.
The curves are vertically translated to allow for easy comparison of their final gradients,
which are seen to be in close agreement in both cases.
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Fig. 4.7 Log-log plots of mean intrinsic and
extrinsic distances between the end-points
of maximum (intrinsic) length paths in the
lattice tree as functions of tree size. In each
case, the vertical positioning of the curves
has been adjusted for ease of comparison of
the gradients of the final segments.

For each of the graphs that we considered, we initialised the CPBC MCMC algorithm
with tree sizes s = ⌊10000×20i/10⌋ from i =−5 to i = 10 for the four and five dimensional
lattices, and up to i = 13 for the seven dimensional lattices. We collected between 100,000
samples and 500,000 samples for each tree size. For a tree of size s, we evolved the algorithm
for an initial 4s steps, and then collected a sample every 2s steps thereafter. The initial trees
of size s were taken to be paths with s/2 vertices lying along a suitable coordinate axis with
additional edges coming off each vertex in another fixed coordinate direction. An estimate of
the extrinsic exponent ν was calculated by finding the gradients of the final section of the
relevant log-log curve. An estimate of the intrinsic exponent ρ was found by first averaging
the two log-log curves for branch-size and intrinsic radius, before taking the gradient.

4.4 Self-similar fractals

In this section we give a brief introduction to the self-similar fractals we consider, and
describe our results concerning critical percolation on them. The fractals we consider will be
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TI

TO · · ·

· · ·

T3/2 · · ·

· · ·T3

Fig. 4.8 Illustration of the recursive construction of graphical approximants to the fractal
trees we consider. The graphs used to approximate T3/2 and T3 are not trees but quasi-trees,
with bounded-length cycles that disappear in the continuum limit. Note also that we have
drawn the edges of the graphs approximating T3 with different lengths in order to represent
them cleanly in the plane; as a result, these drawings do not accurately represent the intrinsic
geometry of the graphs in question. The colours are included to aid visualisation since the
drawing is not planar. The tree T4 is similar but is constructed from 16-gons rather than
octagons.

defined as the scaling limits of sequences of ‘prefractal’ graphs generated by an initial seed
graph and a recursive rule describing how the generation n+1 prefractal is constructed from
copies of the generation n prefractal. In addition to the continuum fractal scaling limit, we
can also take the Benjamini-Schramm limit of this growing sequence of prefractal graphs,
which describes how the graph looks in the vicinity of a uniform random vertex. In each of
the cases we consider, the Benjamini-Schramm limit exists and is an infinite, locally finite
random rooted graph, so that we can define the critical probability pc and critical exponents
τ and σ with respect to this infinite limit graph.

Recursive rules. Each of the fractal trees we consider will be constructed using a
hierarchical coordinate system in the following way, which makes their Benjamini-Schramm
limit easy to describe. Let N ∈ N and define X = Z∞

N , where ZN = Z/NZ. We call X the
coordinate space of the fractal and write points in X as x = (. . . ,x1,x0). The number N will
represent the number of ‘marked points’ that are used to specify specify how to construct the
prefractal in one generation from the prefractal at the previous generation. A seed graph
is defined to be a connected, undirected graph with vertex set ZN . Given an undirected
graph Gg on ZN×ZN , we define the contraction C[Gg] of Gg to be the graph with vertex
set ZN , and with two vertices i, j ∈ ZN connected if an only if there exist a,b ∈ ZN such that
(i,a)∼ ( j,b) in Gg. We say that an undirected graph Gg on ZN is a generator graph if its
contraction C[Gg] is connected.
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Self-similar fractals

N Seed edges E[Gs] Generator edges E[Gg]

T3 8 {{i, i+1} : 0≤ i≤ 7} {{(i, i+1),( j, j+1)} : 0≤ i, j ≤ 7, i− j =±1}

T4 16 {{i, i+1} : 0≤ i≤ 15} {{(i, i+1),( j, j+1)} : 0≤ i, j ≤ 15, i− j =±1}

T3/2 8 {{2i,2i+2} : 0≤ i≤ 3} {{(2i,2i+5),(2 j,2 j+5)} : 0≤ i, j ≤ 3, i− j =±1}

Table 4.4 Formal encodings of the fractal trees T3, T4, and T3/2 used in our explicit recursive
scheme for constructing fractals. All addition is computed modulo N.

Given a seed graph Gs and a generator Gg, we define the fractal graph G=G(Gg,Gs)

to be the graph with vertex set X and where two distinct points x = (. . . ,x1,x0) and y =

(. . . ,y1,y0) in X are connected by an edge if one of the following two conditions hold:

• xi = yi for every i≥ 1 and x0 ∼ y0 in Gs, or

• m = inf{i≥ 1 : x j = y j for every j ≥ i} is finite and strictly larger than one, xi = xm−1

and yi = ym−1 for every 0≤ i≤ m−1, and (xm,xm−1) is adjacent to (ym,ym−1) in Gg.

Note that x,y ∈ X belong to the same connected component of G if and only if xi = yi for
all sufficiently large i, so that G has uncountably many connected components. For each
n the finite subgraphs of G induced by the sets Λn(y) = {x : xi = yi for every i ≥ n} have
isomorphism class that does not depend on the choice of y ∈ X, and we define Gn to be a
graph with this isomorphism class. This ensures that G1 is equal to the seed graph Gs, while
for each n≥ 1 we can form Gn+1 by attaching edges between N copies of Gn according to
the combinatorics of the generator Gg. The Benjamini-Schramm limit of the graph sequence
(Gn)n≥1 is equal to the rooted graph (G∞,o) defined by taking o ∈ X to have i.i.d. uniform
coordinates in Z/NZ and taking G∞ to be the connected component of o in the uncountably
infinite graph G.

Algorithmically, this representation of the infinite-volume prefractal (G∞,o) has the
advantage that the initial sequence of coordinates (o1, . . . ,ok) typically determines the iso-
morphism class of a large neighbourhood around o, and we can sample more terms of this
sequence on an as-needed basis as we explore the percolation cluster of o or run invasion
percolation from o.

The fractal trees TO and TI presented in Figure 4.3 are both easily represented via
this recursive scheme with N = 4: In both cases we take the seed graph to have edge set
{{0,1},{1,2},{2,3}}. For the ‘outer’ tree TO we take the generator graph to have edge
set {{(0,1),(1,0)},{(1,2),(2,1)},{(2,3),(3,2)}}, while for the ‘inner’ tree TI we take
the generator graph to have edge set {{(0,2),(1,3)},{(1,3),(2,0)},{(2,0),(3,1)}}. We
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4.4 Fractal dimensions

encourage the reader to work through this simple example to see how our fractal encoding
scheme works in practice. The reader may also find it enlightening to consider how the
infinite line graph Z can be expressed as a Benjamini-Schramm limit of graphs defined
through a similar recursive scheme.

Besides TO and TI we will also consider three further fractal trees which we call T3, T4,
and T3/2. In fact, it will be convenient to consider graphical approximants of these trees that
are not themselves trees, but are quasi-trees in the sense that they include cycles of bounded
length which disappear in the continuum limit. The formal definitions of these fractal trees
in terms of our recursive scheme are stated in Table 4.4 with graphical representations of the
first three generations given in Figure 4.8.

4.4.1 Fractal dimensions

Let us now briefly review the definitions and background on the dimensions we consider,
referring the reader to [137] for further background.

We begin with the Hausdorff dimension and topological dimension, which are both
classical. Given a non-empty metric space X , the d-dimensional Hausdorff outer measure of
a set S⊂ X is defined as

H d(S) = liminf
r→0

{
∑
I

rd
i : there is a cover of S by balls of radii 0 < ri < r

}
.

The Hausdorff dimension of X is then

dimH X = inf{d ≥ 0 : H d(X)< ∞}.

In non-pathological examples, one typically has that a continuum fractal has Hausdorff
dimension d if and only if the Benjamini-Schramm limit of its prefractal approximants
has volume-growth dimension d in the sense that |B(o,r)| ≈ rd as r→ ∞. Moreover, in
non-pathological examples one also has that the Hausdorff dimension is additive in the sense
that dimH X×Y = dimH X +dimH Y ; see [137, Chapter 7] for precise theorems to this effect.
All the examples we consider will have the very strong property of being Ahlfors regular,
which ensures that the Hausdorff dimension is indeed additive for these examples.

Suppose that we construct a fractal via a recursive rule as discussed at the beginning of
this section, and let (Gn)n≥1 be the associated sequence of prefractal graphical approximants
so that Gn has Nn vertices for some N ≥ 2. If the ratio of diameters of Gn+1 and Gn

tends to Nα as n→ ∞, then the associated continuum fractal will typically have Hausdorff
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Self-similar fractals

dimension logN/ logNα = 1/α . Again, all the examples we consider are sufficiently well-
behaved that these heuristics can easily be turned into rigorous proofs with a little work. See
[137, Section 9.2] for detailed justifications of various related formulae. It follows from
these considerations that both fractal trees TO and TI have Hausdorff dimension 2: at each
successive scale of approximation the number of vertices is multiplied by four while the
diameter roughly doubles. Similarly, in T3 and T4 the diameter roughly doubles in each
generation while the volume increases by a factor of 8 or 16 as appropriate, so that these
trees have Hausdorff dimensions log8/ log2 = 3 and log16/ log2 = 4 respectively. Finally,
in T3/2 the diameter roughly quadruples at each scale while the volume increases by a factor
of 8, so that T3/2 has Hausdorff dimension log8/ log4 = 3/2.

The topological dimension (a.k.a. lower inductive dimension) dimt X of a separable
metric space X is defined inductively by dimt ∅=−1 and

dimt X = inf{d : X has a basis U such that dimt ∂U ≤ d−1 for every U ∈U}.

Note that real trees such as R, [0,1], and the fractal trees we consider always have topological
dimension 1. The topological dimension is not additive in general but always satisfies the
inequality dimt X×Y ≤ dimt X +dimt Y [133, Theorem 1.5.16]. Moreover, if Y is a subspace
of X then dimt Y ≤ dimt X , a fact referred to as the subspace theorem [133, Theorem 1.1.2].
If X = T1×T2×·· ·×Tk is a product of real trees then it follows that dimt X ≤ k, and since
X contains a copy of the space [0,ε]k for some ε > 0 it follows from the subspace theorem
that dimt X = k. This equality determines the topological dimension for all the examples we
consider.

The topological Hausdorff dimension is a much more recent notion of dimension that
was introduced by Balka, Buczolich and Elekes [39]. The topological Hausdorff dimension
dimtH X of a non-empty metric space X is defined to be

dimtH X = inf{d : X has a basis U such that dimH ∂U ≤ d−1 for every U ∈H },

where dimH ∅ is defined to be −1. It is proven in [39, Theorem 4.21] that

dimtH(X× [0,1]) = 1+dimH(X), (4.6)

for every non-empty and separable metric space X . This allows us to always reduce the
computation of the topological Hausdorff dimension to that of the Hausdorff dimension by
working only with products with [0,1]; this corresponds to taking products with Z for the
relevant Benjamini-Schramm limits.
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It remains to introduce the spectral dimension, which is most easily defined for the
infinite Benjamini-Schramm limit (G∞,o) associated to the fractal. Indeed, an infinite
connected graph G is said to have spectral dimension ds = dims G if the simple random walk
return probabilities pn(v,v) satisfy

p2n(v,v) = n−d2/2+o(1)

as n→ ∞ for each vertex v of G. (In principle, one can define the spectral dimension of a
continuum fractal directly by first defining Brownian motion on that fractal, but this is a very
delicate matter in general.) It is easily seen from the definition that the spectral dimension
is additive with respect to products in the sense that if G and H are two infinite, connected
graphs then dims G×H = dims G+dims H. Most fractal trees T have spectral and Hausdorff
dimensions related by the formula

dims T =
2dimH T

dimH T +1
,

and it is not difficult to justify that this equality does indeed hold for all the fractal trees we
consider. (Indeed, this equality should hold whenever the effective resistance between a
vertex and the boundary of the ball of radius r grows like r1−o(1), and for trees this holds
whenever subsequential limits do not have vertices of infinite degree; this can be deduced
from the same methods used in [193, Section 8].) Thus, TO, TI , T3/2, T3, and T4 have spectral
dimensions 4/3, 4/3, 6/5, 3/2, and 8/5 respectively.

4.4.2 Equidimensional fractal products

We now define the two pairs of equidimensional fractal products on which we will study
percolation. The first pair is given by

H1 = TO× [0,1] and H2 = TI× [0,1].

It follows from the above discussion that these two fractals both have Hausdorff dimension
3, topological dimension 2, spectral dimension 7/3 and topological Hausdorff dimension 3.
The second pair is given by

H3 = T3/2×T3/2×T4× [0,1] and H4 = T3×T3× [0,1]× [0,1].
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These two fractals both have Hausdorff dimension

3
2
+

3
2
+4+1 = 3+3+1+1 = 8,

topological dimension 4, spectral dimension
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6
5
+

8
5
+1 =

3
2
+

3
2
+1+1 = 5,

and topological Hausdorff dimension 8. This pair of examples is interesting to study in part
because the two fractals H3 and H4 seem to have ‘the same dimensions for different reasons’,
with different components of their defining products making up different proportions of their
shared Hausdorff and spectral dimensions. This would seem to make them a prime candidate
for a failure of universality, although in the end the large finite-size effects made it difficult
for us to compare the Fisher exponents in the two cases.

Again, we do not work directly with continuum fractals, but instead consider the
Benjamini-Schramm limits defined via the recursive schemes specifying the trees TO, TI , T3,
T4, and T3/2 above. Thus, for example, when we simulate percolation on H3 we are really
simulating percolation on the product of two independent copies of the Benjamini-Schramm
limit associated to T3/2, a further independent copy of the Benjamini-Schramm limit associ-
ated to T4, and one copy of Z. Since we will always use these same graphical approximations,
for clarity of exposition we will abuse the terminology by speaking simply of ‘percolation on
H1’ and so on.

4.4.3 Results

We now discuss the results of our simulations of percolation on the self-similar fractals,
beginning with the equidimensional pair H1 and H2. As with the transitive lattices, we began
by running invasion percolation with approximately 106 samples, each time recording the
bulk-to-boundary ratios an at n = ⌊100×2i/4⌋, 0≤ i≤ 67. The outcome of these simulations
is recorded in Figure 4.9.

In order to estimate pc from this data, we carried out a similar analysis to the transitive
case, varying the amount we cut-off at the beginning before curve-fitting. This gave the
initial estimates pc = 0.4249 for H1 and pc = 0.4232 for H2.

We emphasise that the oscillations in Figure 4.9 are in fact a feature rather than noise.
This was a consistent appearance throughout our simulations for fractals, both for invasion
percolation and the Leath algorithm. For the former the oscillations decayed, while for the
latter they grew. For the former it meant more initial data had to be discarded, and for the
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Fig. 4.9 The average bulk-to-boundary ratios obtained by invasion percolation for H1, H2
(left) and H3, H4 (right). Note the very pronounced finite-size effects for H4.

latter it made estimating linearity more difficult. This became more of a problem for some of
the higher dimensional fractals, in particular in relation to runs of the Leath algorithm.

Having obtained an initial estimate for pc, we then sampled the percolation cluster for
H1 and H2 at differing values of p, and produced log-log plots of the average volume tail
P≥s,p = E [Pp(|Ko| ≥ s)] against s at different values of p, taking s = ⌊2i/4⌋ with maximal i
ranging up to 27 and with between 106 and 108 samples for each value of p. The outcomes
of this investigation are recorded in Figure 4.10 below. Drawing tangents along the curves
of Figure 4.10 reveals that pc = 0.42545(5) for H1 and pc = 0.423225(25) for H2. It is
interesting to note that invasion percolation gave a far more accurate reading for H2 than H1.

Finding the gradient of the these critical log-log plots gave τ = 2.195(5) for H1 and a
more precise reading of 2.151(1) for H2, where uncertainties were estimated by varying
the portions of the midsections of the curves over which the gradients were calculated and
calculating over multiple curves corresponding to probabilities within the aforementioned
ranges for pc. The more prominent presence of the oscillations for H1 made the reading for
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Fig. 4.10 Log-log plots of the volume tail distribution for H1 (top) and H2 (bottom) at different
values of the percolation probability p. Smaller deviations from linearity indicate that p is
closer to the critical probability pc.
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Fig. 4.11 Log-log plots of the volume tail
distribution for H1 and H2 at the estimated
critical probabilities of p = 0.42545 for H1
and p = 0.423225 for H2. The two lines
clearly have distinct slopes, lending strong
evidence to the claim that H1 and H2 have
distinct values of the critical exponent τ .

2 4 6 8 10 12 14 16
log2 s

0

1

2

3

4

5

6

7

lo
g 2
U
s

H1

H2

Fig. 4.12 Plot of log2Us against log2 s
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0.4231, 0.4234 for H2.

τ less precise. A direct visual comparison of the two critical log-log volume tail plots is
provided in Figure 4.11.

We now turn to estimating the exponent σ , for which our results are less clear. Unfor-
tunately, we found the method based on the ansatz Eq. (4.4) to work very poorly for these
graphs, with the resulting expectation requiring a prohibitively large number of samples to
stabilise. As such, we resorted to a more ad-hoc analysis to estimate σ . First, we rearranged
the ansatz formula Eq. (4.2) to obtain that

us,p :=
logP≥s,p− logP≥s,pc

p− pc
=C1sσ + . . . . (4.7)

Then, for each fractal, we took the average Us of us,p over a selection of near-critical p
and used curve-fitting over s to output a value of σ . The outcome of this investigation is
recorded in Figure 4.12. As can be seen from this figure, the results of this investigation
are inconclusive at best, with large non-linearities in the curve for H1 preventing us from
getting a reliable estimate of σ in this case. There seems to be a section of alignment, but not
enough to confirm or disconfirm that the σ critical exponents are the same. The deviation at
the end may indicate a different σ exponent, or it could be due to the the imprecision of our
estimate of pc, or it could indicate that p− pc is large enough that the approximations in the
derivation of Eq. (4.7) are not valid.

H3 and H4. We now turn to our results for the equidimensional fractal products H3

and H4. Running invasion percolation and extrapolating as above (see Figure 4.9) gave the
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estimates pc = 0.11705 for H3 and pc = 0.11326 for H4. Having obtained this estimate
we then sampled the percolation cluster at a variety of nearby values of p and produced
log-log plots of both the volume tail distribution and the quantity E[n/p−t/(1− p)|n≥ s], as
described in Section 4.2.1, where we used between 5×108 and 3×109 samples to estimate
each of the relevant quantities. The outcomes of these investigations are recorded in Figures
4.13 and 4.14.
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Fig. 4.13 Log-log plots of the volume tail distribution for H3 (left) and H4 (right) with
different values of the percolation probability p. Smaller deviations from linearity indicate
that p is closer to pc. The large deviations in linearity present in all the curves plotted for
H4 make them difficult to compare to the critical volume tail distribution curve for H3, or to
reliably estimate the relevant value of τ in this case.
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Fig. 4.14 Graphs to estimate σ , with p = 0.11705 for H3 and p = 0.11305 for H4.

Plotting tangents to the final segments of each of the curves in Figure 4.13 and finding
the closest linear fit with the midsection of the curve gave pc = 0.11705(1) for H3 and
pc = 0.11305(2) for H4. Invasion percolation therefore gave an extremely accurate estimate
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Discussion and open questions

for H3 but a much less accurate estimate for H4. This was due to the prominent oscillatory
behaviour in the bulk-to-boundary ratios, most likely due to the presence of the T4 tree in H4.

By considering tangents, we estimated τ = 2.66(1) for H3 and σ = 0.41(1) for both
H3 and H4, suggesting that these two fractals share the same value of the exponent σ .
Unfortunately, the large deviations from linearity in the volume tail distribution plots for
H4 prevented us from obtaining an estimate on τ for this fractal to any reasonable level of
accuracy, and it is unclear whether one should expect H3 and H4 to share a common value of
this exponent.

4.5 Discussion and open questions

Summary. In this paper we presented strong numerical evidence in support of our conjecture
that the critical exponents governing critical percolation and lattice trees on transitive lattices
of polynomial volume growth depend only on the dimension and not on any other features
of the large-scale geometry. For self-similar fractals, we showed that the situation is more
complicated: we presented examples of two fractals having the same Hausdorff, spectral,
topological, and topological Hausdorff dimensions, but which have distinct numerical values
of the percolation Fisher exponent τ . On the other hand, we do not rule out that the exponent
σ is determined by these dimensions. This may be related to the phenomenon of weak
universality as discussed in [274] and deserves closer investigation in future work.

Open Questions. We now present a collection of open problems and directions for future
research:

1. Provide theoretical reasoning either in support of or against Conjecture 33. Is there a
reason these exponents might be extremely close without being exactly the same?

2. Does the conjecture hold for other models with an upper-critical dimension dc > 4 such
as the minimal spanning tree and invasion percolation? It may be interesting to consider
the |ϕ|c spin model, which has upper-critical dimension 2c/(c−2) when c > 2, and so
can be made arbitrarily large.

3. Are the exponents describing logarithmic corrections at the upper-critical dimension
dc independent of the choice of dc-dimensional transitive graph? This question is also
interesting for models with dc = 4 such as the Ising model, self-avoiding walk, and the
uniform spanning tree.

4. Further investigate the extent to which the exponent σ is constrained by the dimensions
we consider. Do H1 and H2 have the same value of σ? Is there a reason why σ would
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be less sensitive to the geometry than τ? Is this related to the phenomenon of weak
universality?

Of course, there are many other directions that one might pursue in relation to our work.
In addition to the endless variety of fractals, there are also many other transitive graphs of
polynomial growth for which the problems studied in this paper are interesting [114, 251].
There are also many other exponents associated with the models that one could seek to
estimate - in particular, the exponents characterising the intrinsic radii of critical percolation
clusters, and the exponent characterising the sub-exponential correction to growth of the
number of lattice trees of size n [89, 204, 217], although we note that it has been argued
in [286] that a scaling relation between the growth correction exponent and the extrinsic
exponent holds.

Finally, let us remark that our focus in this paper has been to investigate a large number of
different examples rather than devoting too much computing time to a very in-depth analysis
of any particular example. It may be worthwhile in the future to subject one or two of the
quantities we investigated to more intensive study.

Simulation code:
https://gitfront.io/r/user-5838678/a2bfdf5d13aa3ad8f3d2cc247b5100aed0c51e83/LoU/.
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Chapter 5

[D] Most transient random walks have
infinitely many cut times

Abstract. We prove that if (Xn)n≥0 is a random walk on a transient graph such that the
Green’s function decays at least polynomially along the random walk, then (Xn)n≥0 has
infinitely many cut times almost surely. This condition applies in particular to any graph
of spectral dimension strictly larger than 2. In fact, our proof applies to general (possibly
nonreversible) Markov chains satisfying a similar decay condition for the Green’s function
that is sharp for birth-death chains. We deduce that a conjecture of Diaconis and Freedman
(Ann. Probab. 1980) holds for the same class of Markov chains, and resolve a conjecture of
Benjamini, Gurel-Gurevich, and Schramm (Ann. Probab. 2011) on the existence of infinitely
many cut times for random walks of positive speed.

5.1 Introduction

Let (xn)n≥0 be a sequence taking values in some set Ω . A cut time of (xn)n≥1 is a time
n ∈ Z≥0 for which the sets {xi : i≤ n} and {xi : i > n} are disjoint. The study of cut times of
random walks was initiated by Erdős and Taylor in 1960 [134], who proved lower bounds
on the densities of cut times for simple random walks on the integer lattices Zd for d ≥ 5,
showing that in this case the doubly infinite random walk has a positive density of cut times.
The lower dimensional cases d = 3,4 are more complicated, with the singly infinite random
walk having an infinite, density zero set of cut times and the doubly infinite random walk
having no cut times almost surely; see [91, 92, 108, 131, 234, 236, 237] for highlights of the
literature and [238] for an overview. Extending these results beyond the simple random walk
on Zd , James and Peres [202] and Blanchere [83] proved that every centered, finite-range
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random walk on a transient Cayley graph has infinitely many cut times almost surely; see
also the recent work [252] for a more robust analysis. The proofs of these results rely on
delicate estimates on the gradient of the Green’s function that are not available in more
general settings, with the works [83, 202] also employing a case analysis of the different
possible transitive low-dimensional geometries.

Indeed, while transience is of course a necessary condition for a random walk to have
infinitely many cut times, the converse implication quickly breaks down once we leave the
transitive setting: James, Lyons and Peres [201] constructed an example of a birth-death
chain that is transient but has finitely many cut times almost surely (see also [109]), and
Benjamini, Gurel-Gurevich, and Schramm [64] showed that the same behaviour is possible
for random walks on bounded degree graphs. On the other hand, Benjamini, Gurel-Gurevich,
and Schramm [64] also prove that a graph is transient if and only if the expected number
of cut times of the random walk is infinite, which suggests that most ‘non-pathological’
transient random walks should indeed have infinitely many cut times. It is also known that
the set of edges crossed by a random walk always spans a recurrent graph almost surely
[63, 65], a property that holds trivially when there are infinitely many cut times.

In this paper, we prove a new, very easily satisfied criterion for a transient Markov chain
to have infinitely many cut times almost surely, applying in particular to any Markov chain in
which the Green’s function decays at least polynomially along a trajectory of the chain. Our
result demonstrates that most transient Markov chains arising in examples will have infinitely
many cut times almost surely, and, in particular, provides a simple and unified treatment of
the transitive locally finite case.

We now state our main theorem. Let M = (Ω ,P) be an irreducible Markov chain
consisting of countable state space Ω and transition kernel P. For each x ∈ Ω , we write
Px and Ex for probabilities and expectations taken with respect to the law of the Markov
chain trajectory (Xn)n≥0 started at x, and write G(x,y) for the Green’s function G(x,y) =

∑n≥0 Pn(x,y) =Ex ∑n≥01(Xn = y). We say that a sequence of non-negative numbers (an)n≥0

decays at least polynomially as n→ ∞ if there exists a constant c > 0 and an integer N such
that an ≤ n−c for every n≥ N.

Theorem 34. Let M = (Ω ,P) be a countable Markov chain and let (Xn)n≥0 be a trajectory
of M started at some state x ∈ Ω . If there exists a decreasing bijection Φ : [0,∞)→ (0,1]
such that∫ 1

0

1
u(1∨ logΦ−1(u))

du = ∞ and limsup
n→∞

G(Xn,y)
Φ(n)

< ∞ a.s. ∀y ∈Ω , (5.1)
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then the trajectory (Xn)n≥0 has infinitely many cut times almost surely. In particular, the
same conclusion holds if G(Xn,y) decays at least polynomially as n→∞ for each fixed y∈Ω

almost surely.

We stress that the Φ−1(u) term appearing in (5.1) denotes the inverse of Φ rather than its
reciprocal. Note that if the Markov chain is irreducible we can replace the decay condition
appearing here with the condition that limsupn→∞ Φ(n)−1G(Xn,X0)< ∞ a.s.; In general it
suffices that limsupn→∞ Φ(n)−1G(Xn,Xm)< ∞ for each m≥ 0 a.s.

Remark 6. Theorem 34 applies to some decay rates that are slightly slower than polynomial,
such as that given by Φ(n) = exp(− logn

log logn). In Section 5.4, we discuss how the results of
Csáki, Földes, and Révész [109] imply that the integral condition of Theorem 34 is sharp for
birth-death chains and hence cannot be improved in general.

Theorem 34 easily implies various sufficient conditions for a Markov chain trajectory to
have infinitely many cut times almost surely. One particularly simple such condition is as
follows.

Corollary 35. Let M = (Ω ,P) be a countable Markov chain and let X = (Xn)n≥0 be a
trajectory of M started at some state x ∈ Ω . If for each y ∈ Ω there exist constants C =

Cxy < ∞ and d = dxy > 2 such that Pn(x,y)≤Cn−d/2 for every n≥ 1, then X has infinitely
many cut times almost surely.

Note that if M is irreducible then the hypothesis of this corollary is equivalent to the
on-diagonal heat kernel estimate Pn(x,x) = O(n−d/2) holding for some d > 2; for graphs,
this is (by definition) equivalent to the spectral dimension of the graph being strictly larger
than 2. As such, Corollary 35 is already sufficient to treat most natural examples of transient
graphs arising in examples. For instance, graphs satisfying an isoperimetric inequality of
dimension strictly greater than 2 satisfy this hypothesis [226, Corollary 3.2.10].

Proof of Corollary 35 given Theorem 34. Fix x,y ∈ Ω and suppose that C < ∞ and d > 2
are such that Pn(x,y)≤Cn−d/2 for every n≥ 1. We have by the Markov property that

Ex [G(Xn,y)] = Ex#{visits to y after time n}

=
∞

∑
m=n

Pm(x,y)≤C
∞

∑
m=n

m−d/2 ≤ 2C
d−2

n−(d−2)/2

for every n≥ 1, and hence by Borel-Cantelli that

G(X2k ,y)≤ k22−(d−2)k/2 for all sufficiently large k almost surely.
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If τ denotes the first time after time 2k that X hits y then the stopped process
(G(Xm,y))τ

m=2k is a non-negative martingale, and it follows by the optional stopping theorem
that

Px

(
∃m≥ 2k such that G(Xm,y)≥ k42−(d−2)k/2 |G(X2k ,y)≤ k22−(d−2)k/2

)
≤ 1

k2

for all sufficiently large k. Thus, a further application of Borel-Cantelli yields that

G(Xn,y)≤ (log2 n)4
(n

2

)−(d−2)/2
(5.2)

for all sufficiently large n almost surely. Since y was arbitrary, the hypotheses of Theorem 34
are satisfied and X has infinitely many cut times almost surely.

As mentioned above, earlier results concerning random walks on groups relied on rel-
atively fine control of the Green’s function and its gradient, which was used to prove the
existence of infinitely many cut times via a second moment argument. The far weaker
and more distributed nature of our decay hypothesis causes this second moment argument
to break down. Instead, we compare expectations and conditional expectations of certain
special types of cut times as the process (G(Xn,X0))n≥0 crosses a small exponential scale
[e−k−1,e−k]. Roughly speaking, this allows us to integrate all of the available information
across time, compensating for the looser information. See Section 5.2 for details.

Superdiffusive random walks have infinitely many cut times. As an application of
Theorem 34, we also prove that walks on graphs and networks (i.e. reversible Markov chains)
satisfying a weak superdiffusivity condition have infinitely many cut times almost surely.
Given a network N = (V,E,c) with underlying graph (V,E) and conductances c : E→ (0,∞),
we define the conductance c(v) of a vertex v to be the total conductance of all edges emanating
from v.

Theorem 36. Let N = (V,E,c) be a locally finite, connected network with infv c(v)> 0 and
let X be a random walk on N. If there exists r > 3/2 such that

liminf
n→∞

d(X0,Xn)

n1/2(logn)r
> 0 almost surely, (5.3)

then X has infinitely many cut times almost surely.

This result resolves a conjecture of Benjamini, Gurel-Gurevich, and Schramm [64], who
asked whether random walks on graphs with positive linear liminf speed have infinitely
many cut times almost surely. For bounded degree graphs where the walk has positive speed,
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our proof yields that the walk has a positive density of cut times a.s., yielding a very strong
version of their conjecture.

Theorem 37. Let G be a bounded degree graph and let X be a random walk on G.

If liminf
n→∞

1
n

d(X0,Xn)> 0 a.s. then

liminf
n→∞

1
n

#{0≤ m≤ n : m is a cut time for X}> 0 a.s.

Note that Theorem 36 is not an immediate consequence of Theorem 34, as we are
not aware of any general result allowing us to deduce Green’s function decay estimates
from distance estimates without further assumptions on the graph: the Varopoulos-Carne
inequality [99, 317] tells us that pm(Xn,X0) is small when d(X0,Xn) is much larger than m1/2,
but does not give any control whatsoever of the large-time contribution to the Green’s function

∑m≥n2 pm(Xn,X0). To circumvent this obstacle, we consider adding a spatially-dependent
killing to our network. We tune the rate of killing to be weak enough that the walk has a
positive chance to live forever when superdiffusive, and strong enough that we can control
the decay of the killed Green’s function along the walk. We prove that this killed walk has
infinitely many cut times almost surely on the event that it survives forever, from which
Theorem 36 easily follows.

The Diaconis-Freedman conjecture. Let M = (Ω ,P) be a transient Markov chain, and
let X = (Xn)n≥0 be a trajectory of M. The partially exchangeable σ -algebra of X is defined
to be the exchangeable σ -algebra generated by the sequence of increments ((Xn,Xn+1))n≥0,
that is, the set of events that are determined by the sequence of increments and that are
invariant under permutations of this sequence that fix all but finitely many terms. This
σ -algebra arises naturally in the work of Diaconis and Freedman [126], who proved that
every partially exchangeable sequence of random variables can be expressed as a Markov
process in a random environment. This can be thought of as a partially-exchangeable version
of de Finetti’s theorem and plays an important role in the theory of reinforced random
walks [26, 270]. Their study of the partially exchangeable σ -algebra led Diaconis and
Freedman to make the following conjecture. Given a trajectory X = (Xn)n≥0, we define the
crossing number of an ordered pair of states (x,y) to be the number of integers n such that
(Xn,Xn+1) = (x,y).

Conjecture 38 (Diaconis-Freedman 1980). Let X be a trajectory of a transient Markov chain.
Then the partially exchangeable σ -algebra of X is generated by the crossing numbers of X.

An equivalent statement of this conjecture is that if we condition on the crossing numbers
then the resulting process has trivial exchangeable σ -algebra almost surely. Note that there is
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a close analogy between this conjecture and the problem of computing the Poisson boundary
for lamplighter random walks [214, 260]. As observed in [202], it is easily seen that the
Diaconis-Freedman conjecture holds whenever X has infinitely many cut times almost surely.
As such, our main results imply that the Diaconis-Freedman conjecture holds for most
transient Markov chains arising in examples.

Corollary 39. Let M = (Ω ,P) be an irreducible transient Markov chain with trajectory
(Xn)n≥0. If (M,x) satisfies the hypotheses of either Theorem 34 or Corollary 35 then the
partially exchangeable σ -algebra of X is generated by its crossing numbers.

Organisation. Section 5.2 contains the proof of our main theorem, Theorem 34. First,
in Section 5.2.1, we describe the overarching strategy behind the proof of Theorem 34
and give a proof in the much simpler special case in which the Green’s function decays
exponentially along the random walk. We then introduce relevant technical preliminaries in
Sections 5.2.2 and 5.2.3 before proving Theorem 34 in Section 5.2.4. Finally, we prove our
results concerning superdiffusive walks in Section 5.3 and prove that Theorem 34 is sharp
for birth-death chains in Section 5.4.

Notation. Given a sequence of real numbers (zn)n≥0, we will often write (z∗n)n≥0 for the
associated sequence of running minima z∗n = min0≤m≤n zm.

5.2 Proof of the main theorem

In this section we prove our main theorem, Theorem 34. We will work mostly under the
additional assumption that M is irreducible, locally finite (i.e. that there are finitely many
possible transitions from each state), and has P(x,x) = 0 except possibly for one absorbing
state †, before showing that the general case follows from this case at the end of the proof. It
will be convenient to work throughout with the hitting probabilities

H(x,y) = Px(hit y) =
G(x,y)
G(y,y)

rather than the Green’s function. This can be done with minimal changes to each of the other
statements since H(Xn,y) decays at the same rate as G(Xn,y) for each fixed y.

Let us now give some relevant definitions. We define a Markov chain with killing to be
a tuple M = (Ω ,P,†) where Ω is a countable state space, P : Ω ×Ω → [0,1] is the transition
kernel and † ∈ Ω is a distinguished graveyard state satisfying p(†,†) = 1. We say that a
Markov chain with killing is locally finite if the set {v : p(u,v)> 0} is finite for every u ∈Ω
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and say that a Markov chain with killing is irreducible if for every u,v ∈Ω \{†} there exists
n ∈ N such that Pn(u,v) > 0. We say the chain is transient if every state other than † is
visited at most finitely many times almost surely. Given a trajectory X of a Markov chain
with killing, we define for each x ∈Ω the hitting time τx = inf{n≥ 0 : Xn = x}, and say that
a trajectory of the chain is killed if τ† < ∞.

Theorem 40. Let M = (Ω ,P,†) be a transient, locally finite, irreducible Markov chain with
killing such that P(x,x) = 0 for every x ̸= †, let X = (Xn)n≥0 be a trajectory of M, and let
φ : [0,∞)→ [0,∞) be an increasing bijection such that

∞

∑
n=1

1
1∨ log(φ−1(n))

= ∞. (5.4)

If the event G = {limsupn→∞ eφ(n)H(Xn,X0)< ∞} has positive probability, then conditional
on G , X is either killed or has infinitely many cut times almost surely.

Note that (5.4) becomes equivalent to (5.1) when Φ(x) = e−φ(x) as established in the
following lemma; we found the condition in terms of Φ given in Theorem 34 to be easier
to think about in examples, while the condition in terms of φ given in Theorem 40 is better
suited to the proof.

Lemma 41. Let Φ : [0,∞)→ (0,1] be a decreasing bijection and let φ =− logΦ . Then

∫ 1

0

1
u(1∨ logΦ−1(u))

du = ∞ if and only if
∞

∑
n=1

1
(1∨ logφ−1(n))

= ∞.

Proof of Lemma 41. We will prove that if the integral involving Φ diverges then the sum
involving φ diverges, this being the only direction of the lemma that we need. The reverse
direction is proved similarly. Since Φ is decreasing, we have that

∫ 1

0

1
u(1∨ logΦ−1(u))

du =
∞

∑
k=1

∫ e−k+1

e−k

1
u log(1∨Φ−1(u))

du

≤
∞

∑
k=1

e−k+1

e−k(1∨ logΦ−1(e−k+1))
=

∞

∑
k=1

e
(1∨ logΦ−1(e−k+1))

, (5.5)

and the claim follows since Φ−1(e−k+1) = φ−1(k−1).

5.2.1 The overarching strategy and the special case of exponential decay

In this section we describe the high-level strategy underlying Theorem 34 and present a
proof in the much simpler case of an exponentially decaying hitting probability process
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H(Xn). We then document the issues that arise when attempting to extend this method to the
subexponential case and outline how we overcome them.

The high-level idea is to construct a function F : Ω → [0,∞) such that there are infinitely
many times n when the trajectory (Xm) of the irreducible Markov chain M = (Ω ,P) satisfies

max
m≥n

F(Xm)< min
m<n

F(Xm).

In other words, at each of these times n, the process F(Xi) must drop lower than it has
previously, and this drop must be a permadrop, i.e. F(Xi) must not recover to any level
achieved prior to the drop. Indeed, if this condition holds then the walk cannot return to any
vertex it has previously visited and therefore has a cut time at n. For the ‘drop’ part of this
condition to hold infinitely often, it is sufficient that the process (F(Xn))n≥0 converges to
zero, and given transience of the Markov chain, a candidate such as F(x) = d(o,x)−1 would
suffice. Indeed, studying graph distances appears to be a particularly natural choice in the
superdiffusive regime. Unfortunately, there seem to be very limited tools available to prove
that this function yields infinitely many permadrops, even when the random walk has positive
speed.

These considerations make it natural to instead study the decay of hitting probabili-
ties along the random walk: when the chain is transient the hitting probability process
(H(Xn,X0))n≥0 automatically tends to zero, and we can use the fact that the process is a
martingale to attempt to analyse the number of permadrops. Indeed, Benjamini, Gurel-
Gurevich and Schramm [64] used martingale techniques to show that the expected number
of permadrops of this process is always infinite when the chain is transient and hence that
every transient chain has infinitely many cut times in expectation. Thus, a natural approach
to the cut times problem is to find sufficient conditions for the number of permadrops of this
process to be infinite almost surely.

Let us first consider the special case in which M is irreducible and H(Xn,X0) decays
exponentially. Note that this case is already sufficient to resolve the conjecture of Benjamini,
Gurel-Gurevich, and Schramm [64] in conjunction with the spatially-dependent-killing
argument of Section 5.3.

Proposition 42. If M is irreducible and the hitting probability process Zn := H(Xn,X0)

decays exponentially in the sense that liminfn→∞
1
n log1/Zn > 0 a.s. then X has infinitely

many cut times a.s.

The proof of this proposition will rely on Lévy’s zero-one law [248], which is a special
case of the martingale convergence theorem.
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Lemma 43 (Lévy’s zero-one law). Let (Ω ,F,P) be a probability space, and let E denote
expectation with respect to P. Let (Fn)n≥0 be a filtration and let A be an F∞ = σ(∪nFn)

measurable event. Then

lim
k→∞

P[A | Fk] = 1A almost surely.

For application later in the paper, we will deduce Proposition 42 from the following
lemma.

Lemma 44. Let α < 1 and let A be the event that Z∗n ≤ αZ∗n−1 infinitely often. If A has
positive probability then X has infinitely many cut times a.s. on the event A.

Proof. Define the sequence of times (tn)n≥0 recursively by setting t0 = 0 and for each n≥ 1
setting

tn = inf{m > tn−1 : Zm ≤ αZ∗m−1}

with the convention that inf /0 = ∞. We observe that the event A is equal to {tn < ∞ ∀n≥ 0}
and for each n≥ 1 consider the permadrop event An = {tn < ∞ and Zm < α−1Ztn for every
m ≥ tn}, so that Zm < Z∗tn−1 for every m ≥ tn on the event An. Let A be the event that
infinitely many of the events An hold, so that A ⊆ A and X has infinitely many cut times
whenever A holds. Since the filtration (Ftn) has the σ -algebra generated by the entire
random walk as its union, Lévy’s zero-one law implies that

lim
n→∞

P(tn < ∞ and ∃m≥ n s.t. Am occurs |Ftn) = 1(A )

almost surely. On the other hand, since Z is a supermartingale, we have by optional stopping
that

P(tn < ∞ and ∃m≥ n s.t. Am occurs |Ftn)≥ P(An |Ftn)1(tn < ∞)≥ (1−α)1(tn < ∞)

almost surely for each n≥ 1. Since the latter estimate is bounded away from zero as n→ ∞

on the event A, we deduce that A holds almost surely conditional on A and hence that X has
infinitely many cut times almost surely conditional on A.

Proof of Proposition 42. For each α ∈ (0,1), let Eα be the event that Zn = Z∗n ≤ αZ∗n−1 for
infinitely many n ≥ 1. Since M is irreducible, Zn is positive for every n≥ 0. Since Z also
decays exponentially almost surely, the sequence Z∗n = infm≤n Zm is also positive and decays
exponentially almost surely. In particular, there exists a [0,1]-valued random variable α
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satisfying α < 1 almost surely such that

Zn = Z∗n ≤ αZ∗n−1 (5.6)

for infinitely many n≥ 1. This implies that the countable union
⋃

k≥1 E(k−1)/k has probability
1 and so the result follows from Lemma 44.

Problems in the subexponential case. As we have just seen, it is straightforward to
show that Zn has infinitely many permadrops whenever it decays exponentially: the large
decay rate guarantees an infinite supply of drops of a constant relative size, and the optional
stopping theorem bounds the probability of each of these drops being a permadrop below
by a constant. This constant lower bound means we can rely on soft techniques like Lévy’s
zero-one law to deduce that permadrop events occur infinitely often without having to worry
about their dependencies. However, even if we did have to think about dependencies, we
could choose the drops far enough away from each other such that we could easily control
the correlations between their recovery events. (The exact argument is somewhat subtle: it is
not necessarily true that the correlations are small, but the conditional probability of there
being a permadrop on one scale given what has happened on previous scales is bounded
away from 0.)

When we move to the subexponential case, this argument quickly begins to break down.
Indeed, the best we were able to do by optimizing the above approach was to handle the case
of stretched-exponential decay Zn = e−Θ(nz) for z > 1/2. Let us now overview the problems
that arise when attempting to perform such an optimization. First, without access to Lévy’s
zero-one law, we now have to consider correlations between recovery events. Perhaps more
significantly, however, subexponential decay gives us only very loose information about
the local behaviour of the hitting probability process. We know the extent to which it must
decrease over long periods of time, but have relatively little structural information about how
this decrease occurs or about the positions and sizes of the drops: the overall fall in value of
the process could be made up of frequent small drops, rare large drops, or any combination
thereof. Consider for instance the case of stretched exponential decay Zn = e−Θ(nz) for
z ∈ (0,1). This decay could be achieved by drops by a factor of size 1−nz−1 at a positive
density of times, or, say, by halving at each time of the form n1/z. The only restriction is that
we cannot have too much of the decay made up of very small drops, as this would contradict
the assumed decay of the process.

In an attempt to adapt the arguments used in the exponential decay case, a natural starting
place would be to attempt to extract a sparse sequence of roughly independent drops of
guaranteed size. For instance, in the stretched exponential decay case Zn = e−Θ(nz), we can
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set up the infinite sequence of stopping times

tn = inf
{

m > tn−1 : Zm < anZtn−1 and Zm < (1−nz′−1)Z∗m
}

for some decreasing sequence (an) very slowly converging to 0, and z′ ∈ (0,z), where the
sequence an should be chosen to allow us to safely ignore dependencies between successive
steps. It turns out that this works well for z > 1/2: a deterministic argument proves that
if (Zm) has only finitely many drops of any constant relative size, then for n large enough,
the drop at time tn must approximately have size at least 1−n(z

′−1)/z, and optional stopping
allows us to control the dependencies between the recovery events. Optional stopping
then gives a n(z

′−1)/z probability of the drop at time tn being a permadrop, and a simple
generalisation of Borel-Cantelli then implies that there are infinitely many permadrops almost
surely. For z≤ 1

2 , however, the sequence n(z
′−1)/z has a convergent sum and the argument

breaks down. At this stage we are very far from handling polynomial decay!

Addressing the problems. To get results when the process decays slower than e−n1/2
,

we can no longer just extract sparse sequences and must begin to consider neighbouring
drops and the interactions between their recovery events. We attempted to employ a second
moment method, bounding each P(Ai∩A j) from above where Ai is the event that the ith drop
is a permadrop. Unfortunately, due to the looseness of the information that we have regarding
the locations and sizes of the drops, this method proved difficult to implement and did not
seem capable of producing optimal results. To overcome the outlined issues, we instead
analyse the path of the hitting probability process as it traverses a series of spatial scales. At
each scale we upper bound the expected number of large permadrops conditional on there
being at least one, and simultaneously lower bound the unconditional expected number of
large permadrops. We modulate the definition of “large" across scales to ensure that the
former quantity is not too large and the latter is not too small: we need the threshold for the
drop sizes we consider to be small enough that we get an adequate supply of drops to lower
bound the unconditional expectation while being large enough to prevent an accumulation of
drops amplifying the conditional expectation. Once we have done this with a well-chosen
choice of thresholding function, comparing these two quantities allows us to lower bound the
probability that there is a permadrop on each scale; considering a whole scale simultaneously,
rather than individual pairs of drops, allowed us to tackle the flexibility present in the structure
of the decay. The Borel-Cantelli counterpart then has a natural application demonstrating
that there are infinitely many permadrops when the decay of the hitting probability is strong
enough.
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Rather than working directly with the hitting probability process of the Markov chain,
we work with an augmented continuous time process which we call the drawbridge process.
This makes the hitting probability process a continuous martingale away from 1 and lets
us use optional stopping to get exact expressions for permadrop probabilities rather than
one-sided inequalities: this is important since we need to prove both upper and lower bounds
on relevant expectations. As mentioned above, we will work primarily in the setting of
locally finite Markov chains that are irreducible bar the presence of a graveyard state, before
deducing a result for general Markov chains via a simple reduction argument.

5.2.2 The drawbridge process

At several points in our analysis we will want to apply the optional stopping theorem to get
equalities rather than one-sided inequalities, making it convenient to work with continuous
rather than discrete martingales. For the random walk on a graph, it is well-known that
one can embed the discrete-time random walk inside a continuous-time continuous process
by considering Brownian motion on an appropriately constructed metric graph known
as the cable graph [142, 256]. We now construct a similar way of embedding a non-
reversible locally finite Markov chain inside a continuous Markov process, which we call the
drawbridge process, and hence of embedding the discrete-time hitting probability process
inside a continuous martingale. While there are precedents for considering similar processes
[246], it appears to be much less well known than the cable process, and we give a fairly
detailed introduction to keep the paper self-contained.

Before giving a precise definition let us first give the intuition behind the name. Let
M = (Ω ,P,†) be a locally finite Markov chain with killing and suppose that P(x,x) = 0 for
every x ̸= †. Consider the corresponding directed graph G with vertex set Ω and with a
directed edge from a vertex u to a vertex v if u ̸= v and P(u,v)> 0. We can make this abstract
graph physical, in some sense, by assigning the positive real length 1/P(u,v) to each directed
edge (u,v). While it is nonsensical to think of a Brownian motion which can only travel
in one direction, we can recover restrictions in motion through the use of “drawbridges".
More specifically, we envision Brownian motion on a modified version of the metric graph,
in which one places a “drawbridge" along each directed edge of the metric graph. Each
drawbridge has two states, raised and lowered. When the drawbridge at (u,v) is raised,
the connection between the part of the edge near v and the vertex v itself is severed, and
the Brownian motion cannot cross from v onto the edge (u,v). Conversely, when (u,v) is
lowered it is possible for the Brownian motion to enter the edge from either u or v. For each
vertex u, we call the drawbridges across the edges emanating from u in the corresponding
directed graph the outgoing drawbridges from u. The drawbridge process will be defined
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5.2 The drawbridge process

by taking the Brownian motion on this metric graph and raising and lowering drawbridges as
the Brownian motion moves so that, at each time, the outgoing drawbridges from the last
vertex it visited are lowered and all other drawbridges are raised.

We now make this precise. Let M = (Ω ,P,†) be a locally finite Markov chain with killing
such that P(x,x) = 0 for every x ̸= †. For each state x∈Ω , we define the set of outgoing states
x→ to be {y ∈ Ω \{x} : P(x,y)> 0}. We define the star graph S[x] to be the metric graph
with vertex set {x}∪x→, with edge set {{x,y} : y ∈ x→}, and with edge lengths 1/P(x,y), so
that S[†] is the metric graph consisting of the single vertex {†} and no edges. In an abuse of
notation, we will identify vertices in the star graph with their corresponding states; the precise
meaning will be clear from context. We construct the metric space S from the disjoint
union S ⊔ = ⊔x∈Ω S[x] = {(x,y) : x ∈Ω ,y ∈ S[x]} by gluing together (x,y) ∈ {x}×S[x] and
(y,y) ∈ {y}× S[y] for every x ∈ Ω and y ∈ x→. Note that every point in S has a unique
representation of the form (x,y) where x ∈Ω and y ∈ S[x]\ x→.

Let (x0,y) ∈ S be such that x0 ∈ Ω and y ∈ S[x0] \ x→0 . We construct the draw-
bridge process on S starting at (x0,y) as follows. First we start a Brownian motion
(B0

t )t≥0 on S [x0] starting at (x0,y) at time T (0) = 0 and run until the stopping time
T (1) = inf{t > T (0) : B0

t ∈ {x0}× x→0 }, so that if T (1) < ∞ then B0
T (1) = (x0,x1) for

some x1 ∈ x→0 . If T (1) is finite, we then run a Brownian motion (B1
t )

T (2)
t=T (1) on S [x1],

started from (x1,x1) at time T (1) and run until the stopping time T (2) = inf{t > T (1) :
B1

t ∈ {x1}× x→1 }. We iterate this construction to generate a possibly infinite sequence
((Bi

t)T (i)≤t≤T (i+1))i, noting that T (i) is almost surely finite whenever xi ̸= †. If the se-
quence terminates because T (i) = ∞ for some i ∈ N, which almost surely happens exactly
when the process first visits the graveyard state †, then we define T ( j) = ∞ for j > i, set
τ† = i−1 and T† = T (τ†). If the sequence does not terminate, we set τ† = T† = ∞. Finally,
we construct the drawbridge process (Xt)t≥0 by concatenating, in order, the images of the
paths of the Brownian motions (Bi)0≤i≤τ† in S under the gluing map S ⊔→S .

We let Px,y, Ex,y denote probability and expectation with respect to the law of X started
at (x,y) and write Px = Px,x and Ex = Ex,x. Observe that if X is started at (x,x) for some
x ∈ Ω then the discrete-time process X = (Xn)

τ†
n=0 defined by (XT (n))

τ†
n=0 = (Xn,Xn)

τ†
n=0

has the distribution of a trajectory of the Markov chain stopped when it hits the graveyard
state †. Thus, if we fix an arbitrary ‘origin’ state o ̸= † and let To = inf{t ≥ 0 : Xt =

(o,o)} be the hitting time of o, setting To = ∞ if o is never hit, then the hitting probability
H (x,y) = Px,y(To < ∞) satisfies H (x,x) = H(x) = H(x,o) for all x ∈ Ω . We define
(Zt)t≥0 = (H (Xt))t≥0 and (Zn)n≥0 = (H(Xn))n≥0 = (ZT (n))n≥0, noting that if σ1 ≤ σ2

are stopping times for X such that Xt ̸= o almost surely for every σ1 < t < σ2 then (Zt)
σ2
t=σ1

is a continuous time martingale with respect to its natural filtration.
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5.2.3 Deterministic preliminaries

We now set up the notation to record the behaviour of the running minima of a non-negative
sequence as it converges to zero across a series of exponential scales. Recall that for each
sequence (zn)n≥1 we write (z∗n)n≥0 = (minm≤n zm)n≥0 for the associated sequence of running
minima. Given a non-negative sequence (zn)n≥0 converging to 0 with z0 > 0, we construct a
sequence of logarithmic scales over which to analyse and control its behaviour. We record
the associated notation in the following definition.

Definition 2 (Notation for drops at scale k). Fix a non-negative sequence z = (zn)n≥0 with
zn > 0 and zn→ 0 as n→ ∞. Let k0 = k0(z) = ⌈2logz−1

0 ⌉, and for each k ≥ 1 define the kth
scale interval Ik = [e−k−1,e−k]. For each k ≥ k0 we define the set Dk by adjoining the set of
running minima on the kth scale to the endpoints of the corresponding interval Ik so that

Dk = Dk(z) = ({z∗m : m≥ 1}∩ Ik)∪{e−k,e−k−1}

for each k ≥ k0. We define Nk = Nk(z) = |Dk(z)| − 1 and label the elements of Dk(z) in
decreasing order as (di,k)1≤i≤Nk = (di,k(z))0≤i≤Nk so that

e−k = d0,k > d1,k > · · ·> dNk,k = e−k−1 and
Nk−1

∏
i=0

di+1,k

di,k
= e−1.

We call the pairs (di,k,di+1,k) for 0 ≤ i ≤ Nk− 1 the drops of z on scale k. When context
makes clear which sequence z we are referring to, we will drop it from our notation. Similarly,
when it is clear that we are referring to a particular scale k we will drop the second subscript
on the di,k by writing di = di,k.

We begin the proof by proving the following deterministic lemma. Roughly speaking,
this lemma says that for sequences which decay to zero sufficiently quickly, we can define a
threshold between large and small drops in such a way that the following hold:

1. For a good proportion of scales, a good proportion of the decay is made up of large
drops.

2. The large drops are large enough that there cannot be too many such drops at any
particular scale.

The actual threshold we will use will be a simple function of the ψ which is outputted by
this lemma. Later, we will apply this lemma to the hitting probability process. Given an
increasing bijection ψ : [0,∞)→ [0,∞) and a sequence of non-negative numbers (zn)n≥0, we
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say that (zn)n≥0 is ψ-good on scale k if

∏

{
di+1,k

di,k
: 0≤ i < Nk is such that

di+1,k

di,k
≤ exp

[
− k

2ψ−1(k)

]}
≤∏

{
di+1,k

di,k
: 0≤ i < Nk is such that

di+1,k

di,k
> exp

[
− k

2ψ−1(k)

]}
,

or equivalently if

∏

{
di+1,k

di,k
: 0≤ i < Nk is such that

di+1,k

di,k
≤ exp

[
− k

2ψ−1(k)

]}
≤ e−1/2,

where we write ∏{Ai : i ∈ I}= ∏i∈I Ai for reasons of legibility. That is, (zn)n≥0 is ψ-good
on scale k if at least half of the total decay across the scale comes from drops of size at least
Ψ(k) := e−k/2ψ−1(k) in a geometric sense. Note that ψ−1 denotes the inverse of ψ; we will
typically think of ψ as being a slowly growing function so that ψ−1 satisfies ψ−1(x)≫ x.

Lemma 45 (Good, well-separated scales). Let φ : [0,∞)→ [0,∞) be an increasing bijection
such that

∞

∑
k=1

1
1∨ log(φ−1(k))

= ∞. (5.7)

Then there exist an increasing bijection ψ : [0,∞)→ [0,∞) satisfying ψ(x) ≤ φ(x) and
ψ(x)≤√x for every x≥ 0, and a strictly increasing function a : N→ N satisfying

lim
n→∞

a(k)−a(k−1) = +∞ and
∞

∑
k=1

1
1∨ log(ψ−1(a(k)))

= ∞, (5.8)

such that if (zn)n≥0 is a sequence of positive reals with z0 > 0 satisfying
limsupn→∞ eφ(n)zn < ∞, then

liminf
k→∞

1
k

#{1≤ r ≤ k : z is ψ-good on scale a(r)} ≥ 1
2
. (5.9)

As mentioned above, the function ψ , which we think of as “φ with some room”, is used
to define the threshold for a drop on scale k to be “large”, with z being ψ-good on scale k
precisely when a good proportion of the total decay on this scale comes from drops that
are larger than this threshold. Meanwhile, the sequence a is used to take a sparse sequence
of spatial scales so that we can safely ignore dependencies between scales while keeping
various series divergent so that we can still hope to conclude via Borel-Cantelli.

The proof of Lemma 45 will rely on the following elementary analytic facts.
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Lemma 46. Suppose that f : N → [0,∞) is a decreasing function satisfying

∑
∞
n=1 f (n) = ∞.

1. If A⊆ N has positive density in the sense that liminfN→∞
1
N ∑

N
n=11(n ∈ A)> 0 then

∑
n∈A

f (n) = ∞ and liminf
N→∞

∑
N
n=11(n ∈ A) f (n)

∑
N
n=1 f (n)

> 0.

2. There exists a convex, strictly increasing function a : N→ N with limn→∞ a(n)−a(n−
1) = ∞ such that ∑

∞
n=1 f (a(n)) = ∞.

Proof of Lemma 46. Fix f as in the statement of the lemma. We begin with the first state-
ment. Let A ⊆ N be such that liminfN→∞

1
N ∑

N
n=11(n ∈ A) > 0 and let k be such that

liminfN→∞
1
N ∑

N
n=11(n ∈ A) > 2/k, so that there exists ℓ0 such that ∑

kℓ+1

n=kℓ+11(n ∈ A) ≥
2kℓ− kℓ = kℓ for every ℓ≥ ℓ0. Letting N ≥ kℓ0+1 and setting ℓ1 = ⌊logk N⌋, we have that

N

∑
n=kℓ0+1

1(n ∈ A) f (n)≥
ℓ1−1

∑
ℓ=ℓ0

f (kℓ+1)
kℓ+1

∑
n=kℓ+1

1(n ∈ A)≥
ℓ1−1

∑
ℓ=ℓ0

kℓ f (kℓ+1)

and that
N

∑
n=kℓ0+1

f (n)≤
ℓ1

∑
ℓ=ℓ0

kℓ+1 f (kℓ)≤ kℓ0+1 f (kℓ0)+ k2
ℓ1−1

∑
ℓ=ℓ0

kℓ f (kℓ+1).

Since f was assumed to be divergent, it follows that

liminf
N→∞

∑
N
n=11(n ∈ A) f (n)

∑
N
n=1 f (n)

≥ 1
k2 > 0,

and hence that ∑n∈A f (n) = ∞ as claimed.
We now prove the second statement. The first statement implies that for any a,b ≥ 1

there exists m = m(a,b)≥ 1 such that ∑
m
n=1 f (a+bn)≥ 1. This fact allows us to recursively

construct a pair of integer sequences (bi)i≥0 and (di)i≥0 by setting b0 = 0 and recursively
defining

di = min
{

m :
m

∑
n=1

f (bi +2in)≥ 1
}

and bi+1 = bi +2idi for each i≥ 0,

and we observe that both di and bi must be finite for i≥ 0. We must then have

∞

∑
i=1

di

∑
n=1

f (bi +2in) =
∞

∑
n=1

f (a(n)) = ∞,
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where a(n) is the convex, strictly increasing sequence defined by

(a(1),a(2), . . .) = (b1 +2,b1 +2 ·2, . . . ,b1 +2 ·d1,b2 +22,b2 +22 ·2, . . . ,b2 +22 ·d2,

b3 +23,b3 +23 ·2, . . .).

This sequence has increasing increments tending to infinity by construction, completing the
proof.

We now apply Lemma 46 to prove Lemma 45.

Proof of Lemma 45. We may assume without loss of generality that φ(x) ≤ √x for every
x≥ 0, replacing φ with φ̃ = min{φ ,√x} otherwise. Indeed, since φ is increasing, we have
that φ̃−1(y)≤max{φ−1(y),y2}, and we have by the Cauchy condensation test that

∞

∑
k=1

1
1∨ logmax{φ−1(k),k2} = ∞ iff

∞

∑
k=1

2k

1∨max{logφ−1(2k),k log4} = ∞.

If there are infinitely many k such that 4k ≥ φ−1(2k) then the right hand series trivially
diverges, while if not then it diverges as a consequence of the Cauchy condensation test
applied to ∑

∞
k=1

1
1∨logφ−1(k) .

We begin by applying Lemma 46 to the function f (k) = 1/1∨ logφ−1(k) to give a strictly
increasing function a(k) : N→ N such that limk→∞ a(k)−a(k−1) = ∞ and

∞

∑
k=1

1
1∨ logφ−1(a(k))

= ∞. (5.10)

Extend a arbitrarily to an increasing bijection a : [0,∞)→ [0,∞) and define ψ : [0,∞)→ [0,∞)

to be the inverse of the increasing bijection

ψ
−1(x) = 8φ

−1
(

a
(
8a−1(x)

))
,

so that ψ is strictly increasing, bounded above by φ , and satisfies

∞

∑
k=1

1
1∨ log(ψ−1(a(k)))

=
∞

∑
k=1

1
1∨ (log8+ log(φ−1(a(8k))))

= ∞

by Lemma 46. Since φ and a are increasing and φ(x)≤√x for every x≥ 0 we also have that
ψ−1(x)≥ 8x2 and ψ(x)≤√x for every x≥ 0.

Let (zn)n≥0 be a sequence of positive numbers and let C be such that zn ≤Ce−φ(n) for
every n≥ 1. We will use the notation of Definition 2. Observe that if k ≥ k0 is such that z is
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not ψ-good on scale k then we must have that

#
{

i :
di+1,k

di,k
> exp

[
− 1

2ψ−1(k)

]}
>

loge−1/2

logexp(−k/(2ψ−1(k))
=

1
k

ψ
−1(k).

Discounting the endpoints of the interval, it follows that

#
(
{z∗m : m≥ 0}∩ (e−k−1,e−k)

)
>

1
k

ψ
−1(k)−2≥ 1

2k
ψ
−1(k)

whenever z is not ψ-good on scale k, where we used that ψ−1(k)≥ 8k2 in the final inequality.
Let B be the set of positive integers k ≥ k0 such that z is not ψ-good on scale a(k) and let

A =

{
k ≥ k0 :

1
k
|B∩{k0, . . . ,k}| ≥

1
2

}
.

We wish to prove that A is finite, and observe that A is finite if and only if A∩B is finite. For
each k ∈ A∩B with k ≥ 4k0, we have that |B∩{⌊k/4⌋, . . .k}| ≥ k/4 and hence, since ψ−1 is
increasing, that

|{n : zn ≥ e−a(k)−1}| ≥ ∑
i∈B∩{k0,...,k}

∣∣∣{z∗m : m≥ 0}∩ (e−a(i)−1,e−a(i))
∣∣∣

≥ 1
2 ∑

i∈B∩{k0,...,k}

1
k

ψ
−1(a(i))≥ 1

8
ψ
−1(a(⌊k/4⌋)).

As such, for each k ∈ A∩B with k ≥ 4k0 ≥ 4, there must exist n ≥ 1
8ψ−1(a(⌊k/4⌋)) such

that zn ≥ e−a(k)−1. On the other hand, for such n, we also have that

φ(n)≥ φ

(
1
8

ψ
−1(a(⌊k/4⌋))

)
= a(8⌊k/4⌋)≥ a(2k),

and since a(2k)− a(k)→ ∞ and limsupn→∞ eφ(n)zn < ∞, we deduce that A∩B is finite as
claimed.

5.2.4 Proof of Theorem 40

We now apply the deterministic tools from Section 5.2.3 to prove Theorem 40. Let us fix for
the remainder of this subsection a transient Markov chain with killing M = (Ω ,P,†) with
distinguished origin vertex o such that M is irreducible, locally finite, and satisfies P(x,x) = 0
for every x ̸= †. Fix X0 ∈Ω \{†}, let (Xt)t≥0 be the drawbridge process started at (X0,X0),
let (Xn)n≥0 be the associated discrete-time trajectory of the Markov process, and let (Zt)t≥0

118



5.2 Proof of Theorem 40

and (Zn)n≥0 be the associated continuous- and discrete-time hitting probability processes as
defined in Subsection 5.2.2. We write P and E for probabilities and expectations taken with
respect to the joint law of these processes.

Fix an increasing bijection φ : [0,∞)→ [0,∞) as in the statement of the theorem, and let
ψ be as in Lemma 45. For each k≥ 1 and 0≤ i≤ Nk−1 we say that the drop (di,k,di+1,k) is
a large drop if

di+1,k

di,k
≤Ψ(k) := exp

[
− k

2ψ−1(k)

]
and there exists n such that Z∗n = di+1,k. (The latter condition can fail if di+1,k = e−k−1.) If
(di,k,di+1,k) is a large drop and Z first hits di+1,k at some time n, we say that (di,k,di+1,k) is a
large permadrop if we have additionally that

Zt < di,k for every t ≥T (n).

We say that an arbitrary pair of values (a,b) in [e−k−1,e−k] with a > b is a large drop or large
permadrop if (a,b) = (di,k,di+1,k) for some large drop or large permadrop (di,k,di+1,k) as
appropriate.

Given k≥ k0 and i≥ 1, we write τi = τi,k for the ith time the discrete process Z reaches a
new running minimum smaller than e−k, and write Ti = T (τi,k) for the corresponding time
for the continuous process Z , noting that Ti,k is a stopping time for X for each i,k ≥ 1.
Note that when 1 ≤ i ≤ Nk, τi,k can be defined equivalently as the first time that Zn ≤ di,k.
Recall that if ρ is a stopping time for X then Fρ denotes the σ -algebra generated by
(Xt)

ρ

t=0. Given such a stopping time, we lighten notation by writing Eρ [ · ] = E[ · |Fρ ] and
Pρ [ · ] = P[ · |Fρ ].

The following two estimates on the distribution of the random variable

Rk := #{0≤ i≤ Nk−1 : (di,k,di+1,k) is a large permadrop}

lie at the heart of the paper. We will use these propositions to bound the probability PT1,k(Rk≥
1) in Proposition 48 in terms on the probability appearing in Proposition 47.

Proposition 47. The estimate

ET1,k [Rk]≥
1
4

PT1,k

(
Z is ψ-good on scale k and ∃n≥ 0 such that e−k−1 < Z∗n ≤ e−k−3/4

)
(5.11)

holds almost surely for every k ≥ 1.
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Proposition 48. There exists a universal constant C such that the estimate

ET1,k [Rk]≤
(

2+C log
2ψ−1(k)

k

)
PT1,k(Rk ≥ 1) (5.12)

holds almost surely for every k ≥ 1.

Proof of Proposition 47. To lighten notation, we drop ks from subscripts wherever possible.
We can use the optional stopping theorem to compute

ET1[R]≥ ET1

[
∑
i≥0

1(Zτi+1 > e−k−1)PTi+1((di,di+1) is a large permadrop)

]

= ET1

[
Nk−2

∑
i=0

(
1− di+1

di

)
1

(
di+1

di
≤Ψ

)] (5.13)

and applying the inequality 1− x≥ logx yields that

ET1[R]≥ ET1

[
log∏

{
di

di+1
: 0≤ i≤ Nk−2,

di+1

di
≤Ψ

}]
. (5.14)

When Z is ψ-good on scale k and there exists n such that e−k−1 < Z∗n ≤ e−k−3/4 we have that

∏

{
di

di+1
: 0≤ i≤ Nk−1,

di+1

di
≤Ψ

}
≥ e1/2 and

dNk−1

dNk

≤ e1/4,

so that the claim follows from (5.14).

Proof of Proposition 48. We fix a scale Ik = [e−k−1,e−k] and calculate the conditional ex-
pectation of the number of large permadrops on that scale given there is at least one. Since
k ≥ 1 is fixed throughout, we will drop it from notation when possible. By countability of
the state space Ω , there are only countably many possible permadrops. We condition on
the the “first large permadrop” being (a,b)⊂ Ik as follows. Let R′ be the number of large
permadrops in the scale excluding possibly the last drop, so that

R′ = ∑
0≤i≤Nk−2

1((di,di+1) is a large permadrop),

and let R′′ = (R′−1)∨0 be the amount that R′ exceeds 1. Given an arbitrary pair e−k−1 ≤
b < a≤ e−k, we say that (a,b) is the first large permadrop if (a,b) = (di,di+1) for some
0≤ i≤ Nk−1 such that the pair (di,di+1) is a large permadrop and (d j,d j+1) is not a large
permadrop for any j < i. We write τb for the first time Zn hits b (letting τb = ∞ if this never
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occurs), write Tb = T (τb), and seek to upper bound the conditional expectation

ETb

[
1((a,b) is the first large permadrop)R′′

]
.

If b = e−k−1 then this conditional expectation is zero, so assume b > e−k−1.
Note that if a large drop (di,di+1) is not a permadrop then there must exist a recovery

time at which Z hits di for the first time after Ti+1. Let

L = L(a,b) = {(di,di+1) : 1≤ i≤ Nk−2, di ≤ b, and di+1/di ≤Ψ(k)}

be the set of large drops on the scale k after (a,b) and possibly excluding the last drop, define
the event K = K(a,b) by

K = {(a,b) is a drop and every previous drop in the scale recovers before time Tb},

and observe that

1((a,b) is the first large permadrop)R′′

= 1(K)1((a,b) is a large permadrop) ∑
(di,di+1)∈L

1((di,di+1) is a large permadrop).

Since Ti is a stopping time for each i ≥ 1, we can use the optional stopping theorem to
compute that if b/a≤Ψ(k) then

ETb

[
1((a,b) is the first large permadrop)R′′

]
= ETb

[
1(K) ∑

(di,di+1)∈L
1((a,b) and (di,di+1) are permadrops)

]
= ETb

[
1(K) ∑

(di,di+1)∈L
1(Zt < a for t ∈ (Tb,Ti+1) and Zt < di for t > Ti+1)

]
= ETb

[
1(K) ∑

(di,di+1)∈L

(
1− di+1

di

)
1
(
Zt < a for t ∈ (Tb,Ti+1)

)]
= ETb

[
1(K) ∑

(di,di+1)∈L

(
1− di+1

di

)
1((Zt)t>Tb hits di+1 before a)

]
,

(5.15)
where the third equality follows by taking conditional expectations with respect to FTi+1 for
the term in the summation corresponding to (di,di+1) and then applying optional stopping.
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Proof of the main theorem

Write Ψ =Ψ(k) and let L = L (b) be the set of all finite sets S of ordered pairs of
numbers in [e−k−1,e−k] satisfying the following conditions:

1. If (x,y) ∈ S then x≤ b and y/x≤Ψ .

2. If (x,y) and (z,w) are distinct elements of S then the open intervals (y,x) and (w,z) are
disjoint.

If we consider the (random) function F : L → [0,∞) defined by

F(S) = ∑
(x,y)∈S

(
1− y

x

)
1((Zt)t>Tb hits y before a),

then we can rewrite (5.15) as

ETb

[
1((a,b) is the first permadrop)R′′k

]
≤ ETb [1(K)F(L)] , (5.16)

and we claim that the inequality

F(S)≤ (1−Ψ
2)
⌈−1/ logΨ⌉

∑
i=1

1((Zt)t>Tb hits Ψ
ib before a), (5.17)

is satisfied deterministically for every S ∈L .
Before proving the claimed inequality (5.17), let us first see how it implies (5.12).

Substituting (5.17) into (5.16) yields that

ETb

[
1((a,b) is the first permadrop)R′′

]
≤ (1−Ψ

2)ETb1(K)
⌈−1/ logΨ⌉

∑
i=1

1((Zt)t>Tb hits Ψ
ib before a)

= (1−Ψ
2)ETb

[
1(K)

⌈−1/ logΨ⌉
∑
i=1

a−b
a−Ψ ib

]

= (1−Ψ
2)

a−b
a

1(K)
⌈−1/ logΨ⌉

∑
i=1

1
1− (b/a)Ψ i ,

where we have applied optional stopping in the first equality. Since 1/(1− xΨ i) is an
increasing function of x it follows that if b≤Ψa then

ETb

[
1((a,b) is the first permadrop)R′′

]
≤ a−b

b
1(K)(1−Ψ

2)
−⌈1/ logΨ⌉

∑
i=1

1
1−Ψ i+1 .
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5.2 Proof of Theorem 40

Now, we have by calculus that 1−Ψ i+1 ≥ (i+1)(1−Ψ) for every 1≤ i≤−⌈1/ logΨ⌉ and
hence that there exists a universal constant C such that

ETb

[
1((a,b) is the first permadrop)R′′

]
≤ a−b

b
1(K)

1−Ψ 2

1−Ψ

−⌈1/ logΨ⌉
∑
i=1

1
i+1

≤C
a−b

b
1(K) log

2ψ−1(k)
k

,

where we used the definition of Ψ =Ψ(k) in the final inequality. Since we also have by
optional stopping that

PTb ((a,b) is the first permadrop)) =
a−b

b
1(K), (5.18)

we can take expectations over FTb conditional on FT1 to deduce that

ET1

[
1((a,b) is the first large permadrop)R′′k

]
≤C log

[
2ψ−1(k)

k

]
·PT1 ((a,b) is the first large permadrop) . (5.19)

We stress that this holds for every pair of real numbers a > b in [e−k−1,e−k], but that both
sides will be equal to zero for all but countably many such pairs (since there are only
countably many possible permadrops). Summing over the countable set of pairs giving a
non-zero contribution yields that

ET1 [R]≤ 2PT1(R≥ 1)+ET1[R
′′]≤

(
2+C log

2ψ−1(k)
k

)
PT1(R≥ 1)

as claimed.
It remains to prove (5.17). Given a set S ∈L , we say S is slack if there exists an element

(x,y)∈ S such that y/x <Ψ 2 and taut otherwise. Observe that if S∈L is slack and (x,y)∈ S
satisfies y/x <Ψ 2 then the set S′ = S∪{(x,Ψx),(Ψx,y)}\{(x,y)} also belongs to L and
satisfies F(S)≤ F(S′). Indeed, the latter inequality follows from the pointwise inequality

1((Zt)t>Tb hits yi before a)
(

1− yi

xi

)
≤ 1((Zt)t>Tb hits Ψxi before a)

(
1−Ψxi

xi

)
+1((Zt)t>Tb hits yi before a)

(
1− yi

Ψxi

)
.

To verify this inequality, note that if the indicator on the left is one, then so are both indicators
on the right, and when all three indicators are equal to one, the inequality is equivalent to the
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Proof of the main theorem

elementary inequality

1−Ψxi

xi
+1− yi

Ψxi
−
(

1− yi

xi

)
=

Ψ(1−Ψ)xi− (1−Ψ)yi

Ψxi

≥ Ψ(1−Ψ)xi− (1−Ψ)Ψ 2xi

Ψxi
= (1−Ψ)2 ≥ 0,

which holds since yi <Ψ 2xi. Given a slack set S ∈L , we can therefore iterate this operation
until we obtain a taut set S• with F(S)≤ F(S•); this iterative process must terminate after
finitely many steps since |S′|= |S|+1 and every set in L contains at most ⌈−1/ logΨ⌉ pairs
of points. Enumerate the pairs of points of S• in decreasing order as (x1,y1), (x2,y2), . . . ,
(xℓ,yℓ). Since every pair (x,y) ∈ S• satisfies y/x≤Ψ 2 and every two distinct pairs of points
in S• span disjoint open intervals of [e−k−1,b] we must have that yi ≤Ψ ib for every 1≤ i≤ ℓ

and hence that ℓ≤ ⌈−1/ logΨ⌉ as previously mentioned. It follows that

F(S)≤ F(S•) =
ℓ

∑
i=1

1((Zt)t>Tb hits yi before a)
(
1− yi

xi

)
≤
⌈−1/ logΨ⌉

∑
i=1

1((Zt)t>Tb hits Ψ
ib before a)(1−Ψ

2),

as claimed, where we used that S• is taut in the second inequality.

With these bounds in hand, we can now prove Theorem 40. The proof will apply the
Borel-Cantelli counterpart [88] which is an extension of the second Borel-Cantelli lemma to
dependent events.

Lemma 49 (Borel-Cantelli Counterpart). If (En)n≥0 is an increasing sequence of events
satisfying the divergence condition ∑n≥1P(En | Ec

n−1) = ∞, then P(
⋃

n≥1 En) = 1.

Setting En = ∪1≤i≤nAi for n ≥ 1 where (Ai)i≥1 is an arbitrary sequence of events, the
Borel-Cantelli counterpart implies in particular that

if ∑
n≥1

P
(
An | (∪n−1

i=1 Ai)
c)= ∞ then P

(⋃
n≥1

An

)
= 1. (5.20)

Proof of Theorem 40. We assume that τ† = ∞ with positive probability, the claim holding
vacuously otherwise. We recall that we have applied Lemma 45 to φ from the statement of
the theorem which yields the functions a and ψ . We continue to use the notation k0 = k0[Z]
as in Definition 2. We let G be the event that Zn ≤ e−φ(n) for all sufficiently large n. Since
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5.2 Proof of Theorem 40

each permadrop gives rise to a distinct cut time, it suffices to prove that ∑k Rk = ∞ almost
surely on the event that Z is not killed. For each k ≥ 1, define the events

Ak = {Ra(k) ≥ 1}= {there is at least one large permadrop on the a(k)th scale},
Bk = {there exists n such that e−a(k)−1 < Z∗n ≤ e−a(k)−3/4},

and the event

Ck = {there exists n such that
√

e−a(k−1)−1e−a(k) ≤ Z∗n < e−a(k−1)−1}.

If (Bk∩Ck)
c holds for infinitely many k then Z is either killed or satisfies Z∗n+1 ≤ e−1/4Z∗n

for infinitely many n, in which case the claim follows from Lemma 44. As such, it suffices to
prove that

P
( ∞⋃

k=k1

Ak | G holds, τ† = ∞, and Bk∩Ck holds for all sufficiently large k
)
= 1

for all k1 ≥ k0, whenever the event being conditioned on has positive probability. We will
assume for contradiction that there exists k1 ≥ k0 such that this does not hold, and fix such a
k1 for the remainder of the proof.

For each k ≥ k0, define the event

Gk = {Z is ψ-good on scale a(k)}.

It follows from Propositions 47 and 48 that there exists a universal constant c > 0 such that

PT1,a(k)
(Ak)≥

c ·PT1,a(k)
(Gk∩Bk)

1+ logψ−1(a(k))
(5.21)

for every k ≥ 1, where we used that ψ(x)≤√x to bound
log(ψ−1(a(k))/a(k))≥ 1

2 logψ−1(a(k)). For each k ≥ k0, let Fk be the event that for each
ℓ < k and 0≤ i≤ Na(ℓ)−1 such that the drop (di,a(ℓ),di+1,a(ℓ)) is not a permadrop, the process
Z hits di,a(ℓ) at a time between Ti+1,a(ℓ) and T1,a(k). The event Fk is constructed precisely
to force decorrelation between Ak and (

⋃k−1
i=k1

Ai)
c. Indeed, the intersection Fk∩Ck \∪k−1

i=k1
Ai
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Proof of the main theorem

is measurable with respect to FT1,a(k)
and we can apply (5.21) to deduce that

P(Ak∩Fk∩Ck \∪k−1
i=k1

Ai) = E
[
1(Fk∩Ck \∪k−1

i=k1
Ai)PT1,a(k)

(Ak)
]

≥ c
1+ logψ−1(a(k))

E
[
1(Fk∩Ck \∪k−1

i=k1
Ai)PT1,a(k)

(Gk∩Bk)
]

=
c

1+ logψ−1(a(k))
P(Fk∩Ck∩Gk∩Bk \∪k−1

i=k1
Ai)

for every k ≥ k0. On the other hand, on Fc
k ∩Ck, the process Z has to recover after time

T1,a(k) by a multiplicative factor of at least e−a(k)/
√

e−a(k)−a(k−1)−1 =
√

e−a(k)+a(k−1)+1,
and so we can apply optional stopping to Z at this time to upper bound

P(Fc
k ∩Ck∩Gk∩Bk \∪k

i=k1
Ai)≤ P(Fc

k ∩Ck)≤
√

e−a(k)+a(k−1)+1.

Hence, we have that

P(Ak \∪k−1
i=k1

Ai)≥
c

1+ logψ−1(a(k))

(
P(Ck∩Gk∩Bk \∪k−1

i=k1
Ai)−

√
e−a(k)+a(k−1)+1

)
∨0.

We deduce by linearity of expectation that

ℓ

∑
k=k1

P(Ak \∪k−1
i=k1

Ai)≥

c ·E
[

ℓ

∑
k=k1

(1(Ck∩Gk∩Bk \∪k−1
i=k1

Ai)−
√

e−a(k)+a(k−1)+1)∨0

1+ logψ−1(a(k))

]
. (5.22)

On the event that G \∪∞
i=k1

Ai holds and Bk∩Ck holds for all sufficiently large k (which has
positive probability by assumption), we have by choice of ψ in Lemma 45 that
liminfk→∞

1
k ∑

k
ℓ=k1

1(Ck ∩Gk ∩Bk \∪∞
i=k1

Ai) > 0 and hence by Lemma 46 that there exists
an almost surely positive η > 0 and almost surely finite k2 such that

ℓ

∑
k=k1

(1(Ck∩Gk∩Bk \∪k−1
i=k1

Ai)

1+ logψ−1(a(k))
≥ η

ℓ

∑
k=k1

1
1+ logψ−1(a(k))
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5.2 Completing the proof of Theorem 34

for every ℓ≥ k2. Since a(k)−a(k−1)→ ∞ as k→ ∞, the other term in (5.22) is of lower
order than this and we deduce that

∞

∑
k=k1

P(Ak \∪k−1
i=k1

Ai) = ∞.

It follows from the Borel-Cantelli counterpart that P(∪∞
k=k1

Ak) = 1, contradicting the defini-
tion of k1.

5.2.5 Completing the proof of Theorem 34

In this section we deduce Theorem 34 from Theorem 40. Note that the proof establishes a
slightly stronger claim giving the almost sure existence of infinitely many cut times on the
event that hitting probabilities decay quickly, without needing to assume that the latter occurs
almost surely.

Proof of Theorem 34. Let M = (Ω ,P,†) be a transient Markov chain with killing, let X =

(Xn)n≥0 be a trajectory of M, and let φ : [0,∞)→ [0,∞) be a strictly increasing function such
that

∞

∑
n=1

1
1∨ log(φ−1(n))

= ∞. (5.23)

It suffices by Lemma 41 to prove that if the event G = {limsupn→∞ eφ(n)H(Xn,Xm)< ∞ for
every m≥ 0 such that Xm ̸= †} has positive probability, then X is either killed or has infinitely
many cut times almost surely conditional on G . Compared to this statement, Theorem 40 has
three additional hypotheses: that M is locally finite, that M is irreducible, and that P(x,x) = 0
for every x ̸= †. We will show that these assumptions can each be removed via a simple
reduction argument.

Removing the condition that P(x,x) = 0 for every x ̸= †: First suppose that M is irreducible
and locally finite but does not necessarily satisfy P(x,x) = 0 for every x ̸= †. Since M is
irreducible and transient, P(x,x) ̸= 1 for every x ̸= †. Consider the Markov chain M′ =
(Ω ,P′,†) where P′ is the transition matrix defined by P′(x,x) = 0 for every x ̸= † and

P′(x,y) =
P(x,y)

1−P(x,x)
for every x ∈Ω \{†} and y ∈Ω \{x}.

We can couple trajectories X and Y of M and M′ so that X visits the same states as Y in the
same order but possibly includes additional steps where it stays at the same non-graveyard
vertex for more than one consecutive step. In particular, if Y has infinitely many cut times
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Proof of the main theorem

then X does also. Since the hitting probabilities for M and M′ are equal and Yn ∈ {Xm : m≥ n}
for every n≥ 1, if the event G holds for X then the analogous event holds for Y also, and the
claim follows from Theorem 40.

Removing the condition that M is irreducible: Now suppose that M is locally finite but
not necessarily irreducible, and does not necessarily satisfy P(x,x) = 0 for every x ̸= †.
For each communicating class C ̸= {†} of M we can define a Markov chain with killing
MC = (C∪{†},PC,†), where PC(u,v) = P(u,v) for each u,v ∈C and PC(u,†) = ∑v/∈C P(u,v)
for each u ∈C. When a trajectory X of the original Markov chain M enters a communicating
class C ̸= {†}, it can be coupled with a trajectory of MC up to the first time that it leaves C,
at which time the coupled trajectory of MC is killed. Observe that a trajectory of M must
either pass though infinitely many communicating classes or enter some final communicating
class C f . If C f = {†}, the trajectory is killed and there is nothing to prove. Each time the
trajectory (Xn) enters a new communicating class C ̸= {†}, the coupling with a trajectory of
MC together with the previous part of the proof implies that, conditional on G , the walk will
almost surely either stay in C forever and have infinitely many cut times or leave C. Thus, if
G holds and X eventually stays in a single communicating class, then it is either killed or
has infinitely many cut times almost surely. On the other hand, if X visits infinitely many
communicating classes then the set of times at which it enters a new communicating class
constitute an infinite set of cut times, so that the claim also holds in this case.

Removing the condition that M is locally finite: We now let M be arbitrary; it remains
only to remove the restriction that it is locally finite. We assume that trajectory X starts
at a non-recurrent state X0 ∈Ω , the claim holding vacuously otherwise. We merge all the
recurrent communicating classes of M into the single state † to give a Markov chain with
killing M′ = (Ω ′,P′,†), noting that we can couple trajectories of M and M′ such that they
are identical up to the first time the two trajectories enter a recurrent communicating class
(which corresponds to be killed in M′). We enumerate the states in Ω ′ \{†} as (yi)i≥1 and for
each state y ∈Ω define y→ = {z ∈Ω : P(y,z)> 0}. Fix ε > 0. Since every state in Ω ′ \{†}
is transient, we can select for each i≥ 0 a subset Li of the states in y→i such that y→i \Li is
finite and the trajectory (Xn) on M′ starting at X0 satisfies

P(∃ j ∈ N such that X j = yi and X j+1 ∈ Li)< ε2−i.

It follows by a union bound that the event L = {∃i, j∈N such that X j = yi and X j+1 ∈Li} that
the trajectory ever makes a transition of this type has probability at most ε . We construct a new
Markov chain with killing M′′= (Ω ′,P′′,†) where, for each i≥ 1, transitions from yi to Li are
redirected to the graveyard state. That is, for each i≥ 1, we set P′′(yi,v) = 0 for every v ∈ Li,
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set P′′(yi,v) = P′(yi,v) for each v /∈ Li∪{†}, and set P′′(yi,†) = P′(yi,†)+∑v∈Li P′(yi,v).
This construction ensures that M′′ is locally finite. We can couple trajectories X on M′ and Y
on M′′ to be identical up until the time that X makes a transition from yi to Li for some i≥ 1,
after which Y is killed. It follows from this coupling that

HM(x,y)≥HM′′(x,y) for every x,y ∈Ω
′ \{†}, (5.24)

and hence under this coupling that HM′′(Yn,Ym)≤HM′′(Xn,Xm) whenever n≥ m is such that
Yn ̸= †. Since M′′ is locally finite it follows that, under this coupling, Y is either killed or
has infinitely many cut times on the event G = {limsupn→∞ eφ(n)H(Xn,Xm) < ∞ for every
m≥ 0 such that Xm ̸= †}. The claim follows since X and Y coincide forever with probability
at least 1− ε and ε > 0 was arbitrary.

5.3 Superdiffusive walks

In this section we prove Theorem 36, which states that random walks on networks satisfying
a mild superdiffusivity condition have infinitely many cut times almost surely. It will once
again be convenient to work within a more general framework that allows for random
walks to be killed. We define a network with killing to be a tuple N = (V,E,c,K) where
(V,E,c) is a network and K : V → [0,∞) is a killing function. Given a network with killing
N = (V,E,c,K), the random walk on N is the Markov chain with state space V ∪{†} and
with transition matrix defined by

P(u,v) =
c(u,v)

c(u)+K(u)
for u,v ∈V P(u,†) =

K(u)
c(u)+K(u)

for u ∈V ,

and P(†,†) = 1, where c(u) denotes the total conductance of all edges emanating from u,
and c(u,v) denotes the conductance of the edge between u and v if one exists, and is zero
otherwise. We will follow the standard practice of writing pn(u,v) = Pn(u,v) for transition
probabilities.

The starting point of our analysis is the following well-known theorem of Varopoulos and
Carne [99, 317] (see also [259]). While usually stated without allowing for killing, the same
proof1 applies equally well to networks with killing; the important thing is that P satisfies

1As pointed out to us by the referee, this version of the inequality can also be proved from the standard
version by appending a loop of weight K(u) to each vertex u ∈V and coupling a second random walk to the
original which is killed when the original random walk first uses one of these loops, and which is identical to
the original random walk up to that time.
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Superdiffusive walks

the self-adjointness relation (c(u)+K(u))P(u,v) = (c(v)+K(v))P(v,u) for every u,v ∈V
and that the restriction of P to V is substochastic.

Theorem 50 (Varopoulos-Carne Inequality). The transition probabilities pn(x,y) of a random
walk on a network with killing N = (V,E,c,K) satisfy

pn(x,y)≤
√

c(y)+K(y)
c(x)+K(x)

exp
[
−d(x,y)2

2n

]
ρ

n. (5.25)

for every x,y ∈V and n≥ 1, where ρ is the spectral radius of the restriction of P to V .

We will bound the spectral radius term trivially by 1 in all our applications of this
inequality.

While we would naively like to use Varoupoulos-Carne together with our superdiffusivity
hypothesis to obtain bounds on the decay of the Green’s function along the random walk,
and conclude by applying Theorem 34, unfortunately, this does not seem to be possible in
general. Indeed, while it is possible to obtain bounds on the small-time and medium-time
transition probabilities of the walk using the Varopoulos-Carne inequality, this inequality
gives us no control of the large-time contributions to the Green’s function. In our efforts to
circumvent this issue, we will establish some rather general conditions under which we can
compare the decay of G(Xn,X0) and pn(Xn,X0) that may be of independent interest.

5.3.1 Comparing pn(Xn,X0) and G(Xn,X0) assuming superpolynomial
decay

The first step of our proof is to give conditions under which the a.s. rates of decay of
pn(Xn,X0) and G(Xn,X0) can be compared. Given a connected network with killing N, we
say that N satisfies the superpolynomial decay condition if

lim
n→∞

logsupu∈V pn(u,v)
logn

=−∞ for some (and hence every) v ∈V . (SPD)

Proposition 51. Let N be a network with killing and let X = (Xn)n≥0 be a random walk
started at o. If the transition probabilities to o satisfy the superpolynomial decay condition
(SPD) then

lim
n→∞

log pn(Xn,X0)

logG(Xn,X0)
= 1

almost surely, with the convention that this ratio is equal to 1 when Xn = †.
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5.3 Comparing pn(Xn,X0) and G(Xn,X0) assuming superpolynomial decay

This proposition is not really needed for Theorem 36, since the superpolynomial decay
hypothesis (SPD) would already suffice to deduce the claim from Theorem 34. It will,
however, be used more seriously in the proof of Theorem 37. For random walks on finitely
generated groups with positive speed, which always satisfy (SPD) by [259, Corollary 6.32],
Proposition 51 implies that the Avéz entropy and exponential decay rate of the Green’s
function coincide, recovering a result of Benjamini and Peres [70, Proposition 6.2]. Similar
results for groups that are not finitely generated have been obtained in [85].

Proposition 51 will be deduced from the following elementary observation.

Lemma 52. The transition probabilities pn(x,y) of a random walk (Xn)n≥0 on a network
with killing N = (V,E,c,K) satisfy

E
[

pm(Xn,X0)

pn(Xn,X0)

]
≤ P(Xm ̸= †)+P(Xn = †)≤ 2, (5.26)

for every x ∈V and m,n≥ 0, with the convention that the ratio is 1 when Xn = †.

Proof of Lemma 52. Let A be the set of vertices x ∈V such that pn(X0,x)> 0. Then we have
that

E
[

pm(Xn,X0)

pn(Xn,X0)
1(Xn ̸= †)

]
= E

[
pm(X0,Xn)

pn(X0,Xn)
1(Xn ̸= †)

]
= ∑

x∈A
pn(X0,x)

pm(X0,x)
pn(X0,x)

= ∑
x∈A

pm(X0,x)≤ P(Xm ̸= †),

which is easily seen to imply the claim.

Proof of Proposition 51. Using Lemma 52, an application of the Borel-Cantelli Lemma
implies that there exists an almost surely finite random variable γ such that

pm(Xn,X0)≤ γ(m+1)2(n+1)2 pn(Xn,X0) (5.27)

for every n,m≥ 0. Fix ε > 0, let n≥ 1 and let N = ⌈pn(Xn,X0)
−ε⌉. We deduce by summing

(5.27) over 0≤ m≤ N that

G(Xn,X0) =
∞

∑
m=0

pm(Xn,X0)≤ γ(N +1)3(n+1)2 pn(Xn,X0)+
∞

∑
m=N+1

pm(Xn,X0).

131



Superdiffusive walks

Since pm(Xn,X0) ≤ supv pm(v,X0) decays superpolynomially in m by (SPD) we can write
this estimate in asymptotic notation as

G(Xn,X0)≤ pn(Xn,X0)
1−3ε−o(1)+ pn(Xn,X0)

ω(1) a.s. as n→ ∞ for each fixed ε > 0,

where o(1) and ω(1) denote quantities tending to 0 and +∞ respectively. The claim follows
since ε > 0 was arbitrary and the inequality G(Xn,X0)≥ pn(Xn,X0) holds trivially.

Since pn(Xn,X0) decays superpolynomially under the superdiffusivity assumption (5.3)
by Varopoulos-Carne and we only require polynomial decay of G(Xn,X0) to apply Theorem
34, to prove Theorem 36 it would suffice for us to have a much weaker comparison of
the two quantities than that provided by Proposition 51. Such comparison inequalities can
be provided by the proof of Proposition 51 under much weaker assumptions on transition
probabilities that are only barely stronger than transience. For example, this argument is able
to handle the ballistic case under the mild additional assumption that there exists c > 0 such
that

sup
u

pn(u,v)≤
Cv

n(logn)1+c for every v ∈V and n≥ 2, (5.28)

where Cv is a finite constant depending on the choice of v. Unfortunately, we believe that
such transition probability estimates need not hold in general, even when the random walk
has positive speed. Indeed, identifying the origin of Z2 with the root of a binary tree gives an
example where the random walk has positive liminf speed almost surely but where pn(0,0) is
at least the probability that the walk makes an excursion of length n from the origin to itself
in Z2, which is of order n−1(logn)−2. Replacing Z2 in this example by a tree of slightly
superquadratic growth should allow one to construct examples where the random walk has
positive speed but where (5.28) does not hold for any c > 0; we do not pursue this further
here. We believe that there exist examples where the random walk has positive speed but
where G(Xn,X0) decays very slowly, but this seems to require a more involved construction.

5.3.2 Spatially-dependent killing and the proof of Theorem 36

We now describe how we circumvent the issue discussed at the end of the previous subsection
by introducing spatially dependent killing to our network, where we will take K(x) to be
a function of the distance of x from some fixed origin vertex o. We will show under the
hypotheses of Theorem 36 that this killing function can be chosen to decay sufficiently quickly
that the random walk has a positive probability never to be killed, but decay sufficiently
slowly that the resulting network with killing satisfies (SPD).
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We begin by finding the marginal rate of decay under which the resulting network with
killing automatically satisfies (SPD). Given a network N = (V,E,c) and a fixed origin vertex
o, we write ⟨x⟩= 2∨d(o,x) for each x ∈V to avoid division by zero.

Lemma 53. Let N = (V,E,c) be a network with cmin = infx∈V c(x)> 0, fix a vertex o ∈V ,
let γ ∈ R and let K : V → [0,∞) be the killing function defined by K(x) = c(x)min{1,
⟨x⟩−2(log⟨x⟩)γ}. Then there exists a positive constant c = c(γ) such that

pn(x,o)≤
√

8c(o)
cmin

exp
[
− c(logn)γ/2

]
for every x ∈V and n≥ 2. In particular, if γ > 2 then (V,E,c,K) satisfies (SPD).

The rough idea behind this lemma is as follows: Suppose we run a random walk for time
n started at some vertex x. If d(o,Xm)≫

√
n for some 0 ≤ m ≤ n then the probability of

hitting the origin at time n is small as a consequence of Varopoulos-Carne. On the other
hand, if this never happens, the higher rate of killing ensures that the walk is killed before
time n with high probability and is therefore unlikely to hit the origin at time n.

Proof of Lemma 53. Let Px denote the law of the random walk X = (Xn)n≥0 on the network
with killing (V,E,c,K) started at some fixed vertex x ∈V , and let τ† denote the time the walk
is killed (i.e. first visits the graveyard state †). We define d(o,†) = ∞ and decompose

Px(Xn = o) = Px(Xn = o and d(o,Xm)> r for some 0≤ m≤ n)

+Px(Xn = o and d(o,Xm)≤ r for every 0≤ m≤ n) (5.29)

for each n,r ≥ 2, where r is a parameter we will optimize over at the end of the proof. We
begin by analysing the first term on the right hand side of (5.29). Let κ be the stopping time
κ := inf{m ≥ 0 : d(o,Xm) > r}. We apply the strong Markov property at κ together with
Varopoulos-Carne to give that

Px(Xn = o and d(o,Xm)> r for some 0≤ m≤ n)

≤
n

∑
m=0

∑
z∈V

Px(κ = m,Xκ = z)Pz(Xn−m = o)

≤
√

c(o)+K(o)
c(z)+K(z)

exp
[
− r2

2n

]
≤
√

2c(o)
cmin

exp
[
− r2

2n

]
,

where cmin = infz∈V c(z), and where the final inequality follows by definition of K. We now
turn our attention to the second term on the right hand side of (5.29). Each time the walk
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makes a step at distance at most r it is killed with probability at least 1
2(1∧ r−2(logr)γ).

Letting c1 = c2(γ) be a positive constant such that this probability is at least c1r−2(logr)γ ,
we deduce that

Px
(
Xn = o and d(o,Xm)≤ r for every 0≤ m≤ n

)
≤ Px

(
τ† > n and d(o,Xm)≤ r for every 0≤ m≤ n

)
≤
(

1− c1(logr)γ

r2

)n

≤ exp
[
−c1(logr)γn

r2

]
,

where we used the inequality 1− t ≤ e−t in the final inequality. Substituting these two
estimates into (5.29) yields that

Px(Xn = o)≤
√

2c(o)
cmin

(
exp
[
− r2

2n

]
+ exp

[
−c1(logr)γn

r2

])
,

and the claim follows by taking r = ⌈n1/2(logn)γ/4⌉.

Let N = (V,E,c) be a network, let o be a vertex of N, and let X = (Xn)n≥0 be the random
walk on N. Let r > 0 and let Sr be the event that

liminf
n→∞

d(o,Xn)

n1/2(logn)r
> 0.

We next wish to show that for any choice of r, we can choose the killing function K as in
Lemma 53 such that if Sr holds, the walk does not “feel" the effects of the killing. More
precisely, we can ensure the killing function decays quickly enough such that conditional on
the path of the walk, the walk almost surely has a positive probability of never getting killed.
To formulate this lemma, let us first note that we can couple the random walks on (V,E,c)
and (V,E,c,K) so that they coincide up until the killing time τ†. Writing X for the unkilled
walk and writing Px for the joint law of X and τ† when X is started at x ∈V , this coupling is
determined by the equality

Px(τ† = n | X) = K(Xn−1)
n−2

∏
i=0

(1−K(Xi)).

Lemma 54. Let N = (V,E,c) be a network with cmin = infx∈V c(x)> 0, fix a vertex o ∈V ,
let γ ∈ R, and let K : V → [0,∞) be the killing function defined by K(x) = c(x)min{1,
⟨x⟩−2(log⟨x⟩)γ}. If X is a random walk on N and γ +1 < 2r, then Px(τ† = ∞ | X)> 0 almost
surely on the event Sr.
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Proof of Lemma 54. We can write the conditional probability Px(τ† = ∞ | X) as an infinite
product

Px(τ† = ∞ | X) =
∞

∏
i=0

(1−K(Xi)), which is positive if and only if
∞

∑
i=0

K(Xi)< ∞.

We have by calculus that there exists a random variable α taking values in [1,∞] that is finite
on the event Sr and satisfies K(Xn)≤ α(logn)γ−2rn−1 for every n≥ 1, and it follows that if
2r > 1+ γ then ∑

∞
i=0 K(Xi)< ∞ on the event Sr as required.

We are now ready to complete the proofs of Theorems 36 and 37.

Proof of Theorem 36. Let r > 3/2 and 2 < γ < 2r−1. Let N = (V,E,c) be a network with
cmin = infx∈V c(x) > 0, fix a vertex o ∈ V , and let K : V → [0,∞) be the killing function
defined by K(x) = c(x)min{1, ⟨x⟩−2(log⟨x⟩)γ}. Couple the random walk X on N with the
killing time τ† as above, write X† for the killed walk, and assume that the superdiffusivity
event Sr has positive probability. Let p†

n and G† denote transition probabilities and the
Green’s function with respect to the killed network N† = (V,E,c,K). Lemma 53 implies that
N† satisfies the superpolynomial decay condition (SPD), and we deduce from Proposition 51
that

lim
n→∞

log p†
n(X

†
n ,X

†
0 )

logG†(X
†
n ,X

†
0 )

= 1 (5.30)

almost surely, where the ratio is considered to be equal to 1 when X†
n = †. Varopoulos-Carne

yields that

p†
n(X

†
n ,X

†
0 ) = exp

[
−Ω

(
(logn)2r)] as n→ ∞

when Sr holds, and hence by (5.30) that

G†(X†
n ,X

†
0 ) = exp

[
−Ω

(
(logn)2r)] as n→ ∞

almost surely on the event Sr. (Here we recall that Ω( f (n)) denotes a quantity that is
lower bonded by a (possibly random) positive multiple of f (n) for large values of n.) Since
r > 3/2 > 1/2, this decay is superpolynomial, and it follows from Theorem 34 that X† is
either killed or has infinitely many cut times almost surely on the event Sr. Since we also
have that the conditional probability Px(τ† = ∞ | X) is almost surely positive on the event Sr,
we deduce that X has infinitely many cut times almost surely on the event Sr as claimed.
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Proof of Theorem 37. Since G has bounded degrees and the walk has positive liminf speed
almost surely, it follows as above that we can take a bounded killing function K so that
the walk has a.s. positive conditional probability not to be killed and the killed Green’s
function G†(X†

n ,X
†
o ) decays exponentially. On the other hand, since the degrees and the

killing function are both bounded, there exists a positive constant c such that G†(X
†
n+1,X

†
o )≥

c ·G†(X†
n ,X

†
o ) for every n ≥ 0 such that X†

n+1 ̸= †. Combined with exponential decay this
implies that if we define Aa = {n : Z†

n+1 ≤ aminm≤n Z†
m}, where Z†

n =G†(X†
n ,X

†
o ), and define

Aa to be the event that Aa has positive liminf density then
⋃

∞
k=1 A(k−1)/k has probability 1.

On the other hand, by optional stopping, for each n ≥ 1 the conditional probability that n
is a cut time given everything the walk has done up to time n is bounded below by 1− a
whenever n ∈ Aa. From here the claim follows easily by standard arguments and we omit the
details.

5.4 Sharpness for birth-death chains

In this final section, we demonstrate that the integral condition given in Theorem 34 is sharp
by comparing our results to those of Csáki, Földes, and Révész [109] on the cut times of
birth-death chains. Throughout this section, (Xn)n≥0 will denote a random walk on Z≥0 with
transition probabilities of the form

Ei := P(Xn+1 = i+1 | Xn = i) = 1−P(Xn+1 = i−1 | Xn = i) =

1 if i = 0

1/2+ pi otherwise
,

where −1/2 < pi < 1/2 for each i≥ 1. For each m≥ 0, define

D(m) = 1+
∞

∑
j=1

j

∏
i=1

(
1

Em+i
−1
)
.

The aforementioned work [109] establishes the following dichotomy. (Here we rephrase
their theorem in terms of cut times and omit the strengthened conclusion concerning strong
cut points.)

Theorem 55 ([109, Theorem 1.1]). Let (Xn)n≥0 be a transient birth-death chain as defined
above with 0≤ pi < 1/2 for each i≥ 1.

• If ∑
∞
n=2(D(n) logn)−1 < ∞, then (Xn) has finitely many cut times a.s.

• If D(n) ≤ n(logn)1/2 and ∑
∞
n=2(D(n) logn)−1 = ∞, then (Xn) has infinitely many cut

times a.s.
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We use this Theorem to prove the following partial converse of Theorem 34. We
let G(n) = G(n,0) denote the Green’s function associated with (Xn) and say a function
F : [0,∞)→ (0,∞) is eventually log-convex if there exists r ≥ 0 such that the restriction of
F to the interval [r,∞) is log-convex.

Proposition 56. Given any decreasing differentiable bijection Φ : [0,∞)→ (0,1] that is
eventually log-convex and satisfies

∫ 1

0

1
u(1∨ logΦ−1(u))

du < ∞,

there exists a nearest-neighbour random walk (Xn)n≥0 on Z≥0, with Green’s function G(n) =
G(n,0), such that limsupn→∞ Φ(n)−1G(Xn) < ∞ and (Xn)n≥0 has finitely many cut times
almost surely.

In the proof of this proposition, we will utilize the following two elementary identities
relating the quantities pn, G(n), and D(n) for each n≥ 1:

D(n−1) =
G(n−1)

G(n−1)−G(n)
, (5.31)

pn =
1
2
G(n−1)+G(n+1)−2G(n)

G(n−1)−G(n+1)
. (5.32)

The first identity follows from [109, (2.1)] and the elementary identity H(n+1,n) =H(n+
1)/H(n), where H(n) is the probability that (Xm) will hit 0 when X0 = n, and the second
identity follows from [109, (2.2)] together with the first.

Plugging (5.31) into ∑
∞
n=2(D(n) logn)−1, we observe that their summation criterion is

roughly related to our integral condition by a change of variables. We prove Proposition
56 by formalising this relationship for a walk whose Green’s function is an appropriate
transformation of the input function Φ . We then conclude by proving a very weak lower
bound on the displacement of the walk from 0.

Proof of Proposition 56. Let f be the decreasing, log-convex function f (x) := e−
√

log(x+2),
and let M ≥ 2 be the smallest integer such that the restriction of Φ to [M,∞) is log-convex.
We begin by defining the function Φ̃ : [0,∞)→ (0,∞) by

Φ̃(x) = Φ((x+M)4) f (x),

and noting some its properties. First, observe that Φ̃ ≤Φ is strictly positive, strictly decreas-
ing, log-convex and differentiable. Moreover, since Φ̃(x) ≤ Φ((x+M)4)∧ f (x), we also
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have that Φ̃−1(x) ≥ (Φ−1(x)1/4−M)∨ f−1(x), and hence that there exists a C < ∞ finite
such that∫ 1

0

1

u(1∨ logΦ̃−1(u))
du≤

∫ 1

0

1
u(1∨ log[(Φ−1(x)1/4−M)∨ f−1(x)])

du

=
∫ 1

0
min

{
1

u(1∨ log f−1(x))
,

1
u(1∨ log[(Φ−1(x)1/4−M)])

}
du

≤C+C
∫ 1

0

1
u(1∨ logΦ−1(x))

du < ∞, (5.33)

where for functions F ∈ {Φ̃ , f}, we use the convention that 1∨ logF−1(u) = 1 when F−1(u)
is not defined. We also note that the logarithmic derivative (logΦ̃)′ of Φ̃ , which is increasing
by log-convexity of Φ̃ , satisfies the inequality

− d
dx

logΦ̃(x)≥− d
dx

log f (x) =
1

2(x+2)
√

log(x+2)
. (5.34)

We now use the function Φ̃ to define a Markov chain satisfying the desired properties. For
i≥ 1, we define

pi =
1
2

Φ̃(n−1)+ Φ̃(n+1)−2Φ̃(n)

Φ̃(n−1)− Φ̃(n+1)
, (5.35)

which is non-negative since Φ̃ is convex and strictly less than 1/2 since Φ̃ is strictly decreas-
ing. We can therefore define a nearest-neighbour random walk (Xn)n≥0 on the integers with
X0 = 0 and with transition probabilities

P(Xn+1 = i+1 | Xn = i) = 1−P(Xn+1 = i−1 | Xn = i) =
1
2
+ pi for i≥ 1,

and P(Xn+1 = 1 | Xn = 0) = 1. Comparing (5.35) and (5.32), it follows by induction on n
that the Green’s function of this Markov chain is given by

G(n) =CΦ̃(n) for n≥ 0,

for some constant C = G(0)/Φ̃(0) independent of n. Therefore, to complete the proof, it
suffices to show that

limsup
n→∞

Φ̃(Xn)

Φ(n)
≤ limsup

n→∞

Φ((Xn +M)4)

Φ(n)
< ∞ a.s. (5.36)

and that X has at most finitely many cut times almost surely.
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We first apply Theorem 55 to prove that X has finitely many cut times almost surely. Let
N ≥ 3 be large enough such that Φ(N−1)< f (2). We can calculate

∞

∑
n=N

1
D(n) logn

=
∞

∑
n=N

Φ̃(n)− Φ̃(n+1)

Φ̃(n) logn

≤
∞

∑
n=N

−Φ̃ ′(n)

Φ̃(n) logn
≤
∫

∞

N−1

−Φ̃ ′(x)

Φ̃(x) logx
dx≤

∫
Φ(N−1)

0

du

u logΦ̃−1(u)
< ∞,

where the first equality follows from (5.31), the first inequality is by convexity, the second
follows by integral comparison as (d/dx)[logΦ̃(x)] is increasing, the third follows by the
substitution u = Φ̃(x) and the inequality Φ̃ ≤ Φ , and the fourth follows from (5.33). The
claim then follows from Theorem 55.

Finally, we prove (5.36). As Φ̃ is decreasing, it suffices to show that

inf
m≥n

Xm≥ n1/2−o(1) a.s. as n→ ∞ and hence that liminf
n→∞

Xn

n1/4 > 1 a.s. (5.37)

Since Φ̃ is log-convex, Φ̃(m+ 1) ≥ Φ̃(m)Φ̃(1)/Φ̃(0) for every m ≥ 1. For each m ≥ 0,
define Hm = |{n≥ 0 : Xn = m}|. By [109, Lemma B], for each m ≥ 0, Hm is a geometric
random variable with parameter

1/µm :=
1+2pm

2
· Φ̃(m)− Φ̃(m+1)

Φ̃(m)
≥ 1

2
Φ̃(m)− Φ̃(m+1)

Φ̃(m)

≥ −Φ̃ ′(m+1)

2Φ̃(m)
≥− Φ̃(1)Φ̃ ′(m+1)

2Φ̃(0)Φ̃(m+1)
≥ Φ̃(1)

4Φ̃(0)(m+2)
√

log(m+2)
,

where the second inequality follows by convexity of Φ̃ and the final inequality follows from
(5.34). Since each Hm is a geometric random variable with mean of order m1+o(1), it follows
by an elementary application of Borel-Cantelli that maxm≤n Hm = n1+o(1) almost surely as
n→ ∞, and hence that maxm≤n Xm ≥ n1/2−o(1) almost surely as n→ ∞. On the other hand,
letting τn be the hitting time of n for each n≥ 1, we have by optional stopping that

P(X visits m after τn)≤
G(n)
G(m)

=
Φ̃(n)

Φ̃(m)
≤ f (n)

f (m)

for each 0 ≤ m ≤ n. Since f (2k)/ f (⌊2(1−ε)k⌋) is superpolynomially small in k for each
fixed ε > 0, we deduce by a further simple Borel-Cantelli argument that infm≥n Xm =

(maxm≤n Xm)
1−o(1) ≥ n1/2−o(1) almost surely as n→ ∞, completing the proof.
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Chapter 6

[E] Logarithmic corrections to the
Alexander–Orbach conjecture for the
four-dimensional uniform spanning tree

Abstract. We compute the precise logarithmic corrections to Alexander–Orbach behaviour
for various quantities describing the geometric and spectral properties of the four-dimensional
uniform spanning tree. In particular, we prove that the volume of an intrinsic n-ball in
the tree is n2(logn)−1/3+o(1), that the typical intrinsic displacement of an n-step random
walk is n1/3(logn)1/9−o(1), and that the n-step return probability of the walk decays as
n−2/3(logn)1/9−o(1).

6.1 Introduction

The behaviour of random walks on random fractals has been the subject of intense study since
the 1970s [113], and a sophisticated and widely applicable theory has now developed on the
topic [49, 219, 226]. In particular, it is now well established that the asymptotic behaviour
of spectral quantities such as exit times, return probabilities, and walk displacement are
determined under mild conditions by geometric properties such as volume growth and
resistance growth [60, 226], with very general results to this effect established in the recent
work of Lee [244]. This theory has led to a fairly complete understanding of several notable
motivating examples including random planar maps [111, 172, 174, 175], high-dimensional
percolation and branching random walks [49, 59, 223], and uniform spanning trees in two
dimensions [44], three dimensions [27], and high dimensions (d > 4) [193]. The analysis of
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other important examples such as two-dimensional critical percolation remain largely open
despite significant partial progress [149, 218, 219].

As suggested by this list of examples, many of the most interesting random fractals
arise from critical statistical mechanics models, and for many such models the geometric
and spectral properties of the associated random fractal depends heavily on the dimension
in which the model is considered. Indeed, for many random fractals arising in statistical
mechanics, a dichotomy emerges around an upper-critical dimension [325], denoted dc,
which is equal to 4 for the uniform spanning tree and 6 for percolation: below this dimension,
the behaviour of the fractal is highly dependent on the geometry of the underlying space,
while above this dimension the fractal displays mean-field behaviour, meaning that its large-
scale behaviour is the same as it would be in a ‘geometrically trivial’ setting such as the
complete graph or the binary tree. For many models the mean-field regime is described by
Alexander-Orbach behaviour [9, 50, 219], in which the relevant random fractal has quadratic
volume growth, spectral dimension 4/3, and typical n-step walk displacement of order n1/3.
Indeed, Alexander-Orbach behaviour has been proven to hold for high-dimensional oriented
percolation by Barlow, Jarai, Kumagai, and Slade [49], high-dimensional percolation by
Kozma and Nachmias [223], and for the high-dimensional uniform spanning tree by the
second author [193]. (An interesting example that is not expected to exhibit Alexander-
Orbach behaviour in high dimensions is the minimal spanning forest, mean-field models of
which have cubic volume growth and spectral dimension 3/2 [1, 279].)

At the upper-critical dimension itself (d = dc), it is expected that mean-field behaviour
almost holds, with many quantities of interest expected to exhibit a polylogarithmic correction
to their mean-field scaling. It is this regime that provides the focus of this paper, in which we
determine the precise order of the polylogarithmic corrections to scaling for the geometric
and spectral properties of the uniform spanning tree (UST) at its upper-critical dimension
dc = 4. The particular polylogarithmic corrections we compute are those governing the
volume of balls, the resistance across them, and the return probabilities, range, displacement
and exit times of random walks on the tree. Most of our work goes into estimating the
volume growth and resistance growth of the 4d UST, with the associated random walk
estimates following straightforwardly by techniques developed in [49, 227] that are by now
rather standard. (The relevant proofs are presented in a self-contained way in Section 6.3.3.)
We believe that this is the first time that polylogarithmic corrections to Alexander-Orbach
behaviour have been computed for the random walk on a random fractal at the upper-critical
dimension. Following [304], which computes the exact polylogarithmic corrections to a
random walk on the four-dimensional random walk trace, we also believe that our work is the
second time such polylogarithmic corrections to random walk behaviour at the upper critical
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dimension have been computed for any model. Partial progress on this problem for other
models includes [208] (see also [209]) in which the existence of a non-trivial polylogarithmic
correction to resistance growth is established for oriented branching random walk in Z6×Z+.

6.1.1 The uniform spanning tree

Over the last thirty years, the uniform spanning tree has emerged as a model of central
importance throughout probability theory, with close connections to many other topics
including electrical networks [93, 221], loop-erased random walk [68, 231, 321], the dimer
model [72, 215], the Abelian sandpile model [76, 193, 210, 211, 266] and the random cluster
model [164, 198].

We now very briefly introduce the model, referring the reader to e.g. [42, 193, 259] for
further background. The uniform spanning tree of a finite connected graph is defined by
choosing a spanning tree (i.e. a connected subgraph that contains every vertex and no cycles)
of the graph uniformly at random. Pemantle [288] proved that there is a well-defined infinite
volume limit of the uniform spanning tree of the hypercubic lattice Zd which does not depend
on the boundary conditions used when taking the limit and which is connected a.s. if and
only if d ≤ 4 (see also [68]). This infinite volume limit is known as the uniform spanning
tree of Zd when d ≤ 4 and the uniform spanning forest of Zd when d ≥ 5. The critical
dimension d = 4 is characterized by the UST just barely managing to be connected, with two
points at Euclidean distance n typically connected by a path of Euclidean diameter much1

larger than n and with the length of the path in the tree connecting two neighbouring vertices
having an extremely heavy (logn)−1/3 tail [235]. This heavy tail on the probability of an
abnormally long connection, and the related fact that the length of a loop-erased random
walk in four dimensions is only very weakly concentrated, is responsible for much of the
technical difficulties encountered in the paper. For example, it makes it difficult to justify
the important heuristic that the volume of the intrinsic n-ball in the tree comes mostly from
‘typical’ points for which the tree-geodesic to the origin has Euclidean diameter of order
n1/2(logn)1/6.

6.1.2 Distributional asymptotic notation

To facilitate a clean presentation of our main results, we use distributional asymptotic notation
(a.k.a. “big-O and little-o in probability" notation). Since this notation is not at all standard in

1Heuristic calculations suggest that the path connecting two distant points x and y has Euclidean diameter
distributed approximately like ∥x− y∥1+Z where Z is an exponential random variable.
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probability theory2, let us take a moment to explain how it is used. We hope the reader will
find this diversion worthwhile after seeing how clean the statements of our main theorems
are compared with similar results in the literature, and consider using this notation in their
own work.

Before introducing this notation, let us first briefly introduce standard (deterministic)
asymptotic notation as we use it. We write ≍, ⪰, and ⪯ for equalities and inequalities
holding to within positive multiplicative constants, so that if f and g are non-negative
then “ f (n)⪯ g(n) for every n≥ 1" means that there exists a positive constant C such that
f (n)≤Cg(n) for every n≥ 1. (We will often drop the “for every n≥ 1” and write simply

“ f (n) ⪯ g(n)” when doing so does not cause confusion.) We use Landau’s asymptotic
notation similarly, so that f (n) = O(g(n)), f (n) = Ω(g(n)), and f (n) =Θ(g(n)) mean the
same thing as f (n)⪯ g(n), f (n)⪰ g(n), and f (n)≍ g(n) respectively, while f (n) = o(g(n))
means that f (n)/g(n)→ 0 as n→ ∞. More complicated expressions can be obtained by
putting this notation inside functions, so that e.g. f (n) = O(en−o(n1/2)) means that there
exists a non-negative function h(n) with n−1/2h(n)→ 0 and a positive constant C such that
f (n) ≤ Cen−h(n) for every n ≥ 1. Implicit constants and functions given by this notation
will always be non-negative, and we denote quantities of uncertain sign using ±O, ±o,
etc. (While this is not completely standard, it greatly increases the expressive power of
the notation.) Be careful to note that when forming such compound expressions, Θ should
always be interpreted as the conjunction of O and Ω , so that “ f (n) = Θ(en−o(n))" means
the same thing as “ f (n) = O(en−o(n)) and f (n) = Ω(en−o(n))", which means that there
exist positive constants c and C and possibly distinct non-negative functions h+ and h−

with limn→∞ h+(n) = limn→∞ h−(n) = 0 such that f (n) ≤Cen−h+(n) and f (n) ≥ cen−h−(n).
Whenever we use asymptotic notation, we can add a qualifier such as “as n→ ∞" to mean
that the inequalities in question hold only for sufficiently large n; this will typically be used
to avoid worrying about expressions such as loglogn being undefined or negative for small
values of n.

We use boldface characters to apply this notation in settings where the relevant bounds
are guaranteed only to hold with high probability, rather than deterministically. Given two
sequences of (possibly deterministic) non-negative random variables (Xn) and (Yn) defined

2Indeed, it is surprising how non-standard this notation is in the probability theory literature given how
useful it is. The use of this notation has previously been advocated by Janson [205] who uses the notation
Op,op,Θp etc. rather than O,o,ΘΘΘ as we write here. We use bold letters rather than p subscripts since e.g. Op
would typically be used in probability to denote a deterministic upper bound whose implicit constants depend
on a parameter p, and we wish to avoid clashing with this existing notational convention. The particular choice
to use bold characters was made since LaTeX includes bold fonts for Greek characters by default while e.g.
\mathscr{\Theta} and \mathcal{\Theta} are not defined.
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6.1 Distributional asymptotic notation

on the same probability space, we write

Xn = O(Yn) to mean that lim
λ→∞

sup
n
P(Xn ≥ λYn) = 0,

Xn = ΩΩΩ(Yn) to mean that lim
λ→∞

sup
n
P(Xn ≤ λ

−1Yn) = 0,

Xn =ΘΘΘ(Yn) to mean that Xn = O(Yn) and Xn = ΩΩΩ(Yn), and

Xn = o(Yn) to mean that lim
n→∞

P(Xn ≥ εYn) = 0 for every ε > 0.

In other words, Xn = O(Yn) and Yn = ΩΩΩ(Xn) both mean that {Xn/Yn} is tight in [0,∞),
Xn =ΘΘΘ(Yn) means that {Xn/Yn} is tight in (0,∞), and Xn = o(Yn) means that Xn/Yn converges
to zero in probability. As in the deterministic case, we can add a qualifier “as n→∞” to mean
that there exists n0 < ∞ such that the relevant inequalities hold between Xn and Yn provided
that n≥ n0. Let us stress again that, as in the deterministic case, the random variables denoted
implicitly by our use of asymptotic notation are always taken to be non-negative. When we
wish to apply this notation to quantities of uncertain sign we use ±O, ±o, etc. as appropriate.

Like in the deterministic case, this notation really begins to shine when forming more
complicated compound expressions. Again, we warn the reader that in such an expression, the
implicit random variables (e.g. those appearing in an exponent) may be different in the upper
and lower bounds. Indeed this will usually be the case in our applications. To give a contrived
example in which all these conventions come into force, “Xn =ΘΘΘ(exp[n+O((logn)O(1))±
o(log logn)]) as n→∞" is equivalent to the statement that there exists n0 < ∞ and sequences
of non-negative random variables (A−n ), (A

+
n ), (B

−
n ), (B

+
n ), (C

−
n ), and (C+

n ) and real-valued
sequences of random variables (D−n ) and (D+

n ) such that (A−n ) is tight in (0,∞], (A+
n ), (B

−
n ),

(B+
n ), (C

−
n ), and (C+

n ) are tight in [0,∞), (D−n ) and (D+
n ) converge to zero in probability, and

A−n en+B−n (logn)C
−
n +D−n log logn ≤ Xn ≤ A+

n en+B+
n (logn)C

+
n +D+

n log logn for every n≥ n0.

Note the incredible economy we have achieved by writing this complicated condition in the
simple form “Xn =ΘΘΘ(exp[n+O((logn)O(1))±o(log logn)]) as n→ ∞"!

Remark 7. As with deterministic asymptotic notation, there are many useful elementary
notational identities. Of these, we will repeatedly use that for any sequence of random
variables (Xn)n≥0 if Xn = o(Yn) then Xn = O(Yn), and if Xn = O(Yn(logn)δ ) for all δ > 0,
then Xn = O(Yn(logn)o(1)). Similarly, if Xn = ΩΩΩ(Yn(logn)−δ ) for all δ > 0, then Xn =

ΩΩΩ(Yn(logn)−o(1)).
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6.1.3 Statement of results

We now state our main results. We begin with our results on the volumes of intrinsic balls,
the proof of which occupies the majority of the paper.

Theorem 57 (Volume growth). Let T be the uniform spanning tree of Z4 and for each n≥ 0
let B(n) =B(0,n) denote the intrinsic ball of radius n around the origin in T. The volume
of B(n) satisfies the distributional asymptotics

|B(n)|=ΘΘΘ

(
n2

(logn)1/3−o(1)

)
and E |B(n)|=Θ

(
n2

(logn)1/3−o(1)

)
as n→ ∞. Moreover, letting Λ(r) denote the ℓ∞ ball of radius r around the origin in Z4 for
each r ≥ 0, we have that

lim
n→∞

P
(
B(n)⊆Λ

(
n1/2(logn)1/6+δ

))
= 1

for every δ > 0.

Recall that in high dimensions the components of the uniform spanning forest have
quadratic volume growth |B(n)|=ΘΘΘ(n2) [48, 193], so that the behaviour in four dimensions
differs from the high-dimensional behaviour by a polylogarithmic factor as expected.

The proofs of both the upper and lower bounds of Theorem 57 rely on Wilson’s algorithm
[68, 321] to express properties of the tree in terms of properties of loop erased random walks.
Accordingly, they also both rely on an understanding of the behaviour of the loop-erased
random walk in four dimensions developed in [229, 233, 235], with the proof of the lower
bounds also relying on the control of the capacity of the loop-erased walk developed in
[30, 197]. The proof of the upper bound also uses a generalisation of the method of typical
times introduced in [197], a very useful technical tool that allows us to circumvent several
issues that arise from the fact that the length of a four-dimensional loop-erased random walk
is only very weakly concentrated. (The use of this machinery is also responsible for the
presumably unnecessary subpolylogarithmic (logn)±o(1) errors appearing throughout our
results.)

We now turn to our results concerning the random walk on the four-dimensional UST.
We write P and E for probabilities and expectations taken with respect to the joint law of
the UST T on Z4 and the random walk X = (Xn)n≥0 on T started at the origin, and write
PT and ET for probabilities and expectations taken with respect to the conditional law of X
given T. We write pTn (x,y) for the transition probabilities of a random walk on the uniform
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6.1 Statement of results

spanning tree T conditional on T, write τn for the time taken for the random walk to hit the
complement of the intrinsic ball of radius of n, and write dT for the intrinsic distance on T.

Theorem 58 (Random walk asymptotics). Let T be the uniform spanning tree of Z4 and
let X = (Xn)n≥0 be the simple random walk on T started at the origin. The following
distributional asymptotic expressions hold as n→ ∞:

Intrinsic displacement : dT(X0,Xn), max
0≤i≤n

dT(X0,Xn) =ΘΘΘ

(
n

1
3 (logn)

1
9−o(1)

)
(6.1)

Extrinsic displacement : max
0≤i≤n

∥Xi∥∞ =ΘΘΘ

(
n

1
6 (logn)

2
9+o(1)

)
(6.2)

Return probabilities : pT2n(0,0) =ΘΘΘ

(
1

n
2
3
(logn)

1
9−o(1)

)
(6.3)

Range : #{Xm : 0≤ m≤ n}=ΘΘΘ

(
n

2
3

1

(logn)
1
9±o(1)

)
(6.4)

Hitting times : τn, ET[τn] =ΘΘΘ

(
n3 1

(logn)
1
3−o(1)

)
(6.5)

Remark 8. It is reasonably straightforward to adapt the proofs of [193] to prove that, in four
dimensions, all the quantities we consider here satisfy Alexander-Orbach asymptotics up to
(logn)±O(1) factors. Identifying the correct powers of log is significantly more difficult and
is the primary contribution of this paper.

As mentioned above, the behaviour of the random walk on the uniform spanning tree has
previously been studied in dimensions d = 2 [44, 51] d = 3 [27], and d ≥ 5 [193], with the
two cases d = 2 and d = 3 presenting unique challenges that are largely distinct from those
associated to the critical dimension d = dc = 4 considered here. While we are the first to
study the polylogarithmic corrections to the volume of balls and the behaviour of random
walks on the UST at d = 4, our work builds upon the substantial literature studying other
aspects of the 4d UST, the highlights of which include [197, 229, 232, 233, 235, 301]. Our
work is influenced most strongly by the recent work of Sousi and the second author [197];
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we rely on both the results proven and the techniques developed in that paper in numerous
ways.

Following Kumigai-Misumi [227], which collects and generalises results of [43, 49, 50],
estimates of the form proven in Theorem 58 can all be deduced from the volume growth
estimates of Theorem 57 together with estimates on the effective resistance between the
origin and the boundary of a ball in the tree. The relevant effective resistance estimates
will in turn be deduced from Theorem 57 together with the asymptotics of the intrinsic arm
probability computed in [197]. We let Reff(A↔B;G) denote the effective resistance between
sets A,B⊆V [G] in the graph G, where we assign unit resistance to each edge e ∈ E[G], so
that if degT(0) denotes the degree of 0 in T then Reff(0↔ ∂B(0,n);T)−1 := degT(0)PT(hit
∂B(0,n) before returning to 0). Background on effective resistances can be found in e.g.
[226, 259].

Theorem 59 (Effective resistance). Let T be the uniform spanning tree of Z4 and for each
n≥ 0 let ∂B(n) = ∂B(0,n) denote the set of vertices with distance exactly n from the the
origin in T. Then

Reff(0↔ ∂B(0,n);T) = n(logn)−o(1)

as n→ ∞.

Note that the linear upper bound Reff(0↔ ∂B(0,n)) ≤ n is trivial and holds for any
graph. Together with existing results in other dimensions [27, 44, 193], Theorem 59 shows
that the UST has (approximately) linear effective resistance growth in every dimension. As
will be clear from the proof, this is a consequence of the scaling relation

P(the past of the origin has intrinsic diameter ≥ n)≈ n
typical volume of an intrinsic n-ball

,

(6.6)
which also holds in every dimension. Here, the past of the origin is the union of the origin
and the finite connected component of the UST left when the origin is deleted; estimating
the probability that the past is large in various senses is the main subject of [197], which
in particular establishes up-to-constants estimates on the left hand side of (6.6). Currently,
however, there is no direct proof of this scaling relation, which in four dimensions is verified
only by computing the two sides separately in [197] and the present paper. It would be very
interesting to have a direct and general proof of this relation in all dimensions that worked
without computing either quantity.

While Theorems 57 and 59 are sufficient to compute the exact logarithmic corrections to
the asymptotic properties of the random walk on the UST using the methods of [48, 227] as
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discussed above, we will also show that a significantly stronger bound on the displacement
of the random walk can be proven using the Markov-type method pioneered in the work of
Lee and coauthors [127, 149, 244, 245].

Theorem 60 (Sharp upper bounds on the mean-squared displacement). Let T be the uniform
spanning tree of Z4 and let X = (Xn)n≥0 be the simple random walk on T started at the
origin. Then

E
[

max
0≤i≤n

dT(X0,Xi)
2
]
⪯ n2/3(logn)2/9 (6.7)

for every n≥ 2.

The specific argument used to prove this theorem is inspired closely by the work of
Ganguly and Lee [149]. Briefly, the idea is to use the universal Markov-type inequality for
weighted metrics on trees [127] to prove a diffusive upper bound for the random walk with
respect to a modified metric supported only on vertices of the tree whose past has large
intrinsic diameter, then deduce the desired subdiffusive estimate in the original metric. The
tail bounds on the intrinsic diameter of the past of the origin proven in [197] are precisely
what is needed to carry this argument through. In particular, the proof of Theorem 60 does
not rely on Theorem 57 or the theory of typical times, allowing us to avoid the (logn)±o(1)

present in the statement of that theorem.

Remark 9. As discussed in [49, Example 2.6], although the typical displacement of the
random walk can always be controlled in terms of volume growth and resistance growth, it
is possible in general for the displacement not to be uniformly integrable, so that its mean
grows significantly faster than its median. As such, the second moment estimate provided by
Theorem 60 is significantly stronger than what can be deduced directly from Theorems 57
and 59 by the techniques of [49, 227].

6.2 Intrinsic volume growth

In this section we prove Theorem 57. The upper and lower bounds of the theorem, which use
completely different techniques, are proven in Sections 6.2.1 and 6.2.2 respectively. Both
parts of the proof will utilize the connections between the uniform spanning tree and the
loop-erased random walk implied by Wilson’s algorithm, and so to proceed we must provide
notation for the loop-erased random walk and some related quantities.

Loop-erased random walk. For each−∞≤ n≤m≤∞, let L(n,m) be the graph with vertex
set {i ∈ Z : n≤ i≤ m} and edge set {{i, i+1} : n≤ i≤ m−1}. A path is then a multigraph

149



Intrinsic volume growth

homomorphism from L(n,m) to the hypercubic lattice Z4 for some −∞≤ n≤ m≤ ∞. We
write wi = w(i) for the vertex visited at time i. For n≤ b≤ m, we write wb for the restriction
of w to [n,b], and call wb the path stopped at b. In particular, given a random walk X , we
will often use the notation XT for a random walk stopped at some possibly random time
T . A path is said to be transient if it visits every vertex of Z4 at most finitely many times.
In particular, finite paths are always transient. Given a transient path w : L(0,m)→ Z4, we
recursively define the sequence of times ℓn(w) by ℓ0(w) = 0, and

ℓn+1(w) = 1+max{k : wk = wℓn},

where we terminate the sequence the first time max{k : wk = wℓn}= m when m < ∞. The
loop-erasure of w is then the path induced by the sequence of neighbouring vertices

LE(w)i = wℓi(w).

We will also need the quantity

ρn(w) = max{m≥ 0 : ℓm(w)≥ n},

which for each n≥ 0 counts the number of points up to time n which are not erased when
computing the loop-erasure of w, so that (ℓn)n≥0 and (ρn)n≥0 are inverses of each other in
the sense that

ℓn(w)≤ m if and only if ρm(w)≥ n,

for every n,m≥ 0.
The loop-erasure of a simple random walk is known as the loop-erased random walk.

The theory of loop-erased random walk was both introduced and developed extensively by
Lawler [231], whose results on the four-dimensional loop-erased random walk [233, 235],
including his joint work with Sun and Wu [229], play an extensive role in this paper both
directly and through inputs to [197]. Given a random walk X , we will usually abbreviate
ℓn = ℓn(X) and ρn = ρn(X). It will also be convenient to define the notation

LE∞(Xn) := LE(X)ρn

for n≥ 0, giving the component of the infinite loop erasure LE(X) which is contributed by
the first n steps of the random walk X . We emphasise that the brackets of LE∞(Xn) do not
indicate that LE∞(Xn) is a function of just Xn. The following concentration estimates of
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6.2 Upper bounds

Lawler [233, 235], as stated in [197, Theorem 2.2], will be used repeatedly throughout the
the paper.

Theorem 61 ([197], Theorem 2.2). Let X be a simple random walk on Z4, then

P
(∣∣∣∣ ρn

n(logn)−1/3 −1
∣∣∣∣> ε

)
⪯ε

log logn
(logn)2/3 and hence

P
(∣∣∣∣ ℓn

n(logn)1/3 −1
∣∣∣∣> ε

)
⪯ε

log logn
(logn)2/3 ,

for every ε > 0 and n≥ 3.

Wilson’s algorithm rooted at infinity [68, 321] allows us to build a sample of the UST
of Z4 (or any other transient graph) out of loop-erased random walks. This algorithm is very
important to most analyses of the UST. We will assume that the reader is already familiar
with Wilson’s algorithm, referring them to e.g. [259] for background otherwise.

Finally, let us introduce notation concerning the geometry of Z4 and the tree T. We write
∥x∥ for the ℓ∞ norm of x ∈ Z4 and write Λ(x,r) for the ℓ∞ ball around x ∈ Zd of radius r.
For convenience, we will write Λ(r) for Λ(0,r). For each x ∈ Z4 and r ≥ 1, B(x,r) will
denote the intrinsic ball of radius r around x in T, with B(r) :=B(0,r). For each pair of
vertices x,y ∈ Z4 we write Γ (x,y) for the unique simple path between x and y in T, which
is well-defined since the UST of Z4 is a.s. connected [68, 288], and write Γ (x,∞) for the
future of x in T, i.e. the unique infinite simple path in T with x as an endpoint, which is
well-defined since the UST of Z4 is one-ended a.s. [68, 288]. Given two vertices x,y ∈ Z4

we will denote by x∨ y = y∨ x the unique point at which the futures of x and y in T first
intersect.

The past of a vertex v in the uniform spanning tree T, denoted3 P(v), is the union of
the vertex and the finite components that are disconnected from infinity when the vertex
is deleted from T. We write P(v,n) for P(v)∩B(v,n) and write ∂B(v,n) for the set of
vertices in T at intrinsic distance exactly n from v. Further discussion of the basic topological
features of the UST used here can be found in [259, Chapter 10].

6.2.1 Upper bounds

In this section we prove the following two propositions, which establish the upper bounds of
Theorem 57. Throughout this section we will write ≍, ⪯, and ⪰ with subscripts such as δ

and p to mean that the implicit constants are allowed to depend on these parameters.

3This character is \mathfrak{P}.
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Proposition 62. Let T be the uniform spanning tree of Z4. Then

E |B(n)|= O
(

n2

(logn)1/3−o(1)

)
as n→ ∞.

Proposition 63. Let T be the uniform spanning tree of Z4 and let δ > 0. Then

P
(
B(n)⊈ Λ

(
n1/2(logn)1/6+δ

))
⪯δ

log logn
(logn)2/3

for every n≥ 3.

Both of these results will be proven using the following supporting technical proposition,
which bounds in expectation the amount of the volume of intrinsic balls which come from
paths of atypical diameter.

Proposition 64. Let T be the uniform spanning tree of Z4, let δ > 0 and let p≥ 1. Then

E
∣∣{x ∈B(n) : Γ (0,x)⊈ Λ

(
n1/2(logn)1/6+δ

)}∣∣⪯p,δ
n2

(logn)p

for every n≥ 2.

The expected intrinsic volume bound of Proposition 62 follows immediately from Propo-
sition 64 together with [197, Proposition 7.3], which provides a tight upper bound on the
number of points connected to the origin inside an extrinsic box of a given radius.

Proposition 65 ([197], Proposition 7.3). Let T be the uniform spanning tree of Z4. Then

E
∣∣{x ∈ Z4 : Γ (0,x)⊆Λ(r)}

∣∣⪯ r4

logr

for every r ≥ 2.

Proof of Proposition 62. Fix δ > 0, p≥ 1 and n≥ 4. We have trivially that

E|B(n)| ≤ E
∣∣{x ∈B(n) : Γ (0,x) ̸⊂Λ(n1/2(logn)1/6+δ )}

∣∣+
E
∣∣∣{x ∈ Zd : Γ (0,x)⊆Λ(n1/2(logn)1/6+δ )}

∣∣∣ .
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Applying Proposition 64 to the first term on the right hand side and Proposition 65 to the
second yields that

E|B(n)| ⪯p,δ
n2

(logn)1/3−2δ
+

n2

(logn)p ,

which implies the claim since δ > 0 and p≥ 1 were arbitrary.

The deduction of Proposition 63 from Proposition 64 requires a more involved argument
using further results of [197] and is given after the proof of Proposition 64.

To prove Proposition 64 we need to be able to relate balls in the extrinsic metric (i.e.
the ℓ∞ metric on Z4) to balls in the intrinsic metric. Intuitively, since paths in the UST are
distributed as loop-erased random walks and since length-n loop-erased random walks in
Z4 are typically generated by simple random walks of length roughly n(logn)1/3 [235], we
expect that intrinsic paths of length n in the UST should have extrinsic diameter concentrated
around n1/2(logn)1/6. Unfortunately, however, the concentration estimates that are available
for the length of loop-erased random walks are far too weak to directly rule out that most of
the volume of the intrinsic ball comes from paths of atypically large diameter. We circumvent
this problem using a generalization of the typical time methodology of [197, Section 8],
originally introduced to prove tail estimates on the extrinsic radius of the past of the origin:
we will use typical times to subsume balls in the intrinsic metric by balls of an appropriate
radius in the extrinsic metric.

Typical times. We now detail the generalised typical time methodology that we use.
Given points x,y ∈ Z4 and a simple path γ starting at x and ending at y, let X be a random
walk started conditioned to hit y and to have loop erasure γ when it first hits y. Roughly
speaking, the typical time T (γ) of γ is defined to be the typical length of the walk X under
this conditional distribution; an important part of the theory is that this length is concentrated
around the typical time T (γ) under mild conditions on the path γ . Our proofs will apply a
slight generalization of this notion, which we now introduce. Instead of stopping the walk
at a single point y, we introduce disjoint sets A,B⊂ Zd and define the (A,B)-typical time
TA,B(η) of a simple path γ starting at x, ending when it first hits A, and avoiding B to be

TA,B(γ) := Ex

[ |γ|
∑
i=1

(
ℓi(XτA)− ℓi−1(XτA)

)
∧|γ|

∣∣∣∣∣ τA < ∞,τA < τB,LE(XτA) = γ

]
,

where Ex denotes expectation with respect to the law of a simple random walk X on Z4

started at X0 = x, and where the times ℓi(XτA) are from the definition of the loop-erasure of
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XτA , so that

τA = ℓ|γ|(X
τA) =

|γ|
∑
i=1

(
ℓi(XτA)− ℓi−1(XτA)

)
when LE(XτA) = γ . We will use boldface to denote probabilities and expectations taken with
respect to the law of a simple random walk throughout the paper, so that Px will denote
probability with respect to the law of a simple random walk started at time 0 at vertex
x. We remark that for paths γ which hit A and avoid B we have that TA,B(γ) = TA∪B, /0(γ),
where we define τ /0 = ∞, and that the usual typical time as defined in [197] is given by
T (η) = T{ηn}, /0(η) when η has length n.

The following Lemma extends [197, Lemma 8.2] to (A,B)-typical times. The proof is
identical to the proof of that lemma and is omitted.

Lemma 66. There exists a constant C such that if x ∈ Z4, A,B are disjoint subsets of Z4, and
γ is a simple path of length n≥ 0 from x to A which does not intersect B, then

Px

(
|τA−TA,B(γ)|> λn

∣∣∣ τA < ∞,τA < τB,LE(XτA) = γ

)
≤ C

λ
,

for every λ ≥ 1.

As explained in detail in [197, Section 8], for most paths of interest the typical time T (γ)
is significantly larger than |γ|, so that Lemma 66 can indeed be thought of as a concentration
estimate, justifying the use of the ‘typical time’ terminology. Indeed, when γ is a loop-erased
random walk of length n its typical time will usually be of order n(logn)1/3. For an arbitrary
path γ of length n≥ 1 the best bounds are of the form

n⪯ T (γ)⪯ n log(n+1); (6.8)

the lower bound is trivial while the upper bound follows by bounding the distribution of
the length of the loop ℓi(XτA)− ℓi−1(XτA) by that of the length of an unconditioned simple
random walk loop in Z4. The upper bound is sharp when γ is a straight line, while the lower
bound is sharp when γ is a space-filling curve.

As in [197], we bound typical times by a simpler functional that is easier to work
with. If γ has length n, we define Ai(γ) = ∑

n
k=1

1
k Esck(γ

i)2, where given a finite path η

of length m and an integer k ≥ 1 the k-step escape probability Esck(η) is defined by
Esck(η) = Pηm(X

k∩ηm−1 = /0). We then define

T̃ (γ) :=
n−1

∑
i=0

Ai(γ).
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It follows from the same calculations used to derive the analogous bound for the ordinary
hitting time on [197, Page 69] that

T̃ (γ)⪰ TA,B(γ) (6.9)

for every path γ and every pair of disjoint sets A,B⊆ Z4. For a given 0 < δ ≤ 1, we say that
a finite path γ of length n≥ 0 is δ -good if

n−1

∑
i=0

Ai(γ)1
(
Ai ≥ (logn)1/3+δ

)
≤ δn,

and say it is δ -bad otherwise. If γ is a δ -good path of length n≥ 2, then

T̃ (γ)≤ δn+
n−1

∑
i=0

Ai,n(γ)1
(
Ai < (logn)1/3+δ

)
⪯ n(logn)1/3+δ . (6.10)

We will apply [197, Lemma 8.5], which is based on the work of Lawler, Sun, and Wu [229],
and states that the loop erasure of a random walk is highly unlikely to be bad.

Lemma 67 ([197], Lemma 8.5). Let δ > 0 and p≥ 0 and let X be simple random walk on
Z4. Then

1
n

n

∑
k=0

P0

(
LE(Xk) is δ -bad

)
⪯δ ,p

1
(logn)p ,

for every n≥ 2.

We now apply this machinery to prove Proposition 64. We will also use the mass-
transport principle for Z4, which states that if f : Zd×Zd → [0,∞] is a diagonally invariant
function, meaning that f (x,y) = f (x+ z,y+ z) for every x,y,z ∈ Z4, then ∑x∈Zd f (0,x) =

∑x∈Zd f (−x,0) = ∑x∈Zd f (x,0).

Proof of Proposition 62. To prove the proposition, we will show that if A is any set of
simple paths γ with γ0 = 0 and with length |γ| ≤ n, then

∑
v∈Z4

P
(

Γ (0,v) ∈A , and Γ (0,0∧ v)⊆Λ(0∧ v,r)
)

⪯δ ,p ∑
v∈Z4

P
(

Γ (0,v) ∈A , Γ (0,0∧ v)⊆Λ(0∧ v,r) and

Γ (v,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )
)
+n2(logn)−p (6.11)

for every 0 < δ ≤ 1, p≥ 1, and n,r ≥ 2. Before proving (6.11), let us first see how it implies
the proposition. We must first define some notation. Given a finite path γ = (γ0, . . . ,γ|γ|) and
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a vector x, we define γ + x = (γ0 + x, . . . ,γ|γ|+ x), and γ← = (γ|γ|, . . . ,γ0). We extend these
operations to sets of paths in the obvious way. Fix δ ∈ (0,1], p≥ 1 and define the two sets
of paths

A0 = {γ : γ simple, γ0 = 0, |γ| ≤ n, γ ⊈ Λ(0, n1/2(logn)1/6+2δ )},
A ′

0 = {γ : γ simple, γ0 = 0, |γ| ≤ n, γ ⊈ Λ(γ|γ|, n1/2(logn)1/6+2δ )}.

For any x ∈ Zd , writing A0(x) for the set of paths A0 + x, we observe that for any path γ

with γ0 = x, γ|γ| = 0, we have that

γ ∈A0(x) ⇐⇒ γ
← ∈A ′

0 . (6.12)

With this notation and observation in hand, setting A = A0 in (6.11) and taking r ↑ ∞, we
get

E
∣∣{x ∈ Zd : Γ (0,x) ∈A0}

∣∣= ∑
v∈Z4

P
(

Γ (0,v) ∈A0

)
⪯δ ,p ∑

v∈Z4

P
(

Γ (0,v) ∈A0(0) and Γ (v,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )
)
+n2(logn)−p

= ∑
v∈Z4

P
(

Γ (v,0) ∈A0(v) and Γ (0,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )
)
+n2(logn)−p

= ∑
v∈Z4

P
(

Γ (0,v) ∈A ′
0 and Γ (0,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )

)
+n2(logn)−p

(6.13)

for every 0 < δ ≤ 1, p≥ 1, and n≥ 2, where the second equality follows by an application
of the mass-transport principle to exchange the roles of 0 and v, and the third equality follows
by (6.12). Applying (6.11) a second time with A = A ′

0 then yields that

E
∣∣{x ∈ Zd : Γ (0,x) ∈A0}

∣∣⪯δ ,p ∑
v∈Z4

P
(

Γ (0,v) ∈A ′
0 ,

and Γ (0,0∧ v),Γ (v,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )
)
+n2(logn)−p,
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and hence, applying mass-transport a second time,

E
∣∣{x ∈ Zd : Γ (0,x) ∈A0}

∣∣⪯δ ,p n2(logn)−p +

∑
v∈Z4

P
(

Γ (0,v) ∈A0, and Γ (0,0∧ v),Γ (v,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )
)

⪯δ n2(logn)−p + ∑
v∈Z4

P
(

Γ (0,v) ∈A0, and Γ (0,v)⊆Λ(2n1/2(logn)1/6+δ )
)
.

If n is sufficiently large that (logn)δ > 2 then the second term is zero and the claim follows.
It remains to prove (6.11). Fix 0 < δ ≤ 1, p≥ 1 and n,r ≥ 2. Let η be the future of the

origin in T and write Pη and Eη for probabilities and expectations taken with respect to the
conditional law of T given η . Let I = {i ∈ {0, . . . ,n} : η [0, i]⊆Λ(ηi,r)}, and for any i≥ 0
define the restriction A |ix,η to be the set of finite simple paths

A |ix,η = {γ : γ0 = ηi, γ[1, |γ|]∩η = /0, γ|γ| = x, η [0, i]⊕ γ[1, |γ|] ∈A },

where for any two finite paths γ , γ ′, we have
(γ0, . . . ,γ|γ|)⊕ (γ ′0, . . . ,γ

′
|γ ′|) = (γ0, . . . ,γ|γ|,γ ′0, . . . ,γ

′
|γ ′|). In other words, A |ix,η is the set of

simple paths (including paths of just a single vertex) beginning at ηi, avoiding the other
points of η , and which when concatenated to η [0, i−1] yield a path in A ending at x.

For each v ∈ Zd we can sample from the conditional distribution of the path in T

connecting v to η using Wilson’s algorithm by starting a random walk X and v and loop
erasing it when it first hits η . When sampling the path in this manner we have that the event
{Γ (0,v) ∈An and Γ (0,0∧v)⊆Λ(0∧v,r)} occurs if and only if the union of disjoint events

⋃
i∈I
{τi < τ

c
i , LE(Xτi)← ∈A |iv,η}

occurs, where we write τi for the hitting time of ηi and write τc
i for the hitting time of

η \{ηi}, so that

∑
v∈Z4

P
(

Γ (0,v) ∈A , and Γ (0,0∧ v)⊆Λ(0∧ v,r)
)

= ∑
i∈I

∑
v∈Z4

Pv
(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η

)
. (6.14)

We remark that the probabilities on the right hand side of (6.14) are themselves random
variables given that τi, τc

i and A |iv,η depend on η . (The law of the simple random walk
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Pv does not depend on η and, since there is no possible ambiguity that P could denote
expectation over the UST, we have chosen to made the dependence implicit.)

Temporarily fixing i ∈ I , we analyze the inner summation on the right hand side of
(6.14) using the union bound

∑
v∈Z4

Pv
(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η

)
≤ ∑

v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -good)

+ ∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -bad). (6.15)

If LE(Xτi) is δ -good then we have by (6.9) and (6.10) that Ti := Tηi,η\{ηi}(|LE(Xτi)|) ≤
C1n(logn)1/3+δ for some universal constant C1, and hence that

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -good)

≤ Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , Ti ≤C1n(logn)1/3+δ )

≤ Pv
(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η , |Ti− τi| ≥ λn

)
+Pv

(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η , τi ≤C1n(logn)1/3+δ +λn

)
(6.16)

for every λ > 0. The first term on the right hand side of (6.16) is bounded above by
C2λ−1Pv(τi < τc

i , LE(Xτi)← ∈A |iv,η) for some universal constant C2 by Lemma 66, so that
taking λ = 2C2, substituting (6.16) into (6.15) and rearranging yields that

∑
v∈Z4

Pv
(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η

)
≤ 2 ∑

v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , τi ≤C3n(logn)1/3+δ )

+2 ∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -bad), (6.17)

where C3 = C3(δ ) has been chosen so that C1n(logn)1/3+δ + 2C2n ≤ C3n(logn)1/3+δ for
every n≥ 2.

We next bound the second term on the right hand side of (6.17). Since the typical time of
a length n path is always O(n logn), it follows by the same argument used to derive (6.17)
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from (6.16) that there exists a constant C4 such that

∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -bad)

≤ 2 ∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , τi ≤C4n logn).

Thus, taking a union bound over the possible values of τi, we have that

∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -bad)

≤ 2 ∑
v∈Z4

⌈C4n logn⌉
∑
k=0

Pv(Xk = ηi,LE(Xk) δ -bad)

and hence by symmetry that

∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η , LE(Xτi) δ -bad)

≤ 2 ∑
v∈Z4

⌈C4n logn⌉
∑
k=0

Pηi(Xk = v,LE(Xk) δ -bad) = 2
⌈C4n logn⌉

∑
k=0

Pηi(LE(Xk) δ -bad)

⪯δ ,p n(logn)1−p (6.18)

for every n≥ 2.

Next, we consider the first term on the right hand side of (6.17). We write B = {τi <

τc
i , LE(Xτi)← ∈A |iv,η , τi ≤C3n(logn)1/3+δ} and wish to estimate ∑v∈Z4 Pv(B). To do this,

we split the event B according to how far the walk travels before hitting ηi, yielding the union
bound

Pv(B)≤ Pv
(
B, sup

0≤m≤τi

∥Xm−ηi∥ ≥ n1/2(logn)1/6+δ
)

+Pv
(
B, sup

0≤m≤τi

∥Xm−ηi∥< n1/2(logn)1/6+δ
)
. (6.19)
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For the first of these terms, we bound

Pv
(
B, sup

m≤τi

∥Xm−ηi∥ ≥ n1/2(logn)1/6+δ
)

≤
⌈C3n(logn)1/3+δ ⌉

∑
k=0

Pv(Xk = ηi, sup
m≤k
∥Xm−ηi∥ ≥ n1/2(logn)1/6+δ ).

Summing over v and using time-reversal gives that

∑
v∈Z4

Pv
(
B, sup

m≤τi

∥Xm−ηi∥ ≥ n1/2(logn)1/6+δ
)

≤
⌈C3n(logn)1/3+δ ⌉

∑
k=0

Pηi

(
sup
m≤k
∥Xm−ηi∥ ≥ n1/2(logn)1/6+δ

)

⪯ n(logn)1/3+δ P0

(
sup

m≤⌈C3n(logn)1/3+δ ⌉
∥Xm∥ ≥ n1/2(logn)1/6+δ

)
⪯ n(logn)1/3+δ e−c1(logn)δ ⪯δ ,p n(logn)−p (6.20)

for some constant c1 > 0, where the first inequality in the last line follows by e.g. the maximal
version of Azuma-Hoeffding [269, Section 2].

Substituting the estimates (6.18) and (6.20) into (6.17) in light of (6.19) yields that there
exists a constant Cδ ,p such that

∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η)

⪯ ∑
v∈Z4

Pv
(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η , sup

m≤τi

∥Xm−ηi∥ ≤ n1/2(logn)1/6+δ
)

+Cδ ,pn(logn)−p. (6.21)

Now LE(Xτi)⊆ (Xm)m≤τi , and so applying Wilson’s algorithm, we have

Pv
(
τi < τ

c
i , LE(Xτi)← ∈A |iv,η sup

m≤τi

∥Xm−ηi∥ ≤ n1/2(logn)1/6+δ
)
⪯

Pη(0∧ v = ηi,Γ (0,0∧ v) ∈A |iv,η , and Γ (v,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ )).
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Substituting this inequality into (6.21) and summing over i ∈I yields

∑
i∈I

∑
v∈Z4

Pv(τi < τ
c
i , LE(Xτi)← ∈A |iv,η)⪯

∑
v∈Z4

Pη(Γ (0,v) ∈A , Γ (0,0∧ v)⊆Λ(r) and Γ (v,0∧ v)⊆Λ(0∧ v,n1/2(logn)1/6+δ ))

+Cδ ,pn2(logn)−p,

since |I | ≤ n+1. Substituting this inequality into (6.14) and taking expectations over η

yields the claimed inequality (6.11).

Containment of balls. We now turn our attention to the proof of Proposition 63. We
begin by showing that it is very unlikely for T to include a crossing of an annulus that it
shorter than it should be by a large (i.e. non-sharp) polylogarithmic factor. We write ∂Λ(r)
for the set of vertices in Z4 with ∥x∥∞ = r.

Lemma 68. Let T be the uniform spanning tree of Z4 and for each r,n≥ 1 let E (r,n) be the
event that there exists a path in T from ∂Λ(r) to ∂Λ(4r) that has length at most n. Then

P
(
E
(
r,⌈r2(logr)−3⌉

))
= exp

[
−Ω((logr)2)

]
as r→ ∞.

Proof of Lemma 68. Fix r ≥ 2, let n = ⌈r2(logr)−3⌉, and write E = E (r,n). If E holds,
there must exist a pair of points x ∈ ∂Λ(r) and y ∈ ∂Λ(4r) such that the path connecting x
and y in T is contained in the box Λ(4r) and has length at most n. Considering separately
the case that x∧ y belongs to Λ(2r) or not yields the union bound

P(E )≤ ∑
y∈∂Λ(4r)

∑
z∈Λ(2r)

P(z ∈ Γ (y,∞), |Γ (y,z)| ≤ n)+

∑
x∈∂Λ(r)

∑
z∈Λ(4r)\Λ(2r)

P(z ∈ Γ (x,∞), |Γ (x,z)| ≤ n) ,
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and using Wilson’s algorithm to convert this into a loop-erased random walk quantity yields
that

P(E )≤ ∑
y∈∂Λ(4r)

∑
z∈Λ(2r)

n

∑
k=0

Py (LE(X)k = z)+ ∑
x∈∂Λ(r)

∑
z∈Λ(4r)\Λ(2r)

n

∑
k=0

Px (LE(X)k = z)

= ∑
y∈∂Λ(4r)

n

∑
k=0

Py (LE(X)k ∈Λ(2r))+ ∑
x∈∂Λ(r)

n

∑
k=0

Px (LE(X)k ∈Λ(4r)\Λ(2r))

⪯ r3nP0

(
max

0≤k≤n
∥LE(X)k∥∞ ≥ r

)
. (6.22)

We will bound this probability using the weak L1 method as introduced in [197, Section 6.2],
which can be thought of as a simple special case of the typical time theory. Conditional on
the loop-erased random walk LE(X), we have as in [193, Lemma 5.3] that the sequence of
random variables (ℓi+1(X)− ℓi(X))i≥0 are conditionally independent and satisfy

P0(ℓi+1(X)− ℓi(X) = m | LE(X))≤ pm−1(0,0)⪯
1

m2

for every m≥ 1, and it follows from Vershynin’s weak triangle inequality for the weak L1

norm [318] as explained in [197, Section 6.2] that

P0(ℓn(X)≥ m | LE(X))⪯ n logn
m

for every n≥ 2 and m≥ 1. As such, there exists a constant C such that

P0

(
max

0≤k≤n
∥LE(X)k∥∞ ≥ r

)
≤ 2P0

(
max

0≤k≤n
∥LE(X)k∥∞ ≥ r, ℓn(X)≤Cn logn

)
≤ 2P0

(
max

0≤i≤Cn logn
∥Xi∥∞ ≥ r

)
⪯ exp

[
−Ω

(
r2

n logn

)]
⪯ exp

[
−Ω

(
(logr)2)] .

where we have used the maximal version of Azuma-Hoeffding in the last line [269, Section
2]. The claim follows by substituting this estimate into (6.22) and using that r3n = rO(1) =

exp[o((logr)2)].

Before proceeding with the deduction of Proposition 63 from Proposition 64 and
Lemma 68, we will first introduce some more tools from [193, 197]. We begin by defining a
variant of the uniform spanning tree known as the 0-wired uniform spanning forest, which
was first introduced by Járai and Redig [210] as part of their work on the Abelian sandpile
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model. Let (Vn)n≥0 be an exhaustion of Z4 by finite connected sets. For each n≥ 0, let G∗n
be the graph obtained by identifying (a.k.a. wiring) Z4 \Vn into a single point denoted by
∂n. Let G∗0n be the graph obtained by identifying 0 with ∂n in in G∗n. The 0-wired uniform
spanning forest is then the weak limit of the uniform spanning trees on G∗0n as n→∞, which
is well-defined and does not depend on the choice of exhaustion [258, §3]. Lyons, Morris
and Schramm [258] proved that the component of the origin in the 0-wired forest is finite
almost surely, and, since the entire 0-wired forest is stochastically dominated by the uniform
spanning tree by [259, Theorem 4.6], and the definitions ensure that every component other
than that of the origin is infinite, the rest of the vertices of Z4 are contained in a single infinite
one-ended component almost surely.

The stochastic domination property. We let T0 be the component of 0 in the 0-wired
UST. Lyons, Morris and Schramm [258, Proposition 3.1] proved that T0 stochastically
dominates P(0), which we recall denotes the past of the origin in T. In [193], a stronger
version of this stochastic domination property was derived, the relevant parts of which we
restate below in our context. Given that the UST of Z4 is connected and one-ended, we can,
in a unique manner, add an orientation to each edge in T so that each vertex in the tree has
exactly one oriented edge emanating from it. By abuse of notation, we denote the resulting
oriented tree by T as we do in the unoriented case. The oriented 0-wired spanning forest F0

is generated similarly, but with the edges in the finite component all oriented towards the
origin. Lastly, we generalise the notion of the past: given an arbitrary oriented forest F , we
define the past of a vertex v ∈ F , denoted pastF(v), to be the set of vertices u with a directed
path γ in F emanating from u and ending at v.

Lemma 69 (Stochastic Domination). Let T be the oriented uniform spanning tree of Z4, and
let F0 be the oriented 0-wired uniform spanning forest of Z4. Let K be a finite set of vertices
in Z4 and let Γ (K) = ∪u∈KΓ (u,∞). Then for every increasing event A ⊆ {0,1}E(Z4) and
we have that

P
(

pastF\F(K)(0) ∈A | Γ (K)
)
≤ P

(
T0 ∈A

)
.

We will also utilize the following result of [197].

Theorem 70 ([197], Theorem 1.6). Let T0 be the component of the origin in the 0-wired
uniform spanning tree of Z4. Then

P
(

radext(T0)≥ n
)
≍ (logn)1+o(1)

n2

for every n≥ 2.
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Remark 10. For the proof of Proposition 63 it would suffice to have the weaker bound in
which (logn)1+o(1) is replaced by (logn)O(1), which is significantly easier to prove.

With these tools in hand we proceed to the proof of Proposition 63.

Proof of Proposition 63. Fix δ ∈ (0,1], and fix an integer n≥ 2. Let η be the future of the
origin in the uniform spanning tree T and let r = ⌈n1/2(logn)1/6+δ ⌉. We write

{B(n)⊈ Λ(8r)} ⊆F ∪E ∪A ,

where F = {η [0,n]⊈ Λ(r)} is the event that the first n steps of the future are not contained
in the box of radius r, E = E (r,⌈r2/(logr)−3⌉) is the event defined in Lemma 68, and A

is the event {B(n) ⊈ Λ(8r)} \ (F ∪E ). We have already shown in Lemma 68 that the
probability of E is much smaller than required for n sufficiently large. For the event F , we
use Wilson’s algorithm to compute that

P
(
F
)
= P0

(
LE(X)n ⊈ Λ(r)

)
≤ P0

(
ℓn > 2n(logn)1/3)+P0

(
max

0≤k≤2n(logn)1/3
∥Xk∥∞ > r

)
⪯ log logn

(logn)2/3 + exp
[
−Ω((logn)δ )

]
⪯δ

log logn
(logn)2/3

as required, where the second inequality follows by Theorem 61 for the bound on ℓn, and e.g.
the maximal version of Azuma-Hoeffding [269, Section 2] for the bound on the displacement
of the simple random walk.

We now bound the probability of A . Observe that if A holds then there exists an
integer 0 ≤ i ≤ n−1 such that P(ηi,n) is not contained in Λ(8r). Since E does not hold,
we must also have that every crossing of the annulus Λ(4r) \Λ(r) has length at least
r2/(logr)3, and it follows that there must exist a collection of at least r2/(logr)3 points
y ∈ (B(n) \η [0,n])∩ (Λ(4r) \Λ(r)) such that P(y,n) has extrinsic diameter at least 4r.
Summing over all possible such points, applying Markov’s inequality yields, and using the
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6.2 Lower bounds

stochastic domination lemma (Lemma 69) yields that

P(A )≤ (logr)3

r2 ∑
y∈Λ(4r)\Λ(r)

P(y ∈B(n)\η [0,n] and diam(P(y))≥ 4r)

≤ (logr)3

r2 ∑
y∈Λ(4r)\Λ(r)

P
(
y ∈B(n))P

(
radext(T0)≥ 2r

)
=

(logr)3

r2 E
∣∣{y ∈B(n) : y /∈Λ(r)}

∣∣P( radext(T0)≥ 2r
)
,

and it follows from Proposition 64 and Theorem 70 that

P(A )⪯δ ,p
(logr)3

r2
n2

(logn)p ·
(logr)1+o(1)

r2 ⪯ (logn)4−p+o(1),

for every p ≥ 1. Taking p = 10, say, yields a bound that is stronger than required and
completes the proof.

6.2.2 Lower bounds

In this section we prove the following proposition, which implies the lower bounds of
Theorem 57. Note that, in contrast to Proposition 62, we do not lose any (logn)±o(1) factors
in this bound.

Proposition 71. Let T be the uniform spanning tree of Z4. Then

|B(n)|= ΩΩΩ

(
n2

(logn)1/3

)
as n→ ∞.

Remark 11. The proof yields the explicit lower tail bound

P
(
|B(n)| ≤ n2

λ (logn)1/3

)
⪯ λ

−1/5

for every n≥ 3 and 1≤ λ ≤ logn. Presumably this bound is far from optimal.

We will prove this proposition by estimating the mean and variance of certain random
variables that lower bound |B(n)|. We expect |B(n)| to be unconcentrated4, so its variance
should be of the same order as its second moment and applying Chebyshev directly to |B(n)|

4Indeed, it should converge under appropriate rescaling to the volume of a ball in the ICRT, which is not
deterministic.
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should not be a viable method to prove lower tail bounds. Instead we calculate the mean and
variance of a certain ‘good’ portion of the uniform spanning tree within a certain radius of
the spine. We choose this radius according to how deep into the lower tail of the volume we
wish to control: the lower we take this radius, the deeper into the tail we bound. The precise
meaning of ‘good’ we will use is engineered precisely to make the later parts of the proof go
through cleanly.

Our first task is to set up the relevant definitions. Recall that Pz denotes the law of a
simple random walk X on Z4 started at z for each z ∈ Z4. [197, Theorem 7.4] states that if
P0,Λ(r) denotes the joint law of two independent random walks X and Y started at 0 and at a
uniform point of Λ(r) respectively, then

P0,Λ(r)(X ∩Y ∩Λ(r) ̸= /0)≍ 1
logr

(6.23)

for r ≥ 2. Fix α > 0 and r ≥ 2. We say a path γ in Z4 is (α,r)-good if

∑
z∈Λ(γ0,6r)

Pz
(
hit γ ∩Λ(γ0,6r)

)
≤ α

r4

logr
,

and say that γ is (α,r)-bad otherwise. We note that

P0(X is (α,r)-bad) = P0,Λ(6r)

(
|Λ(6r)|P0,Λ(6r) (X ∩Y ∩Λ(6r) ̸= /0 | X)> α

r4

logr

)
⪯ α

−1

(6.24)

by (6.23) and Markov’s inequality. Crucially, we also observe that being (α,r)-bad is an
increasing property of a path in the sense that if γ and γ̃ are two paths satisfying γ0 = γ̃0

and γ ⊆ γ̃ , then γ̃ is (α,r)-bad whenever γ is (α,r)-bad. We will apply this to bound
the probability that a loop-erased random walk is bad in terms of the probability that the
corresponding simple random walk is bad.

Condition on the future of the origin η := Γ (0,∞) in the uniform spanning tree T and
for each x ∈ Z4 and r ≥ 3 consider the random set

Mα(x,r) =
{

y ∈Λ(x,3r) : Γ (y,0∧ y)⊆Λ(x,3r), |Γ (y,0∧ y)| ≤ r2

(logr)1/3 ,

and Γ (y,0∧ y) is (α,r)-good
}
.
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6.2 Lower bounds

The key step in the proof of Proposition 71 is to bound the conditional mean and variance of
|Mα(x,r)| in terms of the capacity of η . Here we recall that the capacity (a.k.a. conductance
to infinity) of a set A⊆ Z4 is defined to be

Cap(A) = ∑
a∈A

deg(a)Pa(never return to A after time zero)

= 8 ∑
a∈A

Pa(never return to A after time zero).

The two relevant estimates are as follows, where we write Varη for the conditional variance
given η :

Proposition 72. There exist α0 > 0 and r0 > 0 such that if α ≥ α0 then

Eη |Mα(x,r)| ⪰ r2Cap(η ∩Λ(x,r))

for every x ∈ Z4 and every r ≥ r0.

Proposition 73. For each α > 0 we have

Varη(|Mα(x,r)|)⪯ α
r6

logr
Cap(η ∩Λ(x,3r)).

for every x ∈ Z4 and every r ≥ 2.

We will require the following variational formula for the capacity proved in [200, Lemma
2.3]. Recall that the Green’s function on Z4 is defined by

G(x,y) =
1

degy
Ex ∑

n≥0
1(Xn = y) =

1
8

Ex ∑
n≥0

1(Xn = y),

where X is a simple random walk on Z4 and x,y ∈ Zd .

Lemma 74. The capacity of a set S⊂ Z4 can be expressed as

Cap(S)−1 = inf

{
∑

u,v∈S
G(u,v)µ(u)µ(v) : µ is a probability measure on S

}
. (6.25)

Proof of Propostion 72. Fix x ∈ Z4, r ≥ 1 and α > 0. We assume that Cap(η ∩Λ(x,r))> 0
or else the proposition is trivial. We let n= ⌊r2(logr)−1/3⌋ and N = ⌊λ r2⌋where λ ∈ (0,1/2)
is a parameter that will later be taken to be a small constant. Let V be a uniform random
element of Λ(x,3r), let X = (Xm)m≥0 be a random walk started at V , and let P denote the

167



Intrinsic volume growth

joint law of V and X . Let σ be the time at which XN hits η ∩Λ(x,3r) and let τ be the time
XN first exits Λ(x,3r). Each of these stopping times is defined to be infinite if the relevant
event does not occur before or at time N. We let µ be a measure which minimises the right
hand side of (6.25) when S = η ∩Λ(x,r) and define the random variable

Ar = 1(σ < τ, |LE(Xσ )| ≤ n,LE(Xσ ) good) ∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X j = w),

where to save on notation we have and will abbreviate (α,r)-good and (α,r)-bad to good
and bad respectively. The weight µ is included in the definition of Ar since it makes the
second moment of Ar easier to control; this is closely related to the theory of Martin capacity
as developed in [69]. An application of Wilson’s algorithm implies that

Eη |Mα(x,r)| ≥ ∑
v∈Λ(x,3r)

P(Ar > 0 |V = v) = |Λ(x,3r)|P(Ar > 0),

so that to prove the proposition we need only demonstrate that there exists α0,r0 > 0 such
that

P(Ar > 0)⪰ r−2Cap(η ∩Λ(x,r))

for every α ≥ α0,r ≥ r0, where we emphasize that the constant implied by the ⪰ on the right
hand side is independent of η and r. We do so by proving that

EAr ⪰ r−2 (6.26) EA2
r ⪯ r−2Cap−1(η ∩Λ(x,r)) (6.27)

for appropriately large α,r and an appropriately small constant value of λ ; once (6.26) and
(6.27) are established the claim will follow since, by Cauchy-Schwartz,

Eη |Mα(x,r)| ⪰ r4 P(Ar > 0)⪰ r4 E[Ar]
2

E[A2
r ]
⪰ r2Cap(η ∩Λ(x,r))

as claimed.
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We begin by lower bounding the expectation of Ar. We decompose Ar as Ar = Er−Dr−
Cr−Br, where

Br = 1(σ ≥ τ) ∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X j = w),

Cr = 1(σ < τ, |LE(Xσ )|> n) ∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X j = w),

Dr = 1(σ < τ, |LE(Xσ )| ≤ n,LE(Xσ ) bad) ∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X j = w), and

Er = ∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X j = w).

The random variable Er is the µ-mass of the intersections of the random walk with the
relevant part of η , i.e. η ∩Λ(x,r). From Er, we have subtracted the error term Br pertaining
to the possibility that the walk exits the ball Λ(x,3r) before hitting the relevant part of η;
the term Cr pertaining to the possibility that that the walk hits the relevant part of η before
exiting this ball, but has too long a loop erasure; and finally the term Dr pertaining to the
possibility that the walk hits the relevant part of η before exiting this ball and has a suitably
short loop erasure, but the loop erasure is bad, as defined above.

Lower bounding the expectation of Er: First, we lower bound the expectation of Er. We
have by time-reversal that

E[Er]≥
1

|Λ(x,3r)| ∑
w∈η∩Λ(x,r)

µ(w)
N

∑
j=0

∑
v∈Λ(x,3r)

Pv(X j = w)

⪰ r−4
∑

w∈η∩Λ(x,r)
µ(w)

N

∑
j=0

Pw(X j ∈Λ(x,3r))

⪰ r−4
N

∑
j=0

P0(X j ∈Λ(0,2r))⪰ r−4
N

∑
j=0

1− j
4r2 ≥ r−4N

(
1− N

4r2

)
⪰ λ r−2(1−λ/4)⪰ λ r−2,

(6.28)

where the third inequality follows since ∑w∈η∩Λ(x,r) µ(w) = 1 and Λ(w,2r)⊂Λ(x,3r) for
w ∈ Λ(x,r), the fourth inequality follows by e.g. the central limit theorem for the simple
random walk, and the penultimate inequality holds if r > 1/λ (which is just the condition
we need to avoid rounding N down to zero).
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Upper bounding the expectation of Br: Next, we upper bound the expectation of Br, which
pertains to the possibility that the walk exits the ball Λ(x,3r) before hitting the relevant part
of η . We have

E[Br] =
1

|Λ(x,3r)| ∑
v∈Λ(x,3r)

∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)Pv(X j = w,σ ≥ τ)

≤ 1
|Λ(x,3r)| ∑

v∈Λ(x,3r)
∑

w∈η∩Λ(x,r)

N

∑
j=0

µ(w)Pv(X j = w,τ ≤ j)

⪯ r−4
∑

v∈Λ(x,3r)
∑

w∈η∩Λ(x,r)

N

∑
j=0

µ(w)Pw(X j = v,τ ≤ j)

⪯ r−4N ∑
w∈η∩Λ(x,r)

µ(w)Pw(τ ≤ N)⪯ λ r−2P0

(
sup

0≤i≤N
∥Xi∥∞

≥ 2r

)
,

where the second inequality follows by time reversal of X , and the final inequality holds
because the distance between any w ∈ η ∩Λ(x,r) and ∂Λ(x,3r) is greater than or equal to
2r. Since Eo[sup j≤i

∥∥X j
∥∥2
]⪯ i for i≥ 0, it follows by Markov’s inequality that

E[Br]⪯ λ r−2 N
r2 ⪯ λ

2r−2. (6.29)

Upper bounding the expectation of Dr. We now upper bound the expectation of Dr, which
pertains to the possibility that the walk hits the relevant part of η before exiting this ball and
has a suitably short loop erasure, but the loop erasure is bad. Observe that

E[Dr]≤ E

[
1(LE(Xσ ) bad) ∑

w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X j = w)

]

≤ E

[
∑

w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1(X bad,X j = w)

]

⪯ r−4
∑

w∈η∩Λ(x,r)

N

∑
j=0

µ(w) ∑
v∈Λ(x,3r)

Pv(X bad,X j = w)

≤ r−4
∑

w∈η∩Λ(x,r)

N

∑
j=0

µ(w)∑
v

P0(X bad,X j = w− v)

= r−4
N

∑
j=0

P0(X bad)⪯ Nr−4 P0(X bad)⪯ α
−1Nr−4 ⪯ α

−1
λ r−2,
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6.2 Lower bounds

where the second inequality follows as LE(Xσ ) ⊆ X , the fourth inequality follows by
translation-invariance, and the penultimate inequality follows by (6.24). Combining this
inequality with (6.29) and (6.28), we can see that there exist positive constants α0 and λ0

such that if α ≥ α0, λ = λ0, and r ≥ 1/λ0 then

E[Er−Dr−Br]⪰ r−2.

Thus, to complete the proof of (6.26), it is sufficient to show that E[Cr] = o(r−2).

Upper bounding the expectation of Cr: To bound the final term Cr, which pertains to the
possibility that that the walk hits the relevant part of η before exiting this ball, but has too
long a loop erasure. We will need some understanding of the cut times of a simple random
walk. Recall that a time t ≥ 0 is said to be a cut time, or loop-free time of the random walk
X if X [0, t] and X(t,∞) are disjoint. We observe that if 0 ≤ s ≤ t are cut times of X then
the loop-erasure of X is equal to the concatenation of the loop-erasures of the portions of X
before s, between s and t, and after t; this property allows us to decorrelate different parts of
the loop-erased random walk. We use the following estimate of Lawler which demonstrates
that the random walk on Z4 has a reasonably good supply of cut times.

Lemma 75 ([233], Lemma 7.7.4). Let X be simple random walk on Z4. Then

P(there are no cut times between times n and m)⪯ log logm
logm

.

for every 3≤ n≤ m such that |n−m| ≥ m/(logm)6.

Observe that if |LE(Xσ )|> n then we must have that σ > n and that if X has a cut time
in [σ −n/4,σ ], then

∣∣LE(X j)
∣∣≥ 3n/4 for every j ≥ σ . Therefore,

Cr ≤ ∑
w∈η∩Λ(x,r)

N

∑
j=0

µ(w)1
(

X j = w, |LE(Xσ )|> n,n < σ ≤ N∧ j
)
≤C′r +C′′r , (6.30)

where

C′r = ∑
w∈η∩Λ(x,r)

N

∑
j=n+1

µ(w)1
(

X j = w,X has no cut time in [σ ,σ −n/4],n < σ ≤ N∧ j
)
,

C′′r = ∑
w∈η∩Λ(x,r)

N

∑
j=n+1

µ(w)1
(

X j = w,
∣∣LE(X j)

∣∣> 3
4

n
)
.
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We show that the expectation conditioned on η of both C′r and C′′r is o(r−2); we begin with
the latter. We have

EC′′r ≤
1

|Λ(x,3r)| ∑
w∈η∩Λ(x,r)

µ(w)
N

∑
j=n

∑
v∈Λ(x,3r)

Pv

(
X j = w,

∣∣LE(X j)
∣∣> 3

4
n
)

=
1

|Λ(x,3r)| ∑
w∈η∩Λ(x,r)

µ(w)
N

∑
j=n

∑
v∈Λ(x,3r)

P0

(
X j = w− v,

∣∣LE(X j)
∣∣> 3

4
n
)

≤ 1
|Λ(x,3r)| ∑

w∈η∩Λ(x,r)
µ(w)

N

∑
j=n

P0

(∣∣LE(X j)
∣∣> 3

4
n
)

⪯ r−4
N

∑
j=n

P0

(∣∣LE(X j)
∣∣> 3

4
n
)
,

where we used translation invariance in the second line. Observe for each n≤ i≤ N that if X
has a cut time in [i− i/(log i)6, i], then

∣∣LE(X i)
∣∣≤ ∣∣LE∞(X i)

∣∣+ i/(log i)6. Therefore,

r4EC′′r ⪯
N

∑
i=n

P0
(∣∣LE(X i)

∣∣> 3
4

n
)

≤
N

∑
i=n

P0(
∣∣LE∞(X i)

∣∣> (3/4)n− i/(log i)6)+P0
(
X has no cut times in [i− i/(log i)6i, i]

)
⪯

N

∑
i=n

P0(ρi > (3/4)n− i/(log i)6i)+ c
log log i

log i

⪯ N
log logn

logn
+

N

∑
i=n

log log i
(log i)2/3 ⪯ N

log logn
(logn)2/3 = o(r2) (6.31)

as required, where the third inequality follows by Lemma 75 and the fourth inequality
follows from Theorem 61 and the fact that λ < 1/2. Next, we upper bound the conditional
expectation of C′r. Recalling the definitions N = ⌊λ r2⌋ for some λ ∈ (0,1/2) and n =

⌊r2(logr)1/3⌋, we can calculate that N ≤ n(logn)1/3 for all r ≥ 2. Define the sequence of
times Tk = ⌈(1+k/8)n⌉ for k≥ 0, and observe that for r larger than some universal constant,
if n ≤ σ ≤ N and X has no cut time in [σ − n/4,σ ], then X has no cut times in at least
one of the intervals belonging to the family {[Tk−Tk/(logTk)

6,Tk] : 0≤ k ≤ 8⌈(logn)1/3⌉}.
Therefore, for r larger than some universal constant, we have that

C′r≤
8⌈(logn)1/3⌉

∑
k=0

∑
w∈η∩Λ(x,r)

N

∑
j=n+1

µ(w)1
(

X j =w,X has no cut time in [Tk−Tk/(logTk)
6,Tk]

)
.

(6.32)
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We also have by symmetry that

Px

(
X j = y,X has no cut time in [Tk−Tk/(logTk)

6,Tk]
)

= Py

(
X j = x,X has no cut time in [Tk−Tk/(logTk)

6,Tk]
)

for each x,y ∈ Z4 and j ≥ 0, so that for r larger than some universal constant

EC′r ≤
N

|Λ(3x,r)|
8⌈(logn)1/3⌉

∑
k=0

P0

(
X has no cut time in [Tk,Tk−Tk/(logTk)

6]
)

⪯ λ r−2
8⌈(logn)1/3⌉

∑
k=0

log logTk

logTk
⪯ λ r−2(logn)1/3 log logn

logn
= o(r−2), (6.33)

where the second inequality follows from Lemma 75. We have now shown (6.26), and so to
complete the proof we must show (6.27), which upper bounds the second moment of A.

Upper bounding the second moment of A. It is at this stage of the proof that we benefit
from defining A in terms of the measure µ . Indeed, we can use the Markov property to
compute that

EA2
r ≤ E

(∑
i≥0

∑
w∈η∩Λ(x,r)

µ(w)1
(
Xi = w

))2


≤ 2E

[
∑
i≥0

∑
w,z∈η∩Λ(x,r)

µ(w)µ(z)1
(
Xi = w

)
∑
j≥i
1
(
X j = z

)]

≍ 2E

[
∑
i≥0

∑
w,z∈η∩Λ(x,r)

µ(w)µ(z)G(w,z)1
(
Xi = w

)]

=
2

|Λ(x,3r)| ∑
w,z∈η∩Λ(x,r)

µ(w)µ(z)G(w,z)∑
i≥0

∑
v∈Λ(x,3r)

Pv
(
Xi = w

)
,

and hence by time-reversal that

EA2
r ⪯ r−4

∑
w,z∈η∩Λ(x,r)

µ(w)µ(z)G(w,z)∑
i≥0

Pw
(
Xi ∈Λ(x,3r)

)
⪯ r−2

∑
w,z∈η∩Λ(x,r)

µ(w)µ(z)G(w,z) = r−2Cap−1(η ∩Λ(x,r)),

where the final inequality follows since the random walk spends at most O(r2) time in any
ball of radius r in expectation (which follows from the Green’s function bound G(x,y) ⪯
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∥x− y∥−2
2 for x ̸= y), and the final equality follows from the definition of µ . This concludes

the proof of (6.27) and hence the proof of the proposition.

We now turn to the proof of the variance estimate of Proposition 73. We will require the
following lemma relating the capacity of a set S to the probability that a random walk, started
at a uniform position in a ball containing S, hits S. The lemma will follow straightforwardly
from [69, Theorem 2.2] and Lemma 74. We prove the result in all dimensions d ≥ 3 for
completeness.

Lemma 76. Fix a dimension d ≥ 3, a radius r≥ 1, and let S⊆Λ(r) := {x ∈ Zd : ∥x∥
∞
≤ r}.

Let X be a simple random walk on Zd . Then

∑
x∈Λ(r)

Px(X hits S)≍ rd−2Cap(S).

Proof of Lemma 76. [69, Theorem 2.2] states that for any transient Markov chain (Xn)n≥0

on a countable state space Ω with initial state ρ and Green’s function
G(x,y) = (degy)−1

∑n≥0 Px(Xn = y), we have that

Pρ(X hits S)≍ inf
µ

[
∑

x,y∈S
µ(x)

G(x,y)
G(ρ,y)

µ(y)

]−1

,

for any subset S ⊆ Ω , where the infimum on the right hand side is taken over probability
measures on S. We would like to apply this result with X a simple random walk on state
space Zd , however, we would like the walk to start at a random vertex. To achieve this, we
attach a ‘ghost vertex’ to the state space from which the random walk will start. We set up
the transition probabilities from the ghost vertex so that after one step, the walk’s distribution
on Zd is equal to that which we desire.

Define the set Zd
∗ = Zd∪{∗}, where ∗ is the additional ghost vertex, and define the

Markov transition kernel p on the state space S by p(x,y) = 1
81(x ∼ y) for x,y ∈ Zd and

p(∗,z) = 1/ |Λ | for z ∈Λ := Λ(r). Note that a trajectory of this chain, which we will denote
by X , is just a simple random walk on Zd when started in Zd . We observe that

∑
x∈Λ

P(X hits S) = P∗(X hits S)≍ inf
µ

[
∑

x,y∈S
µ(x)

G(x,y)
G(∗,y)µ(y)

]−1

, (6.34)

for any subset S⊆Λ . An integral comparison yields that

G(∗,y)≍ ∑
x∈Λ

1
(1∨∥x− y∥

∞
)d−2 ≍ rd−2,
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for y ∈Λ , and so

inf
µ

[
∑

x,y∈S
µ(x)

G(x,y)
G(∗,y)µ(y)

]−1

≍ rd−2 inf
µ

[
∑

x,y∈S
µ(x)G(x,y)µ(y)

]−1

.

Substituting this into (6.34) and applying Lemma 74, we get

∑
x∈Λ(r)

P(X hits S)≍ rd−2 inf
µ

[
∑

x,y∈S
µ(x)G(x,y)µ(y)

]−1

= rd−2Cap(S)

as claimed.

Proof of Proposition 73. Given y,z ∈ Z4, let Y be a random walk started at y and let Z be an
independent random walk started at z and write Py,z for the joint law of Y and Z. Let σ1 be
the first time Y hits η and let σ2 be the first time Z hits η ∪LE(Y σ1). We continue to write
n = ⌈r2(logr)−1/3⌉ as in the previous proof. Abbreviating M = Mα , Λ = Λ(x,3r), we have
by Wilson’s algorithm that

Eη [|M(x,r)|2]≤ ∑
y,z∈Λ

Pη
(
y,z ∈M(x,r)

)
≤ ∑

y,z∈Λ

Py,z(σ1 < ∞,σ2 < ∞, |LE(Y σ1)| ≤ n, |LE(Zσ2)| ≤ n,

LE(Y σ1)⊆Λ ,LE(Zσ2)⊆Λ ,LE(Y σ1),LE(Zσ2) both good).
(6.35)

Now, on the event that σ1,σ2 < ∞, let σ3 be the time Z first hits LE(Y σ1) and let σ4 be the
time Z first hits η . We split according to whether σ3 ≤ σ4 or σ4 < σ3, beginning with the
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case σ4 < σ3. Observing that σ2 = σ4 on this event, we obtain

∑
y,z∈Λ

Py,z(σ1 < ∞, σ2 < ∞, |LE(Y σ1)| ≤ n, |LE(Zσ2)| ≤ n,

LE(Y σ1)⊆Λ , LE(Zσ2)⊆Λ ,LE(Y σ1), LE(Zσ2) both good, and σ4 < σ3).

≤ ∑
y,z∈Λ

Py,z(σ1 < ∞, σ4 < ∞, |LE(Y σ1)| ≤ n, |LE(Zσ4)| ≤ n,

LE(Y σ1)⊆Λ , LE(Zσ4)⊆Λ , and LE(Y σ1),LE(Zσ4) both good).

= ∑
y,z∈Λ

Py(σ1 < ∞, |LE(Y σ1)| ≤ n, LE(Y σ1)⊆Λ , and LE(Y σ1) good)

·Pz(σ4 < ∞, |LE(Y σ4)| ≤ n, LE(Y σ4)⊆Λ , LE(Y σ4) good)

=

[
∑

y∈Λ

Py(σ1 < ∞, |LE(Y σ1)| ≤ n,LE(Y σ1)⊆Λ ,LE(Y σ1) good)

]2

= Eη [|M(y,r)|]2,

(6.36)

where the first equality follows by independence of Y and Z conditional on η , and the last
follows by an application of Wilson’s algorithm. On the other hand, if σ3 ≤ σ4 then σ2 = σ3,
and so we get

∑
y,z∈Λ

Py,z(σ1 < ∞,σ2 < ∞, |LE(Y σ1)| ≤ n, |LE(Zσ2)| ≤ n,

LE(Y σ1)⊆Λ ,LE(Zσ2)⊆Λ ,LE(Y σ1),LE(Zσ2) both good,σ3 ≤ σ4)

≤ ∑
y∈Λ

Ey

[
1(σ1 < ∞, |LE(Y σ1)| ≤ n,LE(Y σ1)⊆Λ ,LE(Y σ1) good) ∑

z∈Λ

Py,z(σ3 < ∞ | Y )
]

≤ α
r4

logr ∑
y∈Λ

Py(σ1 < ∞, |LE(Y σ1)| ≤ n,LE(Y σ1)⊆Λ ,LE(Y σ1) good)

= α
r4

logr
Eη |M(x,r)| , (6.37)

where the final inequality follows by the definition of ‘good’, and the final equality follows
by an application of Wilson’s algorithm. Substituting (6.37) and (6.36) into (6.35) with a
union bound yields

Eη [|M(x,r)|2]≤ Eη [|M(x,r)|]2 +α
r4

logr
Eη |M(x,r)|
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and hence that

Varη(|M(x,r)|)≤ α
r4

logr
Eη |M(x,r)| . (6.38)

Finally we upper bound Eη |M(x,r)|. We have that

Eη |M(x,r)| ≤ ∑
x∈Λ

Px(X hits η ∩Λ),

so that applying Lemma 76 to the right hand side and plugging the resulting inequality into
(6.38) concludes the proof.

Our next goal is to deduce Proposition 71 from Propositions 72 and 73. To proceed we
will need the following result controlling the capacity of the first n steps of a loop-erased
random walk which follows easily from [197, Proposition 3.4] and Theorem 61.

Proposition 77. Let X be a random walk on Z4 started at the origin. There exists a constant
C > 0 such that we have

P
(

Cap(LE(X)n)≤ Cn
(logn)2/3

)
⪯ log logn

(logn)2/3 ,

for every n≥ 2.

Proof. By [197, Proposition 3.4], we know that there exists a constant c such that

P
(

Cap(LE∞(Xn))≤ cn
logn

)
⪯ 1

(logn)2/3 ,

for each n ≥ 2. Fix ε ∈ (0,1/3). Employing a union bound and the fact that capacity is
increasing, we obtain

P
(

Cap(LE(X)n)≤ Cn
(logn)2/3

)
= P

(
Cap(LE∞(X ℓn))≤ Cn

(logn)2/3

)
≤ P

(
Cap(LE∞(X (1−ε)n(logn)1/3

))≤ Cn
(logn)2/3

)
+P

(∣∣∣∣ ℓn

n(logn)1/3 −1
∣∣∣∣> ε

)
⪯ 1

(logn)2/3 +
log logn
(logn)2/3 ⪯

log logn
(logn)2/3

when we choose C < c(1− ε).
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We will also use the following covering lemma, whose proof we defer to the end of the
section.

Lemma 78. Let S be a finite subset of Z4, and let r ≥ 1. Then there exists an integer K and
points {xi : 1≤ i≤ K} ⊆ Z4 such that the balls Λ(xi,3r) are disjoint, {xi}1≤i≤K ⊆ S+Λ(r),
and

• ∑
K
i=1 Cap(S∩Λ(xi,r))≥ 3−4Cap(S), and

• ∑
K
i=1 Cap(S∩Λ(xi,3r))≤ 154

∑
K
i=1 Cap(S∩Λ(xi,r)).

We now have everything we need to complete the proof of Proposition 71 given Lemma 78.

Proof of Proposition 71. Let α0,r0 be the constants yielded by Proposition 72, and fix r ≥
r0 ∨ 2, α > α0. For the remainder of the proof we will abbreviate M = Mα . Let K ≥ 1
and suppose that {xi : 1 ≤ i ≤ K} ⊆ Z4 is a set of points such that the family of boxes
(Λ(xi,3r))K

i=1 are mutually disjoint. We first show that the random variables |M(xi,r)| are
pairwise negatively correlated conditional on η in the sense that

Eη

[
|M(xi,r)| ·

∣∣M(x j,r)
∣∣]≤ Eη

[
|M(xi,r)|

]
Eη

[∣∣M(x j,r)
∣∣]

for every 1≤ i < j ≤ K. Indeed, suppose that u ∈Λ(xi,3r) and v ∈Λ(x j,3r) for some i ̸= j.
We sample the UST conditional on η = Γ (0,∞) with Wilson’s algorithm, beginning with a
random walk X started at u, followed by another walk Y started at v. Let τ1 be the first time
X hits η , let τ2 be the first time Y hits LE(Xτ1)∪η , and let τ ′2 be the first time Y hits η . Then

Pη
(
u ∈M(xi,r), v ∈M(x j,r)

)
= Pη(u ∈M(xi,r))

·Pη

(
LE(Y τ2)⊆Λ(x,3r), |LE(Y τ2)| ≤ r2

(logr)1/3 , LE(Y τ2) is (α,r)-good
∣∣∣ u ∈M(xi,r)

)
.

We have by the definition of M(xi,r) that if u ∈M(xi,r) then LE(Xτ1)⊆Λ(xi,r), so that if
LE(Y τ2)⊆Λ(x,3r) then τ2 = τ ′2. It follows that

Pη
(
v ∈M(x j,r) | u ∈M(xi,r)

)
≤ Pη

(
LE(Y τ ′2)⊆Λ(x,3r),

∣∣∣LE(Y τ ′2)
∣∣∣≤ r2

(logr)1/3 , LE(Y τ ′2) is (α,r)-good
∣∣∣ u ∈M(xi,r)

)
= Pη

(
LE(Y τ ′2)⊆Λ(x,3r),

∣∣∣LE(Y τ ′2)
∣∣∣≤ r2

(logr)1/3 , LE(Y τ ′2) is (α,r)-good
)

= Pη
(
v ∈M(x j,r)

)
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6.2 Lower bounds

where the first equality follows because Y τ ′2 is independent from the event {u ∈M(xi,r)}
conditional on η and where the last equality follows by an application of Wilson’s algorithm.
The claimed negative correlation of |M(xi,r)| and

∣∣M(x j,r)
∣∣ follows by summing over u and

v. Negativity of the correlations immediately implies that

Varη

(∣∣∣ K⋃
i=1

M(xi,r)
∣∣∣)≤ ∑

1≤i≤K
Varη(|M(xi,r)|),

and we deduce by Chebyshev together with Propositions 72 and 73 that

Pη

(∣∣∣ K⋃
i=1

M(xi,r)
∣∣∣≤ c1r2

K

∑
i=1

Cap(η ∩Λ(xi,r))

)
⪯ r2

logr
· ∑

K
i=1 Cap(η ∩Λ(xi,3r))(

∑
K
i=1 Cap

(
η ∩Λ(xi,r)

))2

(6.39)
for some constant c1 > 0. Note that this estimate holds for any K ≥ 1 and any collection of
points (xi)

K
i=1 in Z4 such that the family of boxes (Λ(xi,3r))K

i=1 are mutually disjoint, where
we are free to choose K and (xi)

K
i=1 as functions of η if we wish. (Of course the points we

choose must be conditionally independent of the rest of the UST given η .)
We now want to apply this estimate to prove our lower tail estimate on |B(n)|. Fix n≥ 1,

and for each R≥ 1, let AR be the event that ∥ηi∥∞ ≥ 2R for every i≥ n/2. Observe from the
definitions that if AR holds and r ≥ 2 is such that r2(logr)−1/3 ≤ n/2 and 3r ≤ R then

|B(n)| ≥
∣∣∣ K⋃
i=1

M(xi,r)
∣∣∣

for any collection of points x1, . . . ,xK in Λ(R): the definition of the set M(xi,r) and the
choice of r ensures the path connecting x to η is contained in Λ(2R) and has length at most
n/2, while the definition of AR ensures that this path meets η within the first n/2 steps
of η . Thus, choosing these points as a function of η and r ≥ 1 as in the covering lemma,
Lemma 78, we deduce from (6.39) that there exists a constant c1 such that

1(AR)Pη
(
|B(n)| ≤ c1r2Cap(η ∩Λ(R))

)
⪯ r2

logr
· 1

Cap(η ∩Λ(R))
(6.40)

for every r,R ≥ 2 such that r2(logr)−1/3 ≤ n/2 and 3r ≤ R. As such, we have by a union
bound that

P
(
|B(n)| ≤ c1r2R2

λ logR

)
⪯ λ r2 logR

R2(logr)
+P(A c

R )+P
(

Cap(η ∩Λ(R))≤ R2

λ logR

)
(6.41)
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for every r,R≥ 2 such that r2(logr)−1/3 ≤ n/2 and 3r ≤ R and every λ ≥ 1.
To proceed, we will bound the second and third terms on the right hand side them

optimize over the choice of r, R, and λ . To bound P(AR), we use Wilson’s algorithm to write

P(A c
R ) = P0(LE(X)i ∈Λ(2R) for some i≥ n/2)

≤ P0

(
ρ⌊n/2⌋(X)≤ n

4(logn)1/3

)
+P0

(
X j ∈Λ(2R) for some j ≥ n

4(logn)1/3

)
⪯ log logn

(logn)2/3 +
R2(logn)1/3

n
,

where the first term has been bounded using Theorem 61 and the second follows by a
standard random walk computation (for example, it follows by [193, Lemma 4.4] and
Markov’s inequality). To bound the second term, we use the union bound

P
(

Cap(η ∩Λ(R))≤ R2

λ logR

)
≤ P(∥ηi∥ ≥ R for some i≤ k)+P

(
Cap(ηk)≤ R2

λ logR

)
for every R,k≥ 1 and λ ≥ 1. Using Wilson’s algorithm and a further union bound yields that

P
(

Cap(η ∩Λ(R))≤ R2

λ logR

)
≤ P0

(
ℓk ≥ 2k(logk)1/3

)
+

P0(∥X j∥ ≥ R for some j ≤ 2k(logk)1/3)+P0

(
Cap(LE(X)k)≤ R2

λ logR

)
,

and we deduce from Theorem 61, the maximal version of Azuma-Hoeffding [269, Section
2], and Proposition 77 that there exists a positive constant C such that

P
(

Cap(η ∩Λ(R))≤ R2

λ logR

)
⪯ log logk

(logk)2/3 + exp
[
−Ω

(
R2

k(logk)1/3

)]
for every R,k ≥ 1 such that k(logk)−2/3 ≤Cλ−1R2(logR)−1. If λ ≤ R1/2 then the maximal
such k is of order λ−1R2(logR)−1/3 and it follows by calculus that

P
(

Cap(η ∩Λ(R))≤ R2

λ logR

)
⪯ log logR

(logR)2/3 + exp
[
−Ω(λ−1)

]
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for every R≥ 3 and 1≤ λ ≤ R1/2. Putting these estimates together yields that

P
(
|B(n)| ≤ c1r2R2

λ logR

)
≤ λ r2 logR

R2 logr
+

log logn
(logn)2/3 +

R2(logn)2/3

n2 +
log logR
(logR)2/3 + exp

[
−Ω(λ−1)

]
for every r,R≥ 2 such that r2(logr)−1/3 ≤ n/2 and 3r ≤ R and every 1≤ λ ≤ R1/2. Letting
β ≥ 10, taking R = ⌈β−1n1/2(logn)1/6⌉, r = ⌈β−2n1/2(logn)1/6⌉ and λ = β yields that if
n≥ β 4 then

P
(
|B(n)| ≤ c2n2

β 5(logn)1/3

)
⪯ β

−1 +
log logn
(logn)2/3 +β

−2 +
log logn
(logn)2/3 + exp

[
−Ω(β−1)

]
⪯ β

−1 +
log logn
(logn)2/3 ,

which implies the claim.

It remains to prove our covering lemma for the capacity, Lemma 78. The proof, which
exhibits and analyzes a greedy algorithm for constructing the desired set of balls, follows a
standard strategy for proving covering lemmas of similar form.

Proof of Lemma 78. Consider the set of centres C = {x∈ (2r+1)Z4 : Cap(Λ(x,r)∩S)> 0}
and the partition of Z4 defined by B = {Λ(x,r) : x ∈ C }. Note that x ∈ S+Λ(x,r) for each
x ∈ C , since otherwise the box Λ(x,r) would not contain any points of S. Given x ∈ C , we
write A[x] = {y ∈ C : ∥y− x∥

∞
≤ 2r+1} for the set of centres in C equal to or adjacent to x.

We note the crude bound #A[x]≤ 34. Similarly, we write A2[x] = ∪y∈A[x]A[y] and note that
#A2[x]≤ 54.

We will construct the sequence (xi)
K
i=1 using a greedy algorithm. By subadditivity of

capacity (which is an immediate consequence of the variational principle of Lemma 74), we
know that

Pi := ∑
x∈C

Cap(S∩Λ(x,r))≥ Cap(S). (6.42)

Define the list of centres (xi)i≥0 ⊆ C as follows. Let C0 = C , and for i≥ 0 such that Ci ̸= /0,
let

xi = argmax{Cap(Λ(x,r)∩S) : x ∈ Ci}; Ci+1 = Ci \A[xi],

Write I = inf{i≥ 0 : Ci = /0} and define κi = Cap(Λ(xi,r)∩S) for 0≤ i < I. We claim that

∑
0≤i≤n

Cap(S∩Λ(xi,3r))≤ 154
∑

0≤ j≤n
κ j for every n < I. (6.43)
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Fix 0 ≤ i < I. We note that for any y ∈ A[xi], there exists a unique 0 ≤ j ≤ i such that
y ∈ Ci \Ci+1. By definition of κ j and x j, it must then hold that Cap(Λ(y,r)∩S) ≤ κ j. By
subadditivity of capacity, we can therefore write

Cap(Λ(xi,3r)∩S)≤ ∑
y∈A[xi]

Cap(Λ(y,r)∩S)≤ ∑
y∈A[xi]

∑
j≤i

κ j1(y ∈ C j \C j+1).

Observing that C j \C j+1 ⊆ A[x j] for j < I, we get

Cap(Λ(xi,3r)∩S)≤∑
j≤i

κ j
∣∣A[xi]∩A[x j]

∣∣ .
By switching the order of summation, we have

∑
0≤i≤n

Cap(Λ(xi,3r)∩S)≤ ∑
0≤ j≤n

κ j ∑
j≤i≤n

∣∣A[xi]∩A[x j]
∣∣ .

Finally,
∣∣A[xi]∩A[x j]

∣∣≤ |A[xi]| ≤ 34, and if
∣∣A[x j]∩A[xi]

∣∣ ̸= 0, then xi ∈ A2[x j]. The xi are
all distinct, and there are at most 54 elements in A2[x j], and so the summations over i on the
right hand side are bounded above by 34×54 = 154, thus proving the claim (6.43).

Next, observe that for i≥ 0

∑
x∈Ci

Cap(Λ(x,r)∩S)≥ Pi−34
∑

0≤ j≤i−1
κ j.

Indeed, at stage i in the algorithm we remove at most 34 centres from Ci to give Ci+1, and
for each of these centres x, we must have Cap(S∩Λ(x,r))≤ κi. Putting i = I in the above
equation gives

34
∑

0≤ j<I
κ j ≥ Pi,

and so by (6.42), we have ∑0≤ j<I κ j ≥ 3−4Cap(S).

Remark 12. Note that the proof of Lemma 78 does not use any properties of the capacity
other than subadditivity and non-negativity, so that a similar covering lemma holds for any
subadditive, non-negative set function.

6.3 Random walk

We now apply our main geometric theorem, Theorem 57, to study the behaviour of the
random walk on the 4d UST. We begin by applying our results together with those of [197]
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6.3 Effective Resistance

to prove our effective resistance estimate, Theorem 59, in Section 6.3.1. In Section 6.3.2
we review the theory of Markov-type inequalities and prove our upper bound on the mean-
squared displacement, Theorem 60. Finally, in Section 6.3.3 we show how the remaining
estimates of Theorem 58 can be deduced from these estimates using the methods of [49, 227].

6.3.1 Effective Resistance

In this section we prove Theorem 59. The upper bound is trivial since resistances are always
bounded by distances, so we focus on the lower bound. We will employ [197, Lemma
8.3] which we reproduce here. Let Ceff(A↔ B;G) = Reff(A↔ B;G)−1 denote the effective
conductance between sets A,B⊆V [G].

Lemma 79 ([193], Lemma 8.3). Let T be a tree, let v be a vertex of T , and let Nv(n,k) be the
number of vertices u ∈ ∂B(v,k) := B(v,k)\B(v,k−1) at distance k from v such that u lies
on a geodesic in T from v to ∂B(v,n). Then

Ceff(v↔ ∂B(v,n);T )≤ 1
k

Nv(n,k)

for every 1≤ k ≤ n.

We will also use the following theorem of [197] concerning the tail of the intrinsic radius
of the past.

Theorem 80 ([197], Theorem 1.1). Let T be the uniform spanning tree of Z4. Then

P(P(0,n) ̸= /0)≍ (logn)1/3

n

for every n≥ 1.

We now apply these results together with Theorem 57 to prove Theorem 59.

Proof of Theorem 59. Fix λ > 0 and δ ∈ (0,1]. For each 0≤ m≤ n, let K(n,m) be the set
of vertices u ∈ ∂B(0,m) that lie on a geodesic from v to ∂B(v,n) and let K′(n,m) be the
set of vertices u ∈ ∂B(v,m) such that P(u,n−m) ̸= /0. We observe that K(n,m)\K′(n,m)

contains at most one vertex, namely the unique vertex in ∂B(v,m) which lies in the future of
v, and so, by Lemma 79, we have

Ceff(v↔ ∂B(0,n);T)≤ 1
m
|K(n,m)| ≤ 1

m
+

1
m

∣∣K′(n,m)
∣∣
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for each 1≤ m≤ n. Averaging this gives us that

Ceff(v↔ ∂B(0,3n);T)⪯ 1
n
+

1
n2

2n

∑
m=n

∣∣K′(3n,m)
∣∣ ,

for each n≥ 1. Now, for each n≥ 1, the sets (K′(n,m))n≤m≤2n are pairwise disjoint and their
union satisfies

⋃
n≤m≤2n

K′(n,m)⊆ {u ∈ Z4 : u ∈B(0,2n),P(u,n) ̸= /0},

and so

Ceff(v↔ ∂B(0,3n);T)⪯ 1
n
+

1
n2 ∑

u∈Z4

1
(
u ∈B(0,2n),P(u,n) ̸= /0

)
.

Multiplying both sides by the indicator function 1(|B(0,4n)| ≤ λ 1/2n2(logn)−1/3+δ ) and
taking expectations gives

E

[
Ceff(v↔ ∂B(0,3n);T)1

(
|B(0,4n)| ≤ λ 1/2n2

(logn)1/3−δ

)]

⪯ 1
n
+

1
n2 ∑

u∈Zd

P

(
u ∈B(0,2n),P(u,n) ̸= /0, |B(0,4n)| ≤ λ 1/2n2

(logn)1/3−δ

)
,

and applying the mass-transport principle to exchange the roles of 0 and u yields that

E

[
Ceff(v↔ ∂B(0,3n);T)1

(
|B(0,4n)| ≤ λ 1/2n2

(logn)1/3−δ

)]

⪯ 1
n
+

1
n2 ∑

u∈Zd

P

(
0 ∈B(u,2n),P(0,n) ̸= /0, |B(u,4n)| ≤ λ 1/2n2

(logn)1/3−δ

)

≤ 1
n
+

1
n2E

[
|B(0,2n)|1

(
|B(0,2n)| ≤ λ 1/2n2

(logn)1/3−δ
,P(0,n) ̸= /0

)]

⪯ 1
n
+

λ 1/2

(logn)1/3−δ
P
(
P(0,n) ̸= /0

)
⪯ λ

1/2 (logn)δ

n
, (6.44)
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where the final inequality follows from Theorem 80. Now by a union bound, we have

P

(
Ceff(v↔ ∂B(0,3n);T)> λ

(logn)δ

n

)
≤ P

(
|B(0,4n)|> λ 1/2n2

(logn)1/3−δ

)

+P

(
Ceff(v↔ ∂B(0,3n);T)1

(
|B(0,4n)| ≤ λ 1/2n2

(logn)1/3−δ

)
> λ

(logn)δ

n

)
.

Applying Markov’s inequality to each term on the right hand side and using (6.44) and
Theorem 57 to estimate the relevant expectations yields that

P

(
Ceff(v↔ ∂B(0,3n);T)> λ

(logn)δ

n

)
⪯δ λ

−1
λ

1/2 +λ
−1 ⪯ λ

−1/2, (6.45)

and the claim follows since λ ,δ > 0 were arbitrary.

6.3.2 Upper bounds on displacement via Markov-type inequalities

In this section, we will use Markov-type inequalities [40, 127, 281] together with the results
of [197] to prove Theorem 60, which establishes sharp upper bounds on the expectation of
the squared maximal intrinsic displacement of a random walk on the 4d UST. Markov-type
inequalities were first introduced by Ball [40] in the context of the Lipschitz extension
problem, and have since been found to have many important applications to the study of
random walk [149, 174, 244, 245, 292]. Our work is particularly influenced by that of
James Lee and his coauthors [127, 149, 244, 245], who pioneered the use of Markov-type
inequalities to prove sharp subdiffusive estimates for random walks on fractals. We begin by
quickly reviewing the general theory, including in particular the extension of the universal
Markov-type inequality for planar graphs of Ding, Lee, and Peres [127] to unimodular
hyperfinite planar graphs established in [174].

Unimodular weighted graphs. A vertex-weighted graph is a pair (G,ω) consisting of a
graph G and a weighting on G, that is a function ω : V [G]→ [0,∞). We define the weighted
graph distance between vertices x,y of a weighted graph (G,ω) by

dG
ω (x,y) = inf

x=u0∼···∼un=y,n∈N

n

∑
i=1

1
2
(
ω(ui)+ω(ui−1)

)
.

Let G ω
• be the space of triples (G,ω,ρ), where (G,ω) is a locally finite vertex-weighted

graph, and ρ ∈V [G] is a vertex known as the root vertex. The space G ω
• is equipped with the

Borel sigma algebra induced by the natural generalisation of the Benamini-Schramm local
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topology [6, 110] in which two rooted, weighted graphs are considered to be close if there
exist large graph-distance balls around their roots for which their respective balls admit a
graph isomorphism that approximately preserves the weights. The details of this construction
are not important to us and can be found in e.g. [110, Section 1.2]. Similarly, we also have
the space G ω

•• of vertex-weighted graphs with an ordered pair of distinguished vertices. We
say that a random variable (G,ω,ρ) taking values in G ω

• is a unimodular vertex-weighted
graph if it satisfies the mass-transport principle, i.e. if

E

[
∑

v∈V [G]

F(G,ω,ρ,v)

]
= E

[
∑

v∈V [G]

F(G,ω,v,ρ)

]

for each Borel measurable function F : G ω
•• → [0,∞). Unweighted unimodular random

graphs are defined similarly; we refer the reader to [6, 110] for a more in-depth discussion
of the local topology and unimodularity. These notions are relevant to our setting since
if K is the component of the origin in some translation-invariant random subgraph of Zd

then (K,ρ) always defines a unimodular random rooted graph, so that, in particular, (T,0)
is a unimodular random rooted graph when T is the UST of Z4. Moreover, if the weight
ω : Z4 → [0,∞) is computed from T in a translation-equivariant way then the resulting
weighted random rooted graph (T,ω,0) is also unimodular, as can be seen by applying the
usual mass-transport principle on Z4 to the expectations EF(T,ω,x,y).

Markov-type inequalities. A metric space X = (X ,d) is said to have Markov-type 2
with constant c < ∞ if for every finite set S, every irreducible reversible Markov chain M on
S, and every function f : S→X the inequality

E
[
d
(

f (Y0), f (Yn)
)2
]
≤ c2nE

[
d
(

f (Y0), f (Y1)
)2
]

holds for every n≥ 0, where (Yi)i≥0 is a trajectory of the Markov chain M with Y0 distributed
as the stationary measure of M. Similarly, a metric space X = (X ,d) is said to have
maximal Markov-type 2 with constant c < ∞ if for every finite set S and every irreducible
reversible Markov chain M on S, and every function f : S→X , we have that

E
[

max
0≤i≤n

d
(

f (Y0), f (Yi)
)2
]
≤ c2nE

[
d
(

f (Y0), f (Y1)
)2
]

for each n ≥ 0, where, as before, (Yi)i≥0 is a trajectory of the Markov chain M with Y0

distributed as the stationary measure of M.
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6.3 Upper bounds on displacement via Markov-type inequalities

It is proved in [127] that there exists a universal constant C such that every vertex-
weighted planar graph has Markov-type 2 with constant C; in fact their proof also establishes
the existence of a universal constant C such that every weighted planar graph has maximal
Markov-type 2 with constant C as explained in [174, Proposition 2.4]. (Presumably this fact
is significantly easier to establish for trees than for other planar graphs, but we are not aware
of an appropriate reference.)

We now describe the consequences of this theorem for unimodular random planar graphs.
We must first define what it means for a unimodular random rooted graph to be hyperfinite.
A percolation on a unimodular random rooted graph (G,ρ) is a labelling η of the edge set
of G by the elements 0,1 such that the resultant edge-labelled graph (G,η ,ρ) is unimodular.
We think of the percolation η as a random subgraph of G, where each edge is labelled 1 if it
is included in the subgraph and 0 otherwise, and denote the connected component of ρ in this
subgraph as Kη(ρ). We say a percolation is finitary if Kη(ρ) is almost surely finite, and say a
unimodular random rooted graph (G,ρ) is hyperfinite if there exists an increasing sequence
of finitary percolations (ηn)n≥1 such that ∪n≥1Kηn(ρ) =V [G] almost surely. The component
of the origin in a translation-invariant random subgraph of Zd is always hyperfinite as can
be seen by taking a random hierarchical partition of Zd into dyadic boxes. The following
proposition appears as [174, Corollary 2.5].

Proposition 81. Let (G,ρ) be a hyperfinite, unimodular random rooted graph with
E [deg(ρ)] < ∞ that is almost surely planar, and suppose that ω is a vertex-weighting of
G such that (G,ω,ρ) is a unimodular vertex-weighted graph. If Y is a random walk on G
started at ρ then

E
[

deg(ρ) max
0≤i≤n

dG
ω

(
Y0,Yi

)2
]
≤C2nE

[
deg(ρ)ω(ρ)2] ,

for each n≥ 1, where C is a universal constant.

We now apply this proposition to prove Theorem 60.

Proof of Theorem 60. Let r ≥ 1 be a parameter to be optimized over shortly. Seeing as the
UST of Zd is unimodular, hyperfinite (being a translation-invariant percolation processes on
Zd) and planar, we can apply Proposition 110 to the vertex weight

ωr(v) = 1(P(v,r) ̸= /0),

which makes (T,ωr,0) unimodular since it is computed as a translation-equivariant function
of T. This particular choice of weight is inspired by that used by Ganguly and Lee in [149].
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Writing dr = dT
ωr

and using the fact that T has degrees uniformly bounded below by 1 and
above by 8, we get that

E
[

max
0≤i≤n

dr
(
Y0,Yi

)2
]
≤ 8C2nP

(
P(0,r) ̸= /0

)
(6.46)

for each r,n≥ 1. We next claim that

dT(u,v)≤ 4r+4dr(u,v) for every u,v ∈ T and r ≥ 1. (6.47)

Indeed, let u,v ∈ Z4 and suppose that dT(u,v) ≥ 4r, the claimed inequality being trivial
otherwise. Let w be the vertex at which the futures of u and v meet. At least one of the
inequalities dT(u,w)≥ 1

2dT(u,v) or dT(v,w)≥ 1
2dT(u,v) holds, and we may assume without

loss of generality that dT(u,w) ≥ 1
2dT(u,v) ≥ 2r. Since u belongs to the past of each of

the vertices in the T-geodesic connecting u to w, all the vertices in the second half of this
geodesic must have past of intrinsic diameter at least r, so that dr(u,w) ≥ 1

2dT(u,w) and
hence that dr(u,v)≥ 1

4dT(u,v) as required. It follows from (6.47) together with (6.46) that

E
[

max
0≤i≤n

dT
(
Y0,Yi

)2
]
≤ 32r2 +2E

[
max

0≤i≤n
dr
(
Y0,Yi

)2
]

⪯ r2 +nP
(
P(0,r) ̸= /0

)
⪯ r2 +

n(logr)1/3

r

for every r,n ≥ 1, where we applied Theorem 80 in the third inequality, and taking r =
⌈n1/3(logn)1/9⌉ yields that

E
[

max
0≤i≤n

dT
(
Y0,Yi

)2
]
⪯ n2/3(logn)2/9

for every n≥ 2 as claimed.

Remark 13. This method also gives sharp upper bounds in dimensions d ≥ 5: applying [193,
Theorem 1.2] in place of Theorem 80, it yields that if d ≥ 5, T is the component of the origin
in the uniform spanning forest of Zd , and Y is a random walk on T started at 0, then

E
[

max
0≤i≤n

dT
(
Y0,Yi

)2
]
⪯ n2/3

for every n≥ 0. This is stronger than the displacement upper bounds proven in [193], which
were based on the results of [50].
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6.3 Proof of Theorem 58

6.3.3 Proof of Theorem 58

In this section we use all of the previous results to compute logarithmic corrections to the
asymptotic behaviour of the displacement, exit times, return probabilities and range of the
simple random walk on the uniform spanning tree. We will draw heavily on the methods of
[227], which generalizes and synthesizes the earlier works [43, 49, 50]. Note that we must
rederive all our results from the methods of [227] rather than simply quote their results since,
as stated, these results do not allow for non-matching upper and lower bounds.

Remark 14. In this proof we will often use our big-O in probability notation on random
variables indexed by more than one variable (e.g. n and r). When we write an expression
Xn,r = O(Yn,r) of this form, it means that the entire family of associated random variables
indexed by both n and r is tight.

Proof of Theorem 58. We recall that ET
x denotes expectation with respect to the law of

a simple random walk X on T started at x ∈ Z4 conditional on T, and write PT
x for the

corresponding probability measure. Where clear from context, we will write P for the joint
law and expectation of the uniform spanning tree and a random walk on the tree started at
the origin, and similarly will write E for expectation with respect to this joint law.

Heat-kernel upper bound: [227, Proof of Proposition 3.1(a)] implies that

pT2n(0,0)+ pT2n+1(0,0)⪯
1

|B(0,R)| ∨
R
n

for every n,R ≥ 1. Taking R = n1/3(logn)1/9 and applying the volume lower bound of
Theorem 57 therefore yields that

pT2n(0,0) = O

(
(logn)1/9

n2/3

)
(6.48)

for every n≥ 2.

Intrinsic displacement lower bound: We have by Cauchy-Schwarz that

PT
0 (dT(0,Xn)≤ r) = ∑

v∈B(0,r)
pTn (o,v)≤ |B(0,r)|1/2

(
∑

v∈B(R)
pTn (o,v)

2

)1/2

⪯ |B(0,r)|1/2 pT2n(0,0)
1/2 = O

(
r

(logr)1/6−o(1)
· 1

n
1
3
(logn)

1
18

)
(6.49)
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for every n,r ≥ 1, where we have applied the volume upper bound on Theorem 57, and the
previously derived heat-kernel upper bounds. If we take r = n1/3(logn)1/9−δ for some δ > 0,
then the expression appearing inside the O is o(1), and, since this holds for every δ > 0
(with implicit constants depending on δ ), it follows that dT(0,Xn) = ΩΩΩ(n1/3(logn)1/9−o(1))

for every n≥ 2 as claimed.

Intrinsic displacement upper bound: The estimate

dT(X0,Xn)≤ max
0≤m≤n

dT(X0,Xn) = O
(

n1/3(logn)1/9
)

follows immediately from Theorem 60.

Heat-kernel lower bound: Fix δ > 0 and let R = n1/3(logn)1/9+δ . Using the same Cauchy-
Schwarz argument as in (6.49), it follows from the intrisic displacement upper bounds of
Theorem 60 and the volume lower bounds of Theorem 57 that there exists Nδ such that

pT2n(o,o)≥
(1−PT(dT(o,Xn)> R))2

|B(0,R)| =
1−o(1)

O
(
R2(logR)−1/3

) = 1−o(1)
O
(
n2/3(logn)−1/9+2δ

)
for every n≥ Nδ , and the claim follows since δ > 0 was arbitrary.

Exit time upper bound: [227, Equation 3.7] implies that

ET
0 [τR]≤Reff(0↔B(0,R)c;T) |B(0,R)| ≤ R |B(0,R)|

for every R≥ 1, and applying Theorem 57 yields that

ET[τR] = O
(

R3

(logR)1/3−o(1)

)
and hence that τR = O

(
R3

(logR)1/3−o(1)

)
for every R≥ 2.

Exit time lower bound: Fix R≥ 1, and let β > 0, n = R3/(logR)1/3. Applying Theorem
60, we have

P(τR ≤ βn) = P
(

max
0≤i≤βn

dT(o,Xi)
2 ≥ R2

)
= O

(
β 2/3n2/3(logn)2/9

R2

)
= O(β 2/3),

and so τR = ΩΩΩ(R3/(logR)1/3). The relation ET[τR] = ΩΩΩ(R3/(logR)1/3) then follows.
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6.3 Proof of Theorem 58

Extrinsic displacement upper bound: Let R≥ 1 and fix δ > 0. We have already established
that

max
0≤m≤n

dT(X0,Xn) = O
(

n1/3(logn)1/9
)
,

and Theorem 57 tells us that

B(n)⊆Λ
(
n1/2(logn)1/6+o(1)) as n→ ∞.

Combining these two facts gives us

max
0≤m≤n

∥Xm∥∞
= O

(
n

1
6 (logn)

2
9+o(1)) as n→ ∞,

as required.

Extrinsic displacement lower bound: Let R≥ 1. Exploiting the tree structure of T, we note
that if maxm≤n ∥Xm∥∞

≤ R, then Γ (0,Xm)⊆Λ(R). Thus, arguing as in (6.49), we have that

PT
(

max
m≤n
∥Xm∥∞

≤ R
)
⪯
∣∣∣{x ∈ Zd : Γ (0,x)⊆Λ(R)}

∣∣∣1/2
pT2n(o,o)

1/2

= O

(
R2

(logR)1/2 ·
(logn)1/18

n1/3

)
,

where the we have applied Proposition 65 and heat kernel upper bound (6.48) in the last line.
This implies that maxm≤n ∥Xm∥∞

= ΩΩΩ(n1/6(logn)2/9) as claimed.

Range upper bound: Fix δ > 0. For n ≥ 1, let Dn = max0≤i≤n dT(0,Xi). Applying
displacement upper bounds and the volume upper bounds of Theorem 57, we have that

|{Xm : 0≤ m≤ n}| ≤ |B(Dn)|=
∣∣∣B(O(n1/3(logn)1/9))

∣∣∣= O

(
n2/3

(logn)1/9−o(1)

)

as n→ ∞ as required.

Range lower bound: Fix R≥ 1, δ > 0 and write B=B(R).
Let gR(x,y) = (degT y)−1ET

x [∑0≤i≤τR 1(Xn = y)] and let p(y) = gR(0,y)/gR(y,y) be the prob-
ability that a random walk started at 0 ∈ T hits y before exiting B. For each y ∈B′ :=
B(⌊R/(logR)δ ⌋), we have Reff(0↔ y;T)≤ R/(logR)δ , so that if the event A = {Reff(0↔
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Bc;T)≥ R/(logR)δ/2} holds then

inf
y∈B′

Reff(y↔Bc;T)≥ inf
y∈B′

[
Reff(0↔Bc;T)−Reff(0↔ y;T)

]
≥ R/(logR)δ/2−R/(logR)δ = Ω(R/(logR)δ/2).

Now for each y ∈B we have the following inequality which was derived for general graphs
in [227, Proof of Proposition 3.2(b)]:

|1− p(y)|2 ≤Reff(0↔ y;T)Reff(y↔Bc;T)−1.

Taking the supremum over y ∈B′ ⊂B yields

sup
y∈B′
|1− p(y)|2 ≤ R

(logR)δ
· sup

y∈B′
Reff(y↔Bc;T)−1 = O((logR)−δ/2)

on the event A. For each R≥ 1, consider the random variable UR = |{Xi : 0≤ i≤ τR}∩B′|.
Then

ET
0 [UR]≥ ET

0

[
∑

x∈B′
1(X hits x before exiting B)

]
=

∑
y∈B′

p(y)≥ 1(A)(1−O((logR)−δ/2))
∣∣B′∣∣ . (6.50)

Now

P
(

UR

|B′| ≤ 1/2
)

≤ E
[

PT

(
A,

UR

|B′| ≤ 1/2
)]

+P(Ac) = E
[

PT

(
1(A)

(
1− UR

|B′|
)
≥ 1/2

)]
+P(Ac),

and so applying (6.50) with Markov’s inequality to the conditional probability inside the
expectation gives

P
(

UR

|B′| ≤ 1/2
)
≤ O((logR)−δ/2)P(A)+P(Ac) = o(1)

as R→ ∞, where the fact that P(Ac)→ 0 as R→ ∞ follows from Corollary 59. The claim
follows since |B′| = ΩΩΩ(R2(logR)−1/3−2δ ), τR = O(R3(logR)−1/3+o(1)), and δ > 0 was
arbitrary.
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Chapter 7

[F] Uniqueness of the infinite tree in
low-dimensional random forests

Abstract. The arboreal gas is the random (unrooted) spanning forest of a graph in which
each forest is sampled with probability proportional to β #edges for some β ≥ 0, which arises
as the q→ 0 limit of the Fortuin-Kastelyn random cluster model with p = βq. We study
the infinite-volume limits of the arboreal gas on the hypercubic lattice Zd , and prove that
when d ≤ 4, any translation-invariant infinite volume Gibbs measure contains at most one
infinite tree almost surely. Together with the existence theorem of Bauerschmidt, Crawford
and Helmuth (2021), this establishes that for d = 3,4 there exists a value of β above which
subsequential weak limits of the β -arboreal gas on tori have exactly one infinite tree almost
surely. We also show that the infinite trees of any translation-invariant Gibbs measure on
Zd are one-ended almost surely in every dimension. The proof has two main ingredients:
First, we prove a resampling property for translation-invariant arboreal gas Gibbs measures
in every dimension, stating that the restriction of the arboreal gas to the trace of the union
of its infinite trees is distributed as the uniform spanning forest on this same trace. Second,
we prove that the uniform spanning forest of any translation-invariant random connected
subgraph of Zd is connected almost surely when d ≤ 4. This proof also provides strong
heuristic evidence for the conjecture that the supercritical arboreal gas contains infinitely
many infinite trees in dimensions d ≥ 5. Along the way, we give the first systematic and
axiomatic treatment of Gibbs measures for models of this form including the random cluster
model and the uniform spanning tree.
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7.1 Introduction

For each β ≥ 0, the β -arboreal gas (a.k.a. the weighted uniform forest model) on a finite
undirected graph G = (V,E) is a random subgraph A of G with probability mass function

Pβ (A=F)=

(1/Zβ )β
|F | F ⊆ G is a spanning forest

0 otherwise
, Zβ = ∑

F⊆G a spanning forest
β
|F |,

(7.1)
where |F | denotes the cardinality of the edge set of F and a spanning forest of G is an acyclic
subgraph of G containing every vertex. Equivalently, the law of A is equal to the law of
Bernoulli percolation on G with parameter p = β/(1+ β ) conditioned to be acyclic. It
is also equal to the q→ 0 limit of the q-state random cluster model with p/q converging
to β [199, 289], while its β → ∞ limit is equal to the uniform spanning tree when G is
connected. (When β = 1, the model is a uniform random spanning forest of G; this value of
the parameter plays no special role in our analysis.) The arboreal gas is also closely related to
various supersymmetric spin systems, which has led it to receive substantial attention in the
physics literature [95–97, 117]. Despite these connections, there are very few tools available
to study the model and several very basic conjectures about its behaviour have remained
open for twenty years [168]. See [56, 310] for surveys of the model and its connections to
other topics.

Interest in the arboreal gas has grown significantly in recent years following the break-
through works of Bauerschmidt, Crawford, Helmuth and Swan [55] and Bauerschmidt,
Crawford and Helmuth [54], who studied the model’s percolation phase transition through
the lens of spontaneous symmetry breaking in an equivalent supersymmetric hyperbolic
sigma model: In [55] they proved that the arboreal gas on Z2 never contains any infinite
trees for any finite β < ∞, while in [54] they proved that the arboreal gas on Zd contains
infinite trees for sufficiently large values of β when d ≥ 3. (Stochastic domination by per-
colation easily implies that the arboreal gas does not contain infinite trees for small values
of β in any dimension.) Since it remains open whether the arboreal gas is stochasically
monotone in β or in its boundary conditions, one must be careful to note some important
subtleties in both statements: it is unclear whether there exist “canonical” definitions of
the “infinite-volume arboreal gas” on Zd , and it is also unknown whether the existence of
an infinite tree is monotone in β . A more precise statement of the results of [54, 55] is
that any subsequential infinite-volume limit of the model on Z2 (with arbitrary boundary
conditions) does not contain an infinite tree, while for d ≥ 3 there exists β0 = β0(d) such that
if β > β0(d) then any subsequential limit of the model on large d-dimensional tori contain at
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least one infinite tree almost surely. The authors also establish strong quantitative control of
the model, showing in particular that the finite-cluster two-point function continues to display
critical-like behaviour in the supercritical regime. (Similar phenomena have also been shown
to occur for the arboreal gas on the complete graph [255, 267] and on regular trees with
wired boundary conditions [132, 296], where the analysis of the critical-like behaviour of
finite/non-giant clusters is more complete.)

The analysis of [54, 55] tells us nothing about the number of infinite trees in the arboreal
gas, which is the main subject of this paper. The analogous question has, however, been
extensively studied for the uniform spanning tree. Indeed, the seminal paper of Pemantle
[288] established that the uniform spanning tree of Zd has a well-defined infinite-volume limit
that is independent of the choice of boundary conditions and that is almost surely connected,
i.e. a single tree, if and only if d ≤ 4. This theorem was greatly generalized by Benjamini,
Lyons, Peres, and Schramm [68] who proved that the wired uniform spanning forest (i.e. the
infinite-volume limit of the uniform spanning tree with wired boundary conditions) of an
infinite graph G is connected almost surely if and only if two independent random walks
on G intersect infinitely often. This is known to occur for G = Zd if and only if d ≤ 4 by a
classical theorem of Erdös and Taylor [134]. Since the uniform spanning tree is the β → ∞

limit of the arboreal gas, it is natural to conjecture (see [54, Page 8]) that the same transition
from uniqueness to non-uniqueness in four dimensions holds for the arboreal gas as in the
uniform spanning tree.

In this paper we verify the low-dimensional case of this conjecture. Our proof also lends
strong heuristic evidence to the high-dimensional case as we discuss later in the introduction.

Theorem 82. For each β > 0 and d ∈ {3,4}, every translation-invariant β -arboreal gas
Gibbs measure on the Euclidean lattice Zd is supported on configurations that have at most
one infinite tree.

Here, an arboreal gas Gibbs measure on Zd is any subsequential weak limit of arboreal
gas measures on finite subgraphs of Zd with (possibly random) boundary conditions; such
Gibbs measures always exist by compactness, and translation-invariant Gibbs measures al-
ways exist by taking e.g. subsequential limits of the model with periodic boundary conditions.
Let us stress that the structure of the set of Gibbs measures for the arboreal gas is very poorly
understood, and, unlike the uniform spanning tree and (q≥ 1) random cluster model, it is not
clear whether the free and wired infinite-volume measures are well-defined independently of
the choice of exhaustion, or, for that matter, whether there is more than one Gibbs measure
for the model at any value of β . Indeed, an important contribution of our paper is to develop
the first systematic, axiomatic treatment of Gibbs measures for models of this form (where
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the weight of a configuration depends on its connectivity properties), as discussed in more
detail below.

Remark 15. The proof of Theorem 82 also applies in dimensions d ≤ 2, but the result is
vacuous in this case since the model has no infinite clusters for any β < ∞ by the results of
[55]. (While the main theorem of that paper is written only for subsequential limits of the
model with free boundary conditions, the proof applies with arbitrary boundary conditions).

Theorem 82 has the following corollary in conjunction with the aforementioned re-
sults of [54] (translation-invariance being an automatic feature of subsequential limits of
automorphism-invariant models on tori).

Corollary 83. Fix a dimension d ∈ {3.4} and β > 0, and for each n ≥ 1 let Pn be a β -
arboreal gas measure on the d-dimensional torus of side length n. There exists a constant
β0 = β0(d) > 0 such that if β > β0 then every subsequential weak limit of the sequence
(Pn)n≥1 is supported on configurations that contain a unique infinite tree.

Remark 16. Theorem 82 also implies an analogue of Corollary 83 for (subsequential) double
limits of the model on the torus with an external field as considered in [54], where one
first sends the size of the torus to infinity and then takes the external field to zero. This is
because any such subsequential limit is a translation-invariant Gibbs measure for the model,
as follows from a straightforward modification of the proof of Proposition 87.

About the proof. We now briefly overview the proof of Theorem 82. Unlike [54, 55],
which exploit a non-probabilistic equivalence between the arboreal gas and a supersymmetric
sigma model, our methods are purely probabilistic. Our argument can be divided into two
parts, which we now describe in turn. Both parts of the proof lead to intermediate results of
independent interest.

Augmented Gibbs measures and the resampling property. The first part of the paper,
which is valid in any dimension, establishes a relationship between the infinite trees in the
arboreal gas and the wired uniform spanning forest of a certain random subgraph of Zd . This
part of the paper is mostly ergodic-theoretic in nature, and works by studying the properties
of the space of translation-invariant Gibbs measures.

Theorem 84. Let d ≥ 1 and β > 0 and let A be distributed as a translation-invariant β -
arboreal gas Gibbs measure on Zd . If we define I∞ to be the set of vertices that belong to the
infinite components of A and define Tr(I∞) to be the subgraph of Zd induced by I∞ then the
following hold:

1. Tr(I∞) is connected almost surely.
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2. The conditional distribution of the restriction of A to Tr(I∞) given I∞ and the restriction
of A to Tr(Ic

∞) is almost surely equal to the law of the wired uniform spanning forest of
Tr(I∞).

The second part of this theorem can be rephrased equivalently in terms of resampling: If
we first sample the arboreal gas A then take F ′ to be a random variable sampled according to
the law of the wired uniform spanning forest on Tr(I∞), then the forest formed from A by
deleting all the infinite trees of A and adding in the trees of F ′ has the same distribution as A
itself.

In the process of proving this theorem we develop a new axiomatic framework for infinite-
volume Gibbs measures of the arboreal gas, with the usual DLR theory of Gibbs measures
not being applicable to the arboreal gas due to a failure of ‘quasilocality’ of the Hamiltonian.
Our replacement for this theory, which is developed in Section 7.2, revolves around what
we term augmented subgraphs. Roughly speaking, this means that we enrich our random
variables so that they include information about which vertices are connected to each other
– possibly “through infinity” – outside of each finite set. We remark that previous papers
on related models including the random cluster model and the uniform spanning tree have
sidestepped the development of such a framework (in part because they tend to be focused
on the free and wired measures, which we do not know are well-defined for the arboreal gas),
and we are optimistic that the framework we develop will also be useful in the future study
of those models. See Remarks 21 and 23 for further discussion.

It will already be clear to experts that the first part of Theorem 84 is a kind of Burton-
Keane [94] theorem for the induced subgraph Tr(I∞). More interestingly, the second part
of the theorem also hides a second Burton-Keane argument ‘under the hood’: To prove it,
we first show that a similar resampling theorem holds where one replaces I∞ by the infinite
classes of the augmented connectivity relation (so that, a priori, one must sample the wired
uniform spanning forest separately on the trace of each such class), before employing an
“augmented” Burton-Keane argument to prove that there is in fact only one infinite augmented
connectivity class almost surely.

This argument clearly demonstrates the utility of our perspective on the arboreal gas in
terms of augmented subgraphs and augmented Gibbs measures. A further demonstration
is given by the following theorem on the almost-sure one-endedness of infinite trees in the
arboreal gas, which drops out neatly once the surrounding framework has been established.
Here, an infinite tree is said to be one-ended if there is exactly one infinite simple path
starting at each vertex. The same theorem has also been established for the uniform spanning
tree via very different methods [68, 288].
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Theorem 85. Let d ≥ 1 and β > 0 and let A be distributed as a translation-invariant
β -arboreal gas Gibbs measure on Zd . Then every infinite tree in A is one-ended almost
surely.

Remark 17. Theorem 84 allows us to import ‘for free’ various ergodic-theoretic theorems
from the uniform spanning tree to the arboreal gas. For example, the indistinguishability
theorem of [194] can be immediately applied to get that the infinite trees of the arboreal gas
are indistinguishable when they exist, and a similar statement holds for the “multicompo-
nent indistinguishability theorem” of [192]. This may be useful for studying more refined
properties of the arboreal gas in high dimensions, as the multicomponent indistinguishabil-
ity theorem plays an important role in the study of the adjacency structure of trees in the
high-dimensional uniform spanning forest [67, 196].

Connectivity of the UST in low-dimensional unimodular random graphs. Theorem 84
reduces the study of the infinite trees in the arboreal gas to the study of the uniform spanning
forest of the induced subgraph Tr(I∞), which is a translation-invariant random subgraph of
Zd . When d ≥ 3 and β is very large we have by the results of [54] that I∞ has density very
close to 1 (at least for subsequential limits of the arboreal gas on tori), so that it is reasonable
to think of Tr(I∞) as a “small perturbation” of the original hypercubic lattice Zd . It seems
very unlikely that this small perturbation would lead to any drastic difference in the behaviour
of the random walk, which supports the conjecture that the number of infinite trees in the
trees in the arboreal gas and uniform spanning tree should be the same, at least for β very
large. Unfortunately it is possible in general for a high-density translation-invariant random
induced subgraph of Zd to have very different large-scale random walk behaviour than that
of the full lattice, so that to implement this argument rigorously in the high-dimensional case
one must use features of the arboreal gas beyond its translation invariance. The problem is
made particularly delicate by the slow decay of correlations in the model [54], which make it
difficult to compare Tr(I∞) to a better-understood model such as Bernoulli site percolation.

While we have not yet been able to circumvent this problem in the high-dimensional case,
the low-dimensional case is more tractable since, informally, “the monotonicity goes in the
right direction”: we think of the connectivity of the wired uniform spanning forest (which, as
previously mentioned, is equivalent to two independent random walks intersecting infinitely
often almost surely) as a “small graph” property, so that it is plausibly preserved when taking
“reasonable” subgraphs. Unfortunately, despite this intuition, it is still not literally true that
every connected subgraph of Zd has a connected wired uniform spanning forest when d ≤ 4.
Indeed, the subgraph of Z3 induced by the union of the origin with the two half-spaces
{(x,y,z) : x > 0} and {(x,y,z) : x < 0} has two components in its wired uniform spanning
forest almost surely. Moreover, it follows from a theorem of Thomassen [311, Theorem 3.3]
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that Zd contains a transient tree for every d ≥ 3, and it is easily seen that the wired uniform
spanning forest of any such tree has infinitely many components almost surely.

The second part of the paper, which is specific to the low-dimensional case, establishes
that, in contrast to these examples, the wired uniform spanning forest is always connected
almost surely in any translation-invariant random subgraph of Zd when d ≤ 4. We state a
simple special case of the relevant theorem now, with a significant generalization given in
Theorem 106.

Theorem 86. Let d ≤ 4, let S be a translation-invariant random subset of Zd and let Tr(S)
be the subgraph of Zd induced by S. Then the wired uniform spanning forest of each infinite
connected component of Tr(S) is connected almost surely.

The proof of this theorem draws mostly on random walk techniques, and is inspired in
particular by previous work on collisions of random walks in unimodular random graphs
[176, 195].

Remark 18. Translation-invariant random subgraphs of Zd do not always have disconnected
wired uniform spanning trees when d ≥ 5, even when these graphs are induced by connected
sets of vertices. (Indeed, starting with a random space-filling curve one can construct such
a translation-invariant random induced subgraph that is a.s. rough-isometric to Z.) This
suggests that a more delicate approach is required to understand the number of infinite trees
in the high-dimensional arboreal gas.

Remark 19. We believe that the theory we develop in this paper can be applied with minor
modifications to prove analogous uniqueness theorems for a number of similar random forest
models in dimensions d ≤ 4. For example, it should apply to the variant of the arboreal gas in
which the forest is required to contain at most one non-singleton component, which is a kind
of ‘dilute spanning tree’ model.1 Indeed, this model should actually be significantly simpler
to study via our methods than the arboreal gas, since (in the language of Section 7.2) its Gibbs
augmentations trivially have at most one non-singleton augmented connectivity class almost
surely. The main (easily addressed) complication is that the definition of an augmented Gibbs
measure needs to be modified so that the random variables are also enriched with the data
of which finite subgraphs have a non-singleton component in their complement, and which
boundary vertices (if any) belong to this component. We do not pursue such generalizations
further in this paper.

1This model always has infinite-volume limits containing infinite trees when β > 1, even when d = 1.
Indeed, in this regime the contribution to the partition function from a single spanning tree is larger than that
from all configurations with a sublinear number of edges, so that most the contribution to the partition function
comes from configurations with a linear number of edges. The actual critical value should be smaller than 1.
This is related to the results of [120].
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Remark 20. All our methods generalize immediately to arbitrary transitive graphs of at most
four-dimensional volume growth. The resampling theorem, Theorem 84, can be extended
much more generally to every amenable transitive graph. One noteworthy consequence
of this is as follows: In [55], Bauerschmidt, Crawford, Helmuth, and Swan prove that the
arboreal gas on Z2 cannot have a unique infinite tree for any β < ∞ (since the probability
that x is connected to y is small when x− y is large), then deduce that there are no infinite
trees almost surely using a Burton-Keane argument on the model’s planar dual. The first
part of their argument does not use planarity, and also applies to quasi-transitive graphs such
as slabs which are quasi-isometric to R2 but not planar. An appropriate generalization of our
Theorem 82 can be used to replace the second part of their argument, so that the entire result
holds without planarity.

7.2 Gibbs measures and augmented subgraphs

In this paper, we are primarily concerned with weak limits of finite-volume arboreal gas
measures on infinite graphs G. In order to proceed, it is desirable to have an axiomatic
characterization of these infinite-volume measures, which will make it easier to apply
ergodic-theoretic arguments. Unfortunately, the usual DLR–Gibbs theory (as described in e.g.
[145, 241]) is not applicable to these measures: given a limit measure µ , a random variable
A ∼ µ and a finite box H ⊂ G, the law of the restriction of A to H conditioned on A∩Hc

cannot, a priori, be expressed as a function of A∩Hc. This is because when we take the
limit, connectivity information is lost and we do not know which infinite trees in A should be
regarded as connected “through infinity” to which other infinite trees.

In this section, we develop an augmented Gibbs framework which rectifies this problem.
A central idea is to make the appropriate long-range connectivity information available locally
by enriching the space that our random variables are defined in. In the next section, we use
this framework to prove the resampling property for translation-invariant Gibbs measures,
Theorem 84.

Remark 21. As mentioned earlier, we believe that the theory of augmented Gibbs measures
we develop here should be useful to the study of other probabilistic statistical physics models
such as the uniform spanning tree and random cluster model, which are also incompatible
with the standard DLR framework for the same reasons as in our setting. Indeed, is is notable
that no abstract theory of Gibbs measures has previously been developed for these models
despite their broad popularity. For example, in Glazman and Manolescu’s work on the
structure of the set of Gibbs measures for the random cluster model on Z2 [159], the authors
consider only an (a priori) special class of Gibbs measures in which infinite clusters are
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always considered to be connected at infinity. As discussed in [159, Remark 1.5], considering
only this restricted class of Gibbs measures has various downsides, including that this class is
not (a priori) preserved under planar duality. Our definition of Gibbs measures for models of
this form is given strong justification by the fact that it coincides with the set of all possible
limits of the models in finite-volume, with arbitrary boundary conditions, and is more general
than that of [159]. The two notions can be shown to coincide for the random cluster model in
the translation-invariant case, but it is currently unclear whether the two notions will coincide
without the assumption of translation-invariance. For the uniform spanning tree, a version of
the Gibbs property was proposed by Sheffield [303], which has the non-standard property
that it describes the conditional distribution of the restriction of the tree to a finite set given
both what is outside the set and how the points on the boundary of the set are connected
inside the set; our definition is more standard in that it describes the distribution of what is
inside the set given information only about what is outside. Further discussion of how our
theory applies to the UST appears in Remarks 22 and 23.

7.2.1 Definitions

We begin by setting up some necessary notation which will be used throughout the rest of
the paper before defining augmented subgraphs and arboreal gas Gibbs measures.

Graph notation. For any graph G = (V,E) = (V [G],E[G]), and vertices u,v ∈V [G], we
write u∼G v if {u,v} ∈ E[G], write u G←→ v if the vertices u and v are in the same connected
component of G, and write G(v) for the connected component of G containing v. For any
graph G, write S (G) for the set of subgraphs of G (which we take to be pairs of subsets of
V and E) and write S f (G) for the set of finite subgraphs of G. We will always assume that
all graphs G are locally finite, meaning that all their vertex degrees are finite. For any graph
G, an increasing sequence of finite subgraphs of G whose union is the entire graph is called
an exhaustion of G.

Finite-volume arboreal gas Gibbs measures. Let G = (V,E) be a countable, locally
finite graph G = (V,E) and let H ⊂ G be a finite subgraph of G. We define the inner vertex
boundary ∂H to be the set of vertices of H that are incident to an edge of G that does not
belong to H. (If H is an induced subgraph of G then ∂H is equal to the set of vertices of
H that are adjacent to a vertex of V [G] \V [H].) For each set S we write P[S] for the set
of equivalence relations on S, which we encode as functions φ : S× S→ {0,1} such that
φ(x,y) = 1 if and only if x and y are in the same equivalence class. For each φ ∈P(∂H) and
subgraph H ′ ⊆ H, we write H ′/φ for the graph constructed by taking H ′ and identifying the
sets of vertices in V [H ′]∩∂H which belong to the same equivalence class of φ , deleting any
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self-loops created by this identification. These equivalence relations will serve as boundary
conditions, keeping track of connectivity outside of H. We write F (H) for the set of
spanning forests of H, i.e. the set of acyclic subgraphs of H containing every vertex of H
and, given an equivalence relation φ ∈P[∂H], we say a forest F ∈F (H) extends φ if F/φ

is acyclic. We write F (H,φ) = F (G,H,φ) for the subset of forest subgraphs of H which
extend φ and say that such a forest is an (H,φ)-maximal spanning forest if it contains every
vertex of H and there is no edge in E[H] which can be added to F to yield another element
of F (H,φ). We write FT (H,φ) for the set of (H,φ)-maximal spanning forests; when H/φ

is connected, maximal spanning forests of H/φ are the same thing as spanning trees of H/φ .
For each β ∈ [0,∞), we define the finite-volume β -arboreal gas Gibbs measure on a

finite subgraph H of G with boundary condition φ ∈P(∂H) by

Pφ

H,β (F) = Pφ

G,H,β (F) =

(1/Zφ

β
)β |F | F ∈F (H,φ)

0 otherwise
, Zφ

β
= ∑

F∈F (H,φ)

β
|F |.

(In particular, when β = 0 this measure puts all its mass on the subgraph of H with no
edges.) We remark that if every equivalence class of φ contains just a single element then this
measure coincides with the free arboreal gas measure on H. We also define the finite-volume
∞-arboreal gas Gibbs measure on H with boundary condition φ by

Pφ

H,∞(F) = Pφ

G,H,∞(F) =

|FT (H,φ)|−1 F ∈FT (H,φ)

0 otherwise,

which is the weak limit of Pφ

H,β as β → ∞ and can be identified with the uniform measure
on maximal spanning forests of H/φ . In particular, when H/φ is connected, this measure
can be identified with the uniform spanning tree measure on H/φ . More generally, given
β ∈ [0,∞], a finite subgraph H ∈S f (G), and a probability measure ν on P(∂H), we write
Pν

H,β for the measure with probability mass function

Pν

H,β (F) = ∑
ϕ∈P(∂H)

ν(ϕ)Pφ

H,β (F),

which we call a finite-volume β -arboreal gas Gibbs measure with boundary condition ν .
Probabilistically, this measure is the law of the configuration obtained by first sampling a
random boundary condition according to the (arbitrary) distribution ν , then sampling the
arboreal gas with this boundary condition. Considering random boundary conditions in
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this way has the advantage that it automatically makes all the sets of measures we consider
convex.

The finite-volume version of the Gibbs property for these measures is as follows: Given a
finite subgraph H and a probability measure ν on the set of equivalence relations on ∂H, let
φ be a random variable with law ν and, given φ , let A be a random variable with conditional
law Pφ

H,β , so that A has marginal law Pν

H,β . If H ′ is a subgraph of H and we define an
equivalence relation Φ(H ′) on ∂H ′ by taking u and v to be in the same class of Φ(H ′) if they
are connected in (A\E[H ′])/φ , then

Pν

H,β (A∩H ′ = · | A\E[H ′],φ) = PΦ(H)
H ′,β (A = ·). (7.2)

In words, the conditional law of A∩H ′ given A\E[H ′] and φ is equal to PΦ(H)
H ′,β . This identity

is an immediate consequence of the definitions, and encapsulates the intuition that what
happens outside of H ′ affects the distribution of A inside H ′ only in so far as it determines
which boundary vertices of H ′ are connected to each other outside of H ′. Note that (7.2) is
exactly the same Gibbs property enjoyed by the random cluster model; most of the theory
we develop in the rest of this section will also apply straightforwardly to any other model
satisfying this same form of the Gibbs property in finite volume.

We now move on to defining the space of augmented subgraphs, which allow us to mean-
ingfully extend the Gibbs property (7.2) to infinite-volume measures. To avoid trivialities,
we take care to make sure all relevant definitions continue to work as expected in the case
that G is finite or disconnected.

The space of augmented subgraphs. Let G = (V,E) be a locally finite graph. We define
an augmented subgraph of G to be a pair (S,Φ) where S is a subgraph of G and Φ is a
collection (Φ(H) : H ∈S f (G)), where Φ(H) is an equivalence relation on ∂H for each
H ∈S f (G), satisfying the consistency condition

For every H,K ∈S f (G) with H ⊂ K and u,v ∈ ∂H,
u and v are related in Φ(H) if and only if they are connected in (S∩K \E[H])/Φ(K),

(Con)
where vertices that do not belong to a subgraph are considered to not be connected to any
other vertex in that subgraph. We interpret Φ(H) as dictating connectivity outside of H: the
consistency condition states that if two vertices in the boundary of H ⊆ K are connected
outside of H according to Φ(H), then these two vertices must also be connected outside of
H according to S∩K and Φ(K), and vice versa. Given an augmented subgraph (S,Φ) of

G, we define the augmented connectivity relation by u
(S,Φ)←−−→ v := Φ({u,v})(u,v), where
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here {u,v} is the graph consisting of the vertices u,v and no edges, so that, by consistency,

u
(S,Φ)←−−→ v if and only if u is connected to v in (H ∩S)/Φ(H)

for each (and hence every) finite subgraph H ∈S f (G) containing both u and v.
We write A (G) for the space of augmented subgraphs of G, which we endow with its

natural product topology and associated Borel sigma-algebra, so that A (G) is compact and
the projection map π : A (G)→S (G) defined by π : (S,Φ) 7→ S is continuous. We call an
augmented subgraph (S,Φ) with underlying subgraph S an augmentation of S, and call Φ

the boundary map of the augmentation (S,Φ). Every subgraph S of G admits boundary
maps Φfree = ΦS

free and Φwired = ΦS
wired defined by

Φfree(H)(u,v) = 1 ⇐⇒ u and v are connected in S\E[H] (7.3)

and Φwired(H)(u,v) = 1 ⇐⇒ u and v are connected in S\E[H] or both
belong to infinite connected components of S\E[H],

(7.4)

which are distinct whenever S has more than one infinite connected component or more than
one end. We call the resulting augmentations (A,Φfree) and (A,Φwired) the free and wired
augmentations of A. (We warn the reader that the relationship between these augmentations
and the usual terminology for free and wired Gibbs measures for the uniform spanning tree is
not as straightforward as one might hope; see Remark 23.) These augmentations are extremal
in the sense that the equivalence classes of an arbitrary augmentation contain those of the free
augmentation and are contained in those of the wired augmentation. In general a subgraph
may admit a very large number of distinct augmentations.

Augmentations are determined by their tails. We now discuss a key property of augmented
subgraphs that will be used throughout our analysis. Let (S,Φ) be an augmented subgraph
of a locally finite graph G. The consistency property implies that if H and H ′ are two finite
subgraphs of G with H ⊆ H ′, then Φ(H) is determined by Φ(H ′) and S. In particular, if for
each finite subgraph H of G we define

ΦH = (Φ(K) : K is a finite subgraph of G containing H),

then the full augmented subgraph (S,Φ) is completely determined by the pair (S,ΦH) for
each finite subgraph H of G. This gives us a well-defined notion of what it means to add
or delete finitely many edges from an augmented subgraph (S,Φ): Given an augmented
subgraph (S,Φ) and two disjoint finite sets of edges A and B, we define an augmented
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subgraph (S,Φ)∪A\B by taking H to be a finite subgraph of G containing both A and B and
extending (S∪A\B,ΦH) to a full augmented subgraph by consistency; it is easily verified
that this definition does not depend on the choice of finite subgraph H.

Infinite-volume arboreal gas Gibbs measures. We now define infinite-volume Gibbs
measures for the arboreal gas. (NB: Although we emphasize the infinite-volume case, the
definition also works in finite volume.) Given a random augmented subgraph (A,Φ) of a
countable, locally finite graph G and a finite subgraph H of G, we write GH for the sigma-
algebra generated by A\E[H] and ΦH , which represents the data of the augmented subgraph
that is determined ‘outside of H’.

Definition 3. Let G be a countable, locally finite graph and fix β ∈ [0,∞]. We say that a
probability measure Pβ on F (G) is a β -arboreal gas Gibbs measure of G if there exists a
probability measure Qβ on A (G), such that the following hold:

1. The pushforward π∗Qβ is equal to Pβ . In other words, if (A,Φ)∼Qβ then A∼ Pβ .

2. If (A,Φ) is a random variable distributed as Qβ and H is a finite subgraph of G, then

the conditional law of A∩H given GH is almost surely equal to PΦ(H)
H,β .

We will refer to the second property as the augmented Gibbs property. We call any measure
Qβ which satisfies these two properties a Gibbs augmentation of Pβ , and call any measure
Qβ on A (G) satisfying the second of these two properties an augmented β -arboreal gas
Gibbs measure.

We will often refer to ∞-arboreal gas Gibbs measures as uniform spanning tree Gibbs
measures or uniform maximal spanning forest Gibbs measures (the former terminology
not always being appropriate when G is not connected).

This axiomatic definition has the advantage that it is well-suited to ergodic-theoretic
techniques. That it is an appropriate definition is justified by the following alternative
characterisation of infinite-volume arboreal gas measures, as presented in the introduction.

Proposition 87. Let G be an infinite, countable, locally finite graph. For each β ∈ [0,∞],
the β -arboreal gas Gibbs measures of G are exactly the subsequential weak limits of finite-
volume β -arboreal gas Gibbs measures – with possibly random boundary conditions – on
exhaustions of G.

We note that for any β ∈ [0,∞], any exhaustion (Hn)n≥0 of G and any sequence of
probability measures on boundary conditions (νn)n≥1, the sequence of measures (Pνn

Hn,β
)n≥1

will always have at least one subsequential weak limit by compactness of A (G).
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Proof of Proposition 87. Fix β ∈ [0,∞]. We first check that any β -arboreal gas Gibbs mea-
sure Pβ is a subsequential weak limit of finite-volume β -arboreal gas Gibbs measures with
possibly random boundary conditions. Let (A,Φ) be a random variable with the law of a
Gibbs augmentation of Pβ and let (Hn)n≥1 be any exhaustion of G. By the Gibbs property,
the law of A restricted to Hn is equal to the law of Pνn

Hn,β
, where νn is the law of Φ(Hn), and

so the weak limit of the sequence (Pνn
Hn,β

)n≥1 of finite volume β -arboreal gas Gibbs measures
with random boundary conditions is equal to Pβ .

We now show the converse. Let (Hn)n≥1 be an exhaustion of G, let (νn)n≥1 be a sequence
of probability measures on equivalence relations on ∂Hn, and suppose that the sequence
(Pνn

Hn,β
) converges to some limit measure Pβ . For each n≥ 1 let φn be an equivalence relation

on ∂Hn with law νn, let An be a random variable with conditional law Pφn
Hn,β

(so that An has
marginal law Pνn

Hn,β
), and for each finite subgraph H of G define an equivalence relation

Φn(H) on ∂H by setting

Φn(H)(u,v) =

1(u and v are connected in An/φn(H)) H ⊆ Hn

1 otherwise.

By compactness, taking a subsequence if necessary, (An,Φn) converges weakly to some
random variable (A,Φ), where A has law Pβ . Using (7.2), one can check from the defini-
tions that Φ is almost surely an augmentation of A and that the law of (A,Φ) is a Gibbs
augmentation of Pβ , completing the proof.

The uniform spanning tree. Let G be an infinite, connected, locally finite graph. For each
finite subgraph H of G, we define the free boundary condition f = fH ∈P(∂H) to be
the equivalence relation whose classes all have cardinality one and define wired boundary
condition w = wH on H to be the equivalence relation on ∂H in which all points are related.
It was proven implicitly by Pemantle [288] that if (Hn)n≥1 is any exhaustion of G by finite
subgraphs then the two sequences (Pf

Hn,∞
)n≥1 and (Pw

Hn,∞
)n≥1 have well-defined weak limits

that do not depend on the choice of exhaustion (Hn)n≥1; these limits are known as the
free and wired uniform spanning forest measures on G. It follows from the β = ∞ case
of Proposition 87 that if G is a connected, locally finite graph then the free and wired
uniform spanning forests on G are indeed Gibbs measures for the uniform spanning tree on
G. Moreover, these two measures are always stochastically maximal and minimal among the
set of all Gibbs measures for the uniform spanning tree on G as made precise in the following
lemma.

Lemma 88. Let G be a connected, locally finite graph and let P be a Gibbs measure for
the uniform spanning tree on G. Then P is stochastically dominated by the free uniform
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spanning forest on G and stochastically dominates the wired uniform spanning forest on G.
In particular, if the free and wired uniform spanning forest of G coincide then G has a unique
Gibbs measure for the uniform spanning tree.

Proof. Let (Vn)n≥1 be an increasing sequence of subsets of V [G] converging to V [G], and for
each n≥ 1, let Hn = Tr[Vn] be the subgraph of G induced by Vn. It follows from the negative
associated theorem of Feder and Mihail [139] (see also [259, Theorem 4.6 and Exercise 10.8])
that the measure Pφ

Hn,∞
is stochastically decreasing in φ in the sense that if φ1,φ2 are two

equivalence relations with φ1 a refinement of φ2 then Pφ1
Hn,∞

stochastically dominates Pφ2
Hn,∞

.
It follows in particular that every measure of the form Pν

Hn,∞ is stochastically dominated by
Pf

Hn,∞
and stochastically dominates Pw

Hn,∞
. The claim follows by taking limits in light of this

and Proposition 87.

Remark 22. Pemantle [288] established implicitly that the free and wired uniform spanning
forests of Zd coincide for every d ≥ 1. In general, a graph G has a unique Gibbs measure for
the uniform spanning tree if and only if it does not admit any non-constant harmonic functions
of finite Dirichlet energy [68], which holds in particular for every amenable transitive graph
[259, Corollary 10.9] as well as in many nonamenable examples. See [259, Chapter 10] for
detailed background.

Remark 23. Naively, one might like to say that the augmentation we need to put on the free
uniform spanning forest to make its law into an augmented Gibbs measure is precisely the
free augmentation as defined in (7.3), while the augmentation we need to wired uniform
spanning forest to make its law into an augmented Gibbs measure is precisely the wired
augmentation as defined in (7.4). This intuition is correct when G is, say, a 3-regular tree,
but is false in general. Indeed, consider the hypercubic lattice Zd , where the free and wired
uniform spanning forest measures coincide for every dimension d ≥ 1 as discussed above.
In one dimension (where the spanning tree is just the entire line), the correct augmentation
to place on the infinite-volume uniform spanning tree is the free augmentation; using the
wired augmentation does not work, since under this augmentation the conditional probability
that any edge is present given that all other edges are present would be zero, not one. In
dimensions two to four the infinite-volume limit is supported on configurations with a single
one-ended tree, and there is no choice in how to define the augmentation. In dimension five
and higher, where there are infinitely many one-ended trees, the correct augmentation to
use is the wired augmentation; using the free augmentation does not work since the Gibbs
property would imply that an edge connecting two distinct infinite trees must be present
with probability 1. (In other examples, such as the free uniform spanning forest on the free
product Z5 ∗Z2, neither the free nor the wired augmentations are appropriate.) As a historical
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note, let us remark that this subtlety in how to correctly define the Gibbs property for uniform
spanning forests led to an error in the work of Burton and Pemantle [93] which was not
discovered until a decade later by Lyons [257] and corrected in the work of Sheffield [303].

7.2.2 Translation-invariant Gibbs measures

In this section we refine our focus to translation-invariant Gibbs measures on Zd . In particular,
we will discuss how each such Gibbs measure can be decomposed in terms of extremal
translation-invariant Gibbs measures, which have better ergodicity properties. In the usual
DLR–Gibbs formalism for (quasi)local systems such as the Ising model, it is a standard result
that any Gibbs measure can be decomposed as a mixture of tail-trivial Gibbs measures, which
assign probability 0 or 1 to any event in the tail-sigma algebra. Indeed, in this framework,
the tail-trivial Gibbs measures are exactly the extremal points of the convex set of Gibbs
measures and so the desired decomposition is an immediate corollary of Choquet’s theorem.
An analogous result also holds for translation-invariant Gibbs measures (see Remark 24),
which can always be decomposed into a mixture of ergodic translation-invariant Gibbs
measures; these are the measures that assign probability 0 or 1 to all translation-invariant
events. While the first of these results translates directly to our setting, we were not able to
prove the direct analogue of the second result, and instead prove a slightly weaker result that
will suffice for our later applications.

Tail triviality. We begin by discussing tail triviality, where the relevant theory holds for
arbitrary graphs. Let G be a countable, locally finite graph, and recall that for each finite
subgraph H of G we define GH to be the sigma-algebra of Borel sets E in A (G) such that an
augmented subgraph (S,Φ)’s belonging to E is determined by S\H and ΦH := (Φ(H ′) : H ′

a finite subgraph of G containing H). We define the tail sigma-algebra T on A (G) to be
the intersection

⋂
H GH taken over all finite subgraphs H of G.

Lemma 89. Let G = (V,E) be a countable, locally finite graph, let β ∈ [0,∞], and let Qβ be
an augmented β -arboreal gas Gibbs measure on G. If X ∈T is a tail event with Qβ (X)> 0,
then the conditional measure Qβ ( · |X) is an augmented β -arboreal gas Gibbs measure on G.

Proof of Lemma 89. Let QX :=Qβ ( · |X). Since X is GH measurable for each finite subgraph
H of Zd , we have for each such subgraph and each subgraph F of H that

QX(A∩H = F | GH) =Qβ (A∩H = F | GH) a.s.
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7.2 Translation-invariant Gibbs measures

and hence by the augmented Gibbs property of Qβ that

QX(A∩H = F | GH) = PΦ(H)
H,β (A∩H = F) a.s.

for every finite subgraph H of Zd and every subgraph F of H, which is precisely the
augmented Gibbs property for QX .

Corollary 90. Let G = (V,E) be a countable, locally finite graph and let β ∈ [0,∞]. Every
extremal element of the convex set of augmented β -arboreal gas Gibbs measures on G is
tail-trivial in the sense that it gives every tail event probability 0 or 1.

Proof of Corollary 90. If Qβ is a β -arboreal gas Gibbs measure and X ∈ T is such that
Q(X) ∈ (0,1) then, by Lemma 89, we can write Qβ as a convex combination of β -arboreal
gas Gibbs measures Q(·) =Q(·|X)Q(X)+Q(·|Xc)Q(Xc). Clearly Q(·|X) and Q(·|Xc) are
non-identical as they each assign a different probability to X , so that Qβ is not extremal.

Let Mβ = Mβ (G) denote the set of all augmented β -arboreal gas Gibbs measures on
G. Since Mβ is a compact convex subspace of the space of all signed measures on A (Zd),
which is a locally-convex topological vector space with respect to the weak (a.k.a. weak*)
topology, we may apply Choquet’s theorem [306] to get that for each Qβ ∈Mβ there exists
a measure ν on the set of extremal points ext(Mβ ) such that

Qβ (·) =
∫

ext(Mβ )
Q′

β
(·) dν(Q′

β
).

Probabilistically, this means that every augmented β -arboreal gas Gibbs measure can be
sampled by first sampling a random tail trivial augmented β -arboreal gas Gibbs measure of
appropriate distribution, then sampling from this random tail-trivial measure. Unfortunately
this result has limited applicability to our setting since we are interested primarily in the
translation-invariant case, and it is not guaranteed that a translation-invariant augmented
Gibbs measure decomposes as a mixture of translation-invariant tail-trivial augmented Gibbs
measures.

Remark 24. One can use the Krein-Milman theorem [306] to prove that every extremal
β -arboreal gas Gibbs measure can be expressed as a weak limit over finite-volume Gibbs
measures with non-random boundary conditions. We omit the details of these arguments
since we are interested primarily in the translation-invariant setting.

Translation invariance and ergodicity. We now fix a dimension d ≥ 2 and, as usual,
abuse notation by writing Zd both for the set of d-tuples of integers and the hypercubic lattice
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considered as a graph, writing Ed for the associated set of nearest-neighbour edges in Zd .
For each x ∈ Zd , we define the translation operator τx on subgraphs of Zd as

τx
(
(V,E)

)
= ({v+ x : v ∈V},{{v1 + x,v2 + x} : {v1,v2} ∈ E}).

For each x ∈ Zd , τx also acts on augmented subgraphs via τ−x(S,Φ) = (τ−xS,τ−xΦ) where
[τ−xΦ ](H)(u,v) =Φ(H+x)(u+x,v+x). Translation-invariant events in, and translation-
invariant measures on S (G) and A (G) are then defined as expected with respect to these
operations. We write I for the sigma-algebra of translation-invariant events in A and write
IS for the sigma-algebra of translation-invariant events in A depending only on the subgraph
coordinate (that is, for which any two augmentations of the same subgraph either both belong
to the event or both belong to its complement).

The following lemma implies that if we wish to study translation-invariant Gibbs mea-
sures, it suffices to consider translation-invariant augmented Gibbs measures.

Lemma 91. Fix d ≥ 1, β ∈ (0,∞], and let Pβ be a β -arboreal gas infinite-volume Gibbs
measure on Zd . Then Pβ is translation-invariant if and only if it admits a translation-invariant
Gibbs augmentation.

Proof. The ‘if’ direction is trivial; we focus on the ‘only if’ direction, which follows from
the amenability of Zd . Let P be a translation-invariant infinite volume Gibbs measure and let
(A,Φ) have the law of an augmentation of P. For each n≥ 1, let Vn be a uniformly chosen
vector in Λ(n), and consider the sequence of random variables (τVnA,τVnΦ)n≥1. Taking a
subsequential weak limit yields a translation-invariant random variable (A′,Φ ′) whose law
is a Gibbs augmentation of P. (Alternatively, one can check that for each β -arboreal gas
Gibbs measure Pβ on Zd , the set of Gibbs augmentations of Pβ is a weakly compact convex
subset of the space of probability measures on augmented subgraphs of Zd . When Pβ is
translation-invariant this set is fixed by the action of Zd , and therefore must contain a fixed
point since Zd is amenable.)

We write M T
β

= M T
β
(Zd) for the set of translation-invariant β -arboreal gas Gibbs

measures on Zd , which is a weakly closed, convex set of the space of all signed measures
on A (Zd). Applying Choquet’s theorem as above yields that every element of M T

β
can be

written as a mixture of its extremal points: For each Qβ ∈M T
β

there exists a measure ν on
the set of extremal points ext(M T

β
) such that

Qβ (·) =
∫

ext(M T
β
)
Q′

β
(·) dν(Q′

β
).

210



7.2 Translation-invariant Gibbs measures

In the standard quasilocal DLR–Gibbs theory, one would then argue that every element
of ext(M T

β
) is ergodic, meaning that it assigns probability 0 or 1 to every invariant event

in A . Unfortunately, the standard proof of this fact breaks down in our setting. More
specifically, it is not clear whether the translation-invariant sigma-algebra is always contained
in the completion of the tail sigma-algebra. Nevertheless, we do still have that extremal
translation-invariant Gibbs measures are trivial on the intersection of the tail and invariant
sigma algebras:

Lemma 92. Fix d ≥ 1 and β ∈ [0,∞]. If Qβ ∈M T
β

is a translation-invariant augmented
β -arboreal gas Gibbs measure and X ⊆A is an event belonging to the Qβ -completions of
both T and I with Qβ (X)> 0 then Qβ (·|X) is also a translation-invariant β -arboreal gas
Gibbs measure.

Proof. Since X is in the completion of T , there exists an event X ′ ∈T with Qβ (X∆X ′) = 0
and hence with Qβ (·|X) =Qβ (·|X ′), so that Lemma 89 implies that Qβ (·|X) is an augmented
β -arboreal gas Gibbs measure. Similarly, since X is in the completion of I , there exists an
event X ′′ ∈I such that Qβ (·|X) =Qβ (·|X ′′), and one may verify from the definitions that
Qβ (·|X ′′) is translation-invariant since both Qβ and X ′′ are.

Corollary 93. Fix d ≥ 1 and β ∈ [0,∞]. If Qβ ∈ ext(M T
β
) is an extremal translation-

invariant augmented β -arboreal gas Gibbs measure and X ⊆A is an event belonging to the
Qβ -completions of both T and I then Qβ (X) ∈ {0,1}.

This corollary together with the next lemma implies that the sigma-algebra IS of
translation-invariant events that are insensitive to the choice of augmentation is always
trivial for any extremal translation-invariant augmented Gibbs measure. This is a (slightly
unsatisfactory) analogue of the statement in the standard DLR–Gibbs theory that extremal
translation invariant measures are ergodic.

Lemma 94. Fix d ≥ 1, β ∈ (0,∞], and let Qβ be a translation-invariant augmented β -
arboreal gas Gibbs measure on Zd . Then IS is contained in the Qβ -completion of T . That
is, for any translation-invariant X ∈IS, there exists Y ∈T such that Qβ (X∆Y ) = 0.

Proof of Lemma 94. Let (A,Φ) be distributed as Qβ and for each n ≥ 1 let Λn be the box
[−n,n]d considered as a subgraph of Zd . By definition of the product Borel sigma-algebra,
σ(A) is generated by the union

⋃
H σ(A∩H), where this union is taken over all finite

subgraphs H of Zd . Since IS = I ∩σ(A) ⊆ σ(A), it follows from the Dynkin π − λ

theorem that for every event X ∈ IS and every ε > 0 there exists a finite subgraph H of
Zd and an event X ′ ∈ σ(A∩H) such that Qβ (X ′∆X) ≤ ε . Fix an event X ∈ IS and for
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each n≥ 1 let Hn ∈S f (Zd) and Xn ∈ σ(A∩Hn) be such that Qβ (X∆Xn)≤ 2−n. For each
n≥ 1, let X ′n = τxn(Xn), where xn ∈ Zd is such that τxn(Hn) is disjoint from Λn. We observe
that Q(X∆X ′n) =Q(X∆Xn)≤ 2−n by translation-invariance of X and Qβ , and moreover that
X ′n ∈ σ(A \Λn) ⊆ GΛn for every n ≥ 1. Letting X ′′ = limsupX ′n := ∩n≥1 ∪m≥n X ′m be the
event that infinitely many of the events X ′n hold, we have that X ′′ ∈T and that

Q(X ∩X ′′)≤Q
(

X∆X ′n holds for infinitely many n
)
≤ lim

n→∞
∑

m≥n
2−m = 0,

which completes the proof.

Remark 25. This proof does not straightforwardly extend to show that I is contained in the
completion of T due to the long-range dependencies encoded in the boundary map. It would
be possible to run the proof if one knew that σ(A) and T together generate the entire sigma
algebra on A (G), but this seems to be a surprisingly subtle matter.

We deduce the following immediate corollary.

Corollary 95. Fix d ≥ 1 and β ∈ [0,∞]. If Qβ ∈ ext(M T
β
) is an extremal translation-

invariant augmented β -arboreal gas Gibbs measure then π∗Qβ is an ergodic translation-
invariant β -arboreal gas Gibbs measure.

Remark 26. We will later prove in Corollary 103 that if (A,Φ) is distributed as an a translation-
invariant augmented β -arboreal gas Gibbs measure on Zd with β < ∞, the boundary map
Φ is almost surely equal to the wired boundary map associated to A, and hence coincides
a.s. with a measurable function of A. Moreover, the boundary map also coincides a.s. with a
measurable function of A in the case β = ∞ as discussed in Remark 23. As such, it follows
a posteriori (see Corollary 104) that the completions of the sigma-algebras I and IS are
equal, and hence that every measure in ext(M T

β
) is ergodic. Let us stress however that this

proof uses specific properties of the arboreal gas (and, implicitly, the amenability of Zd), in
contrast to the other proofs of this section which apply without change to a very large class
of models with connection-based interactions. Moreover, the logical structure of the paper
means that we cannot assume true ergodicity in the proof of Theorem 84 since this ergodicity
is established only at the very end of Section 7.3.

Remark 27. It follows by standard arguments that the extremal elements of the set of all
translation-invariant measures on A (Zd) are ergodic, and hence by Choquet theory that every
translation-invariant measure on A (Zd) can be written as a mixture of ergodic translation-
invariant measures. This statement is of limited use to us since we prefer to stay within the
class of augmented arboreal gas Gibbs measures.
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7.3 Proof of Theorems 84 and 85

In this section we use the framework developed in the previous section to prove Theorems
84 and 85. We begin with Theorem 84, whose proof is split into two propositions. The first,
proven in Section 7.3.1, establishes a ‘local’ version of the same resampling theorem that
does not require the symmetry of Zd , while the second, proven in Section 7.3.2, establishes
the basic qualitative features of the augmented connectivity relation for augmented arboreal
gas Gibbs measures on Zd . As a part of the proof of Section 7.3.2 we prove Theorem 85,
which states that all the infinite trees in the arboreal gas are one-ended almost surely.

7.3.1 Resampling without symmetry

In this section we prove the following proposition, which establishes a very general version
of the resampling property that does not require any symmetry assumptions on the graph or
the measure. This proposition is inspired in part by the UST resampling theorem of Lyons,
Peres, and Sun [262].

Proposition 96. Let G = (V,E) be a connected, locally finite graph, let o be a vertex of
G, and let (A,Φ) be distributed as an augmented β -arboreal gas Gibbs measure on G.

Let Io = {x ∈ V : o
(A,Φ)←−−→ x} and let Tr(Io) be the subgraph of G induced by Io. Then the

conditional distribution of the restriction of A to Io given Io and the restriction of A to the
complement of Io is almost surely equal to some Gibbs measure for the uniform maximal
spanning forest on Tr(Io), where the choice of Gibbs measure may be random.

Proof of Proposition 96. We begin by observing that a related resampling property holds
in finite volume. Let H be a finite subgraph of G, so that Φ(H) is an equivalence relation
on ∂H. For each forest F ∈F (H,Φ(H)), let To[F ] be the connected component of o in F
considered as a subgraph of H/Φ(H), let Io[F ] = IH,Φ(H)

o [F ] be the vertex set of To[F ], and
let Tr(Io[F ]) be the subgraph of H/Φ(H) induced by Io[F ]. We make three observations.
First, note that To[F ] is always a spanning tree of Tr(Io[F ]). Second, note that if we let T ′

be any other spanning tree of Tr(Io[F ]) and let F ′ be formed from F by deleting To[F ] and
adding T ′, then Io[F ′] = Io[F ]. Finally, we observe that the probability Pφn

H,β assigns to forests

F ∈F (H,φn) depends only on the cardinality of their edge sets, so that Pφn
H,β (F) = Pφn

H,β (F
′).

Putting these observations together gives that if F ∼ PΦ(H)
Λn,β

, then conditional on Io[F ] and
the restriction of F to the complement of Io[F ], the restriction of F to Io[F ] is distributed as
the uniform spanning tree on Tr(Io[F ])/Φ(H).

By the augmented Gibbs property, it follows that the conditional distribution of the
restriction of A to Io[A∩H] = IH,Φ(H)

o [F ] given GH , Io[A∩H], and the restriction of A to
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the complement of Io[A∩H] is almost surely equal to the uniform spanning tree measure
on Tr(Io[A∩H])/Φ(H). In particular, this conditional distribution depends only on Φ(H)

and Io[A∩H]. Moreover, the consistency property of the boundary map Φ implies that
Io[A∩H] = IH,Φ(H)

o [A∩H] is equal to the intersection of Io with the vertex set of H. Thus,
if for each finite subgraph H of G we define FH to be the sigma-algebra generated by
GH , Io∩V [H] = IH,Φ(H)

o [A∩H], and the restriction of A to the complement of Io, then the
conditional law of the restriction of A to Io ∩V [H] given FH is a.s. equal to the uniform
spanning tree measure on Tr(Io ∩H)/Φ(H). Since this law depends only on Io ∩H and
Φ(H), it follows that the conditional law of the restriction of A to Io∩V [H] given Io and the
restriction of A to the complement of Io is almost surely of the form Pν

Tr(Io∩V [H]),∞ for some
probability measure ν on the boundary of Tr(Io∩V [H]) in Tr(Io), where the measure ν is
determined by the conditional distribution of Φ(H) given this information. Taking a limit as
H exhausts G and using Proposition 87 yields the claim.

7.3.2 The structure of the augmented connectivity relation

In this section we prove the following proposition about the structure of the augmented
connectivity relation in a translation-invariant arboreal gas Gibbs measure on Zd and then
deduce Theorem 84 from this proposition together with Proposition 96.

Proposition 97. Let d ≥ 1 and β ∈ [0,∞) and let (A,Φ) be distributed as a translation-
invariant augmented β -arboreal gas Gibbs measure on Zd . The following hold:

1. The augmented connectivity relation
(A,Φ)←−−→ has at most one infinite equivalence class

a.s.

2. If the augmented connectivity relation
(A,Φ)←−−→ has an infinite equivalence class, then the

subgraph of Zd induced by this equivalence class is connected a.s.

It suffices to prove this in the case that the law of (A,Φ) is extremal in M T
β

, taking a
decomposition in terms of such extremal measures otherwise.

The proof of Proposition 97 will make use of the following important fact, which follows
from the work of Aldous and Lyons [6] as explained in detail in [28, Section 3] and which is
closely related to the classical work of Burton and Keane [94].

Proposition 98. Let d ≥ 1 and let S be a translation-invariant random subgraph of Zd . Then
every connected component of S has at most two ends almost surely.

Fix β ∈ (0,∞), and d ≥ 2 and let Q denote an extremal β -arboreal gas augmented Gibbs
measure on Zd , and let (A,Φ) ∼ Q. The Gibbs property tells us that for any H ∈S f (G),
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we have that
(A,Φ)∼ (A,Φ)∪F \E[H],

F has conditional law PΦ(H)
H,β given (A,Φ). Since β ∈ (0,∞), this implies in particular that,

conditional on A\E[H] and Φ(H), there is a.s. a positive probability that A∩E[H] = F ′ for
any forest F ′ ∈F (H,Φ(H)). This leads in particular to the following lemma.

Lemma 99. Fix d ≥ 2, β ∈ (0,∞), let Qβ be an augmented β -arboreal gas Gibbs measure
on Zd , and let (A,Φ) be distributed as Q.

1. If H is a finite subgraph of Zd then

Qβ (H ∩A = /0 | GH)> 0 a.s. (7.5)

2. If H is a finite connected subgraph of Zd then

Qβ (all vertices of H belong to the same augmented connectivity class | GH)> 0 a.s.
(7.6)

We refer to the property (7.5) of Qβ as deletion tolerance and the property (7.6) as
merge tolerance.

Proof of Lemma 99. The deletion tolerance property (7.5) is an immediate consequence of
the augmented Gibbs property since β < ∞. We now turn to the merge tolerance property
(7.6). Since H is connected, H/Φ(H) is connected and therefore admits at least one spanning
tree, which is given positive mass by the conditional measure PΦ(H)

H,β since β > 0. On the
event that the restriction of the arboreal gas to H is equal to such a spanning tree, all vertices
of H belong to the same augmented connectivity class.

The proofs in the remainder of this section and in the next will generally proceed by
assuming that (A,Φ) satisfies a certain property with positive probability and then attempting
to derive a contradiction. We will use the above observation to make local edits to (A,Φ),
stitching together or separating infinite subgraphs as appropriate. Either ergodicity of
π∗Q, Proposition 98, or a combination thereof will then be used to generate the desired
contradictions.

Remark 28. Several of the proofs in this section are of a similar flavour to those of [188, 194,
312], which studied uniform spanning forests using a property known as update tolerance
or weak insertion tolerance. There are however several important differences: 1) We need
to understand the structure of the augmented connectivity relation, which was not a feature
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Fig. 7.1 Schematic illustration of the proof of Lemma 100. Infinite augmented connectivity
classes are represented by colours, finite classes are black. Far left: a path γ (dotted line)
intersecting three distinct infinite augmented connectivity classes. Centre left: By shortening
γ if necessary, we may assume that γ intersects exactly three distinct infinite augmented
connectivity classes, two of which it intersects only at its endpoints. Centre right: By deleting
finitely many edges from the configuration if necessary, we can make it so that each infinite
augmented connectivity class intersecting γ contains exactly one A-component intersecting γ .
Far right: Using Lemma 99, we may glue together the components intersecting γ to create a
component with three or more ends, contradicting Proposition 98.

of those works. 2) Since β < ∞, we can use deletion tolerance to simplify several steps. 3)
Our augmented Gibbs framework allows us to put many of the ad hoc seeming parts of those
papers on a more robust conceptual footing.

We now begin the proof of Proposition 97 in earnest. We begin by proving that
(A,Φ)←→ has

at most two infinite equivalence classes almost surely.

Lemma 100. Fix d ≥ 2, β ∈ [0,∞), let Qβ be an extremal translation-invariant augmented
β -arboreal gas Gibbs measure on Zd , and let (A,Φ) be distributed as Q. Then the augmented

connectivity relation
(A,Φ)←→ has at most two infinite equivalence classes almost surely.

Proof of Lemma 100. An illustration of the proof is given in Figure 7.1. The claim is trivial
for β = 0, so we restrict to the case β > 0. Suppose for contradiction that the event

E1 =
{
(A,Φ)←→ has three or more infinite equivalence classes

}
has positive probability. For each x ∈ Zd , write [x] for the equivalence class of x under
the augmented connectivity relation. Because Qβ (E1)> 0, there must exist three vertices
x,y, and z such that [x], [y], and [z] are all distinct with positive probability. Fix three such
vertices x,y,z ∈ Zd and let E2 be the event that this occurs. Since Zd is 2-connected, there
exists a simple path γ in Zd passing through x, y, and z. In particular, there must exist
a finite simple path γ that intersects at least three distinct infinite equivalence classes of
the augmented connectivity relation with positive probability. Reducing the length of γ if

216



7.3 The structure of the augmented connectivity relation

necessary, we may assume that, with positive probability, γ intersects at least three infinite
equivalence classes of the augmented connectivity relation, two of which it intersects only
at its endpoints. Denote this event by E2. Using deletion tolerance, it follows that, with
positive probability, γ intersects exactly three infinite clusters of A, all of which belong to
distinct augmented equivalence classes, and with two of these clusters intersecting γ only
at its endpoints. Indeed, denoting this event by E3, we note that if E2 occurs but E3 does
not, so that the infinite augmented connectivity class C intersecting the interior of γ contains
multiple infinite A-components intersecting γ , then we can modify the configuration to make
E3 occur by choosing one of the infinite A components that belongs to C and intersects
γ , and deleting from A all edges that are incident to γ and belong to an A-component that
belongs to C but is not equal to the one component we chose to keep. Using merge tolerance
allows us to glue together these three infinite A-components into a single infinite cluster by
modifying A on γ in a way that preserves absolute continuity, and doing so creates a three
ended component. Thus, there is a positive probability that A contains a tree with at least

three ends. Since A is translation-invariant this contradicts Proposition 98, and so
(A,Φ)←→ has at

most two infinite equivalence classes almost surely.

The next step of the proof of Proposition 97 is to prove Theorem 85, which states
that every infinite component of any translation-invariant β -arboreal gas Gibbs measure is
one-ended almost surely for every d ≥ 1 and β ∈ (0,∞).

Proof of Theorem 85. The claim is trivial if β = 0 or d = 1 so we may assume that β > 0
and d ≥ 2. It suffices to prove the claim for measures of the form P= π∗Q where Q=Qβ

is an extremal translation-invariant β -arboreal gas Gibbs measure on Zd . Let (A,Φ)∼Q.
By Proposition 98, all trees in A have at most two ends almost surely, so we need only rule
out the existence of two-ended trees. Note that if e = {x,y} is an edge of Zd we have by the
augmented Gibbs property that

Q(e ∈ A | Ge) =
β

1+β
1(Φ(e)(x,y) = 0) ,

where we abuse notation to identify e with the subgraph of Zd having {x,y} as its only
vertices and e as its only edge. Thus, we must have that Φ(e)(x,y) = 0 almost surely for
every edge e = {x,y} ∈ A. It follows that, almost surely, if A contains a two-ended tree T and
e is an edge of T such that T \ e has two infinite connected components, then (A,Φ)\ e has
one more infinite augmented connectivity class than (A,Φ) (where we allow both augmented
subgraphs to have infinitely many infinite augmented connectivity classes in this statement).
Thus, it follows by deletion tolerance that if A has at least n two-ended components with
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positive probability then (A,Φ) has at least n+1 infinite augmented equivalence classes with
positive probability. Together with Lemma 100, this implies that A has at most one two-ended
component almost surely. On the other hand, if A has exactly one two-ended component with
positive probability then we have by deletion tolerance that A has no two-ended components
with positive probability. Since Q is extremal the law of A is ergodic by Corollary 95, and
since the event that A does not have any two-ended components is translation-invariant it
must have probability 1.

We next deduce that there is at most one infinite augmented connectivity class almost
surely.

Lemma 101. Fix d≥ 2, β ∈ (0,∞), let Qβ be an extremal translation-invariant augmented β -
arboreal gas Gibbs measure on Zd , and let (A,Φ) be distributed as Qβ . Then the augmented

connectivity relation
(A,Φ)←→ has at most one infinite equivalence class almost surely.

Proof of Lemma 101. Suppose for contradiction that (A,Φ) has two infinite augmented
connectivity classes with positive probability. Letting H be a finite subgraph of Zd that
intersects both infinite equivalence classes with positive probability, we can use the merge
tolerance of (A,Φ) to deduce that, with positive probability, (A,Φ) has a single infinite
augmented equivalence class but (A,Φ) \H does not. On this event there must exist an
infinite component of A with more than one end, contradicting Theorem 85.

To complete the proof of Proposition 97, we show that the induced subgraph Tr(I∞) is
connected a.s.

Lemma 102. Fix d ≥ 2, β ∈ (0,∞), let Qβ be an extremal augmented β -arboreal gas Gibbs
measure on Zd , let (A,Φ)∼Qβ and let I∞ be the set of vertices of Zd belonging to infinite
clusters of A. If I∞ is non-empty then the induced subgraph Tr(I∞) is connected almost surely.

Proof of Lemma 102. The proof is similar to that of Lemma 101, but instead of attempting
to connect infinite trees, we need (and, given Lemma 101, can) only connect their traces.
Suppose for contradiction that the event

E1 = {Tr(I∞) has three or more connected components},

has positive probability. We will connect up the traces of three infinite trees from different
components of Tr to give a component with at least three ends. Because Q(E1)> 0, there
exists a finite subgraph H of Zd that intersects at least three distinct infinite clusters of Tr(I∞)

with positive probability. Using merge tolerance to force all elements of H to belong to the
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same augmented connectivity cluster, it follows that, with positive probability, Tr(I∞(A)) has
a single component intersecting H but Tr(I∞(A\H)) has at least three infinite components
intersecting H. On this event we must have that Tr(I∞(A)) contains a component with at
least three ends. However Tr is connected and translation-invariant and so this contradicts
Proposition 98, and so almost surely Tr has at most two infinite connected components almost
surely.

We are now ready to conclude the proofs of Proposition 97 and Theorem 84.

Proof of Proposition 97. It suffices to consider the case that β > 0 and d ≥ 2, the remaining
cases being trivial. We may also assume that the law of (A,Φ) is extremal, taking an extremal
decomposition otherwise. Once these reductions are made, the claims of Proposition 97 are
exactly those of Lemmas 100 and 102.

Proof of Theorem 84. Let P be a translation-invariant β -arboreal gas Gibbs measure on Zd .
Lemma 94 tell us that we can find a measure Q which is a translation-invariant augmentation
thereof. Let (A,Φ)∼Q. Propositions 96 and 97 together imply that Tr(I∞) is a.s. connected
and that the conditional distribution of the restriction of A to Tr(I∞) given I∞ and the restriction
of A to Tr(Ic

∞) is almost surely equal to some (possibly random) Gibbs measure for the uniform
spanning tree on Tr(I∞). On the other hand, since Tr(I∞) is a translation-invariant random
subgraph of Zd , it is a hyperfinite unimodular random rooted graph. As such, the results
of Aldous and Lyons [6, Proposition 8.14] imply that its free and wired uniform spanning
forests coincide, and hence that it has a unique Gibbs measure for the uniform spanning tree
by Lemma 88. This completes the proof.

We end this section by observing the following corollary of Proposition 97 and Theo-
rem 85.

Corollary 103. Let d ≥ 1 and β ∈ [0,∞) and let (A,Φ) be distributed as a translation-
invariant augmented β -arboreal gas Gibbs measure on Zd . Then the augmented subgraph
(A,Φ) is almost surely equal to the wired augmentation of A as defined in (7.4).

Corollary 103 implies in particular that the completions of the sigma-algebras I and IS

coincide, which implies the following corollary in conjunction with Corollary 95.

Corollary 104. Every extremal translation-invariant augmented β -arboreal gas Gibbs
measure on Zd is ergodic for every d ≥ 1 and β ∈ [0,∞].
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7.4 Random walk intersections in unimodular random
graphs

In this section we prove Theorem 86, which states that uniform spanning trees of unimodular
random rooted subgraphs of Zd are connected almost surely when d ≤ 4; by the results of
Benjammini, Lyons, Peres and Schramm [68, 261] this is equivalent to the statement that
two independent random walks on such a graph intersect infinitely often almost surely. This
property is known as the infinite intersection property. The proof is a combination of two
results. First, in Section 7.4.1, we establish, for general unimodular random rooted graphs
whose degree has finite second moment, that two random walks intersect infinitely often
almost surely if and only if their expected number of intersections conditional on the rooted
graph and one of the two walks is infinite almost surely. Then, in Section 7.4.2, we show that
this condition is satisfied for random walks on unimodular subgraphs of Zd for d ≤ 4 using
the theory of Markov-type inequalities.

Before getting started with the proof, we quickly review some relevant definitions and
state a generalization of Theorem 86.

Unimodular random rooted graphs. A rooted graph is a pair (G,ρ) where G is a
connected, locally finite graph and ρ is a distinguished vertex of G known as the root vertex;
an isomorphism of graphs is an isomorphism of rooted graphs if it preserves the root. We
define G• to be the space of isomorphism classes of rooted graphs, which is equipped with
the Borel sigma algebra induced by the local topology [6, 110], in which two elements of G•
are considered to be close if there exist large graph-distance balls around their root vertices
which admit a graph isomorphism that preserves the root. The details of this construction are
not important to us and can be found in e.g. [110, Section 1.2]. Similarly, we also have the
space G•• of (isomorphism classes of) doubly-rooted graphs (G,ρ1,ρ2), with an ordered pair
of distinguished root vertices ρ1,ρ2 ∈ V [G]. We say that a random variable (G,ρ) taking
values in G• is unimodular if it satisfies the mass-transport principle, meaning that

E

[
∑

v∈V [G]

F(G,ρ,v)

]
= E

[
∑

v∈V [G]

F(G,v,ρ)

]

for every Borel measurable function F : G••→ [0,∞).
Next we define the space of rooted subgraphs of Zd; this definition is not standard.

For any connected graph G and d ≥ 1, we say the function φ : V [G]×V [G]→ Zd is an
embedding of G into Zd if φ(u,w) = φ(u,v)+ φ(v,w) for every u,v,w ∈ Zd (i.e. if φ is
an additive cocyle), φ(u,w) = 0 if and only if u = w, and ∥φ(u,w)∥

∞
= 1 if {u,w} ∈ E[G].
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7.4 A criterion for the infinite intersection property

A rooted subgraph of Zd is then a tuple (G,φ ,ρ), where G, ρ are as before, and φ is an
embedding of G into Zd . We denote the space of isomorphism classes of rooted subgraphs
of Zd by S•(Zd), which we endow with the Borel sigma algebra corresponding to the local
topology, where for two elements to be close, the embeddings now also have to coincide in a
large ball. Defining the space of doubly-rooted subgraphs S••(Zd) similarly, we say that a
random tuple (G,φ ,ρ) is unimodular if

E

[
∑

v∈V [G]

F(G,φ ,ρ,v)

]
= E

[
∑

v∈V [G]

F(G,φ ,v,ρ)

]

for every Borel measurable function F : S••(Zd)→ [0,∞).

Lemma 105. If ω is a translation-invariant random subgraph of Zd , K0 denotes the cluster
of the origin in ω , and we define a cocyle φ : V [K0]×V [K0]→ Zd by φ(u,v) = u− v, then
(K0,φ ,0) is a unimodular random rooted subgraph of Zd .

Proof. The translation-invariance of the model implies that if F : S••(Zd) → [0,∞) is
measurable then F ′(u,v) = E[F(Ku,φ ,u,v)] satisfies F ′(u+ x,v+ x) = F ′(u,v) for every
u,v,x ∈ Zd , and the claim follows from the usual mass transport principle for Zd .

Since unimodularity is preserved by conditioning on re-rooting invariant events, it follows
that (K0,φ ,0) remains unimodular when we condition on it having size n for any n∈N∪{∞}
for which the relevant probability is positive. As such, Theorem 86 follows from the following
more general theorem. (Examples of unimodular random rooted subgraphs of Zd that do not
arise as a cluster in a translation-invariant model include the incipient infinite percolation
cluster and the trace of a doubly-infinite random walk.)

Theorem 106. Let d ≤ 4 and let (G,φ ,ρ) be a unimodular random rooted subgraph of Zd .
Then G has the infinite intersection property almost surely.

Equivalently, if (G,φ ,ρ) is a unimodular random rooted subgraph of Zd then the uniform
spanning forest of G is connected almost surely on the event that G is infinite (the uniform
spanning forest of G being a.s. well-defined independently of boundary conditions by the
results of [6] as discussed in the proof of Theorem 84).

7.4.1 A criterion for the infinite intersection property

The goal of this subsection is to prove the following general proposition concerning intersec-
tions of random walks on general unimodular random rooted graphs.
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Proposition 107. Let (G,o) be a unimodular random rooted graph which is almost surely
connected and suppose that the second moment of the degree of the root is finite, i.e.
E[deg(o)2] < ∞. Let X and Y are two random walks on G, both started at o, that are
conditionally independent given (G,o). If

E
[
#{i, j ≥ 0 : Xi = Yj} | (G,o),Y

]
= ∞ almost surely

then G has the infinite intersection property almost surely.

The proof of this proposition is of a similar flavour to those of [176, 195], which involve
collisions (where the two walks are at the same location at the same time) rather than
intersections (where the two walks are at the same location but not necessarily at the same
time).

We begin by establishing a lemma concerning random walks on deterministic graphs.
It will be convenient to work with two-sided rather than one-sided random walks. Given a
connected, locally finite graph G and two vertices u,v ∈V [G], we write PG

u,v for the joint law
of a pair of independent doubly-infinite random walks (Xn)n∈Z and (Yn)n∈Z started at u and v
respectively: Concretely, we let X+, X−, Y−, and Y+ be independent random walks on G,
where X+ and X− are started at u and Y+ and Y− are started at v, and define the two-sided
random walks (Xn)n∈Z and (Yn)n∈Z by

Xn =

X+
n n≥ 0

X−−n n≤ 0
and Yn =

Y+
n n≥ 0

Y−−n n≤ 0.

Given a subset A of Z×Z, we write lex-maxA for the lexicographical maximum of A when
this maximum is well-defined. The following lemma may be thought of as a time-reversal
identity for the probabilities of these events.

Lemma 108. Let G = (V,E) be a transient, connected, locally finite graph, and let o be a
vertex of G. Then

PG
o,o
(
lex-max{(i, j) : Xi = Yj}= (n,m)

)
= ∑

v∈V

deg(v)2

deg(o)2 PG
v,v(X−n = Y−m = o,{Xi}i≥0∩{Yj} j>0 = /0,{Xi}i>0∩{Yj} j≤0 = /0) (7.7)

for every n,m≥ 0.

(Here, the event “lex-max{(i, j) : Xi = Yj} = (n,m)” implicitly includes the condition
that the lexicographical maximum is well-defined.)

222



7.4 A criterion for the infinite intersection property

Proof of Lemma 108. Fix n,m≥ 0 and write

Bn,m :=
{

lex-max{(i, j) : Xi = Yj}= (n,m)
}
={

Xn = Ym,{Xi}i≥n∩{Yj} j>m = /0,{Xi}i>n∩{Yj} j≤m = /0
}
.

Decomposing according to the value of Xn = Ym yields that

PG
o,o(Bn,m) = ∑

v∈V
PG

o,o(Xn = Ym = v,{Xi}i≥n∩{Yj} j>m = /0,{Xi}i>n∩{Yj} j≤m = /0
)
. (7.8)

Let PG
o denote the marginal law of (Yn)n∈Z and abbreviate deg(v) = d(v) for each vertex v

of G. For each v ∈V [G] and each doubly-infinite simple (xn)n∈Z path in G with x0 = o and
xn = v we can compute that

PG
o
(
Ym = v, {xi}i≥n∩{Yj} j>m = /0, {xi}i>n∩{Yj} j≤m = /0

)
= PG

o
(
{xi}i>n∩{Y j} j<0 = /0

)
PG

o
(
{xi}i>n∩{Yj}0≤ j≤m = /0, Ym = v

)
·PG

v
(
{xi}i≥n∩{Yj} j>0 = /0

)
= PG

o
(
{xi}i>n∩{Y j} j<0 = /0

)(d(v)
d(o)

PG
v
(
{xi}i>n∩{Yj}0≤ j≤m = /0, Ym = o

))
·PG

v
(
{xi}i≥n∩{Yj} j>0 = /0

)
=

d(v)
d(o)

PG
o
(
{xi}i>n∩{Yj} j<0 = /0

)
PG

v
(
{xi}i>n∩{Y j}−m≤ j≤0 = /0, Y−m = o

)
·PG

v
(
{xi}i≥n∩{Yj} j>0 = /0

)
=

d(v)
d(o)

PG
v
(
{xi}i>n∩{Yj} j≤0 = /0, Y−m = o

)
PG

v
(
{xi}i≥n∩{Y j} j>0 = /0

)
=

d(v)
d(o)

PG
v
(
Y−m = o, {xi}i≥n∩{Yj} j>0 = /0, {xi}i>n∩{Y j} j≤0 = /0

)
,

where the first equality follows by independence of {Y j} j<0 and {Yj} j>0 and the Markov
property of {Yj} j>0, the second equality follows by time-reversal for {Yj} j>0, the third
equality follows as {Yj} j<0 and {Yj} j>0 are identically distributed, the penultimate inequality
follows by the Markov property, and the final equality follows by independence of {Y j} j<0

and {Yj} j>0. Now, since X and Y are independent, letting x = X gives

PG
o,o(Xn = Ym = v,{Xi}i≥n∩{Yj} j>m = /0,{Xi}i>n∩{Y j} j≤m = /0

)
=

d(v)
d(o)

PG
o,v(Xn = v,Y−m = o, {Xi}i≥n∩{Yj} j>0 = /0, {Xi}i>n∩{Yj} j≤0 = /0

)
,
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and applying a similar time-reversal to X gives that

PG
o,o(Xn = Ym = v,{Xi}i≥n∩{Yj} j>m = /0,{Xi}i>n∩{Yj} j≤m = /0

)
=

d(v)2

d(o)2 PG
v,v(X−n = Y−m = o,{Xi}i≥0∩{Yj} j>0 = /0,{Xi}i>0∩{Yj} j≤0 = /0).

The claim follows by substituting this into (7.8).

Proof of Proposition 107. The claim holds trivially when G is recurrent, so we may assume
that G is transient. Let (Xn)n∈Z and (Yn)n∈Z be doubly-infinite random walks started at o that
are conditionally independent given (G,o). We assume that

E
[
#{i, j ≥ 0 : Xi = Yj} | (G,o),Y

]
= ∞

almost surely and prove that in this case #{i, j ≥ 0 : Xi = Yj}= ∞ almost surely.
Recall that Bn,m denotes the event that lex-max{(n,m) : Xn = Ym}= (n,m). Multiplying

both sides of the identity of Lemma 108 by deg(o)2, taking expectations and applying the
mass-transport principle to the right-hand side gives

E
[

deg(o)2
1(Bn,m)

]
≥ E

[
∑
v∈G

PG
v,v(X−n = Y−m = o,{Xi}i≥0∩{Yj} j>0 = /0,{Xi}i>0∩{Yj} j≤0 = /0)

]

= E

[
∑
v∈G

PG
o,o(X−n = Y−m = v,{Xi}i≥0∩{Yj} j>0 = /0,{Xi}i>0∩{Yj} j≤0 = /0)

]
,

where we bounded deg(v) ≥ 1 in the first line. Summing over n,m ≥ 0 and using that the
events Bn,m are disjoint, we obtain that

E
[
#{i, j ≤ 0 : Xi = Yj}1

(
{Xi}i≥0∩{Y j} j>0 = /0,{Xi}i>0∩{Y j} j≤0 = /0

)]
≤ E[deg(o)2]< ∞.
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Conditioning on the random rooted graph (G,o) and the two-sided walk Y , conditional
independence of (Xi)i≤0 and (Xi)i≥0 yields

E

[
E
[
#{i, j ≤ 0 : Xi = Yj} | (G,o),Y

]
·P
(
{Xi}i≥0∩{Yj} j>0 = /0,

{Xi}i>0∩{Yj} j≤0 = /0 | (G,o),Y
)]

< ∞

Since E
[
#{i, j ≥ 0 : Xi = Yj} | (G,o),Y

]
= ∞ almost surely by assumption, the right hand

side can only be finite if

P
(
{Xi}i≥0∩{Yj} j>0 = /0,{Xi}i>0∩{Yj} j≤0 = /0

)
= 0.

Since the two events {{Xi}i≥0∩{Yj} j>0 = /0} and {Xi}i>0∩{Yj} j≤0 = /0 are conditionally in-
dependent given (G,o) and X , and since P

(
{Xi}i≥0∩{Yj} j≤0 = /0|(G,o),X) = P

(
{Xi}i≥0∩

{Yj} j≥0 = /0|(G,o),X), it follows that

P
(
{Xi}i≥0∩{Yj} j>0 = /0,{Xi}i>0∩{Yj} j≥0 = /0

)
= 0.

In other words, two conditionally independent random walks X and Y started at o ∈ G
will almost surely satisfy Xn = Ym at some time (n,m) with n,m ≥ 0 and (n,m) ̸= (0,0).
Since the random rooted graph (G,o) is unimodular, the same statement holds almost surely
for any starting vertex v ∈ G [110, Proposition 11]. Now if X and Y are conditionally
independent random walks on G with arbitrary starting vertices, then the Markov properties
of the random walks implies that for any (n,m) ∈ Z≥0×Z≥0, the processes (Xi)i≥n and
(Yi)i≥m are jointly distributed as two conditionally independent random walks on G started at
Xn and Ym respectively. In particular, together with our conclusion above, this implies that
for any n,m≥ 0, the event

{Xn ̸= Ym}∪{∃i≥ n, j ≥ m : (i, j) ̸= (n,m) and Xi = Y j}

occurs almost surely. If we now suppose that X and Y start at the same vertex, then we
can use this fact inductively to construct two non-decreasing sequences of times (Ti)i≥0 and
(Si)i≥0 such that (Si +Ti)i≥0 is strictly increasing and XTi = YSi almost surely for every i≥ 0.
Thus the proposition is proved.

Remark 29. This proposition certainly does not hold if the unimodularity assumption is
removed. For instance, take two copies of Z3 attached by a single edge: The conditional
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expectation of the number of intersections is almost surely infinite, but the number of in-
tersections has a positive probability of being finite due to the fact that the random walks
may eventually remain in distinct copies of Z3. We are unsure if the analogous state-
ment holds if we only require that E

[
#{i, j ≥ 0 : Xi = Yj} | (G,o)

]
= ∞ a.s. rather than

E
[
#{i, j ≥ 0 : Xi = Yj} | (G,o),Y

]
= ∞ a.s.

Remark 30 (Relaxing the second moment condition). The proof of Proposition 107 shows
more generally that if (G,o) is a unimodular random rooted graph with E[deg(o)α ]< ∞ for
some 0≤ α ≤ 2 and E[∑∞

i, j=01(Xi = Yj)deg(Y j)
−2+α | (G,o),Y ] = ∞ almost surely then G

has the infinite intersection property almost surely.

7.4.2 Proof of Theorems 86 and 106

In this section we complete the proof of Theorems 86 and 106, and hence also of Theorem 82,
by proving the following proposition, which implies these theorems in conjunction with
Proposition 107 and Theorem 84.

Proposition 109. Let 1 ≤ d ≤ 4, let (G,φ ,ρ) be a unimodular random random rooted
subgraph of Zd , and let X and Y be two independent random walks on G beginning at ρ .
Then

E
[
#{i, j ≥ 0 : Xi = Yj} | (G,φ ,ρ),Y

]
= ∞ almost surely.

The proof of this proposition will apply the theory of Markov-type inequalities, which
were first introduced by Ball [40] in the context of the Lipschitz extension problem and have
since been found to have many important applications to the study of random walk. We now
give a quick review of the parts of the theory most relevant to us, referring the reader to [259,
Chapter 13.4] for further background.

Markov-type inequalities. A metric space X = (X ,d) is said to have Markov-type 2
with constant C < ∞ if for every finite set S, every irreducible reversible Markov chain M on
S, and every function f : S→X the inequality

E
[
d
(

f (Y0), f (Yn)
)2
]
≤C2nE

[
d
(

f (Y0), f (Y1)
)2
]

holds for every n≥ 0, where (Yi)i≥0 is a trajectory of the Markov chain M with Y0 distributed
as the stationary measure of M. Similarly, a metric space X = (X ,d) is said to have
maximal Markov-type 2 with constant C < ∞ if for every finite set S and every irreducible
reversible Markov chain M on S, and every function f : S→X , we have that

E
[

max
0≤i≤n

d
(

f (Y0), f (Yi)
)2
]
≤C2nE

[
d
(

f (Y0), f (Y1)
)2
]

(7.9)
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for each n ≥ 0, where, as before, (Yi)i≥0 is a trajectory of the Markov chain M with Y0

distributed as the stationary measure of M. Of particular importance to us will be the fact
that R has maximal Markov-type 2 [259, Theorem 13.15], which implies by projecting onto
each coordinate that Rd has maximal Markov-type 2 with the same constant for each d ≥ 1,
which implies the following inequality for unimodular random rooted subgraphs of Zd .

Proposition 110. Let d ≥ 1 and let (G,φ ,ρ) be a unimodular random rooted subgraph of
Zd . If Y is a random walk on G started at ρ then

E
[

deg(ρ) max
0≤i≤n

∥φ(Yik,Y0)∥2
∞

]
≤C2nE

[
deg(ρ)∥φ(Yk,Y0)∥

]
.

for each n,k ≥ 1. Since ∥φ(Yk,Y0)∥ ≤ 1 and 1≤ deg(ρ)≤ 2d, it follows in particular that

E
[

max
0≤i≤n

∥φ(Yi,Y0)∥2
∞

]
≤ 2dC2n =C0(d)2n

for each n≥ 1, where C0(d) =C
√

2d.

Proof of Proposition 110. This follows from the standard maximal Markov type inequality
(7.9) by using that unimodular random rooted subgraphs of Zd are hyperfinite. This means
in particular that they can always be written as Benjamini-Schramm limits of finite random
rooted subgraphs of Zd , which are finite reversible Markov chains whose stationary measure
is proportional to their degree. The details are very similar to the proof of [174, Corollary
2.5] and are omitted.

Proof of Proposition 109. Fix ε ∈ (0,1) and let C0 =C0(d) be the constant from Proposition
110. Define constants c1 =

√
2C0/ε and c2 = 2/ε , and define sequences of times tn = 4n,

radii rn = ⌈c1 ·2n⌉, and Euclidean boxes Λn = [−rn,rn]
d ⊂Rd . Proposition 110 and Markov’s

inequality give us that for each n≥ 1,

P({φ(ρ,Yi)}i≤tn ⊂Λn)≥ 1− ε. (7.10)

For each subset A ⊆ Z≥0 and v ∈ Zd , define the random variable LA(v) = ∑n∈A1(Yn = v)
giving the number of times i in A such that Yi = v, and define the partial Green’s function
GA(v) = EG[LA(v)]. We lower bound

E
[
#{i, j ≥ 0 : Xi = Yj} | (G,o),Y

]
= ∑

v∈G
GZ≥0(v)LZ≥0(v)≥ ∑

n≥1
∑

v∈Λn

G[tn−1,tn)(v)L[tn−1,tn)(v),

(7.11)
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where we write v ∈Λn as shorthand for φ(ρ,v) ∈Λn. We aim to show that each sum over
Λn has good probability to contribute a constant to the total. To this end, for each n≥ 1 let
bn = 2−n(d−2)/(4c2(4c1)

d) and let

Un = ∑
v∈Λn

L[tn−1,tn)(v)1(G[tn−1,tn)(v)< bn).

We can bound

∑
v∈Λn

G[tn−1,tn)(v)L[tn−1,tn)(v)≥ ∑
v∈Λn

G[tn−1,tn)(v)L[tn−1,tn)(v)1(G[tn−1,tn)(v)≥ bn)

≥ bn ∑
v∈Λn

L[tn−1,tn)(v)1(G[tn−1,tn)(v)≥ bn) = bn

[
∑

v∈Λn

L[tn−1,tn)(v)−Un

]
, (7.12)

and also have trivially that

EG[Un] = EG

[
∑

v∈Λn

L[tn−1,tn)(v)1(G[tn−1,tn)(v)< bn)

]
= ∑

v∈Λn

G[tn−1,tn)(v)1(G[tn−1,tn)(v)< bn)≤ bn |Λn| ,

where we write |Λn| for the number of vertices v ∈ G such that φ(ρ,v) ∈Λn. Since we also
have that ∑v∈Λn L[tn−1,tn)(v) ≥ tn− tn−1 on the event that {φ(ρ,Yi)}i≤tn ⊆ Λn, we have by
(7.10) and Markov’s inequality that

P

(
∑

v∈Λn

L[tn−1,tn)(v)≥ tn− tn−1

)
≥ 1− ε and P

(
Un ≤ c2bn |Λn|

)
≥ 1− ε (7.13)

for every n ≥ 1. Since c2bn|Λn| ≤ (tn− tn−1)/2 by choice of bn, it follows from this and
(7.12) that

P

(
∑

v∈Λn

G[tn−1,tn)(v)L[tn−1,tn)(v)≥
bn(tn− tn−1)

2

)
≥ 1−2ε

for every n ≥ 1. Now, we also have that bn(tn− tn−1) is of order 2(4−d)n and hence, since
d ≤ 4, that bn(tn−tn−1)

2 is bounded below by a positive constant c3 = c3(ε). Fatou’s lemma
then implies that

P

(
∑
v∈G

GZ≥0(v)LZ≥0(v) = ∞

)
≥ P

(
limsup

n→∞
∑

v∈Λn

G[tn−1,tn)(v)L[tn−1,tn)(v)≥ c3(ε)

)
≥ 1−2ε
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for every ε > 0, and the claim follows since ε > 0 was arbitrary.

Proof of Theorem 106. This is an immediate consequence of Propositions 107 and 109.

Proof of Theorem 86. This follows immediately from Theorem 106 and the results of Ben-
jammini, Lyons, Peres and Schramm [68, 261].

Proof of Theorem 82. This is an immediate consequence of Theorems 84 and 86.

Remark 31. For d < 4 we can substitute the use of the Markov-type inequalities in the proof
of Proposition 109 with the Varopoulos-Carne inequality, which implies that the maximal
displacement bound maxi≤n d(X0,Xi) has order at most

√
n logn with high probability on any

graph of at most polynomial volume growth. As such, Proposition 109 and thus Theorem 86
generalises easily to unimodular random rooted graphs whose balls have volume O(nd) for
some d < 4 (and with E[deg(ρ)2]< ∞), without the need to have a unimodular embedding
into Zd . The four-dimensional case is more delicate since this dimension is critical for Zd

to have the infinite intersection property, with each dyadic scale only contributing O(1)
intersections in expectation. We believe that it should be possible to extend Theorem 86
to unimodular random rooted graphs whose balls have volume O(n4) using the methods of
Ganguly, Lee, and Peres [150], who proved that any unimodular random rooted graph of
polynomial volume growth satisfies a diffusive estimate at infinitely many scales. To do this,
one would need to improve their displacement estimate to a maximal displacement estimate
of the same order; we do not investigate this here.

229





References

[1] Addario-Berry, L. (2013). The local weak limit of the minimum spanning tree of the
complete graph. arXiv preprint arXiv:1301.1667.

[2] Aizenman, M., Burchard, A., Newman, C. M., and Wilson, D. B. (1999). Scaling
limits for minimal and random spanning trees in two dimensions. Random Structures &
Algorithms, 15(3-4):319–367.

[3] Akcoglu, M. A. and del Junco, A. (1975). Convergence of averages of point transforma-
tions. Proc. Amer. Math. Soc., 49:265–266.

[4] Aldous, D. (1991). The continuum random tree. I. Ann. Probab., 19(1):1–28.

[Aldous and Fill] Aldous, D. and Fill, J. Reversible Markov chains and random walks on
graphs.

[6] Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron.
J. Probab., 12:no. 54, 1454–1508.

[7] Aldous, D. J. (1990). The random walk construction of uniform spanning trees and
uniform labelled trees. SIAM J. Discrete Math., 3(4):450–465.

[8] Aldous, David J., L. R. (2007). Processes on unimodular random networks. Electronic
Journal of Probability [electronic only], 12:1454–1508.

[9] Alexander, S. and Orbach, R. (1982). Density of states on fractals:«fractons». Journal
de Physique Lettres, 43(17):625–631.

[10] Andres, S. (2014). Invariance principle for the random conductance model with dynamic
bounded conductances. Ann. Inst. H. Poincaré Probab. Statist., 50:352–374.

[11] Andres, S., Barlow, M. T., Deuschel, J.-D., and Hambly, B. M. (2013). Invariance
principle for the random conductance model. Probab. Theory Related Fields, 156(3-
4):535–580.

[12] Andres, S., Chiarini, A., Deuschel, J.-D., and Slowik, M. (2018). Quenched invariance
principle for random walks with time-dependent ergodic degenerate weights. Ann. Probab.,
46(1):302–336.

[13] Andres, S., Chiarini, A., and Slowik, M. (2020a). Quenched local limit theorem for
random walks among time-dependent ergodic degenerate weights.

231



References

[14] Andres, S., Chiarini, A., and Slowik, M. (2021). Quenched local limit theorem for
random walks among time-dependent ergodic degenerate weights. Probab. Theory Related
Fields, 179(3-4):1145–1181.

[15] Andres, S., Deuschel, J.-D., and Slowik, M. (2015a). Invariance principle for the random
conductance model in a degenerate ergodic environment. Ann. Probab., 43(4):1866–1891.

[16] Andres, S., Deuschel, J.-D., and Slowik, M. (2015b). Invariance principle for the random
conductance model in a degenerate ergodic environment. Ann. Probab., 43(4):1866–1891.

[17] Andres, S., Deuschel, J.-D., and Slowik, M. (2016a). Harnack inequalities on weighted
graphs and some applications to the random conductance model. Probab. Theory Related
Fields, 164(3-4):931–977.

[18] Andres, S., Deuschel, J.-D., and Slowik, M. (2016b). Heat kernel estimates for random
walks with degenerate weights. Electron. J. Probab., 21:Paper No. 33, 21.

[19] Andres, S., Deuschel, J.-D., and Slowik, M. (2019). Heat kernel estimates and intrinsic
metric for random walks with general speed measure under degenerate conductances.
Electron. Commun. Probab., 24:Paper No. 5, 17.

[20] Andres, S., Deuschel, J.-D., and Slowik, M. (2020b). Green kernel asymptotics for
two-dimensional random walks under random conductances. Electron. Commun. Probab.,
25:Paper No. 58, 14.

[21] Andres, S., Deuschel, J.-D., and Slowik, M. (2020c). Green kernel asymptotics for
two-dimensional random walks under random conductances. Electronic Communications
in Probability, 25.

[22] Andres, S., Gantert, N., Schmid, D., and Sousi, P. (2023). Biased random walk on
dynamical percolation.

[23] Andres, S. and Neukamm, S. (2019). Berry-Esseen theorem and quantitative homoge-
nization for the random conductance model with degenerate conductances. Stoch. Partial
Differ. Equ. Anal. Comput., 7(2):240–296.

[24] Andres, S. and Taylor, P. A. (2021a). Local limit theorems for the random conductance
model and applications to the Ginzburg-Landau ∇φ interface model. J. Stat. Phys.,
182(2):35.

[25] Andres, S. and Taylor, P. A. (2021b). Local limit theorems for the random conductance
model and applications to the Ginzburg-Landau ∇φ interface model. arXiv preprint
arXiv:1907.05311, 182(2):Paper No. 35, 35.

[26] Angel, O., Crawford, N., and Kozma, G. (2014). Localization for linearly edge
reinforced random walks. Duke Math. J., 163(5):889–921.

[27] Angel, O., Croydon, D. A., Hernandez-Torres, S., and Shiraishi, D. (2021). Scaling
limits of the three-dimensional uniform spanning tree and associated random walk. The
Annals of Probability, 49(6):3032 – 3105.

232



References

[28] Angel, O., Hutchcroft, T., Nachmias, A., and Ray, G. (2018). Hyperbolic and parabolic
unimodular random maps. Geom. Funct. Anal., 28(4):879–942.

[29] Armstrong, S., Kuusi, T., and Mourrat, J.-C. (2019). Quantitative stochastic homog-
enization and large-scale regularity, volume 352 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Cham.

[30] Asselah, A., Schapira, B., and Sousi, P. (2019). Capacity of the range of random walk
on Z4. Ann. Probab., 47(3):1447–1497.

[31] Avena, L. (2012). Symmetric exclusion as a model of non-elliptic dynamical random
conductances. Electron. Commun. Probab., 17:8 pp.

[32] Avena, L., Blondel, O., and Faggionato, A. (2016). A class of random walks in reversible
dynamic environments: antisymmetry and applications to the east model. Journal of
Statistical Physics, 165(1):1–23.

[33] Avena, L., Blondel, O., and Faggionato, A. (2018). Analysis of random walks in
dynamic random environments via L2-perturbations. Stochastic Processes and their
Applications, 128(10):3490 – 3530.

[34] Bachelier, L. (1900). Theory of speculation: The origins of modern finance. Francia:
Gauthier-Villars.

[35] Baek, S. K., Minnhagen, P., and Kim, B. J. (2009). Percolation on hyperbolic lattices.
Phys. Rev. E, 79:011124.

[36] Bakhtin, Y. Y. and Bulinskiı̆, A. V. (1997). Moment inequalities for sums of dependent
multi-indexed random variables. Fundam. Prikl. Mat., 3(4):1101–1108.

[37] Balankin, A., Martínez-Cruz, M., Susarrey-Huerta, O., and Damian Adame, L. (2018).
Percolation on infinitely ramified fractal networks. Physics Letters, Section A: General,
Atomic and Solid State Physics, 382(1):12–19.

[38] Balankin, A. S., Martínez-Cruz, M., Álvarez-Jasso, M., Patiño-Ortiz, M., and Patiño-
Ortiz, J. (2019). Effects of ramification and connectivity degree on site percolation
threshold on regular lattices and fractal networks. Phys. Lett. A, 383(10):957–966.

[39] Balka, R., Buczolich, Z., and Elekes, M. (2015). A new fractal dimension: the
topological Hausdorff dimension. Adv. Math., 274:881–927.

[40] Ball, K. (1992). Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct.
Anal., 2(2):137–172.

[41] Barlow, M. T. (2004). Random walks on supercritical percolation clusters. Ann. Probab.,
32(4):3024–3084.

[42] Barlow, M. T. (2016). Loop erased walks and uniform spanning trees. 34:1–32.

[43] Barlow, M. T., Coulhon, T., and Kumagai, T. (2005). Characterization of sub-Gaussian
heat kernel estimates on strongly recurrent graphs. Comm. Pure Appl. Math., 58(12):1642–
1677.

233



References

[44] Barlow, M. T., Croydon, D. A., and Kumagai, T. (2017). Subsequential scaling limits
of simple random walk on the two-dimensional uniform spanning tree. The Annals of
Probability, 45(1):4 – 55.

[45] Barlow, M. T., Croydon, D. A., and Kumagai, T. (2021). Quenched and averaged tails
of the heat kernel of the two-dimensional uniform spanning tree. Probability Theory and
Related Fields, 181(1):57–111.

[46] Barlow, M. T. and Deuschel, J.-D. (2010). Invariance principle for the random conduc-
tance model with unbounded conductances. Ann. Probab., 38(1):234–276.

[47] Barlow, M. T. and Hambly, B. M. (2009). Parabolic Harnack inequality and local limit
theorem for percolation clusters. Electron. J. Probab, 14(1):1–27.

[48] Barlow, M. T. and Járai, A. A. (2019). Geometry of uniform spanning forest components
in high dimensions. Canad. J. Math., 71(6):1297–1321.

[49] Barlow, M. T., Járai, A. A., Kumagai, T., and Slade, G. (2008). Random walk on the
incipient infinite cluster for oriented percolation in high dimensions. Comm. Math. Phys.,
278(2):385–431.

[50] Barlow, M. T. and Kumagai, T. (2006). Random walk on the incipient infinite cluster
on trees. Illinois J. Math., 50(1-4):33–65.

[51] Barlow, M. T. and Masson, R. (2011). Spectral dimension and random walks on
the two dimensional uniform spanning tree. Communications in mathematical physics,
305(1):23–57.

[52] Barlow, M. T., Peres, Y., and Sousi, P. (2012). Collisions of random walks. Ann. Inst.
H. Poincaré Probab. Statist., 48(4):922–946.

[53] Bass, H. (1972). The degree of polynomial growth of finitely generated nilpotent groups.
Proc. London Math. Soc. (3), 25:603–614.

[54] Bauerschmidt, R., Crawford, N., and Helmuth, T. (2021a). Percolation transition for
random forests in d ≥ 3. arXiv preprint arXiv:2107.01878.

[55] Bauerschmidt, R., Crawford, N., Helmuth, T., and Swan, A. (2021b). Random spanning
forests and hyperbolic symmetry. Comm. Math. Phys., 381(3):1223–1261.

[56] Bauerschmidt, R. and Helmuth, T. (2021). Spin systems with hyperbolic symmetry: a
survey. arXiv preprint arXiv:2109.02566.

[57] Bella, P. and Schäffner, M. (2020). Quenched invariance principle for random walks
among random degenerate conductances. Ann. Probab., 48(1):296–316.

[58] Bella, P. and Schäffner, M. (2022). Non-uniformly parabolic equations and applications
to the random conductance model. Probab. Theory Related Fields, 182(1-2):353–397.

[59] Ben Arous, G., Cabezas, M., and Fribergh, A. (2019). Scaling limit for the ant in a
simple high-dimensional labyrinth. Probab. Theory Related Fields, 174(1-2):553–646.

234



References

[60] Ben-Avraham, D. and Havlin, S. (2000). Diffusion and reactions in fractals and
disordered systems. Cambridge University Press, Cambridge.

[61] Ben-Avraham, D., Havlin, S., and Movshovitz, D. (1984). Infinitely ramified fractal
lattices and percolation. Philos. Mag. B, 50(2):297–306.

[62] Benedetti, D. (2015). Critical behavior in spherical and hyperbolic spaces. J. Stat.
Mech.: Theory Exp., 2015(1):P01002.

[63] Benjamini, I., Gurel-Gurevich, O., and Lyons, R. (2007). Recurrence of random walk
traces. Ann. Probab., 35(2):732–738.

[64] Benjamini, I., Gurel-Gurevich, O., and Schramm, O. (2011a). Cutpoints and resistance
of random walk paths. Ann. Probab., 39(3):1122–1136.

[65] Benjamini, I. and Hermon, J. (2020). Recurrence of Markov chain traces. Ann. Inst.
Henri Poincaré Probab. Stat., 56(1):734–759.

[66] Benjamini, I., Kesten, H., Peres, Y., and Schramm, O. (2004). Geometry of the
uniform spanning forest: Transitions in dimensions 4,8,12,... Annals of Mathematics,
160(2):465–491.

[67] Benjamini, I., Kesten, H., Peres, Y., and Schramm, O. (2011b). Geometry of the
uniform spanning forest: transitions in dimensions 4, 8, 12,. . . . Selected Works of Oded
Schramm, pages 751–777.

[68] Benjamini, I., Lyons, R., Peres, Y., and Schramm, O. (2001). Uniform spanning forests.
The Annals of Probability, 29(1):1 – 65.

[69] Benjamini, I., Pemantle, R., and Peres, Y. (1995). Martin capacity for Markov chains.
Ann. Probab., 23(3):1332–1346.

[70] Benjamini, I. and Peres, Y. (1994). Tree-indexed random walks on groups and first
passage percolation. Probab. Theory Related Fields, 98(1):91–112.

[71] Benjamini, I. and Schramm, O. (2001). Recurrence of Distributional Limits of Finite
Planar Graphs. Electronic Journal of Probability, 6(none):1 – 13.

[72] Berestycki, N., Laslier, B., and Ray, G. (2020). Dimers and imaginary geometry. The
Annals of Probability, 48(1):1–52.

[73] Berg, H. C. (1984). Random Walks in Biology. Princeton University Press, Princeton.

[74] Berger, N. and Biskup, M. (2007). Quenched invariance principle for simple random
walk on percolation clusters. Probability Theory and Related Fields, 137(1):83–120.

[75] Berger, N., Biskup, M., Hoffman, C. E., and Kozma, G. (2008). Anomalous heat-kernel
decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré
Probab. Stat., 44(2):374–392.

[76] Bhupatiraju, S., Hanson, J., and Járai, A. A. (2017). Inequalities for critical exponents
in d-dimensional sandpiles. Electronic Journal of Probability, 22(none):1 – 51.

235



References

[77] Biskup, M. (2011). Recent progress on the random conductance model. Probab. Surv.,
8:294–373.

[78] Biskup, M. (2020). Extrema of the two-dimensional discrete Gaussian free field. In
Random graphs, phase transitions, and the Gaussian free field, volume 304 of Springer
Proc. Math. Stat., pages 163–407. Springer, Cham.

[79] Biskup, M. and Boukhadra, O. (2012). Subdiffusive heat-kernel decay in four-
dimensional i.i.d. random conductance models. J. Lond. Math. Soc. (2), 86(2):455–481.

[80] Biskup, M., Chen, X., Kumagai, T., and Wang, J. (2021). Quenched invariance principle
for a class of random conductance models with long-range jumps. Preprint, available at
arXiv:2004.01971, 180(3-4):847–889.

[81] Biskup, M., Louidor, O., Rozinov, A., and Vandenberg-Rodes, A. (2013). Trapping in
the Random Conductance Model. Journal of Statistical Physics, 150(1):66–87.

[82] Biskup, M. and Rodriguez, P.-F. (2018). Limit theory for random walks in degenerate
time-dependent random environments. Journal of Functional Analysis, 274(4):985 – 1046.

[83] Blachère, S. (2003a). Cut times for random walks on the discrete Heisenberg group.
Ann. Inst. H. Poincaré Probab. Statist., 39(4):621–638.

[84] Blachère, S. (2003b). Word distance on the discrete Heisenberg group. Colloq Math,
95.

[85] Blachère, S., Haïssinsky, P., and Mathieu, P. (2008). Asymptotic entropy and Green
speed for random walks on countable groups. Ann. Probab., 36(3):1134–1152.

[86] Bo-Ming, Y. and Kai-Lun, Y. (1988). Numerical evidence of the critical percolation
probability pc = 1 for site problems on sierpinski gaskets. J. Phys. A: Math. Gen.,
21(15):3269–3274.

[87] Broder, A. (1989). Generating random spanning trees. In 30th Annual Symposium on
Foundations of Computer Science, pages 442–447.

[88] Bruss, F. T. (1980). A counterpart of the Borel-Cantelli lemma. J. Appl. Probab.,
17(4):1094–1101.

[89] Brydges, D. C. and Imbrie, J. Z. (2003). Branched polymers and dimensional reduction.
Ann. of Math. (2), 158(3):1019–1039.

[90] Bulterman, R., van der Sommen, F., Zwaan, G., Verhoeff, T., van Gasteren, A., and
Feijen, W. (2002). On computing a longest path in a tree. Inform Process Lett, 81(2):93–
96.

[91] Burdzy, K. and Lawler, G. F. (1990a). Nonintersection exponents for Brownian paths. I.
Existence and an invariance principle. Probab. Theory Related Fields, 84(3):393–410.

[92] Burdzy, K. and Lawler, G. F. (1990b). Nonintersection exponents for Brownian paths.
II. Estimates and applications to a random fractal. Ann. Probab., 18(3):981–1009.

236



References

[93] Burton, R. and Pemantle, R. (1993). Local Characteristics, Entropy and Limit Theo-
rems for Spanning Trees and Domino Tilings Via Transfer-Impedances. The Annals of
Probability, 21(3):1329 – 1371.

[94] Burton, R. M. and Keane, M. (1989). Density and uniqueness in percolation. Commu-
nications in mathematical physics, 121:501–505.

[95] Caracciolo, S., Jacobsen, J. L., Saleur, H., Sokal, A. D., and Sportiello, A. (2004).
Fermionic field theory for trees and forests. Physical review letters, 93(8):080601.

[96] Caracciolo, S., Sokal, A. D., and Sportiello, A. (2007). Grassmann integral represen-
tation for spanning hyperforests. Journal of Physics A: Mathematical and Theoretical,
40(46):13799.

[97] Caracciolo, S., Sokal, A. D., and Sportiello, A. (2017). Spanning forests and
OSP(n|2m)-invariant σ -models. Journal of Physics A: Mathematical and Theoretical,
50(11):114001.

[98] Cardy, J. (1996). Scaling and Renormalization in Statistical Physics. Cambridge
Lecture Notes in Physics. Cambridge University Press.

[99] Carne, T. K. (1985). A transmutation formula for Markov chains. Bull. Sci. Math. (2),
109(4):399–405.

[100] Chandler, R., Koplik, J., Lerman, K., and Willemsen, J. F. (1982). Capillary displace-
ment and percolation in porous media. J. Fluid Mech., 119:249–267.

[101] Chayes, J. T., Chayes, L., and Newman, C. M. (1985). The stochastic geometry of
invasion percolation. Commun. Math. Phys., 101(3):383–407.

[102] Chen, X. (2016). Gaussian bounds and collisions of variable speed random walks
on lattices with power law conductances. Stochastic Processes and their Applications,
126(10):3041–3064.

[103] Chen, X. and Chen, D. (2010). Two random walks on the open cluster of Z2 meet
infinitely often. Science China Mathematics, 53(8):1971–1978.

[104] Chen, X. and Chen, D. (2011). Some sufficient conditions for infinite collisions of
simple random walks on a wedge comb. Electron. J. Probab., 16:1341–1355.

[105] Codling, E. A., Plank, M. J., and Benhamou, S. (2008). Random walk models in
biology. Journal of The Royal Society Interface, 5(25):813–834.

[106] Cornulier, Y. d. (2018). On the quasi-isometric classification of locally compact
groups, volume 447 of London Math. Soc. Lecture Note Ser., pages 275–342. Cambridge
Univ. Press, Cambridge.

[107] Coulhon, T. and Saloff-Coste, L. (1993). Isopérimétrie pour les groupes et les variétés.
Rev. Mat. Iberoamericana, 9(2):293–314.

[108] Cranston, M. C. and Mountford, T. S. (1991). An extension of a result of Burdzy and
Lawler. Probab. Theory Related Fields, 89(4):487–502.

237



References

[109] Csáki, E., Földes, A., and Révész, P. (2010). On the number of cutpoints of the
transient nearest neighbor random walk on the line. J. Theoret. Probab., 23(2):624–638.

[110] Curien, N. (2018). Random graphs: the local convergence point of view. Unpublished
lecture notes. Available at https://www.imo.universite-paris-saclay.fr/~nicolas.curien/
enseignement.html.

[111] Curien, N., Hutchcroft, T., and Nachmias, A. (2020). Geometric and spectral properties
of causal maps. Journal of the European Mathematical Society, 22(12):3997–4024.

[112] Dario, P. and Gu, C. (2021). Quantitative homogenization of the parabolic and elliptic
Green’s functions on percolation clusters. Ann. Probab., 49(2):556–636.

[113] de Gennes, P. G. et al. (1976). La percolation: un concept unificateur. La recherche,
7(72):919–927.

[114] de Graaf, W. A. (2007). Classification of 6-dimensional nilpotent Lie algebras over
fields of characteristic not 2. J. Algebra, 309(2):640–653. NB: Further proof details are
given in the arXiv version.

[115] Delmotte, T. (1999). Parabolic Harnack inequality and estimates of Markov chains on
graphs. Rev. Mat. Iberoamericana, 15(1):181–232.

[116] Delmotte, T. and Deuschel, J.-D. (2005). On estimating the derivatives of symmetric
diffusions in stationary random environment, with applications to ∆φ interface model.
Probability Theory and Related Fields, 133:358–390.

[117] Deng, Y., Garoni, T. M., and Sokal, A. D. (2007). Ferromagnetic phase transition for
the spanning-forest model (q→ 0 limit of the Potts model) in three or more dimensions.
Physical review letters, 98(3):030602.

[118] Derbez, E. and Slade, G. (1997). Lattice trees and super-Brownian motion. Canad.
Math. Bull., 40(1):19–38.

[119] Derbez, E. and Slade, G. (1998). The scaling limit of lattice trees in high dimensions.
Comm. Math. Phys., 193(1):69–104.

[120] Dereudre, D. (2022). Fully-connected bond percolation on Zd . Probability Theory
and Related Fields, 183(1-2):547–579.

[121] Deuschel, J.-D., Nguyen, T. A., and Slowik, M. (2018). Quenched invariance principles
for the random conductance model on a random graph with degenerate ergodic weights.
Probab. Theory Related Fields, 170(1-2):363–386.

[122] Devulder, A., Gantert, N., and Pène, F. (2018). Collisions of several walkers in
recurrent random environments. Electronic Journal of Probability, 23.

[123] Devulder, A., Gantert, N., and Pène, F. (2019). Arbitrary many walkers meet infinitely
often in a subballistic random environment. Electron. J. Probab., 24:25 pp.

[124] Dhar, D. (1990). Self-organized critical state of sandpile automaton models. Phys.
Rev. Lett., 64:1613–1616.

238

https://www.imo.universite-paris-saclay.fr/~nicolas.curien/enseignement.html
https://www.imo.universite-paris-saclay.fr/~nicolas.curien/enseignement.html


References

[125] Dhar, D. (1999). The abelian sandpile and related models. Physica A: Statistical
Mechanics and its Applications, 263(1):4–25. Proceedings of the 20th IUPAP International
Conference on Statistical Physics.

[126] Diaconis, P. and Freedman, D. (1980). de Finetti’s theorem for Markov chains. Ann.
Probab., 8(1):115–130.

[127] Ding, J., Lee, J. R., and Peres, Y. (2013). Markov type and threshold embeddings.
Geom. Funct. Anal., 23(4):1207–1229.

[128] Dolgopyat, D., Keller, G., and Liverani, C. (2008). Random walk in Markovian
environment. The Annals of Probability, 36(5):1676–1710.
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[134] Erdős, P. and Taylor, S. J. (1960). Some intersection properties of random walk paths.
Acta Math. Acad. Sci. Hungar., 11:231–248.

[135] Esary, J. D., Proschan, F., and Walkup, D. W. (1967). Association of random variables,
with applications. The Annals of Mathematical Statistics, 38(5):1466–1474.

[136] Fabes, E. B. and Stroock, D. W. (1986). A new proof of Moser’s parabolic Harnack
inequality using the old ideas of Nash. Arch. Rational Mech. Anal., 96(4):327–338.

[137] Falconer, K. (2014). Fractal geometry. John Wiley & Sons, Ltd., Chichester, third
edition. Mathematical foundations and applications.

[138] Fama, E. F. (1965). Random walks in stock market prices. Financial Analysts Journal,
21(5):55–59.

[139] Feder, T. and Mihail, M. (1992). Balanced matroids. In Proceedings of the twenty-
fourth annual ACM symposium on Theory of computing, pages 26–38.

[140] Fischer, V. and Ruzhansky, M. (2016). Quantization on nilpotent Lie groups, volume
314 of Progress in Mathematics. Birkhäuser/Springer, [Cham].

[141] Folz, M. (2011). Gaussian upper bounds for heat kernels of continuous time simple
random walks. Electron. J. Probab., 16:no. 62, 1693–1722.

239



References

[142] Folz, M. (2014). Volume growth and stochastic completeness of graphs. Trans. Amer.
Math. Soc., 366(4):2089–2119.

[143] Fortuin, C. M., Kasteleyn, P. W., and Ginibre, J. (1971). Correlation inequalities on
some partially ordered sets. Comm. Math. Phys., 22(2):89–103.

[144] Fredes, L. and Francois Marckert, J. (2021). Models of random subtrees of a graph.

[145] Friedli, S. and Velenik, Y. (2017). Statistical mechanics of lattice systems: a concrete
mathematical introduction. Cambridge University Press.

[146] Funaki, T. (2005). Stochastic interface models. In Lectures on probability theory and
statistics, volume 1869 of Lecture Notes in Math., pages 103–274. Springer, Berlin.

[147] Gail, M. and Boone, C. (1970). The locomotion of mouse fibroblasts in tissue culture.
Biophysical journal, 10(10):980—993.

[148] Gallesco, C. (2013). Meeting time of independent random walks in random environ-
ment. ESAIM: Probability and Statistics, 17:257–292.

[149] Ganguly, S. and Lee, J. R. (2022). Chemical subdiffusivity of critical 2D percolation.
Comm. Math. Phys., 389(2):695–714.

[150] Ganguly, S., Lee, J. R., and Peres, Y. (2017). Diffusive estimates for random walks on
stationary random graphs of polynomial growth. Geom. Funct. Anal., 27(3):596–630.

[151] Gantert, N., Kochler, M., and Pene, F. (2014). On the recurrence of some random
walks in random environment. arXiv preprint arXiv:1404.3874.

[152] Gefen, Y., Aharony, A., and Mandelbrot, B. B. (1983a). Phase transitions on fractals. i.
quasi-linear lattices. Journal of Physics A: Mathematical and General, 16(6):1267–1278.

[153] Gefen, Y., Aharony, A., and Mandelbrot, B. B. (1984a). Phase transitions on frac-
tals. III. infinitely ramified lattices. Journal of Physics A: Mathematical and General,
17(6):1277–1289.

[154] Gefen, Y., Aharony, A., Mandelbrot, B. B., and Kirkpatrick, S. (1981). Solvable
fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett.,
47:1771–1774.

[155] Gefen, Y., Aharony, A., Shapir, Y., and Mandelbrot, B. B. (1984b). Phase transitions
on fractals. II. sierpinski gaskets. Journal of Physics A: Mathematical and General,
17(2):435–444.

[156] Gefen, Y., Mandelbrot, B. B., and Aharony, A. (1980). Critical phenomena on fractal
lattices. Phys. Rev. Lett., 45:855–858.

[157] Gefen, Y., Meir, Y., Mandelbrot, B. B., and Aharony, A. (1983b). Geometric imple-
mentation of hypercubic lattices with noninteger dimensionality by use of low lacunarity
fractal lattices. Phys. Rev. Lett., 50:145–148.
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