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Abstract  1 

We aimed to validate genetic variants as instruments for insulin resistance and secretion, to 2 

characterise their association with intermediate phenotypes, and to investigate their role in 3 

T2D risk among normal-weight, overweight and obese individuals.We investigated the 4 

association of genetic scores with euglycaemic-hyperinsulinaemic clamp- and OGTT-based 5 

measures of insulin resistance and secretion, and a range of metabolic measures in up to 6 

18,565 individuals. We also studied their association with T2D risk among normal-weight, 7 

overweight and obese individuals in up to 8,124 incident T2D cases. The insulin resistance 8 

score was associated with lower insulin sensitivity measured by M/I value (β in SDs-per-9 

allele [95%CI]:-0.03[-0.04,-0.01];p=0.004). This score was associated with lower BMI (-10 

0.01[-0.01,-0.0;p=0.02) and gluteofemoral fat-mass (-0.03[-0.05,-0.02;p=1.4x10
-6

), and with 11 

higher ALT (0.02[0.01,0.03];p=0.002) and gamma-GT (0.02[0.01,0.03];p=0.001). While the 12 

secretion score had a stronger association with T2D in leaner individuals (pinteraction=0.001), 13 

we saw no difference in the association of the insulin resistance score with T2D among BMI- 14 

or waist-strata(pinteraction>0.31). While insulin resistance is often considered secondary to 15 

obesity, the association of the insulin resistance score with lower BMI and adiposity and with 16 

incident T2D even among individuals of normal weight highlights the role of insulin 17 

resistance and ectopic fat distribution in T2D, independently of body size.  18 



 4 

Introduction 1 

 2 

Type 2 diabetes (T2D) develops when insulin secretion is insufficient to maintain 3 

normoglycaemia, often in the context of an obesity-induced increase in insulin demand i.e. 4 

insulin resistance (1). Despite the importance of obesity as a risk factor for T2D, clinical 5 

heterogeneity exists in pathways leading to T2D. A recent report from the EPIC-InterAct 6 

study showed that over 10% of incident cases of T2D occurred among individuals of normal 7 

weight, and over 50% occurred in individuals who were non-obese at baseline (2). It was also 8 

shown that waist circumference was associated with risk of T2D within BMI strata, 9 

suggesting that for a given BMI the pattern of fat storage is an important determinant of T2D 10 

risk. Indeed, being overweight, but with a high waist circumference made future risk of T2D 11 

comparable to that of obese individuals (2).  12 

 13 

Most genetic variants associated with T2D are implicated in beta-cell function (3).  Recent 14 

studies revealed a stronger effect of these variants on T2D in lean individuals (4), 15 

highlighting the role of impaired insulin secretion in individuals who develop T2D in the 16 

absence of obesity. The relative role of insulin resistance in T2D, independent of obesity, has 17 

been more difficult to disentangle. This is partly attributable to the strong correlation between 18 

obesity and insulin resistance and also because gold standard measures are seldom feasible in 19 

large-scale prospective studies. Rare monogenic examples of severe insulin resistance in lean 20 

patients have been described (5). Amongst these syndromes, patients with lipodystrophy 21 

exhibit severe insulin resistance, metabolic dyslipidaemia and diabetes resulting from 22 

impaired adipose tissue function. However, the role of common genetic variants associated 23 

with insulin resistance in the aetiology of T2D, particularly among non-obese individuals 24 

remains poorly documented.  25 



 5 

 1 

Initial evidence that genetic approaches can highlight specific aetiological pathways comes 2 

from recent investigations showing that individuals carrying body-fat-lowering alleles at the 3 

IRS1 locus are insulin resistant and have a higher risk of dyslipidemia, T2D and CHD (6). As 4 

part of the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), we 5 

have recently identified 19 SNPs associated with fasting insulin (including IRS1), 10 of 6 

which were also associated with a dyslipidaemic profile suggestive of a role in insulin 7 

resistance (7,8). Such genetic variants allow the opportunity to investigate the correlates and 8 

consequences of lifelong genetic susceptibility to insulin resistance and/or insulin secretion 9 

independently of obesity (7–9).  10 

 11 

This study therefore aimed to a) validate the use of recently identified common genetic 12 

variants as specific markers for insulin resistance or secretion; b) characterise associations 13 

between these variants and detailed metabolic measures including measures of body size, fat 14 

mass and distribution; and c) use these instruments to investigate the contributions of insulin 15 

resistance and secretion to the risk of T2D in normal-weight, overweight and obese 16 

individuals. 17 

 18 

 19 

 20 

 21 

 22 

23 



 6 

Research Design and Methods 1 

 2 

Cohort characteristics 3 

Up to 1,374 (range by phenotype (Nrange): 1136-1374)  individuals without diabetes who 4 

attended phase 3 of the MRC Ely study (10) had relevant phenotypic measurements and 5 

genotyping from the Illumina CardioMetabochip (Metabochip). Up to 4,322 individuals from 6 

the Fenland study (11) without diabetes and with Metabochip genotyping  (Nrange=2,618-7 

2973) or imputed into 1000 Genomes (12) using Impute from the Affymetrix 5.0 genotyping 8 

chip (Nrange: 1223-1357) were included. The definition of regional compartments in DXA 9 

data is shown in Supplementary Figure 1. We performed sensitivity analyses subtracting the 10 

gynoid component from leg estimates to avoid double-counting of gynoid mass. Up to 1,031  11 

(Nrange: 923-1031) individuals from the RISC study (13) who underwent a euglycemic-12 

hyperinsulinemic clamp were included. Genotyping was performed at KBioscience and 13 

imputed into 1000 Genomes using MACH and minimac. Up to 909 (Nrange: 884-909) non-14 

diabetic participants from the ULSAM study (14) were included and had genotyping 15 

available from Metabochip. Participants were of European ancestry. Participant 16 

characteristics and measurement availability for each study are shown in Table 1, while the 17 

number of participants included in each analysis is also shown in Figures 1-3.   18 

 19 

We tested associations between genetic risk scores and incident diabetes in the EPIC-InterAct 20 

study (15), a case-cohort study nested within European Prospective Investigation into Cancer 21 

and Nutrition (EPIC) cohorts which includes 12,403 incident cases of T2D and a subcohort of 22 

16,154 individuals (including 778 randomly selected incident T2D cases). A maximum of 23 

18,676 participants (8,136 incident cases, 10,540 non-cases) had genotypes available from 24 



 7 

the Metabochip (N=9,361) or Illumina 660W-Quad Chip (N=9,290) imputed into 1000 1 

Genomes and were included in the current study. Up to 10,923 participants (Nrange: 10,029-2 

10,923) from the EPIC-InterAct subcohort were also included in quantitative trait analyses 3 

(Table 1).  4 

 5 

All participants gave written informed consent, and studies were approved by local ethics 6 

committees and the Internal Review Board of the International Agency for Research on 7 

Cancer. 8 

 9 

Genetic risk scores 10 

We created unweighted (i.e. per-allele) genetic risk scores for insulin resistance and impaired 11 

insulin secretion using effect alleles defined from the literature as shown in Supplementary 12 

Table 1. The insulin resistance genetic score comprised variants associated with fasting 13 

insulin in recent meta-analyses (8). In order to improve specificity we restricted the insulin 14 

resistance score to the 10 variants showing association (p<0.05) with lower HDL and higher 15 

triglycerides (8,16): a hallmark of common insulin resistance. This excluded TCF7L2, 16 

associated principally with insulin secretion (17), and FTO,  whose effect on insulin levels 17 

was entirely mediated by BMI (8). Variants included were those in or near the IRS1, GRB14, 18 

ARL15, PPARG, PEPD, ANKRD55/MAP3K1, PDGFC, LYPLAL1, RSPO3, and FAM13A1 19 

genes (Supplementary Table 1). For the insulin secretion score, from loci associated with 20 

T2D and related traits (18–21) we undertook literature searches to identify SNPs showing an 21 

association with impaired early insulin secretion. In addition, we investigated the literature to 22 

identify additional candidate genes associated with early insulin secretion. Up to 21 variants 23 

associated with decreased early insulin secretion were included in the insulin secretion score. 24 
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Where SNPs were missing, we included a proxy where available (Supplementary Table 1), 1 

and where no proxy was available, we did not impute missing SNPs. Each SNP, the reason 2 

for inclusion in the score and its availability in each study is shown in Supplementary Table 3 

1. The genetic score distributions in each study are shown in for the insulin secretion and 4 

insulin resistance scores in Supplementary Figure 2a and b, respectively.  5 

 6 

Statistical analysis 7 

In order to meta-analyse data from multiple studies centrally, each study first natural-log 8 

transformed and standardised the phenotype, such that for each variable the mean was equal 9 

to zero and SD equal to one. Each study then fit  linear regression models on each of these 10 

outcomes using the genetic risk scores as exposures, adjusted for age and sex (with and 11 

without adjustment for BMI). Genetic risk scores were unweighted and effect sizes expressed 12 

per fasting insulin-raising or insulin secretion-lowering allele, respectively. We investigated 13 

the association of these risk scores with euglycaemic-hyperinsulinaemic clamp (22) and 14 

OGTT-based measures of insulin sensitivity and secretion (23,24). We also investigated the 15 

associations of scores with glycaemia and insulinaemia during the OGTT, lipids, BMI, waist 16 

and hip-circumferences, and body fat percentage (assessed by bioimpedance in RISC, and by 17 

DXA in Fenland). We performed fixed-effect, inverse-variance weighted meta-analyses using 18 

Stata SE-12.1 software (StataCorp LP, College Station, TX). Associations with T2D in the 19 

EPIC-InterAct study were investigated using Prentice-weighted Cox regression with age as 20 

the underlying time variable, adjusted for age at entry (to account for potential cohort 21 

effects), sex and centre of recruitment. BMI strata were defined by WHO cutoffs and waist 22 

circumference strata were defined by sex-specific tertiles. Interactions of risk scores with 23 

BMI and waist circumference were tested by including the product term of risk scores and 24 



 9 

BMI categories or waist circumference tertiles. Effect sizes were expressed as hazard ratios 1 

(HR) per-risk allele.  2 

 3 

  4 



 10 

Results 1 

Validation of genetic risk scores: associations with insulin sensitivity and secretion 2 

The insulin resistance score was associated with lower whole-body insulin sensitivity based 3 

on the M/I value from euglycaemic-hyperinsulinaemic clamps (β  in standard deviations per-4 

allele [95% CI]: -0.03 [-0.04, -0.01]; p=0.004) (Figure 1a) and with lower Matsuda index (β = 5 

-0.03 [-0.05, -0.02], p=2.2x10
-5

) calculated from frequently-sampled OGTTs (Figure 1a). The 6 

score was not associated with insulinogenic index, but was associated with higher insulin 7 

levels throughout the OGTT (p<0.001) and higher levels of glycaemia, albeit only 8 

statistically significant for 2-h glucose (Figure 1a). 9 

 10 

In contrast, the insulin secretion score was associated with lower insulinogenic index (-0.05 [-11 

0.06, -0.04], p=2.1x10
-14

) and lower 30-minute insulin levels (-0.05 [-0.06, -0.03], p=3.2x10
-12 

13
), but showed no associations with any of the measures of insulin resistance including M/I 13 

(0.00 [-0.01, 0.02], p=0.59), Matsuda index (0.00 [-0.01, 0.02], p=0.40) or fasting insulin 14 

(0.00 [-0.01, 0.01], p=0.95) (Figure 1b). Unlike the insulin resistance score, associations of 15 

the insulin secretion score with lower post-challenge insulin were accompanied by higher 16 

glucose levels at all time-points (p-values<1.7x10
-4

). 17 

 18 

Associations with detailed anthropometric and metabolic traits 19 

The insulin resistance score was strongly associated with both higher triglycerides (0.03 20 

[0.02, 0.03], p=3.5x10
-20

) and lower HDL-cholesterol (-0.02 [-0.03, -0.02], p=1.6x10
-14

). It 21 

was also associated with lower BMI (-0.01 [-0.01, -0.00], p=0.02), smaller hip circumference 22 

(-0.01 [-0.02, -0.01], p=4.4x10
-4

) and lower body fat percentage (-0.01 [-0.02, -0.00], p=0.02) 23 

(Figure 1a). Also, the insulin resistance score was also associated with lower BMI when we 24 
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restricted analyses to incident cases of T2D in the EPIC-InterAct study (N=7577; -0.02 [-1 

0.03, -0.01], p=0.001). Further investigation of detailed anthropometric measures obtained by 2 

DXA in Fenland participants highlighted inverse associations of the score with fat mass in 3 

different body compartments (Supplementary Figure 1). The strongest associations were 4 

observed for leg (-0.03 [-0.05, -0.02], p=1.4x10
-6

) and gynoid fat mass (-0.03 [-0.04, -0.02], 5 

p=9.9x10
-6

).  These associations remained after excluding PPARG and IRS1 variants from the 6 

genetic score (leg (-0.03 [-0.04, -0.01], p=1.2x10
-4

) and gynoid fat mass (-0.03 [-0.04, -0.01], 7 

p=3.4x10
-4

). Sensitivity analysis on leg fat mass removing the gynoid region, showed that the 8 

association remained highly significant (-0.03 [-0.05, -0.02], p=9.2x10
-7

). For these 9 

associations, we saw similar magnitudes of association in men and women, which were 10 

statistically significant (p<0.05) in both genders. We also saw an association with arm fat 11 

mass (-0.02 [-0.03, -0.00], p=0.02), but not with lean mass measurements (Figure 2). 12 

 13 

In order to investigate the possibility that lower levels of gluteofemoral fat mass might limit 14 

subcutaneous fat storage and hence increase ectopic fat deposition, we also investigated the 15 

association of the insulin resistance score with estimates of liver damage. The score was 16 

associated with both higher ALT (0.02 [0.01, 0.03], p=0.002) and gamma-GT (0.02 [0.01, 17 

0.03], p=0.001). The insulin resistance score was not associated with self-reported alcohol 18 

intake (p=0.66) and associations with liver enzymes were unchanged after adjustment alcohol 19 

intake (ALT: 0.02 [0.01, 0.04], p=0.002. gamma-GT:  0.02 [95% CI 0.01, 0.04], p=0.003).  20 

 21 

The insulin secretion score was not associated with triglycerides or HDL-cholesterol (p>0.1), 22 

nor with any of the anthropometric traits (p>0.18) (Figure 1b). The secretion score was 23 

nominally associated with higher android fat mass (p=0.04), but with no other parameters in 24 
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the DXA data.  We saw a weak association of the insulin secretion score with higher levels of 1 

ALT (0.01 [0.00, 0.02], p=0.02), but not gamma-GT (0.00 [-0.00, 0.02], p=0.24). 2 

 3 

Associations with T2D 4 

Both the insulin secretion (Hazard ratio (HR) [95%CI]: 1.09 [1.07, 1.11]; p=8.0x10
-30

) and 5 

resistance scores (1.08 (1.06, 1.10); p=4.0x10
-15

) were associated with incident T2D (Figure 6 

3). To investigate the relative importance of genetically predicted insulin resistance and 7 

secretion on T2D incidence at different levels of BMI, we examined the effect of the score on 8 

incident T2D in normal-weight, overweight and obese individuals and found no difference in 9 

associations between strata (normal-weight: HR=1.07 [1.04, 1.11], p=1.3x10
-4

; overweight: 10 

HR=1.08 [1.05, 1.10], p=4.7x10
-9

; obese: HR=1.06 [1.03, 1.09], p=1.0x10
-4

; pinteraction=0.58) 11 

(Figure 3). Nor was there any difference between strata of waist circumference 12 

(pinteraction=0.31) (Figure 3). In contrast, the insulin secretion score showed an interaction with 13 

waist circumference on the risk of T2D (pinteraction=0.001). The association was stronger in 14 

individuals with smaller waist circumference than in those with large waist circumference 15 

(lowest third: HR=1.13 [1.10, 1.16], p= 1.6x10
-10

; middle third:HR=1.12 [1.09, 1.15], p= 16 

9.5x10
-23

; highest third HR=1.07 [1.04, 1.09], p= 9.0x10
-9

). There was a similar but non-17 

statistically significant trend for BMI (pinteraction=0.07), with a tendency toward stronger 18 

associations in leaner compared to obese individuals (Figure 3).  19 

20 
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Discussion 1 

 2 

While rare monogenic examples of insulin resistance highlight the causal role of inadequate 3 

subcutaneous adipose tissue in the aetiology of cardiometabolic disease, the causal role of 4 

impaired adipose expandability and ectopic lipid accumulation in “common” cardiometabolic 5 

disease remains largely unproven. We observe that a genetic score for insulin resistance 6 

displays a pattern of association (lower subcutaneous adipose tissue and T2D) similar to that 7 

observed in monogenic forms of lipodystrophy, implicating a role for inadequate capacity to 8 

store surplus lipids in the aetiology of T2D. Furthermore, we show that these genetic scores 9 

are associated with incident T2D even in individuals of normal weight, highlighting the role 10 

of impaired adipose expandability in T2D independently of BMI.    11 

 12 

Validation of the genetic risk scores 13 

We found that the genetic risk score comprising variants previously associated with fasting 14 

insulin was associated with euglycaemic-hyperinsulinaemic clamp-based insulin sensitivity. 15 

Furthermore, a genetic score comprising variants previously associated with early insulin 16 

secretion was strongly associated with 30-minute insulin and insulinogenic index, but not 17 

with insulin sensitivity. These associations validated the utility of these risk scores as specific 18 

and sensitive genetic instruments to understand the role of both insulin resistance and beta-19 

cell dysfunction in the aetiology of diabetes and other disease outcomes.   20 

 21 

Association of genetic risk scores with other metabolic traits 22 

The insulin resistance score was associated with lower BMI, hip circumference, and body fat 23 

percentage, and particularly with lower gynoid and leg fat mass (Figure 2): adipose tissue 24 
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depots considered protective against the complications of ectopic fat deposition (25). A 1 

prevailing hypothesis for the pathogenesis of insulin resistance proposes that the capacity of 2 

adipose tissue to expand in the face of sustained positive energy balance is finite and that 3 

exceeding this limit results in lipid storage in tissues less well adapted to this need (26). This 4 

phenomenon of ectopic lipid accumulation has been strongly associated with insulin 5 

resistance in multiple studies and plausible, albeit still largely unproven, explanations exist 6 

linking this lipid accumulation to impaired insulin action (lipotoxicity) (27). Lipodystrophic 7 

disorders are characterised by a primary lack of adipose tissue and present an extreme 8 

example of a mismatch between the need and capacity to store surplus lipids. These 9 

extremely rare disorders are associated with particularly severe ectopic fat accumulation, 10 

dyslipidaemia, insulin resistance and diabetes. Recent reports suggests novel forms of 11 

lipodystrophy which may be more common (28). Here, we report evidence that common 12 

genetic variants show associations similar to those observed in rare, monogenic 13 

lipodystrophies (Figure 2), and highlight a potential role a mismatch between the need and 14 

capacity to store surplus lipids in “common” metabolic disease. Associations with elevated 15 

ALT and gamma-GT are indicative of hepatic fat deposition, consistent with ectopic lipid 16 

accumulation. While elevated ALT and gamma-GT are associated with fatty liver (29), they 17 

can be elevated in response to other forms of liver injury or disease (30) including alcohol 18 

consumption, medication or hepatitis. While we could not exclude the possibility that the 19 

insulin resistance score was associated with higher ALT and gamma-GT via mechanisms 20 

other than fatty liver, associations with ALT and gamma-GT were unchanged after 21 

adjustment for self-reported alcohol intake, and other forms of disease sufficiently rare that in 22 

this healthy middle-aged population we consider them unlikely to explain our findings.  23 

 24 

Associations with incident disease 25 
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While obesity is a major risk factor for insulin resistance and T2D, there is considerable inter-1 

individual variation in the metabolic response to obesity, with some individuals apparently 2 

protected from the typical consequences of obesity (31). It has previously been shown that 3 

insulin sensitive obese individuals have lower visceral and hepatic fat content than insulin 4 

resistant obese individuals as well as a lower intima-media thickness (32), further implicating 5 

ectopic fat deposition as a determinant of the metabolic consequences of obesity. Despite 6 

negative confounding by BMI, we saw an association of the insulin resistance score with 7 

incident T2D. As the adipose tissue of obese individuals is placed under greater demand for 8 

fat storage, we hypothesized that the insulin resistance score would have a larger effect on 9 

T2D risk in these individuals than in normal-weight individuals. However, the insulin 10 

resistance score was associated with incident T2D even in normal-weight individuals and 11 

those with the lowest waist circumference (Figure 3), with similar effect sizes to obese 12 

individuals. This suggests that the relationship between adipose expandability and positive 13 

energy balance is not subject to a threshold effect, but may result in degrees of ectopic fat 14 

accumulation even in people with a “normal” BMI. This is reminiscent of what is observed in 15 

South Asian individuals who have been reported to have higher visceral fat and exacerbated 16 

metabolic consequences for a given BMI (33). While the role of beta-cell function has been 17 

highlighted in the aetiology of T2D among lean individuals (4), our findings also highlight 18 

the role of impaired adipose expandability and insulin resistance in T2D in lean individuals.  19 

 20 

Recent analyses have highlighted the causal role of increased adiposity in impaired 21 

cardiometabolic health (34), and we now highlight a causal link between insulin resistance 22 

and incident disease, completely independent of BMI. The obesity epidemic is heavily 23 

implicated in driving the increased incidence of metabolic disease (35,36). However, while 24 

there is some suggestion that hyperinsulinaemia can be a cause and consequence of obesity 25 
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(37), we observe that genetically predicted insulin resistance and hyperinsulinaemia are 1 

associated with lower adiposity (Figure 2). However, as we restricted our genetic score to 2 

those variants associated with dyslipidaemia (to improve specificity), we cannot exclude the 3 

possibility that primary insulin resistance of another form could cause obesity, or display 4 

different associations with metabolic traits or disease. While insulin resistance is strongly 5 

associated with obesity and the secular trends in obesity raise concerns about the growing 6 

consequences of insulin resistance (35), of the 19 loci recently found to be associated with 7 

fasting insulin levels, only one (FTO) was mediated entirely by higher BMI, highlighting the 8 

role of other pathways in the aetiology of insulin resistance. Furthermore, the association of 9 

10 of the 19 SNPs with dyslipidaemia (indicative of postreceptor-mediated insulin resistance 10 

(38)), implicate this as a prevalent form of common insulin resistance.  11 

 12 

As our cross-sectional analyses were restricted to individuals without diagnosed diabetes, we 13 

considered the possibility that the insulin resistance score association with lower BMI and 14 

adiposity were are as a result of a truncation effect. I.e. participants with both higher BMI and 15 

higher genetic predisposition to insulin resistance had a higher risk of T2D and were 16 

preferentially excluded from the sample (3). However, we observed the same association of 17 

the score with lower BMI in the incident cases of T2D in the EPIC-InterAct study, suggesting 18 

that this association is not wholly attributable to truncation effects.  19 

 20 

A limitation of our approach is that we cannot ascribe a specific direction to the associations 21 

of the score with insulin resistance and adiposity. For example, while these loci were among 22 

the top signals in a genome-wide association study of fasting insulin, it is unclear whether 23 

they have a primary association with insulin resistance or with adipocyte function. Indeed, a 24 
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variant near IRS1 is included in this list, and while absence of IRS1 is known to result in 1 

insulin resistance through impaired insulin signal transduction (39), IRS1 also influences 2 

adipocyte differentiation (40). Indeed, IRS1 was previously associated with body fat 3 

percentage  (6), where the allele associated with higher body fat percentage was associated 4 

with a favourable metabolic profile, including lower risk of T2D and cardiovascular disease. 5 

Here, we see the same pattern of association for our genetic risk score and thereby highlight a 6 

number of genetic variants that may be influential in the ability to store surplus lipids 7 

optimally. The association with insulin resistance was apparently paradoxically accompanied 8 

by lower body fat percentage and lower BMI. However, these results are paradoxical only 9 

when considered in the context of the observational epidemiological association between 10 

higher adiposity and insulin resistance. Our results, in combination with observations from 11 

individuals with monogenic lipodystrophy, suggest that these loci may have primary effects 12 

on subcutaneous adipocyte function, which then results in insulin resistance via ectopic lipid 13 

deposition. While we perform analyses using a combined genetic score, our findings 14 

implicate each of these loci in the aetiology of insulin resistance and body fat distribution. 15 

This conclusion is supported by findings in an accompanying article (Yaghootkar et al, 16 

Diabetes, submitted), which independently identify the same variants in our score as being 17 

associated with a “monogenic lipodystrophy-like” phenotype using a hypothesis-free 18 

clustering approach. The inclusions of PPARG and IRS1 in the insulin resistance score further 19 

highlight the likely role of adipocyte function in their associations with insulin resistance. 20 

However, even after removing PPARG and IRS1 variants from the insuiln resistance score, 21 

we observed consistent associations with body fat distribution. Furthermore, LYPLAL1, 22 

GRB14 and RSPO3 have been associated with waist-hip ratio at genome-wide levels of 23 

significance (41).  24 

 25 
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Conclusions 1 

Genetic scores for insulin resistance and secretion based on common variants are valid tools 2 

to study the role of these features in a range of disease processes. In particular, while insulin 3 

resistance as a cause of T2D is largely considered to be a consequence of obesity, we 4 

highlight the role of polygenic insulin resistance in the development of T2D independent of 5 

body size. Furthermore, the association of these variants with lower subcutaneous fat mass 6 

and suggestion of ectopic fat deposition highlight the role of impaired adipose expandability 7 

and body fat distribution in T2D even among lean individuals.  8 

  9 
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Figure legends 1 

Figure 1a-b: Association of the insulin resistance and secretion risk scores with a range of 2 

standardised outcomes. Effect sizes are expressed per-risk allele. All models were adjusted 3 

for age, sex and BMI, other than anthropometric traits, which were adjusted only for age and 4 

sex.  5 

 6 

Figure 2: Association of the insulin resistance score on standardised anthropometric traits in 7 

the Fenland study. Effect sizes are expressed per-risk allele. All models were adjusted for age 8 

and sex.  9 

 10 

Figure 3: Association of the risk scores with type 2 diabetes in the EPIC-InterAct study. 11 

Associations are shown overall and by strata of BMI and waist circumference at baseline. 12 

BMI strata were defined by WHO BMI cutoffs and waist circumference strata were defined 13 

by sex-specific tertiles (low: M<94cm, F<78.5cm; med: M>94-103cm, F>78.5-90cm; high: 14 

M>103cm, F>90cm).  15 

 16 

 17 

Supplementary Figure 1: Regional compartment definition in the Fenland DXA data. The 18 

trunk region extends from the chin to the top of the pelvis. The leg regions are defined by a 19 

cut across the femoral neck, not touching the pelvis. The arm regions are defined by a cut 20 

placed as close to the body as possible. The android region is a quadrilateral box, where the 21 

lower boundary is the pelvis, the lateral boundaries are the arm cuts and sthe upper boundary 22 

is above the pelvis cut by 20% of the distance between the pelvis and neck cuts. The gynoid 23 

region is another quadrilateral box where the lateral boundaries are the arm cuts. The upper 24 

boundary is below the pelvis cut by 1.5 x the height of the android region. The Lower 25 

boundary is below the upper boundary by 2 x the height of the android region.  26 

 27 

Supplementary Figure 2: Histograms of genetic risk scores from each study for a) insulin 28 
secretion and b) insulin resistance scores.  29 
 30 

 31 
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Supplementary Tables 1 

(see attached excel file: Scott_Common_genetic_variants_SuppTable_041213.xls)  2 

Supplementary Table 1: SNPs included in the genetic risk scores, with the study in which 3 

they were identified or implicated in insulin secretion or resistance. The risk allele for each of 4 

these SNPs is also shown. Where the lead SNP was not available, the proxy used is listed for 5 

each study. Where a suitable proxy was not available, the SNP is marked “x”.  6 
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Tables 1 

 2 

Table 1: Study descriptives of each of the five participating studies, along with details of the genetic risk scores. M/I in RISC is reported in 3 

(micromol/kgFFM/min/nmol/l)/1000, while M/I in ULSAM is reported as mg/kg bw/min/mU/l*100.  4 

 5 

 

Study 

 

MRC-Ely RISC ULSAM 

Fenland 

(Metabochip) 

Fenland (Genome-

wide) 

EPIC-InterAct 

subcohort 

N (M/F) 

1374 

(629/745) 

1031(453/57

8) 907 (907/0) 2978 (1403/1575) 1357 (597/760) 16,154 (6,111/10043) 

Age (years) 60.9 (9.2) 43.96(8.37) 

70.98 

(0.59) 47.0 (7.1) 45.0 (7.3) 52.4 (9.2) 

Height (cm) 167.5 (8.9) 

170.91 

(9.32) 

175.12 

(5.95) 170.6 (9.5) 169.8 (9.3) 166.2 (9.3) 

BMI (kg/m
2
) 27.03 (4.68) 25.47 (4.01) 

25.97 

(3.22) 26.7 (4.9) 27.1 (4.9) 26.0 (4.2) 

Waist circumference (cm) 92.57 (13.2) 

86.46 

(12.70) 

93.85 

(9.12) 90.5 (13.4) 92.2 (13.6) 86.4 (12.7) 

M/I 

 

0.14(0.07)  5.43(2.42)  

   Matsuda Index 7.09 (4.60) 6.42(1.86) 4.30(2.66)  

   Insulinogenic index 

(pmolinsulin/mmolglucose) 

115.70 

(108.0) 

30.42 

(19.86) 

    Fasting glucose (mmol/L) 4.97 (0.54) 5.05(0.56) 5.34(0.53) 4.8 (0.71) 4.89 (0.61) 

 

Fasting insulin (pmol/L) 55.84 (34.64) 34.4(18.68) 

72.41(40.70

) 45.1 (11.2) 46.4 (32.9) 

 

 6 


